US20080303000A1 - Monomers, Oligomers and Polymers Comprising Thiophene and Selenophene - Google Patents
Monomers, Oligomers and Polymers Comprising Thiophene and Selenophene Download PDFInfo
- Publication number
- US20080303000A1 US20080303000A1 US11/908,150 US90815006A US2008303000A1 US 20080303000 A1 US20080303000 A1 US 20080303000A1 US 90815006 A US90815006 A US 90815006A US 2008303000 A1 US2008303000 A1 US 2008303000A1
- Authority
- US
- United States
- Prior art keywords
- independently
- oligomeric
- monomeric
- atoms
- another
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 72
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 title abstract description 12
- MABNMNVCOAICNO-UHFFFAOYSA-N selenophene Chemical compound C=1C=C[se]C=1 MABNMNVCOAICNO-UHFFFAOYSA-N 0.000 title abstract description 7
- 229930192474 thiophene Natural products 0.000 title abstract description 6
- 239000000178 monomer Substances 0.000 title description 8
- 239000000463 material Substances 0.000 claims abstract description 69
- 150000001875 compounds Chemical class 0.000 claims abstract description 61
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- -1 selenophene-2,5-diyl groups Chemical group 0.000 claims description 28
- 239000004973 liquid crystal related substance Substances 0.000 claims description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims description 25
- 239000010408 film Substances 0.000 claims description 23
- 125000001072 heteroaryl group Chemical group 0.000 claims description 20
- 229910052801 chlorine Inorganic materials 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 17
- 125000003107 substituted aryl group Chemical group 0.000 claims description 16
- 229910052731 fluorine Inorganic materials 0.000 claims description 15
- 229910052794 bromium Inorganic materials 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 13
- 150000002367 halogens Chemical class 0.000 claims description 13
- 229910052740 iodine Inorganic materials 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 10
- 125000004434 sulfur atom Chemical group 0.000 claims description 10
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- 239000002537 cosmetic Substances 0.000 claims description 4
- 229920001519 homopolymer Polymers 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 229920006254 polymer film Polymers 0.000 claims description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- HXXUWXSMELGSQF-UHFFFAOYSA-N 3-octyl-2-[5-(3-octylthiophen-2-yl)selenophen-2-yl]thiophene Chemical compound C1=CSC(C=2[se]C(=CC=2)C2=C(C=CS2)CCCCCCCC)=C1CCCCCCCC HXXUWXSMELGSQF-UHFFFAOYSA-N 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 238000000018 DNA microarray Methods 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims description 2
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical class S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 26
- 239000010410 layer Substances 0.000 description 26
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 16
- 239000011521 glass Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 0 *C1=C([3*])C([1*])=C(C2=C([5*])C([6*])=C(C3=C([2*])C([4*])=C(C4=C([6*])C([5*])=C(*)[Se]4)S3)[Se]2)S1 Chemical compound *C1=C([3*])C([1*])=C(C2=C([5*])C([6*])=C(C3=C([2*])C([4*])=C(C4=C([6*])C([5*])=C(*)[Se]4)S3)[Se]2)S1 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 230000037230 mobility Effects 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 239000002800 charge carrier Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 8
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- 239000004990 Smectic liquid crystal Substances 0.000 description 5
- 238000000944 Soxhlet extraction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- DTJBEISROOTMQK-UHFFFAOYSA-N trimethyl-(5-trimethylstannylselenophen-2-yl)stannane Chemical compound C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)[se]1 DTJBEISROOTMQK-UHFFFAOYSA-N 0.000 description 4
- FWXJVJJKDFQRSP-UHFFFAOYSA-N 2-bromo-5-(5-bromo-4-hexylselenophen-2-yl)-3-hexylselenophene Chemical compound [se]1C(Br)=C(CCCCCC)C=C1C1=CC(CCCCCC)=C(Br)[se]1 FWXJVJJKDFQRSP-UHFFFAOYSA-N 0.000 description 3
- QOWHXTFXZSVAPI-UHFFFAOYSA-N 3-hexylselenophene Chemical compound CCCCCCC=1C=C[se]C=1 QOWHXTFXZSVAPI-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 3
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- GAEGEGPQWDOCRM-UHFFFAOYSA-N 2-bromo-5-(5-bromo-4-decylthiophen-2-yl)-3-decylthiophene Chemical compound S1C(Br)=C(CCCCCCCCCC)C=C1C1=CC(CCCCCCCCCC)=C(Br)S1 GAEGEGPQWDOCRM-UHFFFAOYSA-N 0.000 description 2
- HTSYYLNTMSXYHZ-UHFFFAOYSA-N 2-bromo-5-(5-bromo-4-dodecylthiophen-2-yl)-3-dodecylthiophene Chemical compound S1C(Br)=C(CCCCCCCCCCCC)C=C1C1=CC(CCCCCCCCCCCC)=C(Br)S1 HTSYYLNTMSXYHZ-UHFFFAOYSA-N 0.000 description 2
- DWZYQBSEWJDKNY-UHFFFAOYSA-N 4-decyl-2-(4-decylthiophen-2-yl)thiophene Chemical compound CCCCCCCCCCC1=CSC(C=2SC=C(CCCCCCCCCC)C=2)=C1 DWZYQBSEWJDKNY-UHFFFAOYSA-N 0.000 description 2
- DWWZELSEBSRUMM-UHFFFAOYSA-N 4-dodecyl-2-(4-dodecylthiophen-2-yl)thiophene Chemical compound CCCCCCCCCCCCC1=CSC(C=2SC=C(CCCCCCCCCCCC)C=2)=C1 DWWZELSEBSRUMM-UHFFFAOYSA-N 0.000 description 2
- RYYAKHMPDRCFKM-UHFFFAOYSA-N 4-hexyl-2-(4-hexylselenophen-2-yl)selenophene Chemical compound CCCCCCC1=C[se]C(C=2[se]C=C(CCCCCC)C=2)=C1 RYYAKHMPDRCFKM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229910003849 O-Si Inorganic materials 0.000 description 2
- 229910003872 O—Si Inorganic materials 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 2
- WBLIXGSTEMXDSM-UHFFFAOYSA-N chloromethane Chemical compound Cl[CH2] WBLIXGSTEMXDSM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000011532 electronic conductor Substances 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 150000002921 oxetanes Chemical class 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- 229920002848 poly(3-alkoxythiophenes) Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- RCHUVCPBWWSUMC-UHFFFAOYSA-N trichloro(octyl)silane Chemical compound CCCCCCCC[Si](Cl)(Cl)Cl RCHUVCPBWWSUMC-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- HACPIHUACVDFFV-UHFFFAOYSA-N 2-(2-thiophen-2-ylselenophen-3-yl)thiophene Chemical compound C1=CSC(C2=C([se]C=C2)C=2SC=CC=2)=C1 HACPIHUACVDFFV-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 229910017049 AsF5 Inorganic materials 0.000 description 1
- 229910017048 AsF6 Inorganic materials 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- JNJMXFMOGUJNSR-QUHGZEGCSA-N C.C.C.C=CC(C)=O.CC1=C(C)C(=O)N(C)C1=O.COCC1(C)COC1.[2H]C1([W])OC1C Chemical compound C.C.C.C=CC(C)=O.CC1=C(C)C(=O)N(C)C1=O.COCC1(C)COC1.[2H]C1([W])OC1C JNJMXFMOGUJNSR-QUHGZEGCSA-N 0.000 description 1
- RTNXTGLIEWNYLX-VJKOBCGASA-N C.C.COCC1(C)COC1.[2H]C1([W])OC1C Chemical compound C.C.COCC1(C)COC1.[2H]C1([W])OC1C RTNXTGLIEWNYLX-VJKOBCGASA-N 0.000 description 1
- MLAFWRIUOPLOAA-UHFFFAOYSA-N CCCCCCC1=C(Br)[Se]C(C2=CC(CCCCCC)=C(Br)[Se]2)=C1.CCCCCCC1=C(C)[Se]C(C2=CC(CCCCCC)=C(C3=CC=C(C4=CC=C(C)S4)S3)[Se]2)=C1.C[Sn](C)(C)C1=CC=C(C2=CC=C([Sn](C)(C)C)S2)S1 Chemical compound CCCCCCC1=C(Br)[Se]C(C2=CC(CCCCCC)=C(Br)[Se]2)=C1.CCCCCCC1=C(C)[Se]C(C2=CC(CCCCCC)=C(C3=CC=C(C4=CC=C(C)S4)S3)[Se]2)=C1.C[Sn](C)(C)C1=CC=C(C2=CC=C([Sn](C)(C)C)S2)S1 MLAFWRIUOPLOAA-UHFFFAOYSA-N 0.000 description 1
- KIRJHNFEJKSRSK-UHFFFAOYSA-N CCCCCCCCCCC1=C(Br)SC(Br)=C1CCCCCCCCCC.CCCCCCCCCCC1=C(C)SC(C2=CC=C(C)[Se]2)=C1CCCCCCCCCC.C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)[Se]1 Chemical compound CCCCCCCCCCC1=C(Br)SC(Br)=C1CCCCCCCCCC.CCCCCCCCCCC1=C(C)SC(C2=CC=C(C)[Se]2)=C1CCCCCCCCCC.C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)[Se]1 KIRJHNFEJKSRSK-UHFFFAOYSA-N 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- 229910005185 FSO3H Inorganic materials 0.000 description 1
- 229910003865 HfCl4 Inorganic materials 0.000 description 1
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 1
- 239000004890 Hydrophobing Agent Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 229910015221 MoCl5 Inorganic materials 0.000 description 1
- 229910015253 MoF5 Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910019804 NbCl5 Inorganic materials 0.000 description 1
- 229910019787 NbF5 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910021174 PF5 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 1
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910004537 TaCl5 Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 1
- 229910003091 WCl6 Inorganic materials 0.000 description 1
- 229910009033 WF5 Inorganic materials 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000006852 aliphatic spacer Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- KWTSZCJMWHGPOS-UHFFFAOYSA-M chloro(trimethyl)stannane Chemical compound C[Sn](C)(C)Cl KWTSZCJMWHGPOS-UHFFFAOYSA-M 0.000 description 1
- 229920001688 coating polymer Polymers 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- JHAYEQICABJSTP-UHFFFAOYSA-N decoquinate Chemical group N1C=C(C(=O)OCC)C(=O)C2=C1C=C(OCC)C(OCCCCCCCCCC)=C2 JHAYEQICABJSTP-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- NBJFDNVXVFBQDX-UHFFFAOYSA-I molybdenum pentafluoride Chemical compound F[Mo](F)(F)(F)F NBJFDNVXVFBQDX-UHFFFAOYSA-I 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WYURNTSHIVDZCO-SVYQBANQSA-N oxolane-d8 Chemical compound [2H]C1([2H])OC([2H])([2H])C([2H])([2H])C1([2H])[2H] WYURNTSHIVDZCO-SVYQBANQSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOLPZAHRYHXPLR-UHFFFAOYSA-I pentafluoroniobium Chemical compound F[Nb](F)(F)(F)F AOLPZAHRYHXPLR-UHFFFAOYSA-I 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000006410 propenylene group Chemical group 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000005266 side chain polymer Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- URMVZUQDPPDABD-UHFFFAOYSA-N thieno[2,3-f][1]benzothiole Chemical class C1=C2SC=CC2=CC2=C1C=CS2 URMVZUQDPPDABD-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KKRPPVXJVZKJON-UHFFFAOYSA-N trimethyl-(5-trimethylstannylthiophen-2-yl)stannane Chemical compound C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)S1 KKRPPVXJVZKJON-UHFFFAOYSA-N 0.000 description 1
- DOIRPCDOGSNNCS-UHFFFAOYSA-N trimethyl-[5-(5-trimethylstannylthiophen-2-yl)thiophen-2-yl]stannane Chemical group S1C([Sn](C)(C)C)=CC=C1C1=CC=C([Sn](C)(C)C)S1 DOIRPCDOGSNNCS-UHFFFAOYSA-N 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D421/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
- C07D421/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/06—Polythioethers from cyclic thioethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3491—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
- C09K19/3804—Polymers with mesogenic groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/40—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
- C09K2211/1483—Heterocyclic containing nitrogen and sulfur as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
- C09K2211/1491—Heterocyclic containing other combinations of heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention relates to novel mono-, oligo- and polymeric compounds comprising thiophene and selenophene.
- the invention further relates to their use as semiconductors or charge transport materials, in optical, electro-optical or electronic devices.
- the invention further relates to optical, electro-optical or electronic devices comprising the novel compounds.
- Organic materials have recently shown promise as the active layer in organic based thin film transistors and organic field effect transistors [see H. E. Katz, Z. Bao and S. L. Gilat, Acc. Chem. Res., 2001, 34, 5, 359]. Such devices have potential applications in smart cards, security tags and the switching element in flat panel displays. Organic materials are envisaged to have substantial cost advantages over their silicon analogues if they can be deposited from solution, as this enables a fast, large-area fabrication route.
- the performance of the device is principally based upon the charge carrier mobility of the semi-conducting material and the current on/off ratio, so the ideal semiconductor should have a low conductivity in the off state, combined with a high charge carrier mobility (>1 ⁇ 10 ⁇ 3 cm 2 V ⁇ 1 s ⁇ 1 ).
- the semi-conducting material is relatively stable to oxidation i.e. it has a high ionisation potential, as oxidation leads to reduced device performance.
- a high regioregularity leads to improved packing and optimised microstructure, leading to improved charge carrier mobility [see H. Sirringhaus et al., Science, 1998, 280, 1741-1744; H. Sirringhaus et al., Nature, 1999, 401, 685-688; and H. Sirringhaus, et al., Synthetic Metals, 2000, 111-112, 129-132].
- poly(3-alkylthiophenes) show improved solubility and are able to be solution processed to fabricate large area films.
- poly(3-alkylthiophenes) have relatively low ionisation potentials and are susceptible to doping in air.
- EP-A-1 439 590 discloses mono-, oligo- and poly-bis(thienyl)arylenes, but does not disclose compounds of the present invention.
- S. Tierney, M. Heeney and 1. McCulloch, Synth Met., 148(2), 195-198, (2005) discloses poly-bis(3-octyl-thiophen-2-yl)selenophene, but does not disclose compounds of the present invention.
- the invention relates to monomeric, oligomeric or polymeric compounds comprising one or more selenophene-2,5-diyl groups and one or more thiophene 2,5-diyl groups, each being optionally substituted in 3- and/or 4-position, with the proviso that homopolymers of 2,5-bis(3-octyl-thiophen-2-yl)selenophene are excluded.
- the invention further relates to a the use of the compounds of formula I as semiconducting, charge transport or light-emitting materials.
- the invention further relates to a semiconducting, electroluminescent or charge transport material, component or device comprising at least one compound of formula I.
- the invention further relates to the use of compounds of formula I as charge-transport, semiconducting, electrically conducting, photoconducting or light-emitting material in optical, electrooptical or electronic components or devices, organic field effect transistors (OFET), integrated circuitry (IC), thin film transistors (TFT), flat panel displays, radio frequency identification (RFID) tags, electroluminescent or photoluminescent devices or components, organic light emitting diodes (OLED), backlights of displays, photovoltaic or sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates or patterns, electrode materials in batteries, photoconductors, electrophotographic applications, electrophotographic recording, organic memory devices, alignment layers, cosmetic or pharmaceutical compositions, biosensors, biochips, or for detecting and discriminating DNA sequences.
- OFET organic field effect transistors
- IC integrated circuitry
- TFT thin film transistors
- RFID radio frequency identification
- OLED organic light emitting diodes
- backlights of displays photovolt
- the invention further relates to an optical, electrooptical or electronic device, FET, integrated circuit (IC), TFT, OLED or alignment layer comprising a compound, semiconducting or charge transport material, component or device according to the invention.
- the invention further relates to a TFT or TFT array for flat panel displays, radio frequency identification (RFID) tag, electroluminescent display or backlight comprising a compound, semiconducting or charge transport material, component or device or a FET, IC, TFT or OLED according to the invention.
- RFID radio frequency identification
- the invention further relates to a security marking or device comprising a FET or an RFID tag according to the invention.
- FIG. 1 shows the transfer characteristics of a polymer according to Example 1 in a transistor device.
- the polymers according to the present invention can be homopolymers, i.e. having identical recurring units, or copolymers having different recurring units. Particularly preferred are homopolymers of having identical recurring units.
- the compounds of the present invention are advantageous because they exhibit higher charge carrier mobilities compared to the analogous all-thiophene systems.
- the increased atomic radius of selenium (103 pm (picometre) over sulfur (88 pm) enhances molecular overlaps between polymer chains, and facilitates the charge hopping process.
- the inclusion of selenophene results in a red-shift of the maximum absorbance wavelength over the all-thiophene systems.
- the compounds according to the invention are especially useful as charge transport or semiconductor materials.
- Introduction of alkyl side chains into the thiophene and/or selenophene group further improves solubility and solution processibility especially for the polymers.
- the regioregularity in the polymers of the present invention is preferably at least 90%, in particular 95% or more, very preferably 98% or more, most preferably from 99 to 100%.
- Regioregular polymers are advantageous as they show strong interchain pi-pi-stacking interactions and a high degree of crystallinity, making them effective charge transport materials with high carrier mobilities.
- mono-, oligo- and polymers that are mesogenic or liquid crystalline, in particular polymers forming calamitic phases, and polymerisable monomers comprising one or more groups P-Sp- and forming calamitic phases.
- the monomeric, oligomeric and polymeric compounds are preferably selected of formula I
- R 1-6 , a, b, c, d and n have the meanings of formula I,
- R 1-8 and n have the meanings of formula 11.
- n has the meaning of formula I and R has one of the meanings of R 1 in formula I different from H.
- R 1-8 is aryl or heteroaryl, it is preferably a mono-, bi- or tricyclic aromatic or heteroaromaic group with up to 25 C atoms, wherein the rings can be fused.
- Heteroaromatic groups contain at least one hetero ring atom preferably selected from N, O and S.
- the aromatic or heteroaromatic groups are optionally substituted with one or more groups L.
- L is F, Cl, Br, I, CN or straight chain, branched or cyclic alkyl having 1 to 20 C atoms, which is unsubstituted, mono- or poly-substituted by F, Cl, Br, I, —CN or —OH, and in which one or more non-adjacent CH 2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NRO—, —SiR 0 R 00 —, —CO—, —COO—, OCO—, —OCO—O, —S—CO—, —CO—S—, —CH—CH— or —C ⁇ C— in such a manner that O and/or S atoms are not linked directly to one another.
- aryl and heteroaryl groups are phenyl, fluorinated phenyl, pyridine, pyrimidine, biphenyl, naphthalene, optionally fluorinated or alkylated or fluoroalkylated benzo[1,2-b:4,5-b′]dithiophene, optionally fluorinated or alkylated or fluoroalkylated thieno[3,2-b]thiophene, optionally fluorinated or alkylated or fluoroalkylated 2,2-dithiophene, thiazole and oxazole, all of which are unsubstituted, mono- or polysubstituted with L as defined above.
- R 1-8 is an alkyl or alkoxy radical, i.e. where the terminal CH 2 group is replaced by —O—, this may be straight-chain or branched. It is preferably straight-chain, has 2 to 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
- Fluoroalkyl or fluorinated alkyl or alkoxy is preferably straight chain (O)C i F 2i+1 , wherein i is an integer from 1 to 20, in particular from 1 to 15, very preferably (O)CF 3 , (O)C 2 F 5 , (O)C 3 F 7 , (O)C 4 F 9 , (O)C 5 F 11 , (O)C 6 F 13 , (O)C 7 F 15 or (O)C 8 F 17 , most preferably (O)C 6 F 13 .
- CX 1 ⁇ CX 2 is preferably —CH ⁇ CH—, —CH ⁇ CF—, —CF ⁇ CH—, —CF ⁇ CF—, —CH—C(CN)— or —C(CN) ⁇ CH—.
- Halogen is preferably F, Br or Cl.
- Hetero atoms are preferably selected from N, O and S.
- the polymerisable group P is a group that is capable of participating in a polymerisation reaction, like radicalic or ionic chain polymerisation, polyaddition or polycondensation, or capable of being grafted, for example by condensation or addition, to a polymer backbone in a polymeranaloguous reaction.
- a polymerisation reaction like radicalic or ionic chain polymerisation, polyaddition or polycondensation, or capable of being grafted, for example by condensation or addition, to a polymer backbone in a polymeranaloguous reaction.
- polymerisable groups for chain polymerisation reactions like radicalic, cationic or anionic polymerisation.
- Very preferred are polymerisable groups comprising a C—C double or triple bond, and polymerisable groups capable of polymerisation by a ring-opening reaction, like oxetanes or epoxides.
- the polymerisable group P is selected from CH 2 ⁇ CW 1 —COO—,
- Especially preferred groups P are CH 2 ⁇ CH—COO—, CH 2 ⁇ C(CH 8 )—COO—, CH 2 ⁇ CH—, CH 2 ⁇ CH—O—, (CH 2 ⁇ CH) 2 CH—OCO—, (CH 2 ⁇ CH) 2 CH—O—,
- Oxetanes produce less shrinkage upon polymerisation (cross-linking), which results in less stress development within films, leading to higher retention of ordering and fewer defects.
- Oxetane cross-linking also requires cationic initiator, which unlike free radical initiator is inert to oxygen.
- spacer group Sp all groups can be used that are known for this purpose to the skilled in the art.
- the spacer group Sp is preferably of formula Sp′-X, such that P-Sp- is P-Sp′-X— and P*-Sp- is P*-Sp′-X—, wherein
- X is preferably —O—, —S—, —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF—, —CF 2 S—, —SCF 2 —, —CH 2 CH 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CF 2 CF 2 —, —CH ⁇ N—, —N—COH—, —N ⁇ N—, —CH ⁇ CR 0 —, —CX 1 ⁇ CX 2 —, —C ⁇ C— or a single bond, in particular —O—, —S—, —C ⁇ C—, —CX 1 ⁇ CX 2 — or a single bond, very preferably a group that is able to from a conjugated system, such as —C ⁇ C— or —CX 1 ⁇ CX 2 —, or a single bond.
- Typical groups Sp′ are, for example, —(CH 2 ) p —, —(CH 2 CH 2 O) q —CH 2 CH 2 —, —CH 2 CH 2 —S—CH 2 CH 2 — or —CH 2 CH 2 —NH—CH 2 CH 2 — or —(SiR 0 R 00 —O) p —, with p being an integer from 2 to 12, q being an integer from 1 to 3 and R 0 and R 00 having the meanings given above.
- Preferred groups Sp′ are ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene-thioethylene, ethylene-N-methyl-iminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene for example.
- each of the groups P or P* and the spacer groups Sp can be identical or different.
- P*-Sp- Another preferred embodiment relates to compounds comprising one or more groups P*-Sp-, wherein P* is a group that can be converted to or substituted by a polymerisable group P as defined above.
- P* is a group that is less reactive than P, for example towards spontaneous polymerisation.
- These compounds can be used for example as intermediates in the synthesis of polymerisable compounds of formula I having one or more groups P, or as a precursor material for polymerisable compounds which are too reactive to be stored or transported for longer periods of time.
- the group P* is preferably chosen such that it can easily be transformed into or substituted by a group P by known methods. For example, it can be a protected form of group P.
- P* are for example —OH or silyl groups like —O—Si—R 0 R 00 R 000 , for example —O—Si(CH 3 ) 3 , —O—Si-(isopropyl) 3 , —O—Si-(phenyl) 3 , —O—Si—(CH 3 ) 2 (phenyl), —O—Si(CH 3 ) 2 (tert-butyl) or the like, which can be reacted e.g. into polymerisable (meth)acrylate end groups.
- SCLCPs obtained from the inventive compounds or mixtures by polymerisation or copolymerisation have a backbone that is formed by the polymerisable group P.
- the mono-, oligo- and polymers of the present invention can be synthesized according to or in analogy to methods that are known or described in the examples
- a further aspect of the invention relates to both the oxidised and reduced form of the compounds and materials according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659.
- the doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants.
- Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantation of the dopant into the semiconductor material.
- suitable dopants are for example halogens (e.g., I 2 , Cl 2 , Br 2 , ICl, ICl 3 , IBr and IF), Lewis acids (e.g., PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , SbCl 5 , BBr 3 and SO 3 ), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , FSO 3 H and ClSO 3 H), transition metal compounds (e.g., FeCl 3 , FeOCl, Fe(ClO 4 ) 3 , Fe(4-OH 3 C 6 H 4 SO 3 ) 3 , TiCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , NbCl 5 , TaCl 5 , MoF 5 , MoCl 5 , WF 5
- halogens
- examples of dopants are cations (e.g., H + , Li + , Na + , K + , Rb + and Cs + ), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O 2 , XeOF 4 , (NO 2 + )(SbF 6 ⁇ ), (NO 2 + ) (SbCl 6 ⁇ ), (NO 2 + )(BF 4 —), AgClO 4 , H 2 IrCl 6 , La(NO 3 ) 3 .6H 2 O, FSO 2 OOSO 2 F, Eu, acetylcholine, R 4 N + , (R is an alkyl group), R 4 P + (R is an alkyl group), R 6 As + (R is an alkyl group), and R 3 S + (R is an alkyl group).
- dopants are cations
- the conducting form of the compounds and materials of the present invention can be used as an organic “metal” in applications, for example, but not limited to, charge injection layers and ITO planarising layers in organic light emitting diode applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
- a preferred embodiment of the present invention relates to mono-, oligo- and polymers of formula I and I1 and their preferred subformulae that are mesogenic or liquid crystalline, and very preferably comprise one or more polymerisable groups.
- Very preferred materials of this type are monomers and oligomers of formula I or I1 and their preferred subformulae wherein n is an integer from 1 to 15 and R 7 and/or R 8 denote P-Sp-.
- These materials are particularly useful as semiconductors or charge transport materials, as they can be aligned into uniform highly ordered orientation in their liquid crystal phase by known techniques, thus exhibiting a higher degree of order that leads to particularly high charge carrier mobility.
- the highly ordered liquid crystal state can be fixed by in situ polymerisation or crosslinking via the groups P to yield polymer films with high charge carrier mobility and high thermal, mechanical and chemical stability.
- the liquid crystal material preferably comprises one or more mono- or oligomers of formula I1 and its preferred subformulae wherein one or both of R 7 and R 8 denote P-Sp-.
- the polymer is preferably made from a liquid crystal material comprising one or more mono- or oligomers of formula II and its preferred subformulae wherein one of R 7 and R 8 denotes P-Sp-.
- another aspect of the invention relates to a polymerisable liquid crystal material comprising one or more mono-, oligo- or polymers of the present invention as described above and below comprising at least one polymerisable group, and optionally comprising one or more further polymerisable compounds, wherein at least one of the polymerisable mono-, oligo- and polymers of the present invention and/or the further polymerisable compounds is mesogenic or liquid crystalline.
- liquid crystal materials having a nematic and/or smectic phase.
- smectic materials are especially preferred.
- OLED applications nematic or smectic materials are especially preferred.
- smectic A (S A ) phases are especially preferred.
- S A smectic A phases, furthermore highly ordered smectic phases like the S B , S E , S G and S F phase.
- Another aspect of the present invention relates to an anisotropic polymer film with charge transport properties obtainable from a polymerisable liquid crystal material as defined above that is aligned in its liquid crystal phase into macroscopically uniform orientation and polymerised or crosslinked to fix the oriented state.
- polymerisation is carried out as in-situ polymerisation of a coated layer of the material, preferably during fabrication of the electronic or optical device comprising the inventive semiconductor material.
- these are preferably aligned in their liquid crystal state into homeotropic orientation prior to polymerisation, where the conjugated pi-electron systems are orthogonal to the direction of charge transport. This ensures that the intermolecular distances are minimised and hence then energy required to transport charge between molecules is minimised.
- the molecules are then polymerised or crosslinked to fix the uniform orientation of the liquid crystal state. Alignment and curing are carried out in the liquid crystal phase or mesophase of the material. This technique is known in the art and is generally described for example in D. J. Broer, et al., Angew. Makromol. Chem. 183, (1990), 45-66
- Alignment of the liquid crystal material can be achieved for example by treatment of the substrate onto which the material is coated, by shearing the material during or after coating, by application of a magnetic or electric field to the coated material, or by the addition of surface-active compounds to the liquid crystal material.
- Reviews of alignment techniques are given for example by 1. Sage in “Thermotropic Liquid Crystals”, edited by G. W. Gray, John Wiley & Sons, 1987, pages 75-77, and by T. Uchida and H. Seki in “Liquid Crystals—Applications and Uses Vol. 3”, edited by B. Bahadur, World Scientific Publishing, Singapore 1992, pages 1-63.
- a review of alignment materials and techniques is given by J. Cognard, Mol. Cryst. Liq. Cryst. 78, Supplement 1 (1981), pages 1-77.
- Actinic radiation means irradiation with light, like UV light, IR light or visible light, irradiation with X-rays or gamma rays or irradiation with high energy particles, such as ions or electrons.
- Preferably polymerisation is carried out by UV irradiation at a non-absorbing wavelength.
- a source for actinic radiation for example a single UV lamp or a set of UV lamps can be used. When using a high lamp power the curing time can be reduced.
- Another possible source for actinic radiation is a laser, like e.g. a UV laser, an IR laser or a visible laser.
- Polymerisation is preferably carried out in the presence of an initiator absorbing at the wavelength of the actinic radiation.
- an initiator absorbing at the wavelength of the actinic radiation.
- a photoinitiator can be used that decomposes under UV irradiation to produce free radicals or ions that start the polymerisation reaction.
- a radical photoinitiator is used
- curing polymerisable materials with vinyl, epoxide and oxetane groups preferably a cationic photoinitiator is used.
- a polymerisation initiator that decomposes when heated to produce free radicals or ions that start the polymerisation.
- a photoinitiator for radical polymerisation for example the commercially available Irgacure 651, Irgacure 184, Darocure 1173 or Darocure 4205 (all from Ciba Geigy AG) can be used, whereas in case of cationic photopolymerisation the commercially available UVI 6974 (Union Carbide) can be used.
- the polymerisable material can additionally comprise one or more other suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
- suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
- Mono-, oligo- and polymers comprising one or more groups P-Sp- can also be copolymerised with polymerisable mesogenic compounds to induce or enhance liquid crystal phase behaviour.
- Polymerisable mesogenic compounds that are suitable as comonomers are known in prior art and disclosed for example in WO 93/22397; EP 0,261,712; DE 195,04,224; WO 95/22586 and WO 97/00600.
- SCLCP liquid crystal side chain polymer
- SCLCPs obtained from one or more monomers of formula I1 and its preferred subformulae wherein one or both, preferably one, of R 7 and R 8 are a polymerisable or reactive group, or from a polymerisable mixture comprising one or more of said monomers.
- Another aspect of the invention relates to an SCLCP obtained from one or more monomers of formula I1 and its preferred subformulae wherein one or both of R 7 and R 8 are a polymerisable group, or from a polymerisable liquid crystal mixture as defined above, by copolymerisation or polymeranaloguous reaction together with one or more additional mesogenic or non-mesogenic comonomers.
- SCLCPs Side chain liquid crystal polymers or copolymers
- the semiconducting component in which the semiconducting component is located as a pendant group, separated from a flexible backbone by an aliphatic spacer group, offer the possibility to obtain a highly ordered lamellar like morphology.
- This structure consists of closely packed conjugated aromatic mesogens, in which very close (typically ⁇ 4 ⁇ ) pi-pi stacking can occur. This stacking allows intermolecular charge transport to occur more easily, leading to high charge carrier mobilities.
- SCLCPs are advantageous for specific applications as they can be readily synthesized before processing and then e.g. be processed from solution in an organic solvent. If SCLCPs are used in solutions, they can orient spontaneously when coated onto an appropriate surface and when at their mesophase temperature, which can result in large area, highly ordered domains.
- SCLCPs can be prepared from the polymerisable compounds or mixtures according to the invention by the methods described above, or by conventional polymerisation techniques which are known to those skilled in the art, including for example radicalic, anionic or cationic chain polymerisation, polyaddition or polycondensation. Polymerisation can be carried out for example as polymerisation in solution, without the need of coating and prior alignment, or polymerisation in situ. It is also possible to form SCLCPs by grafting compounds according to the invention with a suitable reactive group, or mixtures thereof, to presynthesized isotropic or anisotropic polymer backbones in a polymeranaloguous reaction.
- compounds with a terminal hydroxy group can be attached to polymer backbones with lateral carboxylic acid or ester groups, compounds with terminal isocyanate groups can be added to backbones with free hydroxy groups, compounds with terminal vinyl or vinyloxy groups can be added, e.g., to polysiloxane backbones with Si—H groups. It is also possible to form SCLCPs by copolymerisation or polymeranaloguous reaction from the inventive compounds together with conventional mesogenic or non mesogenic comonomers. Suitable comonomers are known to those skilled in the art.
- Typical mesogenic comonomers are for example those mentioned in WO 93/22397, EP 0 261 712, DE 195 04 224, WO 95/22586, WO 97/00600 and GB 2 351 734.
- Typical non mesogenic comonomers are for example alkyl acrylates or alkyl methacrylates with alkyl groups of 1 to 20 C atoms, like methyl acrylate or methyl methacrylate.
- the mono-, oligo- and polymers of the present invention are useful as optical, electronic and semiconductor materials, in particular as charge transport materials in field effect transistors (FETs), e.g., as components of integrated circuitry, ID tags or TFT applications.
- FETs field effect transistors
- they may be used in organic light emitting diodes (OLEDs) in electroluminescent display applications or as backlight of, e.g., liquid crystal displays, as photovoltaics or sensor materials, for electrophotographic recording, and for other semiconductor applications.
- OLEDs organic light emitting diodes
- oligomers and polymers according to the invention show advantageous solubility properties which allow production processes using solutions of these compounds.
- films, including layers and coatings may be generated by low cost production techniques, e.g., spin coating.
- Suitable solvents or solvent mixtures comprise alkanes and/or aromatics, especially their fluorinated derivatives.
- the materials of the present invention are useful as optical, electronic and semiconductor materials, in particular as charge transport materials in field effect transistors (FETs), as photovoltaics or sensor materials, for electrophotographic recording, and for other semiconductor applications.
- FETs field effect transistors
- Such FETs where an organic semiconductive material is arranged as a film between a gate-dielectric and a drain and a source electrode, are generally known, e.g., from U.S. Pat. No. 5,892,244, WO 00/79617, U.S. Pat. No. 5,998,804, and from the references cited in the background and prior art chapter and listed below. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processibility of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT-displays and security applications.
- field effect transistors and other devices with semiconductive materials may be used for ID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetary value, like stamps, tickets, shares, cheques etc.
- the mono-, oligo- and polymers according to the invention may be used in organic light emitting devices or diodes (OLEDs), e.g., in display applications or as backlight of e.g. liquid crystal displays.
- OLEDs organic light emitting devices or diodes
- Common OLEDs are realized using multilayer structures.
- An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers.
- By applying an electric voltage electrons and holes as charge carriers move towards the emission layer where their recombination leads to the excitation and hence luminescence of the lumophor units contained in the emission layer.
- the inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties.
- the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds.
- the selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Meerholz, Synthetic Materials, 111-112, 2000, 31-34, Alcala, J. Appl. Phys., 88, 2000, 7124-7128 and the literature cited therein.
- inventive compounds, materials or films especially those which show photoluminescent properties, may be employed as materials of light sources, e.g., of display devices such as described in EP 0 889 350 A1 or by C. Weder et al., Science, 279, 1998, 835-837.
- the inventive compounds, materials or films can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913.
- the use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer. When used in an LCD, this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs. When used in an OLED device comprising a light emitting material provided onto the alignment layer, this increased electrical conductivity can enhance the electroluminescence of the light emitting material.
- the compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film.
- the materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913.
- the materials and polymers according to the present invention can be employed as chemical sensors or materials for detecting and discriminating DNA sequences.
- Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudi and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A.
- the compounds and materials according to the present invention can also be used in cosmetic or pharmaceutical compositions, for example in cosmetic compositions for hair treatment as disclosed in EP 1 498 112 A2.
- Polymer 1 is prepared as described below:
- 4,4′-Bis(decyl)-2,2′-bithiophene is prepared in analogy to the published procedure (see M. Zagorska and B. Kharichan Polymer, 1990, 31, p 1379).
- a 20 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(decyl)-2,2′-bithiophene (604.6 mg, 1 mmol), 2,5-bis-trimethylstannylselenophene (456.6 mg, 1 mmol), tris(dibenzylideneacetone)dipalladium (0) (18.3 mg, 0.02 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (24.4 mg, 0.08 mmol, 8 mol %) and chlorobenzene (15 ml).
- the glass vial is purged with nitrogen and securely sealed.
- the glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 185° C. for 20 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (150 mL) and 37% hydrochloric acid (15 mL), and stirred for 14 h. The polymer is filtered, washed with methanol, and dried under vacuum. The polymer is washed (via Soxhlet extraction) with methanol ((6 h), acetone (24 h) and hexane (24 h).
- Polymer 2 is prepared as described below:
- 4,4′-Bis(dodecyl)-2,2′-bithiophene is prepared in analogy to the published procedure (see M. Zagorska and B. Khariophene, 1990, 31, p 1379).
- a 20 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(dodecyl)-2,2′-bithiophene (660.7 mg, 1 mmol), 2,5-bis-trimethylstannylselenophene (466.6 mg, 1 mmol), tris(dibenzylideneacetone)dipalladium (0) (18.3 mg, 0.02 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (24.4 mg, 0.08 mmol, 8 mol %) and chlorobenzene (15 ml).
- the glass vial is purged with nitrogen and securely sealed.
- the glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (150 mL) and 37% hydrochloric acid (15 mL), and stirred for 14 h. The polymer is filtered, washed with methanol, and dried under vacuum. The polymer is washed (via Soxhlet extraction) with methanol (6 h), acetone (24 h) and hexane (24 h).
- Polymer 3 is prepared as described below:
- a 10 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(hexyl)-2,2′-biselenophene (300 mg, 0.512 mmol), 2,5-bis-trimethylstannylthiophene (209.7 mg, 0.512 mmol), tris(dibenzylideneacetone)dipalladium (0) (9.37 mg, 0.01 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (12.46 mg, 0.04 mmol, 8 mol %) and chlorobenzene (5 ml).
- the glass vial is purged with nitrogen and securely sealed.
- the glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (50 mL) and 37% hydrochloric acid (5 mL), and stirred for 14 h. The polymer is filtered, washed (via Soxhlet extraction) with methanol (6 h), acetone (24 h) and isohexane (24 h). The resulting polymer is dissolved in hot chloroform and precipitated into methanol to afford the product (210 mg).
- a microwave reactor Emrys Creator, Personal Chemistry Ltd
- Polymer 4 is prepared as described below:
- a 10 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(hexyl)-2,2′-biselenophene (300 mg, 0.512 mmol), 5,5′-bis-trimethylstannyl-[2,2′]bithiophenyl (251.7 mg, 0.512 mmol), tris(dibenzylideneacetone)dipalladium (0) (9.37 my, 0.01 mmol, 4 mol % Pd), tri(o-olyl)phosphine (12.46 mg, 0.04 mmol, 8 mol %) and chlorobenzene (6 ml).
- the glass vial is purged with nitrogen and securely sealed.
- the glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 190° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (50 mL) and 37% hydrochloric acid (5 mL), and stirred for 14 h. The polymer is filtered, washed (via Soxhlet extraction) with methanol (6 h), acetone (16 h) and isohexane (16 h). The resulting polymer is dissolved in hot chloroform and precipitated into methanol to afford the product (230 mg).
- a microwave reactor Emrys Creator, Personal Chemistry Ltd
- Polymer 5 is prepared as described below:
- a 10 ml glass vial is charged with a stirrer bar, 2,5-dibromo-3,4,-didecylthiophene (100 mg, 0.19 mmol), 2,5-bis-trimethylstannylselenophene (87.2 mg, 0.191 mmol), tris(dibenzylideneacetone)dipalladium (0) (3.5 mg, 0.004 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (4.65 mg, 0.016 mmol, 8 mol %) and chlorobenzene (3 ml).
- the glass vial is purged with nitrogen and securely sealed.
- the glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 2 min, then 160° C. for 2 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (75 mL) and 37% hydrochloric acid (25 mL), and stirred for 1.5 h. The polymer is filtered, washed (via Soxhlet extraction) with acetone (4 h). The resulting polymer is extracted with chloroform and concentrated under reduced pressure to afford the product (60 mg), GPC (Chlorobenzene, 60° C.) Mn (4,700 g/mol), Mw (7,000 g/mol).
- Thin-film organic field-effect transistors are fabricated on highly doped silicon substrates with thermally grown silicon oxide (SiO 2 ) insulating layer, where the substrate served as a common gate electrode. Transistor source-drain gold electrodes are photolithographically defined on the SiO 2 layer.
- FET substrates Prior to organic semiconductor deposition, FET substrates are treated with a silylating agent hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS).
- HMDS hexamethyldisilazane
- OTS octyltrichlorosilane
- Thin semiconductor films are then deposited by spin-coating polymer solutions in chloroform, xylene, chlorobenzene or dichlorobenzene (0.4-1.0 wt %) on FET substrates.
- the electrical characterization of the transistor devices is carried out under ambient atmosphere using computer controlled Agilent 4155C Semiconductor Parameter Analys
- Transistor characteristics are measured on films prepared by spin coating. The films are heated to 100° C. for 10 min under nitrogen to remove residual solvent, and then cooled to room temperature to measure the transistor characteristics.
- FIG. 1 shows the current (I)-voltage (V) transfer characteristics of example 1 in a transistor device with 10 micron channel length and 20,000 micron channel width.
- the transistor gate voltage (V g ) is varied between 40 and ⁇ 60 volts for two different setting of Source—Drain voltage (V sd ).
- V d WC i L ⁇ ⁇ sat ⁇ ( V g - V 0 ) ( 1 )
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
The invention relates to novel mono-, oligo- and polymeric compounds comprising thiophene and selenophene, to their use as semiconductors or charge transport materials, in optical, electro-optical or electronic devices, and to optical, electro-optical or electronic devices comprising the novel compounds.
Description
- The invention relates to novel mono-, oligo- and polymeric compounds comprising thiophene and selenophene. The invention further relates to their use as semiconductors or charge transport materials, in optical, electro-optical or electronic devices. The invention further relates to optical, electro-optical or electronic devices comprising the novel compounds.
- Organic materials have recently shown promise as the active layer in organic based thin film transistors and organic field effect transistors [see H. E. Katz, Z. Bao and S. L. Gilat, Acc. Chem. Res., 2001, 34, 5, 359]. Such devices have potential applications in smart cards, security tags and the switching element in flat panel displays. Organic materials are envisaged to have substantial cost advantages over their silicon analogues if they can be deposited from solution, as this enables a fast, large-area fabrication route.
- The performance of the device is principally based upon the charge carrier mobility of the semi-conducting material and the current on/off ratio, so the ideal semiconductor should have a low conductivity in the off state, combined with a high charge carrier mobility (>1×10−3 cm2 V−1 s−1). In addition, it is important that the semi-conducting material is relatively stable to oxidation i.e. it has a high ionisation potential, as oxidation leads to reduced device performance.
- Regioregular head-to-tail poly(3-hexylthiophene) has been reported with charge carrier mobility between 1×10−5 and 4.5×10−2 cm2V−1s−1, but with a rather low current on/off ratio between 10 and 103 [see Z. Bao at al., Appl. Pys. Lett., 1996, 69, 4108]. This low on/off current is due in part to the low ionisation potential of the polymer, which can lead to oxygen doping of the polymer under ambient conditions, and a subsequent high off current [see H. Sirringhaus et al., Adv. Solid State Phys., 1999, 39, 101].
- A high regioregularity leads to improved packing and optimised microstructure, leading to improved charge carrier mobility [see H. Sirringhaus et al., Science, 1998, 280, 1741-1744; H. Sirringhaus et al., Nature, 1999, 401, 685-688; and H. Sirringhaus, et al., Synthetic Metals, 2000, 111-112, 129-132]. In general, poly(3-alkylthiophenes) show improved solubility and are able to be solution processed to fabricate large area films. However, poly(3-alkylthiophenes) have relatively low ionisation potentials and are susceptible to doping in air.
- It is an aim of the present invention to provide new materials for use as semiconductors or charge transport materials, which are easy to synthesize, have high charge mobility, good processibility and oxidative stability. Another aim of the invention is to provide new semiconductor and charge transport components, and new and improved electrooptical, electronic and luminescent devices comprising these components. Other aims of the invention are immediately evident to those skilled in the art from the following description.
- The inventors have found that these aims can be achieved by providing mono-, oligo- and polymers of bis(thienyl)selenophene as claimed in the present invention.
- EP-A-1 439 590 discloses mono-, oligo- and poly-bis(thienyl)arylenes, but does not disclose compounds of the present invention. S. Tierney, M. Heeney and 1. McCulloch, Synth Met., 148(2), 195-198, (2005) discloses poly-bis(3-octyl-thiophen-2-yl)selenophene, but does not disclose compounds of the present invention.
- The invention relates to monomeric, oligomeric or polymeric compounds comprising one or more selenophene-2,5-diyl groups and one or more thiophene 2,5-diyl groups, each being optionally substituted in 3- and/or 4-position, with the proviso that homopolymers of 2,5-bis(3-octyl-thiophen-2-yl)selenophene are excluded.
- The invention further relates to a the use of the compounds of formula I as semiconducting, charge transport or light-emitting materials.
- The invention further relates to a semiconducting, electroluminescent or charge transport material, component or device comprising at least one compound of formula I.
- The invention further relates to the use of compounds of formula I as charge-transport, semiconducting, electrically conducting, photoconducting or light-emitting material in optical, electrooptical or electronic components or devices, organic field effect transistors (OFET), integrated circuitry (IC), thin film transistors (TFT), flat panel displays, radio frequency identification (RFID) tags, electroluminescent or photoluminescent devices or components, organic light emitting diodes (OLED), backlights of displays, photovoltaic or sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates or patterns, electrode materials in batteries, photoconductors, electrophotographic applications, electrophotographic recording, organic memory devices, alignment layers, cosmetic or pharmaceutical compositions, biosensors, biochips, or for detecting and discriminating DNA sequences.
- The invention further relates to an optical, electrooptical or electronic device, FET, integrated circuit (IC), TFT, OLED or alignment layer comprising a compound, semiconducting or charge transport material, component or device according to the invention.
- The invention further relates to a TFT or TFT array for flat panel displays, radio frequency identification (RFID) tag, electroluminescent display or backlight comprising a compound, semiconducting or charge transport material, component or device or a FET, IC, TFT or OLED according to the invention.
- The invention further relates to a security marking or device comprising a FET or an RFID tag according to the invention.
-
FIG. 1 shows the transfer characteristics of a polymer according to Example 1 in a transistor device. - The polymers according to the present invention can be homopolymers, i.e. having identical recurring units, or copolymers having different recurring units. Particularly preferred are homopolymers of having identical recurring units.
- The compounds of the present invention are advantageous because they exhibit higher charge carrier mobilities compared to the analogous all-thiophene systems. The increased atomic radius of selenium (103 pm (picometre) over sulfur (88 pm) enhances molecular overlaps between polymer chains, and facilitates the charge hopping process. In addition the inclusion of selenophene results in a red-shift of the maximum absorbance wavelength over the all-thiophene systems.
- The compounds according to the invention are especially useful as charge transport or semiconductor materials. Introduction of alkyl side chains into the thiophene and/or selenophene group further improves solubility and solution processibility especially for the polymers.
- The regioregularity in the polymers of the present invention is preferably at least 90%, in particular 95% or more, very preferably 98% or more, most preferably from 99 to 100%.
- Regioregular polymers are advantageous as they show strong interchain pi-pi-stacking interactions and a high degree of crystallinity, making them effective charge transport materials with high carrier mobilities.
- Further preferred are mono-, oligo- and polymers that are mesogenic or liquid crystalline, in particular polymers forming calamitic phases, and polymerisable monomers comprising one or more groups P-Sp- and forming calamitic phases.
- The monomeric, oligomeric and polymeric compounds are preferably selected of formula I
- wherein
- R1-6 are independently of each other, and in case of multiple occurrence independently of one another, H, halogen, optionally substituted aryl or heteroaryl, P-Sp-, P*-Sp-, or straight chain, branched or cyclic alkyl with 1 to 20 C-atoms, which is optionally mono- or polysubstituted by F, Cl, Br, I or CN, and wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NRO—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2— or —C≡C— in such a manner that O and/or S atoms are not linked directly to one another,
- R0 and R00 are independently of each other H, aryl or alkyl with 1 to 12 C-atoms,
- X1 and X2 are independently of each other H, F, Cl or CN,
- P is a polymerisable group,
- P* is a group that can be converted to or substituted by a polymerisable group P,
- Sp is a spacer group or a single bond,
- a, b, c and d are independently of each other 0, 1, 2 or 3, with a+c>1 and b+d>1,
- n is an integer ≧1,
wherein the recurring units are identical or different,
with the proviso that compounds wherein a=b=c=1, d=0, R1 and R2 are n-C8H17, R3, R4, R5 and R6 are H, and n>1 are excluded. - Especially preferred are compounds of formula I1
- wherein R1-6, a, b, c, d and n have the meanings of formula I,
- R7 and R8 independently of each other have one of the meanings of R1 or denote —Sn(R0)3, —B(OR′)(OR″), —CH2Cl, —CHO, —CH═CH2 or —SiR0R00R000,
- R0, R00, R000 are independently of each other H, aryl or alkyl with 1 to 12 C-atoms,
- R′ and R″ are independently of each other H or alkyl with to 12 C-atoms, or OR′ and OR″ together with the boron atom form a cyclic group having 2 to 20 C atoms.
- Further preferred are compounds of formula I and I1 wherein
-
- n is an integer from 2 to 5000, preferably from 10 to 5000, very preferably from 100 to 1000,
- the molecular weight (Mw) is from 5000 to 300,000, in particular from 20,000 to 100,000,
- n is 1,
- a and/or c are 1,
- b is 1 or 2,
- d is 0,
- a=c=1, b=1 or 2, d=0,
- a=c=1, b=d=1,
- b=d=1, c=1 or 2, a=0,
- a=b=1, c=0,
- R1, R2, R3, R4, R5 and R8 are independently of each other halogen, optionally substituted aryl or heteroaryl, P-Sp-, P*-Sp-, or straight chain, branched or cyclic alkyl with 9 to 20 C-atoms, which is optionally mono- or polysubstituted by F, Cl, Br, I or CN, and wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2— or —C≡C— in such a manner that O and/or S atoms are not linked directly to one another
- —R3, R4, R5 and R6 are H,
- R1 and R2 are different from H,
- R1 and R2 are identical,
- R1 and R2 are selected from C1-C20-alkyl, C1-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C1-C20-thioalkyl, C1-C20-silyl, C1-C20-ester, C1-C20-amino, C1-C20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C10-C20-alkyl or C10-C20-fluoroalkyl,
- R1 and R2 are selected from C9-C20-alkyl, C9-C20-alkoxy, C9-C20-alkenyl, C9-C20-alkynyl, C9-C20-thioalkyl, C9-C20-silyl, C9-C20-ester, C9-C20-amino, C9-C20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C0-CO2-alkyl or C9-C20-fluoroalkyl, most preferably C10-C20-alkyl or C10-C20-fluoroalkyl, R1, R2, R5 and R6 are H,
- R3 and R4 are different from H,
- R3 and R4 are identical,
- R3 and R4 are selected from C1-C20-alkyl, C1-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C1-C20-thioalkyl, C1-C20-silyl, C1-C20-ester, C1-C20-amino, C1-C20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C1-C20-alkyl or C1-C20-fluoroalkyl,
- R3 and R4 are selected from C9-C20-alkyl C9-C20-alkoxy, C9-C20-alkenyl, C9-C20-alkynyl, C9-C20-thioalkyl, C9-C20-silyl, C9-C20-ester, C9-C20-amino, CO9CO20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C9-C20-alkyl or C9-C20-fluoroalkyl, most preferably C10-C20-alkyl or C10-C20-fluoroalkyl,
- R1, R2, R3 and R4 are H,
- R5 and R6 are different from H,
- R5 and R6 are identical,
- R5 is H and R6 is different from H,
- R6 is H and R5 is different from H,
- R5 and/or R6 are selected from C1-C20-alkyl, C1-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C1-C20-thioalkyl, C1-C20-silyl, C1-C20-ester, C1-C20-amino, C1-C20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C1-C20-alkyl or C1-C20-fluoroalkyl,
- R5 and/or R6 are selected from C9-C20-alkyl, C9-C20-alkoxy, C9-C20-alkenyl, C9-C20-alkynyl, C9-C20-thioalkyl, C9-C20-silyl, C9-C20-ester, C9-C20-amino, C9-C20-fluoroalkyl, and optionally substituted aryl or heteroaryl, very preferably C9-C20-alkyl or C9-C20-fluoroalkyl, most preferably C10-C20-alkyl or C10-C20-fluoroalkyl,
- P* is —OH or —O—S1—R0R00R000, preferably wherein R0, R00 and R000 are identical or different groups selected from aryl or C1-12-alkyl, preferably C1-C6-alkyl, like methyl, ethyl, isopropyl, tert-butyl or phenyl,
- R7 and R8 are selected from H, halogen, Sn(R0)3, B(OR′)(OR″), CH2Cl, CHO, CH═CH2, SiR0R00R000 and optionally substituted aryl or heteroaryl,
- n is 1 and one or both of R7 and R8 are halogen which is preferably Br, Cl or I, Sn(R0)3, B(OR′)(OR″), CH2Cl, CHO, CH═CH2 or SiR0R00R000,
- at least one of R1, R2, R3, R4, R5 and R6 is P-Sp-,
- n is 1 and one or both of R7 and R8 are P-Sp- or P*-Sp-.
- Especially preferred are compounds of the following formulae
- wherein R1-8 and n have the meanings of formula 11.
- Especially preferred are the following compounds
- wherein n has the meaning of formula I and R has one of the meanings of R1 in formula I different from H.
- If one of R1-8 is aryl or heteroaryl, it is preferably a mono-, bi- or tricyclic aromatic or heteroaromaic group with up to 25 C atoms, wherein the rings can be fused. Heteroaromatic groups contain at least one hetero ring atom preferably selected from N, O and S. The aromatic or heteroaromatic groups are optionally substituted with one or more groups L.
- L is F, Cl, Br, I, CN or straight chain, branched or cyclic alkyl having 1 to 20 C atoms, which is unsubstituted, mono- or poly-substituted by F, Cl, Br, I, —CN or —OH, and in which one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NRO—, —SiR0R00—, —CO—, —COO—, OCO—, —OCO—O, —S—CO—, —CO—S—, —CH—CH— or —C≡C— in such a manner that O and/or S atoms are not linked directly to one another.
- Especially preferred aryl and heteroaryl groups are phenyl, fluorinated phenyl, pyridine, pyrimidine, biphenyl, naphthalene, optionally fluorinated or alkylated or fluoroalkylated benzo[1,2-b:4,5-b′]dithiophene, optionally fluorinated or alkylated or fluoroalkylated thieno[3,2-b]thiophene, optionally fluorinated or alkylated or fluoroalkylated 2,2-dithiophene, thiazole and oxazole, all of which are unsubstituted, mono- or polysubstituted with L as defined above.
- If one of R1-8 is an alkyl or alkoxy radical, i.e. where the terminal CH2 group is replaced by —O—, this may be straight-chain or branched. It is preferably straight-chain, has 2 to 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
- Fluoroalkyl or fluorinated alkyl or alkoxy is preferably straight chain (O)CiF2i+1, wherein i is an integer from 1 to 20, in particular from 1 to 15, very preferably (O)CF3, (O)C2F5, (O)C3F7, (O)C4F9, (O)C5F11, (O)C6F13, (O)C7F15 or (O)C8F17, most preferably (O)C6F13.
- CX1═CX2 is preferably —CH═CH—, —CH═CF—, —CF═CH—, —CF═CF—, —CH—C(CN)— or —C(CN)═CH—.
- Halogen is preferably F, Br or Cl.
- Hetero atoms are preferably selected from N, O and S.
- The polymerisable group P is a group that is capable of participating in a polymerisation reaction, like radicalic or ionic chain polymerisation, polyaddition or polycondensation, or capable of being grafted, for example by condensation or addition, to a polymer backbone in a polymeranaloguous reaction. Especially preferred are polymerisable groups for chain polymerisation reactions, like radicalic, cationic or anionic polymerisation. Very preferred are polymerisable groups comprising a C—C double or triple bond, and polymerisable groups capable of polymerisation by a ring-opening reaction, like oxetanes or epoxides.
- Very preferably the polymerisable group P is selected from CH2═CW1—COO—,
- CH2═CW2—(O)k1—, CH3—CH═CH—O—, (CH2═CH)2CH—OCO—, (CH2═CH—CH2)2CH—OCO—, (CH2═CH)2CH—O—, (CH2═CH—CH2)2N—, (CH2═CH—CH2)2N—CO—, HO—CW2W3—, HS—CW2W3—, HW2N—, HO—CW2W3—NH—, CH2═CW1—CO—NH—, CH2═CH—(COO)k1-Phe-(O)k2—, CH2═CH—(CO)k1-Phe-(O)k2—, Phe-CH═CH—, HOOC—, OCN—, and W4W5W6Si—, with W1 being H, Cl, CN, CF3, phenyl or alkyl with 1 to 5 C-atoms, in particular H, Cl or CH3, W2 and W3 being independently of each other H or alkyl with 1 to 5 C-atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 being independently of each other Cl, oxaalkyl or oxacarbonylalkyl with 1 to 5 C-atoms, W7 and W8 being independently of each other H, Cl or alkyl with 1 to 5 C-atoms, Phe being 1,4-phenylene that is optionally substituted by one or more groups L as defined above, and k1 and k2 being independently of each other 0 or 1.
- Especially preferred groups P are CH2═CH—COO—, CH2═C(CH8)—COO—, CH2═CH—, CH2═CH—O—, (CH2═CH)2CH—OCO—, (CH2═CH)2CH—O—,
- Very preferred are acrylate and oxetane groups. Oxetanes produce less shrinkage upon polymerisation (cross-linking), which results in less stress development within films, leading to higher retention of ordering and fewer defects. Oxetane cross-linking also requires cationic initiator, which unlike free radical initiator is inert to oxygen.
- As spacer group Sp all groups can be used that are known for this purpose to the skilled in the art. The spacer group Sp is preferably of formula Sp′-X, such that P-Sp- is P-Sp′-X— and P*-Sp- is P*-Sp′-X—, wherein
- Sp′ is alkylene with up to 20 C atoms which may be unsubstituted, mono- or poly-substituted by F, Cl, Br, I or CN, it being also possible for one or more non-adjacent CH2 groups to be replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OC—, —OCO—O—, —S—CO—, —CO—S—, —CH═CH— or —C≡C— in such a manner that Q and/or S atoms are not linked directly to one another,
- X is —O—, —S—, —CO—, —COO—, —OCO—, —O—COO—, —CO—NR0—, —NR0—CO—, —CO—NR0—CO—, —OCH2—, —CH2O—, —SCH2—, —CH2S—, —CF2O—, —OCF2—, —CF2S—, —SCF2—, —CF2CH2—, —CH2CF2—, —CF2CF2—, —CH═N—, —N═CH—, —N═N—, —CH═CR0—, —CX1═CX2—, —C≡C—, —CH═CH—COO—, —OCO—CH═CH— or a single bond, and
- R0, R00, X1 and X2 have one of the meanings given above.
- X is preferably —O—, —S—, —OCH2—, —CH2O—, —SCH2—, —CH2S—, —CF2O—, —OCF—, —CF2S—, —SCF2—, —CH2CH2—, —CF2CH2—, —CH2CF2—, —CF2CF2—, —CH═N—, —N—COH—, —N═N—, —CH═CR0—, —CX1═CX2—, —C≡C— or a single bond, in particular —O—, —S—, —C≡C—, —CX1═CX2— or a single bond, very preferably a group that is able to from a conjugated system, such as —C≡C— or —CX1═CX2—, or a single bond.
- Typical groups Sp′ are, for example, —(CH2)p—, —(CH2CH2O)q—CH2CH2—, —CH2CH2—S—CH2CH2— or —CH2CH2—NH—CH2CH2— or —(SiR0R00—O)p—, with p being an integer from 2 to 12, q being an integer from 1 to 3 and R0 and R00 having the meanings given above.
- Preferred groups Sp′ are ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene-thioethylene, ethylene-N-methyl-iminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene for example.
- Further preferred are compounds with one or two groups P-Sp- or P*-Sp- wherein Sp is a single bond.
- In case of compounds with two groups P-Sp or P*-Sp-, respectively, each of the groups P or P* and the spacer groups Sp can be identical or different.
- Another preferred embodiment relates to compounds comprising one or more groups P*-Sp-, wherein P* is a group that can be converted to or substituted by a polymerisable group P as defined above. Preferably P* is a group that is less reactive than P, for example towards spontaneous polymerisation. These compounds can be used for example as intermediates in the synthesis of polymerisable compounds of formula I having one or more groups P, or as a precursor material for polymerisable compounds which are too reactive to be stored or transported for longer periods of time. The group P* is preferably chosen such that it can easily be transformed into or substituted by a group P by known methods. For example, it can be a protected form of group P. Further preferred groups P* are for example —OH or silyl groups like —O—Si—R0R00R000, for example —O—Si(CH3)3, —O—Si-(isopropyl)3, —O—Si-(phenyl)3, —O—Si—(CH3)2(phenyl), —O—Si(CH3)2(tert-butyl) or the like, which can be reacted e.g. into polymerisable (meth)acrylate end groups.
- SCLCPs obtained from the inventive compounds or mixtures by polymerisation or copolymerisation have a backbone that is formed by the polymerisable group P.
- The mono-, oligo- and polymers of the present invention can be synthesized according to or in analogy to methods that are known or described in the examples
- A further aspect of the invention relates to both the oxidised and reduced form of the compounds and materials according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from
EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659. - The doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants. Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantation of the dopant into the semiconductor material.
- When electrons are used as carriers, suitable dopants are for example halogens (e.g., I2, Cl2, Br2, ICl, ICl3, IBr and IF), Lewis acids (e.g., PF5, AsF5, SbF5, BF3, BCl3, SbCl5, BBr3 and SO3), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO3, H2SO4, HClO4, FSO3H and ClSO3H), transition metal compounds (e.g., FeCl3, FeOCl, Fe(ClO4)3, Fe(4-OH3C6H4SO3)3, TiCl4, ZrCl4, HfCl4, NbF5, NbCl5, TaCl5, MoF5, MoCl5, WF5, WCl6, UF6 and LnCl3 (wherein Ln is a lanthanoid), anions (e.g., Cl−, Br−, I−, I3 −, HSO4 −, SO4 2−, NO3 −, ClO4 −, BF4 −, PF6 −, AsF6 −, SbF6 −, FeCl4 −, Fe(CN)6 3−, and anions of various sulfonic acids, such as aryl-SO3 −). When holes are used as carriers, examples of dopants are cations (e.g., H+, Li+, Na+, K+, Rb+ and Cs+), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O2, XeOF4, (NO2 +)(SbF6 −), (NO2 +) (SbCl6 −), (NO2 +)(BF4—), AgClO4, H2IrCl6, La(NO3)3.6H2O, FSO2OOSO2F, Eu, acetylcholine, R4N+, (R is an alkyl group), R4P+ (R is an alkyl group), R6As+ (R is an alkyl group), and R3S+ (R is an alkyl group).
- The conducting form of the compounds and materials of the present invention can be used as an organic “metal” in applications, for example, but not limited to, charge injection layers and ITO planarising layers in organic light emitting diode applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
- A preferred embodiment of the present invention relates to mono-, oligo- and polymers of formula I and I1 and their preferred subformulae that are mesogenic or liquid crystalline, and very preferably comprise one or more polymerisable groups. Very preferred materials of this type are monomers and oligomers of formula I or I1 and their preferred subformulae wherein n is an integer from 1 to 15 and R7 and/or R8 denote P-Sp-.
- These materials are particularly useful as semiconductors or charge transport materials, as they can be aligned into uniform highly ordered orientation in their liquid crystal phase by known techniques, thus exhibiting a higher degree of order that leads to particularly high charge carrier mobility. The highly ordered liquid crystal state can be fixed by in situ polymerisation or crosslinking via the groups P to yield polymer films with high charge carrier mobility and high thermal, mechanical and chemical stability.
- For example, if a device is made from a polymerisable liquid crystal material by polymerisation in situ, the liquid crystal material preferably comprises one or more mono- or oligomers of formula I1 and its preferred subformulae wherein one or both of R7 and R8 denote P-Sp-. If a liquid crystal polymer is prepared first, for example by polymerisation in solution, and the isolated polymer is used to make the device, the polymer is preferably made from a liquid crystal material comprising one or more mono- or oligomers of formula II and its preferred subformulae wherein one of R7 and R8 denotes P-Sp-.
- It is also possible to copolymerise the polymerisable mono-, oligo- and polymers according to the present invention with other polymerisable mesogenic or liquid crystal monomers that are known from prior art, in order to induce or enhance liquid crystal phase behaviour.
- Thus, another aspect of the invention relates to a polymerisable liquid crystal material comprising one or more mono-, oligo- or polymers of the present invention as described above and below comprising at least one polymerisable group, and optionally comprising one or more further polymerisable compounds, wherein at least one of the polymerisable mono-, oligo- and polymers of the present invention and/or the further polymerisable compounds is mesogenic or liquid crystalline.
- Particularly preferred are liquid crystal materials having a nematic and/or smectic phase. For FET applications smectic materials are especially preferred. For OLED applications nematic or smectic materials are especially preferred. Especially preferred are smectic A (SA) phases, furthermore highly ordered smectic phases like the SB, SE, SG and SF phase.
- Another aspect of the present invention relates to an anisotropic polymer film with charge transport properties obtainable from a polymerisable liquid crystal material as defined above that is aligned in its liquid crystal phase into macroscopically uniform orientation and polymerised or crosslinked to fix the oriented state.
- Preferably polymerisation is carried out as in-situ polymerisation of a coated layer of the material, preferably during fabrication of the electronic or optical device comprising the inventive semiconductor material. In case of liquid crystal materials, these are preferably aligned in their liquid crystal state into homeotropic orientation prior to polymerisation, where the conjugated pi-electron systems are orthogonal to the direction of charge transport. This ensures that the intermolecular distances are minimised and hence then energy required to transport charge between molecules is minimised. The molecules are then polymerised or crosslinked to fix the uniform orientation of the liquid crystal state. Alignment and curing are carried out in the liquid crystal phase or mesophase of the material. This technique is known in the art and is generally described for example in D. J. Broer, et al., Angew. Makromol. Chem. 183, (1990), 45-66
- Alignment of the liquid crystal material can be achieved for example by treatment of the substrate onto which the material is coated, by shearing the material during or after coating, by application of a magnetic or electric field to the coated material, or by the addition of surface-active compounds to the liquid crystal material. Reviews of alignment techniques are given for example by 1. Sage in “Thermotropic Liquid Crystals”, edited by G. W. Gray, John Wiley & Sons, 1987, pages 75-77, and by T. Uchida and H. Seki in “Liquid Crystals—Applications and Uses Vol. 3”, edited by B. Bahadur, World Scientific Publishing, Singapore 1992, pages 1-63. A review of alignment materials and techniques is given by J. Cognard, Mol. Cryst. Liq. Cryst. 78, Supplement 1 (1981), pages 1-77.
- Polymerisation takes place by exposure to heat or actinic radiation. Actinic radiation means irradiation with light, like UV light, IR light or visible light, irradiation with X-rays or gamma rays or irradiation with high energy particles, such as ions or electrons. Preferably polymerisation is carried out by UV irradiation at a non-absorbing wavelength. As a source for actinic radiation for example a single UV lamp or a set of UV lamps can be used. When using a high lamp power the curing time can be reduced. Another possible source for actinic radiation is a laser, like e.g. a UV laser, an IR laser or a visible laser.
- Polymerisation is preferably carried out in the presence of an initiator absorbing at the wavelength of the actinic radiation. For example, when polymerising by means of UV light, a photoinitiator can be used that decomposes under UV irradiation to produce free radicals or ions that start the polymerisation reaction. When curing polymerisable materials with acrylate or methacrylate groups, preferably a radical photoinitiator is used, when curing polymerisable materials with vinyl, epoxide and oxetane groups, preferably a cationic photoinitiator is used. It is also possible to use a polymerisation initiator that decomposes when heated to produce free radicals or ions that start the polymerisation. As a photoinitiator for radical polymerisation for example the commercially available Irgacure 651, Irgacure 184, Darocure 1173 or Darocure 4205 (all from Ciba Geigy AG) can be used, whereas in case of cationic photopolymerisation the commercially available UVI 6974 (Union Carbide) can be used.
- The polymerisable material can additionally comprise one or more other suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
- Mono-, oligo- and polymers comprising one or more groups P-Sp- can also be copolymerised with polymerisable mesogenic compounds to induce or enhance liquid crystal phase behaviour. Polymerisable mesogenic compounds that are suitable as comonomers are known in prior art and disclosed for example in WO 93/22397; EP 0,261,712; DE 195,04,224; WO 95/22586 and WO 97/00600.
- Another aspect of the invention relates to a liquid crystal side chain polymer (SCLCP) obtained from a polymerisable liquid crystal material as defined above by polymerisation or polymeranaloguous reaction. Particularly preferred are SCLCPs obtained from one or more monomers of formula I1 and its preferred subformulae wherein one or both, preferably one, of R7 and R8 are a polymerisable or reactive group, or from a polymerisable mixture comprising one or more of said monomers.
- Another aspect of the invention relates to an SCLCP obtained from one or more monomers of formula I1 and its preferred subformulae wherein one or both of R7 and R8 are a polymerisable group, or from a polymerisable liquid crystal mixture as defined above, by copolymerisation or polymeranaloguous reaction together with one or more additional mesogenic or non-mesogenic comonomers.
- Side chain liquid crystal polymers or copolymers (SCLCPs), in which the semiconducting component is located as a pendant group, separated from a flexible backbone by an aliphatic spacer group, offer the possibility to obtain a highly ordered lamellar like morphology. This structure consists of closely packed conjugated aromatic mesogens, in which very close (typically <4 Å) pi-pi stacking can occur. This stacking allows intermolecular charge transport to occur more easily, leading to high charge carrier mobilities. SCLCPs are advantageous for specific applications as they can be readily synthesized before processing and then e.g. be processed from solution in an organic solvent. If SCLCPs are used in solutions, they can orient spontaneously when coated onto an appropriate surface and when at their mesophase temperature, which can result in large area, highly ordered domains.
- SCLCPs can be prepared from the polymerisable compounds or mixtures according to the invention by the methods described above, or by conventional polymerisation techniques which are known to those skilled in the art, including for example radicalic, anionic or cationic chain polymerisation, polyaddition or polycondensation. Polymerisation can be carried out for example as polymerisation in solution, without the need of coating and prior alignment, or polymerisation in situ. It is also possible to form SCLCPs by grafting compounds according to the invention with a suitable reactive group, or mixtures thereof, to presynthesized isotropic or anisotropic polymer backbones in a polymeranaloguous reaction. For example, compounds with a terminal hydroxy group can be attached to polymer backbones with lateral carboxylic acid or ester groups, compounds with terminal isocyanate groups can be added to backbones with free hydroxy groups, compounds with terminal vinyl or vinyloxy groups can be added, e.g., to polysiloxane backbones with Si—H groups. It is also possible to form SCLCPs by copolymerisation or polymeranaloguous reaction from the inventive compounds together with conventional mesogenic or non mesogenic comonomers. Suitable comonomers are known to those skilled in the art. In principle it is possible to use all conventional comonomers known in the art that carry a reactive or polymerisable group capable of undergoing the desired polymer-forming reaction, like for example a polymerisable or reactive group P as defined above. Typical mesogenic comonomers are for example those mentioned in WO 93/22397,
EP 0 261 712, DE 195 04 224, WO 95/22586, WO 97/00600 and GB 2 351 734. Typical non mesogenic comonomers are for example alkyl acrylates or alkyl methacrylates with alkyl groups of 1 to 20 C atoms, like methyl acrylate or methyl methacrylate. - The mono-, oligo- and polymers of the present invention are useful as optical, electronic and semiconductor materials, in particular as charge transport materials in field effect transistors (FETs), e.g., as components of integrated circuitry, ID tags or TFT applications. Alternatively, they may be used in organic light emitting diodes (OLEDs) in electroluminescent display applications or as backlight of, e.g., liquid crystal displays, as photovoltaics or sensor materials, for electrophotographic recording, and for other semiconductor applications.
- Especially the oligomers and polymers according to the invention show advantageous solubility properties which allow production processes using solutions of these compounds. Thus films, including layers and coatings, may be generated by low cost production techniques, e.g., spin coating. Suitable solvents or solvent mixtures comprise alkanes and/or aromatics, especially their fluorinated derivatives.
- The materials of the present invention are useful as optical, electronic and semiconductor materials, in particular as charge transport materials in field effect transistors (FETs), as photovoltaics or sensor materials, for electrophotographic recording, and for other semiconductor applications. Such FETs, where an organic semiconductive material is arranged as a film between a gate-dielectric and a drain and a source electrode, are generally known, e.g., from U.S. Pat. No. 5,892,244, WO 00/79617, U.S. Pat. No. 5,998,804, and from the references cited in the background and prior art chapter and listed below. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processibility of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT-displays and security applications.
- In security applications, field effect transistors and other devices with semiconductive materials, like transistors or diodes, may be used for ID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetary value, like stamps, tickets, shares, cheques etc.
- Alternatively, the mono-, oligo- and polymers according to the invention may be used in organic light emitting devices or diodes (OLEDs), e.g., in display applications or as backlight of e.g. liquid crystal displays. Common OLEDs are realized using multilayer structures. An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers. By applying an electric voltage electrons and holes as charge carriers move towards the emission layer where their recombination leads to the excitation and hence luminescence of the lumophor units contained in the emission layer. The inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties. Furthermore their use within the emission layer is especially advantageous, if the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds. The selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Meerholz, Synthetic Materials, 111-112, 2000, 31-34, Alcala, J. Appl. Phys., 88, 2000, 7124-7128 and the literature cited therein.
- According to another use, the inventive compounds, materials or films, especially those which show photoluminescent properties, may be employed as materials of light sources, e.g., of display devices such as described in
EP 0 889 350 A1 or by C. Weder et al., Science, 279, 1998, 835-837. - According to another use, the inventive compounds, materials or films can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913. The use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer. When used in an LCD, this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs. When used in an OLED device comprising a light emitting material provided onto the alignment layer, this increased electrical conductivity can enhance the electroluminescence of the light emitting material. The compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film. The materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913.
- According to another use the materials and polymers according to the present invention, especially their water-soluble derivatives (for example with polar or ionic side groups) or ionically doped forms, can be employed as chemical sensors or materials for detecting and discriminating DNA sequences. Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudi and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49; N. DiCesare, M. R. Pinot, K. S. Schanze and J. R. Lakowicz, Langmuir 2002, 18, 7785; D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537.
- The compounds and materials according to the present invention can also be used in cosmetic or pharmaceutical compositions, for example in cosmetic compositions for hair treatment as disclosed in
EP 1 498 112 A2. - The examples below serve to illustrate the invention without limiting it. In the foregoing and the following, all temperatures are given in degrees Celsius, and all percentages are by weight, unless stated otherwise.
-
Polymer 1 is prepared as described below: - To a solution of selenophene (7.4 g, 56.5 mmol) in a solution of anhydrous hexane (90 ml) and TMEDA (17.4 g, 150 mmol) at 0° C. under nitrogen is added a solution of n-BuLi (56 ml of a 2.5M solution in hexanes, 137.5 mmol) dropwise over 5 min. The resulting solution is refluxed for 30 min and then cooled to 0° C. and trimethyltin chloride (25.6 g, 129 mmol) is added at once as a solid. The resulting solution is allowed to warm to room temperature and stirred at that temperature for 20 h. The solution is quenched with water (100 ml), and ethyl acetate (100 ml) is added. The layers is separated and the organic layer is washed with further water (4×100 ml), brine (100 ml), dried (Na2SO4), filtered and concentrated under reduced pressure. The resulting solid is recrystallized form acetonitrile four times to afford the product as white needles (25.8 g, 83%). M/Z cluster centred at 456 (M+). Found C, 26.3; H, 4.6. Calc. for C10H20SeSn2 C, 26.3; H, 4.2. 1H NMR (300 MHz, CDCl3) δ 7.68 (s, 2H), 0.37 (s, 18H). 13C NMR (75 MHz, CDCl3) δ 150.2, 138.7, −7.7.
- 4,4′-Bis(decyl)-2,2′-bithiophene is prepared in analogy to the published procedure (see M. Zagorska and B. Krische Polymer, 1990, 31, p 1379).
- To a solution of 4,4′-bis(decyl)-2,2′-bithiophene (6.60 g, 14.8 mmol) in chloroform (100 ml) and glacial acetic acid (100 ml) at 5° C. in the dark is added N-bromosuccinimide (5.40 g, 30 mmol) portionwise over 1 h. The resulting solution is warmed to 20° C. and stirred for a further 16 h. The solvent is removed under reduced pressure and the residue suspended in MTBE (200 ml). Filtration of the solution removed succinimide byproduct. The filtrate is washed with 5% sodium carbonate (100 ml), water (100 ml) and brine (100 ml), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product is further purified by reverse phase column chromatography over RP18 silica (23 g) eluting with acetonitrile/THF 2:1. A final recrystallisation from ethyl acetate affords the product (2.94 g). HRMS 602.1248 (calc. for C28H44S2Br79 2 602.1251). 1H NMR (300 MHz, CDCl3) δ 6.77 (s, 2H), 2.70 (t, 4H), 1.57 (quint, 4H), 1.28 (m, 28H), 0.88 (t, 6H). 13C NMR (75 MHz, CDCl3) δ 143.0, 136.1, 124.5, 107.9, 31.9, 29.62, 29.57, 29.40, 29.35, 29.2, 22.7, 14.2.
- A 20 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(decyl)-2,2′-bithiophene (604.6 mg, 1 mmol), 2,5-bis-trimethylstannylselenophene (456.6 mg, 1 mmol), tris(dibenzylideneacetone)dipalladium (0) (18.3 mg, 0.02 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (24.4 mg, 0.08 mmol, 8 mol %) and chlorobenzene (15 ml). The glass vial is purged with nitrogen and securely sealed. The glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 185° C. for 20 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (150 mL) and 37% hydrochloric acid (15 mL), and stirred for 14 h. The polymer is filtered, washed with methanol, and dried under vacuum. The polymer is washed (via Soxhlet extraction) with methanol ((6 h), acetone (24 h) and hexane (24 h). The resulting polymer is dissolved in hot chloroform (50 ml), filtered and precipitated into methanol, to afford the product (540 mg). GPC (Chlorobenzene, 60° C.) Mn (127,100 g/mol), Mw (58,700 g/mol). λmax 570 nm (solid film). 1H NMR (300 MHz, 50° C., CDCl3) δ 7.25 (s, 2H, obscured by CHCl3 peak) 7.01 (s, 2H), 2.76 (t, 4H), 1.70 (m, 4H), 1.45-1.20 (m, 28H), 0.88 (t, 6H).
- Polymer 2 is prepared as described below:
- 4,4′-Bis(dodecyl)-2,2′-bithiophene is prepared in analogy to the published procedure (see M. Zagorska and B. Krische Polymer, 1990, 31, p 1379).
- To a solution of 4,4′-bis(dodecyl)-2,2′-bithiophene (28.8 g, 57.3 mmol) in chloroform (200 ml) and glacial acetic acid (200 ml) at 25° C. in the dark is added N-bromosuccinimide (19.88 g, 111.7 mmol) portionwise over 1 h. The resulting solution is stirred for 6 h. The solvent is removed under reduced pressure and the residue dissolved in a mixture of dichloromethane (1000 ml) and water (500 ml). The organic layer is separated and the aqueous layer extracted with dichloromethane (500 ml). The combined organics were washed with 5% sodium carbonate (500 ml), water (500 ml) and brine (500 ml), dried (sodium sulfate), filtered and concentrated under reduced pressure. The resulting crude product is filtered through a plug of silica (eluent: petrol 40-60° C.) and concentrated under reduced pressure. Recrystallisation from butanone afforded the product (43.1 g, 73%) as pale yellow crystals. M/Z 660 (M+). Found C, 58.1; H, 7.9; S, 9.2. Calc. for C32H52S2Br2 C, 58.2; H, 7.9; S, 9.7. 1H NMR (300 MHz, CDCl3) δ 6.77 (s, 2H), 2.51 (t, 4H), 1.57 (quint, 4H), 1.28 (m, 36H), 0.88 (t, 6H). 13C NMR (75 MHz, CDCl3) δ 142.8, 136.0, 124.3, 107.7, 31.8, 29.6 (2C), 29.5 (4C), 29.2 (2C), 29.0, 22.6, 14.0.
- A 20 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(dodecyl)-2,2′-bithiophene (660.7 mg, 1 mmol), 2,5-bis-trimethylstannylselenophene (466.6 mg, 1 mmol), tris(dibenzylideneacetone)dipalladium (0) (18.3 mg, 0.02 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (24.4 mg, 0.08 mmol, 8 mol %) and chlorobenzene (15 ml). The glass vial is purged with nitrogen and securely sealed. The glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (150 mL) and 37% hydrochloric acid (15 mL), and stirred for 14 h. The polymer is filtered, washed with methanol, and dried under vacuum. The polymer is washed (via Soxhlet extraction) with methanol (6 h), acetone (24 h) and hexane (24 h). The resulting polymer is dissolved in hot chlorobenzene (50 ml), filtered through a plug of silica (2 g) and precipitated into methanol at 60° C., to afford the product (466 mg). GPC (Chlorobenzene, 60° C.) Mn (23,800 g/mol), Mw (46,400 g/mol). λmax (solid film) 572, 620 (sh) nm. λmax (CHCl3) 486 nm. 1H NMR (300 MHz, 50° C., CDCl3) δ 7.25 (s, 2H, obscured by CHCl3 peak) 7.01 (s, 2H), 2.75 (t, 4H), 1.70 (m, 4H), 1.45-1.20 (m, 36H), 0.87 (t, 6H).
- Polymer 3 is prepared as described below:
-
- 3-Hexylselenophene is prepared according to the published procedure (C. Mahatsekake et al, Phosphorus, Sulfur and Silicon, 1990, 47, 35-41; 1.0 g, 4.64 mmol)
- To a solution of 3-hexylselenophene (4.30 g, 20 mmol) and N,N,N′,N′-tetramethylethylenediamine (2.44 g, 21 mmol) in anhydrous THF (25 ml) at −40° C. is added n-BuLi (8.5 ml of a 2.5M solution in hexanes, 21.3 mmol). The solution is allowed to warm to 25° C. over 30 min, and stirred at 25° C. for 45 min. The resulting solution is cooled to −20° C. and copper(II) chloride (2.96 g, 22 mmol) is added at once as a solid. The reaction is stirred at 25° C. for a further 16 h, and quenched by the addition of 5% HCl (50 ml). The organics were extracted with ethyl acetate (3×50 ml). The combined organics were washed with 5% HCl (2×50 ml), water (50 ml) and saturated sodium chloride (50 ml), dried (Na2SO4), filtered and concentrated under reduced pressure. The resulting oil is further purified by column chromatography over silica (eluant: petrol 40-60° C.). The first fraction contained 3-hexylselenophene and the second fraction contained the product. Rexstallisation from THF/acetonitrile at −70° C. afforded the product as a white solid, M/Z 430 (M+). 114 NMR (300 MHz, CDCl3) δ 7.36 (s, 2H), 7.11 (s, 2H), 2.52 (t, 4H), 1.60 (quint, 4H), 1.30 (m, 12), 0.89 (t, 6H). 13C NMR (75 MHz, CDCl3) δ 145.9, 144.0, 128.3, 122.9, 32.3, 31.7, 30.2, 29.0, 22.7, 14.2.
- To a solution of 4,4′-bis(hexyl)-2,2′-biselenophene (1.0 g, 2.33 mmol) in tetrahydrofuran (25 ml) at 25° C. in the dark is added N-bromosuccinimide (0.84 g, 4.72 mmol) in two portions over 30 min. The resulting solution is stirred for 6 h. The solvent is removed under reduced pressure and the residue dissolved in ethyl acetate (50 ml) washed with water (2×30 ml) and saturated sodium chloride (30 ml), filtered and concentrated under reduced pressure. The resulting crude product is filtered through a plug of silica (eluent: petrol 40-60° C.) and concentrated under reduced pressure. Recrystallisation from ethanol afforded the product (0.75 g, 55%) as white crystals. M/Z triplet centred at 456 (M+). 1H NMR (300 MHz, CDCl3) δ 6.84 (s, 2H), 2.48 (t, 4H), 1.55 (quint, 4H), 1.3 (m, 12H), 0.89 (t, 6H). 13C NMR (75 MHz, CDCl3) δ 145.3, 142.9, 127.7, 110.3, 31.6, 30.9, 39.6, 29.6, 22.6, 14.2.
- A 10 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(hexyl)-2,2′-biselenophene (300 mg, 0.512 mmol), 2,5-bis-trimethylstannylthiophene (209.7 mg, 0.512 mmol), tris(dibenzylideneacetone)dipalladium (0) (9.37 mg, 0.01 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (12.46 mg, 0.04 mmol, 8 mol %) and chlorobenzene (5 ml). The glass vial is purged with nitrogen and securely sealed. The glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (50 mL) and 37% hydrochloric acid (5 mL), and stirred for 14 h. The polymer is filtered, washed (via Soxhlet extraction) with methanol (6 h), acetone (24 h) and isohexane (24 h). The resulting polymer is dissolved in hot chloroform and precipitated into methanol to afford the product (210 mg). GPC (Chlorobenzene, 60° C.) Mn (12,700 g/mol), Mw (26,000 g/mol). λmax (solid film) 550, 578 (sh), 628 (sh) nm. λmax (CHCl3) 483 nm. 1H NMR (300 MHz, 50° C., CDCl3) δ 7.11 (s, 2H), 7.01 (s, 2H), 2.73 (t, 4H), 1.68 (m, 4H), 1.45-1.20 (m, 12H), 0.90 (t, 6H).
- Polymer 4 is prepared as described below:
- A 10 ml glass vial is charged with a stirrer bar, 5,5′-dibromo-4,4′-bis(hexyl)-2,2′-biselenophene (300 mg, 0.512 mmol), 5,5′-bis-trimethylstannyl-[2,2′]bithiophenyl (251.7 mg, 0.512 mmol), tris(dibenzylideneacetone)dipalladium (0) (9.37 my, 0.01 mmol, 4 mol % Pd), tri(o-olyl)phosphine (12.46 mg, 0.04 mmol, 8 mol %) and chlorobenzene (6 ml). The glass vial is purged with nitrogen and securely sealed. The glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 1 min, then 160° C. for 1 min and finally to 190° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (50 mL) and 37% hydrochloric acid (5 mL), and stirred for 14 h. The polymer is filtered, washed (via Soxhlet extraction) with methanol (6 h), acetone (16 h) and isohexane (16 h). The resulting polymer is dissolved in hot chloroform and precipitated into methanol to afford the product (230 mg). GPC (Chlorobenzene, 60° C.) Mn (18,500 g/mol), Mw (40,700 g/mol). λmax 544 nm (solid film). λmax 482 nm (CHCl3) 1H NMR (300 MHz, F 50° C., CDCl3) δ 7.11 (br s, 4H), 6.98 (d, 2H), 2.73 (t, 4H), 1.68 (m, 4H), 1.45-1.20 (m, 12H), 0.90 (t, 6H).
- Polymer 5 is prepared as described below:
- A 10 ml glass vial is charged with a stirrer bar, 2,5-dibromo-3,4,-didecylthiophene (100 mg, 0.19 mmol), 2,5-bis-trimethylstannylselenophene (87.2 mg, 0.191 mmol), tris(dibenzylideneacetone)dipalladium (0) (3.5 mg, 0.004 mmol, 4 mol % Pd), tri(o-tolyl)phosphine (4.65 mg, 0.016 mmol, 8 mol %) and chlorobenzene (3 ml). The glass vial is purged with nitrogen and securely sealed. The glass vial is placed into a microwave reactor (Emrys Creator, Personal Chemistry Ltd) and heated sequentially to 140° C. for 2 min, then 160° C. for 2 min and finally to 180° C. for 15 min. After cooling to RT, the reaction mixture is precipitated into a mixture of methanol (75 mL) and 37% hydrochloric acid (25 mL), and stirred for 1.5 h. The polymer is filtered, washed (via Soxhlet extraction) with acetone (4 h). The resulting polymer is extracted with chloroform and concentrated under reduced pressure to afford the product (60 mg), GPC (Chlorobenzene, 60° C.) Mn (4,700 g/mol), Mw (7,000 g/mol). λmax 514 nm (solid film), λmax (CHCl3) 454 nm 1H NMR (300 MHz, THF-d8) δ 7.33 (br S, 2H), 2.77 (br t, 4H), 1.63 (m, 4H), 1.4-1.2 (m, 28H), 0.9 (br t, 6H).
- Thin-film organic field-effect transistors (OFETs) are fabricated on highly doped silicon substrates with thermally grown silicon oxide (SiO2) insulating layer, where the substrate served as a common gate electrode. Transistor source-drain gold electrodes are photolithographically defined on the SiO2 layer. Prior to organic semiconductor deposition, FET substrates are treated with a silylating agent hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS). Thin semiconductor films are then deposited by spin-coating polymer solutions in chloroform, xylene, chlorobenzene or dichlorobenzene (0.4-1.0 wt %) on FET substrates. The electrical characterization of the transistor devices, is carried out under ambient atmosphere using computer controlled Agilent 4155C Semiconductor Parameter Analyser.
- Transistor characteristics are measured on films prepared by spin coating. The films are heated to 100° C. for 10 min under nitrogen to remove residual solvent, and then cooled to room temperature to measure the transistor characteristics.
-
FIG. 1 shows the current (I)-voltage (V) transfer characteristics of example 1 in a transistor device with 10 micron channel length and 20,000 micron channel width. The transistor gate voltage (Vg) is varied between 40 and −60 volts for two different setting of Source—Drain voltage (Vsd). The Isd is plotted versus Vg for Vsd=−5V (line a) and −60 V (line b), respectively. - The devices show typical p-type behaviour with good current modulation, and well-defined linear and saturation regimes. Field effect mobility is calculated in the saturation regime (Vd>(Vd−V0)) using equation (1):
-
- where W is the channel width, L the channel length, Cj the capacitance of insulating layer, Vg the gate voltage, Vd the drain voltage, Id is the drain current, V0 the turn-on voltage and μsat is the saturated charge carrier mobility. The turn-on voltage (V0) is determined as the onset of source-drain current (
FIG. 1 ). The mobility values for compounds I-3 are summarised in table 1. -
TABLE 1 Summary of the electrical data for polymers 1-3. Compound μsat (cm2/Vs) μlin (cm2/Vs) On/off 1 0.1 0.04 106 2 0.18 0.07 106 3 0.01 0.004 106
Claims (21)
1-21. (canceled)
22. A monomeric, oligomeric, or polymeric compound comprising one or more selenophene-2,5-diyl groups and one or more thiophene 2,5-diyl groups, wherein said selenophene-2,5-diyl groups and thiophene 2,5-diyl groups are optionally substituted in the 3- and/or 4-position, with the proviso that said compound does not comprise homopolymers of 2,5-bis(3-octyl-thiophen-2-yl)selenophene.
23. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein said compound comprises units of formula I
wherein
R1, R2, R3, R4, R5, and R6
are, independently of each other, and, in case of multiple occurrence, independently of one another, H; halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C≡C—, with the proviso that O and/or S atoms are not linked directly to one another;
R0 and R00
are, independently of each other, H, aryl, or alkyl having up to 12 C atoms;
X1 and X2
are, independently of each other, X, F, Cl, or CN;
P is a polymerisable group;
P* is a group that can be converted to or substituted by a polymerisable group P;
Sp is a spacer group or a single bond;
a, b, c, and d
are, independently of each other, 0, 1, 2, or 3, wherein the sum of a and c is greater than 1 and the sum of b and d is greater than 1;
n is an integer greater than or equal to 1; and
wherein said recurring units of formula I are identical or different;
with the proviso that said compound does not comprise recurring units of formula I wherein a, b, and c are equal to 1; d is equal to 0; R1 and R2 are n-C8H17; R3, R4, R5, and R6 are H; and n is greater than 1.
24. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein said compound comprises recurring units of formula II
wherein
R1, R2, R3, R4, R5, and R6
are, independently of each other, and, in case of multiple occurrence, independently of one another, H; halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C≡C—, with the proviso that O and/or S atoms are not linked directly to one another;
a, b, c, and d
are, independently of each other, 0, 1, 2, or 3, wherein the sum of a and c is greater than 1 and the sum of b and d is greater than 1;
n is an integer greater than or equal to 1;
R7 and R8
are, independently of each other, and, in case of multiple occurrence, independently of one another, H; halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; —Sn(R0)3; —B(OR′)(OR″); —CH2C; —CHO; —CH═CH2; —SiR0R00R000; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C≡C—, with the proviso that O and/or S atoms are not linked directly to one another;
R0, R00, and R000
are, independently of each other, H, or aryl or alkyl having up to 12 C atoms; and
R′ and R″
are, independently of each other, H or alkyl having up to 12 C atoms, or OR′ and OR″ together with the boron atom optionally define a cyclic group having 2 to 20 C atoms.
25. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein said compound is selected from formulae I1a, I1b, I1c, I1d, I1e, or I1f;
wherein
R1, R2, R3, R4, R5, R6, R7, and R8
are, independently of each other, and, in case of multiple occurrence, independently of one another, H; halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent C1H2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C≡C—, with the proviso that O and/or S atoms are not linked directly to one another;
a, b, c, and d
are, independently of each other, 0, 1, 2, or 3, wherein the sum of a and c is greater than 1 and the sum of b and d is greater than 1; and
n is an integer greater than or equal to 1.
26. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein R3, R4, R5, and R6 are H and R1 and R2 are different from H.
27. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein R1 and R2 are selected from C1 to C20 alkyl, C1 to C20 alkoxy, C1 to C20 alkenyl, C1 to C20 alkynyl, C1 to C20 thioalkyl, C1 to C20 silyl, C1 to C20 ester, C1 to C20 amino, or C1 to C20 fluoroalkyl.
28. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein R1 and R2 are selected from C9 to C20 alkyl, C9 to C20 alkoxy, C6 to C20 alkenyl, C9 to C20 alkynyl, C9 to C20 thioalkyl, C9 to C20 silyl, C9 to C20 ester, C9 to C20 amino, C9 to C20 fluoroalkyl, and optionally substituted aryl or heteroaryl.
29. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein n is an integer from 2 to 5000.
30. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein n is 1 and one or both of R7 and R8 are halogen, —Sn(R0)3, —B(OR′)(OR″), —CH2Cl, —CHO, —CH═CH2, or —SiR0R00R000.
31. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein n is 1 and one or both of 17 and R8 are P-Sp- or P*-Sp-.
32. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein said compound is selected from formulae I1a1, I1a2, I1c1, or I1c2:
wherein
R7 and R8
are, independently of each other, and, in case of multiple occurrence, independently of one another, H; halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent CH2, groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C≡C—, with the proviso that O and/or S atoms are not linked directly to one another;
R is, independently of each other, and, in case of multiple occurrence, independently of one another, halogen; optionally substituted aryl or heteroaryl; P-Sp-; P*-Sp-; or straight chain, branched, or cyclic alkyl having up to 20 C atoms, optionally mono- or polysubstituted by F, Cl, Br, I, or CN; wherein one or more non-adjacent CH2 groups are optionally replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —CO—, —COO—, —OCO—, —O—CO—O—, —S—CO—, —CO—S—, —CX1═CX2—, or —C═C—, with the proviso that O and/or S atoms are not linked directly to one another; and
n is an integer greater than or equal to 1.
33. A polymerisable liquid crystal material comprising one or more monomeric, oligomeric, or polymeric compounds of claim 22 , wherein said one or more compounds is a thienothiophene compound comprising at least one polymerisable group, and optionally comprising one or more further polymerisable compounds, wherein at least one of said thienothiophene compounds or said one or more further polymerisable compounds is mesogenic or liquid crystalline.
34. An anisotropic polymer film having charge transport properties comprising the polymerisable liquid crystal material of claim 33 , wherein said anisotropic polymer film is aligned in its liquid crystal phase into macroscopically uniform orientation and polymerised or crosslinked to fix the oriented state.
35. A side chain liquid crystal polymer obtained by polymerisation of one or more monomeric, oligomeric, or polymeric compounds of claim 22 or by grafting said compounds to a polymer backbone in a polymer analogous reaction, optionally with one or more additional mesogenic or non-mesogenic comonomers.
36. An optical, electrooptical, or electronic component or device; an organic field effect transistor; an integrated circuit; a thin film transistor; a flat panel display; a radio frequency identification tag; an electroluminescent or photoluminescent device or component; an organic light emitting diode; a display backlight; a photovoltaic or sensor device; a charge injection layer; a Schottky diode; a planarising layer; an antistatic film; a conducting substrate or pattern; a battery electrode material; a photoconductor; an electrophotographic application; an electrophotographic recording; an organic memory device; an alignment layer; a cosmetic or pharmaceutical composition; a biosensor; or a biochip comprising the monomeric, oligomeric, or polymeric compound of claim 22 .
37. A semiconducting, electroluminescent, or charge transport material, component or device comprising at least one monomeric, oligomeric, or polymeric compound of claim 22 .
38. A thin film transistor or thin film transistor array for flat panel displays, a radio frequency identification tag, a field effect transistor, an electroluminescent display or backlight comprising the monomeric, oligomeric, or polymeric compound of claim 22 .
39. A security marling or device comprising a field effect transistor or radio frequency identification tag according to claim 39 .
40. The monomeric, oligomeric, or polymeric compound of claim 22 , wherein said compound is oxidatively or reductively doped to form conducting ionic species.
41. A charge injection layer, a planarising layer, an antistatic film, or a conducting substrate or pattern for electronic applications or flat panel displays comprising the monomeric, oligomeric, or polymeric compound of claim 41 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/908,150 US20080303000A1 (en) | 2005-03-11 | 2006-02-23 | Monomers, Oligomers and Polymers Comprising Thiophene and Selenophene |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05005348 | 2005-03-11 | ||
EP05005348.7 | 2005-03-11 | ||
EP05005467 | 2005-03-14 | ||
EP05005467.5 | 2005-03-14 | ||
US66149005P | 2005-03-15 | 2005-03-15 | |
PCT/EP2006/001664 WO2006094645A1 (en) | 2005-03-11 | 2006-02-23 | Monomers, oligomers and polymers comprising thiophene and selenophene |
US11/908,150 US20080303000A1 (en) | 2005-03-11 | 2006-02-23 | Monomers, Oligomers and Polymers Comprising Thiophene and Selenophene |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080303000A1 true US20080303000A1 (en) | 2008-12-11 |
Family
ID=39307947
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/908,150 Abandoned US20080303000A1 (en) | 2005-03-11 | 2006-02-23 | Monomers, Oligomers and Polymers Comprising Thiophene and Selenophene |
US11/373,491 Expired - Fee Related US7470377B2 (en) | 2005-03-11 | 2006-03-13 | Monomers, oligomers and polymers comprising thiophene and selenophene |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/373,491 Expired - Fee Related US7470377B2 (en) | 2005-03-11 | 2006-03-13 | Monomers, oligomers and polymers comprising thiophene and selenophene |
Country Status (7)
Country | Link |
---|---|
US (2) | US20080303000A1 (en) |
EP (1) | EP1856178A1 (en) |
JP (1) | JP2008536811A (en) |
KR (1) | KR20070112791A (en) |
CN (1) | CN101160338B (en) |
TW (1) | TW200640896A (en) |
WO (1) | WO2006094645A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090066890A1 (en) * | 2004-07-28 | 2009-03-12 | Merck Patent Gmbh | Transflective lcd comprising a patterned retardation film |
CN102557857A (en) * | 2010-12-23 | 2012-07-11 | 海洋王照明科技股份有限公司 | Organic semiconductor material, and preparation method and application of organic semiconductor material |
CN102558168A (en) * | 2010-12-23 | 2012-07-11 | 海洋王照明科技股份有限公司 | Organic semiconductor material and preparation method and application thereof |
CN102653678A (en) * | 2011-03-03 | 2012-09-05 | 海洋王照明科技股份有限公司 | Conduction cavity type electroluminescent material and preparation method and application thereof |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE509055T1 (en) | 2005-08-16 | 2011-05-15 | Merck Patent Gmbh | METHOD FOR POLYMERIZING THIOPHEN OR SELENOPHENE DERIVATIVES |
EP1754736B1 (en) * | 2005-08-16 | 2011-05-11 | Merck Patent GmbH | Process for the polymerisation of thiophene or selenophene derivatives |
JP2007257898A (en) * | 2006-03-20 | 2007-10-04 | Seiko Epson Corp | LIGHT EMITTING DEVICE MANUFACTURING METHOD AND ELECTRONIC DEVICE MANUFACTURING METHOD |
US8304036B2 (en) | 2007-09-06 | 2012-11-06 | Merck Patent Gesellschaft Mit Beschrankter Haftung | 2, 5-selenophene derivatives and 2, 5-tellurophene derivatives |
JP2011517701A (en) * | 2007-09-10 | 2011-06-16 | エダ リサーチ アンド ディベロップメント カンパニー,リミティド | Selenophene and selenophene polymers, their preparation, and uses thereof |
DE102009018149A1 (en) | 2008-05-07 | 2009-11-12 | Merck Patent Gmbh | Liquid crystal medium comprises selenophene compounds useful in LCD addressing an active matrix, e.g. twisted nematic-, in-plane switching-, fringe field switching-, and optically compensated bend- display |
WO2010000669A1 (en) | 2008-07-02 | 2010-01-07 | Basf Se | Poly(5,5'bis(thiophen-2-yl)-benzo[2,1-b;3,4-b']dithiophene) and its use as high performance solution processable semiconducting polymer |
CN104238193B (en) | 2008-09-17 | 2018-05-11 | 三星显示有限公司 | Directional material, oriented layer, Liquid crystal disply device and its preparation method |
CN102460758B (en) * | 2009-04-06 | 2015-04-01 | 肯塔基州研究基金会大学 | Semiconducting compounds and devices incorporating same |
DE102009036110A1 (en) * | 2009-06-05 | 2010-12-09 | Heliatek Gmbh | Light absorbing organic device |
US8765968B2 (en) * | 2009-08-28 | 2014-07-01 | Agency For Science, Technology And Research | Polymeric semiconductors, devices, and related methods |
US8389670B2 (en) | 2009-12-02 | 2013-03-05 | Basf Se | Dithienobenzo-thieno[3,2-B]thiophene-copolymer and its use as high performance solution processable semiconducting polymer |
US20130102785A1 (en) * | 2010-02-10 | 2013-04-25 | Georgia Tech Research Corporation | Method of making coupled heteroaryl compounds via rearrangement of halogenated heteroaromatics followed by oxidative coupling |
US8895693B2 (en) | 2010-06-25 | 2014-11-25 | Samsung Electronics Co., Ltd. | Electron-donating polymers and organic solar cells including the same |
KR101853395B1 (en) | 2011-05-23 | 2018-04-30 | 삼성전자주식회사 | Electron donating polymer and solar cell including the same |
WO2012162794A1 (en) * | 2011-06-02 | 2012-12-06 | The Governing Council Of The University Of Toronto | Conjugated copolymers useful in electronics |
KR101777326B1 (en) | 2011-10-05 | 2017-09-12 | 삼성전자주식회사 | Electron donating polymer and organic solar cell including the same |
JP5937382B2 (en) * | 2012-03-06 | 2016-06-22 | 国立大学法人東京工業大学 | Organic heteropolymer for organic semiconductor and semiconductor device using the same |
WO2015108360A1 (en) * | 2014-01-17 | 2015-07-23 | 경상대학교산학협력단 | Asymmetric heterocycle-vinylene-heterocyclic-based diketopyrrolopyrrole polymer, organic electronic device adopting same, and monomer for preparing same |
KR101722578B1 (en) | 2014-02-11 | 2017-04-03 | 사빅 글로벌 테크놀러지스 비.브이. | Compounds containing electron rich and electron deficient regions and their use in organic electronic applications |
WO2016187265A1 (en) * | 2015-05-19 | 2016-11-24 | Northwestern University | Dopant-free polymeric hole-transporting for perovskite solar cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197922B1 (en) * | 1997-09-10 | 2001-03-06 | Basf Aktiengesellschaft | Polyselenophenes, the preparation thereof and the use thereof |
US20060040909A1 (en) * | 2004-08-23 | 2006-02-23 | Development Center For Biotechnology | Selenophene compounds |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162473A (en) * | 1986-08-07 | 1992-11-10 | Allied-Signal | Neutral and electrically conductive poly(heterocyclic vinylenes) and processes for preparing same |
JPH07104326A (en) * | 1993-10-01 | 1995-04-21 | Nippon Telegr & Teleph Corp <Ntt> | Nonlinear optical material and nonlinear optical device using the same |
JP2975530B2 (en) * | 1994-06-01 | 1999-11-10 | 三菱電機株式会社 | Organic superlattice material, method for producing the same, and device using the material |
JP3994441B2 (en) * | 1995-01-09 | 2007-10-17 | 松下電器産業株式会社 | Field effect transistor |
JP3271463B2 (en) * | 1995-02-16 | 2002-04-02 | 日本電信電話株式会社 | Nonlinear optical material and device |
AU727123B2 (en) * | 1996-06-03 | 2000-11-30 | Purdue Research Foundation | Selenophene anti-tumor agents |
EP1279689B1 (en) * | 2001-07-25 | 2008-10-01 | MERCK PATENT GmbH | Mono-, Oligo and Poly-3-(1,1-difluoroalkyl)thiophenes and their use as charge transport materials |
TWI245795B (en) * | 2001-08-17 | 2005-12-21 | Merck Patent Gmbh | Mono-, oligo- and polyalkylidenefluorenes and their use as charge transport materials |
DE60236912D1 (en) * | 2001-09-29 | 2010-08-19 | Merck Patent Gmbh | Mono-, oligo- and polymers of benzo (b) thiophene and 2,2'-bisbenzothiophene and their use as charge transport material |
CN101343352B (en) * | 2002-06-20 | 2011-08-17 | 华南理工大学 | Polymers of selenium-containing heterocyclic compounds and their applications in the preparation of luminescent materials |
EP1852922A3 (en) * | 2002-12-04 | 2010-03-10 | Merck Patent GmbH | Mono-, oligo- and poly-bis(thienyl)arylenes and their use as charge transport materials |
-
2006
- 2006-02-23 EP EP06723093A patent/EP1856178A1/en not_active Withdrawn
- 2006-02-23 JP JP2008500072A patent/JP2008536811A/en active Pending
- 2006-02-23 US US11/908,150 patent/US20080303000A1/en not_active Abandoned
- 2006-02-23 WO PCT/EP2006/001664 patent/WO2006094645A1/en active Application Filing
- 2006-02-23 KR KR1020077020849A patent/KR20070112791A/en not_active Ceased
- 2006-02-23 CN CN2006800078508A patent/CN101160338B/en not_active Expired - Fee Related
- 2006-03-10 TW TW095108221A patent/TW200640896A/en unknown
- 2006-03-13 US US11/373,491 patent/US7470377B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197922B1 (en) * | 1997-09-10 | 2001-03-06 | Basf Aktiengesellschaft | Polyselenophenes, the preparation thereof and the use thereof |
US20060040909A1 (en) * | 2004-08-23 | 2006-02-23 | Development Center For Biotechnology | Selenophene compounds |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090066890A1 (en) * | 2004-07-28 | 2009-03-12 | Merck Patent Gmbh | Transflective lcd comprising a patterned retardation film |
US7936426B2 (en) * | 2004-07-28 | 2011-05-03 | Merck Patent Gmbh | Transflective LCD comprising a patterned retardation film |
CN102557857A (en) * | 2010-12-23 | 2012-07-11 | 海洋王照明科技股份有限公司 | Organic semiconductor material, and preparation method and application of organic semiconductor material |
CN102558168A (en) * | 2010-12-23 | 2012-07-11 | 海洋王照明科技股份有限公司 | Organic semiconductor material and preparation method and application thereof |
CN102558168B (en) * | 2010-12-23 | 2014-07-23 | 海洋王照明科技股份有限公司 | Organic semiconductor material and preparation method and application thereof |
CN102653678A (en) * | 2011-03-03 | 2012-09-05 | 海洋王照明科技股份有限公司 | Conduction cavity type electroluminescent material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
US20060249712A1 (en) | 2006-11-09 |
EP1856178A1 (en) | 2007-11-21 |
CN101160338B (en) | 2011-10-05 |
JP2008536811A (en) | 2008-09-11 |
US7470377B2 (en) | 2008-12-30 |
CN101160338A (en) | 2008-04-09 |
TW200640896A (en) | 2006-12-01 |
KR20070112791A (en) | 2007-11-27 |
WO2006094645A1 (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7470377B2 (en) | Monomers, oligomers and polymers comprising thiophene and selenophene | |
US7183418B2 (en) | Mono-, oligo- and polythieno[2,3-b]thiophenes | |
US7524922B2 (en) | Poly(benzodithiophenes) | |
US7244809B2 (en) | Mono-, oligo- and polymers comprising dithienothiophene and aryl groups | |
US7829658B2 (en) | Mono-, oligo- and polymers of thienothiazole | |
US6676857B2 (en) | Mono-, oligo- and poly-4-fluorothiophenes and their use as charge transport materials | |
EP1751166B1 (en) | Mono-, oligo- and polythieno[3,2-b]thiophenes | |
US7700643B2 (en) | Polymerisable thieno[3,2-b]thiophenes | |
US6695978B2 (en) | Mono-, oligo- and polymers of benzo[b]thiophene and 2,2′-bisbenzo[b]thiophene and their use as charge transport materials | |
US7541425B2 (en) | Mono-, oligo- and poly(3-alkynylthiophenes) and their use as charge transport materials | |
US20030062509A1 (en) | Mono-, oligo- and poly-3-(1,1-difluoroalkyl)thiophenes and their use as charge transport materials | |
US8431682B2 (en) | Regioregular polyselenophenes | |
US8114316B2 (en) | Monomers, oligomers and polymers of thieno[2,3-b]thiophene | |
EP1477504A1 (en) | Mono-, oligo- and polymers comprising dithienotiophene and aryl groups | |
EP1279690A1 (en) | Mono-oligo- and poly-3-substituted-4-fluorothiophenes and their use as charge transport materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERCK PATENT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEENEY, MARTIN;TIERNEY, STEVEN;DUFFY, WARREN;AND OTHERS;REEL/FRAME:021233/0876 Effective date: 20080624 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |