US20080294862A1 - Arbitration system having a packet memory and method for memory responses in a hub-based memory system - Google Patents
Arbitration system having a packet memory and method for memory responses in a hub-based memory system Download PDFInfo
- Publication number
- US20080294862A1 US20080294862A1 US12/170,329 US17032908A US2008294862A1 US 20080294862 A1 US20080294862 A1 US 20080294862A1 US 17032908 A US17032908 A US 17032908A US 2008294862 A1 US2008294862 A1 US 2008294862A1
- Authority
- US
- United States
- Prior art keywords
- memory
- responses
- remote
- hub
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015654 memory Effects 0.000 title claims abstract description 365
- 230000004044 response Effects 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims description 14
- 238000004891 communication Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/1642—Handling requests for interconnection or transfer for access to memory bus based on arbitration with request queuing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
Definitions
- This invention relates to computer systems, and, more particularly, to a computer system including a system memory having a memory hub architecture.
- Computer systems use memory devices, such as dynamic random access memory (“DRAM”) devices, to store data that are accessed by a processor. These memory devices are normally used as system memory in a computer system.
- the processor communicates with the system memory through a processor bus and a memory controller.
- the processor issues a memory request, which includes a memory command, such as a read command, and an address designating the location from which data or instructions are to be read.
- the memory controller uses the command and address to generate appropriate command signals as well as row and column addresses, which are applied to the system memory.
- data are transferred between the system memory and the processor.
- the memory controller is often part of a system controller, which also includes bus bridge circuitry for coupling the processor bus to an expansion bus, such as a PCI bus.
- the performance of computer systems is also limited by latency problems that increase the time required to read data from system memory devices. More specifically, when a memory device read command is coupled to a system memory device, such as a synchronous DRAM (“SDRAM”) device, the read data are output from the SDRAM device only after a delay of several clock periods. Therefore, although SDRAM devices can synchronously output burst data at a high data rate; the delay in initially providing the data can significantly slow the operating speed of a computer system using such SDRAM devices.
- SDRAM synchronous DRAM
- a memory hub controller is coupled over a high speed data link to several memory modules.
- the memory modules are coupled in a point-to-point or daisy chain architecture such that the memory modules are connected one to another in series.
- the memory hub controller is coupled to a first memory module over a first high speed data link, with the first memory module connected to a second memory module through a second high speed data link, and the second memory module coupled to a third memory module through a third high speed data link, and so on in a daisy chain fashion.
- Each memory module includes a memory hub that is coupled to the corresponding high speed data links and a number of memory devices on the module, with the memory hubs efficiently routing memory requests and memory responses between the controller and the memory devices over the high speed data links.
- Each memory requests typically includes a memory command specifying the type of memory access (e.g., a read or a write) called for by the request, a memory address specifying a memory location that is to be accessed, and, in the case of a write memory request, write data.
- the memory request also normally includes information identifying the memory module that is being accessed, but this can be accomplished by mapping different addresses to different memory modules.
- a memory response is typically provided only for a read memory request, and typically includes read data as well as an identifying header that allows the memory hub controller to identify the memory request corresponding to the memory response.
- memory requests and memory responses having other characteristics may be used.
- memory requests issued by the memory hub controller propagate downstream from one memory hub to another, while memory responses propagate upstream from one memory hub to another until reaching the memory hub controller.
- Computer systems employing this architecture can have a higher bandwidth because a processor can access one memory device while another memory device is responding to a prior memory access. For example, the processor can output write data to one of the memory devices in the system while another memory device in the system is preparing to provide read data to the processor.
- this architecture also provides for easy expansion of the system memory without concern for degradation in signal quality as more memory modules are added, such as occurs in conventional multi drop bus architectures.
- memory hubs can provide computer systems with a greater memory bandwidth, they still suffer from latency problems of the type described above. More specifically, although the processor may communicate with one memory device while another memory device is preparing to transfer data, it is sometimes necessary to receive data from one memory device before the data from another memory device can be used. In the event data must be received from one memory device before data received from another memory device can be used, the latency problem continues to slow the operating speed of such computer systems.
- Another factor that can reduce the speed of memory transfers in a memory hub system is the transferring of read data upstream (i.e., back to the memory hub controller) over the high-speed links from one hub to another.
- Each hub must determine whether to send local responses first or to forward responses from downstream memory hubs first, and the way in which this is done affects the actual latency of a specific response, and more so, the overall latency of the system memory. This determination may be referred to as arbitration, with each hub arbitrating between local requests and upstream data transfers.
- a memory hub module includes a decoder that receives memory requests and determines a memory request identifier associated with each memory request.
- a packet memory receives memory request identifiers and stores the memory request identifiers.
- a packet tracker receives remote memory responses, associates each remote memory response with a memory request identifier and removes the memory request identifier from the packet memory.
- a multiplexor receives remote memory responses and local memory responses. The multiplexor selects an output responsive to a control signal. Arbitration control logic coupled to the multiplexor and the packet memory develops the control signal to select a memory response for output.
- FIG. 1 is a block diagram of a computer system including a system memory having a high bandwidth memory hub architecture according to one example of the present invention.
- FIG. 2 is a functional block diagram illustrating an arbitration system included in the hub controllers of FIG. 1 according to one example of the present invention.
- FIGS. 3 a and 3 b are functional illustrations of a packet memory shown in FIG. 2 according to one example of the present invention.
- FIG. 1 A computer system 100 according to one example of the present invention is shown in FIG. 1 .
- the computer system 100 includes a system memory 102 having a memory hub architecture including a plurality of memory modules 130 , each memory module including a corresponding memory hub 140 .
- Each of the memory hubs 140 arbitrates between memory responses from the memory module 130 on which the hub is contained and memory responses from downstream memory modules, and in this way the memory hubs effectively control the latency of respective memory modules in the system memory by controlling how quickly responses are returned to a system controller 110 , as will be described in more detail below.
- certain details are set forth to provide a sufficient understanding of the present invention.
- One skilled in the art will understand, however, that the invention may be practiced without these particular details.
- well-known circuits, control signals, timing protocols, and/or software operations have not been shown in detail or omitted entirely in order to avoid unnecessarily obscuring the present invention.
- the computer system 100 includes a processor 104 for performing various computing functions, such as executing specific software to perform specific calculations or tasks.
- the processor 104 is typically a central processing unit (“CPU”) having a processor bus 106 that normally includes an address bus, a control bus, and a data bus.
- the processor bus 106 is typically coupled to cache memory 108 , which, as previously mentioned, is usually static random access memory (“SRAM”).
- SRAM static random access memory
- the processor bus 106 is coupled to the system controller 110 , which is also sometimes referred to as a “North Bridge” or “memory controller.”
- the system controller 110 serves as a communications path to the processor 104 for the memory modules 130 and for a variety of other components. More specifically, the system controller 110 includes a graphics port that is typically coupled to a graphics controller 112 , which is, in turn, coupled to a video terminal 114 . The system controller 110 is also coupled to one or more input devices 118 , such as a keyboard or a mouse, to allow an operator to interface with the computer system 100 . Typically, the computer system 100 also includes one or more output devices 120 , such as a printer, coupled to the processor 104 through the system controller 110 . One or more data storage devices 124 are also typically coupled to the processor 104 through the system controller 110 to allow the processor 104 to store data or retrieve data from internal or external storage media (not shown). Examples of typical storage devices 124 include hard and floppy disks, tape cassettes, and compact disk read-only memories (CD-ROMs).
- CD-ROMs compact disk read-only memories
- the system controller 110 also includes a memory hub controller (“MHC”) 132 that is coupled to the system memory 102 including the memory modules 130 a,b . . . n, and operates to apply commands to control and access data in the memory modules.
- the memory modules 130 are coupled in a point-to-point architecture through respective high speed links 134 a and 134 b coupled between the memory module 130 a and the memory hub controller 132 and between adjacent memory modules 130 a - n .
- the high speed link 134 a is the downlink, carrying memory requests from the memory hub controller 132 to the memory modules 130 a - n .
- the high speed link 134 b is the uplink, carrying memory responses from the memory modules 130 a - n to the memory hub controller 132 .
- the high-speed links 134 a and 134 b may be optical, RF, or electrical communications paths, or may be some other suitable type of communications paths, as will be appreciated by those skilled in the art.
- each optical communication path may be in the form of one or more optical fibers, for example.
- the memory hub controller 132 and the memory modules 130 will each include an optical input/output port or separate input and output ports coupled to the corresponding optical communications paths.
- the memory modules 130 are shown coupled to the memory hub controller 132 in a point-to-point architecture, other topologies that may be used, such as a ring topology, will be apparent to those skilled in the art.
- Each of the memory modules 130 includes the memory hub 140 for communicating over the corresponding high-speed links 134 a and 134 b and for controlling access to eight memory devices 148 , which are synchronous dynamic random access memory (“SDRAM”) devices in the example of FIG. 1 .
- the memory hubs 140 each include input and output ports that are coupled to the corresponding high-speed links 134 a and 134 b , with the nature and number of ports depending on the characteristics of the high-speed links. A fewer or greater number of memory devices 148 may be used, and memory devices other than SDRAM devices may also be used.
- the memory hub 140 is coupled to each of the system memory devices 148 through a bus system 150 , which normally includes a control bus, an address bus, and a data bus.
- each of the memory hubs 140 executes an arbitration process that controls the way in which memory responses associated with the memory module 130 containing that hub and memory responses from downstream memory modules are returned to the memory hub controller 132 .
- memory responses associated with the particular memory hub 140 and the corresponding memory module 130 will be referred to as “local responses,” while memory responses from downstream memory modules will be referred to as “downstream responses.”
- each memory hub 140 executes a desired arbitration process to control the way in which local and downstream responses are returned to the memory hub controller 132 .
- each hub 140 may give priority to downstream responses and thereby forward such downstream responses upstream prior to local responses that need to be sent upstream.
- each memory hub 140 may give priority to local responses and thereby forward such local responses upstream prior to downstream responses that need to be sent upstream. Examples of arbitration processes that may be executed by the memory hubs 140 will be described in more detail below.
- Each memory hub 140 may execute a different arbitration process or all the hubs may execute the same process, with this determination depending on the desired characteristics of the system memory 102 . It should be noted that the arbitration process executed by each memory hub 140 is only applied when a conflict exists between local and downstream memory responses. Thus, each memory hub 140 need only execute the corresponding arbitration process when both local and downstream memory responses need to be returned upstream at the same time. Other examples of arbitration schemes are described in application Ser. No. 10/690,810 entitled “Arbitration System and Method for Memory Responses in a Hub-Based Memory System”, incorporated herein by reference.
- FIG. 2 An example of an arbitration system 200 included in the hub controllers 140 of FIG. 1 is shown in FIG. 2 .
- a downlink receiver 202 receives memory requests.
- the memory requests include an identifier and a request portion, which includes data in the event the request is a write request.
- the identifier is referred to herein as a packet ID or a memory request identifier.
- a decoder 204 is coupled to the downlink receiver 202 and determines the memory request identifier associated with each memory request.
- the memory request identifiers are stored in a packet memory 206 .
- the packet memory 206 shown in FIG. 2 is a first-in, first-out (FIFO) memory, but other buffering schemes may be used in other embodiments.
- FIFO first-in, first-out
- a packet ID or memory request identifier associated with each memory request passed to a hub controller is stored in the packet memory 206 .
- the packet memory 206 is a FIFO memory
- the memory request identifiers are stored in time order.
- memory requests associated with the particular memory hub 140 and the corresponding memory module 130 will be referred to as “local memory requests,” while memory requests directed to a downstream memory module 130 will be referred to as “remote memory requests.”
- Local memory requests received by the downlink receiver 202 are sent through a downlink management module 210 and a controller 212 to a memory interface 214 coupled to the memory devices 148 .
- Local memory responses are received by the memory interface 214 and sent through the controller 212 to an uplink management module 220 .
- Remote memory requests received by the downlink receiver 202 are sent to a downlink transmitter 216 to be sent on the downlink 134 a to a downstream hub.
- An uplink receiver 222 coupled to the uplink 134 b receives remote memory responses.
- the remote memory responses include an identifier portion and a data payload portion.
- the identifier portion, or memory response identifier identifies the memory request to which the data payload is responsive.
- a packet tracker 224 is coupled to the uplink receiver.
- the packet tracker 224 identifies the memory response identifier. In some embodiments, when the remote memory response is sent through an uplink transmitter 226 the packet tracker 224 removes the associated memory request identifier from the packet memory 206 .
- a multiplexor 208 is coupled to the uplink transmitter 226 , the uplink management module 220 , the uplink receiver 222 , and arbitration control logic 230 .
- the multiplexor 208 couples either data from local memory responses or data from remote memory responses to the uplink transmitter 226 .
- the choice of which type of memory response—local or remote—to couple to the transmitter 226 is determined by a control signal generated by the arbitration control logic 230 .
- the arbitration control logic 230 is coupled to the packet memory 206 , and can accordingly determine the oldest memory request in the packet memory 206 .
- the arbitration control logic 230 develops a control signal for the multiplexor 208 that results in the local memory response being coupled to the uplink transmitter 226 for output to the uplink 134 b .
- the arbitration control logic 230 issues a control signal to the multiplexor 208 that results in the remote memory response being coupled to the uplink transmitter 226 for output to the uplink 134 b .
- remote memory responses are coupled to the uplink transmitter 226 by default. In other embodiments, local memory responses are coupled to the uplink transmitter 226 by default.
- FIGS. 3 a - b An example of the packet memory 206 is illustrated in FIGS. 3 a - b .
- remote requests R 0 , R 1 , and R 2 were received, and the request identifiers stored in the packet memory.
- the local requests L 1 and L 2 were then received, followed by R 3 , and so on.
- remote memory responses are forwarded as received, and the corresponding request identifier is removed from the packet memory 206 .
- the local memory response to request L 1 is received, if the link is in use, the local response is not sent until the request L 1 is the oldest in the packet memory 206 , as illustrated in the example shown in FIG. 3 b , where responses associated with requests R 0 , R 1 , and R 2 have been sent.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multi Processors (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Information Transfer Systems (AREA)
Abstract
Description
- This invention relates to computer systems, and, more particularly, to a computer system including a system memory having a memory hub architecture.
- Computer systems use memory devices, such as dynamic random access memory (“DRAM”) devices, to store data that are accessed by a processor. These memory devices are normally used as system memory in a computer system. In a typical computer system, the processor communicates with the system memory through a processor bus and a memory controller. The processor issues a memory request, which includes a memory command, such as a read command, and an address designating the location from which data or instructions are to be read. The memory controller uses the command and address to generate appropriate command signals as well as row and column addresses, which are applied to the system memory. In response to the commands and addresses, data are transferred between the system memory and the processor. The memory controller is often part of a system controller, which also includes bus bridge circuitry for coupling the processor bus to an expansion bus, such as a PCI bus.
- Although the operating speed of memory devices has continuously increased, this increase in operating speed has not kept pace with increases in the operating speed of processors. Even slower has been the increase in operating speed of memory controllers coupling processors to memory devices. The relatively slow speed of memory controllers and memory devices limits the data bandwidth between the processor and the memory devices.
- In addition to the limited bandwidth between processors and memory devices, the performance of computer systems is also limited by latency problems that increase the time required to read data from system memory devices. More specifically, when a memory device read command is coupled to a system memory device, such as a synchronous DRAM (“SDRAM”) device, the read data are output from the SDRAM device only after a delay of several clock periods. Therefore, although SDRAM devices can synchronously output burst data at a high data rate; the delay in initially providing the data can significantly slow the operating speed of a computer system using such SDRAM devices.
- One approach to alleviating the memory latency problem is to use multiple memory devices coupled to the processor through a memory hub. In a memory hub architecture, a memory hub controller is coupled over a high speed data link to several memory modules. Typically, the memory modules are coupled in a point-to-point or daisy chain architecture such that the memory modules are connected one to another in series. Thus, the memory hub controller is coupled to a first memory module over a first high speed data link, with the first memory module connected to a second memory module through a second high speed data link, and the second memory module coupled to a third memory module through a third high speed data link, and so on in a daisy chain fashion.
- Each memory module includes a memory hub that is coupled to the corresponding high speed data links and a number of memory devices on the module, with the memory hubs efficiently routing memory requests and memory responses between the controller and the memory devices over the high speed data links. Each memory requests typically includes a memory command specifying the type of memory access (e.g., a read or a write) called for by the request, a memory address specifying a memory location that is to be accessed, and, in the case of a write memory request, write data. The memory request also normally includes information identifying the memory module that is being accessed, but this can be accomplished by mapping different addresses to different memory modules. A memory response is typically provided only for a read memory request, and typically includes read data as well as an identifying header that allows the memory hub controller to identify the memory request corresponding to the memory response. However, it should be understood that memory requests and memory responses having other characteristics may be used. In any case, in the following description, memory requests issued by the memory hub controller propagate downstream from one memory hub to another, while memory responses propagate upstream from one memory hub to another until reaching the memory hub controller. Computer systems employing this architecture can have a higher bandwidth because a processor can access one memory device while another memory device is responding to a prior memory access. For example, the processor can output write data to one of the memory devices in the system while another memory device in the system is preparing to provide read data to the processor. Moreover, this architecture also provides for easy expansion of the system memory without concern for degradation in signal quality as more memory modules are added, such as occurs in conventional multi drop bus architectures.
- Although computer systems using memory hubs may provide superior performance, they nevertheless may often fail to operate at optimum speeds for a variety of reasons. For example, even though memory hubs can provide computer systems with a greater memory bandwidth, they still suffer from latency problems of the type described above. More specifically, although the processor may communicate with one memory device while another memory device is preparing to transfer data, it is sometimes necessary to receive data from one memory device before the data from another memory device can be used. In the event data must be received from one memory device before data received from another memory device can be used, the latency problem continues to slow the operating speed of such computer systems.
- Another factor that can reduce the speed of memory transfers in a memory hub system is the transferring of read data upstream (i.e., back to the memory hub controller) over the high-speed links from one hub to another. Each hub must determine whether to send local responses first or to forward responses from downstream memory hubs first, and the way in which this is done affects the actual latency of a specific response, and more so, the overall latency of the system memory. This determination may be referred to as arbitration, with each hub arbitrating between local requests and upstream data transfers.
- There is a need for a system and method for arbitrating data transfers in a system memory having a memory hub architecture to lower the latency of the system memory.
- According to one aspect of the present invention, a memory hub module includes a decoder that receives memory requests and determines a memory request identifier associated with each memory request. A packet memory receives memory request identifiers and stores the memory request identifiers. A packet tracker receives remote memory responses, associates each remote memory response with a memory request identifier and removes the memory request identifier from the packet memory. A multiplexor receives remote memory responses and local memory responses. The multiplexor selects an output responsive to a control signal. Arbitration control logic coupled to the multiplexor and the packet memory develops the control signal to select a memory response for output.
-
FIG. 1 is a block diagram of a computer system including a system memory having a high bandwidth memory hub architecture according to one example of the present invention. -
FIG. 2 is a functional block diagram illustrating an arbitration system included in the hub controllers ofFIG. 1 according to one example of the present invention. -
FIGS. 3 a and 3 b are functional illustrations of a packet memory shown inFIG. 2 according to one example of the present invention. - A
computer system 100 according to one example of the present invention is shown inFIG. 1 . Thecomputer system 100 includes asystem memory 102 having a memory hub architecture including a plurality of memory modules 130, each memory module including acorresponding memory hub 140. Each of thememory hubs 140 arbitrates between memory responses from the memory module 130 on which the hub is contained and memory responses from downstream memory modules, and in this way the memory hubs effectively control the latency of respective memory modules in the system memory by controlling how quickly responses are returned to asystem controller 110, as will be described in more detail below. In the following description, certain details are set forth to provide a sufficient understanding of the present invention. One skilled in the art will understand, however, that the invention may be practiced without these particular details. In other instances, well-known circuits, control signals, timing protocols, and/or software operations have not been shown in detail or omitted entirely in order to avoid unnecessarily obscuring the present invention. - The
computer system 100 includes aprocessor 104 for performing various computing functions, such as executing specific software to perform specific calculations or tasks. Theprocessor 104 is typically a central processing unit (“CPU”) having aprocessor bus 106 that normally includes an address bus, a control bus, and a data bus. Theprocessor bus 106 is typically coupled tocache memory 108, which, as previously mentioned, is usually static random access memory (“SRAM”). Finally, theprocessor bus 106 is coupled to thesystem controller 110, which is also sometimes referred to as a “North Bridge” or “memory controller.” - The
system controller 110 serves as a communications path to theprocessor 104 for the memory modules 130 and for a variety of other components. More specifically, thesystem controller 110 includes a graphics port that is typically coupled to agraphics controller 112, which is, in turn, coupled to avideo terminal 114. Thesystem controller 110 is also coupled to one ormore input devices 118, such as a keyboard or a mouse, to allow an operator to interface with thecomputer system 100. Typically, thecomputer system 100 also includes one ormore output devices 120, such as a printer, coupled to theprocessor 104 through thesystem controller 110. One or moredata storage devices 124 are also typically coupled to theprocessor 104 through thesystem controller 110 to allow theprocessor 104 to store data or retrieve data from internal or external storage media (not shown). Examples oftypical storage devices 124 include hard and floppy disks, tape cassettes, and compact disk read-only memories (CD-ROMs). - The
system controller 110 also includes a memory hub controller (“MHC”) 132 that is coupled to thesystem memory 102 including thememory modules 130 a,b . . . n, and operates to apply commands to control and access data in the memory modules. The memory modules 130 are coupled in a point-to-point architecture through respective high speed links 134 a and 134 b coupled between thememory module 130 a and thememory hub controller 132 and between adjacent memory modules 130 a-n. The high speed link 134 a is the downlink, carrying memory requests from thememory hub controller 132 to the memory modules 130 a-n. The high speed link 134 b is the uplink, carrying memory responses from the memory modules 130 a-n to thememory hub controller 132. The high-speed links 134 a and 134 b may be optical, RF, or electrical communications paths, or may be some other suitable type of communications paths, as will be appreciated by those skilled in the art. In the event the high-speed links 134 a and 134 b are implemented as optical communications paths, each optical communication path may be in the form of one or more optical fibers, for example. In such a system, thememory hub controller 132 and the memory modules 130 will each include an optical input/output port or separate input and output ports coupled to the corresponding optical communications paths. Although the memory modules 130 are shown coupled to thememory hub controller 132 in a point-to-point architecture, other topologies that may be used, such as a ring topology, will be apparent to those skilled in the art. - Each of the memory modules 130 includes the
memory hub 140 for communicating over the corresponding high-speed links 134 a and 134 b and for controlling access to eightmemory devices 148, which are synchronous dynamic random access memory (“SDRAM”) devices in the example ofFIG. 1 . Thememory hubs 140 each include input and output ports that are coupled to the corresponding high-speed links 134 a and 134 b, with the nature and number of ports depending on the characteristics of the high-speed links. A fewer or greater number ofmemory devices 148 may be used, and memory devices other than SDRAM devices may also be used. Thememory hub 140 is coupled to each of thesystem memory devices 148 through abus system 150, which normally includes a control bus, an address bus, and a data bus. - As previously mentioned, each of the
memory hubs 140 executes an arbitration process that controls the way in which memory responses associated with the memory module 130 containing that hub and memory responses from downstream memory modules are returned to thememory hub controller 132. In the following description, memory responses associated with theparticular memory hub 140 and the corresponding memory module 130 will be referred to as “local responses,” while memory responses from downstream memory modules will be referred to as “downstream responses.” In operation, eachmemory hub 140 executes a desired arbitration process to control the way in which local and downstream responses are returned to thememory hub controller 132. For example, eachhub 140 may give priority to downstream responses and thereby forward such downstream responses upstream prior to local responses that need to be sent upstream. Conversely, eachmemory hub 140 may give priority to local responses and thereby forward such local responses upstream prior to downstream responses that need to be sent upstream. Examples of arbitration processes that may be executed by thememory hubs 140 will be described in more detail below. - Each
memory hub 140 may execute a different arbitration process or all the hubs may execute the same process, with this determination depending on the desired characteristics of thesystem memory 102. It should be noted that the arbitration process executed by eachmemory hub 140 is only applied when a conflict exists between local and downstream memory responses. Thus, eachmemory hub 140 need only execute the corresponding arbitration process when both local and downstream memory responses need to be returned upstream at the same time. Other examples of arbitration schemes are described in application Ser. No. 10/690,810 entitled “Arbitration System and Method for Memory Responses in a Hub-Based Memory System”, incorporated herein by reference. - An example of an
arbitration system 200 included in thehub controllers 140 ofFIG. 1 is shown inFIG. 2 . Adownlink receiver 202 receives memory requests. The memory requests include an identifier and a request portion, which includes data in the event the request is a write request. The identifier is referred to herein as a packet ID or a memory request identifier. Adecoder 204 is coupled to thedownlink receiver 202 and determines the memory request identifier associated with each memory request. The memory request identifiers are stored in apacket memory 206. Thepacket memory 206 shown inFIG. 2 is a first-in, first-out (FIFO) memory, but other buffering schemes may be used in other embodiments. In this manner, a packet ID or memory request identifier associated with each memory request passed to a hub controller is stored in thepacket memory 206. When thepacket memory 206 is a FIFO memory, the memory request identifiers are stored in time order. In the following description, memory requests associated with theparticular memory hub 140 and the corresponding memory module 130 will be referred to as “local memory requests,” while memory requests directed to a downstream memory module 130 will be referred to as “remote memory requests.” - Local memory requests received by the
downlink receiver 202 are sent through adownlink management module 210 and acontroller 212 to amemory interface 214 coupled to thememory devices 148. Local memory responses are received by thememory interface 214 and sent through thecontroller 212 to anuplink management module 220. - Remote memory requests received by the
downlink receiver 202 are sent to adownlink transmitter 216 to be sent on the downlink 134 a to a downstream hub. Anuplink receiver 222 coupled to the uplink 134 b receives remote memory responses. The remote memory responses include an identifier portion and a data payload portion. The identifier portion, or memory response identifier, identifies the memory request to which the data payload is responsive. Apacket tracker 224 is coupled to the uplink receiver. Thepacket tracker 224 identifies the memory response identifier. In some embodiments, when the remote memory response is sent through anuplink transmitter 226 thepacket tracker 224 removes the associated memory request identifier from thepacket memory 206. - A
multiplexor 208 is coupled to theuplink transmitter 226, theuplink management module 220, theuplink receiver 222, andarbitration control logic 230. The multiplexor 208 couples either data from local memory responses or data from remote memory responses to theuplink transmitter 226. The choice of which type of memory response—local or remote—to couple to thetransmitter 226 is determined by a control signal generated by thearbitration control logic 230. Thearbitration control logic 230 is coupled to thepacket memory 206, and can accordingly determine the oldest memory request in thepacket memory 206. When a local request is the oldest memory request in thepacket memory 206, thearbitration control logic 230 develops a control signal for themultiplexor 208 that results in the local memory response being coupled to theuplink transmitter 226 for output to the uplink 134 b. When a remote request is the oldest memory request in thepacket memory 206, thearbitration control logic 230 issues a control signal to themultiplexor 208 that results in the remote memory response being coupled to theuplink transmitter 226 for output to the uplink 134 b. In some embodiments, remote memory responses are coupled to theuplink transmitter 226 by default. In other embodiments, local memory responses are coupled to theuplink transmitter 226 by default. - An example of the
packet memory 206 is illustrated inFIGS. 3 a-b. In the illustrated embodiment ofFIG. 3 a, remote requests R0, R1, and R2 were received, and the request identifiers stored in the packet memory. The local requests L1 and L2 were then received, followed by R3, and so on. In this example, remote memory responses are forwarded as received, and the corresponding request identifier is removed from thepacket memory 206. Even if the local memory response to request L1 is received, if the link is in use, the local response is not sent until the request L1 is the oldest in thepacket memory 206, as illustrated in the example shown inFIG. 3 b, where responses associated with requests R0, R1, and R2 have been sent. - In the preceding description, certain details were set forth to provide a sufficient understanding of the present invention. One skilled in the art will appreciate, however, that the invention may be practiced without these particular details. Furthermore, one skilled in the art will appreciate that the example embodiments described above do not limit the scope of the present invention, and will also understand that various equivalent embodiments or combinations of the disclosed example embodiments are within the scope of the present invention. Illustrative examples set forth above are intended only to further illustrate certain details of the various embodiments, and should not be interpreted as limiting the scope of the present invention. Also, in the description above the operation of well known components has not been shown or described in detail to avoid unnecessarily obscuring the present invention. Finally, the invention is to be limited only by the appended claims, and is not limited to the described examples or embodiments of the invention.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/170,329 US20080294862A1 (en) | 2004-02-05 | 2008-07-09 | Arbitration system having a packet memory and method for memory responses in a hub-based memory system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/773,520 US7412574B2 (en) | 2004-02-05 | 2004-02-05 | System and method for arbitration of memory responses in a hub-based memory system |
US12/170,329 US20080294862A1 (en) | 2004-02-05 | 2008-07-09 | Arbitration system having a packet memory and method for memory responses in a hub-based memory system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/773,520 Continuation US7412574B2 (en) | 2004-02-05 | 2004-02-05 | System and method for arbitration of memory responses in a hub-based memory system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080294862A1 true US20080294862A1 (en) | 2008-11-27 |
Family
ID=34826780
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/773,520 Expired - Lifetime US7412574B2 (en) | 2004-02-05 | 2004-02-05 | System and method for arbitration of memory responses in a hub-based memory system |
US12/170,329 Abandoned US20080294862A1 (en) | 2004-02-05 | 2008-07-09 | Arbitration system having a packet memory and method for memory responses in a hub-based memory system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/773,520 Expired - Lifetime US7412574B2 (en) | 2004-02-05 | 2004-02-05 | System and method for arbitration of memory responses in a hub-based memory system |
Country Status (7)
Country | Link |
---|---|
US (2) | US7412574B2 (en) |
EP (1) | EP1723527B1 (en) |
JP (1) | JP4586031B2 (en) |
KR (1) | KR100854946B1 (en) |
CN (1) | CN1938691B (en) |
TW (1) | TWI327273B (en) |
WO (1) | WO2005076856A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8082404B2 (en) | 2004-03-24 | 2011-12-20 | Micron Technology, Inc. | Memory arbitration system and method having an arbitration packet protocol |
US8291173B2 (en) | 2004-02-05 | 2012-10-16 | Micron Technology, Inc. | Apparatus and method for data bypass for a bi-directional data bus in a hub-based memory sub-system |
US10225168B2 (en) | 2012-12-28 | 2019-03-05 | Panasonic Intellectual Property Management Co. Ltd | Interface apparatus and memory bus system |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7149874B2 (en) | 2002-08-16 | 2006-12-12 | Micron Technology, Inc. | Memory hub bypass circuit and method |
US7133991B2 (en) * | 2003-08-20 | 2006-11-07 | Micron Technology, Inc. | Method and system for capturing and bypassing memory transactions in a hub-based memory system |
US7136958B2 (en) | 2003-08-28 | 2006-11-14 | Micron Technology, Inc. | Multiple processor system and method including multiple memory hub modules |
US7120743B2 (en) | 2003-10-20 | 2006-10-10 | Micron Technology, Inc. | Arbitration system and method for memory responses in a hub-based memory system |
US7366864B2 (en) | 2004-03-08 | 2008-04-29 | Micron Technology, Inc. | Memory hub architecture having programmable lane widths |
US7447240B2 (en) | 2004-03-29 | 2008-11-04 | Micron Technology, Inc. | Method and system for synchronizing communications links in a hub-based memory system |
US6980042B2 (en) | 2004-04-05 | 2005-12-27 | Micron Technology, Inc. | Delay line synchronizer apparatus and method |
US7363419B2 (en) | 2004-05-28 | 2008-04-22 | Micron Technology, Inc. | Method and system for terminating write commands in a hub-based memory system |
US7389375B2 (en) | 2004-07-30 | 2008-06-17 | International Business Machines Corporation | System, method and storage medium for a multi-mode memory buffer device |
US7539800B2 (en) | 2004-07-30 | 2009-05-26 | International Business Machines Corporation | System, method and storage medium for providing segment level sparing |
US7296129B2 (en) | 2004-07-30 | 2007-11-13 | International Business Machines Corporation | System, method and storage medium for providing a serialized memory interface with a bus repeater |
JP4795956B2 (en) * | 2004-08-30 | 2011-10-19 | パナソニック株式会社 | Recording apparatus, system, integrated circuit, program, recording method |
US7305574B2 (en) | 2004-10-29 | 2007-12-04 | International Business Machines Corporation | System, method and storage medium for bus calibration in a memory subsystem |
US7356737B2 (en) * | 2004-10-29 | 2008-04-08 | International Business Machines Corporation | System, method and storage medium for testing a memory module |
US7299313B2 (en) | 2004-10-29 | 2007-11-20 | International Business Machines Corporation | System, method and storage medium for a memory subsystem command interface |
US7277988B2 (en) * | 2004-10-29 | 2007-10-02 | International Business Machines Corporation | System, method and storage medium for providing data caching and data compression in a memory subsystem |
US7441060B2 (en) | 2004-10-29 | 2008-10-21 | International Business Machines Corporation | System, method and storage medium for providing a service interface to a memory system |
US7331010B2 (en) | 2004-10-29 | 2008-02-12 | International Business Machines Corporation | System, method and storage medium for providing fault detection and correction in a memory subsystem |
US7512762B2 (en) | 2004-10-29 | 2009-03-31 | International Business Machines Corporation | System, method and storage medium for a memory subsystem with positional read data latency |
US20070016698A1 (en) * | 2005-06-22 | 2007-01-18 | Vogt Pete D | Memory channel response scheduling |
US7650557B2 (en) * | 2005-09-19 | 2010-01-19 | Network Appliance, Inc. | Memory scrubbing of expanded memory |
US7478259B2 (en) | 2005-10-31 | 2009-01-13 | International Business Machines Corporation | System, method and storage medium for deriving clocks in a memory system |
US7685392B2 (en) | 2005-11-28 | 2010-03-23 | International Business Machines Corporation | Providing indeterminate read data latency in a memory system |
US7636813B2 (en) | 2006-05-22 | 2009-12-22 | International Business Machines Corporation | Systems and methods for providing remote pre-fetch buffers |
US7594055B2 (en) | 2006-05-24 | 2009-09-22 | International Business Machines Corporation | Systems and methods for providing distributed technology independent memory controllers |
US7640386B2 (en) | 2006-05-24 | 2009-12-29 | International Business Machines Corporation | Systems and methods for providing memory modules with multiple hub devices |
US7584336B2 (en) * | 2006-06-08 | 2009-09-01 | International Business Machines Corporation | Systems and methods for providing data modification operations in memory subsystems |
US7493439B2 (en) | 2006-08-01 | 2009-02-17 | International Business Machines Corporation | Systems and methods for providing performance monitoring in a memory system |
US7669086B2 (en) | 2006-08-02 | 2010-02-23 | International Business Machines Corporation | Systems and methods for providing collision detection in a memory system |
US7581073B2 (en) | 2006-08-09 | 2009-08-25 | International Business Machines Corporation | Systems and methods for providing distributed autonomous power management in a memory system |
US7587559B2 (en) | 2006-08-10 | 2009-09-08 | International Business Machines Corporation | Systems and methods for memory module power management |
US7490217B2 (en) | 2006-08-15 | 2009-02-10 | International Business Machines Corporation | Design structure for selecting memory busses according to physical memory organization information stored in virtual address translation tables |
US7539842B2 (en) * | 2006-08-15 | 2009-05-26 | International Business Machines Corporation | Computer memory system for selecting memory buses according to physical memory organization information stored in virtual address translation tables |
US7477522B2 (en) | 2006-10-23 | 2009-01-13 | International Business Machines Corporation | High density high reliability memory module with a fault tolerant address and command bus |
US7870459B2 (en) | 2006-10-23 | 2011-01-11 | International Business Machines Corporation | High density high reliability memory module with power gating and a fault tolerant address and command bus |
US7721140B2 (en) | 2007-01-02 | 2010-05-18 | International Business Machines Corporation | Systems and methods for improving serviceability of a memory system |
US7603526B2 (en) | 2007-01-29 | 2009-10-13 | International Business Machines Corporation | Systems and methods for providing dynamic memory pre-fetch |
US7606988B2 (en) | 2007-01-29 | 2009-10-20 | International Business Machines Corporation | Systems and methods for providing a dynamic memory bank page policy |
JP5669338B2 (en) * | 2007-04-26 | 2015-02-12 | 株式会社日立製作所 | Semiconductor device |
US8700830B2 (en) * | 2007-11-20 | 2014-04-15 | Spansion Llc | Memory buffering system that improves read/write performance and provides low latency for mobile systems |
US8601181B2 (en) * | 2007-11-26 | 2013-12-03 | Spansion Llc | System and method for read data buffering wherein an arbitration policy determines whether internal or external buffers are given preference |
US8370720B2 (en) * | 2009-08-19 | 2013-02-05 | Ocz Technology Group, Inc. | Mass storage device and method for offline background scrubbing of solid-state memory devices |
US20140164659A1 (en) * | 2012-12-06 | 2014-06-12 | Wasim Quddus | Regulating access to slave devices |
GB2553102B (en) * | 2016-08-19 | 2020-05-20 | Advanced Risc Mach Ltd | A memory unit and method of operation of a memory unit to handle operation requests |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742253A (en) * | 1971-03-15 | 1973-06-26 | Burroughs Corp | Three state logic device with applications |
US4078228A (en) * | 1975-03-24 | 1978-03-07 | Ohkura Electric Co., Ltd. | Loop data highway communication system |
US4245306A (en) * | 1978-12-21 | 1981-01-13 | Burroughs Corporation | Selection of addressed processor in a multi-processor network |
US4253144A (en) * | 1978-12-21 | 1981-02-24 | Burroughs Corporation | Multi-processor communication network |
US4253146A (en) * | 1978-12-21 | 1981-02-24 | Burroughs Corporation | Module for coupling computer-processors |
US4724520A (en) * | 1985-07-01 | 1988-02-09 | United Technologies Corporation | Modular multiport data hub |
US4831520A (en) * | 1987-02-24 | 1989-05-16 | Digital Equipment Corporation | Bus interface circuit for digital data processor |
US4843263A (en) * | 1986-01-10 | 1989-06-27 | Nec Corporation | Clock timing controller for a plurality of LSI chips |
US4891808A (en) * | 1987-12-24 | 1990-01-02 | Coherent Communication Systems Corp. | Self-synchronizing multiplexer |
US4930128A (en) * | 1987-06-26 | 1990-05-29 | Hitachi, Ltd. | Method for restart of online computer system and apparatus for carrying out the same |
US4982185A (en) * | 1989-05-17 | 1991-01-01 | Blh Electronics, Inc. | System for synchronous measurement in a digital computer network |
US5299293A (en) * | 1991-04-02 | 1994-03-29 | Alcatel N.V. | Protection arrangement for an optical transmitter/receiver device |
US5313590A (en) * | 1990-01-05 | 1994-05-17 | Maspar Computer Corporation | System having fixedly priorized and grouped by positions I/O lines for interconnecting router elements in plurality of stages within parrallel computer |
US5317752A (en) * | 1989-12-22 | 1994-05-31 | Tandem Computers Incorporated | Fault-tolerant computer system with auto-restart after power-fall |
US5319755A (en) * | 1990-04-18 | 1994-06-07 | Rambus, Inc. | Integrated circuit I/O using high performance bus interface |
US5497476A (en) * | 1992-09-21 | 1996-03-05 | International Business Machines Corporation | Scatter-gather in data processing system |
US5502621A (en) * | 1994-03-31 | 1996-03-26 | Hewlett-Packard Company | Mirrored pin assignment for two sided multi-chip layout |
US5638534A (en) * | 1995-03-31 | 1997-06-10 | Samsung Electronics Co., Ltd. | Memory controller which executes read and write commands out of order |
US5706224A (en) * | 1996-10-10 | 1998-01-06 | Quality Semiconductor, Inc. | Content addressable memory and random access memory partition circuit |
US5715456A (en) * | 1995-02-13 | 1998-02-03 | International Business Machines Corporation | Method and apparatus for booting a computer system without pre-installing an operating system |
US5729709A (en) * | 1993-11-12 | 1998-03-17 | Intel Corporation | Memory controller with burst addressing circuit |
US5748616A (en) * | 1994-09-13 | 1998-05-05 | Square D Company | Data link module for time division multiplexing control systems |
US5875454A (en) * | 1996-07-24 | 1999-02-23 | International Business Machiness Corporation | Compressed data cache storage system |
US5875352A (en) * | 1995-11-03 | 1999-02-23 | Sun Microsystems, Inc. | Method and apparatus for multiple channel direct memory access control |
US5900020A (en) * | 1996-06-27 | 1999-05-04 | Sequent Computer Systems, Inc. | Method and apparatus for maintaining an order of write operations by processors in a multiprocessor computer to maintain memory consistency |
US6014721A (en) * | 1998-01-07 | 2000-01-11 | International Business Machines Corporation | Method and system for transferring data between buses having differing ordering policies |
US6023726A (en) * | 1998-01-20 | 2000-02-08 | Netscape Communications Corporation | User configurable prefetch control system for enabling client to prefetch documents from a network server |
US6029250A (en) * | 1998-09-09 | 2000-02-22 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same |
US6031241A (en) * | 1997-03-11 | 2000-02-29 | University Of Central Florida | Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications |
US6038630A (en) * | 1998-03-24 | 2000-03-14 | International Business Machines Corporation | Shared access control device for integrated system with multiple functional units accessing external structures over multiple data buses |
US6038687A (en) * | 1996-12-30 | 2000-03-14 | Lg Semicon Co., Ltd. | Loop back test apparatus for small computer system interface |
US6038951A (en) * | 1993-04-02 | 2000-03-21 | Danieli & C. Officine Meccaniche Spa | High speed flying shears |
US6061296A (en) * | 1998-08-17 | 2000-05-09 | Vanguard International Semiconductor Corporation | Multiple data clock activation with programmable delay for use in multiple CAS latency memory devices |
US6061263A (en) * | 1998-12-29 | 2000-05-09 | Intel Corporation | Small outline rambus in-line memory module |
US6064706A (en) * | 1996-05-01 | 2000-05-16 | Alcatel Usa, Inc. | Apparatus and method of desynchronizing synchronously mapped asynchronous data |
US6067262A (en) * | 1998-12-11 | 2000-05-23 | Lsi Logic Corporation | Redundancy analysis for embedded memories with built-in self test and built-in self repair |
US6067649A (en) * | 1998-06-10 | 2000-05-23 | Compaq Computer Corporation | Method and apparatus for a low power self test of a memory subsystem |
US6073190A (en) * | 1997-07-18 | 2000-06-06 | Micron Electronics, Inc. | System for dynamic buffer allocation comprising control logic for controlling a first address buffer and a first data buffer as a matched pair |
US6076139A (en) * | 1996-12-31 | 2000-06-13 | Compaq Computer Corporation | Multimedia computer architecture with multi-channel concurrent memory access |
US6079008A (en) * | 1998-04-03 | 2000-06-20 | Patton Electronics Co. | Multiple thread multiple data predictive coded parallel processing system and method |
US6175571B1 (en) * | 1994-07-22 | 2001-01-16 | Network Peripherals, Inc. | Distributed memory switching hub |
US6185352B1 (en) * | 2000-02-24 | 2001-02-06 | Siecor Operations, Llc | Optical fiber ribbon fan-out cables |
US6186400B1 (en) * | 1998-03-20 | 2001-02-13 | Symbol Technologies, Inc. | Bar code reader with an integrated scanning component module mountable on printed circuit board |
US6191663B1 (en) * | 1998-12-22 | 2001-02-20 | Intel Corporation | Echo reduction on bit-serial, multi-drop bus |
US6201724B1 (en) * | 1998-11-12 | 2001-03-13 | Nec Corporation | Semiconductor memory having improved register array access speed |
US6208180B1 (en) * | 1995-12-29 | 2001-03-27 | Intel Corporation | Core clock correction in a 2/N mode clocking scheme |
US6233376B1 (en) * | 1999-05-18 | 2001-05-15 | The United States Of America As Represented By The Secretary Of The Navy | Embedded fiber optic circuit boards and integrated circuits |
US6243831B1 (en) * | 1998-10-31 | 2001-06-05 | Compaq Computer Corporation | Computer system with power loss protection mechanism |
US6243769B1 (en) * | 1997-07-18 | 2001-06-05 | Micron Technology, Inc. | Dynamic buffer allocation for a computer system |
US6247107B1 (en) * | 1998-04-06 | 2001-06-12 | Advanced Micro Devices, Inc. | Chipset configured to perform data-directed prefetching |
US6246618B1 (en) * | 2000-06-30 | 2001-06-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit capable of testing and substituting defective memories and method thereof |
US6347055B1 (en) * | 1999-06-24 | 2002-02-12 | Nec Corporation | Line buffer type semiconductor memory device capable of direct prefetch and restore operations |
US6349363B2 (en) * | 1998-12-08 | 2002-02-19 | Intel Corporation | Multi-section cache with different attributes for each section |
US6356573B1 (en) * | 1998-01-31 | 2002-03-12 | Mitel Semiconductor Ab | Vertical cavity surface emitting laser |
US6367074B1 (en) * | 1998-12-28 | 2002-04-02 | Intel Corporation | Operation of a system |
US6370068B2 (en) * | 2000-01-05 | 2002-04-09 | Samsung Electronics Co., Ltd. | Semiconductor memory devices and methods for sampling data therefrom based on a relative position of a memory cell array section containing the data |
US6373777B1 (en) * | 1998-07-14 | 2002-04-16 | Nec Corporation | Semiconductor memory |
US6381190B1 (en) * | 1999-05-13 | 2002-04-30 | Nec Corporation | Semiconductor memory device in which use of cache can be selected |
US6392653B1 (en) * | 1998-06-25 | 2002-05-21 | Inria Institut National De Recherche En Informatique Et En Automatique | Device for processing acquisition data, in particular image data |
US20030005223A1 (en) * | 2001-06-27 | 2003-01-02 | Coulson Richard L. | System boot time reduction method |
US20030005344A1 (en) * | 2001-06-29 | 2003-01-02 | Bhamidipati Sriram M. | Synchronizing data with a capture pulse and synchronizer |
US6505287B2 (en) * | 1999-12-20 | 2003-01-07 | Nec Corporation | Virtual channel memory access controlling circuit |
US6523093B1 (en) * | 2000-09-29 | 2003-02-18 | Intel Corporation | Prefetch buffer allocation and filtering system |
US6523092B1 (en) * | 2000-09-29 | 2003-02-18 | Intel Corporation | Cache line replacement policy enhancement to avoid memory page thrashing |
US6526483B1 (en) * | 2000-09-20 | 2003-02-25 | Broadcom Corporation | Page open hint in transactions |
US20030043426A1 (en) * | 2001-08-30 | 2003-03-06 | Baker R. J. | Optical interconnect in high-speed memory systems |
US20030043158A1 (en) * | 2001-05-18 | 2003-03-06 | Wasserman Michael A. | Method and apparatus for reducing inefficiencies in shared memory devices |
US6539490B1 (en) * | 1999-08-30 | 2003-03-25 | Micron Technology, Inc. | Clock distribution without clock delay or skew |
US6552564B1 (en) * | 1999-08-30 | 2003-04-22 | Micron Technology, Inc. | Technique to reduce reflections and ringing on CMOS interconnections |
US20030093630A1 (en) * | 2001-11-15 | 2003-05-15 | Richard Elizabeth A. | Techniques for processing out-of -order requests in a processor-based system |
US6565329B2 (en) * | 2000-01-11 | 2003-05-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Electric type swash plate compressor |
US20030163613A1 (en) * | 2002-02-27 | 2003-08-28 | Stuber Russell B. | DEBUG mode for a data bus |
US6681292B2 (en) * | 2001-08-27 | 2004-01-20 | Intel Corporation | Distributed read and write caching implementation for optimized input/output applications |
US20040024948A1 (en) * | 2002-07-31 | 2004-02-05 | Joerg Winkler | Response reordering mechanism |
US20040022094A1 (en) * | 2002-02-25 | 2004-02-05 | Sivakumar Radhakrishnan | Cache usage for concurrent multiple streams |
US20040034753A1 (en) * | 2002-08-16 | 2004-02-19 | Jeddeloh Joseph M. | Memory hub bypass circuit and method |
US6697926B2 (en) * | 2001-06-06 | 2004-02-24 | Micron Technology, Inc. | Method and apparatus for determining actual write latency and accurately aligning the start of data capture with the arrival of data at a memory device |
US20040047169A1 (en) * | 2002-09-09 | 2004-03-11 | Lee Terry R. | Wavelength division multiplexed memory module, memory system and method |
US6715018B2 (en) * | 1998-06-16 | 2004-03-30 | Micron Technology, Inc. | Computer including installable and removable cards, optical interconnection between cards, and method of assembling a computer |
US6718440B2 (en) * | 2001-09-28 | 2004-04-06 | Intel Corporation | Memory access latency hiding with hint buffer |
US6721195B2 (en) * | 2001-07-12 | 2004-04-13 | Micron Technology, Inc. | Reversed memory module socket and motherboard incorporating same |
US6721860B2 (en) * | 1998-01-29 | 2004-04-13 | Micron Technology, Inc. | Method for bus capacitance reduction |
US6724685B2 (en) * | 2001-10-31 | 2004-04-20 | Infineon Technologies Ag | Configuration for data transmission in a semiconductor memory system, and relevant data transmission method |
US6728800B1 (en) * | 2000-06-28 | 2004-04-27 | Intel Corporation | Efficient performance based scheduling mechanism for handling multiple TLB operations |
US6735679B1 (en) * | 1998-07-08 | 2004-05-11 | Broadcom Corporation | Apparatus and method for optimizing access to memory |
US6735682B2 (en) * | 2002-03-28 | 2004-05-11 | Intel Corporation | Apparatus and method for address calculation |
US20040193821A1 (en) * | 2003-03-27 | 2004-09-30 | Michael Ruhovets | Providing an arrangement of memory devices to enable high-speed data access |
US6845409B1 (en) * | 2000-07-25 | 2005-01-18 | Sun Microsystems, Inc. | Data exchange methods for a switch which selectively forms a communication channel between a processing unit and multiple devices |
US20050015426A1 (en) * | 2003-07-14 | 2005-01-20 | Woodruff Robert J. | Communicating data over a communication link |
US20050071542A1 (en) * | 2003-05-13 | 2005-03-31 | Advanced Micro Devices, Inc. | Prefetch mechanism for use in a system including a host connected to a plurality of memory modules via a serial memory interconnect |
US20050105350A1 (en) * | 2003-11-13 | 2005-05-19 | David Zimmerman | Memory channel test fixture and method |
US6901494B2 (en) * | 2000-12-27 | 2005-05-31 | Intel Corporation | Memory control translators |
US20060022724A1 (en) * | 1997-10-10 | 2006-02-02 | Zerbe Jared L | Method and apparatus for fail-safe resynchronization with minimum latency |
US20060066375A1 (en) * | 2004-04-05 | 2006-03-30 | Laberge Paul A | Delay line synchronizer apparatus and method |
US7046060B1 (en) * | 2004-10-27 | 2006-05-16 | Infineon Technologies, Ag | Method and apparatus compensating for frequency drift in a delay locked loop |
US7181584B2 (en) * | 2004-02-05 | 2007-02-20 | Micron Technology, Inc. | Dynamic command and/or address mirroring system and method for memory modules |
US7187742B1 (en) * | 2000-10-06 | 2007-03-06 | Xilinx, Inc. | Synchronized multi-output digital clock manager |
US20090013211A1 (en) * | 2003-06-05 | 2009-01-08 | Vogt Pete D | Memory channel with bit lane fail-over |
Family Cites Families (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4045781A (en) | 1976-02-13 | 1977-08-30 | Digital Equipment Corporation | Memory module with selectable byte addressing for digital data processing system |
US4240143A (en) | 1978-12-22 | 1980-12-16 | Burroughs Corporation | Hierarchical multi-processor network for memory sharing |
US4608702A (en) | 1984-12-21 | 1986-08-26 | Advanced Micro Devices, Inc. | Method for digital clock recovery from Manchester-encoded signals |
US4707823A (en) | 1986-07-21 | 1987-11-17 | Chrysler Motors Corporation | Fiber optic multiplexed data acquisition system |
US5251303A (en) | 1989-01-13 | 1993-10-05 | International Business Machines Corporation | System for DMA block data transfer based on linked control blocks |
US5442770A (en) | 1989-01-24 | 1995-08-15 | Nec Electronics, Inc. | Triple port cache memory |
US4953930A (en) | 1989-03-15 | 1990-09-04 | Ramtech, Inc. | CPU socket supporting socket-to-socket optical communications |
JPH03156795A (en) | 1989-11-15 | 1991-07-04 | Toshiba Micro Electron Kk | Semiconductor memory circuit device |
JP2772103B2 (en) | 1990-03-28 | 1998-07-02 | 株式会社東芝 | Computer system startup method |
US5243703A (en) | 1990-04-18 | 1993-09-07 | Rambus, Inc. | Apparatus for synchronously generating clock signals in a data processing system |
US5461627A (en) | 1991-12-24 | 1995-10-24 | Rypinski; Chandos A. | Access protocol for a common channel wireless network |
JP2554816B2 (en) | 1992-02-20 | 1996-11-20 | 株式会社東芝 | Semiconductor memory device |
DE4345604B3 (en) | 1992-03-06 | 2012-07-12 | Rambus Inc. | Device for communication with a DRAM |
US5355391A (en) | 1992-03-06 | 1994-10-11 | Rambus, Inc. | High speed bus system |
AU3936693A (en) | 1992-03-25 | 1993-10-21 | Encore Computer U.S., Inc. | Fiber optic memory coupling system |
US5432907A (en) | 1992-05-12 | 1995-07-11 | Network Resources Corporation | Network hub with integrated bridge |
US5270964A (en) | 1992-05-19 | 1993-12-14 | Sun Microsystems, Inc. | Single in-line memory module |
AU666999B2 (en) * | 1992-11-25 | 1996-02-29 | Samsung Electronics Co., Ltd. | Pipelined data ordering system |
JPH0713945A (en) | 1993-06-16 | 1995-01-17 | Nippon Sheet Glass Co Ltd | Bus structure of multiprocessor system with separated arithmetic processing part and control/storage part |
US5497494A (en) | 1993-07-23 | 1996-03-05 | International Business Machines Corporation | Method for saving and restoring the state of a CPU executing code in protected mode |
US5566325A (en) | 1994-06-30 | 1996-10-15 | Digital Equipment Corporation | Method and apparatus for adaptive memory access |
US5978567A (en) | 1994-07-27 | 1999-11-02 | Instant Video Technologies Inc. | System for distribution of interactive multimedia and linear programs by enabling program webs which include control scripts to define presentation by client transceiver |
US5984512A (en) | 1994-07-29 | 1999-11-16 | Discovision Associates | Method for storing video information |
JPH08123717A (en) | 1994-10-25 | 1996-05-17 | Oki Electric Ind Co Ltd | Semiconductor storage device |
US6804760B2 (en) | 1994-12-23 | 2004-10-12 | Micron Technology, Inc. | Method for determining a type of memory present in a system |
US7681005B1 (en) | 1996-01-11 | 2010-03-16 | Micron Technology, Inc. | Asynchronously-accessible memory device with mode selection circuitry for burst or pipelined operation |
US5966724A (en) | 1996-01-11 | 1999-10-12 | Micron Technology, Inc. | Synchronous memory device with dual page and burst mode operations |
US5832250A (en) | 1996-01-26 | 1998-11-03 | Unisys Corporation | Multi set cache structure having parity RAMs holding parity bits for tag data and for status data utilizing prediction circuitry that predicts and generates the needed parity bits |
US5819304A (en) | 1996-01-29 | 1998-10-06 | Iowa State University Research Foundation, Inc. | Random access memory assembly |
US5659798A (en) | 1996-02-02 | 1997-08-19 | Blumrich; Matthias Augustin | Method and system for initiating and loading DMA controller registers by using user-level programs |
US5687325A (en) | 1996-04-19 | 1997-11-11 | Chang; Web | Application specific field programmable gate array |
US5818844A (en) | 1996-06-06 | 1998-10-06 | Advanced Micro Devices, Inc. | Address generation and data path arbitration to and from SRAM to accommodate multiple transmitted packets |
JPH1049511A (en) | 1996-08-02 | 1998-02-20 | Oki Electric Ind Co Ltd | One-chip micrcomputer |
JP4070255B2 (en) | 1996-08-13 | 2008-04-02 | 富士通株式会社 | Semiconductor integrated circuit |
TW304288B (en) | 1996-08-16 | 1997-05-01 | United Microelectronics Corp | Manufacturing method of semiconductor memory device with capacitor |
US6272600B1 (en) | 1996-11-15 | 2001-08-07 | Hyundai Electronics America | Memory request reordering in a data processing system |
US6167486A (en) | 1996-11-18 | 2000-12-26 | Nec Electronics, Inc. | Parallel access virtual channel memory system with cacheable channels |
EP0849685A3 (en) | 1996-12-19 | 2000-09-06 | Texas Instruments Incorporated | Communication bus system between processors and memory modules |
US6271582B1 (en) | 1997-04-07 | 2001-08-07 | Micron Technology, Inc. | Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die |
KR100202385B1 (en) | 1997-06-04 | 1999-06-15 | 윤종용 | Transmitter for half-duplex communication using HDLC |
US6760833B1 (en) | 1997-08-01 | 2004-07-06 | Micron Technology, Inc. | Split embedded DRAM processor |
US6105075A (en) | 1997-08-05 | 2000-08-15 | Adaptec, Inc. | Scatter gather memory system for a hardware accelerated command interpreter engine |
US6137780A (en) | 1997-08-07 | 2000-10-24 | At&T Corp | Apparatus and method to monitor communication system status |
JP4014708B2 (en) | 1997-08-21 | 2007-11-28 | 株式会社ルネサステクノロジ | Method for designing semiconductor integrated circuit device |
US6249802B1 (en) | 1997-09-19 | 2001-06-19 | Silicon Graphics, Inc. | Method, system, and computer program product for allocating physical memory in a distributed shared memory network |
JPH11120120A (en) | 1997-10-13 | 1999-04-30 | Fujitsu Ltd | Card bus interface circuit and card bus PC card having the same |
US5987196A (en) | 1997-11-06 | 1999-11-16 | Micron Technology, Inc. | Semiconductor structure having an optical signal path in a substrate and method for forming the same |
US6098158A (en) | 1997-12-18 | 2000-08-01 | International Business Machines Corporation | Software-enabled fast boot |
US7024518B2 (en) | 1998-02-13 | 2006-04-04 | Intel Corporation | Dual-port buffer-to-memory interface |
JPH11316617A (en) | 1998-05-01 | 1999-11-16 | Mitsubishi Electric Corp | Semiconductor circuit device |
KR100283243B1 (en) | 1998-05-11 | 2001-03-02 | 구자홍 | How to boot the operating system |
US6167465A (en) | 1998-05-20 | 2000-12-26 | Aureal Semiconductor, Inc. | System for managing multiple DMA connections between a peripheral device and a memory and performing real-time operations on data carried by a selected DMA connection |
SG75958A1 (en) | 1998-06-01 | 2000-10-24 | Hitachi Ulsi Sys Co Ltd | Semiconductor device and a method of producing semiconductor device |
US6405280B1 (en) | 1998-06-05 | 2002-06-11 | Micron Technology, Inc. | Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence |
US6134624A (en) | 1998-06-08 | 2000-10-17 | Storage Technology Corporation | High bandwidth cache system |
US6301637B1 (en) | 1998-06-08 | 2001-10-09 | Storage Technology Corporation | High performance data paths |
US6289068B1 (en) | 1998-06-22 | 2001-09-11 | Xilinx, Inc. | Delay lock loop with clock phase shifter |
JP2000011640A (en) | 1998-06-23 | 2000-01-14 | Nec Corp | Semiconductor storage |
JP3178423B2 (en) | 1998-07-03 | 2001-06-18 | 日本電気株式会社 | Virtual channel SDRAM |
US6286083B1 (en) | 1998-07-08 | 2001-09-04 | Compaq Computer Corporation | Computer system with adaptive memory arbitration scheme |
US6272609B1 (en) | 1998-07-31 | 2001-08-07 | Micron Electronics, Inc. | Pipelined memory controller |
TW385408B (en) * | 1998-08-26 | 2000-03-21 | Inventec Corp | Configuration method for installing plug-and-play device |
US6622188B1 (en) | 1998-09-30 | 2003-09-16 | International Business Machines Corporation | 12C bus expansion apparatus and method therefor |
US6587912B2 (en) | 1998-09-30 | 2003-07-01 | Intel Corporation | Method and apparatus for implementing multiple memory buses on a memory module |
US6910109B2 (en) | 1998-09-30 | 2005-06-21 | Intel Corporation | Tracking memory page state |
US6434639B1 (en) | 1998-11-13 | 2002-08-13 | Intel Corporation | System for combining requests associated with one or more memory locations that are collectively associated with a single cache line to furnish a single memory operation |
US6453370B1 (en) * | 1998-11-16 | 2002-09-17 | Infineion Technologies Ag | Using of bank tag registers to avoid a background operation collision in memory systems |
US6438622B1 (en) | 1998-11-17 | 2002-08-20 | Intel Corporation | Multiprocessor system including a docking system |
US6100735A (en) | 1998-11-19 | 2000-08-08 | Centillium Communications, Inc. | Segmented dual delay-locked loop for precise variable-phase clock generation |
US6430696B1 (en) | 1998-11-30 | 2002-08-06 | Micron Technology, Inc. | Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same |
US6463059B1 (en) | 1998-12-04 | 2002-10-08 | Koninklijke Philips Electronics N.V. | Direct memory access execution engine with indirect addressing of circular queues in addition to direct memory addressing |
US6374360B1 (en) | 1998-12-11 | 2002-04-16 | Micron Technology, Inc. | Method and apparatus for bit-to-bit timing correction of a high speed memory bus |
US6487556B1 (en) | 1998-12-18 | 2002-11-26 | International Business Machines Corporation | Method and system for providing an associative datastore within a data processing system |
US6598154B1 (en) | 1998-12-29 | 2003-07-22 | Intel Corporation | Precoding branch instructions to reduce branch-penalty in pipelined processors |
US6324485B1 (en) | 1999-01-26 | 2001-11-27 | Newmillennia Solutions, Inc. | Application specific automated test equipment system for testing integrated circuit devices in a native environment |
DE60043651D1 (en) | 1999-02-01 | 2010-02-25 | Renesas Tech Corp | INTEGRATED SEMICONDUCTOR SWITCHING AND NON-VOLATILE MEMORY ELEMENT |
US6285349B1 (en) | 1999-02-26 | 2001-09-04 | Intel Corporation | Correcting non-uniformity in displays |
US6496909B1 (en) | 1999-04-06 | 2002-12-17 | Silicon Graphics, Inc. | Method for managing concurrent access to virtual memory data structures |
JP3376315B2 (en) | 1999-05-18 | 2003-02-10 | 日本電気株式会社 | Bit synchronization circuit |
US6294937B1 (en) | 1999-05-25 | 2001-09-25 | Lsi Logic Corporation | Method and apparatus for self correcting parallel I/O circuitry |
US6449308B1 (en) | 1999-05-25 | 2002-09-10 | Intel Corporation | High-speed digital distribution system |
JP3721283B2 (en) | 1999-06-03 | 2005-11-30 | 株式会社日立製作所 | Main memory shared multiprocessor system |
US6434736B1 (en) | 1999-07-08 | 2002-08-13 | Intel Corporation | Location based timing scheme in memory design |
US6401213B1 (en) | 1999-07-09 | 2002-06-04 | Micron Technology, Inc. | Timing circuit for high speed memory |
US6792495B1 (en) * | 1999-07-27 | 2004-09-14 | Intel Corporation | Transaction scheduling for a bus system |
US6477592B1 (en) | 1999-08-06 | 2002-11-05 | Integrated Memory Logic, Inc. | System for I/O interfacing for semiconductor chip utilizing addition of reference element to each data element in first data stream and interpret to recover data elements of second data stream |
US6629220B1 (en) | 1999-08-20 | 2003-09-30 | Intel Corporation | Method and apparatus for dynamic arbitration between a first queue and a second queue based on a high priority transaction type |
US6307769B1 (en) | 1999-09-02 | 2001-10-23 | Micron Technology, Inc. | Semiconductor devices having mirrored terminal arrangements, devices including same, and methods of testing such semiconductor devices |
US6594713B1 (en) | 1999-09-10 | 2003-07-15 | Texas Instruments Incorporated | Hub interface unit and application unit interfaces for expanded direct memory access processor |
US6438668B1 (en) | 1999-09-30 | 2002-08-20 | Apple Computer, Inc. | Method and apparatus for reducing power consumption in a digital processing system |
US6467013B1 (en) | 1999-09-30 | 2002-10-15 | Intel Corporation | Memory transceiver to couple an additional memory channel to an existing memory channel |
US6636912B2 (en) | 1999-10-07 | 2003-10-21 | Intel Corporation | Method and apparatus for mode selection in a computer system |
US6421744B1 (en) | 1999-10-25 | 2002-07-16 | Motorola, Inc. | Direct memory access controller and method therefor |
KR100319292B1 (en) | 1999-12-02 | 2002-01-05 | 윤종용 | Computer system and method for quickly booting |
US6501471B1 (en) | 1999-12-13 | 2002-12-31 | Intel Corporation | Volume rendering |
JP3356747B2 (en) | 1999-12-22 | 2002-12-16 | エヌイーシーマイクロシステム株式会社 | Semiconductor storage device |
US6628294B1 (en) | 1999-12-31 | 2003-09-30 | Intel Corporation | Prefetching of virtual-to-physical address translation for display data |
US6745275B2 (en) | 2000-01-25 | 2004-06-01 | Via Technologies, Inc. | Feedback system for accomodating different memory module loading |
US6823023B1 (en) | 2000-01-31 | 2004-11-23 | Intel Corporation | Serial bus communication system |
JP2001265539A (en) | 2000-03-16 | 2001-09-28 | Fuji Xerox Co Ltd | Array type storage device and information processing system |
JP2001274323A (en) | 2000-03-24 | 2001-10-05 | Hitachi Ltd | Semiconductor device, semiconductor module mounting the same, and method of manufacturing semiconductor device |
US6594722B1 (en) | 2000-06-29 | 2003-07-15 | Intel Corporation | Mechanism for managing multiple out-of-order packet streams in a PCI host bridge |
US6799268B1 (en) | 2000-06-30 | 2004-09-28 | Intel Corporation | Branch ordering buffer |
US6754812B1 (en) | 2000-07-06 | 2004-06-22 | Intel Corporation | Hardware predication for conditional instruction path branching |
US6816947B1 (en) | 2000-07-20 | 2004-11-09 | Silicon Graphics, Inc. | System and method for memory arbitration |
US6453393B1 (en) | 2000-09-18 | 2002-09-17 | Intel Corporation | Method and apparatus for interfacing to a computer memory |
US6859208B1 (en) | 2000-09-29 | 2005-02-22 | Intel Corporation | Shared translation address caching |
US6658509B1 (en) | 2000-10-03 | 2003-12-02 | Intel Corporation | Multi-tier point-to-point ring memory interface |
US6792059B2 (en) | 2000-11-30 | 2004-09-14 | Trw Inc. | Early/on-time/late gate bit synchronizer |
US6631440B2 (en) | 2000-11-30 | 2003-10-07 | Hewlett-Packard Development Company | Method and apparatus for scheduling memory calibrations based on transactions |
US6807630B2 (en) | 2000-12-15 | 2004-10-19 | International Business Machines Corporation | Method for fast reinitialization wherein a saved system image of an operating system is transferred into a primary memory from a secondary memory |
US6801994B2 (en) | 2000-12-20 | 2004-10-05 | Microsoft Corporation | Software management systems and methods for automotive computing devices |
US6751703B2 (en) | 2000-12-27 | 2004-06-15 | Emc Corporation | Data storage systems and methods which utilize an on-board cache |
US6493250B2 (en) * | 2000-12-28 | 2002-12-10 | Intel Corporation | Multi-tier point-to-point buffered memory interface |
DE10110469A1 (en) | 2001-03-05 | 2002-09-26 | Infineon Technologies Ag | Integrated memory and method for testing and repairing the same |
US6782435B2 (en) | 2001-03-26 | 2004-08-24 | Intel Corporation | Device for spatially and temporally reordering for data between a processor, memory and peripherals |
US6904499B2 (en) | 2001-03-30 | 2005-06-07 | Intel Corporation | Controlling cache memory in external chipset using processor |
US7107399B2 (en) * | 2001-05-11 | 2006-09-12 | International Business Machines Corporation | Scalable memory |
SE524110C2 (en) | 2001-06-06 | 2004-06-29 | Kvaser Consultant Ab | Device and method for systems with locally deployed module units and contact unit for connection of such module units |
US6665498B1 (en) | 2001-07-20 | 2003-12-16 | Wenbin Jiang | High-speed optical data links |
US6792496B2 (en) | 2001-08-02 | 2004-09-14 | Intel Corporation | Prefetching data for peripheral component interconnect devices |
US6904556B2 (en) | 2001-08-09 | 2005-06-07 | Emc Corporation | Systems and methods which utilize parity sets |
EP2230603B1 (en) | 2001-08-29 | 2014-03-05 | Mediatek Inc. | Method and apparatus for timing and event processing in wireless systems |
US6665202B2 (en) | 2001-09-25 | 2003-12-16 | Integrated Device Technology, Inc. | Content addressable memory (CAM) devices that can identify highest priority matches in non-sectored CAM arrays and methods of operating same |
US6646929B1 (en) | 2001-12-05 | 2003-11-11 | Lsi Logic Corporation | Methods and structure for read data synchronization with minimal latency |
KR100454123B1 (en) | 2001-12-06 | 2004-10-26 | 삼성전자주식회사 | Semiconductor integrated circuit devices and modules with the same |
US6775747B2 (en) | 2002-01-03 | 2004-08-10 | Intel Corporation | System and method for performing page table walks on speculative software prefetch operations |
US6804764B2 (en) | 2002-01-22 | 2004-10-12 | Mircron Technology, Inc. | Write clock and data window tuning based on rank select |
US6670833B2 (en) | 2002-01-23 | 2003-12-30 | Intel Corporation | Multiple VCO phase lock loop architecture |
US7006533B2 (en) * | 2002-02-19 | 2006-02-28 | Intel Corporation | Method and apparatus for hublink read return streaming |
US6774687B2 (en) | 2002-03-11 | 2004-08-10 | Micron Technology, Inc. | Method and apparatus for characterizing a delay locked loop |
US6795899B2 (en) | 2002-03-22 | 2004-09-21 | Intel Corporation | Memory system with burst length shorter than prefetch length |
US7110400B2 (en) | 2002-04-10 | 2006-09-19 | Integrated Device Technology, Inc. | Random access memory architecture and serial interface with continuous packet handling capability |
US20030217223A1 (en) | 2002-05-14 | 2003-11-20 | Infineon Technologies North America Corp. | Combined command set |
US7133972B2 (en) | 2002-06-07 | 2006-11-07 | Micron Technology, Inc. | Memory hub with internal cache and/or memory access prediction |
US6898674B2 (en) | 2002-06-11 | 2005-05-24 | Intel Corporation | Apparatus, method, and system for synchronizing information prefetch between processors and memory controllers |
US6820181B2 (en) | 2002-08-29 | 2004-11-16 | Micron Technology, Inc. | Method and system for controlling memory accesses to memory modules having a memory hub architecture |
US6667926B1 (en) | 2002-09-09 | 2003-12-23 | Silicon Integrated Systems Corporation | Memory read/write arbitration method |
US6821029B1 (en) | 2002-09-10 | 2004-11-23 | Xilinx, Inc. | High speed serial I/O technology using an optical link |
US6811320B1 (en) | 2002-11-13 | 2004-11-02 | Russell Mistretta Abbott | System for connecting a fiber optic cable to an electronic device |
DE10255937B4 (en) * | 2002-11-29 | 2005-03-17 | Advanced Micro Devices, Inc., Sunnyvale | Order-controlled command storage |
US6978351B2 (en) | 2002-12-30 | 2005-12-20 | Intel Corporation | Method and system to improve prefetching operations |
US7366423B2 (en) | 2002-12-31 | 2008-04-29 | Intel Corporation | System having multiple agents on optical and electrical bus |
US6961259B2 (en) | 2003-01-23 | 2005-11-01 | Micron Technology, Inc. | Apparatus and methods for optically-coupled memory systems |
JP3841762B2 (en) | 2003-02-18 | 2006-11-01 | ファナック株式会社 | Servo motor control system |
US7366854B2 (en) | 2003-05-08 | 2008-04-29 | Hewlett-Packard Development Company, L.P. | Systems and methods for scheduling memory requests utilizing multi-level arbitration |
US6937076B2 (en) | 2003-06-11 | 2005-08-30 | Micron Technology, Inc. | Clock synchronizing apparatus and method using frequency dependent variable delay |
US7120743B2 (en) | 2003-10-20 | 2006-10-10 | Micron Technology, Inc. | Arbitration system and method for memory responses in a hub-based memory system |
US7098714B2 (en) | 2003-12-08 | 2006-08-29 | Micron Technology, Inc. | Centralizing the lock point of a synchronous circuit |
US7529800B2 (en) * | 2003-12-18 | 2009-05-05 | International Business Machines Corporation | Queuing of conflicted remotely received transactions |
US7116143B2 (en) | 2004-12-30 | 2006-10-03 | Micron Technology, Inc. | Synchronous clock generator including duty cycle correction |
-
2004
- 2004-02-05 US US10/773,520 patent/US7412574B2/en not_active Expired - Lifetime
-
2005
- 2005-01-26 EP EP05712450A patent/EP1723527B1/en not_active Expired - Lifetime
- 2005-01-26 KR KR1020067018090A patent/KR100854946B1/en not_active Expired - Lifetime
- 2005-01-26 CN CN2005800106804A patent/CN1938691B/en not_active Expired - Lifetime
- 2005-01-26 WO PCT/US2005/003015 patent/WO2005076856A2/en active Application Filing
- 2005-01-26 JP JP2006552194A patent/JP4586031B2/en not_active Expired - Lifetime
- 2005-02-05 TW TW094104060A patent/TWI327273B/en not_active IP Right Cessation
-
2008
- 2008-07-09 US US12/170,329 patent/US20080294862A1/en not_active Abandoned
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742253A (en) * | 1971-03-15 | 1973-06-26 | Burroughs Corp | Three state logic device with applications |
US4078228A (en) * | 1975-03-24 | 1978-03-07 | Ohkura Electric Co., Ltd. | Loop data highway communication system |
US4245306A (en) * | 1978-12-21 | 1981-01-13 | Burroughs Corporation | Selection of addressed processor in a multi-processor network |
US4253144A (en) * | 1978-12-21 | 1981-02-24 | Burroughs Corporation | Multi-processor communication network |
US4253146A (en) * | 1978-12-21 | 1981-02-24 | Burroughs Corporation | Module for coupling computer-processors |
US4724520A (en) * | 1985-07-01 | 1988-02-09 | United Technologies Corporation | Modular multiport data hub |
US4843263A (en) * | 1986-01-10 | 1989-06-27 | Nec Corporation | Clock timing controller for a plurality of LSI chips |
US4831520A (en) * | 1987-02-24 | 1989-05-16 | Digital Equipment Corporation | Bus interface circuit for digital data processor |
US4930128A (en) * | 1987-06-26 | 1990-05-29 | Hitachi, Ltd. | Method for restart of online computer system and apparatus for carrying out the same |
US4891808A (en) * | 1987-12-24 | 1990-01-02 | Coherent Communication Systems Corp. | Self-synchronizing multiplexer |
US4982185A (en) * | 1989-05-17 | 1991-01-01 | Blh Electronics, Inc. | System for synchronous measurement in a digital computer network |
US5317752A (en) * | 1989-12-22 | 1994-05-31 | Tandem Computers Incorporated | Fault-tolerant computer system with auto-restart after power-fall |
US5313590A (en) * | 1990-01-05 | 1994-05-17 | Maspar Computer Corporation | System having fixedly priorized and grouped by positions I/O lines for interconnecting router elements in plurality of stages within parrallel computer |
US5319755A (en) * | 1990-04-18 | 1994-06-07 | Rambus, Inc. | Integrated circuit I/O using high performance bus interface |
US5638334A (en) * | 1990-04-18 | 1997-06-10 | Rambus Inc. | Integrated circuit I/O using a high performance bus interface |
US5606717A (en) * | 1990-04-18 | 1997-02-25 | Rambus, Inc. | Memory circuitry having bus interface for receiving information in packets and access time registers |
US5299293A (en) * | 1991-04-02 | 1994-03-29 | Alcatel N.V. | Protection arrangement for an optical transmitter/receiver device |
US5497476A (en) * | 1992-09-21 | 1996-03-05 | International Business Machines Corporation | Scatter-gather in data processing system |
US6038951A (en) * | 1993-04-02 | 2000-03-21 | Danieli & C. Officine Meccaniche Spa | High speed flying shears |
US5729709A (en) * | 1993-11-12 | 1998-03-17 | Intel Corporation | Memory controller with burst addressing circuit |
US5502621A (en) * | 1994-03-31 | 1996-03-26 | Hewlett-Packard Company | Mirrored pin assignment for two sided multi-chip layout |
US6175571B1 (en) * | 1994-07-22 | 2001-01-16 | Network Peripherals, Inc. | Distributed memory switching hub |
US5748616A (en) * | 1994-09-13 | 1998-05-05 | Square D Company | Data link module for time division multiplexing control systems |
US5715456A (en) * | 1995-02-13 | 1998-02-03 | International Business Machines Corporation | Method and apparatus for booting a computer system without pre-installing an operating system |
US5638534A (en) * | 1995-03-31 | 1997-06-10 | Samsung Electronics Co., Ltd. | Memory controller which executes read and write commands out of order |
US5875352A (en) * | 1995-11-03 | 1999-02-23 | Sun Microsystems, Inc. | Method and apparatus for multiple channel direct memory access control |
US6208180B1 (en) * | 1995-12-29 | 2001-03-27 | Intel Corporation | Core clock correction in a 2/N mode clocking scheme |
US6064706A (en) * | 1996-05-01 | 2000-05-16 | Alcatel Usa, Inc. | Apparatus and method of desynchronizing synchronously mapped asynchronous data |
US5900020A (en) * | 1996-06-27 | 1999-05-04 | Sequent Computer Systems, Inc. | Method and apparatus for maintaining an order of write operations by processors in a multiprocessor computer to maintain memory consistency |
US5875454A (en) * | 1996-07-24 | 1999-02-23 | International Business Machiness Corporation | Compressed data cache storage system |
US5706224A (en) * | 1996-10-10 | 1998-01-06 | Quality Semiconductor, Inc. | Content addressable memory and random access memory partition circuit |
US6038687A (en) * | 1996-12-30 | 2000-03-14 | Lg Semicon Co., Ltd. | Loop back test apparatus for small computer system interface |
US6076139A (en) * | 1996-12-31 | 2000-06-13 | Compaq Computer Corporation | Multimedia computer architecture with multi-channel concurrent memory access |
US6031241A (en) * | 1997-03-11 | 2000-02-29 | University Of Central Florida | Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications |
US6243769B1 (en) * | 1997-07-18 | 2001-06-05 | Micron Technology, Inc. | Dynamic buffer allocation for a computer system |
US6073190A (en) * | 1997-07-18 | 2000-06-06 | Micron Electronics, Inc. | System for dynamic buffer allocation comprising control logic for controlling a first address buffer and a first data buffer as a matched pair |
US20060022724A1 (en) * | 1997-10-10 | 2006-02-02 | Zerbe Jared L | Method and apparatus for fail-safe resynchronization with minimum latency |
US6014721A (en) * | 1998-01-07 | 2000-01-11 | International Business Machines Corporation | Method and system for transferring data between buses having differing ordering policies |
US6023726A (en) * | 1998-01-20 | 2000-02-08 | Netscape Communications Corporation | User configurable prefetch control system for enabling client to prefetch documents from a network server |
US6721860B2 (en) * | 1998-01-29 | 2004-04-13 | Micron Technology, Inc. | Method for bus capacitance reduction |
US6356573B1 (en) * | 1998-01-31 | 2002-03-12 | Mitel Semiconductor Ab | Vertical cavity surface emitting laser |
US6186400B1 (en) * | 1998-03-20 | 2001-02-13 | Symbol Technologies, Inc. | Bar code reader with an integrated scanning component module mountable on printed circuit board |
US6038630A (en) * | 1998-03-24 | 2000-03-14 | International Business Machines Corporation | Shared access control device for integrated system with multiple functional units accessing external structures over multiple data buses |
US6079008A (en) * | 1998-04-03 | 2000-06-20 | Patton Electronics Co. | Multiple thread multiple data predictive coded parallel processing system and method |
US6247107B1 (en) * | 1998-04-06 | 2001-06-12 | Advanced Micro Devices, Inc. | Chipset configured to perform data-directed prefetching |
US6067649A (en) * | 1998-06-10 | 2000-05-23 | Compaq Computer Corporation | Method and apparatus for a low power self test of a memory subsystem |
US6715018B2 (en) * | 1998-06-16 | 2004-03-30 | Micron Technology, Inc. | Computer including installable and removable cards, optical interconnection between cards, and method of assembling a computer |
US6392653B1 (en) * | 1998-06-25 | 2002-05-21 | Inria Institut National De Recherche En Informatique Et En Automatique | Device for processing acquisition data, in particular image data |
US6735679B1 (en) * | 1998-07-08 | 2004-05-11 | Broadcom Corporation | Apparatus and method for optimizing access to memory |
US6373777B1 (en) * | 1998-07-14 | 2002-04-16 | Nec Corporation | Semiconductor memory |
US6061296A (en) * | 1998-08-17 | 2000-05-09 | Vanguard International Semiconductor Corporation | Multiple data clock activation with programmable delay for use in multiple CAS latency memory devices |
US6029250A (en) * | 1998-09-09 | 2000-02-22 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same |
US6243831B1 (en) * | 1998-10-31 | 2001-06-05 | Compaq Computer Corporation | Computer system with power loss protection mechanism |
US6201724B1 (en) * | 1998-11-12 | 2001-03-13 | Nec Corporation | Semiconductor memory having improved register array access speed |
US6349363B2 (en) * | 1998-12-08 | 2002-02-19 | Intel Corporation | Multi-section cache with different attributes for each section |
US6067262A (en) * | 1998-12-11 | 2000-05-23 | Lsi Logic Corporation | Redundancy analysis for embedded memories with built-in self test and built-in self repair |
US6191663B1 (en) * | 1998-12-22 | 2001-02-20 | Intel Corporation | Echo reduction on bit-serial, multi-drop bus |
US6367074B1 (en) * | 1998-12-28 | 2002-04-02 | Intel Corporation | Operation of a system |
US6061263A (en) * | 1998-12-29 | 2000-05-09 | Intel Corporation | Small outline rambus in-line memory module |
US6381190B1 (en) * | 1999-05-13 | 2002-04-30 | Nec Corporation | Semiconductor memory device in which use of cache can be selected |
US6233376B1 (en) * | 1999-05-18 | 2001-05-15 | The United States Of America As Represented By The Secretary Of The Navy | Embedded fiber optic circuit boards and integrated circuits |
US6347055B1 (en) * | 1999-06-24 | 2002-02-12 | Nec Corporation | Line buffer type semiconductor memory device capable of direct prefetch and restore operations |
US6539490B1 (en) * | 1999-08-30 | 2003-03-25 | Micron Technology, Inc. | Clock distribution without clock delay or skew |
US6552564B1 (en) * | 1999-08-30 | 2003-04-22 | Micron Technology, Inc. | Technique to reduce reflections and ringing on CMOS interconnections |
US6505287B2 (en) * | 1999-12-20 | 2003-01-07 | Nec Corporation | Virtual channel memory access controlling circuit |
US6370068B2 (en) * | 2000-01-05 | 2002-04-09 | Samsung Electronics Co., Ltd. | Semiconductor memory devices and methods for sampling data therefrom based on a relative position of a memory cell array section containing the data |
US6565329B2 (en) * | 2000-01-11 | 2003-05-20 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Electric type swash plate compressor |
US6185352B1 (en) * | 2000-02-24 | 2001-02-06 | Siecor Operations, Llc | Optical fiber ribbon fan-out cables |
US6728800B1 (en) * | 2000-06-28 | 2004-04-27 | Intel Corporation | Efficient performance based scheduling mechanism for handling multiple TLB operations |
US6246618B1 (en) * | 2000-06-30 | 2001-06-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit capable of testing and substituting defective memories and method thereof |
US6845409B1 (en) * | 2000-07-25 | 2005-01-18 | Sun Microsystems, Inc. | Data exchange methods for a switch which selectively forms a communication channel between a processing unit and multiple devices |
US6526483B1 (en) * | 2000-09-20 | 2003-02-25 | Broadcom Corporation | Page open hint in transactions |
US6523093B1 (en) * | 2000-09-29 | 2003-02-18 | Intel Corporation | Prefetch buffer allocation and filtering system |
US6523092B1 (en) * | 2000-09-29 | 2003-02-18 | Intel Corporation | Cache line replacement policy enhancement to avoid memory page thrashing |
US7187742B1 (en) * | 2000-10-06 | 2007-03-06 | Xilinx, Inc. | Synchronized multi-output digital clock manager |
US6901494B2 (en) * | 2000-12-27 | 2005-05-31 | Intel Corporation | Memory control translators |
US20030043158A1 (en) * | 2001-05-18 | 2003-03-06 | Wasserman Michael A. | Method and apparatus for reducing inefficiencies in shared memory devices |
US6697926B2 (en) * | 2001-06-06 | 2004-02-24 | Micron Technology, Inc. | Method and apparatus for determining actual write latency and accurately aligning the start of data capture with the arrival of data at a memory device |
US20030005223A1 (en) * | 2001-06-27 | 2003-01-02 | Coulson Richard L. | System boot time reduction method |
US20030005344A1 (en) * | 2001-06-29 | 2003-01-02 | Bhamidipati Sriram M. | Synchronizing data with a capture pulse and synchronizer |
US6721195B2 (en) * | 2001-07-12 | 2004-04-13 | Micron Technology, Inc. | Reversed memory module socket and motherboard incorporating same |
US6681292B2 (en) * | 2001-08-27 | 2004-01-20 | Intel Corporation | Distributed read and write caching implementation for optimized input/output applications |
US20030043426A1 (en) * | 2001-08-30 | 2003-03-06 | Baker R. J. | Optical interconnect in high-speed memory systems |
US6718440B2 (en) * | 2001-09-28 | 2004-04-06 | Intel Corporation | Memory access latency hiding with hint buffer |
US6724685B2 (en) * | 2001-10-31 | 2004-04-20 | Infineon Technologies Ag | Configuration for data transmission in a semiconductor memory system, and relevant data transmission method |
US20030093630A1 (en) * | 2001-11-15 | 2003-05-15 | Richard Elizabeth A. | Techniques for processing out-of -order requests in a processor-based system |
US20040022094A1 (en) * | 2002-02-25 | 2004-02-05 | Sivakumar Radhakrishnan | Cache usage for concurrent multiple streams |
US20030163613A1 (en) * | 2002-02-27 | 2003-08-28 | Stuber Russell B. | DEBUG mode for a data bus |
US6735682B2 (en) * | 2002-03-28 | 2004-05-11 | Intel Corporation | Apparatus and method for address calculation |
US20040024948A1 (en) * | 2002-07-31 | 2004-02-05 | Joerg Winkler | Response reordering mechanism |
US7047351B2 (en) * | 2002-08-16 | 2006-05-16 | Micron Technology, Inc. | Memory hub bypass circuit and method |
US20040034753A1 (en) * | 2002-08-16 | 2004-02-19 | Jeddeloh Joseph M. | Memory hub bypass circuit and method |
US20040047169A1 (en) * | 2002-09-09 | 2004-03-11 | Lee Terry R. | Wavelength division multiplexed memory module, memory system and method |
US20040193821A1 (en) * | 2003-03-27 | 2004-09-30 | Michael Ruhovets | Providing an arrangement of memory devices to enable high-speed data access |
US20050071542A1 (en) * | 2003-05-13 | 2005-03-31 | Advanced Micro Devices, Inc. | Prefetch mechanism for use in a system including a host connected to a plurality of memory modules via a serial memory interconnect |
US20090013211A1 (en) * | 2003-06-05 | 2009-01-08 | Vogt Pete D | Memory channel with bit lane fail-over |
US20050015426A1 (en) * | 2003-07-14 | 2005-01-20 | Woodruff Robert J. | Communicating data over a communication link |
US20050105350A1 (en) * | 2003-11-13 | 2005-05-19 | David Zimmerman | Memory channel test fixture and method |
US7181584B2 (en) * | 2004-02-05 | 2007-02-20 | Micron Technology, Inc. | Dynamic command and/or address mirroring system and method for memory modules |
US20060066375A1 (en) * | 2004-04-05 | 2006-03-30 | Laberge Paul A | Delay line synchronizer apparatus and method |
US7046060B1 (en) * | 2004-10-27 | 2006-05-16 | Infineon Technologies, Ag | Method and apparatus compensating for frequency drift in a delay locked loop |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8291173B2 (en) | 2004-02-05 | 2012-10-16 | Micron Technology, Inc. | Apparatus and method for data bypass for a bi-directional data bus in a hub-based memory sub-system |
US8694735B2 (en) | 2004-02-05 | 2014-04-08 | Micron Technology, Inc. | Apparatus and method for data bypass for a bi-directional data bus in a hub-based memory sub-system |
US9164937B2 (en) | 2004-02-05 | 2015-10-20 | Micron Technology, Inc. | Apparatus and method for data bypass for a bi-directional data bus in a hub-based memory sub-system |
US8082404B2 (en) | 2004-03-24 | 2011-12-20 | Micron Technology, Inc. | Memory arbitration system and method having an arbitration packet protocol |
US8555006B2 (en) | 2004-03-24 | 2013-10-08 | Micron Technology, Inc. | Memory arbitration system and method having an arbitration packet protocol |
US9032166B2 (en) | 2004-03-24 | 2015-05-12 | Micron Technology, Inc. | Memory arbitration system and method having an arbitration packet protocol |
US10225168B2 (en) | 2012-12-28 | 2019-03-05 | Panasonic Intellectual Property Management Co. Ltd | Interface apparatus and memory bus system |
Also Published As
Publication number | Publication date |
---|---|
KR100854946B1 (en) | 2008-08-29 |
WO2005076856A3 (en) | 2006-06-08 |
CN1938691A (en) | 2007-03-28 |
EP1723527A4 (en) | 2007-10-03 |
JP4586031B2 (en) | 2010-11-24 |
WO2005076856A2 (en) | 2005-08-25 |
EP1723527B1 (en) | 2012-05-30 |
US7412574B2 (en) | 2008-08-12 |
TWI327273B (en) | 2010-07-11 |
CN1938691B (en) | 2010-05-12 |
US20050177677A1 (en) | 2005-08-11 |
EP1723527A2 (en) | 2006-11-22 |
KR20060132716A (en) | 2006-12-21 |
JP2007526559A (en) | 2007-09-13 |
TW200606637A (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7412574B2 (en) | System and method for arbitration of memory responses in a hub-based memory system | |
US8589643B2 (en) | Arbitration system and method for memory responses in a hub-based memory system | |
US7415567B2 (en) | Memory hub bypass circuit and method | |
US7251714B2 (en) | Method and system for capturing and bypassing memory transactions in a hub-based memory system | |
EP2562653B1 (en) | Method and system for terminating write commands in a hub-based memory system | |
US9032166B2 (en) | Memory arbitration system and method having an arbitration packet protocol | |
EP1546885B1 (en) | Memory hub and access method having internal row caching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001 Effective date: 20190731 |