US20090011061A1 - Method for manufacturing semiconductor package - Google Patents
Method for manufacturing semiconductor package Download PDFInfo
- Publication number
- US20090011061A1 US20090011061A1 US12/170,803 US17080308A US2009011061A1 US 20090011061 A1 US20090011061 A1 US 20090011061A1 US 17080308 A US17080308 A US 17080308A US 2009011061 A1 US2009011061 A1 US 2009011061A1
- Authority
- US
- United States
- Prior art keywords
- pin
- semiconductor package
- finished
- die
- ejector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/3201—Structure
- H01L2224/32012—Structure relative to the bonding area, e.g. bond pad
- H01L2224/32014—Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
Definitions
- the present invention relates to a method for manufacturing a semiconductor package, and in particular, relates to a method for manufacturing a semiconductor package while using a die having an ejector pin, the semiconductor package having a mirror-finished surface encircled by a satin-finished surface.
- a typical semiconductor package is formed by embedding an IC structural body having a lead, an IC chip, and bonding wires bonding between the lead and the IC chip within a resin bulk while using a die.
- a surface of the die is generally a satin-finished surface for the sake of easy exfoliation.
- a circular and concave imprint formed by an ejector pin which is a mirror-finished surface, is used as an indicator of a “1-pin” for recognition of a first pin.
- the ejector pin is arranged in the die during a process of resin-encapsulation to readily release the semiconductor package from a die after the resin-encapsulation. When the ejector pin moves, an imprint of the ejector pin is formed on the satin-finished surface of the semiconductor package.
- the “1-pin” is formed while having specific shape and appearance which are distinguishable from imprints of the other pins.
- Japanese Patent Kokai 11-87565 discloses another method for forming an indication portion of the “1-pin” on a package surface.
- a portion corresponding to the indication portion is made at a step of forming a satin-finished surface on the die by finishing the surface excluding a masked portion with plasma-etching etc.
- a mark representing a product name, etc. is stamped on a surface of the semiconductor package released from the die as disclosed by a Japanese Patent Kokai 2001-160604 (document D2).
- the mark is formed by a laser beam in view of its fast processing speed.
- a resin-encapsulation-type semiconductor package in particular, a semiconductor package for an IC card, a thin thickness and a compactness are required, so that a resin layer covering the semiconductor package is made thinner.
- the imprint of ejector pin influences an installment height of the semiconductor product, the imprint can not be formed as convex and is normally formed as concave.
- the laser stamping is typically performed by etching a resin surface of tens micrometers.
- a thickness of the resin surface of semiconductor package is much thin, a depth of the mark to be formed by the laser beam can not be disregarded.
- an IC structural body such as bonding wires etc. is exposed to the outside by way of etching the resin surface during resin-encapsulation and that a resin wall cracks at the laser stamped portion because of an external pressure.
- a mirror-finished surface of a die is likely to be deteriorated much more than a satin-finished surface of the die, so that the mirror-finished surface is deteriorated earlier when the die is used repeatedly.
- a mirror-finished surface used for indicating directly the “1-pin” position is formed on an upper inner wall surface of the cavity which is a satin-finished surface.
- An object of the present invention is to provide a method for manufacturing a semiconductor package that can reduce a possibility that bonding wires are exposed from a semiconductor package surface to the outside.
- a method which includes first to third steps, for manufacturing a semiconductor package having a mirror-finished surface for indicating a “1-pin” position.
- a die is prepared which includes at least one first half and at least one second half coupled together to form a cavity therebetween.
- the first half has a satin-finished inner surface and an ejector-pin-through-hole extending therethrough.
- an ejector pin having a mirror-finished surface at a tip end thereof is inserted into the ejector-pin-through-hole and positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface of the first half.
- an IC structural body having bonding wires which bond between an IC chip and a lead is embedded within a molten resin filled in the cavity between the first half and second half after the IC structural body is confined within the cavity.
- the ejector pin is inserted into the ejector-pin-through-hole and positioned at a position where the surface of the tip end of the ejector pin coincides with the intermediate surface height of the satin-finished inner surface of the first half, so that the mirror-finished surface for indicating the “1-pin” position is defined by the satin-finished inner surface and is formed at the same plane as the intermediate surface height of the satin-finished inner surface.
- the semiconductor package manufactured by the method according to the first aspect of the present invention can keep a larger space between the bonding wires and the indication portion of the “1-pin” position of the semiconductor package surface more surely than a semiconductor package manufactured by the conventional method can. Therefore, the above-mentioned possibility that the bonding wires are exposed from the semiconductor package surface to the outside can be reduced even when semiconductor packages of a thin thickness and a compactness are manufactured.
- Another object of the present invention is to provide a method for manufacturing a semiconductor package that has less possibilities that an IC structural body including bonding wires etc. is exposed from a semiconductor package surface to the outside and that a resin wall cracks at a stamped portion because of an external pressure.
- a method which includes first to fourth steps, for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface thereon.
- a die is prepared which includes at least one first half and at least one second half coupled together to form a cavity therebetween.
- the first half has an ejector-pin-through-hole extending therethrough.
- an ejector pin having a mark-shaped and mirror-finished surface at a tip end thereof is inserted into the ejector-pin-through-hole and positioned at a position where a surface of the tip end of the ejector pin coincides with an inner surface of the first half.
- a satin-finished surface is formed only on the inner surface of the first half while the tip end of the ejector pin is masked.
- an IC structural body having bonding wires which bond between an IC chip and a lead is embedded within a molten resin filled in the cavity after the IC structural body is confined within the cavity.
- the ejector pin having a mirror-finished surface at the tip end is inserted into the ejector-pin-through-hole and positioned at a position where the surface of the tip end of the ejector pin coincides with the inner surface of the first half, so that the mark shaped and mirror-finished surface and the satin-finished inner surface are formed on the semiconductor package surface at the same plane in the third step.
- the semiconductor package according to the second aspect of the present invention can surely keep a large space between the IC structural body in the package and the indication of the “1-pin” position on the semiconductor package in comparison with a semiconductor package manufactured by the conventional method. Thereby, the above-mentioned possibilities can be reduced that the IC structural body is exposed from the semiconductor package surface to the outside and that a resin wall cracks at the stamped portion because of an external pressure.
- FIG. 1 is a cross-sectional view showing a die prepared at a first step according to a first embodiment of the present invention
- FIG. 2 is a cross-sectional view showing the die at a second step according to the first embodiment of the present invention
- FIG. 3 is a cross-sectional view showing the die with a spare pin inserted therein according to the first embodiment of the present invention
- FIG. 4 is a cross-sectional view showing an IC structural body according to the first embodiment of the present invention and according to a second embodiment of the invention
- FIG. 5 is a cross-sectional view showing the IC structural body and the die during resin-encapsulation according to the first embodiment of the invention
- FIG. 6 is a cross sectional view showing a die at a second step according to a second embodiment of the invention.
- FIG. 7 is a cross-sectional view showing the die at a third step according to the second embodiment of the invention.
- FIG. 8 is a cross-sectional view showing the die with a spare pin inserted therein according to the second embodiment of the invention.
- FIG. 9 is a cross-sectional view showing an IC structural body and the die during resin-encapsulation according to the second embodiment of the invention.
