US20080311277A1 - Derivatives of seleno-amino acids - Google Patents
Derivatives of seleno-amino acids Download PDFInfo
- Publication number
- US20080311277A1 US20080311277A1 US12/195,155 US19515508A US2008311277A1 US 20080311277 A1 US20080311277 A1 US 20080311277A1 US 19515508 A US19515508 A US 19515508A US 2008311277 A1 US2008311277 A1 US 2008311277A1
- Authority
- US
- United States
- Prior art keywords
- selenium
- selenomethionine
- seleno
- derivatives
- amino acids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011669 selenium Substances 0.000 claims abstract description 148
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 146
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 137
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 claims abstract description 46
- 229960002718 selenomethionine Drugs 0.000 claims abstract description 45
- 241001465754 Metazoa Species 0.000 claims description 24
- 241000283690 Bos taurus Species 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 150000002148 esters Chemical class 0.000 claims description 4
- 230000009469 supplementation Effects 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 244000144977 poultry Species 0.000 claims description 3
- 241000282898 Sus scrofa Species 0.000 claims description 2
- 150000001469 hydantoins Chemical class 0.000 claims description 2
- 235000008206 alpha-amino acids Nutrition 0.000 claims 2
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 claims 1
- 150000001371 alpha-amino acids Chemical class 0.000 claims 1
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 abstract description 13
- 239000006053 animal diet Substances 0.000 abstract 1
- 229940091258 selenium supplement Drugs 0.000 description 132
- 235000011649 selenium Nutrition 0.000 description 131
- 235000005911 diet Nutrition 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 21
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 20
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 230000000378 dietary effect Effects 0.000 description 15
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 210000002381 plasma Anatomy 0.000 description 15
- 229960001471 sodium selenite Drugs 0.000 description 15
- 235000015921 sodium selenite Nutrition 0.000 description 15
- 239000011781 sodium selenite Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 229940082569 selenite Drugs 0.000 description 13
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 230000037213 diet Effects 0.000 description 12
- 235000013336 milk Nutrition 0.000 description 11
- 210000004080 milk Anatomy 0.000 description 11
- 239000008267 milk Substances 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 150000003343 selenium compounds Chemical class 0.000 description 11
- BQVCWZCZNHQCMA-LURJTMIESA-N (2s)-2-(3-carboxypropanoylamino)-4-methylselanylbutanoic acid Chemical compound C[Se]CC[C@@H](C(O)=O)NC(=O)CCC(O)=O BQVCWZCZNHQCMA-LURJTMIESA-N 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 229940125782 compound 2 Drugs 0.000 description 10
- 235000016709 nutrition Nutrition 0.000 description 10
- 229940065287 selenium compound Drugs 0.000 description 10
- 102000006587 Glutathione peroxidase Human genes 0.000 description 9
- 108700016172 Glutathione peroxidases Proteins 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 206010039921 Selenium deficiency Diseases 0.000 description 8
- 244000144972 livestock Species 0.000 description 8
- 229940068196 placebo Drugs 0.000 description 8
- 239000000902 placebo Substances 0.000 description 8
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 7
- 102000008114 Selenoproteins Human genes 0.000 description 7
- 108010074686 Selenoproteins Proteins 0.000 description 7
- 229940091173 hydantoin Drugs 0.000 description 7
- 230000035764 nutrition Effects 0.000 description 7
- MTJRVGXDZPUBFY-FJXQXJEOSA-N propan-2-yl (2s)-2-amino-4-methylselanylbutanoate;hydrochloride Chemical compound Cl.C[Se]CC[C@H](N)C(=O)OC(C)C MTJRVGXDZPUBFY-FJXQXJEOSA-N 0.000 description 7
- DIUCFOPNAAPWBV-BYPYZUCNSA-N (2s)-2-(carbamoylamino)-4-methylselanylbutanoic acid Chemical compound C[Se]CC[C@@H](C(O)=O)NC(N)=O DIUCFOPNAAPWBV-BYPYZUCNSA-N 0.000 description 6
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- 208000019926 Keshan disease Diseases 0.000 description 6
- XDSSPSLGNGIIHP-VKHMYHEASA-N Se-methyl-L-selenocysteine Chemical compound C[Se]C[C@H]([NH3+])C([O-])=O XDSSPSLGNGIIHP-VKHMYHEASA-N 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 235000013365 dairy product Nutrition 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- -1 sulfur Chemical compound 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 4
- 208000031229 Cardiomyopathies Diseases 0.000 description 4
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000037406 food intake Effects 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 229960004452 methionine Drugs 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 4
- 229940055619 selenocysteine Drugs 0.000 description 4
- 235000016491 selenocysteine Nutrition 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- 235000019728 animal nutrition Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108010016626 Dipeptides Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- XDSSPSLGNGIIHP-UHFFFAOYSA-N Se-methyl-L-selenocysteine Natural products C[Se]CC(N)C(O)=O XDSSPSLGNGIIHP-UHFFFAOYSA-N 0.000 description 2
- 102000004531 Selenoprotein P Human genes 0.000 description 2
- 108010042443 Selenoprotein P Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000006052 feed supplement Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 210000003736 gastrointestinal content Anatomy 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 208000004396 mastitis Diseases 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000016236 parenteral nutrition Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- GKKCIDNWFBPDBW-UHFFFAOYSA-M potassium cyanate Chemical compound [K]OC#N GKKCIDNWFBPDBW-UHFFFAOYSA-M 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 235000021476 total parenteral nutrition Nutrition 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- PMYDPQQPEAYXKD-UHFFFAOYSA-N 3-hydroxy-n-naphthalen-2-ylnaphthalene-2-carboxamide Chemical compound C1=CC=CC2=CC(NC(=O)C3=CC4=CC=CC=C4C=C3O)=CC=C21 PMYDPQQPEAYXKD-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- IHIIINNFRYXAQO-HKGPVOKGSA-N C(CCC(=O)O)(=O)N[C@@H](CC[Se]C)C(=O)O.C(=O)(O)[C@H](CC[Se]C)NC(CCC(=O)O)=O Chemical compound C(CCC(=O)O)(=O)N[C@@H](CC[Se]C)C(=O)O.C(=O)(O)[C@H](CC[Se]C)NC(CCC(=O)O)=O IHIIINNFRYXAQO-HKGPVOKGSA-N 0.000 description 1
- VBMUJTYUKATBSF-BYPYZUCNSA-N C[Se]CC[C@@H]1NC(=O)NC1=O Chemical compound C[Se]CC[C@@H]1NC(=O)NC1=O VBMUJTYUKATBSF-BYPYZUCNSA-N 0.000 description 1
- NLKBZKXJIWKXEV-BYPYZUCNSA-N C[Se]CC[C@H](NC(=O)O)C(=O)O Chemical compound C[Se]CC[C@H](NC(=O)O)C(=O)O NLKBZKXJIWKXEV-BYPYZUCNSA-N 0.000 description 1
- SKDUFTCYKCOHKR-ZETCQYMHSA-O C[Se]CC[C@H]([NH3+])C(=O)OC(C)C.[Cl-] Chemical compound C[Se]CC[C@H]([NH3+])C(=O)OC(C)C.[Cl-] SKDUFTCYKCOHKR-ZETCQYMHSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 108010058643 Fungal Proteins Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000011845 Iodide peroxidase Human genes 0.000 description 1
- 108010036012 Iodide peroxidase Proteins 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- ZNWYDQPOUQRDLY-UHFFFAOYSA-N L-Selenocystathionine Natural products OC(=O)C(N)CC[Se]CC(N)C(O)=O ZNWYDQPOUQRDLY-UHFFFAOYSA-N 0.000 description 1
- UVSMMLABJBJNGH-WFMPWKQPSA-N L-adenosylselenohomocysteine Chemical compound O[C@@H]1[C@H](O)[C@@H](C[Se]CC[C@H](N)C(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 UVSMMLABJBJNGH-WFMPWKQPSA-N 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- ZNWYDQPOUQRDLY-WHFBIAKZSA-N L-selenocystathionine Chemical compound [O-]C(=O)[C@@H]([NH3+])CC[Se]C[C@H]([NH3+])C([O-])=O ZNWYDQPOUQRDLY-WHFBIAKZSA-N 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 101710196226 Methionine-rich protein Proteins 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 108010033024 Phospholipid Hydroperoxide Glutathione Peroxidase Proteins 0.000 description 1
- 102100023410 Phospholipid hydroperoxide glutathione peroxidase Human genes 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 102000013090 Thioredoxin-Disulfide Reductase Human genes 0.000 description 1
- 108010079911 Thioredoxin-disulfide reductase Proteins 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940053195 antiepileptics hydantoin derivative Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 235000020930 dietary requirements Nutrition 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 235000002864 food coloring agent Nutrition 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- IEFQLTYCECVOLL-UHFFFAOYSA-N gamma-glutamyl-Se-methylselenocysteine Chemical compound C[Se]CC(C(O)=O)NC(=O)CCC(N)C(O)=O IEFQLTYCECVOLL-UHFFFAOYSA-N 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 206010019692 hepatic necrosis Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000149 liver necrosis Toxicity 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 235000003715 nutritional status Nutrition 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- SKDUFTCYKCOHKR-ZETCQYMHSA-N propan-2-yl (2s)-2-amino-4-methylselanylbutanoate Chemical compound C[Se]CC[C@H](N)C(=O)OC(C)C SKDUFTCYKCOHKR-ZETCQYMHSA-N 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000004844 protein turnover Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000007320 rich medium Substances 0.000 description 1
- 210000004767 rumen Anatomy 0.000 description 1
- QYHFIVBSNOWOCQ-UHFFFAOYSA-N selenic acid Chemical class O[Se](O)(=O)=O QYHFIVBSNOWOCQ-UHFFFAOYSA-N 0.000 description 1
- 150000003342 selenium Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229960001881 sodium selenate Drugs 0.000 description 1
- 235000018716 sodium selenate Nutrition 0.000 description 1
- 239000011655 sodium selenate Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000021595 spermatogenesis Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 208000024877 white muscle disease Diseases 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C391/00—Compounds containing selenium
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/175—Amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/72—Two oxygen atoms, e.g. hydantoin
- C07D233/76—Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
Definitions
- Keshan disease a human condition characterized by a dilated cardiomyopathy that affects persons living in rural areas of China.
- the incidence of the Keshan disease matched the distribution of selenium-deficient areas ( Keshan Disease Research Group of the Chinese Academy of Medical Sciences. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin. Med. J. 92:477-482 (1979)).
- selenium P selenoprotein P
- glutathione peroxidase glutathione peroxidase
- Another function of selenium is as a catalytically active component of the iodothyronine deiodinase enzymes that regulates thyroid hormone metabolism. More recently, selenocysteine was identified in the active center of thioredoxin reductase demonstrating the role selenium plays in various metabolic processes catalyzed by these enzymes.
- the dietary requirements for selenium are usually fulfilled by the ingestion of diets containing naturally occurring organic selenium compounds.
- Food and feed ingredients rich in organic selenium compounds include meat, fish, dairy products, some vegetables and grains.
- the concentration of selenium in materials of plant origin often depends on the concentration of selenium in the soil where the plants were grown.
- the soil of the Rocky Mountain States contains higher levels of selenium than other states and plants growing on these soils contain higher levels of selenium.
- the majority of organic selenium in natural food and feed ingredients is present as L-selenomethionine.
- Some accumulator plants and vegetables such as garlic, onions and broccoli growing on selenium rich soils contain Se-methylselenocysteine and its derivatives as the major organic selenium compounds.
- selenium is selenate. Of 24 plants studied, selenate represented 5-92% of total selenium. Selenite was absent in all but one of these plants which contained 3% of total selenium as selenite. (Whanger P. D. Selenocompounds in Plants and Animals and their Biological Significance. Journal of the American College of Nutrition, 12: 223-232 (2002)). Regardless of the form in which the selenium is ingested, it is transformed by a variety of metabolic pathways via the same intermediary pool into the specific selenocysteine-containing selenoproteins which are responsible for selenium biological effects.
- This non-specifically bound selenium is present in high concentrations in methionine rich proteins.
- the fraction of ingested selenomethione that is incorporated in non-specific proteins appears to be dependent on the ratio of selenomethionine to methionine and not selenium status.
- the increased non-specific incorporation of selenomethionine in proteins resulted in the decreased concentrations and effects of the specific selenoproteins.
- Non-specific incorporation of selenomethionine takes place in the proteins of skeletal muscles, erythrocytes, pancreas, liver, stomach, kidneys and the gastrointestinal mucosa.
- a fraction of the ingested selenium source is eliminated via a number of pathways.
- Some of orally ingested selenite and selenate is reduced in the gastrointestinal tract to elemental selenium which is excreted in feces. Selenite and selenate are also excreted in urine.
- selenium enriched yeast has been used as a practical affordable source of L-selenomethionine.
- Special strains of Saccharomyces cerevisiea grown in a selenium rich medium accumulate as much as 3000 ⁇ g Se per g dry matter.
- Most of the selenium in yeast exists as L-selenomethionine.
- the L-selenomethionine is present primarily incorporated in the yeast protein in place of L-methionine.
- organic selenium compounds may be present in low concentrations including Se-adenosyl-selenohomocysteine (2-5%), selencysteine (0.5%), methylselenocysteine (0.5%), selenocystathionine (0.5%), and ⁇ -glutamyl-Se-methylselenocysteine (0.5%). Only traces of inorganic selenium may be present in the yeast as selenite or selenate (Schrauzer G. N. Selenomethionine: A Review of its Nutritional Significance, Metabolism and Toxicity. J. Nutr. 130: 1653-1656 (2000)).
- Selenium was found to be more bioavailable from selenium yeast than from selenite or selenate in several animal studies.
- the increase in tissue selenium concentration was greater in animals fed selenium yeast compared to animals fed selenite.
- glutathione peroxidase activity was about the same regardless of the source of supplemental selenium.
- the favorable effects of selenium supplementation on animal health were demonstrated in several studies. For example, selenium supplementation improved udder health in dairy cows as demonstrated by a decrease in the percent quarters harboring mastitis pathogens and a decrease in somatic cells count in milk.
- yeast contains variable concentrations of inorganic selenium compounds such as selenites and selenates.
- the organic selenium compounds are present in yeast as part of the intracellular proteins. Before these compounds are available for absorption after being ingested, the cell walls of yeast must rupture to release the protein into the animals' gastrointestinal tract where it can be subjected to the proteolytic effects of digestive enzymes. It is only after the protein is hydrolyzed to single amino acids or dipeptides that the selenium compounds can be absorbed.
- One primary objective of this invention is to identify derivatives of seleno-amino acids with improved bioavailability and then prepare them.
- Selenium like sulfur is a member of group VIA elements. It exists in different allotropic forms and has oxidation states of ⁇ 2, 0, +2, +4, and +6. Selenium is a nonmetallic element. It can form mono-atomic anions and therefore can form ionic as well as covalent bonds. In the oxidation state ⁇ 2, selenium forms covalent bonds with carbon substituents and can often replace sulfur in naturally occurring compounds. The biological role of selenium is attributed to these naturally occurring compounds in which selenium exists in the ⁇ 2 oxidation state and is covalently bound, usually with carbon as part of functional proteins. Seleno-amino acids have been proposed as dietary sources of selenium.
- the primary object of the present invention is to make novel irreversible derivatives of seleno-amino acids with improved bioavailability.
- novel compounds are formed by chemically modifying the selenoamino acids by forming covalent bonds between the ⁇ -amino and/or the carboxyl group and a protective group. These chemically stable compounds are enzymatically modified to the selenoamino acid after being ingested by the animal.
- Another object of the invention is to describe methods of preparation of these derivatives and their use as feed ingredients in livestock.
- Novel derivatives of seleno-amino acids that are effective dietary sources of supplemental selenium in humans and livestock are prepared.
- the novel derivatives have improved physical, chemical or biological properties over the parent seleno-amino acid.
- These derivatives possess enhanced bioavailability and/or increased stability of the seleno-amino acids. They are 1:1 complexes of seleno-amino acids such as L-selenomethionine.
- seleno-amino acids such as methyl-L-selenocysteine, were found to posses similar undesirable physical properties as L-selenomethionine. Therefore, derivatives of these selenoamino acids were also prepared. These derivatives were found to have similar properties as those of selenomethionine.
- seleno-amino acid derivatives is the simple aliphatic esters such as methyl-, ethyl-, propyl-, and isopropyl esters.
- isopropyl esters were the preferred compounds. These are readily prepared by the reaction of the seleno-amino acid with isopropyl alcohol in the presence of the appropriate catalyst or coupling agents. These included concentrated sulfuric acid and thionyl chloride. The amino acid ester is usually separated as the hydrochloride salt.
- the L-Selenomethionine Isopropyl Ester Hydrochloride is a readily soluble in water, and is significantly more stable than L-selenomethionine in the solid state and in solution. These derivatives have much greater lipid solubility than the parent seleno-amino acids and will be rapidly absorbed by passive diffusion from intestinal contents at pH>5.0.
- N-Succinyl derivatives of seleno-amino acids were readily obtained by the reaction of the seleno-amino acids with succinic anhydride. These compounds are partially dissociated acids because the ⁇ -amino group of the seleno-amino acid is masked. These compounds are separated and easily purified as their salts.
- the potassium, sodium, calcium or magnesium salts may be prepared.
- the Sodium salt of N-Succinyl L-Selenomethione is readily soluble in water. It is significantly more stable than L-Selenomethionine in the solid state and in solution.
- N-Carbamoyl L-Selenomethionine is obtained by the reaction between L-Selenomethionine and Potassium Cyanate in aqueous solution at 90° C. Heating the N-Carbamoyl derivative in 3 N hydrochloric acid provide L-Selenomethionine Hydantoin.
- the N-carbamoyl derivative is more soluble in water and the solution appears to be more stable than the parent seleno-amino acid.
- the Hydantoin is less soluble and appears to be more stable than the parent seleno-amino acid.
- the compounds described above are reversible derivatives of the seleno-amino acids. After ingestion by the animal, they are expected to be readily converted to the parent seleno-amino acids primarily by enzyme catalyzed reactions.
- the L-selenomethionine isopropyl ester is expected to be readily hydrolyzed by esterases present in the blood and other tissues such as the liver.
- the non-enzymatic hydrolysis of esters at pH 7.4 of the plasma is also possible.
- the N-Succinyl derivatives are likely to be enzymatically hydrolyzed by amidases in plasma and liver.
- the seleno-amino acid derivatives described in this invention may be added to solid or liquid feed as a readily available source of selenium.
- the amount of the compound added will depend on the animal being supplemented.
- the diet will be supplemented by 0.05-2.00 ppm Se, preferably 0.1-0.3 ppm Se.
- the feed will be supplemented by 0.05-10 mg Se per head per day, preferably 2-7 mg Se per head per day.
- the mixture is heated by a heating mantle to cause gentle reflux of the isopropyl alcohol.
- the reaction mixture was heated under reflux for 48 hrs. The heating was discontinued and the flask was placed in an ice-water bath.
- Ammonium hydroxide solution is added slowly with continued mixing. A voluminous white precipitate was formed.
- the mixture was filtered and the precipitate is washed with isopropyl alcohol. The combined filtrate and washings were concentrated under reduced pressure to give a thick oil.
- the residue was dissolved in 100-ml of ethyl acetate.
- the ethyl acetate solution was transferred into a separatory funnel and extracted with successive portions of dilute ammonium hydroxide solution and Brine solution.
- the ethyl acetate extract was dried over anhydrous magnesium sulfate, filtered and the solvent removed under reduced pressure to give a thick yellow oil (42.337 g, 52.61% yield).
- the oil was dissolved in isopropyl alcohol (200 ml) and concentrated hydrochloric acid (20 g) was added. The mixture was concentrated under reduced pressure the residue was dissolved in the minimum amount of ethyl acetate. Dry ether was added dropwise until turbidity appeared. The mixture was stored in a refrigerator for 4 days. A white crystalline precipitate was filtered and washed with dry ether.
- the FTIR spectrum of the solid in a potassium bromide pellet showed absorption peaks at about: 3413.8(W), 2981.7(vs), 2877.6(vs), 2615.3(m), 2488.0(w), 2100.0(m), 1732.0(vs), 1585.4(m), 1512.1(m), 1465.8(m), 1442.7(m), 1377.1(m), 1276.8(s), 1242.1(vs), 1188.1(s), 1107.1(vs), 1068.5(m), 902.6(m) and 813.9(w) cm ⁇ 1 . (w, weak; m, medium; s, strong; vs, very strong).
- a solution containing 1 mg/ml of L-selenomethionine isopropyl ester hydrochloride in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 ⁇ l of the sample was injected onto the column by using a Rheodyne Loop injector.
- a 250 ⁇ 4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase.
- L-Selenomethionine isopropyl ester hydrochloride had a retention time of 4.467 min.
- L-Selenomethionine has a retention time of 4.167 min in this system.
- the FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3313.5(m), 3091.7(w), 2931.6(m), 2626.9(w), 1714.6(vs), 1647.1(s), 1616.2(m), 1434.9(m), 1409.9(m), 1245.9(s), 1195.8(s), 964.3(w), 704.0(w), and 636.5(w) cm ⁇ 1 . (w, weak; m, medium; s, strong; vs, very strong).
- a solution containing 1 mg/ml of N-Succinyl L-selenomethionine in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 ⁇ l of the sample was injected onto the column by using a Rheodyne Loop injector.
- a 250 ⁇ 4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase.
- the N-succinyl L-Selenomethionine had a retention time of 5.56 min.
- L-Selenomethionine has a retention time of 4.167 min in this system.
- a single peak accounting for over 99.54% of detector response was obtained with the N-succinyl L-selenomethionine. This system was useful for the determination of N-succinyl L-selenomethionine in premixes.
- the FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3458.1(s), 3303.8(m), 2929.7(w), 1685.7(vs), 1631.7(vs), 1560.3(vs), 1442.7(w), 1411.8(w), 1282.6(s), 1244.0(w), 1197.7(w), 1180.4(w), 1103.2(w), 931.6(w), 775.3(w), 719.4(w), 576.7(w) and 478.3(w) cm ⁇ 1 . (w, weak; m, medium; s, strong; vs, very strong).
- N-Carbamoyl L-selenomethionine A solution containing 1 mg/ml of N-Carbamoyl L-selenomethionine in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 ⁇ l of the sample was injected onto the column by using a Rheodyne Loop injector.
- a 250 ⁇ 4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase.
- the N-carbamoyl L-Selenomethionine had a single peak accounting for over 99.54% of detector response and a retention time of 5.15 min.
- L-Selenomethionine has a retention time of 4.167 min in this system. This system was useful for the determination of N-carbamoyl L-selenomethionine in premixes.
- the FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3062.7(w), 2761.9(w), 1774.4(s), 1732.0(vs), 1423.4(m), 1265.2(w), 1203.5(w), 748.3(w), 632.6(w), and 455.2(w) cm ⁇ 1 . (w, weak; m, medium; s, strong; vs, very strong).
- a solution containing 1 mg/ml of L-selenomethionine hydantoin in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 ⁇ l of the sample was injected onto the column by using a Rheodyne Loop injector.
- a 250 ⁇ 4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase.
- the L-selenomethionine hydantoin showed a single peak accounting for over 99.72% of detector response and a retention time of 5.94 min.
- L-Selenomethionine has a retention time of 4.167 min in this system. This system was useful for the determination of L-selenomethionine hydantoin in premixes.
- premixes were prepared for use in a field study in lactating cows.
- One of the premixes contained no additional source of selenium and was intended to serve as the placebo.
- the second contained sodium selenite and the third contained N-Succinyl L-Selenomethionine (Compound 2).
- Each of the premixes was prepared by mixing an amount of the selenium source with sufficient amount of finely ground sugar to contain 250 ppm of selenium.
- Each premix was color identified by the incorporation of a solution of a food color during formulation and given a letter designation by random selection.
- the premixes were provided to the animal nutritionists blinded, i.e. they did not know the source of selenium in each of the premixes. This was done to avoid any possible biases in the interpretation of the results of the feeding experiments.
- the selenium concentrations in milk serum for weeks 0, 8, 12, 16, and 20 are reported in Table 1.
- Blood samples were collected on one day per week beginning the week prior to the first depletion period (Week 0) and at four week intervals throughout the experiment (Weeks 8, 12, 16 and 20 in Table 1).
- the blood samples were draw into trace-element free vacutainer tubes containing an anticoagulant.
- Aliquots of whole blood were analyzed for selenium and glutathione peroxidase activity. Other aliquots of blood were centrifuged to harvest plasma and the selenium content of the plasma samples was determined.
- Liver samples were obtained by biopsy on one day per week beginning the week prior to the first depletion period (Week 0) and at four week intervals throughout the experiment (Weeks 8, 12, 16 and 20 in Table 1). Liver samples were analyzed for selenium content. The results of the experiment are reported in Table 1. The results in Table 1 show that the selenium concentrations in milk serum, plasma and liver after 8 weeks of restriction of selenium intake (Wk 8) were significantly lower than those before the start of the depletion period (Wk 0). Feeding the cows a mixed diet that does not contain supplemental selenium (Placebo) results in small increases in the selenium concentrations but the basal level at Wk 0 were not fully restored.
- Placebo Supplemental selenium
- biologically active derivatives means organic covalently bound compounds prepared from the basic structure (for example L-selenomethionine) that retains the bioavailability properties to provide selenium diet enrichment of animals.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Fodder In General (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Feed For Specific Animals (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Derivatives of seleno-alpha amino acids, particularly selenomethionine as enhanced bioavailable sources of selenium in animal diets.
Description
- This application is a Divisional Application of U.S. Ser. No. 11/181,264 filed on Jul. 14, 2005, herein incorporated by reference in its entirety.
- The essential role of selenium in nutrition was first recognized by Schwarz and Foltz in 1957 (Schwarz, K. and Foltz, C. M., Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79:3292 (1957)). These researchers observed that rats developed liver necrosis when fed a purified diet deficient in vitamin E. However, the addition of selenium to the diet prevented the development of this condition. The ability of dietary selenium to prevent the development of exudative diathesis, a condition characterized by leakage of plasma into subcutaneous spaces of the abdomen and breast in chicken, was reported in the same year by Patterson et al (Patterson, E. L., Milstrey, R., Stokstad, E. L. R. Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med. 95: 617-620 (1957)). The important role of selenium in nutrition was further demonstrated by recognizing the practical effect of selenium deficiency in livestock (Muth, O. H., Oldfield, J. E., Remmert, L. F., and Schubert, J. R. Effects of selenium and vitamin E on white muscle disease. Science 128: 1090 (1958) and Hartley, W. J., and Grant, A. B. A review of selenium responsive diseases of New Zealand livestock. Fed. Proc. 2o: 679 (1961)). Subsequent work confirmed that selenium is an essential element for animals and that its deficiency results in various disorders (Combs, G. F. Jr., Combs, S. B. The role of selenium in nutrition. Academic Press, Orlando, Fla., pp 265-399 (1986b)).
- The importance of selenium in human nutrition and the effects of its deficiency on human health were not recognized until the 1970s. Selenium deficiency was found to be one of the factors responsible for the Keshan disease, a human condition characterized by a dilated cardiomyopathy that affects persons living in rural areas of China. The incidence of the Keshan disease matched the distribution of selenium-deficient areas (Keshan Disease Research Group of the Chinese Academy of Medical Sciences. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin. Med. J. 92:477-482 (1979)). Furthermore, a prospective placebo-controlled study demonstrated that new cases of the disease can be prevented by the administration of sodium selenite tablets (Keshan Disease Research Group of the Chinese Academy of Medical Sciences. Observations on effect of sodium selenite in prevention of Keshan disease. Chin. Med. J. 92:471-477 (1979)). The detrimental effects of diet-induced selenium deficiency in critically ill patients were reported in several case studies. Skeletal myopathy developed in one patient on total parenteral nutrition and was reversed by intravenous administration of selenomethionine (van Rij, A. M., Thomson, C. D., McKenzie, J. M., Robinson, M. F. Selenium deficiency in total parenteral nutrition. Am. J. Clin. Nutr. 32: 2076-2085 (1979)). Fatal cardiomyopathy induced by nutritional selenium deficiency was reported in a 43-year-old man receiving parenteral alimentation for 2 years before his death (Johnson, R. A., Baker, S. S., Fallon, J. T., Maynard, E. P., Ruskin, J. N., Wen, Z., Ge, K., and Cohen, H. J. An occidental case of cardiomyopathy and selenium deficiency. The New England Journal of Medicine. 304: 1210-1212 (1981)). In 1982, a second case of fatal cardiomyopathy associated with dietary selenium deficiency was reported in a patient on home parenteral nutrition for at least two years (Selenium Deficiency and Fatal Cardiomyopathy in a Patient on Home Parenteral Nutrition. Gastroenterology. 83:689-693 (1982)).
- The recognition of the essential role of selenium in human and animal nutrition has resulted in the establishment of a Recommended Daily Allowance (RDA) for humans and approval of the inclusion of additional selenium compounds in animal feed. Recently, the Food and Nutrition Board of the Institute of Medicine revised the RDA for selenium to 55 μg (Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, D.C.: National Academy Press(2000)). In 1974, the Food and Drug Administration (FDA) approved sodium selenite and sodium selenate as feed additive. These inorganic selenium salts can be added at the level of 0.3 ppm Se in feed dry matter. In June 2000, the FDA approved the use of selenium yeast in poultry broiler and layer diets.
- The biochemical mechanism involved in manifesting the beneficial effects of selenium began to emerge in 1973 when selenium was found to be an essential component of the antioxidant enzyme glutathione peroxidase (Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. F., and Hockstra, W. G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science, 179: 588-590 (1973) and Flohe, L., Gunzler, W. A. and Shock, H. H. Glutathione Peroxidase. A Selenoenzyme. FEBS Lett. 32: 132-134)). Concurrently, an extra cellular selenoprotein (Selenoprotein P) was discovered in rat, rhesus monkey and human plasma and found to be different than glutathione peroxidase (Moschos M. P. Selenoprotein P. Cellular and Molecular Life Sciences. 57: 1836-1845 (2000)). Another function of selenium is as a catalytically active component of the iodothyronine deiodinase enzymes that regulates thyroid hormone metabolism. More recently, selenocysteine was identified in the active center of thioredoxin reductase demonstrating the role selenium plays in various metabolic processes catalyzed by these enzymes.
- Recent studies have shown that the role of selenium in mammalians is not limited to the physiological functions of selenoenzymes. It now appears that selenium has a very specific role in spermatogenesis that is essential for male fertility (Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., Flohe' L. Dual Function of the Selenoprotein PHGPx During Sperm Maturation. Science 285: 1393-1396 (1999)). The identification of a specific selenoenzyme in the sperm nuclei further underscored the important role selenium plays in sperm maturation (Pfeifer H., Conrad M., Roethein D., Kyriakopoulos A., Brielmeier M., Bornkamm G. W., Behne D. Identification of a Specific Sperm Nuclei Selenoenzyme Necessary for Protamine Thiol Cross-Linking During Sperm Maturation. FASEB J 15: 1236-1238 (2001)).
- The dietary requirements for selenium are usually fulfilled by the ingestion of diets containing naturally occurring organic selenium compounds. Food and feed ingredients rich in organic selenium compounds include meat, fish, dairy products, some vegetables and grains. The concentration of selenium in materials of plant origin often depends on the concentration of selenium in the soil where the plants were grown. The soil of the Rocky Mountain States contains higher levels of selenium than other states and plants growing on these soils contain higher levels of selenium. The majority of organic selenium in natural food and feed ingredients is present as L-selenomethionine. Some accumulator plants and vegetables such as garlic, onions and broccoli growing on selenium rich soils contain Se-methylselenocysteine and its derivatives as the major organic selenium compounds. One of the predominant forms of selenium in native forage plants of the U.S. is selenate. Of 24 plants studied, selenate represented 5-92% of total selenium. Selenite was absent in all but one of these plants which contained 3% of total selenium as selenite. (Whanger P. D. Selenocompounds in Plants and Animals and their Biological Significance. Journal of the American College of Nutrition, 12: 223-232 (2002)). Regardless of the form in which the selenium is ingested, it is transformed by a variety of metabolic pathways via the same intermediary pool into the specific selenocysteine-containing selenoproteins which are responsible for selenium biological effects. The levels of these selenocysteine-containing selenoproteins in tissues appear to be homeostatically controlled. Ingestion of supplemental selenium above the optimal requirements does not appear to increase the concentrations of the specific selenoproteins in tissues. However, ingestion of selenomethionine results in higher retention of selenium in tissues than those observed with other sources of selenium. This is attributed to the fact that only a fraction of selenomethionine is metabolized similar to other sources of selenium via the intermediary pool to specific selenocysteine-containing proteins. A certain percentage of ingested selenomethionine is incorporated non-specifically directly into proteins in place of methionine. This non-specifically bound selenium is present in high concentrations in methionine rich proteins. The fraction of ingested selenomethione that is incorporated in non-specific proteins appears to be dependent on the ratio of selenomethionine to methionine and not selenium status. When low methionine diets are ingested, the increased non-specific incorporation of selenomethionine in proteins resulted in the decreased concentrations and effects of the specific selenoproteins. Non-specific incorporation of selenomethionine takes place in the proteins of skeletal muscles, erythrocytes, pancreas, liver, stomach, kidneys and the gastrointestinal mucosa. The release of selenomethionine from body proteins is linked to protein turnover. A steady state concentration of selenomethionine in tissues may be established if the intake of the seleno-amino acid is maintained over extended period of time. (Schrauzer G. N. Nutritional Selenium Supplements: Product Types, Quality, and Safety. Journal of the American College of Nutrition, 20:1-4 (2001)).
- The disposition of selenomethionine, Se-methyl-selenocysteine, selenite, and selenate in animals has been carefully studied. These common sources of selenium in animal nutrition take different pathways to the intermediary selenium pool which is ultimately incorporated in the specific seleno-proteins or further converted into polar metabolites that can be readily excreted.
- A fraction of the ingested selenium source is eliminated via a number of pathways. Some of orally ingested selenite and selenate is reduced in the gastrointestinal tract to elemental selenium which is excreted in feces. Selenite and selenate are also excreted in urine.
- Supplementation of animal feed with an approved source of selenium is gaining popularity. Currently, inorganic sources such as selenite and selenate as well as the organic source selenium yeast are approved by the FDA as feed ingredients. However, the amount of selenium that can be added and the species of livestock that may be supplemented are regulated. The approval of the use of the inorganic sources of selenium such as selenite and selenate as feed ingredients is curious since these do not occur naturally in significant concentrations in feed. L-Selenomethionine is the form of selenium most commonly present in natural foods and feed. However, synthetic L-selenomethionine has not been commercially available at reasonable prices for use as feed ingredient in livestock production. Therefore, selenium enriched yeast has been used as a practical affordable source of L-selenomethionine. Special strains of Saccharomyces cerevisiea grown in a selenium rich medium accumulate as much as 3000 μg Se per g dry matter. Most of the selenium in yeast exists as L-selenomethionine. The L-selenomethionine is present primarily incorporated in the yeast protein in place of L-methionine. Other organic selenium compounds may be present in low concentrations including Se-adenosyl-selenohomocysteine (2-5%), selencysteine (0.5%), methylselenocysteine (0.5%), selenocystathionine (0.5%), and γ-glutamyl-Se-methylselenocysteine (0.5%). Only traces of inorganic selenium may be present in the yeast as selenite or selenate (Schrauzer G. N. Selenomethionine: A Review of its Nutritional Significance, Metabolism and Toxicity. J. Nutr. 130: 1653-1656 (2000)).
- Several studies were published during the last several years comparing the effects of selenite and selenium yeast supplements on the selenium status and health of livestock. In selenium deficient animals, the selenium concentrations in plasma and tissues increase linearly as intake of selenium increases to a point after which plasma and tissue selenium concentrations do not change significantly with increased intake. For example the relationship of dietary selenium from sodium selenite to selenium concentrations in plasma and milk in dairy cows was examined by Maus et al. Selenium concentration in plasma and milk increased linearly as intake of selenium increased from about 2-6 mg/day. Further increases in intake resulted in only little change in plasma and milk selenium (Maus R. W., Martz F. A., Belyea R. L. and Weiss M. F., Relationship of Dietary Selenium to Selenium in Plasma and Milk from Dairy Cows, J Dairy Sci, 63: 532-537 (1980)).
- Selenium was found to be more bioavailable from selenium yeast than from selenite or selenate in several animal studies. The increase in tissue selenium concentration was greater in animals fed selenium yeast compared to animals fed selenite. However, the increase in glutathione peroxidase activity was about the same regardless of the source of supplemental selenium. The favorable effects of selenium supplementation on animal health were demonstrated in several studies. For example, selenium supplementation improved udder health in dairy cows as demonstrated by a decrease in the percent quarters harboring mastitis pathogens and a decrease in somatic cells count in milk. Again the effects of selenium yeast were greater than those of sodium selenite (Malbe M., Klassen M., Fang W., Mylls V., Vikerpuur M., Nyholm K, Sankari S., Sourta K., and Sandholm M. Comparisons of Selenite and Selenium Yeast Feed Supplements on Se-incorporation, Mastitis and Leucocyte Function in Se-deficient Dairy Cows, J Vet Med A, 42: 111-121 (1995)).
- In summary, it is now well established that dietary selenium is essential for the health and wellbeing of humans and animals. Several studies have demonstrated that selenium is more bioavailable from organic sources than from inorganic sources. The only organic selenium source available for commercial use is selenium rich yeast preparation. In yeast, selenium exists primarily as L-selenomethionine rich proteins. Although Selenium yeast is now widely accepted as a source of dietary selenium, its use suffers from several shortcomings. The concentration of organically bound selenium in yeast is limited by its ability to form L-selenomethionine from the selenite enriched media. Currently, the highest possible concentration of selenium in yeast appears to be 2000 μg/g dry matter. Secondly, since the organically bound selenium in yeast is produced by a biological process that is vulnerable to subtle variations in the large scale production process, the exact composition of the selenium compounds is variable and is not readily known. Occasionally, yeast contains variable concentrations of inorganic selenium compounds such as selenites and selenates. Thirdly, the organic selenium compounds are present in yeast as part of the intracellular proteins. Before these compounds are available for absorption after being ingested, the cell walls of yeast must rupture to release the protein into the animals' gastrointestinal tract where it can be subjected to the proteolytic effects of digestive enzymes. It is only after the protein is hydrolyzed to single amino acids or dipeptides that the selenium compounds can be absorbed. The release of the selenium compounds as single amino acids or dipeptides from the intact yeast cells is not complete and is highly dependent on the conditions in the gastrointestinal tract. Because of these shortcomings, there is important need to develop alternatives to selenium enriched yeast to serve as a readily bioavailable dietary source of selenium. Our earlier U.S. Pat. No. 6,911,550, related to complex salts. This improvement relates to certain esters and organic derivatives that are very stable.
- Recently, the demand for a dietary sources of selenium with improved bioavailability for use as a supplement for human and livestock has increased. Synthetic seleno-amino acids have recently become commercially available at a reasonable cost. These amino acids however have low water solubility and their crystals have water repellent properties that result in low rate of dissolution. Low solubility and slow rate of dissolution lower the bioavailability of these compounds after feeding to animals. One primary objective of this invention is to identify derivatives of seleno-amino acids with improved bioavailability and then prepare them.
- Selenium like sulfur, is a member of group VIA elements. It exists in different allotropic forms and has oxidation states of −2, 0, +2, +4, and +6. Selenium is a nonmetallic element. It can form mono-atomic anions and therefore can form ionic as well as covalent bonds. In the oxidation state −2, selenium forms covalent bonds with carbon substituents and can often replace sulfur in naturally occurring compounds. The biological role of selenium is attributed to these naturally occurring compounds in which selenium exists in the −2 oxidation state and is covalently bound, usually with carbon as part of functional proteins. Seleno-amino acids have been proposed as dietary sources of selenium. However, it is recognized that the bioavailability of these compounds may be significantly diminished by the nutritional status of the animal and the composition of the diet and gastrointestinal tract contents. Therefore it was desirable to explore derivatives of the seleno-amino acids that may improve the bioavailability of these amino acids. In a previous patent (U.S. Pat. No. 6,911,550) the inventors of the present application described reversible derivatives of seleno amino acids with improved bioavailability. These reversible derivatives are 1:1 zinc complexes of selenoamino acids such as L-selenomethionine. The primary object of the present invention is to make novel irreversible derivatives of seleno-amino acids with improved bioavailability. These novel compounds are formed by chemically modifying the selenoamino acids by forming covalent bonds between the α-amino and/or the carboxyl group and a protective group. These chemically stable compounds are enzymatically modified to the selenoamino acid after being ingested by the animal.
- Another object of the invention is to describe methods of preparation of these derivatives and their use as feed ingredients in livestock.
- Novel derivatives of seleno-amino acids that are effective dietary sources of supplemental selenium in humans and livestock are prepared. The novel derivatives have improved physical, chemical or biological properties over the parent seleno-amino acid. These derivatives possess enhanced bioavailability and/or increased stability of the seleno-amino acids. They are 1:1 complexes of seleno-amino acids such as L-selenomethionine.
- Because of unsatisfactory performance of presently available selenium sources for use in feed supplements, it was necessary then to explore derivatives of selenomethionine that have improved bioavailability. The desired properties of the novel derivatives include:
-
- 1. The derivative must be a readily bioavailable source of selenium.
- 2. The derivative must be more stable than the parent compound.
- 3. The physical properties of the derivative such as solubility, rate of dissolution, odor are more favorable than the parent compound.
- 4. The derivative can be easily prepared from the parent compounds by using commercially available reagents and at a reasonable cost.
- 5. The derivative must be as safe as the parent compound recognizing that all selenium containing compounds have a narrow range of safety.
- 6. The derivative must be stable in the content of the rumen so it can be used as a source of selenium in rumenat animals.
- Other commercially available seleno-amino acids such as methyl-L-selenocysteine, were found to posses similar undesirable physical properties as L-selenomethionine. Therefore, derivatives of these selenoamino acids were also prepared. These derivatives were found to have similar properties as those of selenomethionine.
- One group of seleno-amino acid derivatives is the simple aliphatic esters such as methyl-, ethyl-, propyl-, and isopropyl esters. Among this group the isopropyl esters were the preferred compounds. These are readily prepared by the reaction of the seleno-amino acid with isopropyl alcohol in the presence of the appropriate catalyst or coupling agents. These included concentrated sulfuric acid and thionyl chloride. The amino acid ester is usually separated as the hydrochloride salt. The L-Selenomethionine Isopropyl Ester Hydrochloride is a readily soluble in water, and is significantly more stable than L-selenomethionine in the solid state and in solution. These derivatives have much greater lipid solubility than the parent seleno-amino acids and will be rapidly absorbed by passive diffusion from intestinal contents at pH>5.0.
- The second group of derivatives explored is the N-Succinyl derivatives of seleno-amino acids. These compounds were readily obtained by the reaction of the seleno-amino acids with succinic anhydride. These compounds are partially dissociated acids because the α-amino group of the seleno-amino acid is masked. These compounds are separated and easily purified as their salts. The potassium, sodium, calcium or magnesium salts may be prepared. The Sodium salt of N-Succinyl L-Selenomethione is readily soluble in water. It is significantly more stable than L-Selenomethionine in the solid state and in solution. These derivatives have much greater lipid solubility than the parent seleno-amino acids and will be rapidly absorbed by passive diffusion from gastro-intestinal contents at pH<3.0. The third group of derivatives explored is the N-Carbamoyl and Hydantoin derivatives of seleno-amino acids. N-Carbamoyl L-Selenomethionine is obtained by the reaction between L-Selenomethionine and Potassium Cyanate in aqueous solution at 90° C. Heating the N-Carbamoyl derivative in 3 N hydrochloric acid provide L-Selenomethionine Hydantoin. The N-carbamoyl derivative is more soluble in water and the solution appears to be more stable than the parent seleno-amino acid. The Hydantoin is less soluble and appears to be more stable than the parent seleno-amino acid.
- The compounds described above are reversible derivatives of the seleno-amino acids. After ingestion by the animal, they are expected to be readily converted to the parent seleno-amino acids primarily by enzyme catalyzed reactions. For example, The L-selenomethionine isopropyl ester is expected to be readily hydrolyzed by esterases present in the blood and other tissues such as the liver. The non-enzymatic hydrolysis of esters at pH 7.4 of the plasma is also possible. The N-Succinyl derivatives are likely to be enzymatically hydrolyzed by amidases in plasma and liver.
- The seleno-amino acid derivatives described in this invention may be added to solid or liquid feed as a readily available source of selenium. The amount of the compound added will depend on the animal being supplemented. For swine and poultry, the diet will be supplemented by 0.05-2.00 ppm Se, preferably 0.1-0.3 ppm Se. For cattle, the feed will be supplemented by 0.05-10 mg Se per head per day, preferably 2-7 mg Se per head per day.
- The following examples are offered to illustrate the practical methods of obtaining these complexes, their properties, and their use as sources of selenium in animal nutrition.
- In a 1000-ml round bottom flask was added isopropyl alcohol (150 ml). The flask was placed in an ice-water bath and concentrated sulfuric acid (43.208 g of Technical grade minimum 93%) was carefully added dropwise with constant agitation. L-Selenomethionine (66.962 g, 0.338 moles) was carefully added with continued agitation. A Soxhlet extraction tube was attached to the top of the flask. A glass extraction thimble with a fritted disc is filled with Molecular Sieves 3A was placed in the extraction tube. Isopropyl alcohol was added to fill the extraction tube. A reflux condenser was attached to the extraction tube. The mixture is heated by a heating mantle to cause gentle reflux of the isopropyl alcohol. The reaction mixture was heated under reflux for 48 hrs. The heating was discontinued and the flask was placed in an ice-water bath. Ammonium hydroxide solution is added slowly with continued mixing. A voluminous white precipitate was formed. The mixture was filtered and the precipitate is washed with isopropyl alcohol. The combined filtrate and washings were concentrated under reduced pressure to give a thick oil. The residue was dissolved in 100-ml of ethyl acetate. The ethyl acetate solution was transferred into a separatory funnel and extracted with successive portions of dilute ammonium hydroxide solution and Brine solution. The ethyl acetate extract was dried over anhydrous magnesium sulfate, filtered and the solvent removed under reduced pressure to give a thick yellow oil (42.337 g, 52.61% yield). The oil was dissolved in isopropyl alcohol (200 ml) and concentrated hydrochloric acid (20 g) was added. The mixture was concentrated under reduced pressure the residue was dissolved in the minimum amount of ethyl acetate. Dry ether was added dropwise until turbidity appeared. The mixture was stored in a refrigerator for 4 days. A white crystalline precipitate was filtered and washed with dry ether.
- The FTIR spectrum of the solid in a potassium bromide pellet showed absorption peaks at about: 3413.8(W), 2981.7(vs), 2877.6(vs), 2615.3(m), 2488.0(w), 2100.0(m), 1732.0(vs), 1585.4(m), 1512.1(m), 1465.8(m), 1442.7(m), 1377.1(m), 1276.8(s), 1242.1(vs), 1188.1(s), 1107.1(vs), 1068.5(m), 902.6(m) and 813.9(w) cm−1. (w, weak; m, medium; s, strong; vs, very strong). This spectrum is different than that of L-selenomethionine which showed absorption peaks at about: 3433.1(w), 2923.9(s), 2731.0(m), 2611.4(m), 2117.7(w), 1608.5(s), 1581.5(vs), 1512.1(s), 1411.8(s), 1338.5(m), 1269.1(w), 1218.9(w), 1153.4(w), and 540.0(w) cm−1.
- A solution containing 1 mg/ml of L-selenomethionine isopropyl ester hydrochloride in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 μl of the sample was injected onto the column by using a Rheodyne Loop injector. A 250×4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase. L-Selenomethionine isopropyl ester hydrochloride had a retention time of 4.467 min. L-Selenomethionine has a retention time of 4.167 min in this system. A single peak accounting for over 99% of detector response was obtained with the L-selenomethionine isopropyl ester hydrochloride. This system was useful for the determination of L-selenomethionine isopropyl ester hydrochloride in premixes.
- A 3-neck 250-ml round bottom flask was equipped with a thermometer, a reflux condenser and an addition funnel. Ethyl acetate (75 ml) was placed into the flask. Succinic anhydride (12.404 g) was finely pulverized in a mortar and added to the ethyl acetate in the flask. The mixture was stirred by a magnetic stirrer until all solids dissolved. L-Selenomethionine (19.630 g, 0.1 mole) was added. Dilute sulfuric acid (1.0 ml of a solution obtained by diluting 1 part concentrated sulfuric acid with 5 parts water). The mixture was heated under reflux with continued stirring for 1 hr. The hot clear solution was filtered. A white crystalline precipitate was formed as the filtrate was cooled. The precipitate weighed 24.92 g (84.14% yield).
- The FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3313.5(m), 3091.7(w), 2931.6(m), 2626.9(w), 1714.6(vs), 1647.1(s), 1616.2(m), 1434.9(m), 1409.9(m), 1245.9(s), 1195.8(s), 964.3(w), 704.0(w), and 636.5(w) cm−1. (w, weak; m, medium; s, strong; vs, very strong). This spectrum is different than that of L-selenomethionine which showed absorption peaks at about: 3433.1(w), 2923.9(s), 2731.0(m), 2611.4(m), 2117.7(w), 1608.5(s), 1581.5(vs), 1512.1(s), 1411.8(s), 1338.5(m), 1269.1(w), 1218.9(w), 1153.4(w), and 540.0(w) cm−1.
- A solution containing 1 mg/ml of N-Succinyl L-selenomethionine in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 μl of the sample was injected onto the column by using a Rheodyne Loop injector. A 250×4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase. The N-succinyl L-Selenomethionine had a retention time of 5.56 min. L-Selenomethionine has a retention time of 4.167 min in this system. A single peak accounting for over 99.54% of detector response was obtained with the N-succinyl L-selenomethionine. This system was useful for the determination of N-succinyl L-selenomethionine in premixes.
- A 3-neck 250-ml round bottom flask was equipped with a thermometer, a reflux condenser and an addition funnel. Water (40 ml) was placed into the flask. Potassium cyanate (9.735 g, 0.115 moles) was added to the water in the flask and the cold mixture was stirred by a magnetic stirrer until all solids dissolved. L-Selenomethionine (19.815 g, 0.1 moles) was added. The mixture was heated under reflux with vigorous stirring. The inside temperature reached 94° C. and then lowered to 80-85° C. The reaction mixture was maintained at 80-85° C. for 2 hrs. The clear solution obtained was cooled to room temperature. Hydrochloric acid (11.272 g, 0.115 moles) was added slowly with continued stirring. A heavy white crystalline precipitate was formed and filtered under reduced pressure. The precipitate weighed 20 g (83.65% yield).
- The FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3458.1(s), 3303.8(m), 2929.7(w), 1685.7(vs), 1631.7(vs), 1560.3(vs), 1442.7(w), 1411.8(w), 1282.6(s), 1244.0(w), 1197.7(w), 1180.4(w), 1103.2(w), 931.6(w), 775.3(w), 719.4(w), 576.7(w) and 478.3(w) cm−1. (w, weak; m, medium; s, strong; vs, very strong). This spectrum is different than that of L-selenomethionine which showed absorption peaks at about: 3433.1(w), 2923.9(s), 2731.0(m), 2611.4(m), 2117.7(w), 1608.5(s), 1581.5(vs), 1512.1(s), 1411.8(s), 1338.5(m), 1269.1(w), 1218.9(w), 1153.4(w), and 540.0(w) cm−1.
- A solution containing 1 mg/ml of N-Carbamoyl L-selenomethionine in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 μl of the sample was injected onto the column by using a Rheodyne Loop injector. A 250×4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase. The N-carbamoyl L-Selenomethionine had a single peak accounting for over 99.54% of detector response and a retention time of 5.15 min. L-Selenomethionine has a retention time of 4.167 min in this system. This system was useful for the determination of N-carbamoyl L-selenomethionine in premixes.
- A 3-neck 250-ml round bottom flask was equipped with a thermometer, a reflux condenser and an addition funnel. Water (40 ml) was placed into the flask. N-Carbamoyl L-selenomethionine (11.969 g, 0.05 moles) was added to the water in the flask and the mixture was stirred by a magnetic stirrer with cooling. Hydrochloric acid (14.599 g, 0.15 moles) was added slowly. The mixture was heated under reflux with vigorous stirring for 2 hrs. The clear solution was filtered while hot and then cooled to room temperature. A heavy white crystalline precipitate was formed and filtered under reduced pressure. The precipitate weighed 8.72 g (78.88% yield).
- The FTIR spectrum of the finely ground crystals obtained above in a potassium bromide pellet showed absorption peaks at about: 3062.7(w), 2761.9(w), 1774.4(s), 1732.0(vs), 1423.4(m), 1265.2(w), 1203.5(w), 748.3(w), 632.6(w), and 455.2(w) cm−1. (w, weak; m, medium; s, strong; vs, very strong). This spectrum is different than that of L-selenomethionine which showed absorption peaks at about: 3433.1(w), 2923.9(s), 2731.0(m), 2611.4(m), 2117.7(w), 1608.5(s), 1581.5(vs), 1512.1(s), 1411.8(s), 1338.5(m), 1269.1(w), 1218.9(w), 1153.4(w), and 540.0(w) cm−1.
- A solution containing 1 mg/ml of L-selenomethionine hydantoin in water was analyzed by HPLC using a UV/Vis detector at 210 nm and 20 μl of the sample was injected onto the column by using a Rheodyne Loop injector. A 250×4.6 mm Discovery Cyano column (Supelco) was used with 0.1% Acetic Acid at 1 ml/min as the mobile phase. The L-selenomethionine hydantoin showed a single peak accounting for over 99.72% of detector response and a retention time of 5.94 min. L-Selenomethionine has a retention time of 4.167 min in this system. This system was useful for the determination of L-selenomethionine hydantoin in premixes.
- Comparison of the Effects of Sodium Selenite and N-Succinyl L-Selenomethionine (Compound 2) on Tissue Selenium Content and Whole-Blood Glutathione Peroxidase Activity of Lactating Cows:
- Three premixes were prepared for use in a field study in lactating cows. One of the premixes contained no additional source of selenium and was intended to serve as the placebo. The second contained sodium selenite and the third contained N-Succinyl L-Selenomethionine (Compound 2). Each of the premixes was prepared by mixing an amount of the selenium source with sufficient amount of finely ground sugar to contain 250 ppm of selenium. Each premix was color identified by the incorporation of a solution of a food color during formulation and given a letter designation by random selection. The premixes were provided to the animal nutritionists blinded, i.e. they did not know the source of selenium in each of the premixes. This was done to avoid any possible biases in the interpretation of the results of the feeding experiments.
- Thirty lactating cows were fed one of the three premixes as a daily topdress. The effect of these selenium sources on tissue selenium content and whole blood glutathione peroxidase activity were determined. All cows were fed a total mixed diet devoid of added selenium for an initial 8-week depletion period. Daily rations were topdressed with an amount of the premix to provide 7.5 mg selenium. Treatments were continued for 8-week followed by a 4-week depletion period. Milk samples were collected on one day per week beginning the week prior to the first depletion period (Week 0) and continuing through the 20 weeks of the experiment. The selenium content of the milk serum obtained after the samples were defatted was determined. The selenium concentrations in milk serum for weeks 0, 8, 12, 16, and 20 are reported in Table 1. Blood samples were collected on one day per week beginning the week prior to the first depletion period (Week 0) and at four week intervals throughout the experiment (Weeks 8, 12, 16 and 20 in Table 1). The blood samples were draw into trace-element free vacutainer tubes containing an anticoagulant. Aliquots of whole blood were analyzed for selenium and glutathione peroxidase activity. Other aliquots of blood were centrifuged to harvest plasma and the selenium content of the plasma samples was determined. Liver samples were obtained by biopsy on one day per week beginning the week prior to the first depletion period (Week 0) and at four week intervals throughout the experiment (Weeks 8, 12, 16 and 20 in Table 1). Liver samples were analyzed for selenium content. The results of the experiment are reported in Table 1. The results in Table 1 show that the selenium concentrations in milk serum, plasma and liver after 8 weeks of restriction of selenium intake (Wk 8) were significantly lower than those before the start of the depletion period (Wk 0). Feeding the cows a mixed diet that does not contain supplemental selenium (Placebo) results in small increases in the selenium concentrations but the basal level at Wk 0 were not fully restored. However, feeding a diet supplemented with either sodium selenite or N-Succinyl L-Selenomethionine (Compound 2) resulted in progressive and significant increases in the selenium concentrations in these tissues (Wk12 & Wk 16). The concentrations of selenium decreased significantly in all tissues at the end of the second depletion period (Wk 20). The dramatic changes in the selenium concentrations in response to changes in dietary intake of selenium indicate that these tissues are sensitive indicators of the dietary selenium status of the lactating cows. It is important to note that Compound 2 caused statistically significant higher increases than sodium selenite in the selenium concentration of these three tissues indicating that N-Succinyl L-Selenomethionine is a more bioavailable source of dietary selenium than sodium selenite.
- The changes in the selenium concentration and glutathione peroxidase activity (GPX) in whole blood in response to changing dietary selenium intake were less sensitive than those in milk serum, plasma and liver. This indicates that these parameters are not useful indicators of the selenium status of lactating cows.
-
TABLE 1 Tissue Compound Wk 0 Wk 8 Wk 12 Wk 16 Wk 20 Milk Serum Se (ng/ml) Placebo 13.55 4.37 9.27 7.26 10.94 Sodium Selenite 13.01 3.89 11.93 22.84 10.94 Compound 2 14.96 4.30 25.18 30.37 10.91 Plasma Se (ng/ml) Placebo 72.1 47.1 31.3 28.9 42.7 Sodium Selenite 75.4 45.3 56.3 56.8 48.4 Compound 2 63.5 43.6 60.3 65.7 52.2 Liver Se (ng/g dry wt.) Placebo 1231 793 672 660 677 Sodium Selenite 1446 1034 1129 1185 934 Compound 2 1151 690 1437 1705 1003 Whole Blood Se (ng/ml) Placebo 133.3 145.9 99.0 92.6 81.4 Sodium Selenite 147.4 135.7 113.2 119.1 104.4 Compound 2 144.0 136.3 139.0 136.8 112.1 Whole Blood GPX Placebo 17.3 19.0 17.1 14.0 15.0 (EU/ml) Sodium Selenite 17.3 17.9 17.6 16.1 17.9 Compound 2 18.2 19.2 18.7 17.5 19.8 -
-
-
- As used herein the term “biologically active derivatives” means organic covalently bound compounds prepared from the basic structure (for example L-selenomethionine) that retains the bioavailability properties to provide selenium diet enrichment of animals.
- From the above written description and examples 1-5 it can be seen that the invention accomplishes the primary objectives of the inventors. It should be noted these examples are illustrative and not to be taken as limiting, as the scope of the inventors are defined by the following claims.
Claims (10)
1. A method of selenium supplementation of animals, comprising adding to animal feed a complex of a seleno alpha amino acids and/or a biological active derivative thereof.
2. The method of claim 1 wherein the seleno alpha amino acid is L-Selenomethionine and the biologically active derivative is a C1 to C3 ester.
3. The method of claim 2 wherein the ester is isopropyl.
4. The method of claim 1 wherein the biologically active derivative is an N-succinyl derivative.
5. The method of claim 1 wherein the biologically active derivative is an N-carbomyl derivative.
6. The method of claim 1 wherein the biologically active derivative is a hydantoin derivative.
7. The method of claim 1 wherein the animals are selected from the group of swine and poultry and the amount added is at a level of 0.05 to 2.0 ppm of selenium.
8. The method of claim 7 wherein the amount added is at a level of 0.1 to 0.3 ppm of selenium.
9. The method of claim 1 wherein the animal is domesticated cattle and the amount added is from 0.05 mg to 10 mg of selenium per head per day.
10. The method of claim 9 wherein the amount added is from 2 to 7 mg of selenium per head per day.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/195,155 US20080311277A1 (en) | 2005-07-14 | 2008-08-20 | Derivatives of seleno-amino acids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/181,264 US7586003B2 (en) | 2005-07-14 | 2005-07-14 | Derivatives of seleno-amino acids |
US12/195,155 US20080311277A1 (en) | 2005-07-14 | 2008-08-20 | Derivatives of seleno-amino acids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/181,264 Division US7586003B2 (en) | 2005-07-14 | 2005-07-14 | Derivatives of seleno-amino acids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080311277A1 true US20080311277A1 (en) | 2008-12-18 |
Family
ID=37104286
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/181,264 Expired - Fee Related US7586003B2 (en) | 2005-07-14 | 2005-07-14 | Derivatives of seleno-amino acids |
US12/195,155 Abandoned US20080311277A1 (en) | 2005-07-14 | 2008-08-20 | Derivatives of seleno-amino acids |
US12/436,325 Expired - Fee Related US8119836B2 (en) | 2005-07-14 | 2009-05-06 | Derivatives of seleno-amino acids |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/181,264 Expired - Fee Related US7586003B2 (en) | 2005-07-14 | 2005-07-14 | Derivatives of seleno-amino acids |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/436,325 Expired - Fee Related US8119836B2 (en) | 2005-07-14 | 2009-05-06 | Derivatives of seleno-amino acids |
Country Status (14)
Country | Link |
---|---|
US (3) | US7586003B2 (en) |
EP (1) | EP1902020B1 (en) |
JP (1) | JP4885217B2 (en) |
KR (1) | KR101034737B1 (en) |
CN (1) | CN101223134B (en) |
AU (1) | AU2006270349B2 (en) |
BR (1) | BRPI0613585A2 (en) |
CA (1) | CA2614479C (en) |
DK (1) | DK1902020T3 (en) |
ES (1) | ES2479991T3 (en) |
NZ (1) | NZ565046A (en) |
PL (1) | PL1902020T3 (en) |
WO (1) | WO2007011563A1 (en) |
ZA (1) | ZA200800348B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2012010218A (en) | 2010-03-09 | 2013-01-29 | Novus Int Inc | Preparation of methionine or selenomethionine from homoserine via a lactone intermediate. |
FR2965561B1 (en) * | 2010-10-05 | 2012-08-31 | Adisseo France Sas | PROCESS FOR PREPARING AN AMINO ACID FROM 2-AMINOBUTYROLACTONE |
CN103936604A (en) * | 2014-04-23 | 2014-07-23 | 深圳福山生物科技有限公司 | Selenium compound-containing choline salt, as well as preparation method and applications thereof |
CN104529850A (en) * | 2014-12-25 | 2015-04-22 | 湖南大学 | Method for preparing (Z) type tellurium-sulfur olefin compound |
US20170023572A1 (en) * | 2015-07-21 | 2017-01-26 | University Of Central Florida Research Foundation | Selenium and selenium-dependent molecules predict presence of mycobacteria |
CN112868941B (en) * | 2021-02-26 | 2023-03-31 | 海南晨海水产有限公司 | Selenium-rich feed suitable for feeding siganus oramin and preparation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254239A1 (en) * | 2003-02-21 | 2004-12-16 | Zinpro Corporation | Derivatives of seleno-amino acids with improved bioavailability and method for their preparation |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7508020A (en) | 1974-07-09 | 1976-01-13 | Hoechst Ag | PROCESS FOR PREPARING SELEEN CONTAINING AMINO ACIDS. |
JPS60190758A (en) | 1984-03-09 | 1985-09-28 | Ajinomoto Co Inc | Synthesis of selenosystine |
JPS6383061A (en) | 1986-09-25 | 1988-04-13 | Ajinomoto Co Inc | Production of selenohomocysteine |
US4865840A (en) * | 1987-04-29 | 1989-09-12 | Burke Karen E | Topical compositions containing selenoamino acids for the prevention of ultraviolet radiation-induced skin damage |
US5552440A (en) * | 1994-12-05 | 1996-09-03 | The University Of Kentucky Research Foundation | Use of L-canavanine as a chemotherapeutic agent for the treatment of pancreatic cancer |
FR2757857B1 (en) * | 1996-12-27 | 1999-04-23 | Oxis International Sa | AROMATIC DISELENURES AND SELENOSULFIDES, THEIR PREPARATION AND THEIR USES, ESPECIALLY THERAPEUTIC |
AU7240398A (en) * | 1998-05-08 | 1999-11-29 | Rolf Berge | Use of non-beta-oxidizable fatty acid analogues for treatment of syndrome-x conditions |
CN1218043A (en) | 1998-10-26 | 1999-06-02 | 董国臣 | Preparation and use of selenium substituted chromium methionine |
US7035236B2 (en) * | 2001-03-30 | 2006-04-25 | Telcordia Technologies, Inc. | Network-layer and link-layer use of shadow addresses with IP-based base stations |
US7801544B2 (en) * | 2001-06-29 | 2010-09-21 | Koninklijke Philips Electronics N.V. | Noise margin information for power control and link adaptation in IEEE 802.11h WLAN |
ITMI20020773A1 (en) * | 2002-04-11 | 2003-10-13 | Nicox Sa | DRUGS FOR THE TREATMENT OF ARTHRITIS |
US7599323B2 (en) * | 2002-10-17 | 2009-10-06 | Alcatel-Lucent Usa Inc. | Multi-interface mobility client |
GB0314741D0 (en) * | 2003-06-24 | 2003-07-30 | Isis Innovation | Reagents and methods |
FR2873376B1 (en) * | 2004-07-23 | 2006-11-24 | Tetrahedron Sas | NOVEL SELENO-HYDROXYACIDS AND DERIVATIVES, NUTRITION APPLICATIONS, COSMETICS AND PHARMACY |
-
2005
- 2005-07-14 US US11/181,264 patent/US7586003B2/en not_active Expired - Fee Related
-
2006
- 2006-07-06 JP JP2008521480A patent/JP4885217B2/en active Active
- 2006-07-06 DK DK06786713.5T patent/DK1902020T3/en active
- 2006-07-06 KR KR1020087003616A patent/KR101034737B1/en active Active
- 2006-07-06 PL PL06786713T patent/PL1902020T3/en unknown
- 2006-07-06 CN CN2006800257423A patent/CN101223134B/en active Active
- 2006-07-06 BR BRPI0613585-4A patent/BRPI0613585A2/en not_active Application Discontinuation
- 2006-07-06 NZ NZ565046A patent/NZ565046A/en unknown
- 2006-07-06 ES ES06786713.5T patent/ES2479991T3/en active Active
- 2006-07-06 AU AU2006270349A patent/AU2006270349B2/en active Active
- 2006-07-06 EP EP06786713.5A patent/EP1902020B1/en active Active
- 2006-07-06 WO PCT/US2006/026652 patent/WO2007011563A1/en active Application Filing
- 2006-07-06 CA CA2614479A patent/CA2614479C/en active Active
-
2008
- 2008-01-11 ZA ZA200800348A patent/ZA200800348B/en unknown
- 2008-08-20 US US12/195,155 patent/US20080311277A1/en not_active Abandoned
-
2009
- 2009-05-06 US US12/436,325 patent/US8119836B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254239A1 (en) * | 2003-02-21 | 2004-12-16 | Zinpro Corporation | Derivatives of seleno-amino acids with improved bioavailability and method for their preparation |
US6911550B2 (en) * | 2003-02-21 | 2005-06-28 | Zinpro Corporation | Derivatives of seleno-amino acids with improved bioavailability and method for their preparation |
Also Published As
Publication number | Publication date |
---|---|
AU2006270349A1 (en) | 2007-01-25 |
JP4885217B2 (en) | 2012-02-29 |
ZA200800348B (en) | 2009-01-28 |
EP1902020A1 (en) | 2008-03-26 |
KR101034737B1 (en) | 2011-05-17 |
US7586003B2 (en) | 2009-09-08 |
US20070015829A1 (en) | 2007-01-18 |
CN101223134A (en) | 2008-07-16 |
US20090214697A1 (en) | 2009-08-27 |
KR20080026655A (en) | 2008-03-25 |
AU2006270349B2 (en) | 2010-02-18 |
ES2479991T3 (en) | 2014-07-25 |
WO2007011563A1 (en) | 2007-01-25 |
US8119836B2 (en) | 2012-02-21 |
BRPI0613585A2 (en) | 2011-01-25 |
CA2614479C (en) | 2010-10-19 |
PL1902020T3 (en) | 2015-01-30 |
JP2009505949A (en) | 2009-02-12 |
CA2614479A1 (en) | 2007-01-25 |
DK1902020T3 (en) | 2014-07-07 |
CN101223134B (en) | 2012-10-17 |
NZ565046A (en) | 2010-04-30 |
EP1902020B1 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6911550B2 (en) | Derivatives of seleno-amino acids with improved bioavailability and method for their preparation | |
US8119836B2 (en) | Derivatives of seleno-amino acids | |
JP4703853B2 (en) | Method for supplying bioavailable methionine to cows | |
US20240228426A1 (en) | Dicarboxylic acid diesters | |
EP2680710B1 (en) | Enhanced bioavailable iodine molecules | |
US5677461A (en) | Method for producing chromium picolinate complex | |
NZ547046A (en) | 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRI | |
Amos et al. | Methionine, DL-homocysteine thiolactone and N-acetyl-DL-methionine for ruminants | |
Annicchiarico et al. | Dietary intake of vitamins and minerals, and water requirements. | |
Borman | The nutritive role of certain amino acids | |
Sergeevna et al. | BIOLOGICAL PROPERTIES OF SELENIUM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |