US20090004095A1 - Porous Filamentous Nanocarbon And Method Of Forming The Same - Google Patents
Porous Filamentous Nanocarbon And Method Of Forming The Same Download PDFInfo
- Publication number
- US20090004095A1 US20090004095A1 US11/813,079 US81307905A US2009004095A1 US 20090004095 A1 US20090004095 A1 US 20090004095A1 US 81307905 A US81307905 A US 81307905A US 2009004095 A1 US2009004095 A1 US 2009004095A1
- Authority
- US
- United States
- Prior art keywords
- filamentous nanocarbon
- nanocarbon
- filamentous
- mesopore
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910021392 nanocarbon Inorganic materials 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000003054 catalyst Substances 0.000 claims abstract description 54
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 40
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- 239000011148 porous material Substances 0.000 claims abstract description 12
- 238000002309 gasification Methods 0.000 claims abstract description 11
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 239000002121 nanofiber Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims 2
- 239000000376 reactant Substances 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 21
- 238000005553 drilling Methods 0.000 abstract description 17
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 22
- 239000002073 nanorod Substances 0.000 description 22
- 239000007789 gas Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 238000003917 TEM image Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000010453 quartz Substances 0.000 description 9
- 239000002041 carbon nanotube Substances 0.000 description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 description 8
- -1 nickel nitride Chemical class 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000003463 adsorbent Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000001994 activation Methods 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000011943 nanocatalyst Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 229910018054 Ni-Cu Inorganic materials 0.000 description 3
- 229910018481 Ni—Cu Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910002848 Pt–Ru Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 229910001337 iron nitride Inorganic materials 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910017116 Fe—Mo Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 229960002050 hydrofluoric acid Drugs 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
- D01D5/247—Discontinuous hollow structure or microporous structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
- B01J20/205—Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
- B01J21/185—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a porous filamentous nanocarbon where mesopores are formed on an outer periphery thereof, and more particularly, to a porous filamentous nanocarbon in which the mesopores are radially formed from an outer periphery toward a fiber axis thereof along an arrangement direction of a carbon hexagonal plane.
- the carbon nanotube is a hollow carbon nanotube of which the diameter is 80 nm or less.
- a porous carbon material which is typically called an activated carbon, is formed by forming plenty of micropores on the surface of the carbon material.
- Two methods for manufacturing the activated charcoal and the activated carbon fiber are well known to the public.
- One is a method in which a carbon-based material undergoes a heat treatment at a temperature in a range of 300° C. to 1,100° C. for a pre-determined time in an ambient of water vapor, air, carbon dioxide, or the like, to thereby manufacture the activated charcoal and the activated carbon fiber.
- the other one is a method in which a heat treatment is performed over the carbon-based material at a temperature in a range of 300° C. to 1,100° C.
- a salt having an alkali metal such as potassium hydroxide, sodium hydroxide, or the like, and a separate rinsing and a drying process are sequentially performed so as to fabricate the activated charcoal and the activated carbon fiber.
- FIGS. 1 a , 1 b and 1 c are transmission electron microscope (TEM) images illustrating a carbon nanotube, a platelet filamentous nanocarbon, and a herringbone filamentous nanocarbon, respectively.
- the activated charcoal, the carbon nanotube, and the filamentous nanocarbon have large surface area, they may be applied to an adsorbent or a catalyst support. Because they have micropores of which sizes are 2 nm or smaller, they are effective for adsorbing small-size molecules such as a gas detrimental to an environment, a halogenated hydrocarbon contaminating water, or the like. Therefore, they may be applied to a removal of a contaminant caused by the exhaust gas of a factory, a purification of drinking water, and so forth. However, it is difficult to apply them to an adsorbent for a polymer, or a catalyst support for converting polymer material such as petroleum.
- the activated charcoal, the filamentous nanocarbon, etc may be applied to these cases, it is necessary to manufacture an absorbent having mesopores of which sizes are very uniform with low cost, wherein the size of the mesopore is in a range of 2 nm to 100 nm.
- a material that contains a removable moiety, of some sizes is polymerized so as to incorporate the moiety into a solid product.
- the moiety is removed, leaving a porous solid having pores.
- the organic material is burnt out so that there occurs a fine pore in the inorganic material, of which size is correspondent to that of the organic material.
- the resultant porous solid can have a very narrow pore size distribution in the mesopore range, however, the preparation of such materials is very expensive and time consuming.
- MCM-41 and M41-S disclosed in U.S. Pat. No. 5,108,725 and U.S. Pat. No. 5,378,440.
- this is electrically an insulator and is very unstable in alkali solution, it is not adaptive for applying it to a fuel cell, a battery, an electrolysis battery, capacitor, etc.
- Another technology is related to a synthesis of a carbon material selectively having mesopores therein.
- a polymer as a carbon source is injected into a template such as zeolite, alumina, silica, and so forth, having mesopores therein.
- a pyrolytic carbon is chemically deposited on the template from hydrocarbon gas. Thereafter, the template is removed using fluoric acid or the like.
- this method has also disadvantages that its fabrication cost is too high, and productivity is too poor in consideration of fabrication period and production amount.
- the present invention provides a porous filamentous nanocarbon including a filamentous nanocarbon having mesopores of which porosity is high and each pore size is uniform, in which the size of the mesopore is in a range of 20 nm to 30 nm, and a method for manufacturing the same.
- the present invention also provides a porous filamentous nanocarbon for an absorbent for separating a polymer such as protein or the like, a chromatography material, an electrode material for a fuel cell, electrochemical reaction, and so forth, and a method for manufacturing the same.
- the present invention further provides a porous filamentous nanocarbon for removing inconvenience for treatment thereof, by forming a solid with mesopores in a filamentous shape of which the diameter is several nanometers, not forming the solid with mesopores in a particulate shape, and a method for manufacturing the same.
- Embodiments of the present invention provide porous filamentous nanocarbons having a mesopore, wherein the mesopore is a tunnel-like pore which is radially formed from an outer periphery of the filamentous nanocarbon toward the central axis of the filamentous nanocarbon.
- the filamentous nanocarbon is a nanocarbon with a platelet structure in which carbon hexagonal planes are vertically stacked with respect to the central axis.
- the filamentous hexagonal plane is a nanofiber with a Herringbone structure which is formed in the V-shape as being inclined at an angle in a range of 20 to 80° with respect to the central axis.
- the mesopore is formed along the arrangement direction of the carbon hexagonal planes.
- the filamentous nanocarbon has the diameter in a range of 2 to 100 nm, e.g., preferably in a range of 10 to 200 nm, and an aspect ratio of 4 or higher, e.g., preferably 10 or higher.
- the mesopore has the size in a range of 2 to 100 nm, e.g., preferably in a range of 2 to 30 nm, and the porosity of at least 20% or greater, e.g., preferably 50% or greater.
- methods for forming a porous filamentous nanocarbon including radially forming a tunnel-like mesopore from an outer periphery toward the central axis of a filamentous nano carbon by attaching a material having a metal catalyst on an outer periphery of the filamentous nanocarbon and removing a carbon hexagonal plane through gasification in virtue of the metal catalyst.
- the mesopore is formed according as a predetermined portion of the filamentous nanocarbon on which the metal catalyst is attached selectively reacts with the metal catalyst. Accordingly, the predetermined portion of the carbon hexagonal plane is removed, and the mesopore is formed along the arrangement direction of the carbon hexagonal plane. Because of the selective reaction, it is possible to control the size of the tunnel-like mesopore and the porosity according to the size of the metal catalyst attached on the filamentous nanocarbon or nano-drilling conditions.
- the porous filamentous nanocarbon may be applied to the separation/absorption of protein, petroleum, and so forth, and an electrode for a fuel cell.
- the present invention it is possible to obtain a porous filamentous nanocarbon having mesopores of which porosity is high and each pore size is uniform, in which the size of the mesopore is in a range of 20 nm to 30 nm.
- This porous filamentous nanocarbon may be variously applied to an adsorbent, a chromatography material, a catalyst support, etc. Meanwhile, it is possible to more enhance the conductivity between particles in virtue of a filamentous shape when applying the inventive nanocarbon to electrochemical applications requiring conductivity.
- the present invention provides an advantageous merit of removing inconvenience for treatment thereof, e.g., filtering, because a solid with mesopores has a filamentous shape of which the diameter is several nanometers instead of a particulate shape.
- FIG. 1 a is a transmission electron microscope (TEM) images showing a filamentous nanocarbon having a tubular structure
- FIG. 1 b is a TEM showing photographs a filamentous nanocarbon having a platelet structure
- FIG. 1 c is a TEM images showing a filamentous nanocarbon having a Herringbone structure
- FIG. 2 is a schematic view and TEM images illustrating a filamentous nanocarbon with a tubular structure according to the present invention
- FIG. 3 is a schematic view and TEM images illustrating a filamentous nanocarbon with a platelet structure according to the present invention
- FIG. 4 is a schematic view and TEM images illustrating a filamentous nanocarbon with a Herringbone structure according to the present invention
- FIG. 5 is a schematic view and TEM images illustrating a filamentous nanocarbon in which mesopores are formed by nano-drilling according to the present invention
- FIGS. 6 to 9 are TEM images illustrating a filamentous nanocarbon in which mesopores are formed by nano-drilling process according to the present invention.
- FIG. 10 is a graph illustrating electrochemical activity in comparison of the filamentous nanocarbon according to the present invention with the prior art.
- FIG. 1 are high resolution transmission electron microscope (TEM) images showing conventional filamentous nanocarbons having three representative structures such as a tubular structure, a platelet structure, and a Herringbone structure, respectively, and also illustrates typical 2-dimensional models corresponding to the respective structures.
- TEM transmission electron microscope
- FIGS. 2 to 4 illustrate that the filamentous nanocarbons with the three structures are formed by finely stacking nano-rods, which are structural units. That is, a tunnel-like mesopore according to the present invention is formed based on a new structure of a filamentous nanocarbon configured with the stacked carbon nano-rods.
- the nano-rod which is a basic unit constituting the filamentous nanocarbon, has a structure where fullerene tubes are overlapped along the same axis and one end thereof is closed, wherein the fullerene tube cluster is configured as a cylindrical shape such that carbon hexagonal planes are overlapped with each other (refer to FIG. 3 a ).
- the nano-rod is configured as a hexagonal prism having 4 ⁇ 6 number of coaxes, of which each diameter is about 2.5 nm and each size is in a range of 20 nm to 80 nm. Detail descriptions for the nano-rod are disclosed more fully in the thesis of S.-H. Yoon et al. (S.-H. Yoon, S. Lim, S.-h. Hong, I.
- nano-sized mesopores are formed on an outer periphery of the filamentous nanocarbon using a nano-drilling process. If a nano catalyst is attached on the outer periphery of the filamentous nanocarbon, and then a heat treatment is performed over the filamentous nanocarbon on which the nano catalyst is attached in hydrogen or oxygen ambient, there occurs a hydrogenation or an oxidation gasification reaction so that there is formed a tunnel penetrating from the outer surface into an interior, of which a size is corresponding to that of the nano catalyst.
- a drilling pattern formed by the inventive method is not random in comparison with the prior art, but is uniformly formed along the arrangement direction of the carbon hexagonal plane.
- the nano catalyst under hydrogenation or oxidation ambient removes the filamentous nanocarbon from a portion on which the nano catalyst is attached along the stacked structure of the nano-rods, to thereby form the nano tunnels by drilling the filamentous nanocarbon.
- FIG. 5 it is shown that the predetermined portion of the nano-rod is removed and thus the tunnel is formed.
- This reaction is caused by gasification of the metal with respect to carbon due to hydrogen, oxygen, or the like.
- the reason the mesopore is formed in a shape of the tunnel is that the decomposition of the carbon plane due to the gasification occurs along the alignment direction of the nano-rod units, which are formed as a hexagonal prism of the carbon hexagonal plane, because the surface forming sidewalls of the carbon hexagonal plane is more reactive than the base surface. Accordingly, the nano-drilling reaction progresses along a major axis of the nano-rod from the outer periphery of the filamentous nanocarbon to the center of the fiber. This is possible by preferentially gasifying and removing the nano-rods where the catalyst is attached on an end thereof in hydrogen or oxygen ambient.
- nano tunnel of which width is 2 ⁇ 30 nm greater than the diameter of the nano-rod. Therefore, there are formed the tunnel shaped mesopores radially along the alignment axis of the nano-rods from the outer periphery toward the center of the fiber.
- the metal catalyst for nano-drilling i.e., gasification, may employ an element in the groups V, VI, VII, and
- the catalyst is iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), vanadium (V), chromium (Cr), platinum (Pt), palladium (Pd), ruthenium (Ru), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and an alloy thereof.
- the alloy catalyst employ Ni—Cu, Fe—Ni, Fe—Pt, Fe—Mo, Ni—Mo, Co—Mo, Pt—Ru, etc.
- the size of the catalyst be in a range of 2 nm to 50 nm. In case of too small, there occurs micropores. On the contrary, in case of too large, a great amount of the filamentous nanocarbon may be removed.
- the reaction gas for activation employs hydrogen gas or oxygen gas.
- carbon dioxide (CO 2 ) gas, sulfur dioxide (SO 2 ) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, and water may be used as the reaction gas.
- the reaction conditions are not appropriately controlled in the activation process, the graphite layer of the nano-rod may be melt or be inserted into an intermediate so that it is very important to adjust the process temperature.
- Fe/Ni alloy used as a metal catalyst is fabricated as a following method.
- a nickel nitride and an iron nitride are dissolved in distilled water at room temperature.
- ammonium bicarbonate is added and stirred.
- Precipitate produced from this solution is washed with distilled water and ethanol, and then is dried in vacuum state.
- the dried precipitate is fired at 400° C. in dry air ambient so as to fabricate Fe—Ni oxide.
- the Fe—Ni oxide is reduced at 400° C. in H 2 /He ambient.
- an aftertreatment is processed again at room temperature in O 2 /He ambient to thereby obtain Fe—Ni alloy catalyst.
- the catalyst fabricated by this method is put into a quartz tube in a reaction furnace. Afterwards, a heat treatment is performed at 625° C. for 2 hours in H 2 /He ambient. Thereafter, a heat treatment is performed at 625° C. for 2 hours while inflowing mixture gas of CO/H 2 , to thereby obtain a carbon fiber.
- the fabricated carbon fiber has such a structure that a carbon hexagonal plane is parallel with a fiber axis and a hollow exists therein.
- FIG. 2 The outer diameter of the fiber is in a range of 5 to 35 nm, and an aspect ratio is 30 or higher.
- FIG. 2 a is a TEM image
- FIG. 2 b is an illustrative view setting forth a stacked structure of nano-rods.
- FIGS. 2C and 2D are scanning tunneling microscope (STM) images of the surface of the fiber. It is possible to observe that the nano-rods are interconnected and stacked from the drawings.
- a method for manufacturing a filamentous nanocarbon with a platelet structure will be illustrated.
- the Fe catalyst is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 600° C. for 2 hours while inflowing mixture gas of CO/H
- the fabricated carbon fiber has the platelet structure where the carbon hexagonal plane is stacked perpendicular to the fiber axis ( FIG. 3 ).
- FIGS. 3 a and 3 b are TEM images and FIG. 3 c is an STM image of the surface of the nanocarbon.
- FIG. 3 d is an illustrative view setting forth a stacked structure of nano-rods. It is possible to observe that the nano-rod is stacked perpendicular to the fiber axis from the drawings.
- a method for manufacturing a filamentous nanocarbon with a Herringbone structure will be illustrated.
- the Ni—Cu alloy catalyst is put into the quartz tube in the reaction furnace.
- a heat treatment is performed at 580° C. for 2 hours in H 2 /He ambient while inflowing mixture gas of ethylene/hydrogen so as to obtain a carbon fiber.
- the fabricated carbon fiber has such a Herringbone structure that the carbon hexagonal plane is formed in the V-shape with respect to the fiber axis at an angle of 20 ⁇ 80° ( FIG. 4 ).
- FIGS. 4 a and 4 b are TEM images and FIG. 4 c is an STM image of the surface of the fiber.
- FIG. 4 d is an illustrative view setting forth a stacked structure of nano-rods. It is possible to observe that the nano-rod is stacked as being inclined with respect to the fiber axis at a predetermined angle from the drawings.
- the nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in nickel nitride solution.
- the filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached.
- the filamentous nano-carbon is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 2 hours in mixture gas of H 2 /He ambient.
- the fabricated porous filamentous nanocarbon becomes a very porous nanofiber in which the nano tunnels are formed.
- the nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon.
- the nano tunnel has a diameter in a range of 5 to 30 nm.
- the specific surface area and a volume of the mesopore are measured to be 352 /g and 0.42 /g, respectively, using 2 NB runauer-Emitter-Teller (BET) method.
- the nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in nickel nitride solution.
- the filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached.
- the filamentous nano-carbon on which the nickel catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 350° C. for 3 hours in O 2 ambient.
- the fabricated porous filamentous nanocarbon becomes a very porous nanofiber in which the nano tunnels are formed.
- the nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon.
- the nano tunnel has a diameter in a range of 2 to 10 nm.
- the average size of the mesopore is smaller than that of the first embodiment, the mesopores are uniformly distributed in comparison with the first embodiment.
- the specific surface area and a volume of the mesopore are measured to be 298 /g and 0.39 /g, respectively, using 2 N BET method.
- Iron particles used for a nano-drill catalyst are attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in iron nitride solution.
- the filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the iron catalyst is attached.
- the filamentous nano-carbon on which the iron catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 850° C. for 3 hours in mixture gas of He/H 2 ambient.
- the fabricated porous filamentous nanocarbon becomes a very porous nanofiber in which the nano tunnels are formed.
- the nano tunnel is formed along the arrangement direction of the carbon hexagonal plane.
- a carbon structure around the mesopore is slightly changed so as to fabricate a porous material having good graphitizability around the mesopore.
- the specific surface area and a volume of the mesopore are measured to be 254 /g and 0.33 /g, respectively, using 2 NBET method.
- the nickel particle used for a nano-drill catalyst is attached on the outer periphery of the platelet filamentous nanocarbon by dipping and dispersing the platelet filamentous nanocarbon in nickel nitride solution.
- the filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached.
- the filamentous nano-carbon on which the nickel catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H 2 /He ambient.
- the fabricated porous filamentous nanocarbon becomes a very porous nanofiber in which the nano tunnels are formed.
- the nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon.
- the nano tunnel has a diameter in a range of 6 to 32 nm.
- the specific surface area and a volume of the pore are measured to be 154 /g and 0.24 /g, respectively, using 2 NBET method.
- a conventional alkali cactivation method is applied to the Herringbone filamentous nanocarbon.
- the nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the filamentous nanocarbon with butte structure in nickel nitride solution.
- the filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached.
- the filamentous nano-carbon on which the nickel catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H 2 /He ambient.
- the filamentous nanocarbon of the second comparative example shows a weight change before and after the reaction is less than 5%. This is well observed in the TEM image that the micropores are not formed uniformly. The specific surface area and a volume of the pore are measured to be 122 /g and 0.21 /g, respectively, using 2 NBET method. Thus, it is known that the inventive nano-drilling method is not effective for a tubular filamentous nanocarbon, i.e., the carbon nanotube.
- the fabrication of the tunnel-like mesopores according to the nano-drilling of the present invention is performed such that the catalyst attached on the exposed end portion of the nano-rod deems to selectively gasify the nano-rods therearound.
- the nickel particle used for a nano-drill catalyst is attached on a carbon black by dipping and dispersing the carbon black in nickel nitride solution.
- the carbon black is vacuum dried at 150° C. to fabricate the carbon black on which the nickel catalyst is attached.
- the carbon black on which the nickel catalyst is attached on is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H 2 /He ambient.
- the porous filamentous nanocarbon can be applied to an adsorbent and a chromatography. Since the mesopore of the porous filamentous nanocarbon according to the present invention has a maximum pathway of about 200 nm long, it takes about 2 seconds for molecules to diffuse from one end of the mesopore to the other end. In this manner, the diffusion time is very short so that it is very effective for the inventive nanocarbon to be applied to the adsorbent and the chromatography. In particular, in case of the chromatography, it is very adaptively used for separating biologically important molecules such as enzyme, steroid, alkaloid, hormone, protein, and so forth.
- the porous filamentous nanocarbon can be applied to a catalyst support. Due to the short diffusion pathway as described above, it may be importantly applied to the conversion of the polymer material, e.g., synthesis of steroid and enzyme, refinement of petroleum, or the like.
- the porous filamentous nanocarbon can be applied to an electrode for electrochemical reaction.
- the filamentous nanocarbon according to the present invention is dipped into the catalyst metal solution and is coated with the catalyst metal, to thereby form an electrode on the surface of the porous filamentous nanocarbon. Since the material so fabricated is resistant to alkali or acid, it is possible to apply the inventive nanocarbon to electrochemical reaction requiring severe environments.
- the coated Pt-Ru catalyst may be used as a catalyst for oxidizing methanol in methanol fuel cell.
- FIG. 10 is a cyclic voltammogram illustrating methanol oxidation using Pt—Ru catalyst electrode and Ag/AgCl electrode, which shows an activity measured in the preset invention about two times greater than the prior art.
- the porous filamentous nanocarbon of the present invention may be variously applied to an adsorbent, a chromatography material, a catalyst support, etc. That is, it is possible to apply the porous filamentous nanocarbon to the separation/absorption of protein, petroleum, and so forth, and an electrode for a fuel cell.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electrochemistry (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
- The present invention relates to a porous filamentous nanocarbon where mesopores are formed on an outer periphery thereof, and more particularly, to a porous filamentous nanocarbon in which the mesopores are radially formed from an outer periphery toward a fiber axis thereof along an arrangement direction of a carbon hexagonal plane.
- As researches for porous materials with porosity are actively conducted recently, methods for manufacturing them are well known to the public. In particular, with regard to a method for manufacturing an activated charcoal and an activated carbon fiber and a method for manufacturing a fibrous nanocarbon and a carbon nanotube using a metal catalyst, a number of patents and theses are widely known. Herein, the carbon nanotube is a hollow carbon nanotube of which the diameter is 80 nm or less.
- According to such a general activation method, a porous carbon material, which is typically called an activated carbon, is formed by forming plenty of micropores on the surface of the carbon material.
- Two methods for manufacturing the activated charcoal and the activated carbon fiber are well known to the public. One is a method in which a carbon-based material undergoes a heat treatment at a temperature in a range of 300° C. to 1,100° C. for a pre-determined time in an ambient of water vapor, air, carbon dioxide, or the like, to thereby manufacture the activated charcoal and the activated carbon fiber. The other one is a method in which a heat treatment is performed over the carbon-based material at a temperature in a range of 300° C. to 1,100° C. for a predetermined time in a salt having an alkali metal such as potassium hydroxide, sodium hydroxide, or the like, and a separate rinsing and a drying process are sequentially performed so as to fabricate the activated charcoal and the activated carbon fiber.
- In the International Patent Publication No. WO8603455, filed on 1986 by Hyperion Catalytic International Inc. in U.S.A., there has been announced a technology for a carbon nanotube with a hollow tubular structure of which a fiber diameter is in a range of 3.5 nm to 70 nm, where a carbon hexagonal plane is concentrically arranged along a fiber axis. The carbon nanotube is mainly classified into a single wall carbon nanotube (SWNT) in which a carbon hexagonal plane is configured with one sheet of a single wall, and a multi wall carbon nanotube (MWNT) configured with multi-walls. It becomes generally known that the fiber diameter of the SWNT ranges from 0.4 nm to 3.5 nm, and the fiber diameter of the MWNT ranges from 2.5 nm to 50 nm.
-
- long or greater by thermally decomposing carbon monoxide and hydrocarbon or the like at 540-800° C. using a catalyst such as iron oxide, iron, nickel, etc. In addition, Baker and Rodriguez et al. have announced a method for manufacturing a carbon nanofiber of which surface area is in a range of 50 /g to 800 /g, by thermally decomposing hydrocarbon at 500˜700° C. using a catalyst such as iron, nickel, cobalt, etc. Furthermore, Boehm et al. and Murayama and Rodriguez et al. have announced a method for manufacturing a filamentous nanocarbon by thermally decomposing hydrocarbon using a transition metal such as iron, cobalt, nickel, or alloy catalyst thereof (Bohem, Carbon, 11, 583 (1973); H. Murayama, T. Maeda, Nature, 245, 791; Rodriguez, N. M., 1993, J.Master.Res. 8(3233)).
- Among various carbon nanofibers, there are a carbon nanofiber with a platelet structure in which the carbon hexagonal plane is arranged perpendicular to the fiber axis, and a carbon nanofiber with a Herringbone structure in which the carbon hexagonal plane is inclined with respect to the fiber axis at 20˜80° (Rodriguez, N. M., 1993, J.Master.Res. 8 (3233)). They do not have hollows therein, which is a significant difference from the nanotube.
FIGS. 1 a, 1 b and 1 c are transmission electron microscope (TEM) images illustrating a carbon nanotube, a platelet filamentous nanocarbon, and a herringbone filamentous nanocarbon, respectively. Since all the activated charcoal, the carbon nanotube, and the filamentous nanocarbon have large surface area, they may be applied to an adsorbent or a catalyst support. Because they have micropores of which sizes are 2 nm or smaller, they are effective for adsorbing small-size molecules such as a gas detrimental to an environment, a halogenated hydrocarbon contaminating water, or the like. Therefore, they may be applied to a removal of a contaminant caused by the exhaust gas of a factory, a purification of drinking water, and so forth. However, it is difficult to apply them to an adsorbent for a polymer, or a catalyst support for converting polymer material such as petroleum. In order that the activated charcoal, the filamentous nanocarbon, etc, may be applied to these cases, it is necessary to manufacture an absorbent having mesopores of which sizes are very uniform with low cost, wherein the size of the mesopore is in a range of 2 nm to 100 nm. - Several technologies for forming mesopores have been well known to the public.
- According to one technology, a material that contains a removable moiety, of some sizes, is polymerized so as to incorporate the moiety into a solid product. The moiety is removed, leaving a porous solid having pores. For example, if firing a polymer mixed with an organic material and an inorganic material, the organic material is burnt out so that there occurs a fine pore in the inorganic material, of which size is correspondent to that of the organic material. The resultant porous solid can have a very narrow pore size distribution in the mesopore range, however, the preparation of such materials is very expensive and time consuming.
- Recently, a research result for synthesizing a material having mesopores using silica and silica alumina has been published, which is referred to as MCM-41 and M41-S disclosed in U.S. Pat. No. 5,108,725 and U.S. Pat. No. 5,378,440. However, because this is electrically an insulator and is very unstable in alkali solution, it is not adaptive for applying it to a fuel cell, a battery, an electrolysis battery, capacitor, etc.
- Another technology is related to a synthesis of a carbon material selectively having mesopores therein. In detail, a polymer as a carbon source is injected into a template such as zeolite, alumina, silica, and so forth, having mesopores therein. Alternatively, a pyrolytic carbon is chemically deposited on the template from hydrocarbon gas. Thereafter, the template is removed using fluoric acid or the like. However, this method has also disadvantages that its fabrication cost is too high, and productivity is too poor in consideration of fabrication period and production amount.
- Meanwhile, since most of the solid with the mesopores fabricated by the above methods has a particulate shape, it has difficulties in filtering despite the advantage of having high specific surface area.
- The present invention provides a porous filamentous nanocarbon including a filamentous nanocarbon having mesopores of which porosity is high and each pore size is uniform, in which the size of the mesopore is in a range of 20 nm to 30 nm, and a method for manufacturing the same.
- The present invention also provides a porous filamentous nanocarbon for an absorbent for separating a polymer such as protein or the like, a chromatography material, an electrode material for a fuel cell, electrochemical reaction, and so forth, and a method for manufacturing the same.
- The present invention further provides a porous filamentous nanocarbon for removing inconvenience for treatment thereof, by forming a solid with mesopores in a filamentous shape of which the diameter is several nanometers, not forming the solid with mesopores in a particulate shape, and a method for manufacturing the same.
- Embodiments of the present invention provide porous filamentous nanocarbons having a mesopore, wherein the mesopore is a tunnel-like pore which is radially formed from an outer periphery of the filamentous nanocarbon toward the central axis of the filamentous nanocarbon.
- In some embodiment, the filamentous nanocarbon is a nanocarbon with a platelet structure in which carbon hexagonal planes are vertically stacked with respect to the central axis. Alternatively, the filamentous hexagonal plane is a nanofiber with a Herringbone structure which is formed in the V-shape as being inclined at an angle in a range of 20 to 80° with respect to the central axis. Herein, the mesopore is formed along the arrangement direction of the carbon hexagonal planes.
- In other embodiments, the filamentous nanocarbon has the diameter in a range of 2 to 100 nm, e.g., preferably in a range of 10 to 200 nm, and an aspect ratio of 4 or higher, e.g., preferably 10 or higher. The mesopore has the size in a range of 2 to 100 nm, e.g., preferably in a range of 2 to 30 nm, and the porosity of at least 20% or greater, e.g., preferably 50% or greater.
- In further embodiments of the present invention, there are provided methods for forming a porous filamentous nanocarbon, the method including radially forming a tunnel-like mesopore from an outer periphery toward the central axis of a filamentous nano carbon by attaching a material having a metal catalyst on an outer periphery of the filamentous nanocarbon and removing a carbon hexagonal plane through gasification in virtue of the metal catalyst.
- In further other embodiments, the mesopore is formed according as a predetermined portion of the filamentous nanocarbon on which the metal catalyst is attached selectively reacts with the metal catalyst. Accordingly, the predetermined portion of the carbon hexagonal plane is removed, and the mesopore is formed along the arrangement direction of the carbon hexagonal plane. Because of the selective reaction, it is possible to control the size of the tunnel-like mesopore and the porosity according to the size of the metal catalyst attached on the filamentous nanocarbon or nano-drilling conditions.
- Thus, since the nano-sized mesopore of which the diameter is in a range of 2 nm to 30 nm is formed on the outer periphery of the filamentous nanocarbon, the porous filamentous nanocarbon may be applied to the separation/absorption of protein, petroleum, and so forth, and an electrode for a fuel cell.
- According to the present invention, it is possible to obtain a porous filamentous nanocarbon having mesopores of which porosity is high and each pore size is uniform, in which the size of the mesopore is in a range of 20 nm to 30 nm. This porous filamentous nanocarbon may be variously applied to an adsorbent, a chromatography material, a catalyst support, etc. Meanwhile, it is possible to more enhance the conductivity between particles in virtue of a filamentous shape when applying the inventive nanocarbon to electrochemical applications requiring conductivity. In addition, the present invention provides an advantageous merit of removing inconvenience for treatment thereof, e.g., filtering, because a solid with mesopores has a filamentous shape of which the diameter is several nanometers instead of a particulate shape.
-
FIG. 1 a is a transmission electron microscope (TEM) images showing a filamentous nanocarbon having a tubular structure; -
FIG. 1 b is a TEM showing photographs a filamentous nanocarbon having a platelet structure; -
FIG. 1 c is a TEM images showing a filamentous nanocarbon having a Herringbone structure; -
FIG. 2 is a schematic view and TEM images illustrating a filamentous nanocarbon with a tubular structure according to the present invention; -
FIG. 3 is a schematic view and TEM images illustrating a filamentous nanocarbon with a platelet structure according to the present invention; -
FIG. 4 is a schematic view and TEM images illustrating a filamentous nanocarbon with a Herringbone structure according to the present invention; -
FIG. 5 is a schematic view and TEM images illustrating a filamentous nanocarbon in which mesopores are formed by nano-drilling according to the present invention; -
FIGS. 6 to 9 are TEM images illustrating a filamentous nanocarbon in which mesopores are formed by nano-drilling process according to the present invention; and -
FIG. 10 is a graph illustrating electrochemical activity in comparison of the filamentous nanocarbon according to the present invention with the prior art. -
FIG. 1 are high resolution transmission electron microscope (TEM) images showing conventional filamentous nanocarbons having three representative structures such as a tubular structure, a platelet structure, and a Herringbone structure, respectively, and also illustrates typical 2-dimensional models corresponding to the respective structures. -
FIGS. 2 to 4 illustrate that the filamentous nanocarbons with the three structures are formed by finely stacking nano-rods, which are structural units. That is, a tunnel-like mesopore according to the present invention is formed based on a new structure of a filamentous nanocarbon configured with the stacked carbon nano-rods. - The nano-rod, which is a basic unit constituting the filamentous nanocarbon, has a structure where fullerene tubes are overlapped along the same axis and one end thereof is closed, wherein the fullerene tube cluster is configured as a cylindrical shape such that carbon hexagonal planes are overlapped with each other (refer to
FIG. 3 a). In general, the nano-rod is configured as a hexagonal prism having 4˜6 number of coaxes, of which each diameter is about 2.5 nm and each size is in a range of 20 nm to 80 nm. Detail descriptions for the nano-rod are disclosed more fully in the thesis of S.-H. Yoon et al. (S.-H. Yoon, S. Lim, S.-h. Hong, I. Mochida, B. An, K. Yokogawa. 2004, Carbon, 42(15), 3087-3095; B. An, K. Yokogawa, S. Lim, S.-H. Yoon, I. Mochida. In: Carbon 2004 International Conference, Brown University: RI (USA), 2004). - In the present invention, nano-sized mesopores are formed on an outer periphery of the filamentous nanocarbon using a nano-drilling process. If a nano catalyst is attached on the outer periphery of the filamentous nanocarbon, and then a heat treatment is performed over the filamentous nanocarbon on which the nano catalyst is attached in hydrogen or oxygen ambient, there occurs a hydrogenation or an oxidation gasification reaction so that there is formed a tunnel penetrating from the outer surface into an interior, of which a size is corresponding to that of the nano catalyst. A drilling pattern formed by the inventive method is not random in comparison with the prior art, but is uniformly formed along the arrangement direction of the carbon hexagonal plane. Accordingly, the nano catalyst under hydrogenation or oxidation ambient removes the filamentous nanocarbon from a portion on which the nano catalyst is attached along the stacked structure of the nano-rods, to thereby form the nano tunnels by drilling the filamentous nanocarbon. Referring to
FIG. 5 , it is shown that the predetermined portion of the nano-rod is removed and thus the tunnel is formed. - This reaction is caused by gasification of the metal with respect to carbon due to hydrogen, oxygen, or the like. The reason the mesopore is formed in a shape of the tunnel is that the decomposition of the carbon plane due to the gasification occurs along the alignment direction of the nano-rod units, which are formed as a hexagonal prism of the carbon hexagonal plane, because the surface forming sidewalls of the carbon hexagonal plane is more reactive than the base surface. Accordingly, the nano-drilling reaction progresses along a major axis of the nano-rod from the outer periphery of the filamentous nanocarbon to the center of the fiber. This is possible by preferentially gasifying and removing the nano-rods where the catalyst is attached on an end thereof in hydrogen or oxygen ambient. At this time, since one or more nano-rods may react with reaction gas by means of the catalyst, there is formed the nano tunnel of which width is 2˜30 nm greater than the diameter of the nano-rod. Therefore, there are formed the tunnel shaped mesopores radially along the alignment axis of the nano-rods from the outer periphery toward the center of the fiber.
-
- of the periodic table. Preferably, the catalyst is iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), vanadium (V), chromium (Cr), platinum (Pt), palladium (Pd), ruthenium (Ru), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and an alloy thereof. It is preferable that the alloy catalyst employ Ni—Cu, Fe—Ni, Fe—Pt, Fe—Mo, Ni—Mo, Co—Mo, Pt—Ru, etc. It is preferable that the size of the catalyst be in a range of 2 nm to 50 nm. In case of too small, there occurs micropores. On the contrary, in case of too large, a great amount of the filamentous nanocarbon may be removed.
- It is preferable that the reaction gas for activation employs hydrogen gas or oxygen gas. Furthermore, carbon dioxide (CO2) gas, sulfur dioxide (SO2) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO2) gas, and water may be used as the reaction gas. If the reaction conditions are not appropriately controlled in the activation process, the graphite layer of the nano-rod may be melt or be inserted into an intermediate so that it is very important to adjust the process temperature. For instance, it is preferable to perform the activation process at 400˜1,200° C., more preferably at 500˜900° C., in case of hydrogenation. In addition, it is preferable to perform the activation process at 100˜500° C., more preferably at 200˜400° C., in case of oxidation.
- Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. However, the present invention is not limited to the embodiments illustrated herein after, and the embodiments herein are rather introduced to provide easy and complete understanding of the scope and spirit of the present invention.
- To begin with, a method for manufacturing a filamentous nanocarbon used in the present invention will be set forth in brief herebelow.
- First, a method for manufacturing a filamentous nanocarbon with a tubular structure will be illustrated. First of all, Fe/Ni alloy used as a metal catalyst is fabricated as a following method. A nickel nitride and an iron nitride are dissolved in distilled water at room temperature. Next, ammonium bicarbonate is added and stirred. Precipitate produced from this solution is washed with distilled water and ethanol, and then is dried in vacuum state. The dried precipitate is fired at 400° C. in dry air ambient so as to fabricate Fe—Ni oxide. The Fe—Ni oxide is reduced at 400° C. in H2/He ambient. Thereafter, an aftertreatment is processed again at room temperature in O2/He ambient to thereby obtain Fe—Ni alloy catalyst. The catalyst fabricated by this method is put into a quartz tube in a reaction furnace. Afterwards, a heat treatment is performed at 625° C. for 2 hours in H2/He ambient. Thereafter, a heat treatment is performed at 625° C. for 2 hours while inflowing mixture gas of CO/H2, to thereby obtain a carbon fiber.
- The fabricated carbon fiber has such a structure that a carbon hexagonal plane is parallel with a fiber axis and a hollow exists therein. (
FIG. 2 ). The outer diameter of the fiber is in a range of 5 to 35 nm, and an aspect ratio is 30 or higher.FIG. 2 a is a TEM image, andFIG. 2 b is an illustrative view setting forth a stacked structure of nano-rods.FIGS. 2C and 2D are scanning tunneling microscope (STM) images of the surface of the fiber. It is possible to observe that the nano-rods are interconnected and stacked from the drawings. - Second, a method for manufacturing a filamentous nanocarbon with a platelet structure will be illustrated. After fabricating an Fe catalyst from iron nitride using the aforementioned method, the Fe catalyst is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 600° C. for 2 hours while inflowing mixture gas of CO/H The fabricated carbon fiber has the platelet structure where the carbon hexagonal plane is stacked perpendicular to the fiber axis (
FIG. 3 ). - The outer diameter of the fiber is in a range of 90 nm to 300 nm, and an aspect ratio is 30 or higher.
FIGS. 3 a and 3 b are TEM images andFIG. 3 c is an STM image of the surface of the nanocarbon.FIG. 3 d is an illustrative view setting forth a stacked structure of nano-rods. It is possible to observe that the nano-rod is stacked perpendicular to the fiber axis from the drawings. - Third, a method for manufacturing a filamentous nanocarbon with a Herringbone structure will be illustrated. After fabricating a Ni—Cu alloy catalyst from nickel nitride and copper nitride using the aforementioned method, the Ni—Cu alloy catalyst is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 580° C. for 2 hours in H2/He ambient while inflowing mixture gas of ethylene/hydrogen so as to obtain a carbon fiber. The fabricated carbon fiber has such a Herringbone structure that the carbon hexagonal plane is formed in the V-shape with respect to the fiber axis at an angle of 20˜80° (
FIG. 4 ). The outer diameter of the fiber is in a range of 80 nm to 350 nm, and an aspect ratio is 30 or higher.FIGS. 4 a and 4 b are TEM images andFIG. 4 c is an STM image of the surface of the fiber.FIG. 4 d is an illustrative view setting forth a stacked structure of nano-rods. It is possible to observe that the nano-rod is stacked as being inclined with respect to the fiber axis at a predetermined angle from the drawings. - Next, there will be illustrated a method for manufacturing a porous filamentous nanocarbon using a nano-drilling process of the present invention herebelow.
- The nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in nickel nitride solution. The filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached. The filamentous nano-carbon is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 2 hours in mixture gas of H2/He ambient.
- The fabricated porous filamentous nanocarbon, as illustrated in a TEM image in
FIG. 6 , becomes a very porous nanofiber in which the nano tunnels are formed. The nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon. The nano tunnel has a diameter in a range of 5 to 30 nm. The specific surface area and a volume of the mesopore are measured to be 352 /g and 0.42 /g, respectively, using 2NB runauer-Emitter-Teller (BET) method. - The nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in nickel nitride solution. The filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached. The filamentous nano-carbon on which the nickel catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 350° C. for 3 hours in O2 ambient.
- The fabricated porous filamentous nanocarbon, as illustrated in a TEM image in
FIG. 7 , becomes a very porous nanofiber in which the nano tunnels are formed. The nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon. The nano tunnel has a diameter in a range of 2 to 10 nm. Herein, although the average size of the mesopore is smaller than that of the first embodiment, the mesopores are uniformly distributed in comparison with the first embodiment. The specific surface area and a volume of the mesopore are measured to be 298 /g and 0.39 /g, respectively, using 2N BET method. - Iron particles used for a nano-drill catalyst are attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the Herringbone filamentous nanocarbon in iron nitride solution. The filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the iron catalyst is attached. The filamentous nano-carbon on which the iron catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 850° C. for 3 hours in mixture gas of He/H2 ambient.
- The fabricated porous filamentous nanocarbon, as illustrated in a TEM image in
FIG. 8 , becomes a very porous nanofiber in which the nano tunnels are formed. The nano tunnel is formed along the arrangement direction of the carbon hexagonal plane. However, since a graphitization partially occurs at the same time with the gasification due to the catalyst unlike the first and second embodiments, a carbon structure around the mesopore is slightly changed so as to fabricate a porous material having good graphitizability around the mesopore. The specific surface area and a volume of the mesopore are measured to be 254 /g and 0.33 /g, respectively, using 2NBET method. - The nickel particle used for a nano-drill catalyst is attached on the outer periphery of the platelet filamentous nanocarbon by dipping and dispersing the platelet filamentous nanocarbon in nickel nitride solution. The filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached. The filamentous nano-carbon on which the nickel catalyst is attached, is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H2/He ambient.
- The fabricated porous filamentous nanocarbon, as illustrated in a TEM image in
FIG. 9 , becomes a very porous nanofiber in which the nano tunnels are formed. The nano tunnel is formed along the arrangement direction of the carbon hexagonal plane without any change in the structure of the filamentous nanocarbon. The nano tunnel has a diameter in a range of 6 to 32 nm. The specific surface area and a volume of the pore are measured to be 154 /g and 0.24 /g, respectively, using 2NBET method. - In the first comparative example, a conventional alkali cactivation method is applied to the Herringbone filamentous nanocarbon. A mixture of the Herringbone filamentous nanocarbon and KOH (nanocarbon:KOH=1:4 w/w) is put on a pan. Thereafter, a heat treatment is performed at 850° C. for 2 hours in mixture gas of H2/He ambient.
- From a TEM image, it is observed that predetermined portions of the carbon hexagonal plane are removed at a regular space, forming a ladder shape. According to the BET result, it is understood that micropores of which specific surface area and size are 154 /g and 1.0 nm, respectively, are formed. Therefore, it is known that the conventional alkali cactivation method is not adaptive for selectively forming mesopores of the inventive porous filamentous nanocarbon.
- The nickel particle used for a nano-drill catalyst is attached on the outer periphery of the Herringbone filamentous nanocarbon by dipping and dispersing the filamentous nanocarbon with butte structure in nickel nitride solution. The filamentous nanocarbon is vacuum dried at 150° C. to fabricate a nanofiber on which the nickel catalyst is attached. The filamentous nano-carbon on which the nickel catalyst is attached is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H2/He ambient.
- Unlike the embodiments, it is known that the filamentous nanocarbon of the second comparative example shows a weight change before and after the reaction is less than 5%. This is well observed in the TEM image that the micropores are not formed uniformly. The specific surface area and a volume of the pore are measured to be 122 /g and 0.21 /g, respectively, using 2NBET method. Thus, it is known that the inventive nano-drilling method is not effective for a tubular filamentous nanocarbon, i.e., the carbon nanotube. As the result of the second comparative example, considering that the nano-drilling method is not effective for the tubular structure in which the end portion of the nano-rod is not exposed, the fabrication of the tunnel-like mesopores according to the nano-drilling of the present invention is performed such that the catalyst attached on the exposed end portion of the nano-rod deems to selectively gasify the nano-rods therearound.
- The nickel particle used for a nano-drill catalyst is attached on a carbon black by dipping and dispersing the carbon black in nickel nitride solution. The carbon black is vacuum dried at 150° C. to fabricate the carbon black on which the nickel catalyst is attached. The carbon black on which the nickel catalyst is attached on is put into the quartz tube in the reaction furnace. Thereafter, a heat treatment is performed at 800° C. for 3 hours in mixture gas of H2/He ambient.
- There is little weight change before and after the reaction, and thus it is known that the nano-drilling method according to the present invention is not effective for the carbon black.
- Examples in which the porous filamentous nanocarbon fabricated by the nano-drilling method of the present invention is applied will be illustrated herebelow.
- First, the porous filamentous nanocarbon can be applied to an adsorbent and a chromatography. Since the mesopore of the porous filamentous nanocarbon according to the present invention has a maximum pathway of about 200 nm long, it takes about 2 seconds for molecules to diffuse from one end of the mesopore to the other end. In this manner, the diffusion time is very short so that it is very effective for the inventive nanocarbon to be applied to the adsorbent and the chromatography. In particular, in case of the chromatography, it is very adaptively used for separating biologically important molecules such as enzyme, steroid, alkaloid, hormone, protein, and so forth.
- Second, the porous filamentous nanocarbon can be applied to a catalyst support. Due to the short diffusion pathway as described above, it may be importantly applied to the conversion of the polymer material, e.g., synthesis of steroid and enzyme, refinement of petroleum, or the like.
- Third, the porous filamentous nanocarbon can be applied to an electrode for electrochemical reaction. The filamentous nanocarbon according to the present invention is dipped into the catalyst metal solution and is coated with the catalyst metal, to thereby form an electrode on the surface of the porous filamentous nanocarbon. Since the material so fabricated is resistant to alkali or acid, it is possible to apply the inventive nanocarbon to electrochemical reaction requiring severe environments. For instance, the coated Pt-Ru catalyst may be used as a catalyst for oxidizing methanol in methanol fuel cell.
FIG. 10 is a cyclic voltammogram illustrating methanol oxidation using Pt—Ru catalyst electrode and Ag/AgCl electrode, which shows an activity measured in the preset invention about two times greater than the prior art. - The porous filamentous nanocarbon of the present invention may be variously applied to an adsorbent, a chromatography material, a catalyst support, etc. That is, it is possible to apply the porous filamentous nanocarbon to the separation/absorption of protein, petroleum, and so forth, and an electrode for a fuel cell.
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040116744A KR20070087697A (en) | 2004-12-30 | 2004-12-30 | Porous fibrous nanocarbon and its manufacturing method |
KR10-2004-0116744 | 2004-12-30 | ||
PCT/KR2005/004596 WO2006071066A1 (en) | 2004-12-30 | 2005-12-28 | Porous filamentous nanocarbon and method of forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090004095A1 true US20090004095A1 (en) | 2009-01-01 |
Family
ID=36615149
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/813,079 Abandoned US20090004095A1 (en) | 2004-12-30 | 2005-12-28 | Porous Filamentous Nanocarbon And Method Of Forming The Same |
US12/335,664 Abandoned US20090191116A1 (en) | 2004-12-30 | 2008-12-16 | Porous filamentous nanocarbon and method of forming the same |
US12/767,219 Abandoned US20100202958A1 (en) | 2004-12-30 | 2010-04-26 | Porous filamentous nanocarbon and method of forming the same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/335,664 Abandoned US20090191116A1 (en) | 2004-12-30 | 2008-12-16 | Porous filamentous nanocarbon and method of forming the same |
US12/767,219 Abandoned US20100202958A1 (en) | 2004-12-30 | 2010-04-26 | Porous filamentous nanocarbon and method of forming the same |
Country Status (7)
Country | Link |
---|---|
US (3) | US20090004095A1 (en) |
EP (1) | EP1833755A4 (en) |
JP (1) | JP4819061B2 (en) |
KR (1) | KR20070087697A (en) |
CN (1) | CN101124153B (en) |
CA (1) | CA2593117C (en) |
WO (1) | WO2006071066A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060188717A1 (en) * | 2003-08-26 | 2006-08-24 | Eiji Kambara | Crimped carbon fiber and production method thereof |
US20110133132A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same |
US20110135925A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Submicron-scale graphitic fibrils, methods for producing same and compositions containing same |
US20110136007A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery |
US9604194B2 (en) | 2014-10-14 | 2017-03-28 | Saudi Arabian Oil Company | Synthesis of ordered microporous carbons by chemical vapor deposition |
US9970130B2 (en) | 2014-10-10 | 2018-05-15 | Korea Institute Of Science And Technology | Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1980655A4 (en) * | 2006-01-20 | 2009-07-01 | Showa Denko Kk | Platelet-type slit vapor-grown carbon fiber and process for production thereof |
JP2008019538A (en) * | 2006-07-14 | 2008-01-31 | Sonac Kk | Constituting unit of carbon nanofiber, and the carbon nanofiber |
JP4828394B2 (en) * | 2006-12-19 | 2011-11-30 | 三元生技股▲分▼有限公司 | Method for producing porous carbon material having seasoning function |
JP2011523981A (en) * | 2008-05-13 | 2011-08-25 | リサーチ・トライアングル・インスティチュート | Porous and non-porous nanostructures and their applications |
CN101824669B (en) * | 2010-04-29 | 2012-07-18 | 江苏同康特种活性炭纤维面料有限公司 | Mesopore activated carbon fiber and manufacturing method thereof |
KR101240971B1 (en) * | 2010-07-30 | 2013-03-11 | 기아자동차주식회사 | Method for preparing catalysts of fuel cell and catalysts of fuel cell thereof |
JP5660917B2 (en) * | 2011-02-04 | 2015-01-28 | 国立大学法人東京工業大学 | Air electrode catalyst for fuel cell and production method thereof |
KR101360403B1 (en) | 2012-07-20 | 2014-02-11 | 한국과학기술원 | Metal oxide nanofiber with nanopore, fabrication method for preparing the same and apparatus comprising the same |
KR101587532B1 (en) * | 2014-06-17 | 2016-01-21 | 한국기계연구원 | Carbon hybrid fiber including conductive complex, method for manufacturing the same, and functional textile assembly and semiconductor device using the same |
CN106622246A (en) * | 2016-09-18 | 2017-05-10 | 华南理工大学 | Preparation method of nickel nanoparticle implanted carbon cloth flexible electrode and application thereof |
WO2018226063A1 (en) * | 2017-06-08 | 2018-12-13 | 주식회사 엘지화학 | Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using same, and lithium secondary battery |
WO2022138195A1 (en) * | 2020-12-23 | 2022-06-30 | 東レ株式会社 | Catalyst, and method for producing organic compound using same |
CN112691655B (en) * | 2020-12-23 | 2023-05-30 | 东莞理工学院 | A controllable preparation method of defective carbon nanotube catalysts and its application in catalytic conversion of alcohols to corresponding ketones |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030698A (en) * | 1994-12-19 | 2000-02-29 | Lockheed Martin Energy Research Corporation | Activated carbon fiber composite material and method of making |
US6555945B1 (en) * | 1999-02-25 | 2003-04-29 | Alliedsignal Inc. | Actuators using double-layer charging of high surface area materials |
US20050079119A1 (en) * | 2003-01-23 | 2005-04-14 | Canon Kabushiki Kaisha | Method for producing nano-carbon materials |
US20070048521A1 (en) * | 2005-08-25 | 2007-03-01 | Rudyard Istvan | Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2981023B2 (en) | 1991-07-05 | 1999-11-22 | 日機装株式会社 | Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber |
JP3710436B2 (en) * | 2001-09-10 | 2005-10-26 | キヤノン株式会社 | Electron emitting device, electron source, and manufacturing method of image display device |
JP4160780B2 (en) * | 2002-05-23 | 2008-10-08 | 三菱重工業株式会社 | Fibrous nanocarbon |
JP4160781B2 (en) * | 2002-05-27 | 2008-10-08 | 三菱重工業株式会社 | Method and apparatus for producing fibrous nanocarbon |
JP3779700B2 (en) * | 2002-06-03 | 2006-05-31 | 三洋化成工業株式会社 | Micelle-containing organic polymer, porous organic polymer, and porous carbon material |
JP3524542B2 (en) * | 2002-08-26 | 2004-05-10 | キヤノン株式会社 | Manufacturing method of carbon nanotube |
KR100483803B1 (en) * | 2002-10-17 | 2005-04-20 | (주)넥센나노텍 | Preparation method for fibrous nano-carbon |
KR100542095B1 (en) * | 2002-10-17 | 2006-01-10 | (주)넥센나노텍 | Microfiber nanocarbon manufacturing method |
US7404990B2 (en) * | 2002-11-14 | 2008-07-29 | Air Products And Chemicals, Inc. | Non-thermal process for forming porous low dielectric constant films |
-
2004
- 2004-12-30 KR KR1020040116744A patent/KR20070087697A/en not_active Ceased
-
2005
- 2005-12-28 US US11/813,079 patent/US20090004095A1/en not_active Abandoned
- 2005-12-28 EP EP05822822A patent/EP1833755A4/en not_active Withdrawn
- 2005-12-28 CN CN2005800457209A patent/CN101124153B/en not_active Expired - Fee Related
- 2005-12-28 WO PCT/KR2005/004596 patent/WO2006071066A1/en active Application Filing
- 2005-12-28 JP JP2007549256A patent/JP4819061B2/en active Active
- 2005-12-28 CA CA2593117A patent/CA2593117C/en not_active Expired - Fee Related
-
2008
- 2008-12-16 US US12/335,664 patent/US20090191116A1/en not_active Abandoned
-
2010
- 2010-04-26 US US12/767,219 patent/US20100202958A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030698A (en) * | 1994-12-19 | 2000-02-29 | Lockheed Martin Energy Research Corporation | Activated carbon fiber composite material and method of making |
US6555945B1 (en) * | 1999-02-25 | 2003-04-29 | Alliedsignal Inc. | Actuators using double-layer charging of high surface area materials |
US20050079119A1 (en) * | 2003-01-23 | 2005-04-14 | Canon Kabushiki Kaisha | Method for producing nano-carbon materials |
US20070048521A1 (en) * | 2005-08-25 | 2007-03-01 | Rudyard Istvan | Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060188717A1 (en) * | 2003-08-26 | 2006-08-24 | Eiji Kambara | Crimped carbon fiber and production method thereof |
US7771694B2 (en) * | 2003-08-26 | 2010-08-10 | Showa Denko K.K. | Crimped carbon fiber and production method thereof |
US20100261062A1 (en) * | 2003-08-26 | 2010-10-14 | Showa Denko K.K. | Crimped carbon fiber and production method thereof |
US20110133132A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same |
US20110135925A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Submicron-scale graphitic fibrils, methods for producing same and compositions containing same |
US20110136007A1 (en) * | 2009-12-07 | 2011-06-09 | Aruna Zhamu | Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery |
US8501348B2 (en) | 2009-12-07 | 2013-08-06 | Nanotek Instruments, Inc. | Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery |
US8753740B2 (en) | 2009-12-07 | 2014-06-17 | Nanotek Instruments, Inc. | Submicron-scale graphitic fibrils, methods for producing same and compositions containing same |
US8753543B2 (en) | 2009-12-07 | 2014-06-17 | Nanotek Instruments, Inc. | Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same |
US9970130B2 (en) | 2014-10-10 | 2018-05-15 | Korea Institute Of Science And Technology | Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst |
US9604194B2 (en) | 2014-10-14 | 2017-03-28 | Saudi Arabian Oil Company | Synthesis of ordered microporous carbons by chemical vapor deposition |
US10421058B2 (en) | 2014-10-14 | 2019-09-24 | Saudi Arabian Oil Company | Synthesis of ordered microporous activated carbons by chemical vapor deposition |
Also Published As
Publication number | Publication date |
---|---|
WO2006071066A1 (en) | 2006-07-06 |
US20100202958A1 (en) | 2010-08-12 |
CN101124153A (en) | 2008-02-13 |
KR20070087697A (en) | 2007-08-29 |
CN101124153B (en) | 2013-04-03 |
US20090191116A1 (en) | 2009-07-30 |
CA2593117C (en) | 2012-10-02 |
JP2008526663A (en) | 2008-07-24 |
JP4819061B2 (en) | 2011-11-16 |
EP1833755A4 (en) | 2012-04-04 |
CA2593117A1 (en) | 2006-07-06 |
EP1833755A1 (en) | 2007-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090191116A1 (en) | Porous filamentous nanocarbon and method of forming the same | |
Shenashen et al. | Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@ C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction | |
CN100368287C (en) | Chemical derivatization of single-walled carbon nanotubes to facilitate their solvation and uses of derivatized nanotubes | |
EP1226294B1 (en) | Methods of oxidizing multiwalled carbon nanotubes | |
JP5436528B2 (en) | Carbon nanotubes on carbon nanofiber substrate | |
US20190376209A1 (en) | Method and system for production of porous graphitic carbon materials embedded with active components | |
US9126828B2 (en) | Mixed structures of single walled and multi walled carbon nanotubes | |
US9379389B2 (en) | Method for producing porous carbon materials having mesopores and catalyst support for a fuel cell produced using same | |
Pham-Huu et al. | Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials | |
Huang et al. | Nitrogen doped mesoporous carbon derived from copolymer and supporting cobalt oxide for oxygen reduction reaction in alkaline media | |
WO2009116157A1 (en) | Process for producing catalyst for fuel cell, electrode assembly, and fuel cell | |
JP2006342011A (en) | Carbon nanotube-carbon fiber composite and method for producing the same | |
Kulkarni et al. | Exploring the recent cutting-edge applications of CNTs in energy and environmental remediation: Mechanistic insights and remarkable performance advancements | |
KR100514186B1 (en) | Hairy nano carbon material | |
KR101965197B1 (en) | Catalyst for decomposing harmful material including mixed metal oxide nanotube | |
KR101040928B1 (en) | Small-sized platelet carbon nanofibers and its manufacturing method | |
Lim et al. | Carbon nanofibers with radially oriented channels | |
KR100472123B1 (en) | Preparation methode for fibrous nano cabon with hollow | |
Bhaduri | Synthesis, physicochemical, and wettability characteristics of novel asymmetrically distributed Co3O4 and CeO2 nanoparticles in porous carbon nanofiber/reduced graphene oxide matrices | |
Mahalik et al. | Carbon based nanostructures | |
Wang | Growth of Nitrogen-Containing Carbon Nanofibers | |
KR20050010292A (en) | Fibrous carbon composed of two carbon nano-fibils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOCHIDA, ISAO, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, SEONG HO;MOCHIDA, ISAO;LIM, SEOUNG YOP;REEL/FRAME:021327/0656;SIGNING DATES FROM 20080627 TO 20080703 Owner name: NEXEN NANO TECH CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, SEONG HO;MOCHIDA, ISAO;LIM, SEOUNG YOP;REEL/FRAME:021327/0656;SIGNING DATES FROM 20080627 TO 20080703 Owner name: YOON, SEONG HO, KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, SEONG HO;MOCHIDA, ISAO;LIM, SEOUNG YOP;REEL/FRAME:021327/0656;SIGNING DATES FROM 20080627 TO 20080703 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SUNTEL CO., LTD., KOREA, REPUBLIC OF Free format text: MERGER;ASSIGNOR:NEXEN NANO TECH CO., LTD.;REEL/FRAME:031497/0022 Effective date: 20081108 |
|
AS | Assignment |
Owner name: VINATECH CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNTEL CO., LTD.;REEL/FRAME:031581/0971 Effective date: 20131017 |