- FIG. 10A is an enlarged plan view showing an indication portion of a “1-pin” position on semiconductor package surface formed by the first embodiment
- FIG. 10B is a cross-sectional view of FIG. 10 A taken along line I-I;
- FIG. 11A is an enlarged plan view showing an indication portion of a “1-pin” position using an imprint of ejector pin according to a prior art and FIG. 11B is a cross-sectional view of FIG. 11A taken along line II-II;
- FIG. 12 is an enlarged plan view showing a mark portion stamped on a semiconductor package surface formed by the second embodiment of the present invention and FIG. 12B is a cross-sectional view of FIG. 12 A taken along line III-III;
- FIG. 13 is an enlarged plan view showing a mark portion stamped on a semiconductor package surface having a mark stamped by use of a laser beam according to a prior art and FIG. 13B is a cross-sectional view of FIG. 13 A taken along line IV-IV;
- FIG. 14 is a cross-sectional view showing an ejector pin prepared at the first step according to the second embodiment of the invention.
- a method for manufacturing a semiconductor package having a mirror-finished surface encircled by a satin-finished inner surface for indicating a “1-pin” position includes first to fourth steps mentioned hereinbelow. The respective steps will be described in sequence starting from the first step, as follows:
- FIGS. 1 to 3 are cross-sectional views showing a die used in the first to the second steps according to the first embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing an IC structural body at the third step according to the first embodiment of the present invention.
- FIG. 5 is a cross-sectional view showing an IC structural body and a die during resin-encapsulation at the third step according to the first embodiment of the present invention.
- a die 20 is prepared which includes a first half 20 a and a second half 20 b coupled together to form a cavity 24 therebetween.
- the first half 20 a and the second half 20 b are one or more respectively.
- the first half 20 a has a satin-finished inner surface 22 and an ejector-pin-through-hole 25 extending therethrough, as shown in FIG. 1 .
- the die 20 shown in FIG. 1 is shown as an integrated combination of the first half 20 a , the second half 20 b and an ejector pin 21 .
- the die 20 itself consists of the first half 20 a and the second half 20 b .
- the first half 20 a and the second half 20 b are provided with an upper inner wall surface of cavity 20 aa , an inner flat plane of second half 20 ba , an inner side wall surface of first half 20 ab , and an inner side wall of second half 20 bb to form the cavity 24 .
- An IC structural body 10 and a molten resin for encapsulation are confined within the cavity 24 which is formed by coupling the first half 20 a and the second half 20 b .
- the satin-finished inner surface 22 is formed on the upper inner wall surface of cavity 20 aa of cavity.
- a satin-finished inner surface is formed on the inner wall surface of first half 20 ab , the inner wall surface of second half 20 bb , and an inner flat plane of second half 20 ba .
- a satin-finished inner surface may be formed at a portion other than the upper inner wall surface of cavity 20 aa.
- the ejector pin 21 having a mirror finished surface 23 at a tip end is inserted into the ejector-pin-through-hole 25 of the first half 20 a prepared in the first step and positioned at a position where a surface of a tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface 22 of the first half 20 a as shown in FIG. 2 .
- the ejector pin 21 is inserted into the ejector-pin-through-hole 25 of the first half 20 a so as to be exposed to the cavity 24 .
- the ejector pin 21 is inserted from the outside of the first half 20 a into the cavity 24 passing through the ejector-pin-through-hole 25 provided in the first half 20 a .
- the ejector pin 21 of the present invention has a shape different from the conventional ejector pin. As shown in FIG.
- the ejector pin 21 of the present invention which is composed of a dish-shaped rib part 21 a and a rod-shaped core part 21 b integrated in the dish-shaped rib part 21 a , has a T-shaped cross-section, and the mirror-finished surface 23 is formed at a tip end of the core part 21 b so that the mirror-finished surface 23 at the tip end is exposed to the cavity 24 .
- T-shaped ejector pin for the present ejector pin 21 facilitates fixing it in the first half 20 a.
- the ejector pin 21 is fixed by applying a pressure on the rib part 21 a of the ejector pin 21 from the outside of first half 20 a via a plate 31 .
- the ejector pin 21 having the mirror-finished surface 23 at the tip end thereof is positioned at a position where the surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface 22 formed on the upper inner wall surface of cavity 20 aa of the first half 20 a .
- an intermediate surface height of the satin-finished inner surface 22 is equal to an intermediate height between peaks of groove portions and recess portions provided on the satin-finished inner surface 22 which is substantially an uneven surface.
- an IC structural body 10 is embedded within a molten resin 51 filled in the cavity 24 after the IC structural body 10 is confined within the cavity.
- the IC structural body 10 is formed in such a manner that an IC chip 11 which is bonded on an IC chip mounting part 12 a of a lead 12 using adhesive 14 and lead parts 12 b of the lead 12 are connected with bonding wires 13 . These bonding wires 13 are upwardly bent to exist at an upper side of the IC chip 11 .
- the IC structural body 10 and the molten resin 51 are confined within the cavity 24 which are formed in the die 20 by combining the first half 20 a and the second half 20 b , as shown in FIG. 5 .
- the IC structural body may be positioned at a position where the bonding wires are below the ejector pin.
- Shape of the satin-finished inner surface 22 and the mirror-finished surface 23 are transferred to a surface of the molten resin 51 .
- the ejector pin 21 is positioned at a position where a surface of the tip end of the ejector pin having mirror-finished surface 23 coincides with the upper inner wall surface of cavity 20 aa of the first half 20 a having the satin-finished inner surface. Therefore, the mirror-finished surface 23 used for indicating the “1-pin” position, which is defined by the satin-finished inner surface 22 , is stamped on the resin-encapsulated semiconductor package on a single plane.
- the above-mentioned method according to the first embodiment of the present invention may include a fourth step of releasing the IC structural body 10 in the cavity 24 from the die after the molten resin solidifies while using a spare pin 41 inserted into a spare-pin-through-hole 42 provided in the first half 20 a is projected to the cavity 24 after the IC structural body 10 is embedded within said molten resin 51 .
- This spare pin 41 which may have a shape similar to a conventional ejector pin, is provided to couple with the spare-pin-through-hole 42 which is provided in the first half die 20 a .
- the spare pin 41 is used for releasing the resin encapsulated semiconductor package from the die 20 , so that such a dish-shaped rib part that is provided in the ejector pin 21 is not indispensable for the spare pin 41 .
- the spare pin 41 is used for releasing the semiconductor package from the die because the ejector pin 21 is fixed to the die and do not have an original function to eject. It is preferable that the spare pin 41 is formed at around a center of the first half 20 a.
- FIG. 10A is an enlarged plan view showing an indication portion of a “1-pin” position of a semiconductor package formed by the first embodiment of the present invention and FIG. 10B is a cross sectional view of the indication portion.
- FIG. 11A is an enlarged plan sectional view showing an indication portion of “1-pin” position of a semiconductor package by an imprint of an ejector pin and FIG. 11B is a cross sectional view of an indication portion.
- the semiconductor package formed by the method according to the first embodiment of the present invention is formed in such a manner that a satin-finished inner surface 102 exists on substantially the same plane as a mirror-finished surface 101 for indicating a “1-pin” position which is surrounded by the satin-finished inner surface 102 , as shown in FIG. 10B .
- an indication portion of a 1-pin position 111 is formed as a concave shape as shown in FIG. 11B . Therefore, the semiconductor package according to the first embodiment of the present invention can keep a larger space between the bonding wires and the indication portion of the package surface than the conventional package can.
