US20080306148A1 - Anti-cancer compositions and methods - Google Patents
Anti-cancer compositions and methods Download PDFInfo
- Publication number
- US20080306148A1 US20080306148A1 US12/102,629 US10262908A US2008306148A1 US 20080306148 A1 US20080306148 A1 US 20080306148A1 US 10262908 A US10262908 A US 10262908A US 2008306148 A1 US2008306148 A1 US 2008306148A1
- Authority
- US
- United States
- Prior art keywords
- isc
- group
- isoselenocyanate
- cancer
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 81
- 230000001093 anti-cancer Effects 0.000 title abstract description 5
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 160
- BITXABIVVURDNX-UHFFFAOYSA-N isoselenocyanic acid Chemical class N=C=[Se] BITXABIVVURDNX-UHFFFAOYSA-N 0.000 claims abstract description 122
- 201000011510 cancer Diseases 0.000 claims abstract description 64
- 230000006907 apoptotic process Effects 0.000 claims abstract description 36
- 230000008482 dysregulation Effects 0.000 claims abstract description 26
- 230000007423 decrease Effects 0.000 claims abstract description 19
- 230000035755 proliferation Effects 0.000 claims abstract description 15
- 201000001441 melanoma Diseases 0.000 claims description 75
- 239000011669 selenium Substances 0.000 claims description 61
- -1 alkylamine compound Chemical class 0.000 claims description 55
- 101150051155 Akt3 gene Proteins 0.000 claims description 51
- 108091008611 Protein Kinase B Proteins 0.000 claims description 50
- 150000001875 compounds Chemical class 0.000 claims description 43
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 41
- 125000000217 alkyl group Chemical group 0.000 claims description 41
- 229910052711 selenium Inorganic materials 0.000 claims description 41
- 125000003118 aryl group Chemical group 0.000 claims description 40
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 33
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 230000019491 signal transduction Effects 0.000 claims description 21
- 238000003786 synthesis reaction Methods 0.000 claims description 21
- 230000007730 Akt signaling Effects 0.000 claims description 18
- 229910052717 sulfur Inorganic materials 0.000 claims description 18
- 230000000699 topical effect Effects 0.000 claims description 18
- 101150045355 akt1 gene Proteins 0.000 claims description 17
- 239000008194 pharmaceutical composition Substances 0.000 claims description 17
- 101150107888 AKT2 gene Proteins 0.000 claims description 16
- 125000000962 organic group Chemical group 0.000 claims description 14
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 claims description 14
- 239000003937 drug carrier Substances 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 7
- 235000018417 cysteine Nutrition 0.000 claims description 7
- 238000011394 anticancer treatment Methods 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 5
- JQAPQYSTPXVKSY-WCCKRBBISA-N CC(N[C@@H](CS)C(O)=O)=O.N=C=[Se] Chemical compound CC(N[C@@H](CS)C(O)=O)=O.N=C=[Se] JQAPQYSTPXVKSY-WCCKRBBISA-N 0.000 claims description 3
- GRHZFOGSIFWFEP-GEMLJDPKSA-N N[C@@H](CCC(N[C@@H](CS)C(NCC(O)=O)=O)=O)C(O)=O.N=C=[Se] Chemical compound N[C@@H](CCC(N[C@@H](CS)C(NCC(O)=O)=O)=O)C(O)=O.N=C=[Se] GRHZFOGSIFWFEP-GEMLJDPKSA-N 0.000 claims description 3
- 150000003973 alkyl amines Chemical class 0.000 claims description 2
- 230000022244 formylation Effects 0.000 claims description 2
- 238000006170 formylation reaction Methods 0.000 claims description 2
- 150000002540 isothiocyanates Chemical class 0.000 abstract description 74
- 210000004027 cell Anatomy 0.000 description 187
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 168
- NMPQIJIERCLTOG-UHFFFAOYSA-N 4-isoselenocyanatobutylbenzene Chemical compound [Se]=C=NCCCCC1=CC=CC=C1 NMPQIJIERCLTOG-UHFFFAOYSA-N 0.000 description 111
- CCBQOLFAKKAMLD-UHFFFAOYSA-N 1-Isothiocyanato-4-phenylbutane Chemical compound S=C=NCCCCC1=CC=CC=C1 CCBQOLFAKKAMLD-UHFFFAOYSA-N 0.000 description 73
- VJNWEQGIPZMBMA-UHFFFAOYSA-N 6-isothiocyanatohexylbenzene Chemical compound S=C=NCCCCCCC1=CC=CC=C1 VJNWEQGIPZMBMA-UHFFFAOYSA-N 0.000 description 48
- 230000000694 effects Effects 0.000 description 46
- 238000011282 treatment Methods 0.000 description 46
- 239000003981 vehicle Substances 0.000 description 30
- 241000699670 Mus sp. Species 0.000 description 29
- 230000001965 increasing effect Effects 0.000 description 28
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 241001465754 Metazoa Species 0.000 description 20
- MDKCFLQDBWCQCV-UHFFFAOYSA-N benzyl isothiocyanate Chemical compound S=C=NCC1=CC=CC=C1 MDKCFLQDBWCQCV-UHFFFAOYSA-N 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 19
- IZJDOKYDEWTZSO-UHFFFAOYSA-N phenethyl isothiocyanate Chemical compound S=C=NCCC1=CC=CC=C1 IZJDOKYDEWTZSO-UHFFFAOYSA-N 0.000 description 17
- 230000005748 tumor development Effects 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 230000037396 body weight Effects 0.000 description 16
- 108020004459 Small interfering RNA Proteins 0.000 description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 13
- 230000002401 inhibitory effect Effects 0.000 description 13
- 238000001262 western blot Methods 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 230000022131 cell cycle Effects 0.000 description 12
- 230000004663 cell proliferation Effects 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 231100000419 toxicity Toxicity 0.000 description 12
- 230000001988 toxicity Effects 0.000 description 12
- 230000003833 cell viability Effects 0.000 description 11
- 206010027476 Metastases Diseases 0.000 description 10
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 10
- 238000011065 in-situ storage Methods 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 230000009401 metastasis Effects 0.000 description 10
- 230000001855 preneoplastic effect Effects 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 102000047934 Caspase-3/7 Human genes 0.000 description 9
- 108700037887 Caspase-3/7 Proteins 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 210000003491 skin Anatomy 0.000 description 9
- 238000010254 subcutaneous injection Methods 0.000 description 9
- 239000007929 subcutaneous injection Substances 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 241000699660 Mus musculus Species 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 8
- 210000002950 fibroblast Anatomy 0.000 description 8
- 239000012139 lysis buffer Substances 0.000 description 8
- 238000011580 nude mouse model Methods 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- SUVMJBTUFCVSAD-UHFFFAOYSA-N sulforaphane Chemical compound CS(=O)CCCCN=C=S SUVMJBTUFCVSAD-UHFFFAOYSA-N 0.000 description 8
- 101000690268 Homo sapiens Proline-rich AKT1 substrate 1 Proteins 0.000 description 7
- 102100024091 Proline-rich AKT1 substrate 1 Human genes 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 238000010898 silica gel chromatography Methods 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 6
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 6
- 101710179684 Poly [ADP-ribose] polymerase Proteins 0.000 description 6
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 229960004308 acetylcysteine Drugs 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 238000003119 immunoblot Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000000111 isothermal titration calorimetry Methods 0.000 description 6
- 239000002808 molecular sieve Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 6
- XPNZXCHCPXLBOM-UHFFFAOYSA-N 6-isoselenocyanatohexylbenzene Chemical compound [Se]=C=NCCCCCCC1=CC=CC=C1 XPNZXCHCPXLBOM-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 210000000038 chest Anatomy 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 229960003180 glutathione Drugs 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000001543 one-way ANOVA Methods 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 231100000057 systemic toxicity Toxicity 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- SUVMJBTUFCVSAD-JTQLQIEISA-N 4-Methylsulfinylbutyl isothiocyanate Natural products C[S@](=O)CCCCN=C=S SUVMJBTUFCVSAD-JTQLQIEISA-N 0.000 description 4
- ZHWPDHJGUQOBKO-UHFFFAOYSA-N 6-phenylhexyl selenocyanate Chemical compound N#C[Se]CCCCCCC1=CC=CC=C1 ZHWPDHJGUQOBKO-UHFFFAOYSA-N 0.000 description 4
- 229940126638 Akt inhibitor Drugs 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 4
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 238000000719 MTS assay Methods 0.000 description 4
- 231100000070 MTS assay Toxicity 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 101100296200 Mus musculus Pak3 gene Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229920004890 Triton X-100 Polymers 0.000 description 4
- 239000013504 Triton X-100 Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 229940109239 creatinine Drugs 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000003531 protein hydrolysate Substances 0.000 description 4
- 239000003197 protein kinase B inhibitor Substances 0.000 description 4
- 150000003342 selenium Chemical class 0.000 description 4
- 238000012453 sprague-dawley rat model Methods 0.000 description 4
- 229960005559 sulforaphane Drugs 0.000 description 4
- 235000015487 sulforaphane Nutrition 0.000 description 4
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- 0 *S(=O)CN=C=[Se] Chemical compound *S(=O)CN=C=[Se] 0.000 description 3
- APRZHQXAAWPYHS-UHFFFAOYSA-N 4-[5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-1,3-thiazol-2-yl)tetrazol-3-ium-2-yl]benzenesulfonate Chemical compound S1C(C)=C(C)N=C1[N+]1=NC(C=2C=C(OCC(O)=O)C=CC=2)=NN1C1=CC=C(S([O-])(=O)=O)C=C1 APRZHQXAAWPYHS-UHFFFAOYSA-N 0.000 description 3
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- 108010082126 Alanine transaminase Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 201000008808 Fibrosarcoma Diseases 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 238000003149 assay kit Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000000973 chemotherapeutic effect Effects 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 208000005017 glioblastoma Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 210000004966 intestinal stem cell Anatomy 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000000021 kinase assay Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- FSDTVSVBONVQBJ-UHFFFAOYSA-N n-(4-phenylbutyl)formamide Chemical compound O=CNCCCCC1=CC=CC=C1 FSDTVSVBONVQBJ-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229940068917 polyethylene glycols Drugs 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 231100000588 tumorigenic Toxicity 0.000 description 3
- 230000000381 tumorigenic effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- FLMQTEGMYMOWQC-UHFFFAOYSA-N 1-isoselenocyanato-4-methylsulfinylbutane Chemical compound CS(=O)CCCCN=C=[Se] FLMQTEGMYMOWQC-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- ZSXRNISZKBBQRN-UHFFFAOYSA-N 6-phenylhexan-1-amine Chemical compound NCCCCCCC1=CC=CC=C1 ZSXRNISZKBBQRN-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 102100038910 Alpha-enolase Human genes 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 108010078049 Interferon alpha-2 Proteins 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101150024075 Mapk1 gene Proteins 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 2
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- SMPZPKRDRQOOHT-UHFFFAOYSA-N acronycine Chemical compound CN1C2=CC=CC=C2C(=O)C2=C1C(C=CC(C)(C)O1)=C1C=C2OC SMPZPKRDRQOOHT-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 238000011717 athymic nude mouse Methods 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002113 chemopreventative effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000002498 deadly effect Effects 0.000 description 2
- 239000013024 dilution buffer Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 150000003948 formamides Chemical class 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- NAOAAZDDXUNOGA-UHFFFAOYSA-N isoselenocyanatomethylbenzene Chemical compound [Se]=C=NCC1=CC=CC=C1 NAOAAZDDXUNOGA-UHFFFAOYSA-N 0.000 description 2
- 210000002510 keratinocyte Anatomy 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- NOOOMJZHMKSKBF-UHFFFAOYSA-N n-(2-phenylethyl)formamide Chemical compound O=CNCCC1=CC=CC=C1 NOOOMJZHMKSKBF-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 125000003884 phenylalkyl group Chemical group 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229940080469 phosphocellulose Drugs 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 102200082402 rs751610198 Human genes 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- AVPCPPOOQICIRJ-UHFFFAOYSA-L sodium glycerol 2-phosphate Chemical compound [Na+].[Na+].OCC(CO)OP([O-])([O-])=O AVPCPPOOQICIRJ-UHFFFAOYSA-L 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- ZWZVWGITAAIFPS-UHFFFAOYSA-N thiophosgene Chemical compound ClC(Cl)=S ZWZVWGITAAIFPS-UHFFFAOYSA-N 0.000 description 2
- 239000012049 topical pharmaceutical composition Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- MNHVIVWFCMBFCV-AVGNSLFASA-N (2S)-2-[[(2S)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-6-diazo-5-oxohexanoyl]amino]-6-diazo-5-oxohexanoic acid Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CCC(=O)C=[N+]=[N-])C(=O)N[C@@H](CCC(=O)C=[N+]=[N-])C(O)=O MNHVIVWFCMBFCV-AVGNSLFASA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ZUQBAQVRAURMCL-DOMZBBRYSA-N (2s)-2-[[4-[2-[(6r)-2-amino-4-oxo-5,6,7,8-tetrahydro-1h-pyrido[2,3-d]pyrimidin-6-yl]ethyl]benzoyl]amino]pentanedioic acid Chemical compound C([C@@H]1CC=2C(=O)N=C(NC=2NC1)N)CC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 ZUQBAQVRAURMCL-DOMZBBRYSA-N 0.000 description 1
- SWXOGPJRIDTIRL-DOUNNPEJSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s)-1-amino-3-(1h-indol-3-yl)-1-oxopropan-2-yl]-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-pent Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 SWXOGPJRIDTIRL-DOUNNPEJSA-N 0.000 description 1
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 description 1
- KJAXEBRGQOHHOY-VXRVIWLSSA-N (4s)-4-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s,3r)-2-[[(2s)-2-[[(2s)-1-[(2s)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropan Chemical compound N([C@@H](CCCN=C(N)N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)CN KJAXEBRGQOHHOY-VXRVIWLSSA-N 0.000 description 1
- YSGQGNQWBLYHPE-CFUSNLFHSA-N (7r,8r,9s,10r,13s,14s,17s)-17-hydroxy-7,13-dimethyl-2,6,7,8,9,10,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-one Chemical compound C1C[C@]2(C)[C@@H](O)CC[C@H]2[C@@H]2[C@H](C)CC3=CC(=O)CC[C@@H]3[C@H]21 YSGQGNQWBLYHPE-CFUSNLFHSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- OGPIBXIQNMQSPY-JPYJTQIMSA-N (R,R)-tubulozole Chemical compound C1=CC(NC(=O)OCC)=CC=C1SC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 OGPIBXIQNMQSPY-JPYJTQIMSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- OJRZEKJECRTBPJ-NGAMADIESA-N (z,5s)-5-acetamido-1-diazonio-6-hydroxy-6-oxohex-1-en-2-olate Chemical compound CC(=O)N[C@H](C(O)=O)CC\C([O-])=C\[N+]#N OJRZEKJECRTBPJ-NGAMADIESA-N 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- FFGSXKJJVBXWCY-UHFFFAOYSA-N 1,4-bis[2-(2-hydroxyethylamino)ethylamino]anthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO FFGSXKJJVBXWCY-UHFFFAOYSA-N 0.000 description 1
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-HLTSFMKQSA-N 1,5-bis[[(2r)-oxiran-2-yl]methyl]-3-[[(2s)-oxiran-2-yl]methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(C[C@H]2OC2)C(=O)N(C[C@H]2OC2)C(=O)N1C[C@H]1CO1 OUPZKGBUJRBPGC-HLTSFMKQSA-N 0.000 description 1
- UOAFGUOASVSLPK-UHFFFAOYSA-N 1-(2-chloroethyl)-3-(2,2-dimethylpropyl)-1-nitrosourea Chemical compound CC(C)(C)CNC(=O)N(N=O)CCCl UOAFGUOASVSLPK-UHFFFAOYSA-N 0.000 description 1
- JQJSFAJISYZPER-UHFFFAOYSA-N 1-(4-chlorophenyl)-3-(2,3-dihydro-1h-inden-5-ylsulfonyl)urea Chemical compound C1=CC(Cl)=CC=C1NC(=O)NS(=O)(=O)C1=CC=C(CCC2)C2=C1 JQJSFAJISYZPER-UHFFFAOYSA-N 0.000 description 1
- SNYUHPPZINRDSG-UHFFFAOYSA-N 1-(oxiran-2-ylmethyl)-4-[1-(oxiran-2-ylmethyl)piperidin-4-yl]piperidine Chemical compound C1CC(C2CCN(CC3OC3)CC2)CCN1CC1CO1 SNYUHPPZINRDSG-UHFFFAOYSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- ZKFNOUUKULVDOB-UHFFFAOYSA-N 1-amino-1-phenylmethyl phosphonic acid Chemical compound OP(=O)(O)C(N)C1=CC=CC=C1 ZKFNOUUKULVDOB-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- KRXMYBAZKJBJAB-UHFFFAOYSA-N 2-(4-methylphenyl)-1,2-benzothiazol-3-one Chemical compound C1=CC(C)=CC=C1N1C(=O)C2=CC=CC=C2S1 KRXMYBAZKJBJAB-UHFFFAOYSA-N 0.000 description 1
- NJWBUDCAWGTQAS-UHFFFAOYSA-N 2-(chrysen-6-ylmethylamino)-2-methylpropane-1,3-diol;methanesulfonic acid Chemical compound CS(O)(=O)=O.C1=CC=C2C(CNC(CO)(CO)C)=CC3=C(C=CC=C4)C4=CC=C3C2=C1 NJWBUDCAWGTQAS-UHFFFAOYSA-N 0.000 description 1
- QXLQZLBNPTZMRK-UHFFFAOYSA-N 2-[(dimethylamino)methyl]-1-(2,4-dimethylphenyl)prop-2-en-1-one Chemical compound CN(C)CC(=C)C(=O)C1=CC=C(C)C=C1C QXLQZLBNPTZMRK-UHFFFAOYSA-N 0.000 description 1
- KPRFMAZESAKTEJ-UHFFFAOYSA-N 2-[1-amino-4-[2,5-dioxo-4-(1-phenylethyl)pyrrolidin-3-yl]-1-oxobutan-2-yl]-5-carbamoylheptanedioic acid;azane Chemical compound [NH4+].[NH4+].C=1C=CC=CC=1C(C)C1C(CCC(C(CCC(CC([O-])=O)C(N)=O)C([O-])=O)C(N)=O)C(=O)NC1=O KPRFMAZESAKTEJ-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- CNMSUIBHTZHSEK-UHFFFAOYSA-N 2-isoselenocyanatoethylbenzene Chemical compound [Se]=C=NCCC1=CC=CC=C1 CNMSUIBHTZHSEK-UHFFFAOYSA-N 0.000 description 1
- DSWLRNLRVBAVFC-UHFFFAOYSA-N 2-methylsulfinyl-1-pyridin-2-ylethanone Chemical compound CS(=O)CC(=O)C1=CC=CC=N1 DSWLRNLRVBAVFC-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- PWMYMKOUNYTVQN-UHFFFAOYSA-N 3-(8,8-diethyl-2-aza-8-germaspiro[4.5]decan-2-yl)-n,n-dimethylpropan-1-amine Chemical compound C1C[Ge](CC)(CC)CCC11CN(CCCN(C)C)CC1 PWMYMKOUNYTVQN-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- QNKJFXARIMSDBR-UHFFFAOYSA-N 3-[2-[bis(2-chloroethyl)amino]ethyl]-1,3-diazaspiro[4.5]decane-2,4-dione Chemical compound O=C1N(CCN(CCCl)CCCl)C(=O)NC11CCCCC1 QNKJFXARIMSDBR-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- AKJHMTWEGVYYSE-AIRMAKDCSA-N 4-HPR Chemical compound C=1C=C(O)C=CC=1NC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C AKJHMTWEGVYYSE-AIRMAKDCSA-N 0.000 description 1
- FRRCFKLOPJSLMF-UHFFFAOYSA-N 4-methylsulfinylbutan-1-amine Chemical compound CS(=O)CCCCN FRRCFKLOPJSLMF-UHFFFAOYSA-N 0.000 description 1
- PXLPCZJACKUXGP-UHFFFAOYSA-N 5-(3,4-dichlorophenyl)-6-ethylpyrimidine-2,4-diamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C(Cl)=C1 PXLPCZJACKUXGP-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- MMRCWWRFYLZGAE-ZBZRSYSASA-N 533u947v6q Chemical compound O([C@]12[C@H](OC(C)=O)[C@]3(CC)C=CCN4CC[C@@]5([C@H]34)[C@H]1N(C)C1=C5C=C(C(=C1)OC)[C@]1(C(=O)OC)C3=C(C4=CC=CC=C4N3)CCN3C[C@H](C1)C[C@@](C3)(O)CC)C(=O)N(CCCl)C2=O MMRCWWRFYLZGAE-ZBZRSYSASA-N 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- ZNTIXVYOBQDFFV-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one;methanesulfonic acid Chemical compound CS(O)(=O)=O.O=C1NC(N)=CC2=C1N=CN2 ZNTIXVYOBQDFFV-UHFFFAOYSA-N 0.000 description 1
- RCVNHNOEUMFFDY-UHFFFAOYSA-N 6-chlorohexylbenzene Chemical compound ClCCCCCCC1=CC=CC=C1 RCVNHNOEUMFFDY-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-ZVCIMWCZSA-N 9-cis-retinoic acid Chemical compound OC(=O)/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-ZVCIMWCZSA-N 0.000 description 1
- 102100040277 Acyl-protein thioesterase 2 Human genes 0.000 description 1
- 101710132083 Acyl-protein thioesterase 2 Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 108700032558 Aspergillus restrictus MITF Proteins 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- CIUUIPMOFZIWIZ-UHFFFAOYSA-N Bropirimine Chemical compound NC1=NC(O)=C(Br)C(C=2C=CC=CC=2)=N1 CIUUIPMOFZIWIZ-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- PMBXNDDSUFQVDL-UHFFFAOYSA-N C=CCN.C=CCN=C=[Se] Chemical compound C=CCN.C=CCN=C=[Se] PMBXNDDSUFQVDL-UHFFFAOYSA-N 0.000 description 1
- USQSFAINVOEUSY-UHFFFAOYSA-M CC(=O)NC(CSC(=[Se])NCC1=CC=CC=C1)C(=O)[O-] Chemical compound CC(=O)NC(CSC(=[Se])NCC1=CC=CC=C1)C(=O)[O-] USQSFAINVOEUSY-UHFFFAOYSA-M 0.000 description 1
- FOUYDLHSCWOJOH-UHFFFAOYSA-L CC(=O)NC(CSC(=[Se])NCCCCC1=CC=CC=C1)C(=O)[O-].CCC(NC(C)=O)C(=O)[O-].[Se]=C=NCCCCC1=CC=CC=C1 Chemical compound CC(=O)NC(CSC(=[Se])NCCCCC1=CC=CC=C1)C(=O)[O-].CCC(NC(C)=O)C(=O)[O-].[Se]=C=NCCCCC1=CC=CC=C1 FOUYDLHSCWOJOH-UHFFFAOYSA-L 0.000 description 1
- TYZRLSRPDDWBHA-UHFFFAOYSA-N CS(=O)CN.CS(=O)CN=C=[Se].CS(=O)CNC=O.[H]C(=O)OCC Chemical compound CS(=O)CN.CS(=O)CN=C=[Se].CS(=O)CNC=O.[H]C(=O)OCC TYZRLSRPDDWBHA-UHFFFAOYSA-N 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- PPASFTRHCXASPY-UHFFFAOYSA-N Cl.Cl.NCCCNc1ccc2c3c(nn2CCNCCO)c4c(O)ccc(O)c4C(=O)c13 Chemical compound Cl.Cl.NCCCNc1ccc2c3c(nn2CCNCCO)c4c(O)ccc(O)c4C(=O)c13 PPASFTRHCXASPY-UHFFFAOYSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- SRUWWOSWHXIIIA-UKPGNTDSSA-N Cyanoginosin Chemical compound N1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](C)[C@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C(=C)N(C)C(=O)CC[C@H](C(O)=O)N(C)C(=O)[C@@H](C)[C@@H]1\C=C\C(\C)=C\[C@H](C)[C@@H](O)CC1=CC=CC=C1 SRUWWOSWHXIIIA-UKPGNTDSSA-N 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- SPKNARKFCOPTSY-UHFFFAOYSA-N D-asperlin Natural products CC1OC1C1C(OC(C)=O)C=CC(=O)O1 SPKNARKFCOPTSY-UHFFFAOYSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- NBEALWAVEGMZQY-UHFFFAOYSA-N Enpromate Chemical compound C=1C=CC=CC=1C(C#C)(C=1C=CC=CC=1)OC(=O)NC1CCCCC1 NBEALWAVEGMZQY-UHFFFAOYSA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 1
- 230000035519 G0 Phase Effects 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010054698 Interferon Alfa-n3 Proteins 0.000 description 1
- VHJLVAABSRFDPM-IMJSIDKUSA-N L-1,4-dithiothreitol Chemical compound SC[C@H](O)[C@@H](O)CS VHJLVAABSRFDPM-IMJSIDKUSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- LPGWZGMPDKDHEP-HLTPFJCJSA-N Leurosine Chemical compound C([C@]1([C@@H]2O1)CC)N(CCC=1C3=CC=CC=C3NC=11)C[C@H]2C[C@]1(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC LPGWZGMPDKDHEP-HLTPFJCJSA-N 0.000 description 1
- LPGWZGMPDKDHEP-GKWAKPNHSA-N Leurosine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@]6(CC)O[C@@H]6[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C LPGWZGMPDKDHEP-GKWAKPNHSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- BUHXUUTXFQNNJS-UHFFFAOYSA-N N#C[Se]CCCCCCC1=CC=CC=C1.S=C=NCC1=CC=CC=C1.S=C=NCCC1=CC=CC=C1.S=C=NCCCCCC1=CC=CC=C1.S=C=NCCCCCCC1=CC=CC=C1.[Se]=C=NCC1=CC=CC=C1.[Se]=C=NCCC1=CC=CC=C1.[Se]=C=NCCCCCC1=CC=CC=C1.[Se]=C=NCCCCCCC1=CC=CC=C1 Chemical compound N#C[Se]CCCCCCC1=CC=CC=C1.S=C=NCC1=CC=CC=C1.S=C=NCCC1=CC=CC=C1.S=C=NCCCCCC1=CC=CC=C1.S=C=NCCCCCCC1=CC=CC=C1.[Se]=C=NCC1=CC=CC=C1.[Se]=C=NCCC1=CC=CC=C1.[Se]=C=NCCCCCC1=CC=CC=C1.[Se]=C=NCCCCCCC1=CC=CC=C1 BUHXUUTXFQNNJS-UHFFFAOYSA-N 0.000 description 1
- USVMJSALORZVDV-SDBHATRESA-N N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O USVMJSALORZVDV-SDBHATRESA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- QAADZYUXQLUXFX-UHFFFAOYSA-N N-phenylmethylthioformamide Natural products S=CNCC1=CC=CC=C1 QAADZYUXQLUXFX-UHFFFAOYSA-N 0.000 description 1
- LYPFDBRUNKHDGX-SOGSVHMOSA-N N1C2=CC=C1\C(=C1\C=CC(=N1)\C(=C1\C=C/C(/N1)=C(/C1=N/C(/CC1)=C2/C1=CC(O)=CC=C1)C1=CC(O)=CC=C1)\C1=CC(O)=CC=C1)C1=CC(O)=CC=C1 Chemical compound N1C2=CC=C1\C(=C1\C=CC(=N1)\C(=C1\C=C/C(/N1)=C(/C1=N/C(/CC1)=C2/C1=CC(O)=CC=C1)C1=CC(O)=CC=C1)\C1=CC(O)=CC=C1)C1=CC(O)=CC=C1 LYPFDBRUNKHDGX-SOGSVHMOSA-N 0.000 description 1
- WDNYSOAJFKCPPI-UHFFFAOYSA-N NCC1=CC=CC=C1.O=CNCC1=CC=CC=C1.S=C=NCC1=CC=CC=C1 Chemical compound NCC1=CC=CC=C1.O=CNCC1=CC=CC=C1.S=C=NCC1=CC=CC=C1 WDNYSOAJFKCPPI-UHFFFAOYSA-N 0.000 description 1
- YKPIBADQSQHCFQ-UHFFFAOYSA-N NCC1=CC=CC=C1.O=CNCC1=CC=CC=C1.[H]C(=O)OCC.[Se]=C=NCC1=CC=CC=C1 Chemical compound NCC1=CC=CC=C1.O=CNCC1=CC=CC=C1.[H]C(=O)OCC.[Se]=C=NCC1=CC=CC=C1 YKPIBADQSQHCFQ-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- KGTDRFCXGRULNK-UHFFFAOYSA-N Nogalamycin Natural products COC1C(OC)(C)C(OC)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=C4C5(C)OC(C(C(C5O)N(C)C)O)OC4=C3C3=O)=C3C=C2C(C(=O)OC)C(C)(O)C1 KGTDRFCXGRULNK-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241001043922 Pensacola Species 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- XESARGFCSKSFID-UHFFFAOYSA-N Pyrazofurin Natural products OC1=C(C(=O)N)NN=C1C1C(O)C(O)C(CO)O1 XESARGFCSKSFID-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- OALYNUAYBZONIT-UHFFFAOYSA-N S=C=NCC1=CC=CC=C1.[Se]=C=NCC1=CC=CC=C1 Chemical compound S=C=NCC1=CC=CC=C1.[Se]=C=NCC1=CC=CC=C1 OALYNUAYBZONIT-UHFFFAOYSA-N 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108010050144 Triptorelin Pamoate Proteins 0.000 description 1
- VGQOVCHZGQWAOI-UHFFFAOYSA-N UNPD55612 Natural products N1C(O)C2CC(C=CC(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-UHFFFAOYSA-N 0.000 description 1
- MHGVSUAAUXQULX-UHFFFAOYSA-N Vinepidine Natural products CCC1CC2CN(CCC3C(=Nc4ccccc34)C(C2)(C(=O)OC)c5cc6c(cc5OC)N(C=O)C7C(O)(C(OC(=O)C)C8(CC)C=CCN9CCC67C89)C(=O)OC)C1 MHGVSUAAUXQULX-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- ZMQRJWIYMXZORG-GZIFKOAOSA-N [(1e,3r,4r,6r,7z,9z,11e)-3,6,13-trihydroxy-3-methyl-1-[(2s)-6-oxo-2,3-dihydropyran-2-yl]trideca-1,7,9,11-tetraen-4-yl] dihydrogen phosphate Chemical compound OC/C=C/C=C\C=C/[C@H](O)C[C@@H](OP(O)(O)=O)[C@@](O)(C)\C=C\[C@@H]1CC=CC(=O)O1 ZMQRJWIYMXZORG-GZIFKOAOSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- VUPBDWQPEOWRQP-RTUCOMKBSA-N [(2R,3S,4S,5R,6R)-2-[(2R,3S,4S,5S,6S)-2-[(1S,2S)-3-[[(2R,3S)-5-[[(2S,3R)-1-[[2-[4-[4-[[4-amino-6-[3-(4-aminobutylamino)propylamino]-6-oxohexyl]carbamoyl]-1,3-thiazol-2-yl]-1,3-thiazol-2-yl]-1-[(2S,3R,4R,5S,6S)-5-amino-3,4-dihydroxy-6-methyloxan-2-yl]oxy-2-hydroxyethyl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-hydroxy-5-oxopentan-2-yl]amino]-2-[[6-amino-2-[(1S)-3-amino-1-[[(2S)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-1-(1H-imidazol-5-yl)-3-oxopropoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl] carbamate Chemical compound C[C@@H](O)[C@H](NC(=O)C[C@H](O)[C@@H](C)NC(=O)[C@@H](NC(=O)c1nc(nc(N)c1C)[C@H](CC(N)=O)NC[C@H](N)C(N)=O)[C@H](O[C@@H]1O[C@@H](CO)[C@@H](O)[C@H](O)[C@@H]1O[C@H]1O[C@H](CO)[C@@H](O)[C@H](OC(N)=O)[C@@H]1O)c1cnc[nH]1)C(=O)NC(O[C@@H]1O[C@@H](C)[C@@H](N)[C@@H](O)[C@H]1O)C(O)c1nc(cs1)-c1nc(cs1)C(=O)NCCCC(N)CC(=O)NCCCNCCCCN VUPBDWQPEOWRQP-RTUCOMKBSA-N 0.000 description 1
- SPKNARKFCOPTSY-XWPZMVOTSA-N [(2r,3s)-2-[(2s,3r)-3-methyloxiran-2-yl]-6-oxo-2,3-dihydropyran-3-yl] acetate Chemical compound C[C@H]1O[C@@H]1[C@H]1[C@@H](OC(C)=O)C=CC(=O)O1 SPKNARKFCOPTSY-XWPZMVOTSA-N 0.000 description 1
- KMLCRELJHYKIIL-UHFFFAOYSA-N [1-(azanidylmethyl)cyclohexyl]methylazanide;platinum(2+);sulfuric acid Chemical compound [Pt+2].OS(O)(=O)=O.[NH-]CC1(C[NH-])CCCCC1 KMLCRELJHYKIIL-UHFFFAOYSA-N 0.000 description 1
- QPWBZVAOCWJTFK-UHFFFAOYSA-L [2-(azanidylmethyl)-3-hydroxy-2-(hydroxymethyl)propyl]azanide;cyclobutane-1,1-dicarboxylate;platinum(4+) Chemical compound [Pt+4].[NH-]CC(C[NH-])(CO)CO.[O-]C(=O)C1(C([O-])=O)CCC1 QPWBZVAOCWJTFK-UHFFFAOYSA-L 0.000 description 1
- ODEDPKNSRBCSDO-UHFFFAOYSA-N [2-(hexadecylsulfanylmethyl)-3-methoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCSCC(COC)COP([O-])(=O)OCC[N+](C)(C)C ODEDPKNSRBCSDO-UHFFFAOYSA-N 0.000 description 1
- NAFFDQVVNWTDJD-UHFFFAOYSA-L [4-(azanidylmethyl)oxan-4-yl]methylazanide;cyclobutane-1,1-dicarboxylate;platinum(4+) Chemical compound [Pt+4].[NH-]CC1(C[NH-])CCOCC1.[O-]C(=O)C1(C([O-])=O)CCC1 NAFFDQVVNWTDJD-UHFFFAOYSA-L 0.000 description 1
- RNAWORKZQNBVOU-UHFFFAOYSA-N [NH3+]C(CCC(=O)NC(CSC(=[Se])NCC1=CC=CC=C1)C(=O)NCC(=O)O)C(=O)[O-] Chemical compound [NH3+]C(CCC(=O)NC(CSC(=[Se])NCC1=CC=CC=C1)C(=O)NCC(=O)O)C(=O)[O-] RNAWORKZQNBVOU-UHFFFAOYSA-N 0.000 description 1
- IHJYSMBBQVOUSF-UHFFFAOYSA-N [NH3+]C(CSC(=[Se])NCC1=CC=CC=C1)C(=O)[O-] Chemical compound [NH3+]C(CSC(=[Se])NCC1=CC=CC=C1)C(=O)[O-] IHJYSMBBQVOUSF-UHFFFAOYSA-N 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- JURAJLFHWXNPHG-UHFFFAOYSA-N [acetyl(methylcarbamoyl)amino] n-methylcarbamate Chemical compound CNC(=O)ON(C(C)=O)C(=O)NC JURAJLFHWXNPHG-UHFFFAOYSA-N 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- JXLYSJRDGCGARV-KSNABSRWSA-N ac1l29ym Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-KSNABSRWSA-N 0.000 description 1
- 229950008427 acivicin Drugs 0.000 description 1
- QAWIHIJWNYOLBE-OKKQSCSOSA-N acivicin Chemical compound OC(=O)[C@@H](N)[C@@H]1CC(Cl)=NO1 QAWIHIJWNYOLBE-OKKQSCSOSA-N 0.000 description 1
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 description 1
- 229960004176 aclarubicin Drugs 0.000 description 1
- 229950003478 acodazole Drugs 0.000 description 1
- 229950000616 acronine Drugs 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000012574 advanced DMEM Substances 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229960001445 alitretinoin Drugs 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229950004821 ambomycin Drugs 0.000 description 1
- 229950011363 ametantrone Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- VGQOVCHZGQWAOI-HYUHUPJXSA-N anthramycin Chemical compound N1[C@@H](O)[C@@H]2CC(\C=C\C(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-HYUHUPJXSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 150000003975 aryl alkyl amines Chemical class 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- HRXVDDOKERXBEY-UHFFFAOYSA-N azatepa Chemical compound C1CN1P(=O)(N1CC1)N(CC)C1=NN=CS1 HRXVDDOKERXBEY-UHFFFAOYSA-N 0.000 description 1
- 229950004295 azotomycin Drugs 0.000 description 1
- XFILPEOLDIKJHX-QYZOEREBSA-N batimastat Chemical compound C([C@@H](C(=O)NC)NC(=O)[C@H](CC(C)C)[C@H](CSC=1SC=CC=1)C(=O)NO)C1=CC=CC=C1 XFILPEOLDIKJHX-QYZOEREBSA-N 0.000 description 1
- 229950001858 batimastat Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229950005567 benzodepa Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- VFIUCBTYGKMLCM-UHFFFAOYSA-N benzyl n-[bis(aziridin-1-yl)phosphoryl]carbamate Chemical compound C=1C=CC=CC=1COC(=O)NP(=O)(N1CC1)N1CC1 VFIUCBTYGKMLCM-UHFFFAOYSA-N 0.000 description 1
- WSKWDMOVMQKKQI-UHFFFAOYSA-N benzyl selenocyanate Chemical compound N#C[Se]CC1=CC=CC=C1 WSKWDMOVMQKKQI-UHFFFAOYSA-N 0.000 description 1
- DHCLVCXQIBBOPH-UHFFFAOYSA-N beta-glycerol phosphate Natural products OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 1
- GHRQXJHBXKYCLZ-UHFFFAOYSA-L beta-glycerolphosphate Chemical compound [Na+].[Na+].CC(CO)OOP([O-])([O-])=O GHRQXJHBXKYCLZ-UHFFFAOYSA-L 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- PHEZJEYUWHETKO-UHFFFAOYSA-N brequinar Chemical compound N1=C2C=CC(F)=CC2=C(C(O)=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PHEZJEYUWHETKO-UHFFFAOYSA-N 0.000 description 1
- 229950010231 brequinar Drugs 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229950009494 bropirimine Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229950009338 caracemide Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229950005155 carbetimer Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229950010667 cedefingol Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 238000002737 cell proliferation kit Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000006364 cellular survival Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- OWSKEUBOCMEJMI-KPXOXKRLSA-N chembl2105946 Chemical compound [N-]=[N+]=CC(=O)CC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@H](CCC(=O)C=[N+]=[N-])C(O)=O OWSKEUBOCMEJMI-KPXOXKRLSA-N 0.000 description 1
- 229940124443 chemopreventive agent Drugs 0.000 description 1
- 239000012627 chemopreventive agent Substances 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229950011359 cirolemycin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 150000001944 cysteine derivatives Chemical class 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960003603 decitabine Drugs 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 229950001640 dexormaplatin Drugs 0.000 description 1
- VPOCYEOOFRNHNL-RQDPQJJXSA-J dexormaplatin Chemical compound Cl[Pt](Cl)(Cl)Cl.N[C@@H]1CCCC[C@H]1N VPOCYEOOFRNHNL-RQDPQJJXSA-J 0.000 description 1
- 229950010621 dezaguanine Drugs 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- OTKJDMGTUTTYMP-UHFFFAOYSA-N dihydrosphingosine Natural products CCCCCCCCCCCCCCCC(O)C(N)CO OTKJDMGTUTTYMP-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 229950004203 droloxifene Drugs 0.000 description 1
- 229940017825 dromostanolone Drugs 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 229950005133 duazomycin Drugs 0.000 description 1
- 229930192837 duazomycin Natural products 0.000 description 1
- 229950006700 edatrexate Drugs 0.000 description 1
- FSIRXIHZBIXHKT-MHTVFEQDSA-N edatrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CC(CC)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FSIRXIHZBIXHKT-MHTVFEQDSA-N 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- MGQRRMONVLMKJL-KWJIQSIXSA-N elsamitrucin Chemical compound O1[C@H](C)[C@H](O)[C@H](OC)[C@@H](N)[C@H]1O[C@@H]1[C@](O)(C)[C@@H](O)[C@@H](C)O[C@H]1OC1=CC=CC2=C(O)C(C(O3)=O)=C4C5=C3C=CC(C)=C5C(=O)OC4=C12 MGQRRMONVLMKJL-KWJIQSIXSA-N 0.000 description 1
- 229950002339 elsamitrucin Drugs 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 229950010625 enloplatin Drugs 0.000 description 1
- 229950001022 enpromate Drugs 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 229950004926 epipropidine Drugs 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229950001426 erbulozole Drugs 0.000 description 1
- KLEPCGBEXOCIGS-QPPBQGQZSA-N erbulozole Chemical compound C1=CC(NC(=O)OCC)=CC=C1SC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C=CC(OC)=CC=2)OC1 KLEPCGBEXOCIGS-QPPBQGQZSA-N 0.000 description 1
- HCZKYJDFEPMADG-UHFFFAOYSA-N erythro-nordihydroguaiaretic acid Natural products C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229950006566 etanidazole Drugs 0.000 description 1
- WCDWBPCFGJXFJZ-UHFFFAOYSA-N etanidazole Chemical compound OCCNC(=O)CN1C=CN=C1[N+]([O-])=O WCDWBPCFGJXFJZ-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 229950011548 fadrozole Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 229950005096 fazarabine Drugs 0.000 description 1
- NMUSYJAQQFHJEW-ARQDHWQXSA-N fazarabine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-ARQDHWQXSA-N 0.000 description 1
- 229950003662 fenretinide Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- UXTSQCOOUJTIAC-UHFFFAOYSA-N fosquidone Chemical compound C=1N2CC3=CC=CC=C3C(C)C2=C(C(C2=CC=C3)=O)C=1C(=O)C2=C3OP(O)(=O)OCC1=CC=CC=C1 UXTSQCOOUJTIAC-UHFFFAOYSA-N 0.000 description 1
- 229950005611 fosquidone Drugs 0.000 description 1
- 229950010404 fostriecin Drugs 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229960002258 fulvestrant Drugs 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229950006905 ilmofosine Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 229960003521 interferon alfa-2a Drugs 0.000 description 1
- 229960003507 interferon alfa-2b Drugs 0.000 description 1
- 229960004061 interferon alfa-n1 Drugs 0.000 description 1
- 108010006088 interferon alfa-n1 Proteins 0.000 description 1
- 229940109242 interferon alfa-n3 Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229950010897 iproplatin Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 150000002542 isoureas Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 108010021336 lanreotide Proteins 0.000 description 1
- 229960002437 lanreotide Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- UGFHIPBXIWJXNA-UHFFFAOYSA-N liarozole Chemical compound ClC1=CC=CC(C(C=2C=C3NC=NC3=CC=2)N2C=NC=C2)=C1 UGFHIPBXIWJXNA-UHFFFAOYSA-N 0.000 description 1
- 229950007056 liarozole Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 229950000909 lometrexol Drugs 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- YROQEQPFUCPDCP-UHFFFAOYSA-N losoxantrone Chemical compound OCCNCCN1N=C2C3=CC=CC(O)=C3C(=O)C3=C2C1=CC=C3NCCNCCO YROQEQPFUCPDCP-UHFFFAOYSA-N 0.000 description 1
- 229950008745 losoxantrone Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 231100001142 manageable toxicity Toxicity 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HCZKYJDFEPMADG-TXEJJXNPSA-N masoprocol Chemical compound C([C@H](C)[C@H](C)CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-TXEJJXNPSA-N 0.000 description 1
- 229960003951 masoprocol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QZIQJVCYUQZDIR-UHFFFAOYSA-N mechlorethamine hydrochloride Chemical compound Cl.ClCCN(C)CCCl QZIQJVCYUQZDIR-UHFFFAOYSA-N 0.000 description 1
- 229960002868 mechlorethamine hydrochloride Drugs 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- JBVNBBXAMBZTMQ-CEGNMAFCSA-N megestrol Chemical compound C1=CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 JBVNBBXAMBZTMQ-CEGNMAFCSA-N 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 229960003846 melengestrol acetate Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- LWYJUZBXGAFFLP-OCNCTQISSA-N menogaril Chemical compound O1[C@@]2(C)[C@H](O)[C@@H](N(C)C)[C@H](O)[C@@H]1OC1=C3C(=O)C(C=C4C[C@@](C)(O)C[C@H](C4=C4O)OC)=C4C(=O)C3=C(O)C=C12 LWYJUZBXGAFFLP-OCNCTQISSA-N 0.000 description 1
- 229950002676 menogaril Drugs 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- KPQJSSLKKBKWEW-RKDOVGOJSA-N methanesulfonic acid;5-nitro-2-[(2r)-1-[2-[[(2r)-2-(5-nitro-1,3-dioxobenzo[de]isoquinolin-2-yl)propyl]amino]ethylamino]propan-2-yl]benzo[de]isoquinoline-1,3-dione Chemical compound CS(O)(=O)=O.CS(O)(=O)=O.[O-][N+](=O)C1=CC(C(N([C@@H](CNCCNC[C@@H](C)N2C(C=3C=C(C=C4C=CC=C(C=34)C2=O)[N+]([O-])=O)=O)C)C2=O)=O)=C3C2=CC=CC3=C1 KPQJSSLKKBKWEW-RKDOVGOJSA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- VQJHOPSWBGJHQS-UHFFFAOYSA-N metoprine, methodichlorophen Chemical compound CC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C(Cl)=C1 VQJHOPSWBGJHQS-UHFFFAOYSA-N 0.000 description 1
- QTFKTBRIGWJQQL-UHFFFAOYSA-N meturedepa Chemical compound C1C(C)(C)N1P(=O)(NC(=O)OCC)N1CC1(C)C QTFKTBRIGWJQQL-UHFFFAOYSA-N 0.000 description 1
- 229950009847 meturedepa Drugs 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 108010067094 microcystin Proteins 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- DRCJGCOYHLTVNR-ZUIZSQJWSA-N mitindomide Chemical compound C1=C[C@@H]2[C@@H]3[C@H]4C(=O)NC(=O)[C@H]4[C@@H]3[C@H]1[C@@H]1C(=O)NC(=O)[C@H]21 DRCJGCOYHLTVNR-ZUIZSQJWSA-N 0.000 description 1
- 229950001314 mitindomide Drugs 0.000 description 1
- 229950002137 mitocarcin Drugs 0.000 description 1
- 229950000911 mitogillin Drugs 0.000 description 1
- 229950007612 mitomalcin Drugs 0.000 description 1
- 108010026677 mitomalcin Proteins 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229950005715 mitosper Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 238000011206 morphological examination Methods 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- WHMNUMPJONLROB-UHFFFAOYSA-N n-(6-phenylhexyl)formamide Chemical compound O=CNCCCCCCC1=CC=CC=C1 WHMNUMPJONLROB-UHFFFAOYSA-N 0.000 description 1
- CRJGESKKUOMBCT-PMACEKPBSA-N n-[(2s,3s)-1,3-dihydroxyoctadecan-2-yl]acetamide Chemical compound CCCCCCCCCCCCCCC[C@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-PMACEKPBSA-N 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WRINSSLBPNLASA-FOCLMDBBSA-N n-methyl-n-[(e)-(n-methylanilino)diazenyl]aniline Chemical compound C=1C=CC=CC=1N(C)\N=N\N(C)C1=CC=CC=C1 WRINSSLBPNLASA-FOCLMDBBSA-N 0.000 description 1
- ZTHRQJQJODGZHV-UHFFFAOYSA-N n-phenylpropanamide Chemical compound CCC(=O)NC1=CC=CC=C1 ZTHRQJQJODGZHV-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 229960000801 nelarabine Drugs 0.000 description 1
- IXOXBSCIXZEQEQ-UHTZMRCNSA-N nelarabine Chemical compound C1=NC=2C(OC)=NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O IXOXBSCIXZEQEQ-UHTZMRCNSA-N 0.000 description 1
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- KGTDRFCXGRULNK-JYOBTZKQSA-N nogalamycin Chemical compound CO[C@@H]1[C@@](OC)(C)[C@@H](OC)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=C4[C@@]5(C)O[C@H]([C@H]([C@@H]([C@H]5O)N(C)C)O)OC4=C3C3=O)=C3C=C2[C@@H](C(=O)OC)[C@@](C)(O)C1 KGTDRFCXGRULNK-JYOBTZKQSA-N 0.000 description 1
- 229950009266 nogalamycin Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000005959 oncogenic signaling Effects 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229950000370 oxisuran Drugs 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229960001744 pegaspargase Drugs 0.000 description 1
- 108010001564 pegaspargase Proteins 0.000 description 1
- 229950006960 peliomycin Drugs 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- VPAWVRUHMJVRHU-VGDKGRGNSA-N perfosfamide Chemical compound OO[C@@H]1CCO[P@@](=O)(N(CCCl)CCCl)N1 VPAWVRUHMJVRHU-VGDKGRGNSA-N 0.000 description 1
- 229950009351 perfosfamide Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- XESARGFCSKSFID-FLLFQEBCSA-N pirazofurin Chemical compound OC1=C(C(=O)N)NN=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XESARGFCSKSFID-FLLFQEBCSA-N 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- JKPDEYAOCSQBSZ-OEUJLIAZSA-N plomestane Chemical compound O=C1CC[C@]2(CC#C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 JKPDEYAOCSQBSZ-OEUJLIAZSA-N 0.000 description 1
- 229950004541 plomestane Drugs 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 201000005825 prostate adenocarcinoma Diseases 0.000 description 1
- 210000005267 prostate cell Anatomy 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- UIRPOZKMSMHJBQ-KXPSTEIISA-N pubchem11605 Chemical compound OC(=O)C(F)(F)F.C([C@H]1OB(O[C@]11C)[C@@H](N)C)[C@H]2C(C)(C)[C@@H]1C2 UIRPOZKMSMHJBQ-KXPSTEIISA-N 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229960004356 riboprine Drugs 0.000 description 1
- QXKJWHWUDVQATH-UHFFFAOYSA-N rogletimide Chemical compound C=1C=NC=CC=1C1(CC)CCC(=O)NC1=O QXKJWHWUDVQATH-UHFFFAOYSA-N 0.000 description 1
- 229950005230 rogletimide Drugs 0.000 description 1
- 229950008902 safingol Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229950009089 simtrazene Drugs 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229950009641 sparsomycin Drugs 0.000 description 1
- XKLZIVIOZDNKEQ-CLQLPEFOSA-N sparsomycin Chemical compound CSC[S@](=O)C[C@H](CO)NC(=O)\C=C\C1=C(C)NC(=O)NC1=O XKLZIVIOZDNKEQ-CLQLPEFOSA-N 0.000 description 1
- XKLZIVIOZDNKEQ-UHFFFAOYSA-N sparsomycin Natural products CSCS(=O)CC(CO)NC(=O)C=CC1=C(C)NC(=O)NC1=O XKLZIVIOZDNKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- OTKJDMGTUTTYMP-ZWKOTPCHSA-N sphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@@H](N)CO OTKJDMGTUTTYMP-ZWKOTPCHSA-N 0.000 description 1
- 229950006315 spirogermanium Drugs 0.000 description 1
- 229950006050 spiromustine Drugs 0.000 description 1
- 229950004330 spiroplatin Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229950007841 sulofenur Drugs 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229950002687 talisomycin Drugs 0.000 description 1
- 108700003774 talisomycin Proteins 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960001674 tegafur Drugs 0.000 description 1
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 1
- 229950010138 teloxantrone Drugs 0.000 description 1
- QDZIHWBJFUNKOF-UHFFFAOYSA-N teloxantrone Chemical compound OCCNCCN1NC2=C3C(=O)C=CC(=O)C3=C(O)C3=C2C1=CC=C3NCCNC QDZIHWBJFUNKOF-UHFFFAOYSA-N 0.000 description 1
- 229960002197 temoporfin Drugs 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229950008703 teroxirone Drugs 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 229960003723 tiazofurine Drugs 0.000 description 1
- FVRDYQYEVDDKCR-DBRKOABJSA-N tiazofurine Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)=N1 FVRDYQYEVDDKCR-DBRKOABJSA-N 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 229950002376 tirapazamine Drugs 0.000 description 1
- QVMPZNRFXAKISM-UHFFFAOYSA-N tirapazamine Chemical compound C1=CC=C2[N+]([O-])=NC(=N)N(O)C2=C1 QVMPZNRFXAKISM-UHFFFAOYSA-N 0.000 description 1
- 239000006208 topical dosage form Substances 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 229950005609 trestolone Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229950003873 triciribine Drugs 0.000 description 1
- HOGVTUZUJGHKPL-HTVVRFAVSA-N triciribine Chemical compound C=12C3=NC=NC=1N(C)N=C(N)C2=CN3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HOGVTUZUJGHKPL-HTVVRFAVSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960004824 triptorelin Drugs 0.000 description 1
- VXKHXGOKWPXYNA-PGBVPBMZSA-N triptorelin Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 VXKHXGOKWPXYNA-PGBVPBMZSA-N 0.000 description 1
- 229950003138 tubulozole Drugs 0.000 description 1
- 230000001875 tumorinhibitory effect Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- SPDZFJLQFWSJGA-UHFFFAOYSA-N uredepa Chemical compound C1CN1P(=O)(NC(=O)OCC)N1CC1 SPDZFJLQFWSJGA-UHFFFAOYSA-N 0.000 description 1
- 229950006929 uredepa Drugs 0.000 description 1
- 229960002730 vapreotide Drugs 0.000 description 1
- 108700029852 vapreotide Proteins 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229960003895 verteporfin Drugs 0.000 description 1
- ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N verteporfin Chemical compound C=1C([C@@]2([C@H](C(=O)OC)C(=CC=C22)C(=O)OC)C)=NC2=CC(C(=C2C=C)C)=NC2=CC(C(=C2CCC(O)=O)C)=NC2=CC2=NC=1C(C)=C2CCC(=O)OC ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960002110 vincristine sulfate Drugs 0.000 description 1
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229950001270 vinepidine Drugs 0.000 description 1
- KLFUUCHXSFIPMH-YBFGSCICSA-N vinepidine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@H](C2)CC)N2CCC2=C1NC1=CC=CC=C21 KLFUUCHXSFIPMH-YBFGSCICSA-N 0.000 description 1
- 229950008883 vinglycinate Drugs 0.000 description 1
- YNSIUGHLISOIRQ-SWSODSCOSA-N vinglycinate Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(=O)CN(C)C)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 YNSIUGHLISOIRQ-SWSODSCOSA-N 0.000 description 1
- 229950009832 vinleurosine Drugs 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229950003670 vinrosidine Drugs 0.000 description 1
- 229950005839 vinzolidine Drugs 0.000 description 1
- 229960001771 vorozole Drugs 0.000 description 1
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 229950003017 zeniplatin Drugs 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 description 1
- 229960004276 zoledronic acid Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C391/00—Compounds containing selenium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/095—Sulfur, selenium, or tellurium compounds, e.g. thiols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/26—Cyanate or isocyanate esters; Thiocyanate or isothiocyanate esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C331/00—Derivatives of thiocyanic acid or of isothiocyanic acid
- C07C331/16—Isothiocyanates
- C07C331/18—Isothiocyanates having isothiocyanate groups bound to acyclic carbon atoms
- C07C331/22—Isothiocyanates having isothiocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
- C07C331/24—Isothiocyanates having isothiocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton the carbon skeleton containing six-membered aromatic rings
Definitions
- the present invention relates generally to anti-cancer compositions and methods.
- the present invention relates to compositions including one or more isothiocyanates and/or isoselenocyanates, methods for treatment and/or prevention of patlhological conditions in a subject using one or more isothiocyanates and/or isoselenocyanates and methods for synthesis of particular isoselenocyanates.
- Akt3 and downstream PRAS40 are part of a key signaling cascade activated in ⁇ 70% of melanomas. Akt3 functions to reduce cellular apoptosis in early melanomas, thereby promoting development of this disease. Compositions and methods are required to inhibit the Akt pathway and inhibit abnormal cell survival and proliferation.
- compositions including an isoselenocyanate having the structural formula R—(CH 2 ) n —N ⁇ C ⁇ Se, where n is an integer in the range of 1-8, inclusive, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group are described herein.
- composition including an isoselenocyanate having the structural formula:
- R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive is provided along with methods of synthesis and use of such compositions.
- R′ is CH 3 .
- R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive.
- R′ is CH 3 and n is 4.
- Methods of synthesis of the present invention include formulation of a starting alkylamine compound having the structural formula: R—(CH 2 ) n —NH 2 , where n is an integer in the range of 1-8, inclusive, where R is selected from the group consisting of: an unsubstituted aromatic group; an aromatic group substituted by one or more substituents selected from the group consisting of: F, Cl, Br, a lower alkyl group, a lower alkoxy group and a fluorinated lower alkyl group; R′—S(O), where R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain; and CH 2 ⁇ CH, to produce a formylated intermediate having the structural formula: R—(CH 3 ) n —NHCHO, where R and n are identical to R and n of the starting alkylamine; and contacting the formylated intermediate with triphosgene and selenium powder in the presence of triethylamine.
- compositions which include one or more isothiocyanates and/or isoselenocyanates having the structural formula R—(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group.
- compositions according to embodiments of the present invention include one or more isothiocyanates and/or isoselenocyanates having the structural formula phenyl-(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, and where X is S or Se.
- n 4 or 6;
- R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive; and a pharmaceutically acceptable carrier.
- the pharmaceutically acceptable carrier is a particulate carrier.
- the pharmaceutical composition is formulated for topical application.
- compositions administered to a subject in need thereof includes a phenylalkyl isoselenocyanate having the structural formula:
- n 4 or 6.
- the phenylalkyl moiety is substituted at an available substitutable site.
- the phenylalkyl may be substituted by one or more substituents selected from the group consisting of: F, Cl, Br, a lower alkyl group, a lower alkoxy group and a fluorinated lower alkyl group.
- R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive.
- R′ is CH 3 .
- R′ is CH 3 and n is 4.
- An isoselenocyanate composition is optionally conjugated to glutathione, cysteine or N-acetylcysteine to produce an isoselenocyanate glutathione conjugate; an isoselenocyanate cysteine conjugate; and an isoselenocyanate N-acetylcysteine conjugate for administration to a subject in need thereof.
- the subject is human.
- the subject has or is at risk of having cancer.
- the subject has cancer or is at risk for cancer characterized by dysregulation of Akt1, Akt2 and/or Akt3.
- the cancer is a melanoma.
- Methods of treating a subject include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: R—(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Akt dysregulation such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- contacting cells characterized by Akt dysregulation with a therapeutic amount of an isothiocyanate and/or isoselenocyanate described herein decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof.
- contacting the cell with an isothiocyanate and/or isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
- treatment of a subject with a therapeutically effective amount of the composition including an isothiocyanate and/or isoselenocyanate is substantially without toxic effect on cells in which Akt is not dysregulated.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: phenyl-(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- the phenyl group is substituted.
- Methods according to embodiments of the present invention include administering a therapeutically effective amount of a composition including an isoselenocyanate and/or an isothiocyanate to a subject wherein the administration detectably increases apoptosis and/or decreases proliferation of cells of the cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- composition including an isoselenocyanate and/or isothiocyanate is formulated for topical application, for instance to treat cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth of the skin.
- methods of the present invention additionally include administration of an adjunct anti-cancer treatment.
- a method of modulating Akt dysregulation in a cell includes contacting the cell with an effective amount of an isothiocyanate or isoselenocyanate having the structural formula: R—(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group.
- contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof.
- contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
- a method of modulating Akt dysregulation in a cell is provided according to embodiments of the present invention which includes contacting the cell with an effective amount of an isothiocyanate or isoselenocyanate having the structural formula: phenyl-(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, and where X is S or Se.
- the phenyl group is substituted.
- a method of modulating Akt dysregulation in a cell which includes contacting the cell with an effective amount of an isoselenocyanate having the structural formula: R—(CH 2 ) n —N ⁇ C ⁇ Se, where n is an integer in the range of 1-8, inclusive, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group.
- contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt signaling pathway; an Akt3 signaling pathway; and a combination thereof.
- contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
- FIG. 1A is a bar graph showing a comparison of cell viability following exposure to PBITC or ISC-4, compared to controls;
- FIG. 1B is a bar graph showing a comparison of cell viability following exposure to PHITC or ISC-6, compared to controls;
- FIG. 2A is a bar graph of results of proliferation analysis of UACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PBITC or ISC-4 for 24 hours;
- FIG. 2B is a bar graph of results of proliferation analysis of UACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PHITC or ISC-6 for 24 hours;
- FIG. 3A is a bar graph showing the effects of treatment of UACC 903 cells in culture with DMSO or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of API-2, PHSC, PBITC or ISC-4 for 24 hours on caspase-3/7 activity, an indicator of apoptosis;
- FIG. 3B is a bar graph showing the effects of treatment of UACC 903 cells in culture with DMSO or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of API-2, PHSC, PHITC or ISC-6 for 24 hours on caspase-3/7 activity, an indicator of apoptosis;
- FIG. 4A is a bar graph showing results of cell cycle analysis of UACC 903 cells treated with controls (API-2, PHSC), PHITC or ISC-4;
- FIG. 4B is a bar graph showing results of cell cycle analysis of UACC 903 cells treated with controls (API-2, PHSC), PHITC or ISC-6;
- FIG. 5A is a bar graph showing the effect of isothiocyanates on tumor development
- FIG. 5B is a bar graph showing the effect of isoselenocyanates on tumor development
- FIG. 6A is a line graph showing chance in tumor size and body weight (inset) over time in mice treated i. p. with PBITC or PHITC (0.76 ⁇ moles) or ISC-4 or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium);
- FIG. 6B is a line graph showing change in tumor size and body weight (inset) over time in mice treated i. p. with PBITC or PHITC (0.76 ⁇ moles) or ISC-4 or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium);
- FIG. 7A is a bar graph showing results of analysis of apoptosis following ISC-4 treatment compared to treatment with PBITC or DMSO, in size and time matched tumors;
- FIG. 7B is a bar graph showing results of analysis of cell proliferation following ISC-4 treatment compared to treatment with PBITC or DMSO, in size and time matched tumors;
- FIG. 8 is a bar graph showing results of analysis of levels of SGOT, SGPT, alkaline phosphatase, glucose and creatinine in blood collected from animals treated with PBITC, ISC-4 or DMSO vehicle;
- FIG. 9 is a reproduction of an image of an immunoblot showing dose dependent decreases in phosphorylated (active) Akt (S473) and downstream PRAS40 (T246) and a corresponding dose dependent increase in cleaved PARP, reflective of high levels of cellular apoptosis in cells treated with ISC-4 or ISC-6;
- FIG. 10A is a reproduction of an image of an immunoblot showing the effect of ISC-4 on Akt signaling pathway in melanoma cell line 1205 Lu;
- FIG. 10B is a reproduction of an image of an immunoblot showing the effect of ISC-4 on Akt signaling pathway in melanoma cell line WM115;
- FIG. 11 is a bar graph showing quantitation of immunoblot analysis of tumor protein lysates from animals treated with DMSO, PBITC or ISC-4 and indicates decreased relative expression of phosphorylated (active) Akt and downstream PRAS40 of Akt3;
- FIG. 12 is a line graph showing that decreased expression (activity) of Akt3 reduced the tumor size in animals injected with Akt3 siRNA treated cells compared to control cells nucleofected with scrambled siRNA or nucleofection buffer.
- FIG. 13 is a reproduction of an image of an immunoblot analysis of tumor protein lysates showing reduction in expression of Akt3 in tumors by siRNA directed against Akt3;
- FIG. 14A is a line graph showing inhibition of tumor development by 1-isoselenocyanto-4-methylsulfinylbutane (SFN Iso Se, also interchangeably called ISC-SFN4 herein) compared to controls.
- SFN Iso Se 1-isoselenocyanto-4-methylsulfinylbutane
- FIG. 14B is a line graph showing a lack of significant changes in body weight in treated animals, indicating that a lack of toxicity of the administered compounds;
- FIG. 15 is a bar graph showing results of a cell viability assay measuring inhibitory efficacy of DMSO, ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on UACC 903 cells;
- FIG. 16 is a bar graph showing the effect of DMSO or 5-15 ⁇ M of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on cell proliferation;
- FIG. 17 is a bar graph showing the effect of DMSO or 5-15 ⁇ M of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on apoptosis;
- FIG. 18A is a line graph showing effect of selected isoselenocyanates on tumor size
- FIG. 18B is a line graph showing effect of selected isoselenocyanates on body weight
- FIG. 18C is a line graph showing effect of selected isothiocyanates on tumor size.
- FIG. 18D is a line graph showing effect of selected isothiocyanates on body weight
- FIG. 19 is a bar graph showing the effects of topically applied PBITC or ISC-4 on reconstructed human skin containing GFP tagged UACC 903 human melanoma cells;
- FIG. 20 is a pair of line graphs showing the effect of topical ISC4 application on melanoma tumor growth in vivo.
- FIG. 21 is a pair of line graphs showing the effect of topical ISC-4 application on melanoma tumor growth in vivo.
- compositions and methods are provided according to embodiments of the present invention.
- the present invention relates to compositions including one or more isothiocyanates and/or isoselenocyanates, methods for treatment and/or prevention of pathological conditions in a subject using one or more isothiocyanates and/or isoselenocyanates and methods for synthesis of particular isoselenocyanates.
- a composition provided according to embodiments of the present invention includes one or more compounds having the structural formula: R—(CH 2 ) n —N ⁇ C ⁇ Se, where n is an integer in the range of 1-8, inclusive, where R is an aromatic group or a non-aromatic organic group.
- aromatic refers to an optionally substituted monocyclic or bicyclic hydrocarbon ring system containing at least one unsaturated aromatic ring.
- aromatic groups include phenyl and napthyl.
- compositions of the present invention are phenylalkyl isoselenocyanates having the structural formula:
- n 1-8.
- R is optionally an aromatic group substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF 3 .
- R is phenyl group substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF 3 .
- lower alkoxy refers to a straight chain or branched hydrocarbon group containing from 1-4 carbon atoms which is appended to the parent molecular moiety through an oxygen atom.
- Illustrative examples of lower alkyl groups are methoxy, ethoxy, propoxy, 2-propoxy, butoxy and tert-butoxy.
- lower alkyl refers to a straight chain or branched hydrocarbon group containing from 1-4 carbon atoms.
- Illustrative examples of lower alkyl groups are methyl, ethyl, iso-propyl, n-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl.
- a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain, and where n is an integer in the range of 1-8, inclusive.
- a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain, and where n is an integer in the range of 3-8, inclusive.
- a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- CH 3 can be substituted or unsubstituted and where n is an integer in the range of 3-8, inclusive.
- Embodiments of a composition according to the present invention have the structural formulas: CH 3 —S(O)—(CH 2 ) 3 —N ⁇ C ⁇ Se (termed ISC-SFN3); CH 3 —S(O)—(CH 2 ) 4 —N ⁇ C ⁇ Se (termed ISC-SFN4 and SFN Iso Se); CH 3 —S(O)—(CH 2 ) 5 —N ⁇ C ⁇ Se (termed ISC-SFN5); CH 3 —S(O)—(CH 2 ) 6 —N ⁇ C ⁇ Se (termed ISC-SFN6); CH 3 —S(O)—(CH 2 ) 7 —N ⁇ C ⁇ Se (termed ISC-SFN7) and CH 3 —S(O)—(CH 2 ) 8 —N ⁇ C ⁇ Se (termed ISC-SFN8)
- CH 3 is substituted or unsubstituted.
- R is a phenyl group substituted at one or more substitutable sites by Cl, Br, F, methyl, methoxy, and/or a fluorinated lower alkyl group, such as CF 3 .
- the non-aromatic organic group optionally includes one or more heteroatoms such as S, N, O and/or P.
- R is CH 2 ⁇ CH.
- an isoselenocyanate has the formula: CH 2 ⁇ CH—CH 2 —N ⁇ C ⁇ Se.
- the group (CH 2 ) n in the formula R—(CH—) n —N ⁇ C ⁇ Se is substituted,
- the group (CH 2 ) n in the formula R—(CH 2 ) n —N ⁇ C ⁇ Se is substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF 3 .
- compositions including mixtures of two or more isoselenocyanates are also specifically contemplated and are considered to be within the scope of the present invention.
- phenylalkyl isothiocyanate compounds with increasing chain length in the left column; phenylalkyl isoselenocyanates of the present invention are shown in the center column; and phenylhexyl selenocyanate in the right column.
- Phenylhexyl selenocyanate (PHSC) is used as a control compound in particular tests described herein since it is similar to ISC-6 in structure and contains selenium.
- ISC-SFN4 1-isoselenocyanato-4-(methylsulfinyl)butane
- Scheme 3 The key intermediate 1-amino-4-(methylsulfinyl)butane (1 in scheme 3) is synthesized and subjected to a sequence of reactions as shown in Scheme 3 to obtain the desired ISC-SFN4 (3).
- ISC-SFN3, ISC-SFN6, ISC-SFN7, and ISC-SFN8 which are isosteric selenium analogs of corresponding naturally occurring sulfoxide isothiocyanate analogs with varying alkyl chain length are synthesized using a similar synthetic strategy.
- an allyl isoselenocyanate is synthesized according to embodiments of the present invention starting from allylamine as detailed in Scheme 4.
- a compound of the present invention is conjugated to one or more property-enhancing moieties according to embodiments of the present invention for modification of one or more characteristics of the compound.
- the present invention provides conjugates of organic isothiocyanates and/or isoselenocyanates, in order to reduce toxicity, increase solubility and/or increase bioavailability in particular embodiments of the present invention. Methods of synthesis of such conjugates are also provided by embodiments of the presently described invention.
- a compound of the present invention is conjugated to a water solubility-enhancing moiety, to yield a conjugate which is more water soluble than the compound.
- water soluble isothiocyanate or isoselenocyanate compounds of the present invention are conjugated to glutathione (GSH), cysteine (Cys) or N-acetylcysteine (NAC) to yield the corresponding GSH-, Cys-, or NAC-conjugate.
- n is an integer in the range of 1-8, inclusive.
- n is an integer in the range of 1-8, inclusive:
- N-acetylcysteine conjugate of a phenylalkyl isoselenocyanate where n is an integer in the range of 1-8, inclusive:
- the NAC-conjugates of organic isoselenocyanates such as ISC-4 and ISC-6, are made by reacting corresponding isoselenocyanate with N-acetylcysteine in aqueous ethanol (50%) at room temperature under nitrogen atmosphere.
- the GSH or cysteine conjugates of isoselenocyanates are synthesized following a similar procedure.
- compositions according to embodiments of the present invention prevent and inhibit cancer cell multiplication and tumor development and are considered useful as chemotherapeutic and chemopreventive agents.
- isoselenocyanate compositions according to embodiments of the present invention induce cell death in cancer cells more effectively than corresponding isothiocyanates or derivatives thereof.
- animal studies show significant reduction in melanoma tumor development by isoselenocyanates of the present invention at doses three times lower than those of corresponding isothiocyanates, without significant toxicity.
- Methods and compositions are provided according to the present invention for treating cancer.
- Particular cancers treated using methods and compositions described herein are characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms and metastasis.
- Methods and compositions of the present invention can be used for prophylaxis as well as amelioration of signs and/or symptoms of cancer.
- a therapeutically effective amount of a composition is an amount which has a beneficial effect in a subject being treated.
- a condition characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, a tumor, a benign growth or other condition responsive to an isoselenocyanate composition
- a therapeutically effective amount of a composition is effective to ameliorate or prevent one or more signs and/or symptoms of the condition.
- a therapeutically effective amount of a composition is effective to detectably increase apoptosis and/or decrease proliferation of cells of a cancer condition characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, a tumor, a benign growth or other condition responsive to an isoselenocyanate composition.
- cancers treated using methods and compositions described herein are characterized by Akt dysregulation.
- Akt a serine/threonine protein kinase also known as protein kinase B
- Akt proteins, nucleic acids and signaling pathway components are described, for instance, see Testa, J. R. et al., PNAS, 98:10983-10985; Fayard, E. et al., J. Cell Sci., 118:5675-5678, 2005; Cheng, J. and S. Nicosia, (2001) AKT signal transduction pathway in ancogenesis, in Encyclopedic Reference of Cancer, D. Schwab, Editor. 2001, Springer: Berlin, Germany, p. 35-7; Datta, S.
- Akt family members Akt1, Akt2 and Akt3, are activated by phosphorylation, membrane translocation, increases in gene copy number and/or loss of a negative regulatory phosphatase, PTEN.
- Increased activation of Akt, including increased levels of Akt and/or increased levels of phosphorylated Akt is an indicator of Akt dysregulation associated with proliferation and cell survival in pathogenic conditions, such as cancer.
- Akt3 is active in ⁇ 70% of melanomas. While all three Akt isoforms are expressed in melanocytes and melanoma cells, Akt3 is the predominantly active family member. Dysregulated Akt3 activity in melanoma cells reduces cellular apoptosis mediated through caspase-3, thereby promoting melanoma tumor development.
- Akt dysregulation is determined, for instance, by measurement of Akt gene copy number, Akt protein or RNA levels and/or levels of phosphorylated Akt1, in cells known or suspected to be dysplasic, pre-cancerous, cancerous, metastatic or otherwise characterized by abnormal cell proliferation compared to normal cells.
- Assays for Akt dysregulation include, but are not limited to immunoassays and nucleic acid assays.
- Methods of treating a subject include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: R—(CH 2 ) n —N ⁇ C—X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Akt dysregulation such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- contacting cells characterized by Akt dysregulation with a therapeutic amount of an isothiocyanate and/or isoselenocyanate described herein decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof.
- contacting the cell with an isothiocyanate and/or isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
- treatment of a subject with a therapeutically effective amount of the composition including an isothiocyanate and/or isoselenocyanate is substantially without toxic effect on cells in which Akt is not dysregulated.
- Methods of treating a subject are provided according to embodiments of the present invention which include adrninistering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: phenyl-(CH 2 ) n —N ⁇ C ⁇ X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Akt dysregulation such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Methods of treating a subject include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate is BITC, PEITC, PBITC, PHITC, ISC-1, ISC-2, ISC-4 or ISC-6 and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Akt dysregulation such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering an effective amount of a composition including an isoselenocyanate to a subject in need thereof.
- a method of treating a subject includes administering to a subject in need thereof a therapeutically effective amount of a an isoselenocyanate compound having the structural formula; R—(CH 2 ) n —N ⁇ C ⁇ Se, where n is an integer in the range of 1-8, inclusive, where R is an aromatic group or a non-aromatic organic group.
- a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive.
- a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- R′ is CH 3 and where n is an integer in the range of 1-8, inclusive.
- a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- R′ is CH 3 and n is 4.
- a method of treating a subject includes administering an effective amount of a phenylalkyl isoselenocyanate having the structural formula:
- n 4 or 6.
- an administered isoselenocyanate is an isoselenocyanate glutathione conjugate; an isoselenocyanate cysteine conjugate; or an isoselenocyanate N-acetylcysteine conjugate.
- an administered isoselenocyanate is a pharmaceutically acceptable salt, ester or amide of an isoselenocyanate described herein.
- Isothiocyanate and/or isoselenocyanate compositions are provided according to embodiments of the present invention which inhibit tumor growth by inhibiting an Akt signaling cascade, particularly an Akt3 signaling cascade, in cells characterized by Akt dysregulation in certain embodiments.
- Methods including administration of one or more isothiocyanates and/or isoselenocyanates to a subject in need thereof are provided according to particular embodiments of the present invention which have utility, for example, in inhibiting the Akt signaling cascade and inhibiting cancer cells.
- Inhibitors of the Akt signaling cascade according to embodiments of the present invention have utility in treatment of subject having cancer or at risk of having cancer in which Akt deregulation occurs, such as in melanoma and other cancers including, but not limited to, cancers of the prostate, breast, brain, ovary, lung, colon, connective tissues (sarcomas) and soft tissue.
- Methods of modulating an Akt protein, such as an Akt1, Akt2 and/or an Akt3 protein, in a cell are provided according to embodiments of the present invention which include contacting the cell with an effective amount of an isoselenocyanate.
- compositions including an isoselenocyanate of the present invention are also provided according to embodiments of the present invention.
- a pharmaceutical composition includes an isoselenocyanate of the present invention and a pharmaceutically acceptable carrier in particular embodiments of the present invention.
- pharmaceutically acceptable carrief refers to a carrier which is substantially non-toxic to a subject to which the composition is administered and which is substantially chenmically inert with respect to a selenium-containing compound of the present invention.
- a pharmaceutical composition according to the invention generally includes about 0.1-99% of an isoselenocyanate of the present invention. Combinations of isoselenocyanates in a pharmaceutical composition are also considered within the scope of the present invention.
- a method of treating a subject having cancer or at risk of having cancer further includes an adjunct anti-cancer treatment.
- An adjunct anti-cancer treatment can be administration of an anti-cancer agent.
- Anti-cancer agents are described, for example, in Goodman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th Ed., Macmillan Publishing Co., 1990.
- Anti-cancer agents illustratively include acivicin, aclarubicin, acodazole, acronine, adozelesin, aldesleulcin, alitretinoin, allopurinol, altretamine, ambomycin, ametantrone, arifostine, aminoglutethimide, amsacrine, anastrozole, anthramycin, arsenic trioxide, asparaginase, asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene, bisnafide dimesylate, bizelesin, bleomycin, brequinar, bropirimine, busulfan, cactinomycin, calusterone, capecitabine, caracemide, carbetimer, carboplatin, carmustine, carubicin, carzelesin, cede
- An adjunct anti-cancer treatment can be a radiation treatment of a subject or an affected area of a subject's body.
- compositions suitable for delivery to a subject may be prepared in various forms illustratively including physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
- suitable aqueous and nonaqueous carriers include water, ethanol, polyols such as propylene glycol, polyethylene glycol, glycerol, and the like, suitable mixtures thereof; vegetable oils such as olive oil; and injectable organic esters such as ethyloleate.
- Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants, such as sodium lauryl sulfate.
- a coating such as lecithin
- surfactants such as sodium lauryl sulfate.
- Additional components illustratively including a buffer, a solvent, or a diluent may be included.
- Such formulations are administered by a suitable route including parenteral and oral administration.
- Administration may include systemic or local injection, and particularly intravenous injection.
- compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents.
- adjuvants such as preserving, wetting, emulsifying, and dispensing agents.
- Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like.
- isotonic agents for example, sugars, sodium chloride, and substances similar in nature.
- Prolonged delivery of an injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- selenium-containing compound of the present invention is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or
- fillers or extenders as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid
- binders as for example, carboxymethylcellulose, alignates, gelatin, polyvinylpyrrolidone, sucrose, and acacia
- humectants as for example, glycerol
- disintegrating agents as for example, agar-agar, calcium carbonate, plant starches such as potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate
- solution retarders as for example, paraffin
- absorption accelerators as for example, quaternary excipient, as for example, quaternary excipient, as for
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethyleneglycols, and the like.
- Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may contain opacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes. The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include a pharmaceutically acceptable carrier formulated as an emulsion, solution, suspension, syrup, or elixir.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.
- inert diluents commonly used in the art, such as water or other solvents, so
- composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Suspensions in addition to an inventive conjugate, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitol esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar or tragacanth, or mixtures of these substances, and the like.
- suspending agents as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitol esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar or tragacanth, or mixtures of these substances, and the like.
- compositions of the present invention are formulated for topical application.
- compositions of the present invention are formulated for topical application and are characterized by less than 10% absorption of an active ingredient in the composition into the system of an individual treated topically.
- compositions of the present invention are formulated for topical application and are characterized by less than 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% absorption of an active ingredient in the composition into the system of an individual treated topically.
- Absorption into the system of an individual can be measured by any of various methods, particularly assay for the active ingredient, a metabolite and/or a breakdown product of the active ingredient in a sample obtained from an individual treated with the topical formulation.
- a blood, plasma or serum sample can be assayed for presence of the active ingredient, a metabolite of the active ingredient and/or a breakdown product of the active ingredient.
- a topical formulation can be an ointment, lotion, cream or gel in particular embodiments.
- Topical dosage forms such as ointment, lotion, cream or gel bases are described in Remington: The Science and Practice of Pharmnacy, 21 st Ed., Lippincott Williams & Wilkins, 2006, p. 880-882 and p. 886-888; and in Allen, L. V. et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8 th Ed., Lippincott Williams & Wilkins, 2005, p. 277-297.
- compositions are known in the art, illustratively including, but not limited to, as described in Remington: The Science and Practice of Pharmacy, 21 st Ed., Lippincott, Williams & Wilkins, Philadelphia, Pa., 2006; and Allen, L. V. et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8 th Ed., Lippincott, Williams & Wilkins, Philadelphia, Pa., 2005.
- the term subject refers to an individual in need of treatment for a pathological condition, particularly cancer, and generally includes mammals and birds, such as, but not limited to, humans, other primates, cats, dogs, cows, horses, rodents, pigs, sheep, goats and poultry.
- a pharmaceutical composition according to the present invention is suitable for administration to a subject by a variety of systemic and/or local routes including, but not limited to, intravenous, intramuscular, subcutaneous, intraperitoneal, oral, otic, rectal, vaginal, topical, parenteral, pulmonary, ocular, nasal, intratumoral and mucosal.
- compositions as described herein may be administered acutely or chronically.
- a composition as described herein may be administered as a unitary dose or in multiple doses over a relatively limited period of time, such as seconds—hours.
- administration may include multiple doses administered over a period of days—years, such as for chronic treatment of cancer.
- an exemplary therapeutically effective dosage of an isoselenocyanate is in the range of about 1-4 ppm selenium, administered three times per week.
- the dose range, “about 1-4 ppm selenium” refers to a dose of “about 1 mg/kg-4 mg/kg of selenium.”
- a dose of 3 ppm selenium when referring to ISC-4 is equivalent to a dose of 9.1 mg/kg of ISC-4.
- a dose of 3 ppm selenium when referring to ISC-6 is equivalent to a dose of 10.17 mg/kg of ISC-6.
- an exemplary therapeutically effective dosage of ISC-4 or ISC-6 is in the range of about 0.1-1 ppm selenium, administered daily.
- an exemplary therapeutically effective dosage of an isoselenocyanate is in the range of about 1-15 ppm selenium.
- a therapeutically effective amount of a pharmaceutical composition according to the present invention will vary depending on the particular pharmaceutical composition used, the severity of the condition to be treated, the species of the subject, the age and sex of the subject and the general physical characteristics of the subject to be treated.
- One of skill in the art could determine a therapeutically effective amount in view of these and other considerations typical in medical practice.
- a therapeutically effective amount would be in the range of about 0.001 mg/kg-100 mg/kg body weight, optionally in the range of about 0.01-10 mg/kg, and further optionally in the range of about 0.1-5 mg/kg. Further, dosage may be adjusted depending on whether treatment is to be acute or continuing.
- anti-cancer compounds according to embodiments of the present invention are formulated to achieve lipid-solubility and/or aqueous-solubility.
- a pharmaceutically acceptable carrier is a particulate carrier such as lipid particles including liposomes, micelles, unilamellar or mulitlamellar vesicles; polymer particles such as hydrogel particles, polyglycolic acid particles or polylactic acid particles; inorganic particles such as calcium phosphate particles such as described in for example U.S. Pat. No. 5,648,097; and inorganic/organic particulate carriers such as described for example in U.S. Pat. No. 6,630,486.
- lipid particles including liposomes, micelles, unilamellar or mulitlamellar vesicles
- polymer particles such as hydrogel particles, polyglycolic acid particles or polylactic acid particles
- inorganic particles such as calcium phosphate particles such as described in for example U.S. Pat. No. 5,648,097
- inorganic/organic particulate carriers such as described for example in U.S. Pat. No. 6,630,486.
- a particulate pharmaceutically acceptable carrier can be selected from among a lipid particle; a polymer particle; an inorganic particle; and an inorganic/organic particle.
- a mixture of particle types can also be included as a particulate pharmaceutically acceptable carrier.
- a particulate carrier is typically formulated such that particles have an average particle size in the range of about 1 nm-10 microns.
- a particulate carrier is formulated such that particles have an average particle size in the range of about 1 nm-100 nm.
- inventive compositions and methods are illustrated in the following examples. These examples are provided for illustrative purposes and are not considered limitations on the scope of inventive compositions and methods.
- the human metastatic melanoma cell lines UACC 903 and 1205 Lu; normal human fibroblast cells (FF2441) are maintained in DMEM (Invitrogen, Carlsbad, Calif.) supplemented with 10% FBS (Hyclone, Logan, Utah).
- Vertical growth phase (VGP) melanoma cell line WM115 is maintained in Tu2% medium lacking calcium chloride, supplemented with 2% heat treated (56° C. for 30 minutes) PBS and L-glutamine (Mediatech, Handon, Va.) as described in Stahl J M, et al., Cancer Res 2004; 64:7002-10.
- Colon adenocarcinoma cell line (Caco-2, ATCC No. HTB-37) is grown either in Advanced DMEM supplemented with 10% heat treated (56° C. for 30 minutes) FBS and L-glutamine.
- Fibrosarcoma (HT-1080; ATCC No. CCL-121), prostate adenocarcinoma (PC-3; ATCC No. CRL-1435), breast adenocarcinoma cell line (MDA-MB-231; ATCC No. HB-26), glioblastoma cell line (T98G; ATCC No. CRL-1690) and human melanoma cell line UACC903 are grown in DMEM supplemented with 10% FBS.
- Benzyl isothiocyanate (BITC, la), phenylethyl isothiocyanate (PEITC, 1b), and phenylbutylisothiocyanate (PBITC, 1c) are obtained from commercial sources.
- Phenylhexylisothiocyanate (PHITC, 1d) is synthesized as described in Morse, M. A. et al., Cancer Res 1991, 51, (7), 1846-50.
- Isoselenocyanates are synthesized using a modified method described in Fernández-Bola ⁇ os, J. G., López, O., Ulgar, V., Maya, I., and Fuentes, J., Synthesis of O-unprotected glycosyl selenoureas.
- a new access to bicyclic sugar isoureas, Tetrahedron Lett. 2004, 45, 4081-4084.
- Solid triphosgene is used in a one-pot dehydration of the formamides in refluxing dichloromethane (Scheme 5).
- Scheme 5 shows synthesis of compounds 1 and 2; Reagents and conditions: (a) C 2 H 5 OCHO, ⁇ 20° C. to reflux (b) Et 3 N, triphosgene, Se powder, CH 2 Cl 2 , reflux (c) CSCl 2 , NaOH.
- the compounds are purified by silica gel column chromatography and are characterized on the basis of NMR and high-resolution MS data. (Pure isolated compounds are light yellow (ISC-1 and ISC-2) to colorless (ISC-4 and ISC-6) which tend to get a little darker after storing for longer time).
- a solution of triphosgene (5.0 mmol) in CH 2 Cl 2 (15 mL) is added over a 1 hour period to a refluxing mixture of phenylalkylformamides (10.0 mmol), triethylamine (43.0 mmol) and 4 ⁇ molecular sieves in CH 2 Cl 2 ) (35 mL).
- the mixture is then refluxed for an additional 2.5 hours.
- Selenium powder (20 mmol) is then added and resulting mixture refluxed for 6-8 hours.
- Mixture is cooled, filtered, and solvent evaporated yielding a crude mixture, which is purified by silica gel column chromatography generating pure isoselenocyanates. Isothiocyanates and isoselenocyanates are >99% pure.
- Phenylalkyl isothiocyanates are obtained commercially (BITC, PEITC, and PBITC).
- PHITC is synthesized as described in Morse, M. A. et al., Cancer Res 1991, 51, (7), 1846-50.
- Phenylhexylamine (3d) required for the synthesis of 1d is synthesized by converting phenylhexyl chloride to the corresponding azide by treatment with sodium azide in DMF, followed by generation of the 3d by reduction of azide with lithium aluminium hydride as described in Gopalakrishnan, G. et al., J. Labelled. Comp. Radiopharma. 1988, 25, (4), 383-393.
- Benzyl isoselenocyanate (2a) To a refluxing mixture of the formamides (1.5 mmol), triethylamine (6.4 mmol) in CH 2 Cl 2 (5 mL) and 4 ⁇ molecular sieves was added dropwise a solution of triphosgene (0.8 mmol) in CH 12 Cl 2 (2 mL) for a period of 1 h. After the addition was complete, the mixture was refluxed for an additional 2.5 h. Selenium powder (3.0 mmol) was then added and the resulting mixture was refluxed for other 6 h.
- Phenylethyl isoselenocyanate (2b). (AS3.091) A mixture of phenylethylformamide (g, 1.5 mmol), triethylamine (6.4 mmol), 4 ⁇ molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH 2 Cl 2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2b as an oil.
- Phenylbutyl isoselenocyanate (2c) A mixture of phenylbutyl formamide (g, 1.5 mmol) triethylamine (6.4 mmol), 4 ⁇ molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH 2 Cl 2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2c as an oil.
- Phenylhexyl isoselenocyanate (2d) A mixture of phenylbutyl formamide (g, 1.5 mmol), triethylamine (6.4 mmol), 4 ⁇ molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH 2 Cl 2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2d as an oil.
- Scheme 6 shows the synthesis of NAC conjugate (5) of ISC-4.
- ISC-SFN4 1-isoselenocyanato-4-(methylsulfinyl)butane
- MTS CellTiter 96 Aqueous Non Radioactive Cell Proliferation Assay kit, Promega, Madison, Wis.
- Cellular viability is quantified by MIS assay and dose response curves plotted. 5 ⁇ 10 3 melanoma cells (UACC 903, 1205 LU or WM115) cells per well in 100 ⁇ L DMEM containing 10% FBS are grown in a 96-well plate for 24 h and then treated with increasing concentrations of the indicated isothiocyanate or isoselenocyanate for 24 h.
- Table I shows a comparison of the IC 50 of isothiocyanates and isoselenocyanates in three independently derived melanoma cell lines, UACC 903, 1205 Lu and WM115.
- a general trend is observed in which increasing carbon chain length and substitution of selenium for sulfur decreased the IC 50 .
- Increased potency ranged from 30-70% with increasing chain length and/or sulfur substituted for selenium.
- isothiocyanate analogs with longer alkyl chain lengths and sulfur substituted for selenium are better inhibitors of cultured melanoma cells.
- ITCs (1) and the corresponding ISCs (2) are tested for their ability to inhibit cell growth in five cancer cell lines e.g. melanoma, breast, glioblastoma, fibrosarcoma, colon and prostate cancers.
- Iin vitro inhibitory efficacy of cancer cell lines representing different cancer types following treatment with ITC and ISC is measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, Wis.).
- the IC 50 values for compounds 1 and 2 are depicted in Table II.
- the values consistently decreased with increasing alkyl chain length of ITCs in case of MDA-MB-231, T98G, and PC-3 cell lines; but showed no particular trend in case of HT-1080, Caco-2, and UACC 903 cells.
- ISC-1 was least effective in killing cells in all the cell lines tested compared to its higher alkyl chain analogs ISC-2 to ISC-6.
- ISC-4 and ISC-6 there was no particular trend.
- the values generally decreased with increasing chain length for all the cancer cell lines tested except breast cancer cells MDA-MB 231 in case of ISC compounds and sarcoma HT 1080 cells in case of ITCs. Except for ISC-1 and ISC-2 in UACC 903 cells, the ISC derivatives had lower IC 50 values than corresponding ITCs.
- IC 50 ( ⁇ M) of ITC and ISC derivatives on different cancer cells Cancer cell lines IC 50 ( ⁇ M) Breast Glioblastoma Prostate Fibrosarcoma Colon Melanoma Compounds MDA-MB-231 T-98-G PC-3 HT-1080 Caco-2 UACC 903 1a (BITC) 42 ⁇ 3 >100 >50 >50 15 ⁇ 2 15 ⁇ 3 1b (PEITC) 38 ⁇ 6 >100 24 ⁇ 2 15 ⁇ 1 14 ⁇ 2 12 ⁇ 1 1c (PBITC) 27 ⁇ 2 35 ⁇ 1 24 ⁇ 2 15 ⁇ 1 27 ⁇ 2 15 ⁇ 1 1d (PHITC) 24 ⁇ 2 26 ⁇ 2 17 ⁇ 1 29 ⁇ 3 49 ⁇ 9 15 ⁇ 1 2a (ISC-1) 29 ⁇ 2 43 ⁇ 4 24 ⁇ 1 13 ⁇ 3 13 ⁇ 3 16 ⁇ 3 2b (ISC-2) 20 ⁇ 3 24 ⁇ 1 16 ⁇ 1 12 ⁇ 3 11 ⁇ 1
- Cell viability of melanoma cells following treatment with isothiocyanate or an isoselenocyanate is measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, Wis.).
- MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- melanoma cells UACC 903, 1205 LU or WM115
- human fibroblast FF2441
- 100 ⁇ L DMEM containing 10% FBS are grown in a 96-well plate for 24 h and treated with either control DMSO vehicle; phenylhexyl selenocyanate (PHSC), used as a control compound since it is similar to ISC-6 in structure and contains selenium; API-2, an Akt inhibitor used for comparison purposes; or increasing concentrations (2.5-50 ⁇ M) of an isothiocyanate or an isoselenocyanate for 24 h.
- PHSC phenylhexyl selenocyanate
- API-2 an Akt inhibitor used for comparison purposes
- increasing concentrations 2.5-50 ⁇ M
- Cellular viability compared to control treated cells is measured using the MTS assay.
- IC 50 values for each compound in respective cell lines is determined from three independent experiments using GraphPad Prism version 4.01 (GraphPad software, San Diego, Calif.).
- FIG. 1A shows a comparison of cell viability following exposure to PBITC or ISC-4, compared to controls.
- FIG. 1B shows a comparison of cell viability following exposure to PHITC or ISC-6, compared to controls.
- Cell viability is determined using MTS assay.
- Phenylhexyl selenocyanate (PHSC) is used as a control compound since it is similar to ISC-6 in structure and contains selenium.
- API-2 is an Akt inhibitor used for comparison purposes.
- ISC-4 and ISC-6 are more effective at inhibiting growth of melanoma cells than sulfur containing PBITC, PHITC, control PHSC or API-2.
- Cellular proliferation in vitro is measured by seeding 5 ⁇ 10 3 cells in 96-well plate, followed by treatment for 24 hours with vehicle control DMSO, or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of APT-2 (a known Akt inhibitor), PHSC, PBITC, PANIC, ISC-4, or ISC-6. Proliferation rate is measured using a BrdU ELISA kit (Roche Applied Sciences, Indianapolis, Ind.).
- FIG. 2A shows results of proliferation analysis of UACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15uM) of API-9, PHSC, PBITC or ISC-4 for 24 hours.
- FIG. 2B shows results of proliferation analysis of UACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PHITC or ISC-6 for 24 hours.
- BrdUrd is used to label cells for 4-6 hours.
- ISC-4 and ISC-6 reduced UACC 903 cellular proliferative potential by ⁇ 80-90% compared to controls.
- Results represent the average of 3 independent experiments; bars represent SEM. The average value is represented as the percentage of control DMSO treated cells.
- ISC-4 and ISC-6 are ⁇ 2-fold more effective than PBITC or PHITC at inhibiting cellular proliferation.
- Apoptosis rates are measured by seeding 5 ⁇ 10 3 cells in 96-well plate, followed by treatment for 24 hours with vehicle control DMSO; API-2; PHSC; PBITC; PAI ⁇ C; ISC-4; or ISC-6. Apoptosis rates are measured using an Apo-ONE Homogenous caspase-3/7 Assay kit (Promega Corporation, Madison, Wis.).
- FIG. 3A shows the effects of treatment of UACC 903 cells in culture with DMSO or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of API-2, PHSC, PBITC or ISC-4 for 24 hours on caspase-3/7 activity, an indicator of apoptosis.
- FIG. 3B shows the effects of treatment of UACC 903 cells in culture with DMSO or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of API-2, PHSC, PHITC or ISC-6 for 24 hours on caspase-3/7 activity, an indicator of apoptosis.
- the isoselenocyanate compounds promote apoptosis in melanoma cells.
- Levels of caspase-3/7 activity in cells exposed to API-2, PHSC, PBITC, PHITC, ISC-4 or ISC-6 are measured using the Apo-ONE homogeneous caspase-3/7 assay kit.
- the graphs in FIGS. 3A and 3B show fold increase in caspase-3/7 activity relative to DMSO vehicle treated cells on the x-axis. Results represent average of 3 independent experiments. Bars indicate SEM.
- increasing concentrations of PBITC, ISC-4, PHITC and ISC-6 increase cellular apoptosis of UACC 903 melanoma cells as shown in FIGS. 3A and 3B .
- ISC-4 and ISC-6 are ⁇ 2-fold more effective than PBITC at inducing apoptosis.
- Cell cycle analysis is performed by plating 1.5 ⁇ 10 6 melanoma cells in 100-mm culture dish. Two days following plating, cells are treated with DMSO, or 5 ⁇ M, 10 ⁇ M or 15 ⁇ M of API-2, PHSC, PBITC, PHITC, ISC-4, or ISC-6 for 24 hours. Cells are collected by trypsinization and stained using propidium iodide (13).
- Trypsinized cells are centrifuged (500 ⁇ g, for 5 minutes) and treated with 1 mL of propidium iodide staining solution (100 ⁇ g/mL; Sigma, St Louis, Mo.), 20 ⁇ g/mL Ribonuclease A (Roche Applied Sciences, Indianapolis, Ind.) 3 ⁇ g/mL Triton X-100 dissolved in 0.1% (W/V) sodium citrate for 30 minutes at 4° C. Stained cells are analyzed using the FACScan analyzer (Becton Dickinson, San Jose, Calif.) and data analyzed using ModFit LT software (Verity Software House, Topsham, Me.).
- FIG. 4A shows results of cell cycle analysis of UACC 903 cells treated with controls (API-2, PHSC), PBITC or ISC-4, or, DMSO vehicle control.
- FIG. 4B shows results of cell cycle analysis of UACC 903 cells treated with controls (API-2, PHSC), PIIITC or ISC-6, or, DMSO vehicle control.
- ISC-4, ISC-6, PBITC or PHITC treatment increased the sub G0/G1 cell population (an indicator of apoptosis) and induces G2/M cell cycle arrest in melanoma cells compared to DMSO or controls API-2 and PHSC. Results represent average of 2 independent experiments.
- ISC-4 or ISC-6 Enhanced apoptosis induced by ISC-4 or ISC-6 is confirmed through cell cycle analysis of asynchronously growing UACC 903 cells. A significant increase is observed in the sub G0/G1 population in PBITC, ISC-4, PHITC or ISC-6 treated cells which is indicative of cells undergoing apoptosis.
- Table IV shows results of cell cycle analysis following treatment with controls compounds DMSO, API-2 or PHSC or test compounds PBITC, PHITC, ISC-4 or ISC-6.
- Treated cells are stained with propidium iodide and cell cycle analyzed using a FACScan analyzer such that the proportion of cells in each phase of cell cycle (G0/G1, St G2/M) is estimated.
- the G2/M cell population increases 2-3 fold following 15 ⁇ M PBITC, PHITC, ISC-4 or ISC-6 exposure.
- a significant decrease in G0/G1 cell population occurred following ITC or ISC treatment.
- Enhanced apoptosis induced by ISC-4 or ISC-6 is confirmed through cell cycle analysis of asynchronously growing UACC 903 cells. Analysis of cells in each stage of the cell cycle showed decreasing numbers of cells in the S- and G1/G0 phase with a corresponding increase in the G2/M phase.
- Isoselenocyanates are effective for inhibiting melanoma tumor development in preexisting tumors in nude mice.
- Tumor kinetics are measured by subcutaneous injection of 2.5-5 ⁇ 10 6 1205 Lu or UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and right rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later when a fully vascularized tumor has formed, mice are randomly divided into DMSO vehicle control and experimental groups including 5 mice/group, each mouse having two tumors.
- mice are treated by intraperitoneal (i.p.) injection with an ITC compound BITC, PEITC, PBITC, or PHITC (2.5 ⁇ moles or 0.76 ⁇ moles); or treated by i.p injection with an ISC compound ISC-1-ISC-2, ISC-4 or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium) thrice per week. (Monday, Wednesday and Friday). Control mice received an equal volume of the vehicle. Dimensions of the developing tumors are measured using calipers and the size estimated in cubic millimeters. Body weight is monitored three times a week (Monday, Wednesday and Friday).
- FIGS. 5A and 5B show graphs comparing the effect of isothiocyanates and isoselenocyanates on tumor development using UACC 903 melanoma cells, a cell line having high Akt3 signaling activity.
- the bar graphs in FIGS. 5A and 5B show melanoma tumor volume, as % of vehicle, at day 24.
- Isoselenocyanates ISC-2, ISC-4 and ISC-6 reduce tumor volume at doses 3 ⁇ lower than isothiocyanates.
- ISC 0.76 ⁇ moles vs. ITC, 2.5 ⁇ moles.
- isoselenocyanates have increased in vivo tumor inhibitory effectiveness compared to corresponding isothiocyanates and effectively reduce melanoma development.
- Increasing carbon chain length of isothiocyanates showed less effective tumor inhibition, FIG. 5A
- increasing carbon chain length of isoselenocyanates led to greater tumor inhibition, FIG. 5B .
- mice are treated i. p. with PBITC or PHITC (0.76 ⁇ moles) or ISC-4 or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium) thrice per week.
- FIGS. 6A and 6B show graphs of chance in tumor size and body weight over time in mice treated i. p. with PBRTC or PHITC. (0.76 ⁇ moles) or ISC-4 or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium) thrice per week.
- Selenium containing analogs ISC-4 or ISC-6 significantly reduced tumor development compared to DMSO, PBITC or PHITC controls. While PBITC and PHITC are ineffective at reducing tumor burden of UACC 903, FIG. 6A , or 1205 Lu, FIG.
- ISC isoselenocyanates
- mice are established by subcutaneous injection of 2.5-5 ⁇ 10 6 1205 Lu or UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and light rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later when a fully vascularized tumor forms, mice are randomly divided in to DMSO vehicle control and experimental (BITC, PEITC, PBITC, PHITC, ISC-1-ISC-2, IS C-4 or ISC-6) groups (5 mice/group; 2 tumors/mouse) and treated i. p.
- mice receive an equal volume of the vehicle. Dimensions of the developing tumors are measured using calipers and the size estimated in cubic millimeters. Body weight is monitored three times a week Monday, Wednesday and Friday).
- Isoselenocyanates decrease the tumorigenic potential of melanoma cells by increasing apoptosis.
- FIG. 7A shows that ISC treatment leads to apoptosis in size and time matched melanoma tumors.
- Mice bearing tumors matched for size and time of development are injected i. p. with PBITC (0.76 ⁇ moles), ISC-4 (3 ppm equivalent to 0.76 ⁇ moles) or DMSO (50 ⁇ l) vehicle starting 6 days after subcutaneous injection of cells and on alternate days thereafter up to day 15.
- PBITC 0.76 ⁇ moles
- ISC-4 3 ppm equivalent to 0.76 ⁇ moles
- DMSO 50 ⁇ l
- Apoptosis and cell proliferation are measured in formalin-fixed, paraffin-embedded tumor sections using the TUNEL TMR Red Apoptosis kit from Roche (Manheim, Germany) or purified mouse anti-human Ki-67 from PharMingen (San Diego, Calif.), respectively.
- Tumors harvested at day 11 and 13 from mice treated with ISC-4 showed ⁇ 3-fold (p ⁇ 0.01; One-way ANOVA) more TUNEL positive cells compared to control animals treated with DMSO or PBITC, as shown in FIG. 7A .
- slightly fewer proliferating tumor cells are observed in ISC-4 treated tumors compared to PBITC but this difference is not statistically significant (p>0.05; One-way ANOVA), shown in FIG. 7B .
- FIGS. 7A and 7B are means from 2 separate experiments with 4-6 fields analyzed from each of 6 tumors per experiment; bars, ⁇ SEM. ISC-4 is more potent than PBITC in inhibiting melanoma tumor development by increasing apoptosis levels in melanoma tumors.
- microtainer tubes containing K 2 EDTA (BD Microtainer, BD, Franklin Lakes, N.J.) and RBC, WBC, lymphocytes, monocytes, eosinophils, platelets, total hemoglobin and hematocrit percentage analyzed.
- Blood is also microscopically examined for segregates, polychromatin bodies, and smudge cells.
- a portion of liver, heart, kidney, spleen, intestine pancreas and adrenal from each animal is formalin fixed and paraffin-embedded to examine toxicity-related changes in cell or organ morphology by H&E staining.
- Body weights of isothiocyanate or isoselenocyanate treated mice compared to the control DMSO vehicle exposed mice showed no significant differences between groups as shown in the two graph inserts in FIGS. 6A and 6B .
- FIG. 8 shows a bar graph indicating that synthetic isoselenocyanates have negligible toxicity and treatment with PBITC or ISC-4 did not alter parameters compared to vehicle DMSO treated animals indicating manageable toxicity to vital organs with these agents.
- melanoma cells treated with compounds or control vehicle are harvested by addition of lyses buffer containing 50 mM HEPES (pH 7.5), 150 mM NaCl, 10 mM EDTA, 10% glycerol, 1% Triton X-100, 1 mM sodium orthovanadate, 0.1 mM sodium molybdate, 1 mM phenylmethylsulfonyl fluoride, 20 ⁇ g/ml aprotinin, and 5 ⁇ g/ml leupeptin.
- Whole cell lysates are centrifuged (>10,000 ⁇ g) for 10 minutes at 4° C. to remove cell debris.
- Protein concentrations are quantitated using the BCA assay from Pierce (Rockford, Ill.), and 30 ⁇ g of lysate loaded per lane onto NuPAGE Gels from Life Technologies (Carlsbad, Calif.). Following electrophoresis, samples are transferred to polyvinylidene difluoride membrane (Pall Corporation, Pensacola, Fla.).
- Blots are probed with antibodies according to each supplier's recommendations: phosphorylated PRAS40 (Thr246) from Invitrogen (Carlsbad, Calif.); Erk2, ⁇ -enolase and secondary antibodies conjugated with horseradish peroxidase from Santa Cruz Biotechnology (Santa Cruz, Calif.); and antibodies to Akt3, phosphorylated-Akt (Ser473), phosphorylated-Erk 1/2 (Thr202/Tyr204) and cleaved PARP from Cell Signaling Technology (Danvers, MA). Immunoblots are developed using the enhanced chemiluminescence detection system (Pierce Biotechnology, Rockford, IL).
- phenylbutylisothiocyanate PBITC
- PHITC phenylhexylisothiocyanate
- ISC-4 phenylbutylisoselenocyanate
- ISC-6 phenylhexylisoselenocyanate
- FIG. 9 shows a representative Western blot analysis for expression/activity of the Akt signaling pathway and demonstrates dose dependent decrease in phosphorylated (active) Akt (S473) and downstream PRAS40 (T246) and a corresponding dose dependent increase in cleaved PARP, reflective of high levels of cellular apoptosis.
- a higher level of apoptosis is observed in cells treated with ISC-4 than in cells treated with PBITC.
- Erk2 served as control for equal protein loading. Isoselenocyanates decrease Akt3 signaling in cultured melanoma cells and tumors.
- the Western blot in FIG. 9 shows that the isoselenocyanate compounds ISC-4 and ISC-6 are effective at lower concentrations compared to the isothiocyanate compounds, completely inhibiting the pathway at 10 ⁇ M compared to corresponding isothiocyanates requiring ⁇ 15 ⁇ M for similar inhibition.
- Akt3 pathway inhibition led to significant apoptosis as measured by the high levels of cleaved PARP. Higher levels of cleaved PARP are observed at lower concentrations of ISC-4 and ISC-6 than corresponding isothiocyanates PBITC or PRUC.
- FIGS. 10A and 10B illustrate Western blots showing the effect of ISC-4 on Akt signaling pathway in melanoma cell lines 1205 Lu and WM115, respectively.
- ISC-4 causes significant apoptosis indicated by elevated cleaved PARP protein levels.
- Erk-2 served as a control for equal protein loading.
- isoselenocyanates ISC-4 and ISC-6 more effectively inhibit the Akt3 signaling cascade in cultured melanoma cells at lower concentrations than corresponding sulfur containing isothiocyanates.
- UACC 903 cells are injected into nude mice, 6-days later mice are treated i. p. with PBITC (0.76 ⁇ moles) or PHITC (0.76 ⁇ moles), ISC-4 (0.76 ⁇ moles, equivalent to 3 ppm selenium) or ISC-6 (0.76 ⁇ moles, equivalent to 3 ppm selenium) on alternate days.
- PBITC 0.76 ⁇ moles
- PHITC 0.76 ⁇ moles
- ISC-4 0.76 ⁇ moles, equivalent to 3 ppm selenium
- ISC-6 0.76 ⁇ moles, equivalent to 3 ppm selenium
- Size and time matched tumors are harvested at days 9, 11 and 13 and a small portion of the tumor is flash frozen in liquid nitrogen, pulverized and lysed in protein lysis buffer (600-800 ⁇ l, 50 mM Tris-HCl, pH 7.5 containing 0.1% Triton X-100, 1 mM EDTA, 1 mM EGTA, 50 mM sodium fluoride, 10 mM sodium ⁇ -glycerol phosphate, 5 mM sodium pyrophosphate, 1 mM activated sodium orthovanadate, protease inhibitor cocktail from Sigma and 0.1% (v/v) 2-mercaptoethanol). Protein concentration is determined using Bio-Rad protein assay reagent (Bio-Rad laboratories, Hercules, Calif.) and analyzed by Western blotting to measure levels of pAkt and downstream pPRAS40 in tumors.
- protein lysis buffer 600-800 ⁇ l, 50 mM Tris-HCl, pH 7.5 containing 0.1% Triton
- FIG. 11 illustrates a graph of quantitation of Western blot analysis of tumor protein lysates from animals treated with DMSO, PBITC or ISC-4 and indicates decreased relative expression of phosphorylated (active) Akt and downstream PRAS40 of Akt3.
- isoselenocyanates ISC-4 and ISC-6 more effectively inhibit the Akt3 signaling cascade in tumors at lower concentrations than corresponding sulfur containing isothiocyanates.
- siRNA from Invitrogen are: AKT3-GGA CUA UCU ACA WEC CGG AAA GAU U (SEQ ID NO. 1) and scrambled-AAU UCU CCG AAC GUG UCA CGU GAG A (SEQ ID NO. 2). Nucleofection using Amaxa Nucleofector (Koeln, Germany) is used to introduce siRNA into UACC 903 cells (Reagent R, program K17). SiRNA (100 pmoles) against Akt3 or scrambled siRNA are nucleofected into 1 ⁇ 10 6 UACC 903 cells, which are then replated in DMEM supplemented with 10% FBS and allowed to recover for 1.5 days.
- UACC 903 cells in 0.2 ml of DMEM supplemented with 10% FBS are injected subcutaneously into the left and right flanks of 4 to 6 week old nude mice.
- Control cells are nucleofected with scrambled siRNA or nucleofection buffer only. Dimensions of developing tumors are measured on alternate days using calipers up to day 17.5.
- siRNA-mediated inhibition of Akt3 signaling reduced the tumorigenic potential of melanoma cells.
- FIG. 12 is a graph showing that decreased expression (activity) of Akt3 reduced the tumor size in animals injected with Akt3 siRNA treated cells compared to control cells nucleofected with scrambled siRNA or nucleofection buffer.
- the tumorigenic potential of melanoma cells is decreased by ⁇ 60%.
- inhibition of Akt3 signaling led to significant melanoma tumor inhibition.
- FIG. 13 is a Western blot analysis of tumor protein lysates showing reduction in expression of Akt3, demonstrating effective knockdown of these proteins in tumors by siRNA directed against Akt3.
- ⁇ -enolase served as loading control.
- a tumor removed from animals 8 days after introduction of siRNA shows significantly less Akt3 protein than control tumors into which a scrambled siRNA had been introduced, demonstrating effective knockdown of Akt3 protein expression using this approach.
- mice Five million UACC903 cells are injected subcutaneously in a volume of 200 uL at each of two sites in nude mice to establish tumors. Six days following injection of the cells, mice are divided into four groups of five mice each. Mice in each group are injected i.p with 0.76 micromoles of sulforaphane (SFN), 0.76 micromoles (equivalent to 3 ppm selenium) of 1-isothiocyanto-4-methylselenobutane (SFN Iso Se Me), 0.76 micromoles (equivalent to 3 ppm selenium) of 1-isoselenocyanto-4-methylsulfinylbutane (SEN Iso Se) or DMSO (a vehicle control).
- SFN sulforaphane
- SFN Iso Se Me 1-isothiocyanto-4-methylselenobutane
- SEN Iso Se 1-isoselenocyanto-4-methylsulfinylbut
- FIG. 14A shows inhibition of tumor development by 1-isoselenocyanto-4-methylsulfinylbutane (SEN Iso Se) compared to controls. No toxicity of the administered compounds is apparent as indicated by lack of significant changes in body weight, shown in FIG. 14B .
- SEN Iso Se 1-isoselenocyanto-4-methylsulfinylbutane
- Prostate cell lines, LnCaP, PC-3 and DU-145 are exposed to different concentrations, 5 micromolar, 10 micromolar or 25 micromolar, of ITCs including BITC, PEITC, PBITC, and PHITC, or ISCs, including ISC-1, ISC-2, ISC-4, and ISC-4, for 24 hours. Following incubation, cell viability is assayed using an MTS assay.
- Cellular proliferation rate is measured by seeding 5 ⁇ 10 3 human melanoma cell line UACC 903 cells in a 96-well plate, followed by treatment for 24 hours with DMSO or 5-15 ⁇ M of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC for 24 hours. Proliferation rates are measured using a BrdU ELISA kit (Roche Applied Sciences, Indianapolis, Ind.). Results of this assay are shown in FIG. 16 .
- Apoptosis rate is measured by seeding 5 ⁇ 10 3 human melanoma cell line UACC 903 cells in a 96-well plate, followed by treatment for 24 hours with DMSO or 5-15 ⁇ M of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC for 24 hours.
- Apoptosis rate is measured using an Apo-ONE Homogenous caspase-3/7 Assay kit (Promega Corporation, Madison, Wis.). Results of this assay are shown in FIG. 17 .
- mice Tumor kinetics are measured by subcutaneous injection of 5 ⁇ 10 6 UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and right rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later mice are randomly divided into control (DMSO) and experimental (ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, PHITC) groups (5 mice/group; 2 tumors/mouse). Six days after subcutaneous injection of UACC 903 melanoma cells, mice are treated i. p.
- mice receive an equal volume of the vehicle, DMSO.
- the dimensions of the developing tumors (using calipers) and body weight are measured three times a week (Monday, Wednesday and Friday) and the size estimated in cubic millimeters.
- FIGS. 18B and 18D shows the body weights of test compound treated mice treated compared to the control DMSO vehicle treated mice. No significant difference in weights is detected between groups, demonstrating negligible toxicity.
- Immunoprecipitation for detection of Akt1, Akt2 and/or Akt3 dysregulation is performed according to standard procedures, for instance as described herein and in Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988; J. D. Pound (Ed.) Immunochemical Protocols, Methods in Molecular Biology, Humana Press; 2nd ed., 1998; Stahl, J. M., et al., Cancer Res., 63:2881-2890, 2003; and Stahl, J. M., et al., Cancer Res., 64:7002-7010, 2004.
- protein is collected from cells after addition of protein lysis buffer [50 mmol/L Tris-HCl (pH 7.5), 0.1% Triton X-100, 1 mmol/L EDTA, 1 mmol/L EGTA, 50 mmol/L NaFl, 10 mmol/L sodium ⁇ -glycerol phosphate, 5 mmol/L sodium inorganic pyrophosphate, 1 mmol/L sodium orthovanadate, 0.11% 2-mercaptoethanol, and 0.5% protease inhibitor mixture (Sigma, St. Louis, Mo.)] to a sample, such as plates of cells or biopsy material, followed by snap freezing in liquid nitrogen.
- protein lysis buffer 50 mmol/L Tris-HCl (pH 7.5), 0.1% Triton X-100, 1 mmol/L EDTA, 1 mmol/L EGTA, 50 mmol/L NaFl, 10 mmol/L sodium ⁇ -glycerol phosphate, 5 mmol/
- Pelleted beads are washed twice with lysis buffer to remove unbound antibody and protein. Samples are then electrophoresed under reducing conditions according to the protocol provided by Invitrogen Life Technologies, Inc. (Carlsbad, Calif.) with the NuPage Gel System. Western blots of the electrophoresed samples are probed with an anti-phospho-Akt (Ser-473) antibody and quantitated by densitometry as described in Stahl, J. M., et al., Cancer Res., 63:2881-2890, 2003.
- Antibodies for use in immunoassays for Akt1, Akt2 and/or Akt3 can be obtained commercially, for instance an Akt1 antibody is available from Cell Signaling Technologies, Beverly, Mass., an Akt2 antibody is available from Santa Cruz Biotechnology, Santa Cruz, Calif. and an Akt3 antibody is available from Upstate Biotechnology, Lake Placid, N.Y.
- An anti-phospho-Akt (Ser-473) antibodies can also be obtained commercially, e.g. from Cell Signaling Technologies, Beverly, Mass.
- Anti-Akt1, Akt2 and/or Akt3 antibodies can also be produced by well-known techniques such as described, for instance, in Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988.
- Akt kinase assays are performed according to standard kinase assay procedures. Briefly described, 15 ⁇ L of equilibrated GammaBind G Sepharose beads are incubated with 2 ⁇ g of Akt1 or Akt2 antibody, or 5 ⁇ L of Akt3 antibody in a volume of 350 ⁇ L of lysis buffer at 4° C. with constant mixing for 2 hours. Microcystin (1 ⁇ mol/L) from MP Biomedicals (Irvine, Calif.) is added to the lysis buffer to ensure complete inactivation of cellular PP1 and PP2 phosphatases.
- the antibody/Sepharose complex is washed twice with 750 ⁇ L of lysis buffer and then incubated with 100 ⁇ g of protein in a volume of 350 ⁇ L overnight at 4° C. with constant mixing.
- This complex is washed with 500 ⁇ L of lysis buffer (3 ⁇ ) and then once with 500 ⁇ L of assay dilution buffer [20 mmol/L 4-morpholinepropanesulfonic acid (pH 7.2), 25 mmol/L ⁇ -glycerol phosphate, 1 mmol/L sodium orthovanadate, and 1 mmol/L dithiothreitol].
- PKA Protein kinase A
- assay dilution buffer 37.5 ⁇ mol/L ATP, 17 mmol/L MgCl2, 0.25 ⁇ Ci/ ⁇ L [gamma- 32 P]ATP, and 90 ⁇ mol/L Akt-specific substrate Crosstide from Upstate Biotechnology (Lake Placid, N.Y.) are added to the tubes in assay dilution buffer and incubated at 35° C. for 10 minutes with continuous mixing. Next, 20 ⁇ L of liquid are transferred to phosphocellulose paper, which is washed three times for 5 minutes with 40 mL of 0.75% phosphoric acid.
- PKA Protein kinase A
- the phosphocellulose was allowed to dry and transferred to a scintillation vial with 5 mL of Amersham Biosciences scintillation fluid, and counts per minute were measured in a Beckman Coulter LS 3801 Liquid Scintillation System Fullerton, Calif.).
- Formalin-fixed paraffin-embedded melanoma specimens are used for immunohistochemistry to measure phosphorylated Akt.
- a phospho-Akt (Ser-473) monoclonal antibody, Cell Signaling Technologies, is used at a 1:50 titer according to the manufacturer's recommended protocol. Specificity and intensity of staining are determined through qualitative comparison with internal blood vessel endothelium, squamous epithelium, or smooth muscle controls present in each specimen.
- ISC-4 more efficiently inhibits melanoma cell growth compared to normal human fibroblast cells.
- 10 ⁇ 10 3 normal human fibroblasts (FF2441) expressing Akt3 at normal levels and 5 ⁇ 10 3 metastatic melanoma cells (UACC 903) having activated Akt3 are plated in 96 well plates in 100 ⁇ L DMEM containing 10% FBS and grown for 24 hours respectively. Exponentially growing cells are treated with increasing concentrations (2.5-100 ⁇ M) of ISC-4 for 24 hours and IC 50 ( ⁇ M) values determined.
- Sensitivity of melanoma cells to ISC-4 with elevated Akt3 signaling is compared to fibroblast cells with normal levels of Akt activity.
- Three-fold higher drug concentration of ISC-4 (37.5 ⁇ M) is required to kill fibroblasts with normal levels of Akt activity compared to melanoma cells (12 ⁇ 3 ⁇ M) with elevated Akt activity.
- cancer cells with constitutively active Akt signaling are 3-fold more sensitive to ISC-4 than normal cells with regular Akt activity.
- FIG. 19 is a bar graph showing the effects of topically applied PBITC or ISC-4 on reconstructed human skin containing GFP tagged UACC 903 human melanoma cells.
- E-media was added to each well to equilibrate the dermal matrix (Wu Y J, Parker L M, Binder N E, et al., Cell 1982, 31: 693-703.).
- keratinocytes and melanoma cells (WM35-GFP or UACC 903-GFP) were trypsinized and resuspended at a 1:10 ratio of melanoma cells (nucleofected or untreated) to keratinocytes in E-media.
- One milliliter of cell suspension added to each well on top of the dermal layer.
- reconstructed skin was transferred onto wire grids and fed via diffusion from E-media below the platforms.
- Reconstructed human skin containing GFP tagged UACC 903 human melanoma cells were treated with 12.5 and 25 ⁇ M PBITC or ISC-4 and the tumor area occupied measured using fluorescence microscopy.
- the result shows an ⁇ 80% decrease in tumor area occupied by melanoma cells upon ISC-4 treatment compared to control DMSO treated or untreated skins. Similar results are observed with other melanoma cell lines.
- ISC-4 chemopreventive or chemotherapeutic effect of ISC-4 on cutaneous tumor development is measured by subcutaneous injection of 1 million UACC 903 cells in 0.2 ml of DMEM-10% FBS above both the left and right rib cages of 4- to 6-week old female athymic nude mice using 24 g needles. 24 hours later, animals are treated daily with ISC-4 (0.063-0.19 ⁇ moles equivalent to 0.25-0.75 ppm), PBITC (0.063-0.19 ⁇ moles) or vehicle control (acetone) for 3-4 weeks. The dimensions of the developing tumors are measured alternate days using calipers and the sizes estimated in cubic millimeters. A minimum of 5 mice per group is used for the topical treatment.
- FIG. 20 shows a pair of line graphs showing the effect of topical ISC-4 application on melanoma tumor growth in vivo.
- Topical treatment with (0.063-0.19 ⁇ moles equivalent to 0.25-0.75 ppm) ISC-4 leads to decreased tumor size compared to vehicle control (as shown in the upper graph in FIG. 20 ) or PBITC (0.063-0.19 ⁇ moles) with no systemic toxicity (as shown by body weight measurements in the lower graph in FIG. 20 ).
- ISC-4 chemopreventive or chemotherapeutic effect of ISC-4 on cutaneous tumor development is measured by subcutaneous injection of 1 million UACC 903 cells in 0.2 ml of DMEM-10% FBS above both the left and right rib cages of 4- to 6-week old female athymic nude mice using 24 g needles. 24 hours later, animals were treated daily with ISC-4 (12.5-50 ⁇ M), PBITC (12.5-50 ⁇ M), or vehicle control (acetone) for 3-4 weeks. The dimensions of the developing tumors are measured alternate days using calipers and the sizes estimated in cubic millimeters. A minimum of 5 mice per group was used for the topical treatment.
- compositions and methods described herein are presently representative of preferred embodiments, exemplary, and not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art. Such changes and other uses can be made without departing from the scope of the invention as set forth in the claims.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
- This application claims priority from U.S. Provisional Patent Application Ser. Nos. 60/911,565, filed Apr. 13, 2007 and 60/959,554, filed Jul. 13, 2007, the entire content of both applications being incorporated herein by reference.
- The invention was made with government support under Contract No. HHSN261200566003C awarded by the U.S. Public Health Service; Contract No. NO2-CB-56603 awarded by the U.S. National Institutes of Health National Cancer Institute; and Contract No. CA-127892-01A awarded by the U.S. National Institutes of Health. The government has certain rights in the invention.
- The present invention relates generally to anti-cancer compositions and methods. In specific embodiments, the present invention relates to compositions including one or more isothiocyanates and/or isoselenocyanates, methods for treatment and/or prevention of patlhological conditions in a subject using one or more isothiocyanates and/or isoselenocyanates and methods for synthesis of particular isoselenocyanates.
- In spite of recent medical progress, cancer continues to be one of the most common and deadly diseases. Elucidation of biochemical pathways involved in development and progression of various cancers is important to identify potential anti-cancer treatments as well as to develop agents effective to regulate such pathways in other aspects of health and disease.
- A particular cancer, melanoma, is the most deadly form of skin cancer due to its high metastatic potential. Akt3 and downstream PRAS40 are part of a key signaling cascade activated in ˜70% of melanomas. Akt3 functions to reduce cellular apoptosis in early melanomas, thereby promoting development of this disease. Compositions and methods are required to inhibit the Akt pathway and inhibit abnormal cell survival and proliferation.
- Compositions including an isoselenocyanate having the structural formula R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, inclusive, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group are described herein.
- In embodiments of the present invention, a composition including an isoselenocyanate having the structural formula:
- where R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive is provided along with methods of synthesis and use of such compositions. In particular embodiments, R′ is CH3.
- Embodiments of compositions of the present invention include an isoselenocyanate having the structural formula:
- where R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive. In particular embodiments, R′ is CH3 and n is 4.
- Methods for synthesis of an isoselenocyanate having the structural formula: R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, inclusive, and where R is selected from the group consisting of: an unsubstituted aromatic group; an aromatic group substituted by one or more substituents selected from the group consisting of: F, Cl, Br, a lower alkyl group, a lower alkoxy group and a fluorinated lower alkyl group; R′—S(O), where R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain; and CH2═CH, are provided according to the present invention. Methods of synthesis of the present invention include formulation of a starting alkylamine compound having the structural formula: R—(CH2)n—NH2, where n is an integer in the range of 1-8, inclusive, where R is selected from the group consisting of: an unsubstituted aromatic group; an aromatic group substituted by one or more substituents selected from the group consisting of: F, Cl, Br, a lower alkyl group, a lower alkoxy group and a fluorinated lower alkyl group; R′—S(O), where R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain; and CH2═CH, to produce a formylated intermediate having the structural formula: R—(CH3)n—NHCHO, where R and n are identical to R and n of the starting alkylamine; and contacting the formylated intermediate with triphosgene and selenium powder in the presence of triethylamine. In a preferred option, the formylated intermediate is contacted with triphosgene and selenium powder in the presence of triethylamine and in the presence of a solvent, such as dichloromethane.
- Pharmaceutical compositions are provided according to embodiments of the present invention which include one or more isothiocyanates and/or isoselenocyanates having the structural formula R—(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group.
- Pharmaceutical compositions according to embodiments of the present invention include one or more isothiocyanates and/or isoselenocyanates having the structural formula phenyl-(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, and where X is S or Se.
- Pharmaceutical compositions are provided according to embodiments of the present invention which include an isoselenocyanate having the structural formula selected from the group consisting of:
- where n is 4 or 6;
- , where R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive; and a pharmaceutically acceptable carrier. Optionally, the pharmaceutically acceptable carrier is a particulate carrier. In a further option, the pharmaceutical composition is formulated for topical application.
- Methods of treating a subject are provided according to the present invention which include administering an effective amount of a composition including an isoselenocyanate described herein to a subject in need thereof. In embodiments of the present invention, a composition administered to a subject in need thereof includes a phenylalkyl isoselenocyanate having the structural formula:
- where n is 4 or 6. Optionally, the phenylalkyl moiety is substituted at an available substitutable site. For example, the phenylalkyl may be substituted by one or more substituents selected from the group consisting of: F, Cl, Br, a lower alkyl group, a lower alkoxy group and a fluorinated lower alkyl group.
- Embodiments of compositions administered to a subject in need thereof include an isoselenocyanate having the structural formula:
- where R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive. Optionally, R′ is CH3. In a further option, R′ is CH3 and n is 4.
- An isoselenocyanate composition is optionally conjugated to glutathione, cysteine or N-acetylcysteine to produce an isoselenocyanate glutathione conjugate; an isoselenocyanate cysteine conjugate; and an isoselenocyanate N-acetylcysteine conjugate for administration to a subject in need thereof.
- In embodiments of methods including administration of an isoselenocyanate to a subject, the subject is human.
- In further embodiments, the subject has or is at risk of having cancer. In certain embodiments, the subject has cancer or is at risk for cancer characterized by dysregulation of Akt1, Akt2 and/or Akt3. In further embodiments, the cancer is a melanoma.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: R—(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth. In certain embodiments of methods of treatment of a subject, contacting cells characterized by Akt dysregulation with a therapeutic amount of an isothiocyanate and/or isoselenocyanate described herein decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof. For example, contacting the cell with an isothiocyanate and/or isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof. In embodiments of described methods, treatment of a subject with a therapeutically effective amount of the composition including an isothiocyanate and/or isoselenocyanate is substantially without toxic effect on cells in which Akt is not dysregulated.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: phenyl-(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth. Optionally the phenyl group is substituted.
- Methods according to embodiments of the present invention include administering a therapeutically effective amount of a composition including an isoselenocyanate and/or an isothiocyanate to a subject wherein the administration detectably increases apoptosis and/or decreases proliferation of cells of the cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Optionally, a composition including an isoselenocyanate and/or isothiocyanate according to embodiments of the present invention is formulated for topical application, for instance to treat cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth of the skin.
- Optionally, methods of the present invention additionally include administration of an adjunct anti-cancer treatment.
- A method of modulating Akt dysregulation in a cell is provided according to embodiments of the present invention which includes contacting the cell with an effective amount of an isothiocyanate or isoselenocyanate having the structural formula: R—(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group. In certain embodiments of methods of modulating Akt dysregulation, contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof. For example, contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
- A method of modulating Akt dysregulation in a cell is provided according to embodiments of the present invention which includes contacting the cell with an effective amount of an isothiocyanate or isoselenocyanate having the structural formula: phenyl-(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, and where X is S or Se. Optionally, the phenyl group is substituted.
- A method of modulating Akt dysregulation in a cell is provided according to embodiments of the present invention which includes contacting the cell with an effective amount of an isoselenocyanate having the structural formula: R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, inclusive, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group. In certain embodiments of methods of modulating Akt dysregulation, contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt signaling pathway; an Akt3 signaling pathway; and a combination thereof. For example, contacting the cell with an isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof.
-
FIG. 1A is a bar graph showing a comparison of cell viability following exposure to PBITC or ISC-4, compared to controls; -
FIG. 1B is a bar graph showing a comparison of cell viability following exposure to PHITC or ISC-6, compared to controls; -
FIG. 2A is a bar graph of results of proliferation analysis ofUACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PBITC or ISC-4 for 24 hours; -
FIG. 2B is a bar graph of results of proliferation analysis ofUACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PHITC or ISC-6 for 24 hours; -
FIG. 3A is a bar graph showing the effects of treatment ofUACC 903 cells in culture with DMSO or 5 μM, 10 μM or 15 μM of API-2, PHSC, PBITC or ISC-4 for 24 hours on caspase-3/7 activity, an indicator of apoptosis; -
FIG. 3B is a bar graph showing the effects of treatment ofUACC 903 cells in culture with DMSO or 5 μM, 10 μM or 15 μM of API-2, PHSC, PHITC or ISC-6 for 24 hours on caspase-3/7 activity, an indicator of apoptosis; -
FIG. 4A is a bar graph showing results of cell cycle analysis ofUACC 903 cells treated with controls (API-2, PHSC), PHITC or ISC-4; -
FIG. 4B is a bar graph showing results of cell cycle analysis ofUACC 903 cells treated with controls (API-2, PHSC), PHITC or ISC-6; -
FIG. 5A is a bar graph showing the effect of isothiocyanates on tumor development; -
FIG. 5B is a bar graph showing the effect of isoselenocyanates on tumor development; -
FIG. 6A is a line graph showing chance in tumor size and body weight (inset) over time in mice treated i. p. with PBITC or PHITC (0.76 μmoles) or ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium); -
FIG. 6B is a line graph showing change in tumor size and body weight (inset) over time in mice treated i. p. with PBITC or PHITC (0.76 μmoles) or ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium); -
FIG. 7A is a bar graph showing results of analysis of apoptosis following ISC-4 treatment compared to treatment with PBITC or DMSO, in size and time matched tumors; -
FIG. 7B is a bar graph showing results of analysis of cell proliferation following ISC-4 treatment compared to treatment with PBITC or DMSO, in size and time matched tumors; -
FIG. 8 is a bar graph showing results of analysis of levels of SGOT, SGPT, alkaline phosphatase, glucose and creatinine in blood collected from animals treated with PBITC, ISC-4 or DMSO vehicle; -
FIG. 9 is a reproduction of an image of an immunoblot showing dose dependent decreases in phosphorylated (active) Akt (S473) and downstream PRAS40 (T246) and a corresponding dose dependent increase in cleaved PARP, reflective of high levels of cellular apoptosis in cells treated with ISC-4 or ISC-6; -
FIG. 10A is a reproduction of an image of an immunoblot showing the effect of ISC-4 on Akt signaling pathway in melanoma cell line 1205 Lu; -
FIG. 10B is a reproduction of an image of an immunoblot showing the effect of ISC-4 on Akt signaling pathway in melanoma cell line WM115; -
FIG. 11 is a bar graph showing quantitation of immunoblot analysis of tumor protein lysates from animals treated with DMSO, PBITC or ISC-4 and indicates decreased relative expression of phosphorylated (active) Akt and downstream PRAS40 of Akt3; -
FIG. 12 is a line graph showing that decreased expression (activity) of Akt3 reduced the tumor size in animals injected with Akt3 siRNA treated cells compared to control cells nucleofected with scrambled siRNA or nucleofection buffer. -
FIG. 13 is a reproduction of an image of an immunoblot analysis of tumor protein lysates showing reduction in expression of Akt3 in tumors by siRNA directed against Akt3; -
FIG. 14A is a line graph showing inhibition of tumor development by 1-isoselenocyanto-4-methylsulfinylbutane (SFN Iso Se, also interchangeably called ISC-SFN4 herein) compared to controls. -
FIG. 14B is a line graph showing a lack of significant changes in body weight in treated animals, indicating that a lack of toxicity of the administered compounds; -
FIG. 15 is a bar graph showing results of a cell viability assay measuring inhibitory efficacy of DMSO, ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC onUACC 903 cells; -
FIG. 16 is a bar graph showing the effect of DMSO or 5-15 μM of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on cell proliferation; -
FIG. 17 is a bar graph showing the effect of DMSO or 5-15 μM of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on apoptosis; -
FIG. 18A is a line graph showing effect of selected isoselenocyanates on tumor size; -
FIG. 18B is a line graph showing effect of selected isoselenocyanates on body weight; -
FIG. 18C is a line graph showing effect of selected isothiocyanates on tumor size; and -
FIG. 18D is a line graph showing effect of selected isothiocyanates on body weight; -
FIG. 19 is a bar graph showing the effects of topically applied PBITC or ISC-4 on reconstructed human skin containing GFP taggedUACC 903 human melanoma cells; -
FIG. 20 is a pair of line graphs showing the effect of topical ISC4 application on melanoma tumor growth in vivo; and -
FIG. 21 is a pair of line graphs showing the effect of topical ISC-4 application on melanoma tumor growth in vivo. - Anti-cancer compositions and methods are provided according to embodiments of the present invention. In certain embodiments, the present invention relates to compositions including one or more isothiocyanates and/or isoselenocyanates, methods for treatment and/or prevention of pathological conditions in a subject using one or more isothiocyanates and/or isoselenocyanates and methods for synthesis of particular isoselenocyanates.
- A composition provided according to embodiments of the present invention includes one or more compounds having the structural formula: R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, inclusive, where R is an aromatic group or a non-aromatic organic group.
- The term “aromatic” as used herein refers to an optionally substituted monocyclic or bicyclic hydrocarbon ring system containing at least one unsaturated aromatic ring. Non-limiting examples of aromatic groups include phenyl and napthyl.
- In particular embodiments, compositions of the present invention are phenylalkyl isoselenocyanates having the structural formula:
- where n is 1-8.
- R is optionally an aromatic group substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF3. In particular embodiments, R is phenyl group substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF3.
- The term “lower alkoxy” as used herein refers to a straight chain or branched hydrocarbon group containing from 1-4 carbon atoms which is appended to the parent molecular moiety through an oxygen atom. Illustrative examples of lower alkyl groups are methoxy, ethoxy, propoxy, 2-propoxy, butoxy and tert-butoxy.
- The term “lower alkyl” as used herein refers to a straight chain or branched hydrocarbon group containing from 1-4 carbon atoms. Illustrative examples of lower alkyl groups are methyl, ethyl, iso-propyl, n-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl.
- In particular embodiments, a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- where R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain, and where n is an integer in the range of 1-8, inclusive.
- In certain embodiments, a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- where R′ is a lower alkyl group, which may be substituted or unsubstituted, branched or straight chain, and where n is an integer in the range of 3-8, inclusive.
- In still further embodiments, a composition of the present invention includes a sulfoxide composition according to the present invention having the structural formula:
- where CH3 can be substituted or unsubstituted and where n is an integer in the range of 3-8, inclusive.
- Embodiments of a composition according to the present invention have the structural formulas: CH3—S(O)—(CH2)3—N═C═Se (termed ISC-SFN3); CH3—S(O)—(CH2)4—N═C═Se (termed ISC-SFN4 and SFN Iso Se); CH3—S(O)—(CH2)5—N═C═Se (termed ISC-SFN5); CH3—S(O)—(CH2)6—N═C═Se (termed ISC-SFN6); CH3—S(O)—(CH2)7—N═C═Se (termed ISC-SFN7) and CH3—S(O)—(CH2)8—N═C═Se (termed ISC-SFN8) Optionally, CH3 is substituted or unsubstituted.
- In certain embodiments, R in the structural formula: R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, is a substituted aromatic group. In further embodiments, R is a phenyl group substituted at one or more substitutable sites by Cl, Br, F, methyl, methoxy, and/or a fluorinated lower alkyl group, such as CF3.
- The non-aromatic organic group optionally includes one or more heteroatoms such as S, N, O and/or P.
- In further embodiments where R is a non-aromatic organic group, R is CH2═CH. For example, where R is CH2═CH, an isoselenocyanate has the formula: CH2═CH—CH2—N═C═Se.
- In a further option, the group (CH2)n in the formula R—(CH—)n—N═C═Se, is substituted, For example, the group (CH2)n in the formula R—(CH2)n—N═C═Se, is substituted by one or more of the following: F, Cl, Br, a lower alkyl group, a lower alkoxy group or fluorinated lower alkyl group, such as CF3.
- Compositions including mixtures of two or more isoselenocyanates are also specifically contemplated and are considered to be within the scope of the present invention.
- Structures of particular compounds described herein, along with abbreviations used, are shown below. Particular naturally occurring and synthetic phenylalkyl isothiocyanate compounds with increasing chain length in the left column; phenylalkyl isoselenocyanates of the present invention are shown in the center column; and phenylhexyl selenocyanate in the right column. Phenylhexyl selenocyanate (PHSC) is used as a control compound in particular tests described herein since it is similar to ISC-6 in structure and contains selenium.
- Methods for synthesis of an isoselenocyanate are provided according to embodiments of the present invention.
- A process for synthesis of a compound according to embodiments of the present invention is shown in
Scheme 1. Treatment of a phenylalkylamine (1) with ethyl formate leads to the formation of intermediate 2, which on reaction with selenium powder in the presence of triphosgene and triethylamine, in refluxing dichloromethane, furnishes the desired isoselenocyanate (3). - Methods for synthesis of isothiocyanates and isoselenocyantes derivatives with a substituted phenyl ring are also provided by the present invention.
- Substituted phenyl ring, analogs of phenylalkyl isoselenocyanates are synthesized (Scheme 2a), following substantially identical methodologies as described in
Scheme 1 for the synthesis of isoselenocyanates. In a similar manner, substituted phenylalkyl isothiocyanates are synthesized by treating the corresponding substituted arylalkylamine with thiophosgene and sodium hydroxide as shown in Scheme 2b. Several combinations of substitutions of phenyl ring (e.g. 2-, 3- or 4-chloro (Cl), bromo (Br), fluoro (—F), methyl (CH3), methoxy (OCH3) and trifluoromethyl (—CF3) substituted arylalkyl isothiocyanates and isoselenocyanates are synthesized starting from corresponding appropriately substituted 2-, 3-, and 4-Cl/Br/F/CH3/OCH3/CF3-phenylalkylamines. - Methods of synthesis of isosteric selenium analogs of non-aromatic naturally occurring isothiocyanates are provided by the present invention. For example, methods of synthesis of isosteric selenium analogs of sulforaphane i.e., 1-isoselenocyanato-4-(methylsulfinyl)butane (ISC-SFN4, also called SFN Iso Se herein), are provided according to embodiments of the present invention. The synthetic route followed is outlined in Scheme 3. The key intermediate 1-amino-4-(methylsulfinyl)butane (1 in scheme 3) is synthesized and subjected to a sequence of reactions as shown in Scheme 3 to obtain the desired ISC-SFN4 (3). Further analogs, including ISC-SFN3, ISC-SFN6, ISC-SFN7, and ISC-SFN8 which are isosteric selenium analogs of corresponding naturally occurring sulfoxide isothiocyanate analogs with varying alkyl chain length are synthesized using a similar synthetic strategy.
- In further embodiments, an allyl isoselenocyanate is synthesized according to embodiments of the present invention starting from allylamine as detailed in
Scheme 4. - Conjugate Compositions
- A compound of the present invention is conjugated to one or more property-enhancing moieties according to embodiments of the present invention for modification of one or more characteristics of the compound. The present invention provides conjugates of organic isothiocyanates and/or isoselenocyanates, in order to reduce toxicity, increase solubility and/or increase bioavailability in particular embodiments of the present invention. Methods of synthesis of such conjugates are also provided by embodiments of the presently described invention.
- For example, in particular embodiments, a compound of the present invention is conjugated to a water solubility-enhancing moiety, to yield a conjugate which is more water soluble than the compound. Thus, in particular embodiments, water soluble isothiocyanate or isoselenocyanate compounds of the present invention are conjugated to glutathione (GSH), cysteine (Cys) or N-acetylcysteine (NAC) to yield the corresponding GSH-, Cys-, or NAC-conjugate.
- An exemplary structure of a glutathione conjugate of a phenylalkyl isoselenocyanate, where n is an integer in the range of 1-8, inclusive.
- An exemplary structure of a cysteine conjugate of a phenylalkyl isoselenocyanate, where n is an integer in the range of 1-8, inclusive:
- An exemplary structure of an N-acetylcysteine conjugate of a phenylalkyl isoselenocyanate, where n is an integer in the range of 1-8, inclusive:
- The NAC-conjugates of organic isoselenocyanates, such as ISC-4 and ISC-6, are made by reacting corresponding isoselenocyanate with N-acetylcysteine in aqueous ethanol (50%) at room temperature under nitrogen atmosphere. The GSH or cysteine conjugates of isoselenocyanates are synthesized following a similar procedure.
- Compositions according to embodiments of the present invention prevent and inhibit cancer cell multiplication and tumor development and are considered useful as chemotherapeutic and chemopreventive agents. In addition, isoselenocyanate compositions according to embodiments of the present invention induce cell death in cancer cells more effectively than corresponding isothiocyanates or derivatives thereof. Further, animal studies show significant reduction in melanoma tumor development by isoselenocyanates of the present invention at doses three times lower than those of corresponding isothiocyanates, without significant toxicity.
- Methods and compositions are provided according to the present invention for treating cancer. Particular cancers treated using methods and compositions described herein are characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms and metastasis. Methods and compositions of the present invention can be used for prophylaxis as well as amelioration of signs and/or symptoms of cancer.
- A therapeutically effective amount of a composition is an amount which has a beneficial effect in a subject being treated. In subjects having cancer or at risk for having cancer, such as a condition characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, a tumor, a benign growth or other condition responsive to an isoselenocyanate composition, a therapeutically effective amount of a composition is effective to ameliorate or prevent one or more signs and/or symptoms of the condition. For example, a therapeutically effective amount of a composition is effective to detectably increase apoptosis and/or decrease proliferation of cells of a cancer condition characterized by abnormal cell proliferation including, but not limited to, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, a tumor, a benign growth or other condition responsive to an isoselenocyanate composition.
- In particular embodiments, cancers treated using methods and compositions described herein are characterized by Akt dysregulation.
- Akt, a serine/threonine protein kinase also known as protein kinase B, has a stimulatory effect on cell cycle progression, cell proliferation and inhibition of apoptosis. Akt proteins, nucleic acids and signaling pathway components are described, for instance, see Testa, J. R. et al., PNAS, 98:10983-10985; Fayard, E. et al., J. Cell Sci., 118:5675-5678, 2005; Cheng, J. and S. Nicosia, (2001) AKT signal transduction pathway in ancogenesis, in Encyclopedic Reference of Cancer, D. Schwab, Editor. 2001, Springer: Berlin, Germany, p. 35-7; Datta, S. R., et al. (1999) Cellular survival: a play in three Akts. Genes Dev, 13(22): 2905-27; Fayard, E. et al. (2005) J Cell Sci, 118 (Pt 24: 5675-8; Mirza, A. M., Fayard, E. et al. (2000) 2000. 11 (6: 279-92; Nicholson, K. M. and N. G. Anderson, (2002) Cell Signal, 2002, 14(5): p. 381-95; Paez, J. and W. Sellers, (2003) P13K/PTEN/Akt Pathway: A Critical Mediator of Oncogenic Signaling, in Signal Transduction in Cancer, D. Frankc, Editor. 2003, Kluwer Academic Publishers: Netherlands; and Testa, J. R.; P. N. Tsichlis, (2005) Oncogene, 24(50): 7391-3 and other references listed herein.
- Akt family members, Akt1, Akt2 and Akt3, are activated by phosphorylation, membrane translocation, increases in gene copy number and/or loss of a negative regulatory phosphatase, PTEN. Increased activation of Akt, including increased levels of Akt and/or increased levels of phosphorylated Akt is an indicator of Akt dysregulation associated with proliferation and cell survival in pathogenic conditions, such as cancer.
- Akt3 is active in ˜70% of melanomas. While all three Akt isoforms are expressed in melanocytes and melanoma cells, Akt3 is the predominantly active family member. Dysregulated Akt3 activity in melanoma cells reduces cellular apoptosis mediated through caspase-3, thereby promoting melanoma tumor development.
- Akt dysregulation is determined, for instance, by measurement of Akt gene copy number, Akt protein or RNA levels and/or levels of phosphorylated Akt1, in cells known or suspected to be dysplasic, pre-cancerous, cancerous, metastatic or otherwise characterized by abnormal cell proliferation compared to normal cells. Assays for Akt dysregulation include, but are not limited to immunoassays and nucleic acid assays.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: R—(CH2)n—N═C—X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and where R is selected from the group consisting of: an aromatic group and a non-aromatic organic group and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth. In certain embodiments of methods of treatment of a subject, contacting cells characterized by Akt dysregulation with a therapeutic amount of an isothiocyanate and/or isoselenocyanate described herein decreases a component of an Akt signaling pathway selected from the group consisting of: an Akt1 signaling pathway; an Akt2 signaling pathway; an Akt3 signaling pathway; and a combination thereof. For example, contacting the cell with an isothiocyanate and/or isoselenocyanate decreases a component of an Akt signaling pathway selected from pAkt1, pAkt2, pAk3, pPRAS40 and a combination thereof. In embodiments of described methods, treatment of a subject with a therapeutically effective amount of the composition including an isothiocyanate and/or isoselenocyanate is substantially without toxic effect on cells in which Akt is not dysregulated.
- Methods of treating a subject are provided according to embodiments of the present invention which include adrninistering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate has the structural formula: phenyl-(CH2)n—N═C═X, where n is an integer in the range of 1-8, inclusive, where X is S or Se, and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering a therapeutically effective amount of a composition including an isothiocyanate and/or isoselenocyanate to a subject in need thereof, wherein the isothiocyanate or isoselenocyanate is BITC, PEITC, PBITC, PHITC, ISC-1, ISC-2, ISC-4 or ISC-6 and wherein the subject has a condition characterized by Akt dysregulation, such as cancer, pre-neoplastic hyperproliferation, cancer in-situ, neoplasms, metastasis, tumor or benign growth.
- Methods of treating a subject are provided according to embodiments of the present invention which include administering an effective amount of a composition including an isoselenocyanate to a subject in need thereof.
- A method of treating a subject is provided according to embodiments of the present invention which includes administering to a subject in need thereof a therapeutically effective amount of a an isoselenocyanate compound having the structural formula; R—(CH2)n—N═C═Se, where n is an integer in the range of 1-8, inclusive, where R is an aromatic group or a non-aromatic organic group.
- In embodiments of the present invention, a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- where R′ is a substituted or unsubstituted, branched or straight chain, lower alkyl group, and where n is an integer in the range of 3-8, inclusive.
- In embodiments of the present invention, a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- where R′ is CH3 and where n is an integer in the range of 1-8, inclusive.
- In embodiments of the present invention, a method of treating a subject includes administering an effective amount of an isoselenocyanate having the structural formula:
- where R′ is CH3 and n is 4.
- In embodiments of the present invention, a method of treating a subject, includes administering an effective amount of a phenylalkyl isoselenocyanate having the structural formula:
- where n is 4 or 6.
- Optionally, an administered isoselenocyanate is an isoselenocyanate glutathione conjugate; an isoselenocyanate cysteine conjugate; or an isoselenocyanate N-acetylcysteine conjugate.
- Optionally, an administered isoselenocyanate is a pharmaceutically acceptable salt, ester or amide of an isoselenocyanate described herein.
- Isothiocyanate and/or isoselenocyanate compositions are provided according to embodiments of the present invention which inhibit tumor growth by inhibiting an Akt signaling cascade, particularly an Akt3 signaling cascade, in cells characterized by Akt dysregulation in certain embodiments.
- Methods including administration of one or more isothiocyanates and/or isoselenocyanates to a subject in need thereof are provided according to particular embodiments of the present invention which have utility, for example, in inhibiting the Akt signaling cascade and inhibiting cancer cells.
- Inhibitors of the Akt signaling cascade according to embodiments of the present invention have utility in treatment of subject having cancer or at risk of having cancer in which Akt deregulation occurs, such as in melanoma and other cancers including, but not limited to, cancers of the prostate, breast, brain, ovary, lung, colon, connective tissues (sarcomas) and soft tissue.
- Methods of modulating an Akt protein, such as an Akt1, Akt2 and/or an Akt3 protein, in a cell are provided according to embodiments of the present invention which include contacting the cell with an effective amount of an isoselenocyanate.
- Pharmaceutical compositions including an isoselenocyanate of the present invention are also provided according to embodiments of the present invention.
- A pharmaceutical composition includes an isoselenocyanate of the present invention and a pharmaceutically acceptable carrier in particular embodiments of the present invention. The term “pharmaceutically acceptable carrief” refers to a carrier which is substantially non-toxic to a subject to which the composition is administered and which is substantially chenmically inert with respect to a selenium-containing compound of the present invention.
- A pharmaceutical composition according to the invention generally includes about 0.1-99% of an isoselenocyanate of the present invention. Combinations of isoselenocyanates in a pharmaceutical composition are also considered within the scope of the present invention.
- Optionally, a method of treating a subject having cancer or at risk of having cancer further includes an adjunct anti-cancer treatment. An adjunct anti-cancer treatment can be administration of an anti-cancer agent.
- Anti-cancer agents are described, for example, in Goodman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th Ed., Macmillan Publishing Co., 1990.
- Anti-cancer agents illustratively include acivicin, aclarubicin, acodazole, acronine, adozelesin, aldesleulcin, alitretinoin, allopurinol, altretamine, ambomycin, ametantrone, arifostine, aminoglutethimide, amsacrine, anastrozole, anthramycin, arsenic trioxide, asparaginase, asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene, bisnafide dimesylate, bizelesin, bleomycin, brequinar, bropirimine, busulfan, cactinomycin, calusterone, capecitabine, caracemide, carbetimer, carboplatin, carmustine, carubicin, carzelesin, cedefingol, celecoxib, chlorambucil, cirolemycin, cisplatin, cladribine, crisnatol mesylate, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin, decitabine, dexormaplatin, dezaguanine, dezaguanine mesylate, diaziquone, docetaxel, doxorubicin, droloxifene, dromostanolone, duazomycin, edatrexate, eflomithine, elsamitrucin, enloplatin, enpromate, epipropidine, epirubicin, erbulozole, esorubicin, estramustine, etanidazole, etoposide, etoprine, fadrozole, fazarabine, fenretinide, floxuridine, fludarabine, fluorouracil, fluorocitabine, fosquidone, fostriecin, fulvestrant, gemcitabine, hydroxyurea, idarubicin, ifosfamide, ilmofosine, interleulcin II (IL-2, including recombinant interleukin II or rIL2), interferon alfa-2a, interferon alfa-2b, interferon alfa-n1, interferon alfa-n3, interferon beta-Ia, interferon gamma-Ib, iproplatin, irinotecan, lanreotide, letrozole, leuprolide, liarozole, lometrexol, lomustine, losoxantrone, masoprocol, maytansine, mechlorethamine hydrochloride, megestrol, melengestrol acetate, melphalan, menogaril, mercaptopurine, methotrexate, metoprine, meturedepa, mitindomide, mitocarcin, mitocromin, mitogillin, mitomalcin, mitomycin, mitosper, mitotane, mitoxantrone, mycophenolic acid, nelarabine, nocodazole, nogalamycin, ormnaplatin, oxisuran, paclitaxel, pegaspargase, peliomycin, pentamustine, peplomycin, perfosfamide, pipobroman, piposulfan, piroxantrone hydrochloride, plicamycin, plomestane, porfimer, porfiromycin, prednimustine, procarbazine, puromycin, pyrazofurin, riboprine, rogletimide, safingol, semustine, simtrazene, sparfosate, sparsomycin, spirogermanium, spiromustine, spiroplatin, streptonigrin, streptozocin, sulofenur, talisomycin, tamoxifen, tecogalan, tegafur, teloxantrone, temoporfin, teniposide, teroxirone, testolactone, thiamiprine, thioguanine, thiotepa, tiazofurin, tirapazamine, topotecan, toremifene, trestolone, triciribine, trimetrexate, triptorelin, tubulozole, uracil mustard, uredepa, vapreotide, verteporfin, vinblastine, vincristine sulfate, vindesine, vinepidine, vinglycinate, vinleurosine, vinorelbine, vinrosidine, vinzolidine, vorozole, zeniplatin, zinostatin, zoledronate, and zorubicin.
- An adjunct anti-cancer treatment can be a radiation treatment of a subject or an affected area of a subject's body.
- Pharmaceutical compositions suitable for delivery to a subject may be prepared in various forms illustratively including physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers include water, ethanol, polyols such as propylene glycol, polyethylene glycol, glycerol, and the like, suitable mixtures thereof; vegetable oils such as olive oil; and injectable organic esters such as ethyloleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants, such as sodium lauryl sulfate. Additional components illustratively including a buffer, a solvent, or a diluent may be included.
- Such formulations are administered by a suitable route including parenteral and oral administration. Administration may include systemic or local injection, and particularly intravenous injection.
- These compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example, sugars, sodium chloride, and substances similar in nature. Prolonged delivery of an injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, selenium-containing compound of the present invention is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders, as for example, carboxymethylcellulose, alignates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, (c) humectants, as for example, glycerol, (d) disintegrating agents, as for example, agar-agar, calcium carbonate, plant starches such as potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate, (e) solution retarders, as for example, paraffin, (f) absorption accelerators, as for example, quaternary ammonium compounds, (g) wetting agents, as for example, cetyl alcohol, glycerol monostearate, and glycols (h) adsorbents, as for example, kaolin and bentonite, and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, or mixtures thereof. In the case of capsules, tablets, and pills, the dosage forms may also include a buffering agent.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethyleneglycols, and the like.
- Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may contain opacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes. The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include a pharmaceutically acceptable carrier formulated as an emulsion, solution, suspension, syrup, or elixir. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.
- Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Suspensions, in addition to an inventive conjugate, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitol esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar or tragacanth, or mixtures of these substances, and the like.
- In particular embodiments, compositions of the present invention are formulated for topical application. In further particular embodiments, compositions of the present invention are formulated for topical application and are characterized by less than 10% absorption of an active ingredient in the composition into the system of an individual treated topically. In still further particular embodiments, compositions of the present invention are formulated for topical application and are characterized by less than 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% absorption of an active ingredient in the composition into the system of an individual treated topically. Absorption into the system of an individual can be measured by any of various methods, particularly assay for the active ingredient, a metabolite and/or a breakdown product of the active ingredient in a sample obtained from an individual treated with the topical formulation. For example, a blood, plasma or serum sample can be assayed for presence of the active ingredient, a metabolite of the active ingredient and/or a breakdown product of the active ingredient.
- A topical formulation can be an ointment, lotion, cream or gel in particular embodiments. Topical dosage forms such as ointment, lotion, cream or gel bases are described in Remington: The Science and Practice of Pharmnacy, 21st Ed., Lippincott Williams & Wilkins, 2006, p. 880-882 and p. 886-888; and in Allen, L. V. et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th Ed., Lippincott Williams & Wilkins, 2005, p. 277-297.
- Pharmaceutically acceptable carriers and formulation of pharmaceutical compositions are known in the art, illustratively including, but not limited to, as described in Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams & Wilkins, Philadelphia, Pa., 2006; and Allen, L. V. et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th Ed., Lippincott, Williams & Wilkins, Philadelphia, Pa., 2005.
- The term subject refers to an individual in need of treatment for a pathological condition, particularly cancer, and generally includes mammals and birds, such as, but not limited to, humans, other primates, cats, dogs, cows, horses, rodents, pigs, sheep, goats and poultry.
- A pharmaceutical composition according to the present invention is suitable for administration to a subject by a variety of systemic and/or local routes including, but not limited to, intravenous, intramuscular, subcutaneous, intraperitoneal, oral, otic, rectal, vaginal, topical, parenteral, pulmonary, ocular, nasal, intratumoral and mucosal.
- An inventive composition may be administered acutely or chronically. For example, a composition as described herein may be administered as a unitary dose or in multiple doses over a relatively limited period of time, such as seconds—hours. In a further embodiment, administration may include multiple doses administered over a period of days—years, such as for chronic treatment of cancer.
- With regard to administration of isoselenocyanates to a mammalian subject, particular exemplary effective dosage ranges without significant systemic toxicity are described in terms of amounts of selenium administered via administration of the isoselenocyanate. Thus, for example, when delivered by a parenteral route, such as intraperitoneal or intravenous, an exemplary therapeutically effective dosage of an isoselenocyanate is in the range of about 1-4 ppm selenium, administered three times per week. It is noted that the dose range, “about 1-4 ppm selenium” refers to a dose of “about 1 mg/kg-4 mg/kg of selenium.” For example, a dose of 3 ppm selenium when referring to ISC-4 is equivalent to a dose of 9.1 mg/kg of ISC-4. Similarly, a dose of 3 ppm selenium when referring to ISC-6 is equivalent to a dose of 10.17 mg/kg of ISC-6. In a further example, when delivered topically, an exemplary therapeutically effective dosage of ISC-4 or ISC-6 is in the range of about 0.1-1 ppm selenium, administered daily. In a further example, when delivered orally, an exemplary therapeutically effective dosage of an isoselenocyanate is in the range of about 1-15 ppm selenium.
- A therapeutically effective amount of a pharmaceutical composition according to the present invention will vary depending on the particular pharmaceutical composition used, the severity of the condition to be treated, the species of the subject, the age and sex of the subject and the general physical characteristics of the subject to be treated. One of skill in the art could determine a therapeutically effective amount in view of these and other considerations typical in medical practice. In general it is contemplated that a therapeutically effective amount would be in the range of about 0.001 mg/kg-100 mg/kg body weight, optionally in the range of about 0.01-10 mg/kg, and further optionally in the range of about 0.1-5 mg/kg. Further, dosage may be adjusted depending on whether treatment is to be acute or continuing.
- Advantageously, anti-cancer compounds according to embodiments of the present invention are formulated to achieve lipid-solubility and/or aqueous-solubility.
- In particular embodiments, a pharmaceutically acceptable carrier is a particulate carrier such as lipid particles including liposomes, micelles, unilamellar or mulitlamellar vesicles; polymer particles such as hydrogel particles, polyglycolic acid particles or polylactic acid particles; inorganic particles such as calcium phosphate particles such as described in for example U.S. Pat. No. 5,648,097; and inorganic/organic particulate carriers such as described for example in U.S. Pat. No. 6,630,486.
- A particulate pharmaceutically acceptable carrier can be selected from among a lipid particle; a polymer particle; an inorganic particle; and an inorganic/organic particle. A mixture of particle types can also be included as a particulate pharmaceutically acceptable carrier.
- A particulate carrier is typically formulated such that particles have an average particle size in the range of about 1 nm-10 microns. In particular embodiments, a particulate carrier is formulated such that particles have an average particle size in the range of about 1 nm-100 nm.
- Embodiments of inventive compositions and methods are illustrated in the following examples. These examples are provided for illustrative purposes and are not considered limitations on the scope of inventive compositions and methods.
- The human metastatic melanoma
cell lines UACC 903 and 1205 Lu; normal human fibroblast cells (FF2441) are maintained in DMEM (Invitrogen, Carlsbad, Calif.) supplemented with 10% FBS (Hyclone, Logan, Utah). Vertical growth phase (VGP) melanoma cell line WM115 is maintained in Tu2% medium lacking calcium chloride, supplemented with 2% heat treated (56° C. for 30 minutes) PBS and L-glutamine (Mediatech, Handon, Va.) as described in Stahl J M, et al., Cancer Res 2004; 64:7002-10. - Colon adenocarcinoma cell line (Caco-2, ATCC No. HTB-37) is grown either in Advanced DMEM supplemented with 10% heat treated (56° C. for 30 minutes) FBS and L-glutamine. Fibrosarcoma (HT-1080; ATCC No. CCL-121), prostate adenocarcinoma (PC-3; ATCC No. CRL-1435), breast adenocarcinoma cell line (MDA-MB-231; ATCC No. HB-26), glioblastoma cell line (T98G; ATCC No. CRL-1690) and human melanoma cell line UACC903 are grown in DMEM supplemented with 10% FBS.
- Synthetic methods described in Examples 2-12 refer generally to the following numbered structures:
- Melting points were recorded on a Fisher-Johns melting point apparatus and are uncorrected. Unless stated otherwise, proton NMR spectra were recorded in a Bruker AM 360WB instrument using CDCl3 as solvent. The chemical shifts are reported in ppm downfield from TMS. High-resolution MS (EI) are determined at the Chemistry Instrumentation Center, State University of New York at Buffalo, N.Y. Thin-layer chromatography (TLC) is developed on aluminum-supported, pre-coated silica gel plates (EM Industries, Gibbstown, N.J.). Column chromatography was conducted on silica gel (60-200 mesh). Benzyl isothiocyanate (BITC, la), phenylethyl isothiocyanate (PEITC, 1b), and phenylbutylisothiocyanate (PBITC, 1c) are obtained from commercial sources. Phenylhexylisothiocyanate (PHITC, 1d) is synthesized as described in Morse, M. A. et al., Cancer Res 1991, 51, (7), 1846-50.
- A general method for the synthesis of phenylalkylformamides is described in Elliott, M. C.; Williams, E., Synthesis and reactions of partially reduced biisoquinolines. Org Biomol Chem 2003, 1 (17), 3038-47. Ethyl formate (120 mmol) was added dropwise to phenylalkylamine (40 mmol) at room temperature and the resulting mixture was refluxed for 4-6 h. The excess ethyl formate was removed under reduced pressure to yield the corresponding phenylakylformamide as an oil.
- Phenylethylformamide: (AS3.090) 1H NMR (CDCl3) δ 2.84 (t, 2H, J=6.9 Hz), 3.57 (dt, 21, J=6.9 Hz and 6.6 Hz), 5.68 (br d, 1H, NH), 7.15-7.35 (m, 51), 8.12 (s, 1H, CHO); HRMS (I) calcd for C9H11NO, 149.0835; found, 149.0839.
- Phenylbutylformamide. 1H NMR (CDCl3) δ 1.56-1.62 (m, 2H), 1.66-1.72 (m, 2H), 2.66 (t, 2H, J=6.5 Hz), 3.35 (dt, 2H, J=7.0 and 6.5 Hz), 5.92 (hr s, 1H), 7.18-7.24 (m, 2H), 7.29-7.33 (m, 2H), 8.19 (s, 1H); HRMS (ED calcd for C11H15NO, 177.1148; found, 177.1149.
- Phenylhexylformamide. 1H NMR (CDCl3) δ 1.36-1.41 (m, 4H), 1.52-1.58 (m, 2H), 1.61-1.67 (m, 21), 2.63 (t, 2H, J=7.5 Hz), 3.30 (dt, 211, J=7.0 and 6.5 Hz), 5.58 (br s, 1H), 7.18-7.21 (m, 3H), 7.28-7.31 (m, 2H), 8.19 (s, 1H); HRMS (EI) calcd for Cl3H19NO, 205.1461; found, 205.1462.
- Isoselenocyanates are synthesized using a modified method described in Fernández-Bolaños, J. G., López, O., Ulgar, V., Maya, I., and Fuentes, J., Synthesis of O-unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas, Tetrahedron Lett. 2004, 45, 4081-4084. Solid triphosgene is used in a one-pot dehydration of the formamides in refluxing dichloromethane (Scheme 5).
-
Scheme 5 shows synthesis ofcompounds - General experimental procedure for the synthesis of ISC compounds The synthetic strategy involves the formylation of phenylalkylamines, followed by treatment with triphosgene and selenium powder in the presence of triethylamine to furnish the desired phenylalkyl isoselenocyanates (2) in good yields as oils.
- The compounds are purified by silica gel column chromatography and are characterized on the basis of NMR and high-resolution MS data. (Pure isolated compounds are light yellow (ISC-1 and ISC-2) to colorless (ISC-4 and ISC-6) which tend to get a little darker after storing for longer time).
- In a particular example, to a refluxing mixture of the aryl alkyl formamides (1.5 mmol), triethylamine (6.4 mmol) in CH2Cl2 (5 mL) and 4 Å molecular sieves was added dropwise a solution of triphosgene (0.8 mmol) in CH2Cl2 (2 mL) for a period of 1 hour. After the addition was complete, the mixture was refluxed for an additional 2.5 hour. Selenium powder (3.0 mmol) was then added and the resulting mixture was refluxed for other 6-8 hours. The mixture is cooled, filtered, and the solvent was evaporated to yield the crude mixture, which is purified by silica gel column chromatography to afford isoselenocyanates.
- In a further example, a solution of triphosgene (5.0 mmol) in CH2Cl2 (15 mL) is added over a 1 hour period to a refluxing mixture of phenylalkylformamides (10.0 mmol), triethylamine (43.0 mmol) and 4 Å molecular sieves in CH2Cl2) (35 mL). The mixture is then refluxed for an additional 2.5 hours. Selenium powder (20 mmol) is then added and resulting mixture refluxed for 6-8 hours. Mixture is cooled, filtered, and solvent evaporated yielding a crude mixture, which is purified by silica gel column chromatography generating pure isoselenocyanates. Isothiocyanates and isoselenocyanates are >99% pure.
- Phenylalkyl isothiocyanates are obtained commercially (BITC, PEITC, and PBITC). PHITC is synthesized as described in Morse, M. A. et al., Cancer Res 1991, 51, (7), 1846-50. Phenylhexylamine (3d) required for the synthesis of 1d is synthesized by converting phenylhexyl chloride to the corresponding azide by treatment with sodium azide in DMF, followed by generation of the 3d by reduction of azide with lithium aluminium hydride as described in Gopalakrishnan, G. et al., J. Labelled. Comp. Radiopharma. 1988, 25, (4), 383-393.
- Benzyl isoselenocyanate (2a). To a refluxing mixture of the formamides (1.5 mmol), triethylamine (6.4 mmol) in CH2Cl2 (5 mL) and 4 Å molecular sieves was added dropwise a solution of triphosgene (0.8 mmol) in CH12Cl2 (2 mL) for a period of 1 h. After the addition was complete, the mixture was refluxed for an additional 2.5 h. Selenium powder (3.0 mmol) was then added and the resulting mixture was refluxed for other 6 h. The mixture was cooled, filtered, and the solvent was evaporated to yield the crude mixture, which was purified by silica gel column chromatography to afford isoselenocyanates. (AS3.094): viscous oil, 1H NMR (CDCJ3) δ 4.81 (s, 2H, CH2), 7.30-7.44 (m, 5H); ARMS (EI) calcd for C8H7NSe, 196.9738; found, 196.9741.
- Phenylethyl isoselenocyanate (2b). (AS3.091) A mixture of phenylethylformamide (g, 1.5 mmol), triethylamine (6.4 mmol), 4 Å molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH2Cl2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2b as an oil. 1H NMR (CDCl3) δ 3.03 (t, 2H, J=6.9 Hz), 3.81 (t, 2H, J=6.9 Hz) 7.20-7.38 (m, 5H); HRMS (EI) calcd for C9H9NSe, 210.9895; found, 210.9892.
- Phenylbutyl isoselenocyanate (2c). A mixture of phenylbutyl formamide (g, 1.5 mmol) triethylamine (6.4 mmol), 4 Å molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH2Cl2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2c as an oil. 1H NMR (CDCl3) δ 1.74-1.76 (m, 4H), 2.66 (t, 2H, J=6.6 Hz), 3.60 (t, 2H, J=5.6 Hz), 7.15-7.32 (m, 5H); HRMS (EI) calcd for C11H13NSe, 239.0208; found, 239.0211.
- Phenylhexyl isoselenocyanate (2d). A mixture of phenylbutyl formamide (g, 1.5 mmol), triethylamine (6.4 mmol), 4 Å molecular sieves (g), triphosgene (0.8 mmol), and selenium powder (3.0 mmol) in CH2Cl2 was refluxed and worked up as mentioned for 2a. The crude residue thus obtained was purified by silica gel column chromatography (EtOAc/hexanes 2:98) to give 0.96 g (95%) of 2d as an oil. 1H NMR (CDCl3) δ 1.37-1.43 (m, 2H), 1.45-1.51 (m, 2H), 1.67 (dt, 2H, J=15.2 and 7.6 Hz), 1.75 (dt, 2H, J=14.9 and 6.7 Hz), 2.64 (t, 2H, J=7.6 Hz), 3.60 (t, 2H, J=6.7 Hz), 7.19-7.25 (m, 31), 7.32-7.40 (m, 2H); HRMS (EI) calcd for C13H17NSe, 267.0521; found, 267.0529.
-
Scheme 6 shows the synthesis of NAC conjugate (5) of ISC-4. The IC50 of 5 (UACC 903M cells)=17±2. - 1-isoselenocyanato-4-(methylsulfinyl)butane (ISC-SFN4, also called SFN Iso Se herein). viscous oil; 1H NMR in CDCl3: 3.72 (t, 2H, J=6.53 Hz, N—CH2), 3.10 (t, 2H, J=6.94 Hz, SO—C2), 2.97 (s, 3H, S—CH3),1.98-2.07 (m, 4H, C—CH2—CH2—C).
- To measure the inhibitory potency (IC50) of isothiocyanate and isoselenocyanate derivatives in various cancer cells, MTS (CellTiter 96 Aqueous Non Radioactive Cell Proliferation Assay kit, Promega, Madison, Wis.) is used. Cellular viability is quantified by MIS assay and dose response curves plotted. 5×103 melanoma cells (
UACC 903, 1205 LU or WM115) cells per well in 100 μL DMEM containing 10% FBS are grown in a 96-well plate for 24 h and then treated with increasing concentrations of the indicated isothiocyanate or isoselenocyanate for 24 h. After 24 hours of treatment viable cells are measured by reading soluble colored formazan product at 490 nm using a microplate reader. Results of 3 independent experiments are considered for the determination of IC50. The IC50 values are calculated from the concentration curves using Graph Pad Prism software and are shown in Table I for cells and compounds indicated. -
TABLE I IC50 (μM) 24 h drug treatment Cell Line BITC PEITC PBITC PHITC ISC-1 ISC-2 ISC-4 ISC-6 UACC 90315 ± 3 12 ± 1 15 ± 1 15 ± 2 16 ± 3 12 ± 4 12 ± 3 10 ± 1 1205 Lu >25 24 ± 2 19 ± 5 11 ± 4 >25 18 ± 4 11 ± 1 7 ± 4 WM 115 13 ± 1 12 ± 1 7 ± 1 8 ± 1 >25 8 ± 1 7 ± 2 7 ± 2 - Table I shows a comparison of the IC50 of isothiocyanates and isoselenocyanates in three independently derived melanoma cell lines,
UACC 903, 1205 Lu and WM115. A general trend is observed in which increasing carbon chain length and substitution of selenium for sulfur decreased the IC50. Increased potency ranged from 30-70% with increasing chain length and/or sulfur substituted for selenium. Thus, isothiocyanate analogs with longer alkyl chain lengths and sulfur substituted for selenium are better inhibitors of cultured melanoma cells. - Certain ITCs (1) and the corresponding ISCs (2) are tested for their ability to inhibit cell growth in five cancer cell lines e.g. melanoma, breast, glioblastoma, fibrosarcoma, colon and prostate cancers. Iin vitro inhibitory efficacy of cancer cell lines representing different cancer types following treatment with ITC and ISC is measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, Wis.). In brief, 2.5-5×103 cells per well in 100 Å DMEM containing 10% FBS are grown in a 96-well plate for 24 h and treated with either control DMSO vehicle or increasing concentrations (2.5-100 μM) of ITC and ISC for 24 hours. At this point cells are treated individually with either vehicle control DMSO or with increasing concentrations of ITC or ISC (2.5-100 μM) for 24 h. The percentages of viable cells compared to control DMSO treated cells are determined using MTS assay and IC50 values calculated using GraphPad Prism version 4.01 (GraphPad software, San Diego, Calif.). IC50 value for each compound was determined by at least three independent experiments and represented with a standard error (Table II).
- The IC50 values for
compounds UACC 903 cells. ISC-1 was least effective in killing cells in all the cell lines tested compared to its higher alkyl chain analogs ISC-2 to ISC-6. Among ISC-2, ISC-4 and ISC-6 there was no particular trend. The values generally decreased with increasing chain length for all the cancer cell lines tested except breast cancer cells MDA-MB 231 in case of ISC compounds and sarcoma HT 1080 cells in case of ITCs. Except for ISC-1 and ISC-2 inUACC 903 cells, the ISC derivatives had lower IC50 values than corresponding ITCs. -
TABLE II IC50 (μM) of ITC and ISC derivatives on different cancer cells Cancer cell lines IC50 (μM) Breast Glioblastoma Prostate Fibrosarcoma Colon Melanoma Compounds MDA-MB-231 T-98-G PC-3 HT-1080 Caco-2 UACC 9031a (BITC) 42 ± 3 >100 >50 >50 15 ± 2 15 ± 3 1b (PEITC) 38 ± 6 >100 24 ± 2 15 ± 1 14 ± 2 12 ± 1 1c (PBITC) 27 ± 2 35 ± 1 24 ± 2 15 ± 1 27 ± 2 15 ± 1 1d (PHITC) 24 ± 2 26 ± 2 17 ± 1 29 ± 3 49 ± 9 15 ± 1 2a (ISC-1) 29 ± 2 43 ± 4 24 ± 1 13 ± 3 13 ± 3 16 ± 3 2b (ISC-2) 20 ± 3 24 ± 1 16 ± 1 12 ± 3 11 ± 1 12 ± 4 2c (ISC-4) 21 ± 64 27 ± 1 19 ± 1 11 ± 1 12 ± 3 12 ± 3 2d (ISC-6) 22 ± 2 23 ± 2 14 ± 1 12 ± 1 10 ± 1 10 ± 1 Values are mean ± S.E. * Drug treatment for 72 h - Low values are estimated for isothiocyanates and isoselenocyanates using ChemDraw 9.0 Ultra and these values are compared in Table III.
-
TABLE III ITCs CLogP ISCs CLogP 1a (BITC) 3.204 2a (ISC-1) 3.177 1b (PEITC) 3.263 2b (ISC-2) 3.506 1c (PBITC) 4.171 2c (ISC-4) 4.414 1d (PHITC) 5.229 2d (ISC-6) 5.472 aLogP was estimated using ChemDraw 9.0 Ultra - Cell viability of melanoma cells following treatment with isothiocyanate or an isoselenocyanate is measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, Wis.).
- Briefly, 5×103 melanoma cells (
UACC 903, 1205 LU or WM115) or human fibroblast (FF2441) cells per well in 100 μL DMEM containing 10% FBS are grown in a 96-well plate for 24 h and treated with either control DMSO vehicle; phenylhexyl selenocyanate (PHSC), used as a control compound since it is similar to ISC-6 in structure and contains selenium; API-2, an Akt inhibitor used for comparison purposes; or increasing concentrations (2.5-50 μM) of an isothiocyanate or an isoselenocyanate for 24 h. Cellular viability compared to control treated cells is measured using the MTS assay. IC50 values for each compound in respective cell lines is determined from three independent experiments using GraphPad Prism version 4.01 (GraphPad software, San Diego, Calif.). -
FIG. 1A shows a comparison of cell viability following exposure to PBITC or ISC-4, compared to controls.FIG. 1B shows a comparison of cell viability following exposure to PHITC or ISC-6, compared to controls. Cell viability is determined using MTS assay. ISC-4 effectively reduces cell viability at concentrations of 10 μM and 15 μM (IC50=12±3 and 10±1 μM) compared to controls (API-2, PHSC) or PBITC or PHITC. (IC50=15±1 and 15±2 μM). The average value represented as the percentage of control DMSO treated cells. Phenylhexyl selenocyanate (PHSC) is used as a control compound since it is similar to ISC-6 in structure and contains selenium. API-2 is an Akt inhibitor used for comparison purposes. Thus, ISC-4 and ISC-6 are more effective at inhibiting growth of melanoma cells than sulfur containing PBITC, PHITC, control PHSC or API-2. - Cellular proliferation in vitro is measured by seeding 5×103 cells in 96-well plate, followed by treatment for 24 hours with vehicle control DMSO, or 5 μM, 10 μM or 15 μM of APT-2 (a known Akt inhibitor), PHSC, PBITC, PANIC, ISC-4, or ISC-6. Proliferation rate is measured using a BrdU ELISA kit (Roche Applied Sciences, Indianapolis, Ind.).
-
FIG. 2A shows results of proliferation analysis ofUACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15uM) of API-9, PHSC, PBITC or ISC-4 for 24 hours.FIG. 2B shows results of proliferation analysis ofUACC 903 cells treated with DMSO or different concentrations (5 uM, 10 uM, 15 uM) of API-2, PHSC, PHITC or ISC-6 for 24 hours. BrdUrd is used to label cells for 4-6 hours. At 15 μM concentration, ISC-4 and ISC-6 reducedUACC 903 cellular proliferative potential by ˜80-90% compared to controls. Results represent the average of 3 independent experiments; bars represent SEM. The average value is represented as the percentage of control DMSO treated cells. - In contrast to the Akt inhibitor API-2 or the control 6-carbon selenium compound PHSC, increasing concentrations of PBITC, ISC-4, PHITC or ISC-6 led to decreased proliferative potential of treated cells. Both ISC-4 and ISC-6 are ˜2-fold more effective than PBITC or PHITC at inhibiting cellular proliferation.
- Apoptosis rates are measured by seeding 5×103 cells in 96-well plate, followed by treatment for 24 hours with vehicle control DMSO; API-2; PHSC; PBITC; PAI═C; ISC-4; or ISC-6. Apoptosis rates are measured using an Apo-ONE Homogenous caspase-3/7 Assay kit (Promega Corporation, Madison, Wis.).
-
FIG. 3A shows the effects of treatment ofUACC 903 cells in culture with DMSO or 5 μM, 10 μM or 15 μM of API-2, PHSC, PBITC or ISC-4 for 24 hours on caspase-3/7 activity, an indicator of apoptosis.FIG. 3B shows the effects of treatment ofUACC 903 cells in culture with DMSO or 5 μM, 10 μM or 15 μM of API-2, PHSC, PHITC or ISC-6 for 24 hours on caspase-3/7 activity, an indicator of apoptosis. The isoselenocyanate compounds promote apoptosis in melanoma cells. Levels of caspase-3/7 activity in cells exposed to API-2, PHSC, PBITC, PHITC, ISC-4 or ISC-6 are measured using the Apo-ONE homogeneous caspase-3/7 assay kit. The graphs inFIGS. 3A and 3B show fold increase in caspase-3/7 activity relative to DMSO vehicle treated cells on the x-axis. Results represent average of 3 independent experiments. Bars indicate SEM. In contrast to API-2 and PHSC, increasing concentrations of PBITC, ISC-4, PHITC and ISC-6 increase cellular apoptosis ofUACC 903 melanoma cells as shown inFIGS. 3A and 3B . ISC-4 and ISC-6 are ˜2-fold more effective than PBITC at inducing apoptosis. - Cell cycle analysis is performed by plating 1.5×106 melanoma cells in 100-mm culture dish. Two days following plating, cells are treated with DMSO, or 5 μM, 10 μM or 15 μM of API-2, PHSC, PBITC, PHITC, ISC-4, or ISC-6 for 24 hours. Cells are collected by trypsinization and stained using propidium iodide (13). Trypsinized cells are centrifuged (500×g, for 5 minutes) and treated with 1 mL of propidium iodide staining solution (100 μg/mL; Sigma, St Louis, Mo.), 20 μg/mL Ribonuclease A (Roche Applied Sciences, Indianapolis, Ind.) 3 μg/mL Triton X-100 dissolved in 0.1% (W/V) sodium citrate for 30 minutes at 4° C. Stained cells are analyzed using the FACScan analyzer (Becton Dickinson, San Jose, Calif.) and data analyzed using ModFit LT software (Verity Software House, Topsham, Me.).
-
FIG. 4A shows results of cell cycle analysis ofUACC 903 cells treated with controls (API-2, PHSC), PBITC or ISC-4, or, DMSO vehicle control.FIG. 4B shows results of cell cycle analysis ofUACC 903 cells treated with controls (API-2, PHSC), PIIITC or ISC-6, or, DMSO vehicle control. ISC-4, ISC-6, PBITC or PHITC treatment increased the sub G0/G1 cell population (an indicator of apoptosis) and induces G2/M cell cycle arrest in melanoma cells compared to DMSO or controls API-2 and PHSC. Results represent average of 2 independent experiments. Enhanced apoptosis induced by ISC-4 or ISC-6 is confirmed through cell cycle analysis of asynchronously growingUACC 903 cells. A significant increase is observed in the sub G0/G1 population in PBITC, ISC-4, PHITC or ISC-6 treated cells which is indicative of cells undergoing apoptosis. - Table IV shows results of cell cycle analysis following treatment with controls compounds DMSO, API-2 or PHSC or test compounds PBITC, PHITC, ISC-4 or ISC-6. Treated cells are stained with propidium iodide and cell cycle analyzed using a FACScan analyzer such that the proportion of cells in each phase of cell cycle (G0/G1, St G2/M) is estimated. The G2/M cell population increases 2-3 fold following 15 μM PBITC, PHITC, ISC-4 or ISC-6 exposure. A significant decrease in G0/G1 cell population occurred following ITC or ISC treatment. Enhanced apoptosis induced by ISC-4 or ISC-6 is confirmed through cell cycle analysis of asynchronously growing
UACC 903 cells. Analysis of cells in each stage of the cell cycle showed decreasing numbers of cells in the S- and G1/G0 phase with a corresponding increase in the G2/M phase. -
TABLE IV UACC 903 - Cell Cycle Analysis Following Treatment With ISC-4 or ISC-6 and Corresponding Isothiocyanates Concentration API-2 PHSC PBITC ISC-4 PHITC ISC-6 (μM) DMSO 15 15 5 10 15 5 10 15 5 10 15 5 10 15 subG0/G1 0.4 0.89 2.4 4.9 10.4 20.8 2.9 12.3 22.8 1.4 5.4 12.5 1.5 7.6 15.9 G0/G1 60.8 63.6 61.4 37.4 37.2 42.1 59.4 41.6 35.5 58.7 43.8 40.7 56.8 44.9 41.6 S 27.7 25.6 26.9 27.8 30.9 30.5 24.3 29.0 36.5 28.2 28.7 29.6 31.5 30.5 32.2 G2/M 11.4 10.7 11.5 34.7 31.9 27.4 16.3 29.4 28.0 13.1 27.5 29.7 13.5 24.5 26.1 - Isoselenocyanates are effective for inhibiting melanoma tumor development in preexisting tumors in nude mice.
- Tumor kinetics are measured by subcutaneous injection of 2.5-5×106 1205 Lu or
UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and right rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later when a fully vascularized tumor has formed, mice are randomly divided into DMSO vehicle control and experimental groups including 5 mice/group, each mouse having two tumors. Mice are treated by intraperitoneal (i.p.) injection with an ITC compound BITC, PEITC, PBITC, or PHITC (2.5 μmoles or 0.76 μmoles); or treated by i.p injection with an ISC compound ISC-1-ISC-2, ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium) thrice per week. (Monday, Wednesday and Friday). Control mice received an equal volume of the vehicle. Dimensions of the developing tumors are measured using calipers and the size estimated in cubic millimeters. Body weight is monitored three times a week (Monday, Wednesday and Friday). -
FIGS. 5A and 5B show graphs comparing the effect of isothiocyanates and isoselenocyanates on tumordevelopment using UACC 903 melanoma cells, a cell line having high Akt3 signaling activity. Six days following subcutaneous injection of 5 millionUACC 903 melanoma cells, small vascularized palpable tumors are seen and mice are treated i. p. with 2.5 μmoles of an isothiocyanate or with 0.76 μL moles, equivalent to 3 ppm selenium, of an isoselenocyanate thrice per week. The bar graphs inFIGS. 5A and 5B show melanoma tumor volume, as % of vehicle, at day 24. Isoselenocyanates ISC-2, ISC-4 and ISC-6 reduce tumor volume at doses 3× lower than isothiocyanates. ISC, 0.76 μmoles vs. ITC, 2.5 μmoles. Thus, isoselenocyanates have increased in vivo tumor inhibitory effectiveness compared to corresponding isothiocyanates and effectively reduce melanoma development. Increasing carbon chain length of isothiocyanates showed less effective tumor inhibition,FIG. 5A , while increasing carbon chain length of isoselenocyanates led to greater tumor inhibition,FIG. 5B . - The effect of isothiocyanates and isoselenocyanates on tumor development is measured in existing tumors formed by subcutaneous injection of 2.5 or 5 million 1205 Lu or
UACC 903 melanoma cells. Six days following injection of the cells, when small vascularized palpable tumors are seen, mice are treated i. p. with PBITC or PHITC (0.76 μmoles) or ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium) thrice per week. -
FIGS. 6A and 6B show graphs of chance in tumor size and body weight over time in mice treated i. p. with PBRTC or PHITC. (0.76 μmoles) or ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium) thrice per week. Selenium containing analogs ISC-4 or ISC-6 significantly reduced tumor development compared to DMSO, PBITC or PHITC controls. While PBITC and PHITC are ineffective at reducing tumor burden ofUACC 903,FIG. 6A , or 1205 Lu,FIG. 6B , at the administered concentration of 0.76 μmoles, administration of 0.76 μmoles of ISC-4 or ISC-6 led to significant reductions of 50-60% in tumor size of both cell types. No obvious toxicity is observed by significant changes in body weight. Data are presented as mean ±SE. Thus, isoselenocyanates (ISC) are effective at reducing melanoma tumor development at significantly lower concentrations than corresponding isothiocyanates (ITC). - Tumors are established by subcutaneous injection of 2.5-5×106 1205 Lu or
UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and light rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later when a fully vascularized tumor forms, mice are randomly divided in to DMSO vehicle control and experimental (BITC, PEITC, PBITC, PHITC, ISC-1-ISC-2, IS C-4 or ISC-6) groups (5 mice/group; 2 tumors/mouse) and treated i. p. with ITC compounds (2.5 μmoles or 0.76 μmoles), ISC compounds (0.76 μmoles, equivalent to 3 ppm selenium) thrice per week. Monday, Wednesday and Friday). Control mice receive an equal volume of the vehicle. Dimensions of the developing tumors are measured using calipers and the size estimated in cubic millimeters. Body weight is monitored three times a week Monday, Wednesday and Friday). - Isoselenocyanates decrease the tumorigenic potential of melanoma cells by increasing apoptosis.
-
FIG. 7A shows that ISC treatment leads to apoptosis in size and time matched melanoma tumors. Mice bearing tumors matched for size and time of development are injected i. p. with PBITC (0.76 μmoles), ISC-4 (3 ppm equivalent to 0.76 μmoles) or DMSO (50 μl) vehicle starting 6 days after subcutaneous injection of cells and on alternate days thereafter up today 15. Following ISC-4 treatment, rates of tumor cell apoptosis and cell proliferation are compared in size and time matched tumors from ISC-4 or PBITC treated animals compared to DMSO vehicle. Tumors are removed from euthanized mice ondays - Tumors harvested at
day FIG. 7A . In contrast, slightly fewer proliferating tumor cells are observed in ISC-4 treated tumors compared to PBITC but this difference is not statistically significant (p>0.05; One-way ANOVA), shown inFIG. 7B . - A 3-fold increase in number of apoptotic cells is observed following treatment of
UACC 903 tumors with ISC-4 atDay FIGS. 7A and 7B are means from 2 separate experiments with 4-6 fields analyzed from each of 6 tumors per experiment; bars, ±SEM. ISC-4 is more potent than PBITC in inhibiting melanoma tumor development by increasing apoptosis levels in melanoma tumors. - 4-6 weeks old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.) are injected i. p. with either control DMSO vehicle, PBITC or PHITC (0.76 μmoles) or ISC-4 or ISC-6 (0.76 μmoles equivalent to 3 ppm Se) (n=5), 3 times per week (Monday, Wednesday and Friday) for 3 weeks. Animals are sacrificed by CO2 asphyxiation and blood collected from each animal in plasma separator tubes with lithium heparin (BD Microtainer, BD, Franklin Lakes, N.J.) following cardiac puncture and analyzed for AST (aspartate aminotransferase), ALT, (alanyl aminotransferase), alkaline phosphatase, glucose and creatinine to ascertain liver, heart, kidney and pancreas related toxicity. For morphological examination of blood cells, whole blood is collected in microtainer tubes containing K2EDTA (BD Microtainer, BD, Franklin Lakes, N.J.) and RBC, WBC, lymphocytes, monocytes, eosinophils, platelets, total hemoglobin and hematocrit percentage analyzed. Blood is also microscopically examined for segregates, polychromatin bodies, and smudge cells. A portion of liver, heart, kidney, spleen, intestine pancreas and adrenal from each animal is formalin fixed and paraffin-embedded to examine toxicity-related changes in cell or organ morphology by H&E staining.
- Body weights of isothiocyanate or isoselenocyanate treated mice compared to the control DMSO vehicle exposed mice showed no significant differences between groups as shown in the two graph inserts in
FIGS. 6A and 6B . - Levels of SGOT, SGPT, alkaline phosphatase, glucose and creatinine are analyzed in the blood collected from the animals treated with PBITC, ISC-4 or DMSO vehicle.
FIG. 8 shows a bar graph indicating that synthetic isoselenocyanates have negligible toxicity and treatment with PBITC or ISC-4 did not alter parameters compared to vehicle DMSO treated animals indicating manageable toxicity to vital organs with these agents. - Furthermore, blood parameters (SGOT, SGPT, alkaline phosphatase, blood urea, glucose and creatinine) indicative of systemic toxicity did not detect significant liver, kidney or cardiac related toxicity. Levels of cellular metabolites basal urea nitrogen (BUN), creative and glucose in animals are also not significantly different between ISC-4 or PBITC treated and control animals. Histological examination of hematoxylin and eosin stained vital organ sections, including the liver reveal that ISC-4 treatment did not significantly change cell morphology or organ structure. Thus, synthetic selenium containing analog isothiocyanate treatment had negligible associated systemic toxicity at the concentrations examined with significant therapeutic potential. Synthetic isoselenocyanate compounds cause negligible organ related toxicity following systemic administration.
- Statistical analysis is undertaken using the One-way or Two-way ANOVA followed by the Tukey's or Bonferroni's post hoc tests. Results are considered significant at a p-value of <0.05.
- For Western blot analysis, floating, and attached melanoma cells treated with compounds or control vehicle are harvested by addition of lyses buffer containing 50 mM HEPES (pH 7.5), 150 mM NaCl, 10 mM EDTA, 10% glycerol, 1% Triton X-100, 1 mM sodium orthovanadate, 0.1 mM sodium molybdate, 1 mM phenylmethylsulfonyl fluoride, 20 μg/ml aprotinin, and 5 μg/ml leupeptin. Whole cell lysates are centrifuged (>10,000×g) for 10 minutes at 4° C. to remove cell debris. Protein concentrations are quantitated using the BCA assay from Pierce (Rockford, Ill.), and 30 μg of lysate loaded per lane onto NuPAGE Gels from Life Technologies (Carlsbad, Calif.). Following electrophoresis, samples are transferred to polyvinylidene difluoride membrane (Pall Corporation, Pensacola, Fla.). Blots are probed with antibodies according to each supplier's recommendations: phosphorylated PRAS40 (Thr246) from Invitrogen (Carlsbad, Calif.); Erk2, α-enolase and secondary antibodies conjugated with horseradish peroxidase from Santa Cruz Biotechnology (Santa Cruz, Calif.); and antibodies to Akt3, phosphorylated-Akt (Ser473), phosphorylated-
Erk 1/2 (Thr202/Tyr204) and cleaved PARP from Cell Signaling Technology (Danvers, MA). Immunoblots are developed using the enhanced chemiluminescence detection system (Pierce Biotechnology, Rockford, IL). - Melanoma cells (
UACC 903, 1205 Lu or WM 115) are exposed to DMSO or increasing concentrations (2.5-15 μM) of phenylbutylisothiocyanate (PBITC), phenylhexylisothiocyanate (PHITC), phenylbutylisoselenocyanate (ISC-4) or phenylhexylisoselenocyanate (ISC-6) for 24 hours.FIG. 9 shows a representative Western blot analysis for expression/activity of the Akt signaling pathway and demonstrates dose dependent decrease in phosphorylated (active) Akt (S473) and downstream PRAS40 (T246) and a corresponding dose dependent increase in cleaved PARP, reflective of high levels of cellular apoptosis. A higher level of apoptosis is observed in cells treated with ISC-4 than in cells treated with PBITC. Erk2 served as control for equal protein loading. Isoselenocyanates decrease Akt3 signaling in cultured melanoma cells and tumors. - The Western blot in
FIG. 9 shows that the isoselenocyanate compounds ISC-4 and ISC-6 are effective at lower concentrations compared to the isothiocyanate compounds, completely inhibiting the pathway at 10 μM compared to corresponding isothiocyanates requiring ≧15 μM for similar inhibition. Akt3 pathway inhibition led to significant apoptosis as measured by the high levels of cleaved PARP. Higher levels of cleaved PARP are observed at lower concentrations of ISC-4 and ISC-6 than corresponding isothiocyanates PBITC or PRUC. -
FIGS. 10A and 10B illustrate Western blots showing the effect of ISC-4 on Akt signaling pathway in melanoma cell lines 1205 Lu and WM115, respectively. ISC-4 causes significant apoptosis indicated by elevated cleaved PARP protein levels. Erk-2 served as a control for equal protein loading. - Thus, isoselenocyanates ISC-4 and ISC-6 more effectively inhibit the Akt3 signaling cascade in cultured melanoma cells at lower concentrations than corresponding sulfur containing isothiocyanates.
- To ascertain the mechanism underlying tumor inhibition, 5×106
UACC 903 cells are injected into nude mice, 6-days later mice are treated i. p. with PBITC (0.76 μmoles) or PHITC (0.76 μmoles), ISC-4 (0.76 μmoles, equivalent to 3 ppm selenium) or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium) on alternate days. Size and time matched tumors are harvested atdays - Western blot analysis of tumors harvested at
day 13 from animals treated with DMSO, PBIT or ISC-4 showed significantly decreased expression of phosphorylated (active) Akt (p<0.05; One-way ANOVA) and downstream PRAS40 (p<0.001; One-way ANOVA) in ISC-4 tumor lysates compared to DMSO control or PBITC treated tumors.FIG. 11 illustrates a graph of quantitation of Western blot analysis of tumor protein lysates from animals treated with DMSO, PBITC or ISC-4 and indicates decreased relative expression of phosphorylated (active) Akt and downstream PRAS40 of Akt3. Thus, isoselenocyanates ISC-4 and ISC-6 more effectively inhibit the Akt3 signaling cascade in tumors at lower concentrations than corresponding sulfur containing isothiocyanates. - Effects of inhibiting Akt3 signaling on melanoma tumorigenesis are shown using siRNA to inhibit Akt3 protein expression and thereby inhibit Akt3 activity.
- Duplexed “Stealth”7 siRNA from Invitrogen (Carlsbad, Calif.) are: AKT3-GGA CUA UCU ACA WEC CGG AAA GAU U (SEQ ID NO. 1) and scrambled-AAU UCU CCG AAC GUG UCA CGU GAG A (SEQ ID NO. 2). Nucleofection using Amaxa Nucleofector (Koeln, Germany) is used to introduce siRNA into
UACC 903 cells (Reagent R, program K17). SiRNA (100 pmoles) against Akt3 or scrambled siRNA are nucleofected into 1×106UACC 903 cells, which are then replated in DMEM supplemented with 10% FBS and allowed to recover for 1.5 days. Thirty-six hours later 1×106UACC 903 cells in 0.2 ml of DMEM supplemented with 10% FBS are injected subcutaneously into the left and right flanks of 4 to 6 week old nude mice. Control cells are nucleofected with scrambled siRNA or nucleofection buffer only. Dimensions of developing tumors are measured on alternate days using calipers up to day 17.5. siRNA-mediated inhibition of Akt3 signaling reduced the tumorigenic potential of melanoma cells. -
FIG. 12 is a graph showing that decreased expression (activity) of Akt3 reduced the tumor size in animals injected with Akt3 siRNA treated cells compared to control cells nucleofected with scrambled siRNA or nucleofection buffer. The tumorigenic potential of melanoma cells is decreased by ˜60%. Thus, inhibition of Akt3 signaling led to significant melanoma tumor inhibition. -
FIG. 13 is a Western blot analysis of tumor protein lysates showing reduction in expression of Akt3, demonstrating effective knockdown of these proteins in tumors by siRNA directed against Akt3. α-enolase served as loading control. A tumor removed fromanimals 8 days after introduction of siRNA shows significantly less Akt3 protein than control tumors into which a scrambled siRNA had been introduced, demonstrating effective knockdown of Akt3 protein expression using this approach. - Five million UACC903 cells are injected subcutaneously in a volume of 200 uL at each of two sites in nude mice to establish tumors. Six days following injection of the cells, mice are divided into four groups of five mice each. Mice in each group are injected i.p with 0.76 micromoles of sulforaphane (SFN), 0.76 micromoles (equivalent to 3 ppm selenium) of 1-isothiocyanto-4-methylselenobutane (SFN Iso Se Me), 0.76 micromoles (equivalent to 3 ppm selenium) of 1-isoselenocyanto-4-methylsulfinylbutane (SEN Iso Se) or DMSO (a vehicle control).
-
FIG. 14A shows inhibition of tumor development by 1-isoselenocyanto-4-methylsulfinylbutane (SEN Iso Se) compared to controls. No toxicity of the administered compounds is apparent as indicated by lack of significant changes in body weight, shown inFIG. 14B . - IC50 values for sulforaphane and 1-isoselenocyanto-4-methylsulfinylbutane (SEN Iso Se) are established in various cell lines. Results are shown in Table V.
-
TABLE V IC-50 values Cell type SFN SFN Iso Se A549 (lung) 73 ± 3.6 35 ± 1.7 UACC-903 (Melanoma) 40 ± 0.89 17 ± 0.95 1205LU (Melanoma) >50 39.2 ± 2 CaCO2 (Colon Carcinoma) 48 ± 5.9 16 ± 0.4 MDA-MB 231 (breast) 57 ± 5 20 ± 0.46 PC-3 (Prostate) >50 24.8 ± 0.58 HT1080 (Soft Tissue Sarcoma) >50 25.59 ± 1.82 IGROV-1 (ovarian carcinoma >50 >50 FF2441 (fibroblast cells) >50 >50 - Effect of ISC and ITC compounds on cell viability of prostate cancer cells LNCaP, PC-3 and DU-145.
- Prostate cell lines, LnCaP, PC-3 and DU-145 are exposed to different concentrations, 5 micromolar, 10 micromolar or 25 micromolar, of ITCs including BITC, PEITC, PBITC, and PHITC, or ISCs, including ISC-1, ISC-2, ISC-4, and ISC-4, for 24 hours. Following incubation, cell viability is assayed using an MTS assay.
- In vitro inhibitory efficacy of DMSO, ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC on
UACC 903 cells is measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega, Madison, Wis.). In brief, 2.5-5×103 cells per well in 100 microliters DMEM containing 10% FBS are grown in a 96-well plate for 24 h and treated with either control DMSO vehicle or increasing concentrations (5-15 μM) of the tested isothiocyanate or isoselenocyanate for 24 hours. At this point cells are treated individually with either vehicle control DMSO or with increasing concentrations of ITC or ISC (2.5-100 μM) for 24 h. The percentages of viable cells compared to control DMSO treated cells are determined.FIG. 15 shows results of this assay. - Cellular proliferation rate is measured by seeding 5×103 human melanoma
cell line UACC 903 cells in a 96-well plate, followed by treatment for 24 hours with DMSO or 5-15 μM of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC for 24 hours. Proliferation rates are measured using a BrdU ELISA kit (Roche Applied Sciences, Indianapolis, Ind.). Results of this assay are shown inFIG. 16 . - Apoptosis rate is measured by seeding 5×103 human melanoma
cell line UACC 903 cells in a 96-well plate, followed by treatment for 24 hours with DMSO or 5-15 μM of ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, or PHITC for 24 hours. Apoptosis rate is measured using an Apo-ONE Homogenous caspase-3/7 Assay kit (Promega Corporation, Madison, Wis.). Results of this assay are shown inFIG. 17 . - Tumor kinetics are measured by subcutaneous injection of 5×106
UACC 903 melanoma cells in 0.2 ml of DMEM supplemented with 10% FBS above both left and right rib cages of 4-6 week old female nude mice (Harlan Sprague Dawley, Indianapolis, Ind.). Six days later mice are randomly divided into control (DMSO) and experimental (ISC-1, ISC-2, ISC-4, ISC-6, BITC, PEITC, PBITC, PHITC) groups (5 mice/group; 2 tumors/mouse). Six days after subcutaneous injection ofUACC 903 melanoma cells, mice are treated i. p. with BITC, PEITC, PBITC or PHITC (2.5 μmoles), or, ISC-1, ISC-2, ISC-4 or ISC-6 (0.76 μmoles, equivalent to 3 ppm selenium) thrice per week. (Monday, Wednesday and Friday). Control mice receive an equal volume of the vehicle, DMSO. The dimensions of the developing tumors (using calipers) and body weight are measured three times a week (Monday, Wednesday and Friday) and the size estimated in cubic millimeters. - At a dose of 0.76 μmoles, ISC-2 to ISC-6 showed about 30-45% reduction in tumor size with the effect increasing with the increasing alkyl chain length from ISC-2 to ISC-6 (
FIG. 18A ). ISC-1 failed to show any effect at this concentration. There was no related toxicity observed at this dose for any of the ISC derivatives. ITC derivatives are also effective in reducing the tumor size at a dosage of 2.5 micromoles, ˜3 times higher than the administered dosage of ISC compounds, shown inFIG. 18C . A reverse trend of chain length effect is observed, with BITC being the most effective.FIGS. 18B and 18D shows the body weights of test compound treated mice treated compared to the control DMSO vehicle treated mice. No significant difference in weights is detected between groups, demonstrating negligible toxicity. - Dysregulation of Akt1, Akt2 and/or Akt3 can be observed in cells using various well-known techniques
- Western blot procedure for detection of Akt1, Akt2 and/or Akt3 dysregulation is performed according to standard procedures, for instance as described herein and in Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988; J. D. Pound (Ed.) Immunochemical Protocols, Methods in Molecular Biology, Humana Press; 2nd ed., 1998; Stahl, J. M., et al., Cancer Res., 63:2881-2890, 2003; and Stahl, J. M., et al., Cancer Res., 64:7002-7010, 2004.
- Immunoprecipitation for detection of Akt1, Akt2 and/or Akt3 dysregulation is performed according to standard procedures, for instance as described herein and in Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988; J. D. Pound (Ed.) Immunochemical Protocols, Methods in Molecular Biology, Humana Press; 2nd ed., 1998; Stahl, J. M., et al., Cancer Res., 63:2881-2890, 2003; and Stahl, J. M., et al., Cancer Res., 64:7002-7010, 2004. For example, briefly described, protein is collected from cells after addition of protein lysis buffer [50 mmol/L Tris-HCl (pH 7.5), 0.1% Triton X-100, 1 mmol/L EDTA, 1 mmol/L EGTA, 50 mmol/L NaFl, 10 mmol/L sodium β-glycerol phosphate, 5 mmol/L sodium inorganic pyrophosphate, 1 mmol/L sodium orthovanadate, 0.11% 2-mercaptoethanol, and 0.5% protease inhibitor mixture (Sigma, St. Louis, Mo.)] to a sample, such as plates of cells or biopsy material, followed by snap freezing in liquid nitrogen. Cellular debris is pelleted by centrifugation (10,000×g) of lysates, and protein concentration is quantitated using the Bio-Rad Protein Assay (Bio-Rad, Hercules, Calif.). Protein for immunoprecipitation (100 jug) is incubated with 2 μg of Akt1 or Akt2 or 5 μL of Akt3 antibody overnight at 4° C. with constant mixing. A no antigen negative control is prepared by adding antibody to the lysis buffer only. Next, 15 μL of equilibrated GammaBind G Sepharose beads (Amersham Biosciences, Piscataway, N.J.) is added to each tube and incubated for 2 hours (4° C.) with constant mixing. Pelleted beads are washed twice with lysis buffer to remove unbound antibody and protein. Samples are then electrophoresed under reducing conditions according to the protocol provided by Invitrogen Life Technologies, Inc. (Carlsbad, Calif.) with the NuPage Gel System. Western blots of the electrophoresed samples are probed with an anti-phospho-Akt (Ser-473) antibody and quantitated by densitometry as described in Stahl, J. M., et al., Cancer Res., 63:2881-2890, 2003.
- Antibodies for use in immunoassays for Akt1, Akt2 and/or Akt3 can be obtained commercially, for instance an Akt1 antibody is available from Cell Signaling Technologies, Beverly, Mass., an Akt2 antibody is available from Santa Cruz Biotechnology, Santa Cruz, Calif. and an Akt3 antibody is available from Upstate Biotechnology, Lake Placid, N.Y. An anti-phospho-Akt (Ser-473) antibodies can also be obtained commercially, e.g. from Cell Signaling Technologies, Beverly, Mass. Anti-Akt1, Akt2 and/or Akt3 antibodies can also be produced by well-known techniques such as described, for instance, in Harlow, E. and Lane, D., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1988.
- Akt kinase assays are performed according to standard kinase assay procedures. Briefly described, 15 μL of equilibrated GammaBind G Sepharose beads are incubated with 2 μg of Akt1 or Akt2 antibody, or 5 μL of Akt3 antibody in a volume of 350 μL of lysis buffer at 4° C. with constant mixing for 2 hours. Microcystin (1 μmol/L) from MP Biomedicals (Irvine, Calif.) is added to the lysis buffer to ensure complete inactivation of cellular PP1 and PP2 phosphatases. The antibody/Sepharose complex is washed twice with 750 μL of lysis buffer and then incubated with 100 μg of protein in a volume of 350 μL overnight at 4° C. with constant mixing. This complex is washed with 500 μL of lysis buffer (3×) and then once with 500 μL of assay dilution buffer [20 mmol/L 4-morpholinepropanesulfonic acid (pH 7.2), 25 mmol/L β-glycerol phosphate, 1 mmol/L sodium orthovanadate, and 1 mmol/L dithiothreitol]. Protein kinase A (PKA) inhibitor peptide (10 μmol/L) from Santa Cruz Biotechnology (Santa Cruz, Calif.), 37.5 μmol/L ATP, 17 mmol/L MgCl2, 0.25 μCi/μL [gamma-32P]ATP, and 90 μmol/L Akt-specific substrate Crosstide from Upstate Biotechnology (Lake Placid, N.Y.) are added to the tubes in assay dilution buffer and incubated at 35° C. for 10 minutes with continuous mixing. Next, 20 μL of liquid are transferred to phosphocellulose paper, which is washed three times for 5 minutes with 40 mL of 0.75% phosphoric acid. After a 5-minute acetone wash, the phosphocellulose was allowed to dry and transferred to a scintillation vial with 5 mL of Amersham Biosciences scintillation fluid, and counts per minute were measured in a Beckman Coulter LS 3801 Liquid Scintillation System Fullerton, Calif.).
- Detection of Dysregulated Akt in Human Material
- Formalin-fixed paraffin-embedded melanoma specimens are used for immunohistochemistry to measure phosphorylated Akt. A phospho-Akt (Ser-473) monoclonal antibody, Cell Signaling Technologies, is used at a 1:50 titer according to the manufacturer's recommended protocol. Specificity and intensity of staining are determined through qualitative comparison with internal blood vessel endothelium, squamous epithelium, or smooth muscle controls present in each specimen.
- ISC-4 more efficiently inhibits melanoma cell growth compared to normal human fibroblast cells. 10×103 normal human fibroblasts (FF2441) expressing Akt3 at normal levels and 5×103 metastatic melanoma cells (UACC 903) having activated Akt3 are plated in 96 well plates in 100 μL DMEM containing 10% FBS and grown for 24 hours respectively. Exponentially growing cells are treated with increasing concentrations (2.5-100 μM) of ISC-4 for 24 hours and IC50 (μM) values determined.
- Sensitivity of melanoma cells to ISC-4 with elevated Akt3 signaling is compared to fibroblast cells with normal levels of Akt activity. Three-fold higher drug concentration of ISC-4 (37.5 μM) is required to kill fibroblasts with normal levels of Akt activity compared to melanoma cells (12±3 μM) with elevated Akt activity. Thus, cancer cells with constitutively active Akt signaling are 3-fold more sensitive to ISC-4 than normal cells with regular Akt activity. These results show that ISC-4 more effectively kill cells having increased Akt activity than those having normal levels.
- Effect of topical ISC-4 application on melanoma tumor growth—in vitro (Skin Reconstructs).
FIG. 19 is a bar graph showing the effects of topically applied PBITC or ISC-4 on reconstructed human skin containing GFP taggedUACC 903 human melanoma cells. - Generation of skin containing melanocytic lesions is briefly described. To create skin in a culture dish, human fibroblasts, were trypsinized and resuspended in 10% reconstitution buffer, 10% 10×DMEM (Mediatech, Herndon, Va.), 2.4 microliters/ml of 10 M NaOH, and 80% collagen I (BD Discovery Labware Inc., Bedford, Mass.) at a concentration of 2.5×105 cells/ml on ice (Ozbun M A, Meyers C. J Virol 1996, 70: 5437-46.). Mixture was then aliquoted into 6 or 12 well plates and incubated at 37° C. for 3 hours. E-media was added to each well to equilibrate the dermal matrix (Wu Y J, Parker L M, Binder N E, et al., Cell 1982, 31: 693-703.). After two days of growth, keratinocytes and melanoma cells (WM35-GFP or UACC 903-GFP) were trypsinized and resuspended at a 1:10 ratio of melanoma cells (nucleofected or untreated) to keratinocytes in E-media. One milliliter of cell suspension added to each well on top of the dermal layer. Following two days growth, reconstructed skin was transferred onto wire grids and fed via diffusion from E-media below the platforms.
- Reconstructed human skin containing GFP tagged
UACC 903 human melanoma cells were treated with 12.5 and 25 μM PBITC or ISC-4 and the tumor area occupied measured using fluorescence microscopy. - The result shows an ˜80% decrease in tumor area occupied by melanoma cells upon ISC-4 treatment compared to control DMSO treated or untreated skins. Similar results are observed with other melanoma cell lines.
- Chemopreventive or chemotherapeutic effect of ISC-4 on cutaneous tumor development is measured by subcutaneous injection of 1 million
UACC 903 cells in 0.2 ml of DMEM-10% FBS above both the left and right rib cages of 4- to 6-week old female athymic nude mice using 24 g needles. 24 hours later, animals are treated daily with ISC-4 (0.063-0.19 μmoles equivalent to 0.25-0.75 ppm), PBITC (0.063-0.19 μmoles) or vehicle control (acetone) for 3-4 weeks. The dimensions of the developing tumors are measured alternate days using calipers and the sizes estimated in cubic millimeters. A minimum of 5 mice per group is used for the topical treatment. -
FIG. 20 shows a pair of line graphs showing the effect of topical ISC-4 application on melanoma tumor growth in vivo. Topical treatment with (0.063-0.19 μmoles equivalent to 0.25-0.75 ppm) ISC-4 leads to decreased tumor size compared to vehicle control (as shown in the upper graph inFIG. 20 ) or PBITC (0.063-0.19 μmoles) with no systemic toxicity (as shown by body weight measurements in the lower graph inFIG. 20 ). - Chemopreventive or chemotherapeutic effect of ISC-4 on cutaneous tumor development is measured by subcutaneous injection of 1 million
UACC 903 cells in 0.2 ml of DMEM-10% FBS above both the left and right rib cages of 4- to 6-week old female athymic nude mice using 24 g needles. 24 hours later, animals were treated daily with ISC-4 (12.5-50 μM), PBITC (12.5-50 μM), or vehicle control (acetone) for 3-4 weeks. The dimensions of the developing tumors are measured alternate days using calipers and the sizes estimated in cubic millimeters. A minimum of 5 mice per group was used for the topical treatment. - Topical treatment with ISC-4 (12.5-50 μM) significantly reduces melanoma tumor development by ˜50% compared to PBITC (12.5-50 μM) (as shown in the upper graph in
FIG. 21 ) or vehicle control with no systemic toxicity (as shown by body weight measurements in the lower graph inFIG. 21 ). -
- Serrone L, Hersey P. The chemoresistance of human malignant melanoma: an update. Melanoma Research 1999; 9:51-8.
- Grossman D, Altieri D C. Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer & Metastasis Reviews 2001; 20:3-11.
- Helmbach H, Rossmann E, Kern M A, Schadendorf D. Drug-resistance in human melanoma. International Journal of Cancer 2001; 93:617-22
- Markovic S N, Erickson L A, Rao R D, et al. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 2007; 82:364-80.
- Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002.[comment][erratum appears in CA Cancer J Clin 2002 March-April; 52(2):119]. Ca: a Cancer Journal for Clinicians 2002; 52:23-47.
- Amiri K I, Horton L W, LaFleur B J, Sosman J A, Richmond A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 2004; 64:4912-8.
- Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature 2007; 445:851-7.
- Brazil D P, Hemmings B A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26:657-64.
- Nicholson K M, Anderson N G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14:381-95.
- Stahl J M, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004; 64:7002-10.
- Stahl J M, Cheung M, Sharma A, Trivedi N R, Shanmugam S, Robertson G P. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res 2003; 63:2881-90.
- Madhunapantula S V, Sharma A, Robertson G P. PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res 2007; 67:3626-36.
- Keum Y S, Jeong W S, Kong A N. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 2004; 555:191-202,
- Zhang Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res 2004; 555:173-90.
- Zhang Y, Kensler T W, Cho C G, Posner G H, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 1994; 91:3147-50.
- Hecht S S. Chemoprevention by isothiocyanates. J Cell Biochem Suppi 1995; 22:195-209.
- Zhang Y, Yao S, Li J. Vegetable-derived isothiocyanates: anti-proliferative activity and mechanism of action. Proc Nutr Soc 2006; 65:68-75.
- Ji Y, Kuo Y, Morris M E. Pharmacokinetics of dietary phenethyl isothiocyanate in rats. Pharm Res 2005; 22:1658-66.
- El-Bayoumy K, Sinha R, Pinto J T, Rivlin R S. Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J Nutr 2006; 136:864 S-9S.
- Miyoshi N, Uchida K, Osawa T, Nakamura Y. A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 2004; 64:2134-42.
- Chiao fW, Wu H, Ramaswamy G, et al. Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis 2004; 25: 1403-8.
- Reinhold U, Biltz H, Bayer W, Schmidt K H. Serum selenium levels in patients with malignant melanoma. Acta Derm Venereol 1989; 69:132-6.
- Bandura L, Drukala J, Wolnicka-Glubisz A, Bjornstedt M, Korohoda W. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells. Biochem Cell Biol 2005; 83:196-211.
- Brigelius-Flohe R. Selenium compounds and selenoproteins in cancer. Chem Biodivers 2008; 5:389-95.
- Unni E, Koul D, Yung W K, Sinha R. Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro. Breast Cancer Res 2005; 7:R699-707.
- Hu H, Jiang C, Li G, Lu J. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Carcinogenesis 2005; 26:1374-81.
- Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 1975; 66:188-93.
- Yang L, Dan H C, Sun M, et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004; 64:4394-9.
- Feun L G, Blessing J A, Barrett R J, Hanjani P. A phase II trial of tricyclic nucleoside phosphate in patients with advanced squamous cell carcinoma of the cervix. A Gynecologic Oncology Group Study. Am J Clin Oncol 1993; 16:506-8.
- Karst A M, Dai D L, Cheng J Q, Li G. Role of p53 up-regulated modulator of apoptosis and phosphorylated Aikt in melanoma cell growth, apoptosis, and patient survival. Cancer Res 2006; 66:9221-6.
- Any patents or publications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication is specifically and individually indicated to be incorporated by reference. U.S. Provisional Patent Application Serial Nos. 60/911,565, filed Apr. 13, 2007 and 60/959,554, filed Jul. 13, 2007, are both incorporated herein by reference in their entirety.
- The compositions and methods described herein are presently representative of preferred embodiments, exemplary, and not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art. Such changes and other uses can be made without departing from the scope of the invention as set forth in the claims.
Claims (27)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/102,629 US20080306148A1 (en) | 2007-04-13 | 2008-04-14 | Anti-cancer compositions and methods |
US13/785,552 US9096505B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,599 US20130178523A1 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,778 US9126911B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,731 US9126910B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US14/755,390 US20150376124A1 (en) | 2007-04-13 | 2015-06-30 | Anti-cancer compositions and methods |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91156507P | 2007-04-13 | 2007-04-13 | |
US95955407P | 2007-07-13 | 2007-07-13 | |
US12/102,629 US20080306148A1 (en) | 2007-04-13 | 2008-04-14 | Anti-cancer compositions and methods |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/785,778 Continuation US9126911B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,599 Continuation US20130178523A1 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,552 Continuation US9096505B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,731 Continuation US9126910B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080306148A1 true US20080306148A1 (en) | 2008-12-11 |
Family
ID=39864375
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/102,629 Abandoned US20080306148A1 (en) | 2007-04-13 | 2008-04-14 | Anti-cancer compositions and methods |
US13/785,778 Active 2028-08-28 US9126911B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,731 Active 2028-08-04 US9126910B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,552 Active US9096505B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,599 Abandoned US20130178523A1 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US14/755,390 Abandoned US20150376124A1 (en) | 2007-04-13 | 2015-06-30 | Anti-cancer compositions and methods |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/785,778 Active 2028-08-28 US9126911B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,731 Active 2028-08-04 US9126910B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,552 Active US9096505B2 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US13/785,599 Abandoned US20130178523A1 (en) | 2007-04-13 | 2013-03-05 | Anti-cancer compositions and methods |
US14/755,390 Abandoned US20150376124A1 (en) | 2007-04-13 | 2015-06-30 | Anti-cancer compositions and methods |
Country Status (2)
Country | Link |
---|---|
US (6) | US20080306148A1 (en) |
WO (1) | WO2008128189A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9585860B2 (en) | 2011-01-12 | 2017-03-07 | The William M. Yavbrough Foundation | Method for treating eczema |
US9636320B2 (en) | 2012-07-26 | 2017-05-02 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US9771322B2 (en) | 2011-01-03 | 2017-09-26 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US9839621B2 (en) | 2012-07-26 | 2017-12-12 | The William M. Yarbrough Foundation | Method for treating bladder cancer |
US9949943B2 (en) | 2012-07-26 | 2018-04-24 | The William M. Yarbrough Foundation | Method for treating neurodegenerative diseases |
US9962361B2 (en) | 2011-01-03 | 2018-05-08 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US10080734B2 (en) | 2012-07-26 | 2018-09-25 | The William M. Yarbrough Foundation | Method for treating autism and other neurodevelopmental disorders |
US10273205B2 (en) | 2011-01-03 | 2019-04-30 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants and associated methods for treating biofilms |
US10308599B2 (en) | 2011-01-03 | 2019-06-04 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US10335387B2 (en) | 2012-07-26 | 2019-07-02 | The William M. Yarbrough Foundation | Method for treating infectious diseases with isothiocyanate functional compounds |
US10434082B2 (en) | 2012-07-26 | 2019-10-08 | The William M. Yarbrough Foundation | Isothiocyanate functional compounds augmented with secondary antineoplastic medicaments and associated methods for treating neoplasms |
US10434081B2 (en) | 2012-07-26 | 2019-10-08 | The William M. Yarbrough Foundation | Inhibitors of macrophage migration inhibitory factor |
US10441561B2 (en) | 2012-07-26 | 2019-10-15 | The William M. Yanbrough Foundation | Method for treating benign prostatic hyperplasia (BPH), prostatitis, and prostate cancer |
US10532039B2 (en) | 2011-02-08 | 2020-01-14 | The William M. Yarbrough Foundation | Method for treating psoriasis |
US10640464B2 (en) | 2011-01-03 | 2020-05-05 | The William M. Yarbrough Foundation | Use of isothiocyanate functional surfactants as Nrf2 inducers to treat epidermolysis bullosa simplex and related diseases |
US10647668B2 (en) | 2011-01-03 | 2020-05-12 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US11279674B2 (en) | 2011-01-03 | 2022-03-22 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US11407713B2 (en) | 2011-01-03 | 2022-08-09 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010140902A1 (en) * | 2009-06-02 | 2010-12-09 | Mark Hampton | Inhibitors of macrophage migration inhibitory factor |
SG11201504779YA (en) * | 2012-12-20 | 2015-07-30 | Penn State Res Found | Methods and compositions relating to treatment of cancer |
CN105267967B (en) * | 2014-07-18 | 2021-05-18 | 无锡杰西医药股份有限公司 | Combined application of isothiocyanate compounds and anti-cancer drugs acting on or influencing DNA (deoxyribonucleic acid) |
US11571430B2 (en) | 2020-01-31 | 2023-02-07 | King Fahd University Of Petroleum And Minerals | Platinum(II) ammine selenourea complexes and methods of treating cancer |
US12183306B2 (en) | 2022-11-15 | 2024-12-31 | Ags Llc | Method and system for controlling and synchronizing the display of content on multiple gaming machines and/or external displays |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4988517A (en) * | 1988-09-27 | 1991-01-29 | American Health Foundation | Method and composition for inhibiting colon carcinogenesis |
US5093351A (en) * | 1989-01-05 | 1992-03-03 | Du Pont Merck Pharmaceutical Company | Substituted indole, benzofuran and benzothiophene derivatives as 5-lipoxygenase inhibitors |
US5114969A (en) * | 1989-03-22 | 1992-05-19 | American Health Foundation | Method of inhibiting lung tumors, arylalkyl isothiocyanates, and method of synthesizing same |
US5231209A (en) * | 1989-03-22 | 1993-07-27 | American Health Foundation | Method of inhibiting lung tumors, arylalkyl isothiocyanates, and method of synthesizing same |
US5411986A (en) * | 1993-03-12 | 1995-05-02 | The Johns Hopkins University | Chemoprotective isothiocyanates |
US5648097A (en) * | 1995-10-04 | 1997-07-15 | Biotek, Inc. | Calcium mineral-based microparticles and method for the production thereof |
US5929063A (en) * | 1995-03-24 | 1999-07-27 | Children's Hospital Medical Center | Mercapto and seleno derivatives as inhibitors of nitric oxide synthase |
US6166003A (en) * | 1999-02-17 | 2000-12-26 | Lkt Laboratories, Inc. | Heterocyclic compounds for cancer chemoprevention |
US6166033A (en) * | 1996-09-20 | 2000-12-26 | Taisho Pharmaceutical Co., Ltd. | 2-carbonylthiazole derivatives and use of the same |
US6465512B2 (en) * | 1999-12-13 | 2002-10-15 | National Institute Of Advanced Industrial Science And Technology | Leukemic cell growth inhibiting method |
US20020165215A1 (en) * | 2001-02-20 | 2002-11-07 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US6511970B1 (en) * | 1996-09-13 | 2003-01-28 | New Life Pharmaceuticals Inc. | Prevention of ovarian cancer by administration of products that induce transforming growth factor-beta and/or apoptosis in the ovarian epithelium |
US6630486B1 (en) * | 1997-09-22 | 2003-10-07 | Royer Biomedical, Inc. | Inorganic-polymer complexes for the controlled release of compounds including medicinals |
US6737441B2 (en) * | 2000-08-21 | 2004-05-18 | Jed W. Fahey | Treatment of helicobacter with isothiocyanates |
US7067639B2 (en) * | 2001-06-11 | 2006-06-27 | Applied Nanosystems B.V. | Method to provide bacterial ghosts provided with antigens |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0750911B1 (en) | 1995-06-07 | 2003-09-10 | Life Science Labs, Inc. | Composition containing selenium to reduce cancer incidence and extend lifespan |
CN101389345A (en) * | 2004-03-19 | 2009-03-18 | 宾州研究基金会 | Combinatorial methods and compositions for treatment of melanoma. |
-
2008
- 2008-04-14 US US12/102,629 patent/US20080306148A1/en not_active Abandoned
- 2008-04-14 WO PCT/US2008/060248 patent/WO2008128189A1/en active Application Filing
-
2013
- 2013-03-05 US US13/785,778 patent/US9126911B2/en active Active
- 2013-03-05 US US13/785,731 patent/US9126910B2/en active Active
- 2013-03-05 US US13/785,552 patent/US9096505B2/en active Active
- 2013-03-05 US US13/785,599 patent/US20130178523A1/en not_active Abandoned
-
2015
- 2015-06-30 US US14/755,390 patent/US20150376124A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4988517A (en) * | 1988-09-27 | 1991-01-29 | American Health Foundation | Method and composition for inhibiting colon carcinogenesis |
US5093351A (en) * | 1989-01-05 | 1992-03-03 | Du Pont Merck Pharmaceutical Company | Substituted indole, benzofuran and benzothiophene derivatives as 5-lipoxygenase inhibitors |
US5114969A (en) * | 1989-03-22 | 1992-05-19 | American Health Foundation | Method of inhibiting lung tumors, arylalkyl isothiocyanates, and method of synthesizing same |
US5231209A (en) * | 1989-03-22 | 1993-07-27 | American Health Foundation | Method of inhibiting lung tumors, arylalkyl isothiocyanates, and method of synthesizing same |
US5411986A (en) * | 1993-03-12 | 1995-05-02 | The Johns Hopkins University | Chemoprotective isothiocyanates |
US5929063A (en) * | 1995-03-24 | 1999-07-27 | Children's Hospital Medical Center | Mercapto and seleno derivatives as inhibitors of nitric oxide synthase |
US5985917A (en) * | 1995-03-24 | 1999-11-16 | Children's Hospital Medical Center | Mercapto and seleno derivatives as inhibitors of nitric oxide synthase |
US5648097A (en) * | 1995-10-04 | 1997-07-15 | Biotek, Inc. | Calcium mineral-based microparticles and method for the production thereof |
US6511970B1 (en) * | 1996-09-13 | 2003-01-28 | New Life Pharmaceuticals Inc. | Prevention of ovarian cancer by administration of products that induce transforming growth factor-beta and/or apoptosis in the ovarian epithelium |
US6166033A (en) * | 1996-09-20 | 2000-12-26 | Taisho Pharmaceutical Co., Ltd. | 2-carbonylthiazole derivatives and use of the same |
US6630486B1 (en) * | 1997-09-22 | 2003-10-07 | Royer Biomedical, Inc. | Inorganic-polymer complexes for the controlled release of compounds including medicinals |
US6166003A (en) * | 1999-02-17 | 2000-12-26 | Lkt Laboratories, Inc. | Heterocyclic compounds for cancer chemoprevention |
US6465512B2 (en) * | 1999-12-13 | 2002-10-15 | National Institute Of Advanced Industrial Science And Technology | Leukemic cell growth inhibiting method |
US6737441B2 (en) * | 2000-08-21 | 2004-05-18 | Jed W. Fahey | Treatment of helicobacter with isothiocyanates |
US20020165215A1 (en) * | 2001-02-20 | 2002-11-07 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US6703524B2 (en) * | 2001-02-20 | 2004-03-09 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US20040158079A1 (en) * | 2001-02-20 | 2004-08-12 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US7087639B2 (en) * | 2001-02-20 | 2006-08-08 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US7314929B2 (en) * | 2001-02-20 | 2008-01-01 | Lkt Laboratories, Inc. | Organoselenium compounds for cancer chemoprevention |
US7067639B2 (en) * | 2001-06-11 | 2006-06-27 | Applied Nanosystems B.V. | Method to provide bacterial ghosts provided with antigens |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9951005B2 (en) | 2011-01-03 | 2018-04-24 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant formulation and associated method of use |
US10654799B2 (en) | 2011-01-03 | 2020-05-19 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants and associated methods for treating biofilms |
US10640464B2 (en) | 2011-01-03 | 2020-05-05 | The William M. Yarbrough Foundation | Use of isothiocyanate functional surfactants as Nrf2 inducers to treat epidermolysis bullosa simplex and related diseases |
US10647668B2 (en) | 2011-01-03 | 2020-05-12 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US10363236B2 (en) | 2011-01-03 | 2019-07-30 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US9951004B2 (en) | 2011-01-03 | 2018-04-24 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US9771322B2 (en) | 2011-01-03 | 2017-09-26 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US9828337B2 (en) | 2011-01-03 | 2017-11-28 | The William M. Yarbrough Foundation | Lysine derivative having an isothiocyanate functional group and associated method of use |
US11407713B2 (en) | 2011-01-03 | 2022-08-09 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US9932306B2 (en) | 2011-01-03 | 2018-04-03 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US11339125B2 (en) | 2011-01-03 | 2022-05-24 | The William M. Yarbrough Foundation | Use of isothiocyanate functional surfactants as NRF2 inducers to treat epidermolysis bullosa simplex and related diseases |
US11306057B2 (en) | 2011-01-03 | 2022-04-19 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants and associated methods for treating biofilms |
US11654129B2 (en) | 2011-01-03 | 2023-05-23 | The William M Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US9951003B2 (en) | 2011-01-03 | 2018-04-24 | The William M. Yarbrough Foundation | Isothiocyanate functional compound and associated method of use |
US10308599B2 (en) | 2011-01-03 | 2019-06-04 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US9962361B2 (en) | 2011-01-03 | 2018-05-08 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US11279674B2 (en) | 2011-01-03 | 2022-03-22 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US10888540B2 (en) | 2011-01-03 | 2021-01-12 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating the same, and associated methods of use |
US10308600B2 (en) | 2011-01-03 | 2019-06-04 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactant and associated method of use |
US10273205B2 (en) | 2011-01-03 | 2019-04-30 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants and associated methods for treating biofilms |
US10287246B2 (en) | 2011-01-03 | 2019-05-14 | The William M. Yarbrough Foundation | Isothiocyanate functional surfactants, formulations incorporating isothiocyanate functional surfactants and associated methods for treating biofilms |
US10111851B2 (en) | 2011-01-12 | 2018-10-30 | The William M. Yarbrough Foundation | Method for treating eczema |
US9655874B2 (en) | 2011-01-12 | 2017-05-23 | The William M. Yarbrough Foundation | Method for treating eczema |
US9687463B2 (en) | 2011-01-12 | 2017-06-27 | The William M. Yarbrough Foundation | Method for treating eczema |
US9649290B2 (en) | 2011-01-12 | 2017-05-16 | The William M. Yarbrough Foundation | Method for treating eczema |
US9585860B2 (en) | 2011-01-12 | 2017-03-07 | The William M. Yavbrough Foundation | Method for treating eczema |
US10532039B2 (en) | 2011-02-08 | 2020-01-14 | The William M. Yarbrough Foundation | Method for treating psoriasis |
US11517552B2 (en) | 2011-02-08 | 2022-12-06 | The William M. Yarbrough Foundation | Method for treating psoriasis |
US10434081B2 (en) | 2012-07-26 | 2019-10-08 | The William M. Yarbrough Foundation | Inhibitors of macrophage migration inhibitory factor |
US10471039B2 (en) | 2012-07-26 | 2019-11-12 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US10583107B2 (en) | 2012-07-26 | 2020-03-10 | The William M. Yarbrough Foundation | Method for treating benign prostatic hyperplasia (BPH), prostatitis, and prostate cancer |
US10583108B2 (en) | 2012-07-26 | 2020-03-10 | The William M. Yarbrough Foundation | Inhibitors of macrophage migration inhibitory factor |
US10441561B2 (en) | 2012-07-26 | 2019-10-15 | The William M. Yanbrough Foundation | Method for treating benign prostatic hyperplasia (BPH), prostatitis, and prostate cancer |
US10434082B2 (en) | 2012-07-26 | 2019-10-08 | The William M. Yarbrough Foundation | Isothiocyanate functional compounds augmented with secondary antineoplastic medicaments and associated methods for treating neoplasms |
US10335387B2 (en) | 2012-07-26 | 2019-07-02 | The William M. Yarbrough Foundation | Method for treating infectious diseases with isothiocyanate functional compounds |
US10765656B2 (en) | 2012-07-26 | 2020-09-08 | The William M. Yarbrough Foundation | Isothiocyanate functional compounds augmented with secondary antineoplastic medicaments and associated methods for treating neoplasms |
US10864187B2 (en) | 2012-07-26 | 2020-12-15 | The William M. Yarbrough Foundation | Method for treating infectious diseases with isothiocyanate functional compounds |
US10869855B2 (en) | 2012-07-26 | 2020-12-22 | The William M. Yarbrough Foundation | Method for treating benign prostatic hyperplasia (BPH), prostatitis, and prostate cancer |
US10869854B2 (en) | 2012-07-26 | 2020-12-22 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US10874630B2 (en) | 2012-07-26 | 2020-12-29 | The William M. Yarbrough Foundation | Inhibitors of macrophage migration inhibitory factor |
US10111852B2 (en) | 2012-07-26 | 2018-10-30 | The William M. Yarbrough Foundation | Method for treating bladder cancer |
US10080734B2 (en) | 2012-07-26 | 2018-09-25 | The William M. Yarbrough Foundation | Method for treating autism and other neurodevelopmental disorders |
US9949943B2 (en) | 2012-07-26 | 2018-04-24 | The William M. Yarbrough Foundation | Method for treating neurodegenerative diseases |
US9931314B2 (en) | 2012-07-26 | 2018-04-03 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US9839621B2 (en) | 2012-07-26 | 2017-12-12 | The William M. Yarbrough Foundation | Method for treating bladder cancer |
US9642827B2 (en) | 2012-07-26 | 2017-05-09 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US11517553B2 (en) | 2012-07-26 | 2022-12-06 | The William M. Yarbrough Foundation | Isothiocyanate functional compounds augmented with secondary antineoplastic medicaments and associated methods for treating neoplasms |
US11633376B2 (en) | 2012-07-26 | 2023-04-25 | The William M. Yarbrough Foundation | Method for treating metastatic prostate cancer |
US11633375B2 (en) | 2012-07-26 | 2023-04-25 | The William M. Yarbrough Foundation | Method for treating infectious diseases with isothiocyanate functional compounds |
US11648230B2 (en) | 2012-07-26 | 2023-05-16 | The William M Yarbrough Foundation | Method for treating rheumatoid arthritis |
US9636320B2 (en) | 2012-07-26 | 2017-05-02 | The William M. Yarbrough Foundation | Method for treating skin cancer |
US12178795B2 (en) | 2012-07-26 | 2024-12-31 | The William Yarbrough Foundation | Method for treating metastatic prostate cancer |
US12178794B2 (en) | 2012-07-26 | 2024-12-31 | The William Yarbrough Foundation | Isothiocyanate functional compounds augmented with secondary antineoplastic medicaments and associated methods for treating neoplasms |
US12239626B2 (en) | 2012-07-26 | 2025-03-04 | The William Yarbrough Foundation | Method for treating infectious diseases with isothiocyanate functional compounds |
Also Published As
Publication number | Publication date |
---|---|
US9096505B2 (en) | 2015-08-04 |
WO2008128189A9 (en) | 2009-10-22 |
US9126911B2 (en) | 2015-09-08 |
US20130178523A1 (en) | 2013-07-11 |
US20130184339A1 (en) | 2013-07-18 |
US20150376124A1 (en) | 2015-12-31 |
US20130184340A1 (en) | 2013-07-18 |
WO2008128189A1 (en) | 2008-10-23 |
US9126910B2 (en) | 2015-09-08 |
US20130253052A1 (en) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9126911B2 (en) | Anti-cancer compositions and methods | |
US8309541B1 (en) | Anti-cancer compositions and methods | |
US8785502B2 (en) | Compositions and methods relating to proliferative diseases | |
Sharma et al. | Targeting Akt3 signaling in malignant melanoma using isoselenocyanates | |
US9801922B2 (en) | Compositions and methods of treating cancer | |
CN101534836B (en) | Use of PARP inhibition in preparing medicine for obesity | |
Yu et al. | Paeoniflorin protects human EA. hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway | |
US8710039B2 (en) | Therapeutic compositions and methods | |
Bhattacharya et al. | Mahanine, a novel mitochondrial complex-III inhibitor induces G0/G1 arrest through redox alteration-mediated DNA damage response and regresses glioblastoma multiforme | |
Sun et al. | 2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation | |
US20120039917A1 (en) | Immunomodulating activities | |
Oronsky et al. | RRx-001, a novel clinical-stage chemosensitizer, radiosensitizer, and immunosensitizer, inhibits glucose 6-phosphate dehydrogenase in human tumor cells | |
US9918966B2 (en) | Anti-cancer compositions and methods | |
Argüello-García et al. | Activity of thioallyl compounds from garlic against Giardia duodenalis trophozoites and in experimental giardiasis | |
EP0752872B1 (en) | Nadh oxidase as a target in diagnosis and therapy | |
KR20220013419A (en) | Anticancer composition comprising cancer metabolism regulator | |
EP1946757A1 (en) | Atr inhibitor | |
US11524017B2 (en) | Method of using substrates of AKR1B1/AKR1B10 as anti-cancer drugs | |
KR20110004846A (en) | Modulation of the structure, activity and / or expression of enzymes | |
Plaza et al. | Inhibitory effect of nordihydroguaiaretic acid and its tetra-acetylated derivative on respiration and growth of adenocarcinoma TA3 and its multiresistant variant TA3MTX-R | |
Dong et al. | Glutathione S-transferase pi is involved in the growth of mice | |
Monteleone | Role of PKC-α in the induction of ferroptosis: a therapeutic target to fight chemoresistance of cancer stem cells | |
KR20100040378A (en) | ANTI-CANCER ACTIVITY ENHANCING COMPOSITION COMPRISING CISPLATIN AND β-LAPACHONE | |
TW201223524A (en) | A compound to specifically inhibit the genetic expression of cancer cells and it use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE PENN STATE RESEARCH FOUNDATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTSON, GAVIN P.;SHARMA, ARATI K.;SHARMA, ARUN K.;AND OTHERS;REEL/FRAME:021155/0272;SIGNING DATES FROM 20080422 TO 20080423 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THE PENNSYLVANIA STATE UNIVERSITY;REEL/FRAME:025444/0977 Effective date: 20101122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |