US20090028483A1 - Double row ball bearing - Google Patents
Double row ball bearing Download PDFInfo
- Publication number
- US20090028483A1 US20090028483A1 US12/073,903 US7390308A US2009028483A1 US 20090028483 A1 US20090028483 A1 US 20090028483A1 US 7390308 A US7390308 A US 7390308A US 2009028483 A1 US2009028483 A1 US 2009028483A1
- Authority
- US
- United States
- Prior art keywords
- double row
- lubricant
- row ball
- diameter
- balls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
- F16C19/181—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
- F16C19/182—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/40—Ball cages for multiple rows of balls
- F16C33/405—Ball cages for multiple rows of balls with two or more juxtaposed cages joined together or interacting with each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6659—Details of supply of the liquid to the bearing, e.g. passages or nozzles
- F16C33/6674—Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6681—Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6685—Details of collecting or draining, e.g. returning the liquid to a sump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0467—Elements of gearings to be lubricated, cooled or heated
- F16H57/0469—Bearings or seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/048—Type of gearings to be lubricated, cooled or heated
- F16H57/0482—Gearings with gears having orbital motion
- F16H57/0483—Axle or inter-axle differentials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/70—Diameters; Radii
- F16C2240/80—Pitch circle diameters [PCD]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/61—Toothed gear systems, e.g. support of pinion shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/38—Constructional details
- F16H48/42—Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
- F16H2048/423—Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement
Definitions
- the invention relates to a double row ball bearing, and more particularly, to a so-called tandem double row ball bearing that is lubricated using lubricant housed in a final reduction gear of a vehicle and is suitable to support a pinion shaft.
- a tandem double row ball bearing includes an outer ring, an inner ring, and balls disposed in double rows between both of the rings, and a cage for retaining the balls.
- the double row ball bearing has been widely used in a pinion shaft supporting device for vehicles or the like as shown in JP 2006-234100A.
- FIG. 2 illustrates an example of a differential gear device to which a double row ball bearing according to the invention is applied.
- the differential gear device includes a pinion shaft 42 that is rotatably supported to a housing 41 and has a pinion gear 43 disposed at a rear end thereof; a ring gear 44 engaging with the pinion gear 43 ; a pair of double row ball bearings 45 and 46 that allows the pinion shaft 42 to be rotatably supported to the housing 41 , the double row ball bearing 45 being located on a side of the pinion gear 43 and the double row ball bearing 46 being located on as side opposite to the pinion gear 43 ; and a flange joint 47 is provided at an outer end of the pinion shaft 42 to connect a drive shaft.
- lubricant flipping up according to rotation of the ring gear 44 is introduced at a middle portion along the axial direction between the pair of double row ball bearings 45 and 46 through a lubricant passage 48 provided in the housing 41 .
- a fluid flow occurs from a small diameter side to a large diameter side.
- the small diameter side of each of the double row ball bearings 45 and 46 is located close to the shaft, and the lubricant is supplied from the small diameter side (accurately middle portion between one pair of double row ball bearings) and is discharged from the large diameter side by the pumping action.
- Such a lubricating method has been generally applied.
- a large diameter cage for retaining a plurality of large diameter balls and a small diameter cage for retaining a plurality of small diameter balls are used as cages.
- These cages have a similar shape except for difference in diameter. That is, in the general double row ball bearing, the large diameter cage and the small diameter cage are formed substantially in a conical asymmetrical shape. On the contrary, in JP 2006-234100A, the large diameter cage and the small diameter cage are formed substantially in a cylindrical symmetrical shape.
- the small diameter cage has a symmetric shape to suppress the amount of flowing-in lubricant, thereby suppressing agitation resistance caused by lubricant.
- the large diameter cage has a shape similar to that of the small diameter cage except for difference in diameter, the amount of flowing-out lubricant is suppressed. Accordingly, the amount of lubricant staying in the bearing increases and thus the effect to reduce agitation resistance may decrease.
- An object of the invention is to provide a double row ball bearing capable of reducing torque by suppressing agitation resistance as a result of optimizing combination of cages and/or the amount of lubricant in the bearing.
- An object of the invention is to provide a double row ball bearing in which the amount of lubricant in the bearing is appropriately controlled to suppress agitation resistance caused by the lubricant, thereby reducing torque.
- a double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls, wherein the large diameter cage has an asymmetric shape with respect to a center in an axial direction, a diameter of which close to an end section opening is larger than a diameter close to the small diameter cage, and wherein the small diameter cage has a symmetric shape with respect to a center in an axial direction, a diameter of which close to an end section opening is equal to a diameter close to the large diameter cage.
- the double row ball bearing having the double row raceway surfaces different in diameter has a pumping action allowing the lubricant to flow from the small diameter side to the large diameter side.
- An asymmetry cage promotes the pumping action of the bearing, and a symmetry cage suppresses the pumping action of the bearing. Accordingly, the small diameter cage is formed in the symmetry shape, thereby suppressing that the lubricant flows into the bearing, and the large diameter cage is formed in the asymmetry shape, thereby promoting that the lubricant is discharged out of the bearing (the lubricant is prevented from staying in the bearing). Accordingly, agitation resistance is greatly reduced, and thus it is possible to reduce torque.
- the pillar portions of the large diameter cage preferably have a substantially taper shape in which the pillar portions get wider as they go to the large diameter side (the pillar portion is inclined to the axial direction, a diameter of which gets larger as it goes to the outside of the axial direction), and the pillar portions of the small diameter cage overall preferably have a substantially cylindrical shape (the pillar portion is parallel to the axial direction).
- the double row ball bearing of the invention since the small diameter cage has the symmetry shape, it is suppressed that the lubricant flows into the bearing, and since the large diameter cage has the asymmetry shape, the lubricant is promoted to be discharged out of the bearing, thereby greatly reducing agitation resistance. Accordingly, it is possible to reduce torque.
- a double row ball bearing including: an outer ring; an inner ring; a plurality of balls disposed in double rows between both of the rings; and cages that retain the balls, in which lubricant is moved by a pumping action of the bearing, wherein the outer ring is provided with a lubricant discharging passage for discharging the lubricant between the double row balls to the outside.
- the double row ball bearing is lubricated in an oil bath manner, and the lubricant flowing in from one end section opening is discharged from the other end section opening by a pumping action of the ball bearing (graded-junction ball bearing).
- At least one lubricant discharging passage is provided at a portion of the outer ring corresponding to a portion between the double row balls in the axial direction.
- the amount of lubricant supplied into the bearing is controlled. Since the pumping action increases together with increase of the number of rotation, the amount of lubricant flowing into the bearing increases together with increase of the number of rotation. As a result, agitation resistance of the lubricant increases, and torque increases.
- the lubricant discharging passage provided in the outer ring, since it becomes easier that the lubricant is discharged to the outside as centrifugal force increases, the amount of lubricant discharged from the opening increases together with increase of the number of rotation. Therefore, the amount of lubricant staying in the bearing is appropriately controlled.
- At least one lubricant discharging passage is provided, and preferably, a plurality of lubricant discharging passages are provided at predetermined intervals in a circumferential direction.
- the housing or the like, to which the outer ring are attached, is provided appropriately with a lubricant circulating passage for returning the lubricant, which is discharged from the lubricant discharging passage, to the lubricant supplying passage.
- the double row ball bearing for example, there may be used a so-called tandem double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls.
- the double row ball bearing is not limited thereto, a double row ball bearing formed by facing graded-junction ball bearings having raceway surfaces equal in diameter may be used.
- the outer ring is provided with the lubricant discharging passage for discharging the lubricant in the bearing to the outside, the amount of lubricant discharged from the lubricant discharging passage increases together with the increase of the number of rotation, thereby appropriately controlling the amount of lubricant staying in the bearing. Therefore, it is possible to reduce torque.
- a double row ball bearing including: an outer ring; an inner ring; a plurality of balls disposed in double rows between both of the rings; and cages that retain the balls, in which lubricant is moved by a pumping action of the bearing, wherein the lubricant is discharged from a discharge end section of the pumping action, the lubricant is prevented from flowing in from an inflow end section of the pumping action, and the outer ring is provided with a lubricant supplying passage for dripping the lubricant to the balls disposed on the inflow side of the pumping action.
- the double row ball bearing discharges the flowing-in lubricant by the pumping action.
- a kind of double row ball bearing uses oil bath lubrication, but the oil bath lubrication is out of use because the oil bath lubrication results in increase of the amount of lubricant.
- the lubricant supplying passage is provided in the uppermost portion of the outer ring where the lubricant can be dripped to the balls disposed on the pumping action inflow side.
- the lubricant supplying passage may be provided in the vicinity of the end portion of the outer ring and at a portion corresponding to the outside of the balls in the axial direction, and may be provided in the vicinity of the center of the outer ring and at a portion corresponding to the inside of the balls in the axial direction.
- the later is more preferable.
- the lubricant is directly supplied to the balls disposed on the pumping action inflow side, and the lubricant is supplied to the balls disposed on the pumping action discharge side by the pumping action of the balls disposed on the pumping action inflow side.
- an in-housing lubricant supplying passage for supplying the lubricant to the lubricant supplying passage is appropriately formed.
- a passage diameter of the lubricant supplying passage including the in-housing lubricant supplying passage is adjusted to optimize the amount of lubricant staying in the bearing (as small as possible and to securely prevent seizure).
- the double row ball bearing for example, there may be used a so-called tandem double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls.
- the double row ball bearing is not limited thereto, a double row ball bearing having raceway surfaces equal in diameter may be used.
- the outer ring is provided with the lubricant supplying passage for supplying the lubricant into the bearing, it is possible to remove the oil bath lubrication that easily causes increase in lubricant.
- the double row ball bearing according to the invention is applicable to at least one of the double row ball bearings in a differential gear device comprising:
- a pinion shaft that is rotatably supported to a housing and that has a pinion gear disposed at a rear end thereof;
- a pair of double row ball bearings that allows the pinion shaft to be rotatably supported to the housing, one of which is located on a side of the pinion gear and the other of which is located on a side opposite to the pinion gear;
- a flange joint is provided at an outer end of the pinion shaft to connect a drive shaft.
- FIG. 1 is a longitudinal sectional view illustrating an upper half portion of a double row ball bearing according to an embodiment of the invention.
- FIG. 2 is a longitudinal sectional view illustrating a differential gear device as an example in which the double row ball bearing of the invention is used.
- FIG. 3 is a longitudinal sectional view illustrating an upper half portion of a double row ball bearing according to an embodiment of the invention.
- FIG. 4 is a longitudinal sectional view illustrating an upper halt portion of a double row ball bearing according to a third embodiment of the invention.
- FIG. 1 illustrates a first embodiment of a double row ball bearing according to the invention.
- the double row ball bearing 1 includes: an outer ring 2 that has double row raceway surfaces 2 a and 2 b different in diameter from each other and is attached to a housing (not shown); an inner ring 3 that has double row raceway surfaces 3 a and 3 b corresponding to the raceway surfaces 2 a and 2 b of the outer ring 2 and is attached to a rotation shaft (not shown); a plurality of large diameter balls 4 and a plurality of small diameter balls 5 that are disposed between the raceway surfaces 2 a and 3 a , and 2 b and 3 b of the rows of the inner and outer rings 2 and 3 with different pitch diameters, respectively; a large diameter cage 6 that retains the plurality of large diameter balls 4 ; and a small diameter cage 7 that retains the plurality of small diameter balls 5 .
- an outer diameter of the left raceway surface 3 b of the inner ring 3 is smaller than an outer diameter of the right raceway surface 3 a of the inner ring 3 .
- An inner diameter of the left raceway surface 2 b of the outer ring 2 is smaller than an inner diameter of the right raceway surface 2 a of the outer ring 2 .
- Contact angles of the large diameter ball 4 and the small diameter ball 5 are in the same direction (which is not limited to the same angle).
- Lubricant is supplied from the left side (i.e., small diameter side) of the figure and then the lubricant is discharged from the right side (i.e., large diameter side) of the figure by a pumping action of the double row ball bearing 1 .
- a large diameter cage and a small diameter cage have a similar shape except for difference in diameter. All of the cages have an asymmetric shape, or all of the cages have a symmetric shape. That is, the cages have any one kind of shapes.
- the large diameter cage 6 has an asymmetric shape, a diameter (discharge diameter) of which close to a right end section opening is larger than a diameter (inflow diameter) close to the small diameter cage 7
- the small diameter cage 7 has a symmetric shape, a diameter (inflow diameter) of which close to a left end section opening is equal to a diameter (discharge diameter) close to the large diameter cage 6 .
- the combination of the symmetric shape and the asymmetric shape is in consideration of the pumping action from the left to the right in the left and right angular ball bearings that are both of left and right double row ball bearings 1 serving as angular ball bearings.
- the large diameter cage 6 includes a small diameter ring portion 6 a disposed on the left side (inside in the axial direction), a large diameter ring portion 6 b disposed on the right side (outside in the axial direction), pillar portions 6 c that form a pocket for housing the balls 4 between both of the ring portions 6 a and 6 b .
- the large diameter cage 6 is formed in a tapered tubular shape, a diameter of which gets larger as it goes from the left side to the right side.
- the pillar portions 6 c are inclined to the axial direction according to the direction along which the lubricant flows from the small diameter side to the large diameter side. Accordingly, the lubricant smoothly flows to promote the discharge of the lubricant.
- the small diameter cage 7 includes a pair of ring portions 7 a and 7 b having the same diameter smaller than the small diameter ring portion 6 a of the larger diameter cage 6 , and pillar portions 7 c that forms a pocket for housing the balls 5 between both of the ring portions 7 a and 7 b . Overall, the small diameter cage 7 is formed substantially in a cylindrical shape.
- the pillar portions 7 c are formed in a direction crossing to a direction in which the lubricant flows from the small diameter side to the large diameter side, in parallel to the axial direction. Accordingly, it is disturbed for the lubricant to smoothly flow, and thus it is difficult that the lubricant flows in.
- the double row ball bearing 1 of the invention is suitably used as a bearing device that rotatably supports a pinion shaft 42 to a housing 41 in the differential gear device for vehicles shown in FIG. 2 .
- FIG. 2 illustrates an example of a differential gear device to which a double row ball bearing according to the invention is applied.
- the differential gear device includes the pinion shaft 42 that is rotatably supported to the housing 41 and has a pinion gear 43 disposed at a rear end thereof; a ring gear 44 engaging with the pinion gear 43 ; a pair of double row ball bearings 45 and 46 that allows the pinion shaft 42 to be rotatably supported to the housing 41 , the double row ball bearing 45 being located on a side of the pinion gear 43 and the double row ball bearing 46 being located on as side opposite to the pinion gear 43 ; and a flange joint 47 is provided at an outer end of the pinion shaft 42 to connect a drive shaft.
- the double row ball bearing 1 is lubricated by the lubricant housed in the housing 41 .
- rotation torque increases.
- the lubricant is suppressed from flowing into the bearing 1 and the lubricant is promoted to be discharged out of the bearing, thereby reducing torque.
- FIG. 3 illustrates a second embodiment of a double row ball bearing according to the invention.
- the double row ball bearing 101 includes: an outer ring 102 that has double row raceway surfaces 102 a and 102 b different in diameter from each other and is attached to a housing 110 ; an inner ring 103 that has double row raceway surfaces 103 a and 103 b corresponding to the raceway surfaces 102 a and 102 b of the outer ring 102 and is attached to a rotation shaft (not shown); a plurality of large diameter balls 104 and a plurality of small diameter balls 105 that are disposed between the raceway surfaces 102 a and 103 a , and 102 b and 103 b of the rows of the inner and outer rings 102 and 103 with different pitch diameters, respectively; a large diameter cage 106 that retains the plurality of large diameter balls 104 ; and a small diameter cage 107 that retains the plurality of small diameter balls 105 .
- the housing 110 is provided with a lubricant supplying passage 110 a for supplying lubricant to the small diameter side of the double row ball bearing 101 .
- a plurality of lubricant discharging passages 108 for discharging the lubricant in the bearing 101 to the outside are provided at predetermined intervals in a circumferential direction.
- the housing 110 is provided with a lubricant circulating passage 110 b for returning the lubricant, which is discharged from the lubricant discharging passage 108 , to the lubricant supplying passage 110 a.
- an outer diameter of the left raceway surface 103 b of the inner ring 103 is smaller than an outer diameter of the right raceway surface 103 a of the inner ring 103
- an inner diameter of the left raceway surface 102 b of the outer ring 102 is smaller than an inner diameter of the right raceway surface 102 a of the outer ring 102 .
- Contact angles between the large diameter ball 104 and the small diameter ball 105 are in the same direction (which is not
- Each of the cages 106 and 107 overall has a tapered tubular shape, a diameter of which gets larger as it goes from the left side to the right side.
- the lubricant discharging passage 108 is provided at a position corresponding to a right end section (discharge end section) of the small diameter cage 107 .
- Lubricant is supplied from the left side (i.e., small diameter side) of the figure and then the lubricant is discharged from the right side (i.e., large diameter side) of the figure by a pumping action of the double row ball bearing 101 .
- the double row ball bearing 101 of the second embodiment is suitably used as a bearing device that rotatably supports the pinion shaft 42 to the housing 41 in the differential gear device for vehicles shown in FIG. 2 .
- the double row ball bearing 101 is lubricated by the lubricant housed in the housing 41 . Since the double row ball bearing 101 is configured to concentrate the lubricant on the lower portion of the housing 41 , there is no case where the supply amount of lubricant is insufficient.
- the pumping action increases and thus the amount of lubricant flowing into the bearing 101 increases.
- the increase of the amount of lubricant causes increase in agitation resistance, and thus torque increases.
- tandem double row ball bearing 101 having the raceway surfaces 102 a , 102 b , 103 a , and 103 b different in diameter, but the configuration of the outer ring 102 provided with the lubricant discharging passage 108 may be applied to a double row ball bearing having raceway surfaces equal in diameter.
- FIG. 4 illustrates a third embodiment of a double row ball bearing according to the invention.
- the double row ball bearing 201 includes: an outer ring 202 that has double row raceway surfaces 202 a and 202 b different in diameter from each other and is attached to a housing 210 ; an inner ring 203 that has double row raceway surfaces 203 a and 203 b corresponding to the raceway surfaces 202 a and 202 b of the outer ring 202 and is attached to a rotation shaft (not shown); a plurality of large diameter balls 204 and a plurality of small diameter balls 205 that are disposed between the raceway surfaces 202 a and 203 a , and 202 b and 203 b of the rows of the inner and outer rings 202 and 203 with different pitch diameters, respectively; a large diameter cage 206 that retains the plurality of large diameter balls 204 ; and a small diameter cage 207 that retains the plurality of small diameter balls 205 .
- a passage for supplying lubricant to the small diameter side of the double row ball bearing 201 for oil bath lubrication is closed by a wall 210 a or the like.
- a lubricant reservoir 210 b is formed on the closing wall 210 a serving as a bottom wall.
- a lubricant supplying passage 208 for supplying lubricant into the bearing 201 is provided in the uppermost portion of the outer ring 202 and in the middle of the axial direction.
- an in-housing lubricant supplying passage 210 c communicating between the lubricant reservoir 210 b and the lubricant supplying passage 208 is formed in the housing 210 .
- the lubricant supplying passage 208 is provided at a position where the lubricant is dripped to the small diameter balls 205 .
- a passage diameter of the lubricant supplying passage 208 is set to optimize the amount of lubricant staying in the bearing 201 .
- an outer diameter of the left raceway surface 203 b of the inner ring 203 is smaller than an outer diameter of the right raceway surface 203 a of the inner ring 203
- an inner diameter of the left raceway surface 202 b of the outer ring 202 is smaller than an inner diameter of the right raceway surface 202 a of the outer ring 202 .
- Contact angles between the large diameter ball 204 and the small diameter ball 205 are in the same direction (which is not limited to the same angle).
- Each of the cages 206 and 207 overall has a tapered tubular shape, a diameter of which gets larger as it goes from the left side to the right side.
- the pumping action of the double row ball bearing 201 is to send the lubricant from the left side (i.e., small diameter side) of the figure to the right side (i.e., large diameter side) of the figure.
- the lubricant is directly supplied to the balls 205 disposed on the small diameter side (pumping action inflow side), and the lubricant is supplied to the balls 204 disposed on the large diameter side (pumping action discharge side) by the pumping action of the small diameter balls 205 .
- the double row ball bearing 201 of the third embodiment is suitably used as a bearing device that rotatably supports the pinion shaft 42 to the housing 41 in the differential gear device for vehicles shown in FIG. 2 .
- the double row ball bearing 201 is lubricated by the lubricant housed in the housing 41 .
- the large amount of lubricant is not supplied from the small diameter side as in the conventional oil bath lubrication, but the lubricant is supplied only from the lubricant supplying passage 208 provided in the outer ring 202 .
- the agitation resistance may easily increase according to increase of the amount of lubricant.
- the bearing 201 of the invention as described above, only the outer ring 202 is provided with the lubricant supplying passage 208 . Accordingly, it is easy to appropriately control the amount of lubricant supplied into the bearing 201 by adjusting the passage diameter or the like of the passage, and it is possible to reduce torque.
- tandem double row ball bearing 201 having the raceway surfaces 202 a , 202 b , 203 a , and 203 b different in diameter, but the configuration of the outer ring 202 provided with the lubricant supplying passage 208 may be applied to a double row ball bearing having raceway surfaces equal in diameter.
- double row ball bearing 1 , 101 , 201 of the invention may be also used as a bearing that supports a pinion shaft of a transaxle device, in addition to the use for supporting the pinion shaft of the differential gear device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
- 1. Field of the Invention
- The invention relates to a double row ball bearing, and more particularly, to a so-called tandem double row ball bearing that is lubricated using lubricant housed in a final reduction gear of a vehicle and is suitable to support a pinion shaft.
- 2. Related Art
- A tandem double row ball bearing includes an outer ring, an inner ring, and balls disposed in double rows between both of the rings, and a cage for retaining the balls. The double row ball bearing has been widely used in a pinion shaft supporting device for vehicles or the like as shown in JP 2006-234100A.
-
FIG. 2 illustrates an example of a differential gear device to which a double row ball bearing according to the invention is applied. The differential gear device includes apinion shaft 42 that is rotatably supported to ahousing 41 and has apinion gear 43 disposed at a rear end thereof; aring gear 44 engaging with thepinion gear 43; a pair of doublerow ball bearings pinion shaft 42 to be rotatably supported to thehousing 41, the double row ball bearing 45 being located on a side of thepinion gear 43 and the double row ball bearing 46 being located on as side opposite to thepinion gear 43; and aflange joint 47 is provided at an outer end of thepinion shaft 42 to connect a drive shaft. - In the differential gear device, lubricant flipping up according to rotation of the
ring gear 44 is introduced at a middle portion along the axial direction between the pair of doublerow ball bearings lubricant passage 48 provided in thehousing 41. When the doublerow ball bearings row ball bearings row ball bearings - In such a kind of double row ball bearing, a large diameter cage for retaining a plurality of large diameter balls and a small diameter cage for retaining a plurality of small diameter balls are used as cages. These cages have a similar shape except for difference in diameter. That is, in the general double row ball bearing, the large diameter cage and the small diameter cage are formed substantially in a conical asymmetrical shape. On the contrary, in JP 2006-234100A, the large diameter cage and the small diameter cage are formed substantially in a cylindrical symmetrical shape.
- In the pinion shaft supporting devices for vehicles, in order to reduce loss, it is important to reduce rotational torque of a bearing. In order to reduce the rotational torque, it is effective to suppress agitation resistance caused by lubricant. According to the double row ball bearing described in JP 2006-234100A, the small diameter cage has a symmetric shape to suppress the amount of flowing-in lubricant, thereby suppressing agitation resistance caused by lubricant. However, in JP 2006-234100A, since the large diameter cage has a shape similar to that of the small diameter cage except for difference in diameter, the amount of flowing-out lubricant is suppressed. Accordingly, the amount of lubricant staying in the bearing increases and thus the effect to reduce agitation resistance may decrease.
- An object of the invention is to provide a double row ball bearing capable of reducing torque by suppressing agitation resistance as a result of optimizing combination of cages and/or the amount of lubricant in the bearing.
- An object of the invention is to provide a double row ball bearing in which the amount of lubricant in the bearing is appropriately controlled to suppress agitation resistance caused by the lubricant, thereby reducing torque.
- According to the invention, there is provided a double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls, wherein the large diameter cage has an asymmetric shape with respect to a center in an axial direction, a diameter of which close to an end section opening is larger than a diameter close to the small diameter cage, and wherein the small diameter cage has a symmetric shape with respect to a center in an axial direction, a diameter of which close to an end section opening is equal to a diameter close to the large diameter cage.
- The double row ball bearing having the double row raceway surfaces different in diameter has a pumping action allowing the lubricant to flow from the small diameter side to the large diameter side. An asymmetry cage promotes the pumping action of the bearing, and a symmetry cage suppresses the pumping action of the bearing. Accordingly, the small diameter cage is formed in the symmetry shape, thereby suppressing that the lubricant flows into the bearing, and the large diameter cage is formed in the asymmetry shape, thereby promoting that the lubricant is discharged out of the bearing (the lubricant is prevented from staying in the bearing). Accordingly, agitation resistance is greatly reduced, and thus it is possible to reduce torque.
- In order to secure such an operation, the pillar portions of the large diameter cage preferably have a substantially taper shape in which the pillar portions get wider as they go to the large diameter side (the pillar portion is inclined to the axial direction, a diameter of which gets larger as it goes to the outside of the axial direction), and the pillar portions of the small diameter cage overall preferably have a substantially cylindrical shape (the pillar portion is parallel to the axial direction).
- According to the double row ball bearing of the invention, since the small diameter cage has the symmetry shape, it is suppressed that the lubricant flows into the bearing, and since the large diameter cage has the asymmetry shape, the lubricant is promoted to be discharged out of the bearing, thereby greatly reducing agitation resistance. Accordingly, it is possible to reduce torque.
- According to another aspect of the invention, there is provided a double row ball bearing including: an outer ring; an inner ring; a plurality of balls disposed in double rows between both of the rings; and cages that retain the balls, in which lubricant is moved by a pumping action of the bearing, wherein the outer ring is provided with a lubricant discharging passage for discharging the lubricant between the double row balls to the outside.
- For example, the double row ball bearing is lubricated in an oil bath manner, and the lubricant flowing in from one end section opening is discharged from the other end section opening by a pumping action of the ball bearing (graded-junction ball bearing). At least one lubricant discharging passage is provided at a portion of the outer ring corresponding to a portion between the double row balls in the axial direction. Generally, there is no case where the amount of lubricant supplied into the bearing is controlled. Since the pumping action increases together with increase of the number of rotation, the amount of lubricant flowing into the bearing increases together with increase of the number of rotation. As a result, agitation resistance of the lubricant increases, and torque increases. According to the lubricant discharging passage provided in the outer ring, since it becomes easier that the lubricant is discharged to the outside as centrifugal force increases, the amount of lubricant discharged from the opening increases together with increase of the number of rotation. Therefore, the amount of lubricant staying in the bearing is appropriately controlled.
- At least one lubricant discharging passage is provided, and preferably, a plurality of lubricant discharging passages are provided at predetermined intervals in a circumferential direction. The housing or the like, to which the outer ring are attached, is provided appropriately with a lubricant circulating passage for returning the lubricant, which is discharged from the lubricant discharging passage, to the lubricant supplying passage.
- As the double row ball bearing, for example, there may be used a so-called tandem double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls. However, the double row ball bearing is not limited thereto, a double row ball bearing formed by facing graded-junction ball bearings having raceway surfaces equal in diameter may be used.
- According to the double row ball bearing, since the outer ring is provided with the lubricant discharging passage for discharging the lubricant in the bearing to the outside, the amount of lubricant discharged from the lubricant discharging passage increases together with the increase of the number of rotation, thereby appropriately controlling the amount of lubricant staying in the bearing. Therefore, it is possible to reduce torque.
- According to another aspect of the invention, there is provided a double row ball bearing including: an outer ring; an inner ring; a plurality of balls disposed in double rows between both of the rings; and cages that retain the balls, in which lubricant is moved by a pumping action of the bearing, wherein the lubricant is discharged from a discharge end section of the pumping action, the lubricant is prevented from flowing in from an inflow end section of the pumping action, and the outer ring is provided with a lubricant supplying passage for dripping the lubricant to the balls disposed on the inflow side of the pumping action.
- The double row ball bearing discharges the flowing-in lubricant by the pumping action. Conventionally, such a kind of double row ball bearing uses oil bath lubrication, but the oil bath lubrication is out of use because the oil bath lubrication results in increase of the amount of lubricant. The lubricant supplying passage is provided in the uppermost portion of the outer ring where the lubricant can be dripped to the balls disposed on the pumping action inflow side. For example, the lubricant supplying passage may be provided in the vicinity of the end portion of the outer ring and at a portion corresponding to the outside of the balls in the axial direction, and may be provided in the vicinity of the center of the outer ring and at a portion corresponding to the inside of the balls in the axial direction. In order to optimize the amount of lubricant, the later is more preferable. With such a configuration, the lubricant is directly supplied to the balls disposed on the pumping action inflow side, and the lubricant is supplied to the balls disposed on the pumping action discharge side by the pumping action of the balls disposed on the pumping action inflow side.
- In the housing or the like to which the outer ring is attached, an in-housing lubricant supplying passage for supplying the lubricant to the lubricant supplying passage is appropriately formed. A passage diameter of the lubricant supplying passage including the in-housing lubricant supplying passage is adjusted to optimize the amount of lubricant staying in the bearing (as small as possible and to securely prevent seizure).
- As the double row ball bearing, for example, there may be used a so-called tandem double row ball bearing including: an outer ring that has double row raceway surfaces different in diameter from each other; an inner ring that has double row raceway surfaces corresponding to the raceway surfaces of the outer ring, respectively; a plurality of large diameter balls and a plurality of small diameter balls that are disposed between the raceway surfaces of the rows of the inner and outer rings with different pitch diameters, respectively; a large diameter cage that retains the plurality of large diameter balls; and a small diameter cage that retains the plurality of small diameter balls. However, the double row ball bearing is not limited thereto, a double row ball bearing having raceway surfaces equal in diameter may be used.
- According to the above-described double row ball bearing, since the outer ring is provided with the lubricant supplying passage for supplying the lubricant into the bearing, it is possible to remove the oil bath lubrication that easily causes increase in lubricant. In addition, it is possible to optimize the amount of lubricant staying in the bearing by adjusting the passage diameter of the lubricant supplying passage, thereby reducing torque.
- Additionally, the double row ball bearing according to the invention is applicable to at least one of the double row ball bearings in a differential gear device comprising:
- a pinion shaft that is rotatably supported to a housing and that has a pinion gear disposed at a rear end thereof;
- a ring gear engaging with the pinion gear;
- a pair of double row ball bearings that allows the pinion shaft to be rotatably supported to the housing, one of which is located on a side of the pinion gear and the other of which is located on a side opposite to the pinion gear; and
- a flange joint is provided at an outer end of the pinion shaft to connect a drive shaft.
-
FIG. 1 is a longitudinal sectional view illustrating an upper half portion of a double row ball bearing according to an embodiment of the invention. -
FIG. 2 is a longitudinal sectional view illustrating a differential gear device as an example in which the double row ball bearing of the invention is used. -
FIG. 3 is a longitudinal sectional view illustrating an upper half portion of a double row ball bearing according to an embodiment of the invention. -
FIG. 4 is a longitudinal sectional view illustrating an upper halt portion of a double row ball bearing according to a third embodiment of the invention. - Hereinafter, embodiments of the invention will be described with reference to the drawings.
-
FIG. 1 illustrates a first embodiment of a double row ball bearing according to the invention. The double row ball bearing 1 includes: anouter ring 2 that has doublerow raceway surfaces inner ring 3 that has doublerow raceway surfaces outer ring 2 and is attached to a rotation shaft (not shown); a plurality oflarge diameter balls 4 and a plurality ofsmall diameter balls 5 that are disposed between the raceway surfaces 2 a and 3 a, and 2 b and 3 b of the rows of the inner andouter rings large diameter cage 6 that retains the plurality oflarge diameter balls 4; and asmall diameter cage 7 that retains the plurality ofsmall diameter balls 5. - In the same figure, an outer diameter of the
left raceway surface 3 b of theinner ring 3 is smaller than an outer diameter of theright raceway surface 3 a of theinner ring 3. An inner diameter of theleft raceway surface 2 b of theouter ring 2 is smaller than an inner diameter of theright raceway surface 2 a of theouter ring 2. Contact angles of thelarge diameter ball 4 and thesmall diameter ball 5 are in the same direction (which is not limited to the same angle). Lubricant is supplied from the left side (i.e., small diameter side) of the figure and then the lubricant is discharged from the right side (i.e., large diameter side) of the figure by a pumping action of the double row ball bearing 1. - In the conventional double row ball bearing, a large diameter cage and a small diameter cage have a similar shape except for difference in diameter. All of the cages have an asymmetric shape, or all of the cages have a symmetric shape. That is, the cages have any one kind of shapes. On the contrary, in the double row ball bearing 1 according to the invention, the
large diameter cage 6 has an asymmetric shape, a diameter (discharge diameter) of which close to a right end section opening is larger than a diameter (inflow diameter) close to thesmall diameter cage 7, and thesmall diameter cage 7 has a symmetric shape, a diameter (inflow diameter) of which close to a left end section opening is equal to a diameter (discharge diameter) close to thelarge diameter cage 6. - The combination of the symmetric shape and the asymmetric shape is in consideration of the pumping action from the left to the right in the left and right angular ball bearings that are both of left and right double row ball bearings 1 serving as angular ball bearings. The
large diameter cage 6 includes a smalldiameter ring portion 6 a disposed on the left side (inside in the axial direction), a largediameter ring portion 6 b disposed on the right side (outside in the axial direction),pillar portions 6 c that form a pocket for housing theballs 4 between both of thering portions large diameter cage 6 is formed in a tapered tubular shape, a diameter of which gets larger as it goes from the left side to the right side. Thepillar portions 6 c are inclined to the axial direction according to the direction along which the lubricant flows from the small diameter side to the large diameter side. Accordingly, the lubricant smoothly flows to promote the discharge of the lubricant. Thesmall diameter cage 7 includes a pair ofring portions diameter ring portion 6 a of thelarger diameter cage 6, andpillar portions 7 c that forms a pocket for housing theballs 5 between both of thering portions small diameter cage 7 is formed substantially in a cylindrical shape. Thepillar portions 7 c are formed in a direction crossing to a direction in which the lubricant flows from the small diameter side to the large diameter side, in parallel to the axial direction. Accordingly, it is disturbed for the lubricant to smoothly flow, and thus it is difficult that the lubricant flows in. - The double row ball bearing 1 of the invention is suitably used as a bearing device that rotatably supports a
pinion shaft 42 to ahousing 41 in the differential gear device for vehicles shown inFIG. 2 . -
FIG. 2 illustrates an example of a differential gear device to which a double row ball bearing according to the invention is applied. The differential gear device includes thepinion shaft 42 that is rotatably supported to thehousing 41 and has apinion gear 43 disposed at a rear end thereof; aring gear 44 engaging with thepinion gear 43; a pair of doublerow ball bearings pinion shaft 42 to be rotatably supported to thehousing 41, the doublerow ball bearing 45 being located on a side of thepinion gear 43 and the doublerow ball bearing 46 being located on as side opposite to thepinion gear 43; and a flange joint 47 is provided at an outer end of thepinion shaft 42 to connect a drive shaft. - The double row ball bearing 1 is lubricated by the lubricant housed in the
housing 41. When a large amount of lubricant stays in the bearing 1, rotation torque increases. However, in the double row ball bearing 1 as described above, since thesmall diameter cage 7 has the symmetry shape and thelarge diameter cage 6 has the asymmetry shape, the lubricant is suppressed from flowing into the bearing 1 and the lubricant is promoted to be discharged out of the bearing, thereby reducing torque. -
FIG. 3 illustrates a second embodiment of a double row ball bearing according to the invention. The doublerow ball bearing 101 includes: anouter ring 102 that has double row raceway surfaces 102 a and 102 b different in diameter from each other and is attached to ahousing 110; aninner ring 103 that has double row raceway surfaces 103 a and 103 b corresponding to the raceway surfaces 102 a and 102 b of theouter ring 102 and is attached to a rotation shaft (not shown); a plurality oflarge diameter balls 104 and a plurality ofsmall diameter balls 105 that are disposed between the raceway surfaces 102 a and 103 a, and 102 b and 103 b of the rows of the inner andouter rings large diameter cage 106 that retains the plurality oflarge diameter balls 104; and asmall diameter cage 107 that retains the plurality ofsmall diameter balls 105. - The
housing 110 is provided with alubricant supplying passage 110 a for supplying lubricant to the small diameter side of the doublerow ball bearing 101. At the middle of theouter ring 102 in the axial direction, a plurality oflubricant discharging passages 108 for discharging the lubricant in thebearing 101 to the outside are provided at predetermined intervals in a circumferential direction. Thehousing 110 is provided with alubricant circulating passage 110 b for returning the lubricant, which is discharged from thelubricant discharging passage 108, to thelubricant supplying passage 110 a. - In the same figure, an outer diameter of the
left raceway surface 103 b of theinner ring 103 is smaller than an outer diameter of theright raceway surface 103 a of theinner ring 103, and an inner diameter of theleft raceway surface 102 b of theouter ring 102 is smaller than an inner diameter of theright raceway surface 102 a of theouter ring 102. Contact angles between thelarge diameter ball 104 and thesmall diameter ball 105 are in the same direction (which is not - limited to the same angle). Each of the
cages lubricant discharging passage 108 is provided at a position corresponding to a right end section (discharge end section) of thesmall diameter cage 107. Lubricant is supplied from the left side (i.e., small diameter side) of the figure and then the lubricant is discharged from the right side (i.e., large diameter side) of the figure by a pumping action of the doublerow ball bearing 101. - Similarly to the first embodiment, the double
row ball bearing 101 of the second embodiment is suitably used as a bearing device that rotatably supports thepinion shaft 42 to thehousing 41 in the differential gear device for vehicles shown inFIG. 2 . The doublerow ball bearing 101 is lubricated by the lubricant housed in thehousing 41. Since the doublerow ball bearing 101 is configured to concentrate the lubricant on the lower portion of thehousing 41, there is no case where the supply amount of lubricant is insufficient. When the number of rotation increases, the pumping action increases and thus the amount of lubricant flowing into the bearing 101 increases. The increase of the amount of lubricant causes increase in agitation resistance, and thus torque increases. However, in the doublerow ball bearing 101 of the invention, as described above, since theouter ring 102 is provided with thelubricant discharging passage 108, a large amount of lubricant is discharged to the outside as the centrifugal force gets larger. As a result, the amount of lubricant staying in thebearing 101 is appropriately controlled, thereby reducing torque. - In the aforementioned embodiment, there is described a tandem double
row ball bearing 101 having the raceway surfaces 102 a, 102 b, 103 a, and 103 b different in diameter, but the configuration of theouter ring 102 provided with thelubricant discharging passage 108 may be applied to a double row ball bearing having raceway surfaces equal in diameter. -
FIG. 4 illustrates a third embodiment of a double row ball bearing according to the invention. The doublerow ball bearing 201 includes: anouter ring 202 that has double row raceway surfaces 202 a and 202 b different in diameter from each other and is attached to a housing 210; aninner ring 203 that has double row raceway surfaces 203 a and 203 b corresponding to the raceway surfaces 202 a and 202 b of theouter ring 202 and is attached to a rotation shaft (not shown); a plurality oflarge diameter balls 204 and a plurality ofsmall diameter balls 205 that are disposed between the raceway surfaces 202 a and 203 a, and 202 b and 203 b of the rows of the inner andouter rings large diameter cage 206 that retains the plurality oflarge diameter balls 204; and asmall diameter cage 207 that retains the plurality ofsmall diameter balls 205. - In the housing 210, an end portion of a passage for supplying lubricant to the small diameter side of the double
row ball bearing 201 for oil bath lubrication is closed by awall 210 a or the like. As a result, alubricant reservoir 210 b is formed on theclosing wall 210 a serving as a bottom wall. In the uppermost portion of theouter ring 202 and in the middle of the axial direction, alubricant supplying passage 208 for supplying lubricant into thebearing 201 is provided. Corresponding thereto, an in-housinglubricant supplying passage 210 c communicating between thelubricant reservoir 210 b and thelubricant supplying passage 208 is formed in the housing 210. Thelubricant supplying passage 208 is provided at a position where the lubricant is dripped to thesmall diameter balls 205. A passage diameter of thelubricant supplying passage 208 is set to optimize the amount of lubricant staying in thebearing 201. - In the same figure, an outer diameter of the
left raceway surface 203 b of theinner ring 203 is smaller than an outer diameter of theright raceway surface 203 a of theinner ring 203, and an inner diameter of theleft raceway surface 202 b of theouter ring 202 is smaller than an inner diameter of theright raceway surface 202 a of theouter ring 202. Contact angles between thelarge diameter ball 204 and thesmall diameter ball 205 are in the same direction (which is not limited to the same angle). Each of thecages row ball bearing 201 is to send the lubricant from the left side (i.e., small diameter side) of the figure to the right side (i.e., large diameter side) of the figure. In the doublerow ball bearing 201, the lubricant is directly supplied to theballs 205 disposed on the small diameter side (pumping action inflow side), and the lubricant is supplied to theballs 204 disposed on the large diameter side (pumping action discharge side) by the pumping action of thesmall diameter balls 205. - Accordingly, it is possible to the smallest amount of lubricant necessary for the contact portion to be lubricated between the
balls - Similarly to the first embodiment, the double
row ball bearing 201 of the third embodiment is suitably used as a bearing device that rotatably supports thepinion shaft 42 to thehousing 41 in the differential gear device for vehicles shown inFIG. 2 . The doublerow ball bearing 201 is lubricated by the lubricant housed in thehousing 41. However, the large amount of lubricant is not supplied from the small diameter side as in the conventional oil bath lubrication, but the lubricant is supplied only from thelubricant supplying passage 208 provided in theouter ring 202. In case of oil bath lubrication, the agitation resistance may easily increase according to increase of the amount of lubricant. However, in thebearing 201 of the invention, as described above, only theouter ring 202 is provided with thelubricant supplying passage 208. Accordingly, it is easy to appropriately control the amount of lubricant supplied into thebearing 201 by adjusting the passage diameter or the like of the passage, and it is possible to reduce torque. - In the aforementioned embodiment, there is described a tandem double
row ball bearing 201 having the raceway surfaces 202 a, 202 b, 203 a, and 203 b different in diameter, but the configuration of theouter ring 202 provided with thelubricant supplying passage 208 may be applied to a double row ball bearing having raceway surfaces equal in diameter. - In addition, the double
row ball bearing
Claims (7)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061447A JP5050582B2 (en) | 2007-03-12 | 2007-03-12 | Bearing device for rotating shaft support |
JPP2007-061449 | 2007-03-12 | ||
JPP2007-061447 | 2007-03-12 | ||
JP2007061449A JP2008223847A (en) | 2007-03-12 | 2007-03-12 | Double row ball bearing |
JP2007066078A JP5007585B2 (en) | 2007-03-15 | 2007-03-15 | Double row ball bearing |
JPP2007-066078 | 2007-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090028483A1 true US20090028483A1 (en) | 2009-01-29 |
US7934871B2 US7934871B2 (en) | 2011-05-03 |
Family
ID=39561696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/073,903 Expired - Fee Related US7934871B2 (en) | 2007-03-12 | 2008-03-11 | Double row ball bearing |
Country Status (2)
Country | Link |
---|---|
US (1) | US7934871B2 (en) |
EP (1) | EP1970578A3 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076722A1 (en) * | 2013-11-22 | 2015-05-28 | Scania Cv Ab | Gearbox |
DE102014215739A1 (en) * | 2014-08-08 | 2016-02-11 | Aktiebolaget Skf | Bearing cage assembly in an at least two-row gearbox bearing and method |
US9453530B2 (en) * | 2014-06-12 | 2016-09-27 | Thinkom Solutions, Inc. | Compact integrated perimeter thrust bearing |
US11365761B2 (en) * | 2019-08-02 | 2022-06-21 | Aktiebolaget Skf | Bearing unit with retaining cage |
US11578647B2 (en) | 2020-03-11 | 2023-02-14 | Arctic Cat Inc. | Engine |
US20240141983A1 (en) * | 2022-10-31 | 2024-05-02 | Dana Heavy Vehicle Systems Group, Llc | Lubrication directing ring |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011006600A1 (en) * | 2011-03-31 | 2012-10-04 | Schaeffler Technologies Gmbh & Co. Kg | axial bearing |
DE102012212056A1 (en) * | 2012-07-11 | 2014-01-16 | Schaeffler Technologies AG & Co. KG | Cage for angular contact ball bearings |
DE102012216001B4 (en) * | 2012-09-10 | 2015-06-18 | Aktiebolaget Skf | Pin for guiding a gear and planetary gear |
US9702410B2 (en) * | 2012-12-20 | 2017-07-11 | Aktiebolaget Skf | Machine arrangement |
US10391645B2 (en) * | 2015-11-25 | 2019-08-27 | Southern Grind, Inc. | Multi-track bearing folding knife |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2019464A (en) * | 1935-03-28 | 1935-10-29 | Timken Roller Bearing Co | Pinion shaft bearing |
US2282883A (en) * | 1940-02-01 | 1942-05-12 | Gen Electric | Antifriction bearing |
US4824264A (en) * | 1987-02-21 | 1989-04-25 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Bearing of an axle drive bevel pinion |
US4854748A (en) * | 1987-03-12 | 1989-08-08 | Skf Industrial Trading And Development Co. B.V. | Shaft bearing assembly |
US4969430A (en) * | 1989-02-01 | 1990-11-13 | Yamaha Hatsudoki Kabushiki Kaisha | Lubrication system for two stroke engine |
US5192139A (en) * | 1990-05-21 | 1993-03-09 | Makino Milling Maching Co., Ltd. | Apparatus for cooling a spindle bearing of a machine |
US5711615A (en) * | 1993-03-18 | 1998-01-27 | Barmag Ag | Antifriction bearing |
US6015264A (en) * | 1997-08-15 | 2000-01-18 | United Technologies Corporation | Preloaded retention assembly for aircraft propeller blade retention |
US6363708B1 (en) * | 1999-10-12 | 2002-04-02 | Alm Development, Inc. | Gas turbine engine |
US6397576B1 (en) * | 1999-10-12 | 2002-06-04 | Alm Development, Inc. | Gas turbine engine with exhaust compressor having outlet tap control |
US6460324B1 (en) * | 1999-10-12 | 2002-10-08 | Alm Development, Inc. | Gas turbine engine |
US6497563B1 (en) * | 1998-08-29 | 2002-12-24 | Ralf Steffens | Dry-compressing screw pump having cooling medium through hollow rotor spindles |
US6623251B2 (en) * | 1999-06-21 | 2003-09-23 | Nsk Ltd. | Spindle apparatus |
US20040003968A1 (en) * | 1999-10-12 | 2004-01-08 | Alm Systems, Inc. | Bearing lubrication system for a turbomachine |
US6769809B2 (en) * | 2001-06-06 | 2004-08-03 | Eurocopter | Asymmetric double row angular contact ball bearing, and cantilever mounting of gears on such a bearing |
US20050063627A1 (en) * | 2003-09-19 | 2005-03-24 | Ntn Corporation | Rolling element retainer and rolling bearing assembly using the same |
US6932736B2 (en) * | 2001-12-03 | 2005-08-23 | Nissan Motor Co., Ltd. | Toroidal continuously variable transmission |
US20050220383A1 (en) * | 2002-12-19 | 2005-10-06 | Kunihiko Yokota | Ball bearing |
US20070196039A1 (en) * | 2006-01-31 | 2007-08-23 | Jtekt Corporation | Ball bearing for pinion shaft |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB195392A (en) | 1922-03-27 | 1924-04-24 | Ettore Bugatti | Improvements in pressure lubrication for ball or roller bearings |
GB539502A (en) * | 1939-08-31 | 1941-09-12 | Roulements A Billes Miniatures | Double-row self-aligning ball-bearing |
GB834079A (en) | 1957-09-13 | 1960-05-04 | Rotol Ltd | Improvements in or relating to ball bearings |
JPS61109914A (en) | 1984-11-02 | 1986-05-28 | Koyo Seiko Co Ltd | Rolling bearing for main spindle of machine tool |
JP2002250352A (en) * | 2001-02-22 | 2002-09-06 | Nsk Ltd | Micro oil lubricated bearing device |
JP2003294032A (en) | 2002-04-03 | 2003-10-15 | Koyo Seiko Co Ltd | Double-row rolling bearing and assembling method therefor |
JP2004092687A (en) * | 2002-08-29 | 2004-03-25 | Nsk Ltd | Double row angular contact ball bearing |
JP2005163891A (en) | 2003-12-02 | 2005-06-23 | Koyo Seiko Co Ltd | Double row ball bearing |
JP2005163928A (en) | 2003-12-03 | 2005-06-23 | Koyo Seiko Co Ltd | Bearing device and differential device |
JP4506160B2 (en) | 2003-12-08 | 2010-07-21 | 株式会社ジェイテクト | Bearing device for pinion shaft support |
JP2006046454A (en) * | 2004-08-03 | 2006-02-16 | Nsk Ltd | Bearing device, spindle device and machine tool |
JP2006234100A (en) | 2005-02-25 | 2006-09-07 | Jtekt Corp | Double-row angular ball bearing and pinion shaft supporting device for vehicle |
JP2007092860A (en) | 2005-09-28 | 2007-04-12 | Jtekt Corp | Double row angular ball bearing and pinion shaft supporting device for vehicle |
-
2008
- 2008-03-11 US US12/073,903 patent/US7934871B2/en not_active Expired - Fee Related
- 2008-03-12 EP EP08004611A patent/EP1970578A3/en not_active Withdrawn
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2019464A (en) * | 1935-03-28 | 1935-10-29 | Timken Roller Bearing Co | Pinion shaft bearing |
US2282883A (en) * | 1940-02-01 | 1942-05-12 | Gen Electric | Antifriction bearing |
US4824264A (en) * | 1987-02-21 | 1989-04-25 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Bearing of an axle drive bevel pinion |
US4854748A (en) * | 1987-03-12 | 1989-08-08 | Skf Industrial Trading And Development Co. B.V. | Shaft bearing assembly |
US4969430A (en) * | 1989-02-01 | 1990-11-13 | Yamaha Hatsudoki Kabushiki Kaisha | Lubrication system for two stroke engine |
US5192139A (en) * | 1990-05-21 | 1993-03-09 | Makino Milling Maching Co., Ltd. | Apparatus for cooling a spindle bearing of a machine |
US5711615A (en) * | 1993-03-18 | 1998-01-27 | Barmag Ag | Antifriction bearing |
US6105724A (en) * | 1993-03-18 | 2000-08-22 | Barmag Ag | Method for a controlled supply of lubricant to an antifriction bearing |
US6015264A (en) * | 1997-08-15 | 2000-01-18 | United Technologies Corporation | Preloaded retention assembly for aircraft propeller blade retention |
US6497563B1 (en) * | 1998-08-29 | 2002-12-24 | Ralf Steffens | Dry-compressing screw pump having cooling medium through hollow rotor spindles |
US6623251B2 (en) * | 1999-06-21 | 2003-09-23 | Nsk Ltd. | Spindle apparatus |
US6397576B1 (en) * | 1999-10-12 | 2002-06-04 | Alm Development, Inc. | Gas turbine engine with exhaust compressor having outlet tap control |
US6460324B1 (en) * | 1999-10-12 | 2002-10-08 | Alm Development, Inc. | Gas turbine engine |
US6363708B1 (en) * | 1999-10-12 | 2002-04-02 | Alm Development, Inc. | Gas turbine engine |
US20040003968A1 (en) * | 1999-10-12 | 2004-01-08 | Alm Systems, Inc. | Bearing lubrication system for a turbomachine |
US6769809B2 (en) * | 2001-06-06 | 2004-08-03 | Eurocopter | Asymmetric double row angular contact ball bearing, and cantilever mounting of gears on such a bearing |
US6932736B2 (en) * | 2001-12-03 | 2005-08-23 | Nissan Motor Co., Ltd. | Toroidal continuously variable transmission |
US20050220383A1 (en) * | 2002-12-19 | 2005-10-06 | Kunihiko Yokota | Ball bearing |
US20050063627A1 (en) * | 2003-09-19 | 2005-03-24 | Ntn Corporation | Rolling element retainer and rolling bearing assembly using the same |
US20070196039A1 (en) * | 2006-01-31 | 2007-08-23 | Jtekt Corporation | Ball bearing for pinion shaft |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076722A1 (en) * | 2013-11-22 | 2015-05-28 | Scania Cv Ab | Gearbox |
US9453530B2 (en) * | 2014-06-12 | 2016-09-27 | Thinkom Solutions, Inc. | Compact integrated perimeter thrust bearing |
DE102014215739A1 (en) * | 2014-08-08 | 2016-02-11 | Aktiebolaget Skf | Bearing cage assembly in an at least two-row gearbox bearing and method |
DE102014215739B4 (en) | 2014-08-08 | 2020-06-04 | Aktiebolaget Skf | Double row gear bearing comprising a bearing cage assembly and gear |
US11365761B2 (en) * | 2019-08-02 | 2022-06-21 | Aktiebolaget Skf | Bearing unit with retaining cage |
US11578647B2 (en) | 2020-03-11 | 2023-02-14 | Arctic Cat Inc. | Engine |
US20240141983A1 (en) * | 2022-10-31 | 2024-05-02 | Dana Heavy Vehicle Systems Group, Llc | Lubrication directing ring |
US12152664B2 (en) * | 2022-10-31 | 2024-11-26 | Dana Heavy Vehicle Systems Group, Llc | Lubrication directing ring |
Also Published As
Publication number | Publication date |
---|---|
EP1970578A3 (en) | 2010-06-23 |
EP1970578A2 (en) | 2008-09-17 |
US7934871B2 (en) | 2011-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7934871B2 (en) | Double row ball bearing | |
US7320550B2 (en) | Tapered roller bearing | |
JP4314430B2 (en) | Tapered roller bearing | |
JP2004245231A (en) | Ball bearing | |
JP2008256168A (en) | Rolling bearing cage and wind power generation bearing equipped therewith | |
US11300155B2 (en) | Cage for a tapered roller bearing and tapered roller bearing | |
US7909515B2 (en) | Double row ball bearing and differential gear device | |
JP4949652B2 (en) | Tapered roller bearings | |
JP2010007788A (en) | Double row ball bearing and pinion shaft support device for vehicle | |
JP2010007788A5 (en) | ||
JP2008223847A (en) | Double row ball bearing | |
JP2006234100A (en) | Double-row angular ball bearing and pinion shaft supporting device for vehicle | |
JP2007321848A (en) | Tapered roller bearing | |
JP5050582B2 (en) | Bearing device for rotating shaft support | |
JP5007585B2 (en) | Double row ball bearing | |
JP4651578B2 (en) | Tapered roller bearings | |
JP5403143B2 (en) | Double row ball bearing and vehicle pinion shaft support device | |
JP5146152B2 (en) | Double row ball bearing and vehicle pinion shaft support device | |
JP2007032768A (en) | Roller bearing | |
US9752619B2 (en) | Double row ball bearing and shaft support device | |
JP2004232844A (en) | Double row ball bearing | |
JP2007285357A (en) | Tapered roller bearing | |
JP2007270907A (en) | Tapered roller bearing | |
JP2019031991A (en) | Conical roller bearing | |
JP2010002030A (en) | Tapered roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JTEKT CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAGUCHI, TOSHIHIRO;FUKUDA, TOSHIROU;TAKAHASHI, YUZURU;REEL/FRAME:021767/0405 Effective date: 20081001 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20190503 |