- the die according to the first embodiment of the present invention can be used repeatedly by merely exchanging only an ejector pin having a mirror-finished surface, when the mirror-finished surface is deteriorated. Therefore, when a die is used repeatedly, the die according to the first embodiment of the present invention can reduce costs for mass-production of semiconductor package in comparison with the prior art.
- a method for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface which is surrounded by a satin-finished inner surface will be described.
- This method includes first to fourth steps. Each step will be sequentially described from the first step.
- FIGS. 6 to 8 are cross-sectional views showing dies used in the first to the third steps according to the second embodiment of the present invention.
- FIG. 9 is a cross-sectional view of an IC structural body and a die within a resin-encapsulation in the fourth step according to the second embodiment of the present invention.
- a die 60 is prepared which includes a first half 60 a and a second half 60 b coupled together to form a cavity 24 therebetween. It should be noted that the first half 60 a and the second half 60 b are one or more respectively. The first half has an ejector-pin-though-hole 25 extending therethrough as shown in FIG. 6 . It should be noted that the die 60 shown in FIG. 1 is described as an integrated combination of the first half 60 a , the second half 60 b , and an ejector pin 21 . The die 60 consists of the first half 60 a and the second half 60 b .
- the first half 60 a and the second half 60 b are provided with an upper inner wall of cavity 60 aa , an inner flat plane of second half 60 ba , an inner side wall of first half 60 ab , and an inner side wall of second half 60 bb to form a cavity 24 .
- An IC structural body and a molten resin for encapsulating are confined within the cavity 24 which is formed by coupling the first half 60 a and the second half 60 b with each other.
- an ejector pin 21 is inserted into the ejector-pin-through-hole 25 and positioned at a position where a surface of a tip end of the ejector pin having a mark-shaped and mirror-finished surface 71 coincides with the upper inner wall surface of cavity 60 aa as shown in FIG. 7 .
- the mark-shaped and mirror-finished surface 71 for stamping the mark on a semiconductor package is formed at the tip end of the ejector pin 21 .
- the mark-shaped and mirror-finished surface 71 is formed by means of a laser irradiation or an electric discharging.
- the ejector pin 21 including a dish-shaped rib part 21 a and a rod-shaped core part 21 b , has a T-shaped cross-section as shown in FIG. 14 .
- the ejector pin 21 is inserted into the ejector-pin-through-hole of the first half 60 a while a T-shaped rib part 21 a of the ejector pin 21 is pressured from the outside of first half 60 a via a plate 31 .
- the ejector pin is positioned at a position where the tip end of the ejector pin 21 is in the same plane as the upper inner wall surface of cavity 60 aa.
- a satin-finished inner surface 22 is formed on the upper inner wall surface of cavity 60 aa.
- the tip end of the ejector pin 21 is masked firstly and a satin-finished inner surface 22 is formed on the upper inner wall surface of cavity 60 aa by plasma etching.
- the satin-finished inner surface 22 can be formed on such a plane where the upper inner wall surface of cavity 60 aa is in the same plane as the tip end of the ejector pin 21 .
- the mark-shaped mirror-finished surface 71 which is defined by the satin-finished inner surface 22 , can be formed at the tip end of the ejector pin 21 .
- an IC structural body 10 is embedded with molten resin 51 filled in the cavity after the IC structural body is confined within the cavity as shown in FIG. 9 .
- an IC structural body 10 is formed in such a manner that an IC chip 11 which is bonded on an IC chip mounting part 12 a of a lead 12 by using an adhesive 14 and lead parts 12 b in the lead 12 are in connection with bonding wires 13 . These bonding wires 13 are arcuated above the IC chip to project.
- shape of the satin-finished inner surface 22 and the mark-shaped and mirror-finished surface 71 are transferred to a surface of the molten resin 51 .
- the ejector pin 21 is positioned at a position where the tip end of ejector pin having the mark-shaped and mirror-finished surface 71 surrounded by the satin-finished inner surface 22 is in the same plane as the upper inner wall surface of cavity 60 aa of the first half 60 a having the satin-finished inner surface 22 . Therefore, the mark-shaped and mirror-finished surface, which is defined by the satin-finished inner surface, is formed on the resin-encapsulated semiconductor package surface on the same plane as the satin-finished surface.
- the above-mentioned method according to the second embodiment of the present invention may include a fifth step of releasing the IC structural body 10 in the cavity from the die after the molten resin solidifies while using a spare pin 41 inserted into a spare-pin-through-hole 42 provided in the first half 60 a is projected to the cavity 24 .
- This spare pin 41 which may have a shape similar to the conventional ejector pin, is provided to pass through the spare-pin-through-hole 42 which is provided in the first half 60 a .
- the spare pin 41 is used for releasing the resin encapsulated semiconductor package from the die 60 , so that the spare pin dose not include such a dish-shaped rib part as the ejector pin 21 to project into the cavity while passing through the first half 60 a .
- the spare pin 41 is used for releasing the semiconductor package from the die because the ejector pin 21 is fixed into the die and do not have an original function of ejecting. It is preferable that the spare pin 41 is formed at around a center of first half 60 a.
- FIG. 12A and FIG. 12B are enlarged plan and cross sectional views showing a mark stamp part according to the second embodiment of the present invention, respectively.
- FIG. 13A and FIG. 13 B are enlarged plan and cross sectional views showing a mark stamped part formed by means of laser etching according to the conventional art, respectively.
- a satin-finished inner surface 102 and a mark-shaped and mirror-finished surface 121 are formed on the same plane.
- a part of an arbitrary shaped stamp 131 is formed as a concave shape.
- a mark stamped on a semiconductor package is formed after a resin-encapsulation and the semiconductor package is released from a die.
- the mark is stamped at the same time when the resin-encapsulated semiconductor package is embedded with resin in the fourth step. Therefore, the conventional step of stamping the mark after resin-encapsulation and releasing the semiconductor package from the die can be eliminated.
- the method for manufacturing semiconductor package according to the second embodiment of the present invention has effects of improvement of productivity and reduction of costs in comparison with the conventional art.
- the spare pin formed in the first half according to the first and the second embodiments is formed apart from a position above the bonding wires, so that such a possibility can be reduced that the bonding wires are exposed from the semiconductor package to the outside due to the spare pin during the resin-encapsulation.
- a die for manufacturing a semiconductor package including at least one first half having a satin-finished inner surface and an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity there between, wherein an ejector pin having a mirror-finished surface at a tip end which is inserted into the ejector-pin-through-hole of the first half and positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface of the first half is provided in the first half.
- a die for manufacturing a semiconductor package according to 1) wherein the first half is provided with a spare-pin-through-hole and a spare pin inserted into the spare-pin-through-hole to project to the cavity.
- a die for manufacturing a semiconductor package according to 1) wherein the ejector pin includes a dish-shaped rib part and a rod-shaped core part integrated with the dish-shaped rib part.
- a die for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface including at least one first half having an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity therebetween, wherein a satin-finished inner surface is formed only on an inner surface of the cavity of the first half while an ejector pin having a mark-shaped and mirror-finished surface at a tip end thereof which is inserted into the ejector-pin-through-hole of the first half and positioned at a position where the tip end of the ejector pin coincides with an upper inner wall surface of cavity.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
A die for encapsulating an IC structural body having bonding wires with a molten resin is provided with at least one first half having an ejector-pin-through-hole and at least one second half coupled together to form a cavity therebetween. An ejector pin having a mirror-finished surface at a tip end thereof is inserted into the ejector-pin-through-hole and positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of a satin-finished surface formed on an upper inner wall of the cavity of the first half. The IC structural body is then encapsulated with a molten resin, and the mirror-finished surface of the ejector pin and the satin-finished surface of the upper inner wall surface of the cavity are stamped on the semiconductor package in substantially the same plane.
Description
- This application is a continuation application of application Ser. No. 11/505,920 filed on Aug. 18, 2006, which is hereby incorporated for all purposes.
- 1. Field of the Invention
- The present invention relates to a method for manufacturing a semiconductor package, and in particular, relates to a method for manufacturing a semiconductor package while using a die having an ejector pin, the semiconductor package having a mirror-finished surface encircled by a satin-finished surface.
- 2. Description of the Related Art
- A typical semiconductor package is formed by embedding an IC structural body having a lead, an IC chip, and bonding wires bonding between the lead and the IC chip within a resin bulk while using a die.
- A surface of the die, as its normal appearance, is generally a satin-finished surface for the sake of easy exfoliation.
- In such a prior art that is disclosed by “Nakagawa et al., Kata-Gijyutu-Binran, Nikkan-Kogyo-Shimbun, 1989, p. 88-95”, a circular and concave imprint formed by an ejector pin, which is a mirror-finished surface, is used as an indicator of a “1-pin” for recognition of a first pin. The ejector pin is arranged in the die during a process of resin-encapsulation to readily release the semiconductor package from a die after the resin-encapsulation. When the ejector pin moves, an imprint of the ejector pin is formed on the satin-finished surface of the semiconductor package.
- When plural imprints are formed, the “1-pin” is formed while having specific shape and appearance which are distinguishable from imprints of the other pins.
- Japanese Patent Kokai 11-87565 (document D1) discloses another method for forming an indication portion of the “1-pin” on a package surface. In this method, a portion corresponding to the indication portion is made at a step of forming a satin-finished surface on the die by finishing the surface excluding a masked portion with plasma-etching etc.
- After encapsulation of the IC structural body with a resin, a mark representing a product name, etc. is stamped on a surface of the semiconductor package released from the die as disclosed by a Japanese Patent Kokai 2001-160604 (document D2). As for the method for stamping a mark on the package surface, the mark is formed by a laser beam in view of its fast processing speed.
- Recently, in a resin-encapsulation-type semiconductor package, in particular, a semiconductor package for an IC card, a thin thickness and a compactness are required, so that a resin layer covering the semiconductor package is made thinner.
- It is, on the other hand to, be understood that the above-mentioned imprint of ejector pin influences an installment height of the semiconductor product, the imprint can not be formed as convex and is normally formed as concave.
- For this reason, as a thickness of manufactured semiconductor package decreases, it is difficult to keep a space between the concave portion of the imprint of ejector pin and the bonding wires in the semiconductor package. There arises a problem that the bonding wires are subject to be exposed to the outside during the resin-encapsulation.
- The laser stamping is typically performed by etching a resin surface of tens micrometers. When a thickness of the resin surface of semiconductor package is much thin, a depth of the mark to be formed by the laser beam can not be disregarded. There arises another problem that an IC structural body such as bonding wires etc. is exposed to the outside by way of etching the resin surface during resin-encapsulation and that a resin wall cracks at the laser stamped portion because of an external pressure.
- In addition, a mirror-finished surface of a die is likely to be deteriorated much more than a satin-finished surface of the die, so that the mirror-finished surface is deteriorated earlier when the die is used repeatedly. In the die disclosed by document D1, a mirror-finished surface used for indicating directly the “1-pin” position is formed on an upper inner wall surface of the cavity which is a satin-finished surface. When the mirror-finished surface is deteriorated, it is required to replace one or all parts of die for new one even though the portion of satin-finished surface is not deteriorated. As a result, there arises another problem that mass-production of semiconductor package causes to raise costs for the die.
- An object of the present invention is to provide a method for manufacturing a semiconductor package that can reduce a possibility that bonding wires are exposed from a semiconductor package surface to the outside. According to a first aspect of the present invention, there is provided a method, which includes first to third steps, for manufacturing a semiconductor package having a mirror-finished surface for indicating a “1-pin” position.
- In the first step, a die is prepared which includes at least one first half and at least one second half coupled together to form a cavity therebetween. The first half has a satin-finished inner surface and an ejector-pin-through-hole extending therethrough.
- In the second step, an ejector pin having a mirror-finished surface at a tip end thereof is inserted into the ejector-pin-through-hole and positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface of the first half.
- In the third step, an IC structural body having bonding wires which bond between an IC chip and a lead is embedded within a molten resin filled in the cavity between the first half and second half after the IC structural body is confined within the cavity.
- In the second step according to the first aspect of the present invention, the ejector pin is inserted into the ejector-pin-through-hole and positioned at a position where the surface of the tip end of the ejector pin coincides with the intermediate surface height of the satin-finished inner surface of the first half, so that the mirror-finished surface for indicating the “1-pin” position is defined by the satin-finished inner surface and is formed at the same plane as the intermediate surface height of the satin-finished inner surface. Thus, the semiconductor package manufactured by the method according to the first aspect of the present invention can keep a larger space between the bonding wires and the indication portion of the “1-pin” position of the semiconductor package surface more surely than a semiconductor package manufactured by the conventional method can. Therefore, the above-mentioned possibility that the bonding wires are exposed from the semiconductor package surface to the outside can be reduced even when semiconductor packages of a thin thickness and a compactness are manufactured.
- Another object of the present invention is to provide a method for manufacturing a semiconductor package that has less possibilities that an IC structural body including bonding wires etc. is exposed from a semiconductor package surface to the outside and that a resin wall cracks at a stamped portion because of an external pressure.
- According to a second aspect of the present invention, there is provided a method, which includes first to fourth steps, for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface thereon.
- In the first step, a die is prepared which includes at least one first half and at least one second half coupled together to form a cavity therebetween. The first half has an ejector-pin-through-hole extending therethrough.
- In the second step, an ejector pin having a mark-shaped and mirror-finished surface at a tip end thereof is inserted into the ejector-pin-through-hole and positioned at a position where a surface of the tip end of the ejector pin coincides with an inner surface of the first half.
- In the third step, a satin-finished surface is formed only on the inner surface of the first half while the tip end of the ejector pin is masked.
- In the fourth step, an IC structural body having bonding wires which bond between an IC chip and a lead is embedded within a molten resin filled in the cavity after the IC structural body is confined within the cavity.
- In the second step according to the second aspect of the present invention, the ejector pin having a mirror-finished surface at the tip end is inserted into the ejector-pin-through-hole and positioned at a position where the surface of the tip end of the ejector pin coincides with the inner surface of the first half, so that the mark shaped and mirror-finished surface and the satin-finished inner surface are formed on the semiconductor package surface at the same plane in the third step. Thus, the semiconductor package according to the second aspect of the present invention can surely keep a large space between the IC structural body in the package and the indication of the “1-pin” position on the semiconductor package in comparison with a semiconductor package manufactured by the conventional method. Thereby, the above-mentioned possibilities can be reduced that the IC structural body is exposed from the semiconductor package surface to the outside and that a resin wall cracks at the stamped portion because of an external pressure.
-
FIG. 1 is a cross-sectional view showing a die prepared at a first step according to a first embodiment of the present invention; -
FIG. 2 is a cross-sectional view showing the die at a second step according to the first embodiment of the present invention; -
FIG. 3 is a cross-sectional view showing the die with a spare pin inserted therein according to the first embodiment of the present invention; -
FIG. 4 is a cross-sectional view showing an IC structural body according to the first embodiment of the present invention and according to a second embodiment of the invention; -
FIG. 5 is a cross-sectional view showing the IC structural body and the die during resin-encapsulation according to the first embodiment of the invention; -
FIG. 6 is a cross sectional view showing a die at a second step according to a second embodiment of the invention; -
FIG. 7 is a cross-sectional view showing the die at a third step according to the second embodiment of the invention; -
FIG. 8 is a cross-sectional view showing the die with a spare pin inserted therein according to the second embodiment of the invention; -
FIG. 9 is a cross-sectional view showing an IC structural body and the die during resin-encapsulation according to the second embodiment of the invention; -
FIG. 10A is an enlarged plan view showing an indication portion of a “1-pin” position on semiconductor package surface formed by the first embodiment and -
FIG. 10B is a cross-sectional view ofFIG. 10 A taken along line I-I; -
FIG. 11A is an enlarged plan view showing an indication portion of a “1-pin” position using an imprint of ejector pin according to a prior art andFIG. 11B is a cross-sectional view ofFIG. 11A taken along line II-II; -
FIG. 12 is an enlarged plan view showing a mark portion stamped on a semiconductor package surface formed by the second embodiment of the present invention andFIG. 12B is a cross-sectional view ofFIG. 12 A taken along line III-III; -
FIG. 13 is an enlarged plan view showing a mark portion stamped on a semiconductor package surface having a mark stamped by use of a laser beam according to a prior art andFIG. 13B is a cross-sectional view ofFIG. 13 A taken along line IV-IV; -
FIG. 14 is a cross-sectional view showing an ejector pin prepared at the first step according to the second embodiment of the invention. - In a first embodiment of the present invention, a method for manufacturing a semiconductor package having a mirror-finished surface encircled by a satin-finished inner surface for indicating a “1-pin” position includes first to fourth steps mentioned hereinbelow. The respective steps will be described in sequence starting from the first step, as follows:
-
FIGS. 1 to 3 are cross-sectional views showing a die used in the first to the second steps according to the first embodiment of the present invention.FIG. 4 is a cross-sectional view showing an IC structural body at the third step according to the first embodiment of the present invention.FIG. 5 is a cross-sectional view showing an IC structural body and a die during resin-encapsulation at the third step according to the first embodiment of the present invention. - In the first step according to the first embodiment of the invention, a
die 20 is prepared which includes afirst half 20 a and asecond half 20 b coupled together to form acavity 24 therebetween. It should be noted that thefirst half 20 a and thesecond half 20 b are one or more respectively. Thefirst half 20 a has a satin-finishedinner surface 22 and an ejector-pin-through-hole 25 extending therethrough, as shown inFIG. 1 . It should be noted that the die 20 shown inFIG. 1 is shown as an integrated combination of thefirst half 20 a, thesecond half 20 b and anejector pin 21. The die 20 itself consists of thefirst half 20 a and thesecond half 20 b. Thefirst half 20 a and thesecond half 20 b, each having an approximate reentrant cross-section and mutually confronting, are provided with an upper inner wall surface ofcavity 20 aa, an inner flat plane ofsecond half 20 ba, an inner side wall surface offirst half 20 ab, and an inner side wall ofsecond half 20 bb to form thecavity 24. An ICstructural body 10 and a molten resin for encapsulation are confined within thecavity 24 which is formed by coupling thefirst half 20 a and thesecond half 20 b. The satin-finishedinner surface 22 is formed on the upper inner wall surface ofcavity 20 aa of cavity. No a satin-finished inner surface is formed on the inner wall surface offirst half 20 ab, the inner wall surface ofsecond half 20 bb, and an inner flat plane ofsecond half 20 ba. However, a satin-finished inner surface may be formed at a portion other than the upper inner wall surface ofcavity 20 aa. - In the second step according to the first embodiment of the present invention, the
ejector pin 21 having a mirror finishedsurface 23 at a tip end is inserted into the ejector-pin-through-hole 25 of thefirst half 20 a prepared in the first step and positioned at a position where a surface of a tip end of the ejector pin coincides with an intermediate surface height of the satin-finishedinner surface 22 of thefirst half 20 a as shown inFIG. 2 . - The
ejector pin 21 is inserted into the ejector-pin-through-hole 25 of thefirst half 20 a so as to be exposed to thecavity 24. Theejector pin 21 is inserted from the outside of thefirst half 20 a into thecavity 24 passing through the ejector-pin-through-hole 25 provided in thefirst half 20 a. It should be noted that theejector pin 21 of the present invention has a shape different from the conventional ejector pin. As shown inFIG. 14 , theejector pin 21 of the present invention, which is composed of a dish-shapedrib part 21 a and a rod-shapedcore part 21 b integrated in the dish-shapedrib part 21 a, has a T-shaped cross-section, and the mirror-finishedsurface 23 is formed at a tip end of thecore part 21 b so that the mirror-finishedsurface 23 at the tip end is exposed to thecavity 24. To adopt of the T-shaped ejector pin for thepresent ejector pin 21 facilitates fixing it in thefirst half 20 a. - The
ejector pin 21 is fixed by applying a pressure on therib part 21 a of theejector pin 21 from the outside offirst half 20 a via aplate 31. Theejector pin 21 having the mirror-finishedsurface 23 at the tip end thereof is positioned at a position where the surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finishedinner surface 22 formed on the upper inner wall surface ofcavity 20 aa of thefirst half 20 a. It is to be noted that the term “an intermediate surface height of the satin-finishedinner surface 22” is equal to an intermediate height between peaks of groove portions and recess portions provided on the satin-finishedinner surface 22 which is substantially an uneven surface. - In the third step according to the first embodiment of the present invention, an IC
structural body 10 is embedded within amolten resin 51 filled in thecavity 24 after the ICstructural body 10 is confined within the cavity. - As shown in
FIG. 4 , the ICstructural body 10 is formed in such a manner that anIC chip 11 which is bonded on an ICchip mounting part 12 a of a lead 12 usingadhesive 14 and leadparts 12 b of thelead 12 are connected withbonding wires 13. Thesebonding wires 13 are upwardly bent to exist at an upper side of theIC chip 11. - In the third step, the IC
structural body 10 and themolten resin 51 are confined within thecavity 24 which are formed in the die 20 by combining thefirst half 20 a and thesecond half 20 b, as shown inFIG. 5 . The IC structural body may be positioned at a position where the bonding wires are below the ejector pin. Shape of the satin-finishedinner surface 22 and the mirror-finishedsurface 23 are transferred to a surface of themolten resin 51. Herein, theejector pin 21 is positioned at a position where a surface of the tip end of the ejector pin having mirror-finishedsurface 23 coincides with the upper inner wall surface ofcavity 20 aa of thefirst half 20 a having the satin-finished inner surface. Therefore, the mirror-finishedsurface 23 used for indicating the “1-pin” position, which is defined by the satin-finishedinner surface 22, is stamped on the resin-encapsulated semiconductor package on a single plane. - The above-mentioned method according to the first embodiment of the present invention may include a fourth step of releasing the IC
structural body 10 in thecavity 24 from the die after the molten resin solidifies while using aspare pin 41 inserted into a spare-pin-through-hole 42 provided in thefirst half 20 a is projected to thecavity 24 after the ICstructural body 10 is embedded within saidmolten resin 51. - This
spare pin 41, which may have a shape similar to a conventional ejector pin, is provided to couple with the spare-pin-through-hole 42 which is provided in the first half die 20 a. Thespare pin 41 is used for releasing the resin encapsulated semiconductor package from thedie 20, so that such a dish-shaped rib part that is provided in theejector pin 21 is not indispensable for thespare pin 41. In addition, thespare pin 41 is used for releasing the semiconductor package from the die because theejector pin 21 is fixed to the die and do not have an original function to eject. It is preferable that thespare pin 41 is formed at around a center of thefirst half 20 a. -
FIG. 10A is an enlarged plan view showing an indication portion of a “1-pin” position of a semiconductor package formed by the first embodiment of the present invention andFIG. 10B is a cross sectional view of the indication portion.FIG. 11A is an enlarged plan sectional view showing an indication portion of “1-pin” position of a semiconductor package by an imprint of an ejector pin andFIG. 11B is a cross sectional view of an indication portion. - The semiconductor package formed by the method according to the first embodiment of the present invention is formed in such a manner that a satin-finished
inner surface 102 exists on substantially the same plane as a mirror-finishedsurface 101 for indicating a “1-pin” position which is surrounded by the satin-finishedinner surface 102, as shown inFIG. 10B . On the contrary, in a semiconductor package formed by a conventional method, an indication portion of a 1-pin position 111 is formed as a concave shape as shown inFIG. 11B . Therefore, the semiconductor package according to the first embodiment of the present invention can keep a larger space between the bonding wires and the indication portion of the package surface than the conventional package can. When the shortest distances between bonding wires and a semiconductor package surface obtained by the present invention and a conventional method are given W1 and W2, respectively, it seems that W1 is larger than W2 as shown inFIG. 10B andFIG. 11B . As a result, such a possibility is reduced that the bonding wires are exposed from the semiconductor package surface to the outside even though semiconductor packages of a thin thickness and a compactness are manufactured. - In regard to the problem that only a mirror-finished surface is rapidly deteriorated when a die is used repeatedly because the mirror-finished surface is likely to be deteriorated in comparison with a satin-finished surface, the die according to the first embodiment of the present invention can be used repeatedly by merely exchanging only an ejector pin having a mirror-finished surface, when the mirror-finished surface is deteriorated. Therefore, when a die is used repeatedly, the die according to the first embodiment of the present invention can reduce costs for mass-production of semiconductor package in comparison with the prior art.
- In a second embodiment, a method for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface which is surrounded by a satin-finished inner surface will be described. This method includes first to fourth steps. Each step will be sequentially described from the first step.
-
FIGS. 6 to 8 are cross-sectional views showing dies used in the first to the third steps according to the second embodiment of the present invention.FIG. 9 is a cross-sectional view of an IC structural body and a die within a resin-encapsulation in the fourth step according to the second embodiment of the present invention. - In the first step according to the second embodiment of the present invention, a
die 60 is prepared which includes afirst half 60 a and asecond half 60 b coupled together to form acavity 24 therebetween. It should be noted that thefirst half 60 a and thesecond half 60 b are one or more respectively. The first half has an ejector-pin-though-hole 25 extending therethrough as shown inFIG. 6 . It should be noted that the die 60 shown inFIG. 1 is described as an integrated combination of thefirst half 60 a, thesecond half 60 b, and anejector pin 21. Thedie 60 consists of thefirst half 60 a and thesecond half 60 b. Thefirst half 60 a and thesecond half 60 b, each having an approximate reentrant cross-section and mutually confronting, are provided with an upper inner wall ofcavity 60 aa, an inner flat plane ofsecond half 60 ba, an inner side wall offirst half 60 ab, and an inner side wall ofsecond half 60 bb to form acavity 24. An IC structural body and a molten resin for encapsulating are confined within thecavity 24 which is formed by coupling thefirst half 60 a and thesecond half 60 b with each other. - In the second step according to the second embodiment of the present invention, an
ejector pin 21 is inserted into the ejector-pin-through-hole 25 and positioned at a position where a surface of a tip end of the ejector pin having a mark-shaped and mirror-finishedsurface 71 coincides with the upper inner wall surface ofcavity 60 aa as shown inFIG. 7 . - The mark-shaped and mirror-finished
surface 71 for stamping the mark on a semiconductor package is formed at the tip end of theejector pin 21. - The mark-shaped and mirror-finished
surface 71 is formed by means of a laser irradiation or an electric discharging. - The
ejector pin 21 including a dish-shapedrib part 21 a and a rod-shapedcore part 21 b, has a T-shaped cross-section as shown inFIG. 14 . In a similar way as the first embodiment of the present invention, theejector pin 21 is inserted into the ejector-pin-through-hole of thefirst half 60 a while a T-shapedrib part 21 a of theejector pin 21 is pressured from the outside offirst half 60 a via aplate 31. The ejector pin is positioned at a position where the tip end of theejector pin 21 is in the same plane as the upper inner wall surface ofcavity 60 aa. - The third step according to the second embodiment of the present invention will be described while referring to
FIG. 7 . In this step, a satin-finishedinner surface 22 is formed on the upper inner wall surface ofcavity 60 aa. - In the third step, the tip end of the
ejector pin 21 is masked firstly and a satin-finishedinner surface 22 is formed on the upper inner wall surface ofcavity 60 aa by plasma etching. As a result, the satin-finishedinner surface 22 can be formed on such a plane where the upper inner wall surface ofcavity 60 aa is in the same plane as the tip end of theejector pin 21. In addition, the mark-shaped mirror-finishedsurface 71, which is defined by the satin-finishedinner surface 22, can be formed at the tip end of theejector pin 21. - In the fourth step according to the first embodiment of the present invention, an IC
structural body 10 is embedded withmolten resin 51 filled in the cavity after the IC structural body is confined within the cavity as shown inFIG. 9 . - As shown in
FIG. 4 , an ICstructural body 10 is formed in such a manner that anIC chip 11 which is bonded on an ICchip mounting part 12 a of a lead 12 by using an adhesive 14 and leadparts 12 b in thelead 12 are in connection withbonding wires 13. Thesebonding wires 13 are arcuated above the IC chip to project. - In the fourth step, shape of the satin-finished
inner surface 22 and the mark-shaped and mirror-finishedsurface 71 are transferred to a surface of themolten resin 51. Theejector pin 21 is positioned at a position where the tip end of ejector pin having the mark-shaped and mirror-finishedsurface 71 surrounded by the satin-finishedinner surface 22 is in the same plane as the upper inner wall surface ofcavity 60 aa of thefirst half 60 a having the satin-finishedinner surface 22. Therefore, the mark-shaped and mirror-finished surface, which is defined by the satin-finished inner surface, is formed on the resin-encapsulated semiconductor package surface on the same plane as the satin-finished surface. - The above-mentioned method according to the second embodiment of the present invention may include a fifth step of releasing the IC
structural body 10 in the cavity from the die after the molten resin solidifies while using aspare pin 41 inserted into a spare-pin-through-hole 42 provided in thefirst half 60 a is projected to thecavity 24. - This
spare pin 41, which may have a shape similar to the conventional ejector pin, is provided to pass through the spare-pin-through-hole 42 which is provided in thefirst half 60 a. Thespare pin 41 is used for releasing the resin encapsulated semiconductor package from thedie 60, so that the spare pin dose not include such a dish-shaped rib part as theejector pin 21 to project into the cavity while passing through thefirst half 60 a. In addition, thespare pin 41 is used for releasing the semiconductor package from the die because theejector pin 21 is fixed into the die and do not have an original function of ejecting. It is preferable that thespare pin 41 is formed at around a center offirst half 60 a. -
FIG. 12A andFIG. 12B are enlarged plan and cross sectional views showing a mark stamp part according to the second embodiment of the present invention, respectively.FIG. 13A andFIG. 13 B are enlarged plan and cross sectional views showing a mark stamped part formed by means of laser etching according to the conventional art, respectively. In the semiconductor package according to the second embodiment of the present invention, a satin-finishedinner surface 102 and a mark-shaped and mirror-finishedsurface 121 are formed on the same plane. On the other hand, in the semiconductor package formed by the conventional method, a part of an arbitrary shapedstamp 131 is formed as a concave shape. In comparison with a semiconductor package formed using a conventional method, a large spacing between the resin-encapsulated structural body in the package and package surface can be kept in the arbitrary shaped stamped portion. When the shortest distances between bonding wires and a semiconductor package surface obtained by the present invention and a conventional method are given W3 and W4, respectively, it seems that W3 is larger than W4 as shown inFIG. 12B andFIG. 13B . Therefore, such possibilities can be reduced that the resin-encapsulated structural body is exposed from the semiconductor package surface to the outside and that the resin wall cracks at the stamped portion because of an external pressure. - In the prior art, a mark stamped on a semiconductor package is formed after a resin-encapsulation and the semiconductor package is released from a die. To the contrary, according to the second embodiment of the present invention, the mark is stamped at the same time when the resin-encapsulated semiconductor package is embedded with resin in the fourth step. Therefore, the conventional step of stamping the mark after resin-encapsulation and releasing the semiconductor package from the die can be eliminated. The method for manufacturing semiconductor package according to the second embodiment of the present invention has effects of improvement of productivity and reduction of costs in comparison with the conventional art.
- As stated above, there arises a problem that only a part of mirror-finished surface is deteriorated firstly when die is used repeatedly because mirror-finished surface is likely to be deteriorated in comparison with a satin-finished inner surface. Since the mirror-finished surface is formed on the ejector pin in the same way as the first embodiment, die can be reused only by exchanging only the ejector pin when a part of mirror-finished surface is deteriorated. Therefore, costs for mass-production of the semiconductor package can be reduced according to the invention even if the die used repeatedly.
- The spare pin formed in the first half according to the first and the second embodiments is formed apart from a position above the bonding wires, so that such a possibility can be reduced that the bonding wires are exposed from the semiconductor package to the outside due to the spare pin during the resin-encapsulation.
- According to the present invention, there are provided the following dies:
- 1) A die for manufacturing a semiconductor package including at least one first half having a satin-finished inner surface and an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity there between, wherein an ejector pin having a mirror-finished surface at a tip end which is inserted into the ejector-pin-through-hole of the first half and positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface of the first half is provided in the first half.
- 2) A die for manufacturing a semiconductor package according to 1), wherein the first half is provided with a spare-pin-through-hole and a spare pin inserted into the spare-pin-through-hole to project to the cavity.
- 3) A die for manufacturing a semiconductor package according to 1), wherein the ejector pin includes a dish-shaped rib part and a rod-shaped core part integrated with the dish-shaped rib part.
- 4) A die for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface including at least one first half having an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity therebetween, wherein a satin-finished inner surface is formed only on an inner surface of the cavity of the first half while an ejector pin having a mark-shaped and mirror-finished surface at a tip end thereof which is inserted into the ejector-pin-through-hole of the first half and positioned at a position where the tip end of the ejector pin coincides with an upper inner wall surface of cavity.
- 5) A die for manufacturing a semiconductor package according to 4), wherein the first half is provided with a spare-pin-through-hole and a spare pin inserted into the spare-pin-through-hole to project to the cavity.
- 6) A die for manufacturing a semiconductor package according to 4), wherein the ejector pin includes of a dish-shaped rib part and a rod-shaped core part integrated with the dish-shaped rib part.
- This application is based on Japanese Patent Application No. 2005-263516 which is hereby incorporated by reference.
Claims (6)
1. A die for manufacturing a semiconductor package including at least one first half having a satin-finished inner surface and an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity therebetween,
wherein an ejector pin having a mirror-finished surface at a tip end which is inserted into the ejector-pin-through-hole of the first half, positioned at a position where a surface of the tip end of the ejector pin coincides with an intermediate surface height of the satin-finished inner surface of the first half, and fixed at said position is provided in the first half.
2. A die for manufacturing a semiconductor package according to claim 1 , wherein the first half is provided with a spare-pin-through-hole and a spare pin inserted into the spare-pin-through-hole to project into the cavity.
3. A die for manufacturing a semiconductor package according to claim 1 , wherein the ejector pin includes a dish-shaped rib part and a rod-shaped core part integrated with the dish-shaped rib part, and said mirror-finished surface is on a tip end of said rod-shaped core part.
4. A die for manufacturing a semiconductor package having a mark-shaped and mirror-finished surface including at least one first half having an ejector-pin-through-hole, and at least one second half coupled with the first half to form a cavity therebetween,
wherein a satin-finished inner surface is formed only on an inner surface of the cavity of the first half while an ejector pin having a mark-shaped and mirror-finished surface at a tip end thereof which is inserted into the ejector-pin-through-hole of the first half, positioned at a position where the tip end of the ejector pin is substantially on a same plane as the upper inner wall surface of the cavity, and fixed at said position.
5. A die for manufacturing a semiconductor package according to claim 4 , wherein the first half is provided with a spare-pin-through-hole and a spare pin inserted into the spare-pin-through-hole to project into the cavity.
6. A die for manufacturing a semiconductor package according to claim 4 , wherein the ejector pin includes of a dish-shaped rib part and a rod-shaped core part integrated with the dish-shaped rib part, and said mark-shaped and mirror-finished surface is on a tip end of said rod-shaped core part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/170,803 US20090011061A1 (en) | 2005-09-12 | 2008-07-10 | Method for manufacturing semiconductor package |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263516A JP2007080923A (en) | 2005-09-12 | 2005-09-12 | Forming method of semiconductor package and mold for forming semiconductor package |
JP2005263516 | 2005-09-12 | ||
US11/505,920 US7407832B2 (en) | 2005-09-12 | 2006-08-18 | Method for manufacturing semiconductor package |
US12/170,803 US20090011061A1 (en) | 2005-09-12 | 2008-07-10 | Method for manufacturing semiconductor package |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,920 Continuation US7407832B2 (en) | 2005-09-12 | 2006-08-18 | Method for manufacturing semiconductor package |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090011061A1 true US20090011061A1 (en) | 2009-01-08 |
Family
ID=37855709
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,920 Expired - Fee Related US7407832B2 (en) | 2005-09-12 | 2006-08-18 | Method for manufacturing semiconductor package |
US12/170,803 Abandoned US20090011061A1 (en) | 2005-09-12 | 2008-07-10 | Method for manufacturing semiconductor package |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/505,920 Expired - Fee Related US7407832B2 (en) | 2005-09-12 | 2006-08-18 | Method for manufacturing semiconductor package |
Country Status (4)
Country | Link |
---|---|
US (2) | US7407832B2 (en) |
JP (1) | JP2007080923A (en) |
KR (1) | KR20070030123A (en) |
CN (1) | CN100550330C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101958119B (en) * | 2009-07-16 | 2012-02-29 | 中兴通讯股份有限公司 | Audio-frequency drop-frame compensator and compensation method for modified discrete cosine transform domain |
DE102014117353A1 (en) | 2014-11-26 | 2016-06-02 | Infineon Technologies Ag | Ejector pin and method of making the same |
CN113865628B (en) * | 2021-08-25 | 2024-05-07 | 浙江工业大学 | Sensor packaging device and method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5090890A (en) * | 1989-10-18 | 1992-02-25 | Fuji Photo Film Co., Ltd. | Injection mold having a valve gate system |
US5663104A (en) * | 1994-06-03 | 1997-09-02 | Rohm Co., Ltd. | Method of manufacturing a semiconductor device for power supply use |
US5817208A (en) * | 1995-08-04 | 1998-10-06 | Matsushita Electronics Corporation | Resin sealing die, resin-sealed-type semiconductor device and method of manufacturing the device |
US5824350A (en) * | 1994-04-26 | 1998-10-20 | Dme Normalien Gmbh/Neuenstadt | Device for molding or injection-molding polymer compounds, and mold accessories |
US5874324A (en) * | 1996-03-14 | 1999-02-23 | Towa Corporation | Method of sealing electronic component with molded resin |
US6149420A (en) * | 1997-02-20 | 2000-11-21 | Samsung Electronics Co., Ltd. | Mold with indicia forming changeable core |
US6276913B1 (en) * | 1999-02-05 | 2001-08-21 | Mitsui High-Tech Inc. | Mold for resin sealing |
US6430034B2 (en) * | 2000-04-07 | 2002-08-06 | Nec Corporation | Chip capacitor having external resin packaging |
US6554245B2 (en) * | 1996-07-16 | 2003-04-29 | Bernard Picco | Marking device for a mould |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1187565A (en) | 1997-09-04 | 1999-03-30 | Nec Corp | Semiconductor device |
JP3644859B2 (en) | 1999-12-02 | 2005-05-11 | 沖電気工業株式会社 | Semiconductor device |
KR100566496B1 (en) * | 2001-12-07 | 2006-03-31 | 야마하 가부시키가이샤 | Apparatus for manufacturing semiconductor device |
-
2005
- 2005-09-12 JP JP2005263516A patent/JP2007080923A/en active Pending
-
2006
- 2006-08-18 US US11/505,920 patent/US7407832B2/en not_active Expired - Fee Related
- 2006-08-31 KR KR1020060083545A patent/KR20070030123A/en not_active Withdrawn
- 2006-08-31 CN CNB2006101288539A patent/CN100550330C/en not_active Expired - Fee Related
-
2008
- 2008-07-10 US US12/170,803 patent/US20090011061A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5090890A (en) * | 1989-10-18 | 1992-02-25 | Fuji Photo Film Co., Ltd. | Injection mold having a valve gate system |
US5824350A (en) * | 1994-04-26 | 1998-10-20 | Dme Normalien Gmbh/Neuenstadt | Device for molding or injection-molding polymer compounds, and mold accessories |
US5663104A (en) * | 1994-06-03 | 1997-09-02 | Rohm Co., Ltd. | Method of manufacturing a semiconductor device for power supply use |
US5817208A (en) * | 1995-08-04 | 1998-10-06 | Matsushita Electronics Corporation | Resin sealing die, resin-sealed-type semiconductor device and method of manufacturing the device |
US5874324A (en) * | 1996-03-14 | 1999-02-23 | Towa Corporation | Method of sealing electronic component with molded resin |
US6554245B2 (en) * | 1996-07-16 | 2003-04-29 | Bernard Picco | Marking device for a mould |
US6149420A (en) * | 1997-02-20 | 2000-11-21 | Samsung Electronics Co., Ltd. | Mold with indicia forming changeable core |
US6276913B1 (en) * | 1999-02-05 | 2001-08-21 | Mitsui High-Tech Inc. | Mold for resin sealing |
US6430034B2 (en) * | 2000-04-07 | 2002-08-06 | Nec Corporation | Chip capacitor having external resin packaging |
Also Published As
Publication number | Publication date |
---|---|
CN1933118A (en) | 2007-03-21 |
CN100550330C (en) | 2009-10-14 |
JP2007080923A (en) | 2007-03-29 |
US20070059860A1 (en) | 2007-03-15 |
US7407832B2 (en) | 2008-08-05 |
KR20070030123A (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1315605B1 (en) | Mold and method for encapsulating an electronic device | |
US7145253B1 (en) | Encapsulated sensor device | |
JP2002353403A (en) | Ultra-thin semiconductor package and manufacturing method therefor | |
US7030505B2 (en) | Resin-sealed-type semiconductor device, and production process for producing such semiconductor device | |
US7803641B2 (en) | Mold structure for packaging LED chips and method thereof | |
JPH0730046A (en) | Semiconductor device, lead frame, and manufacture of semiconductor device | |
JP2008004570A (en) | Process and apparatus for manufacturing resin sealed semiconductor device, and resin sealed semiconductor device | |
JP2009088352A (en) | Production method for electronic circuit device, and electronic circuit device | |
US7407832B2 (en) | Method for manufacturing semiconductor package | |
TWI445139B (en) | Chip package structure, chip package mold chase and chip package process | |
CN107527874A (en) | Cavate pressure transducer devices | |
JP4953205B2 (en) | Semiconductor device | |
JP4202632B2 (en) | Resin sealing structure for batch sealing type semiconductor package and manufacturing apparatus thereof | |
US6616436B1 (en) | Apparatus for manufacturing semiconductor packages | |
CN101887871B (en) | Chip packaging structure, chip packaging mold and chip packaging process | |
JP3154684B2 (en) | Semiconductor device manufacturing equipment | |
WO2018029981A1 (en) | Semiconductor sensor and method for manufacturing same | |
JP2001298032A (en) | Semiconductor package and its manufacturing method | |
TW201312717A (en) | Semiconductor device and method of manufacturing same | |
JPS61269338A (en) | Resin-sealed semiconductor devices and molds used for their production | |
US8648452B2 (en) | Resin molded semiconductor device and manufacturing method thereof | |
JP2862585B2 (en) | Resin-sealed semiconductor device and method of manufacturing the same | |
JP2006303413A (en) | Optical sensor package and manufacturing method of semiconductor device | |
JPS60111432A (en) | Metal mold for resin sealing of semiconductor device | |
CN103094132B (en) | It is a kind of to use the manufacture craft for widening mould vacation die cavity optimization secondary plastic package part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OKI SEMICONDUCTOR CO., LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:OKI ELECTRIC INDUSTRY CO., LTD.;REEL/FRAME:022162/0586 Effective date: 20081001 Owner name: OKI SEMICONDUCTOR CO., LTD.,JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:OKI ELECTRIC INDUSTRY CO., LTD.;REEL/FRAME:022162/0586 Effective date: 20081001 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |