US20080269488A1 - Novel crystalline forms of gatifloxacin - Google Patents
Novel crystalline forms of gatifloxacin Download PDFInfo
- Publication number
- US20080269488A1 US20080269488A1 US12/217,251 US21725108A US2008269488A1 US 20080269488 A1 US20080269488 A1 US 20080269488A1 US 21725108 A US21725108 A US 21725108A US 2008269488 A1 US2008269488 A1 US 2008269488A1
- Authority
- US
- United States
- Prior art keywords
- gatifloxacin
- mixture
- crystalline
- solution
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 title claims abstract description 69
- 229960003923 gatifloxacin Drugs 0.000 title claims abstract description 44
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 33
- 239000007787 solid Substances 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 14
- 238000002441 X-ray diffraction Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 description 37
- 239000000843 powder Substances 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 239000000546 pharmaceutical excipient Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000002552 dosage form Substances 0.000 description 8
- -1 gatifloxacin trihydrate Chemical class 0.000 description 7
- 238000002411 thermogravimetry Methods 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229940032147 starch Drugs 0.000 description 5
- RMJMZKDEVNTXHE-UHFFFAOYSA-N 1-cyclopropyl-6-fluoro-8-methoxy-7-(3-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid;trihydrate Chemical compound O.O.O.FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCNC(C)C1.FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCNC(C)C1 RMJMZKDEVNTXHE-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000007891 compressed tablet Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 229940033134 talc Drugs 0.000 description 4
- 238000001757 thermogravimetry curve Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000006186 oral dosage form Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 229940127557 pharmaceutical product Drugs 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 235000019814 powdered cellulose Nutrition 0.000 description 3
- 229920003124 powdered cellulose Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 235000019731 tricalcium phosphate Nutrition 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- XPCTZQVDEJYUGT-UHFFFAOYSA-N 3-hydroxy-2-methyl-4-pyrone Chemical compound CC=1OC=CC(=O)C=1O XPCTZQVDEJYUGT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 239000004097 EU approved flavor enhancer Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 239000005913 Maltodextrin Substances 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical group CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000019264 food flavour enhancer Nutrition 0.000 description 2
- XUBOMFCQGDBHNK-UHFFFAOYSA-N gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCNC(C)C1 XUBOMFCQGDBHNK-UHFFFAOYSA-N 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229940035034 maltodextrin Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000004686 pentahydrates Chemical class 0.000 description 2
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- YIKYNHJUKRTCJL-UHFFFAOYSA-N Ethyl maltol Chemical compound CCC=1OC=CC(=O)C=1O YIKYNHJUKRTCJL-UHFFFAOYSA-N 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 238000001159 Fisher's combined probability test Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- HYMLWHLQFGRFIY-UHFFFAOYSA-N Maltol Natural products CC1OC=CC(=O)C1=O HYMLWHLQFGRFIY-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 229920003072 Plasdone™ povidone Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 229940078456 calcium stearate Drugs 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229940093503 ethyl maltol Drugs 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 description 1
- 229940046813 glyceryl palmitostearate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229940043353 maltol Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940100692 oral suspension Drugs 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229960000540 polacrilin potassium Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- WVWZXTJUCNEUAE-UHFFFAOYSA-M potassium;1,2-bis(ethenyl)benzene;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O.C=CC1=CC=CC=C1C=C WVWZXTJUCNEUAE-UHFFFAOYSA-M 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229940057977 zinc stearate Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/48—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
- C07D215/54—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
- C07D215/56—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3 with oxygen atoms in position 4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- the present invent relates to novel crystal forms of ( ⁇ ) 1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid, commonly known as gatifloxacin. More specifically, the present invention relates to gatifloxacin in form “O”, to gatifloxacin form “V”, and to methods for making them.
- Many pharmaceutically active organic compounds can crystallize in different crystalline forms. That is, they can crystallize more than one type of molecular packing with more than one type of internal crystal lattice.
- the respective resulting crystal structures can have, for example, different unit cells. This phenomenon—identical chemical structure but different crystalline form—is referred to as polymorphism and the species having different molecular structures are referred to as polymorphs.
- pharmacologically active organic compounds can also crystallize such that second, foreign molecules, especially solvent molecules, are regularly incorporated into the crystal structure of the principal pharmacologically active compound. This phenomenon is referred to as pseudopolymorphism and the resulting structures as pseudopolymorphs. When the second molecule is a solvent molecule, the pseudopolymorphs can be referred to as solvates.
- Crystalline forms can be influenced by controlling the conditions under which the compound is obtained in solid form.
- Solid state physical properties that can differ from one crystalline form to the next include, for example, the flowability of the milled solid.
- Various crystalline forms can be more or less hygroscopic.
- Absorption of atmospheric moisture by a compound in powder form can impede its ability to flow.
- Flowability affects the ease with which the material is handled during processing into a pharmaceutical product.
- a formulation specialist must take that fact into account in developing a tablet or capsule formulation, which may necessitate the use of glidants such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate.
- Another important solid state property of a pharmaceutical compound that can vary from one crystalline form to the next is its rate of dissolution in aqueous media, e.g. gastric fluid.
- aqueous media e.g. gastric fluid.
- the rate of dissolution of an active ingredient in a patient's stomach fluid can have therapeutic consequences since it imposes an upper limit on the rate at which an orally-administered active ingredient can reach the patient's bloodstream.
- the rate of dissolution is also a consideration in formulating syrups, elixirs and other liquid medicaments.
- the solid state form of a compound may also affect its behavior on compaction and its stability during storage.
- a polymorphic form may have thermodynamic properties different from those of the amorphous material or another polymorphic form.
- Thermodynamic properties can be used to distinguish between various polymorphs or pseudopolymorphs.
- Thermodynamic properties that can be used to distinguish between polymorphs and pseudopolymorphs can be measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and differential thermal analysis (DTA).
- a particular crystalline form can also possess distinct spectroscopic properties that may be detectable by, for example, solid state 13 C NMR spectroscopy and infrared (IR) spectroscopy. This is particularly so in the case of solvates because of the presence of absorptions or resonances due to the second, foreign molecule.
- U.S. Pat. No. 5,880,283 discloses that gatifloxacin forms a hygroscopic hemihydrate.
- the hemihydrate (a pseudopolymorph) is reported to be easily formed upon crystallization of gatifloxacin from water-containing organic solvents.
- the hemihydrate reportedly has disadvantages for manufacturing of solid oral dosage forms, e.g. tablets.
- the patent further discloses a novel pseudopolymorph of gatifloxacin, the sesquihydrate, and presents thermal analysis and x-ray diffraction data for this crystalline form.
- the sesquihydrate is reported to be less hygroscopic and more stable in manufacturing.
- U.S. Pat. No. 6,413,969 discloses at least 12 different polymorphs or pseudopolymorphs of gatifloxacin and discloses the x-ray powder diffraction diagrams of at least 10 of these.
- the hexahydrate, pentahydrate and sesquihydrate are crystallized directly from aqueous solvents.
- Other crystalline forms are crystallized from a molten phase or by solid-solid phase transformations.
- the pentahydrate form is, according to the disclosure of WO 02/22126 A1, the most thermodynamically stable form and has the lowest aqueous solubility at room temperature. The interrelationships between the twelve identified crystalline forms are given in the application.
- the present invention relates to a novel crystalline form of gatifloxacin, denominated form O, characterized by x-ray reflections at about 8.4°, 10.8°, 20.0°, 20.4°, and 21.2° ⁇ 0.2° 2 ⁇ .
- the present invention relates to a method of making gatifloxacin crystalline form O including the steps of: providing, at reflux, a solution of gatifloxacin in an approximately 1:1 v/v mixture of acetonitrile and ethanol; cooling the solution to a temperature between about 53° and about 56° C.; optionally seeding the solution with gatifloxacin; maintaining the seeded solution at a temperature between about 53° and about 56° C. for a first holding time, especially about 2 hours; cooling the solution to a temperature of about 5° C. at a cooling rate of about 4 to about 8 degrees per hour whereby a slurry (suspension) is obtained; optionally maintaining the slurry at about 5° C. or below for a second holding time, especially about 2 hours; and isolating gatifloxacin crystalline form O from the slurry.
- the present invention relates to a method of making a mixture in about a 1:1 weight ratio of gatifloxacin form O and prior-art sesquihydrate including the step of exposing gatifloxacin in prior-art forms omega ( ⁇ ) or TE, or form C, to an atmosphere having a relative humidity of at least about 60% (form C), or at least about 80% (form TE and omega) for an exposing time, especially at least about 24 hours to 2 weeks, most especially about 1 week.
- the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about an 80:20 weight ratio comprising the step of exposing gatifloxacin form C for an exposure time to an atmosphere having a relative humidity of at least about 60%.
- the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about a 1:1 weight ratio comprising the step of exposing gatifloxacin form omega for an exposure time to an atmosphere having a relative humidity of at least about 60%.
- the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about a 1:1 weight ratio comprising the step of exposing gatifloxacin form TE for an exposure time to an atmosphere having a relative humidity of at least about 80%.
- the present invention relates to a crystalline form of gatifloxacin, denominated form V, characterized by x-ray reflections at about 6.0°, 14.1°, 21.1° and 22.5°+0.2° 2 ⁇ and typically having a water content of about 1 wt-% to about 3 wt-%.
- the present invention relates to a method of making gatifloxacin crystalline form V including the steps of: providing, at reflux, a solution of gatifloxacin in acetonitrile; cooling the solution to ambient temperature at a cooling rate of at least about 1° C. per minute whereby a suspension is obtained; further crash cooling the suspension to about 5° C. or less; isolating the solid from the suspension; and treating the isolated solid with moist gas, especially moist air in a fluidized bed apparatus to obtain form V.
- FIG. 1 shows a typical x-ray diffraction diagram for gatifloxacin form O.
- FIG. 2 shows a typical DSC thermogram for gatifloxacin form O.
- FIG. 3 shows a typical x-ray diffraction diagram for gatifloxacin form V.
- FIG. 4 shows a typical TGA thermogram for gatifloxacin in form O.
- FIG. 5 shows a typical TGA thermogram for gatifloxacin form V.
- FIG. 6 shows a typical x-ray diffraction diagram of about a 1:1 by weight:mixture (50:50) of form O and gatifloxacin sesquihydrate.
- the present invention provides novel crystalline forms (polymorphs and/or pseudopolymorphs) of gatifloxacin, [( ⁇ ) 1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid].
- the novel crystalline forms are denominated form “O” and form “V”, respectively.
- the present invention further provides methods of making the novel crystal forms, as well as mixtures of novel form O with prior-art sesquihydrate.
- the term about refers to that variation in the measured quantity as would be expected by the skilled artisan making the measurement and exercising a level of care commensurate with the objective of the measurement and the precision of the measuring equipment used.
- atmospheric pressure refers to the prevailing atmospheric pressure between about 740 and about 780 mm. Hg.
- ambient temperature is a temperature between about 18° and about 30° C.
- x-ray diffraction refers to x-ray diffraction by the powder diffraction technique.
- X-ray powder diffraction analysis was performed using a Scintag powder diffractometer with variable goniometer, a Cu source, and a solid state detector. A standard round aluminum sample holder with zero background quartz plate was used. Samples were scanned from 2° to 40° 2 ⁇ at 3° per minute in the continuous scan mode. Reflections are reported as peak maxima in the intensity vs. 2 ⁇ plots, and are subject to the normal experimental error (uncertainty). Samples were promptly analyzed “as is”.
- DSC Differential scanning calorimetry
- Thermogravimetric analysis was performed using a Mettler TG50 thermobalance. Samples of 7 to 15 milligrams were analyzed at a heating rate of 10° per minute.
- LOD refers to loss on drying as determined by TGA.
- the present invention provides a novel crystalline form of gatifloxacin, designated form O, that can be characterized by x-ray reflections at about 8.4°, 10.8°, 20.0° 20.4°, and 21.2°+/ ⁇ 0.2° 2 ⁇ ).
- form O a novel crystalline form of gatifloxacin
- FIG. 1 A typical x-ray diffraction diagram for gatifloxacin form O is given in FIG. 1 .
- FIG. 4 shows a typical TGA thermogram for gatifloxacin form O.
- form O loses between about 10% and about 15% (11.6% in this example) of its weight up to a temperature of about 120° C.
- the water content by Karl-Fisher analysis is about 11.8%. This water content corresponds approximately to the calculated value for gatifloxacin trihydrate.
- FIG. 3 shows a typical DSC thermogram for gatifloxacin form O.
- the present invention provides a method for making gatifloxacin form O that includes the step of crystallizing gatifloxacin from solution in a mixed solvent that includes ethanol (EtOH) and acetonitrile (ACN).
- a mixed solvent that includes ethanol (EtOH) and acetonitrile (ACN).
- EtOH ethanol
- ACN acetonitrile
- Gatifloxacin is dissolved in the mixed solvent at a temperature of at least about 75° C., preferably at reflux. In preferred embodiments, the solution is refluxed for a reflux time of about one-half hour. The solution is then cooled, with agitation, to a first holding temperature between about 52° and 57° C., preferably between about 53° and about 56° C. The cooled mixture can be and preferably is seeded with crystals of gatifloxacin. The mixture can be and preferably is held at a temperature between about 52° and about 57° C. for a second holding time of about one-half to about 3 hours. Two hours is the preferred seeding time.
- the mixture is then cooled, with agitation, to a temperature of about 5° C. or less at a cooling rate between about 4° and about 8°, preferably about 6° C., per hour whereby a slurry (suspension) is obtained.
- the slurry can be and preferably is maintained, with agitation, at a temperature of about 5° C. or less for a second holding time of about one-half to about 3 hours. Two hours is the preferred holding time.
- Gatifloxacin form O can be isolated from the slurry by any means known in the art, for example filtration (gravity or suction) or centrifugation, to mention just two.
- the crystal form of the gatifloxacin so obtained is confirmed by x-ray analysis “as is”.
- the present invention provides a method of making a mixture of novel crystalline form O and prior-art sesqihydrate.
- the ratios will depend, inter alia, on the conditions of treatment.
- the mixtures can be made by exposing prior art forms omega or TE, or crystalline form C (characterized by x-ray reflections at 7.2°, 10.8°, 15.8°, 21.8°, and 26.2° ⁇ 0.2° 2 ⁇ ) to an atmosphere having a relative humidity of at least about 60% (form c), or at least about 80% (form TE and omega) for an exposing time.
- the exposing time will generally be between about 24 hours and two weeks.
- Form C is the subject of copending United States Patent Application filed 12 May 2003 under attorney docket 1662/604075 and can be made as described in the examples below.
- the form omega, TE, or C is exposed as a thin layer of particles or crystals to facilitate diffusion of gasses and vapors.
- the exposing is at ambient temperature.
- the present invention provides a novel crystalline form of gatifloxacin, denominated form V, characterized by x-ray reflections at about 6.0°, 14.1°, 21.1°, and 22.5°+/ ⁇ 0.2° 2 ⁇ .
- FIG. 3 shows a typical x-ray diffraction diagram of form V.
- Gatifloxacin form V typically has a water content of between about 1% and about 3% by weight.
- the TGA of gatifloxacin form V shows a weight loss of between about 4% and about 5%.
- a typical TGA thermogram of form V is shown in FIG. 5 .
- the present invention provides a modified crystallization method for making gatifloxacin form V, the solution is rapidly cooled from reflux, and formation of form V is completed in a subsequent drying step in which the product from crystallization is treated with a moist gas, preferably moist air, in a suitable apparatus, for example a fluidized bed apparatus.
- a moist gas preferably moist air
- the cooling step should be carried-out at about 1° C. per minute.
- the product from crystallization which can be a mixture of forms, can be made by cooling, with agitation, a solution of gatifloxacin in acetonitrile from reflux to ambient temperature at a cooling rate of at least about 1° C. per minute.
- the resulting mixture is then crash-cooled, with agitation, to a temperature of about 5° C. or less.
- crash cooling it is meant the mixture is cooled as rapidly as possibly by applying a static or dynamic cooling medium to the outside of the vessel in which the mixture is contained.
- the present invention provides pharmaceutical compositions including gatifloxacin in form O and at least one pharmaceutically acceptable excipient.
- the present invention provides pharmaceutical compositions including gatifloxacin form V and at least one pharmaceutically acceptable excipient.
- the pharmaceutical composition can be in the form of a solid oral dosage form (e.g. compressed tablets or capsules), or it can be in the form of a liquid oral dosage form, e.g. a solution or oral suspension.
- a solid oral dosage form e.g. compressed tablets or capsules
- a liquid oral dosage form e.g. a solution or oral suspension.
- Compressed tablets can be made by dry or wet granulation methods as is known in the art.
- compressed tablets contain a number of pharmacologically inert ingredients, referred to as excipients. Some excipients allow or facilitate the processing of the drug into tablet dosage forms. Other excipients contribute to proper delivery of the drug by, for example, facilitating disintegration.
- Excipients can be broadly classified according to their intended function. However, it must be kept in mind that a particular excipient can function in more than one way.
- Diluents increase the bulk of a solid pharmaceutical composition and may make a pharmaceutical dosage form containing the composition easier for the patient and caregiver to handle.
- Diluents for solid compositions include, for example, microcrystalline cellulose (e.g. AVICEL®, microfine cellulose, lactose, starch, pregelitinized starch, calcium carbonate, calcium sulfate, sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, tribasic calcium phosphate, kaolin, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, polymethacrylates (e.g. EUDRAGIT®), potassium chloride, powdered cellulose, sodium chloride, sorbitol and talc.
- microcrystalline cellulose e.g. AVICEL®, microfine cellulose, lactose, starch, pregelitinized starch, calcium carbonate, calcium sulfate, sugar, dextrates, de
- Solid pharmaceutical compositions that are compacted into a dosage form like a tablet may include excipients whose functions include helping to bind the active ingredient and other excipients together after compression.
- Binders for solid pharmaceutical compositions include acacia, alginic acid, carbomer (e.g. carbopol), carboxymethylcellulose sodium, dextrin, ethyl cellulose, gelatin, guar gum, hydrogenated vegetable oil, hydroxyethyl cellulose, hydroxypropyl cellulose (e.g. KLUCEL®), hydroxypropyl methyl cellulose (e.g. METHOCEL®), liquid glucose, magnesium aluminum silicate, maltodextrin, methylcellulose, polymethacrylates, povidone (e.g. KOLLIDON®, PLASDONE®), pregelatinized starch, sodium alginate and starch.
- the dissolution rate of a compacted solid pharmaceutical composition in the patient's stomach may be increased by the addition of a disintegrant to the composition
- Disintegrants include alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium (e.g. AC-DI-SOL®, PRIMELLOSE®), colloidal silicon dioxide, croscarmellose sodium, crospovidone (e.g. KOLLIDON®, POLYPLASDONE®), guar gum, magnesium aluminum silicate, methyl cellulose, microcrystalline cellulose, polacrilin potassium, powdered cellulose, pregelatinized starch, sodium alginate, sodium starch glycolate (e.g. EXPLOTAB®) and starch.
- alginic acid e.g. AC-DI-SOL®, PRIMELLOSE®
- colloidal silicon dioxide e.g. KOLLIDON®, POLYPLASDONE®
- guar gum e.g. KOLLIDON®, POLYPLASDONE®
- magnesium aluminum silicate e.g. KOLLIDON®, POLYPLASDONE®
- powdered cellulose
- Glidants can be added to improve the flow properties of non-compacted solid compositions and improve the accuracy of dosing.
- Excipients that may function as glidants include colloidal silicon dioxide, magnesium trisilicate, powdered cellulose, starch, talc and tribasic calcium phosphate.
- a dosage form such as a tablet
- the composition is subjected to pressure from a punch and die.
- Some excipients and active ingredients have a tendency to adhere to the surfaces of the punch and die, which can cause the product to have pitting and other surface irregularities.
- a lubricant can be added to the composition to reduce adhesion and ease release of the product from the die.
- Lubricants include magnesium stearate, calcium stearate, glyceryl monostearate, glyceryl palmitostearate, hydrogenated castor oil, hydrogenated vegetable oil, mineral oil, polyethylene glycol, sodium benzoate, sodium lauryl sulfate, sodium stearyl fumarate, stearic acid, talc and zinc stearate.
- Flavoring agents and flavor enhancers make the dosage form more palatable to the patient.
- Common flavoring agents and flavor enhancers for pharmaceutical products that may be included in the composition of the present invention include maltol, vanillin, ethyl vanillin, menthol, citric acid, fumaric acid ethyl maltol, and tartaric acid.
- compositions may also be colored using any pharmaceutically acceptable colorant to improve their appearance and/or facilitate patient identification of the product and unit dosage level.
- wet or dry granulate can also be used to fill capsules, for example gelatin capsules.
- the excipients chosen for granulation when a capsule is the intended dosage form may or may not be the same as those used when a compressed tablet dosage form is contemplated.
- the present invention can be further illustrated with the following non-limiting examples.
- the polymorphic or pseudopolymorphic form of gatifloxacin was determined by x-ray diffraction.
- the slurry was filtered under vacuum and washed with 75 mL of a mixture ACN:EtOH 1:1 to obtain 59.5 g of wet material.
- the solvent-wet sample was analyzed “as-is” by XRD and found to be form O.
- the resulting slurry was maintained at this temperature for 1 hour.
- the slurry was filtered under vacuum and washed with 25 mL of ACN.
- the wet sample was analyzed by XRD and found to be a mixture of forms V and E1.
- a portion of the wet material was treated in a fluidized bed drier at 50° C. for 45 min. with a wet atmosphere to obtain gatifloxacin crystals.
- the treated sample was analyzed by XRD and found to be gatifloxacin form V.
- Gatifloxacin in form ⁇ 200 mg powder was spread as a thin layer in a container having short vertical walls. The container was placed in a controlled humidity cell at 100% RH for 1 week. The powder was found to be a an approximately equal weight (1:1) mixture of form O and sesquihydrate.
- Gatifloxacin in form ⁇ 200 mg powder was spread as a thin layer in a container having short vertical walls. The container was placed in a controlled humidity cell at 80% RH for 1 week. The powder was found to be a an approximately equal weight (1:1) mixture of form O and form ⁇ .
- Gatifloxacin in form C 200 mg powder was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 100% RH for two weeks. The powder was found to be a ?????? mixture of form O and sesquihydrate.
- Gatifloxacin in form C 200 mg powder was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 80% RH for two weeks. The powder was found to be an approximately 30:70 mixture by weight of form O and sesquihydrate.
- Gatifloxacin in form C 200 mg powder was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 60% RH for two weeks. The powder was found to be an approximately 80:20 mixture by weight of form C and form O.
- Gatifloxacin in form TE 200 mg powder was spread as a thin layer in a container having short sides. The container was placed in a controlled humidity cell at 100% RH for 2 weeks. The powder was found to be a an approximately equal weight (1:1) mixture of form O and sesquihydrate.
- Gatifloxacin in form TE 200 mg powder was spread as a thin layer in a container having short sides. The container was placed in a controlled humidity cell at 80% RH for 2 weeks. The powder was found to be an approximately equal weight mixture (1:1) of form O and sesquihydrate.
- the sample was analyzed by PXRD and found to be form C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Provided are two novel crystalline forms of gatifloxacin, denominated form O and form V, and methods for their preparation.
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 60/389,093, filed Jun. 14, 2002, and Ser. No. 60/423,338, filed Nov. 1, 2002, the contents of which are incorporated herein by reference.
- The present invent relates to novel crystal forms of (±) 1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid, commonly known as gatifloxacin. More specifically, the present invention relates to gatifloxacin in form “O”, to gatifloxacin form “V”, and to methods for making them.
- Many pharmaceutically active organic compounds can crystallize in different crystalline forms. That is, they can crystallize more than one type of molecular packing with more than one type of internal crystal lattice. The respective resulting crystal structures can have, for example, different unit cells. This phenomenon—identical chemical structure but different crystalline form—is referred to as polymorphism and the species having different molecular structures are referred to as polymorphs.
- Many pharmacologically active organic compounds can also crystallize such that second, foreign molecules, especially solvent molecules, are regularly incorporated into the crystal structure of the principal pharmacologically active compound. This phenomenon is referred to as pseudopolymorphism and the resulting structures as pseudopolymorphs. When the second molecule is a solvent molecule, the pseudopolymorphs can be referred to as solvates.
- However, it is generally not possible to predict whether a particular organic compound will form polymorphs or pseudopolymorphs, let alone predict the structure and properties of the polymorphs or pseudopolymorphs.
- The discovery of a new crystalline form (polymorph or pseudopolymorph) of a pharmaceutically useful compound provides an opportunity to improve the performance characteristics of a pharmaceutical product. It enlarges the repertoire of materials that a formulation scientist has available for designing, for example, a pharmaceutical dosage form of a drug with a targeted release profile or other desired characteristic. It is clearly advantageous when this repertoire is enlarged by the discovery of new polymorphs or pseudopolymorphs of a useful compound. For a general review of polymorphs and the pharmaceutical applications of polymorphs see G. M. Wall, Pharm Manuf. 3, 33 (1986); J. K. Haleblian and W. McCrone, J. Pharm. Sci., 58, 911 (1969); and J. K. Haleblian, J. Pharm. Sci., 64, 1269 (1975), all of which are incorporated herein by reference.
- Crystalline forms can be influenced by controlling the conditions under which the compound is obtained in solid form. Solid state physical properties that can differ from one crystalline form to the next include, for example, the flowability of the milled solid. Various crystalline forms can be more or less hygroscopic. Absorption of atmospheric moisture by a compound in powder form can impede its ability to flow. Flowability affects the ease with which the material is handled during processing into a pharmaceutical product. When particles of the powdered compound do not flow past each other easily, a formulation specialist must take that fact into account in developing a tablet or capsule formulation, which may necessitate the use of glidants such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate.
- Another important solid state property of a pharmaceutical compound that can vary from one crystalline form to the next is its rate of dissolution in aqueous media, e.g. gastric fluid. The rate of dissolution of an active ingredient in a patient's stomach fluid can have therapeutic consequences since it imposes an upper limit on the rate at which an orally-administered active ingredient can reach the patient's bloodstream. The rate of dissolution is also a consideration in formulating syrups, elixirs and other liquid medicaments. The solid state form of a compound may also affect its behavior on compaction and its stability during storage.
- These practical physical characteristics are influenced by the conformation, orientation, and packing of molecules in the unit cell, which characterize a particular polymorphic or pseudopolymorphic form of a substance. A polymorphic form may have thermodynamic properties different from those of the amorphous material or another polymorphic form. Thermodynamic properties can be used to distinguish between various polymorphs or pseudopolymorphs. Thermodynamic properties that can be used to distinguish between polymorphs and pseudopolymorphs can be measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and differential thermal analysis (DTA).
- A particular crystalline form can also possess distinct spectroscopic properties that may be detectable by, for example, solid state 13C NMR spectroscopy and infrared (IR) spectroscopy. This is particularly so in the case of solvates because of the presence of absorptions or resonances due to the second, foreign molecule.
- (±)-1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolenecarboxylic acid, commonly known as gatifloxacin, is a synthetic broad-spectrum antibacterial agent for oral or intravenous administration.
- U.S. Pat. No. 5,880,283 discloses that gatifloxacin forms a hygroscopic hemihydrate. The hemihydrate (a pseudopolymorph) is reported to be easily formed upon crystallization of gatifloxacin from water-containing organic solvents. The hemihydrate reportedly has disadvantages for manufacturing of solid oral dosage forms, e.g. tablets. The patent further discloses a novel pseudopolymorph of gatifloxacin, the sesquihydrate, and presents thermal analysis and x-ray diffraction data for this crystalline form. The sesquihydrate is reported to be less hygroscopic and more stable in manufacturing.
- U.S. Pat. No. 6,413,969 discloses at least 12 different polymorphs or pseudopolymorphs of gatifloxacin and discloses the x-ray powder diffraction diagrams of at least 10 of these. The hexahydrate, pentahydrate and sesquihydrate are crystallized directly from aqueous solvents. Other crystalline forms are crystallized from a molten phase or by solid-solid phase transformations. The pentahydrate form is, according to the disclosure of WO 02/22126 A1, the most thermodynamically stable form and has the lowest aqueous solubility at room temperature. The interrelationships between the twelve identified crystalline forms are given in the application.
- In one aspect, the present invention relates to a novel crystalline form of gatifloxacin, denominated form O, characterized by x-ray reflections at about 8.4°, 10.8°, 20.0°, 20.4°, and 21.2°±0.2° 2θ.
- In another aspect, the present invention relates to a method of making gatifloxacin crystalline form O including the steps of: providing, at reflux, a solution of gatifloxacin in an approximately 1:1 v/v mixture of acetonitrile and ethanol; cooling the solution to a temperature between about 53° and about 56° C.; optionally seeding the solution with gatifloxacin; maintaining the seeded solution at a temperature between about 53° and about 56° C. for a first holding time, especially about 2 hours; cooling the solution to a temperature of about 5° C. at a cooling rate of about 4 to about 8 degrees per hour whereby a slurry (suspension) is obtained; optionally maintaining the slurry at about 5° C. or below for a second holding time, especially about 2 hours; and isolating gatifloxacin crystalline form O from the slurry.
- In another aspect, the present invention relates to a method of making a mixture in about a 1:1 weight ratio of gatifloxacin form O and prior-art sesquihydrate including the step of exposing gatifloxacin in prior-art forms omega (Ω) or TE, or form C, to an atmosphere having a relative humidity of at least about 60% (form C), or at least about 80% (form TE and omega) for an exposing time, especially at least about 24 hours to 2 weeks, most especially about 1 week.
- In another aspect, the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about an 80:20 weight ratio comprising the step of exposing gatifloxacin form C for an exposure time to an atmosphere having a relative humidity of at least about 60%.
- In still a further aspect, the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about a 1:1 weight ratio comprising the step of exposing gatifloxacin form omega for an exposure time to an atmosphere having a relative humidity of at least about 60%.
- In yet a further aspect, the present invention relates to a method of making a mixture of gatifloxacin form O and gatifloxacin sesquihydrate in about a 1:1 weight ratio comprising the step of exposing gatifloxacin form TE for an exposure time to an atmosphere having a relative humidity of at least about 80%.
- In still another aspect, the present invention relates to a crystalline form of gatifloxacin, denominated form V, characterized by x-ray reflections at about 6.0°, 14.1°, 21.1° and 22.5°+0.2° 2θ and typically having a water content of about 1 wt-% to about 3 wt-%.
- In yet still a further embodiment, the present invention relates to a method of making gatifloxacin crystalline form V including the steps of: providing, at reflux, a solution of gatifloxacin in acetonitrile; cooling the solution to ambient temperature at a cooling rate of at least about 1° C. per minute whereby a suspension is obtained; further crash cooling the suspension to about 5° C. or less; isolating the solid from the suspension; and treating the isolated solid with moist gas, especially moist air in a fluidized bed apparatus to obtain form V.
-
FIG. 1 shows a typical x-ray diffraction diagram for gatifloxacin form O. -
FIG. 2 shows a typical DSC thermogram for gatifloxacin form O. -
FIG. 3 shows a typical x-ray diffraction diagram for gatifloxacin form V. -
FIG. 4 shows a typical TGA thermogram for gatifloxacin in form O. -
FIG. 5 shows a typical TGA thermogram for gatifloxacin form V. -
FIG. 6 shows a typical x-ray diffraction diagram of about a 1:1 by weight:mixture (50:50) of form O and gatifloxacin sesquihydrate. - The present invention provides novel crystalline forms (polymorphs and/or pseudopolymorphs) of gatifloxacin, [(±) 1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid]. The novel crystalline forms are denominated form “O” and form “V”, respectively. The present invention further provides methods of making the novel crystal forms, as well as mixtures of novel form O with prior-art sesquihydrate.
- As used herein in connection with a measured quantity, the term about refers to that variation in the measured quantity as would be expected by the skilled artisan making the measurement and exercising a level of care commensurate with the objective of the measurement and the precision of the measuring equipment used.
- As used herein, atmospheric pressure refers to the prevailing atmospheric pressure between about 740 and about 780 mm. Hg.
- As used herein, the term ambient temperature is a temperature between about 18° and about 30° C.
- As used herein in connection with the present invention, x-ray diffraction refers to x-ray diffraction by the powder diffraction technique. X-ray powder diffraction analysis was performed using a Scintag powder diffractometer with variable goniometer, a Cu source, and a solid state detector. A standard round aluminum sample holder with zero background quartz plate was used. Samples were scanned from 2° to 40° 2θ at 3° per minute in the continuous scan mode. Reflections are reported as peak maxima in the intensity vs. 2θ plots, and are subject to the normal experimental error (uncertainty). Samples were promptly analyzed “as is”.
- Differential scanning calorimetry (DSC) was performed using a Mettler Toledo model 821° instrument at a heating rate of 10° C. per minute. Sample weights were between 3 and 5 mg and were contained in standard crucible having 3-holed covers.
- Thermogravimetric analysis (TGA) was performed using a Mettler TG50 thermobalance. Samples of 7 to 15 milligrams were analyzed at a heating rate of 10° per minute.
- As used herein, LOD refers to loss on drying as determined by TGA.
- Water content was determined by the Karl-Fisher method.
- The skilled artisan will recognized that, as used herein, the terms slurry and suspension are synonymous.
- In one embodiment, the present invention provides a novel crystalline form of gatifloxacin, designated form O, that can be characterized by x-ray reflections at about 8.4°, 10.8°, 20.0° 20.4°, and 21.2°+/−0.2° 2Θ). A typical x-ray diffraction diagram for gatifloxacin form O is given in
FIG. 1 . -
FIG. 4 shows a typical TGA thermogram for gatifloxacin form O. According to TGA analysis, form O loses between about 10% and about 15% (11.6% in this example) of its weight up to a temperature of about 120° C. The water content by Karl-Fisher analysis is about 11.8%. This water content corresponds approximately to the calculated value for gatifloxacin trihydrate.FIG. 3 shows a typical DSC thermogram for gatifloxacin form O. - In another embodiment, the present invention provides a method for making gatifloxacin form O that includes the step of crystallizing gatifloxacin from solution in a mixed solvent that includes ethanol (EtOH) and acetonitrile (ACN). The preferred mixed solvent is made-up of approximately equal volumes of ethanol and acetonitrile.
- Gatifloxacin is dissolved in the mixed solvent at a temperature of at least about 75° C., preferably at reflux. In preferred embodiments, the solution is refluxed for a reflux time of about one-half hour. The solution is then cooled, with agitation, to a first holding temperature between about 52° and 57° C., preferably between about 53° and about 56° C. The cooled mixture can be and preferably is seeded with crystals of gatifloxacin. The mixture can be and preferably is held at a temperature between about 52° and about 57° C. for a second holding time of about one-half to about 3 hours. Two hours is the preferred seeding time.
- Whether or not a first holding time is employed, the mixture is then cooled, with agitation, to a temperature of about 5° C. or less at a cooling rate between about 4° and about 8°, preferably about 6° C., per hour whereby a slurry (suspension) is obtained. The slurry can be and preferably is maintained, with agitation, at a temperature of about 5° C. or less for a second holding time of about one-half to about 3 hours. Two hours is the preferred holding time.
- Gatifloxacin form O can be isolated from the slurry by any means known in the art, for example filtration (gravity or suction) or centrifugation, to mention just two. The crystal form of the gatifloxacin so obtained is confirmed by x-ray analysis “as is”.
- In another embodiment, the present invention provides a method of making a mixture of novel crystalline form O and prior-art sesqihydrate. The ratios will depend, inter alia, on the conditions of treatment. The mixtures can be made by exposing prior art forms omega or TE, or crystalline form C (characterized by x-ray reflections at 7.2°, 10.8°, 15.8°, 21.8°, and 26.2°±0.2° 2θ) to an atmosphere having a relative humidity of at least about 60% (form c), or at least about 80% (form TE and omega) for an exposing time. The exposing time will generally be between about 24 hours and two weeks.
- Form C is the subject of copending United States Patent Application filed 12 May 2003 under attorney docket 1662/604075 and can be made as described in the examples below.
- Preferably, the form omega, TE, or C is exposed as a thin layer of particles or crystals to facilitate diffusion of gasses and vapors. Preferably, the exposing is at ambient temperature.
- In a further embodiment, the present invention provides a novel crystalline form of gatifloxacin, denominated form V, characterized by x-ray reflections at about 6.0°, 14.1°, 21.1°, and 22.5°+/−0.2° 2θ.
FIG. 3 shows a typical x-ray diffraction diagram of form V. - Gatifloxacin form V typically has a water content of between about 1% and about 3% by weight. The TGA of gatifloxacin form V shows a weight loss of between about 4% and about 5%. A typical TGA thermogram of form V is shown in
FIG. 5 . - In another embodiment, the present invention provides a modified crystallization method for making gatifloxacin form V, the solution is rapidly cooled from reflux, and formation of form V is completed in a subsequent drying step in which the product from crystallization is treated with a moist gas, preferably moist air, in a suitable apparatus, for example a fluidized bed apparatus. The cooling step should be carried-out at about 1° C. per minute.
- The product from crystallization, which can be a mixture of forms, can be made by cooling, with agitation, a solution of gatifloxacin in acetonitrile from reflux to ambient temperature at a cooling rate of at least about 1° C. per minute. The resulting mixture is then crash-cooled, with agitation, to a temperature of about 5° C. or less. By crash cooling it is meant the mixture is cooled as rapidly as possibly by applying a static or dynamic cooling medium to the outside of the vessel in which the mixture is contained.
- In another embodiment, the present invention provides pharmaceutical compositions including gatifloxacin in form O and at least one pharmaceutically acceptable excipient.
- In yet another embodiment, the present invention provides pharmaceutical compositions including gatifloxacin form V and at least one pharmaceutically acceptable excipient.
- The pharmaceutical composition can be in the form of a solid oral dosage form (e.g. compressed tablets or capsules), or it can be in the form of a liquid oral dosage form, e.g. a solution or oral suspension.
- Compressed tablets can be made by dry or wet granulation methods as is known in the art. In addition to the pharmaceutically active agent or drug, compressed tablets contain a number of pharmacologically inert ingredients, referred to as excipients. Some excipients allow or facilitate the processing of the drug into tablet dosage forms. Other excipients contribute to proper delivery of the drug by, for example, facilitating disintegration.
- Excipients can be broadly classified according to their intended function. However, it must be kept in mind that a particular excipient can function in more than one way.
- Diluents increase the bulk of a solid pharmaceutical composition and may make a pharmaceutical dosage form containing the composition easier for the patient and caregiver to handle. Diluents for solid compositions include, for example, microcrystalline cellulose (e.g. AVICEL®, microfine cellulose, lactose, starch, pregelitinized starch, calcium carbonate, calcium sulfate, sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, tribasic calcium phosphate, kaolin, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, polymethacrylates (e.g. EUDRAGIT®), potassium chloride, powdered cellulose, sodium chloride, sorbitol and talc.
- Solid pharmaceutical compositions that are compacted into a dosage form like a tablet may include excipients whose functions include helping to bind the active ingredient and other excipients together after compression. Binders for solid pharmaceutical compositions include acacia, alginic acid, carbomer (e.g. carbopol), carboxymethylcellulose sodium, dextrin, ethyl cellulose, gelatin, guar gum, hydrogenated vegetable oil, hydroxyethyl cellulose, hydroxypropyl cellulose (e.g. KLUCEL®), hydroxypropyl methyl cellulose (e.g. METHOCEL®), liquid glucose, magnesium aluminum silicate, maltodextrin, methylcellulose, polymethacrylates, povidone (e.g. KOLLIDON®, PLASDONE®), pregelatinized starch, sodium alginate and starch. The dissolution rate of a compacted solid pharmaceutical composition in the patient's stomach may be increased by the addition of a disintegrant to the composition.
- Disintegrants include alginic acid, carboxymethylcellulose calcium, carboxymethylcellulose sodium (e.g. AC-DI-SOL®, PRIMELLOSE®), colloidal silicon dioxide, croscarmellose sodium, crospovidone (e.g. KOLLIDON®, POLYPLASDONE®), guar gum, magnesium aluminum silicate, methyl cellulose, microcrystalline cellulose, polacrilin potassium, powdered cellulose, pregelatinized starch, sodium alginate, sodium starch glycolate (e.g. EXPLOTAB®) and starch.
- Glidants can be added to improve the flow properties of non-compacted solid compositions and improve the accuracy of dosing. Excipients that may function as glidants include colloidal silicon dioxide, magnesium trisilicate, powdered cellulose, starch, talc and tribasic calcium phosphate.
- When a dosage form such as a tablet is made by compaction of a powdered composition, the composition is subjected to pressure from a punch and die. Some excipients and active ingredients have a tendency to adhere to the surfaces of the punch and die, which can cause the product to have pitting and other surface irregularities. A lubricant can be added to the composition to reduce adhesion and ease release of the product from the die. Lubricants include magnesium stearate, calcium stearate, glyceryl monostearate, glyceryl palmitostearate, hydrogenated castor oil, hydrogenated vegetable oil, mineral oil, polyethylene glycol, sodium benzoate, sodium lauryl sulfate, sodium stearyl fumarate, stearic acid, talc and zinc stearate.
- Flavoring agents and flavor enhancers make the dosage form more palatable to the patient. Common flavoring agents and flavor enhancers for pharmaceutical products that may be included in the composition of the present invention include maltol, vanillin, ethyl vanillin, menthol, citric acid, fumaric acid ethyl maltol, and tartaric acid.
- Compositions may also be colored using any pharmaceutically acceptable colorant to improve their appearance and/or facilitate patient identification of the product and unit dosage level.
- Of course, wet or dry granulate can also be used to fill capsules, for example gelatin capsules. The excipients chosen for granulation when a capsule is the intended dosage form may or may not be the same as those used when a compressed tablet dosage form is contemplated.
- Selection of excipients and the amounts to use may be readily determined by the formulation scientist based upon experience and consideration of standard procedures and reference works in the field.
- The present invention can be further illustrated with the following non-limiting examples. In the following examples, the polymorphic or pseudopolymorphic form of gatifloxacin was determined by x-ray diffraction.
- A 0.5 liter reactor equipped with mechanical stirrer, condenser and thermometer, was charged with GTF-crude dry (50 g), ACN (187.5 mL) and EtOH (187.5 mL). The slurry was then heated to reflux. (75° C.) and stirred at a rate of 400 rpm. The heating was continued for 0.5 hours until getting a clear solution. Then the clear solution was cooled to 53-56° C. and was seeded with 0.1 g of GTF. At the end of the addition the stirring was maintained for 2 hours at 53-56° C. then cooled during 8 hours until 5° C. and maintained with the stirring for 2 hours at this temperature.
- The slurry was filtered under vacuum and washed with 75 mL of a mixture ACN:EtOH 1:1 to obtain 59.5 g of wet material. The solvent-wet sample was analyzed “as-is” by XRD and found to be form O.
- A 250 mL flask equipped with mechanical stirrer, condenser and thermometer, was charged with GTF-crude dry (15 g) and ACN (144 mL). The solution was heated to reflux and stirred at this temperature for 30 minutes. The clear solution was then cooled suddenly to ambient temperature over 50 minutes by removing the flask from the oil bath and then immediately thereafter cooled to 5° C. with an ice bath.
- The resulting slurry was maintained at this temperature for 1 hour. The slurry was filtered under vacuum and washed with 25 mL of ACN. The wet sample was analyzed by XRD and found to be a mixture of forms V and E1.
- A portion of the wet material was treated in a fluidized bed drier at 50° C. for 45 min. with a wet atmosphere to obtain gatifloxacin crystals. The treated sample was analyzed by XRD and found to be gatifloxacin form V.
- Form O and Sesguihydrate
- Gatifloxacin in form Ω (200 mg powder) was spread as a thin layer in a container having short vertical walls. The container was placed in a controlled humidity cell at 100% RH for 1 week. The powder was found to be a an approximately equal weight (1:1) mixture of form O and sesquihydrate.
- Gatifloxacin in form Ω (200 mg powder) was spread as a thin layer in a container having short vertical walls. The container was placed in a controlled humidity cell at 80% RH for 1 week. The powder was found to be a an approximately equal weight (1:1) mixture of form O and form Ω.
- Gatifloxacin in form C (200 mg powder) was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 100% RH for two weeks. The powder was found to be a ?????? mixture of form O and sesquihydrate.
- Gatifloxacin in form C (200 mg powder) was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 80% RH for two weeks. The powder was found to be an approximately 30:70 mixture by weight of form O and sesquihydrate.
- Gatifloxacin in form C (200 mg powder) was spread as a thin layer in a container having short vertical sides. The container was placed in a controlled humidity cell at 60% RH for two weeks. The powder was found to be an approximately 80:20 mixture by weight of form C and form O.
- Gatifloxacin in form TE (200 mg powder) was spread as a thin layer in a container having short sides. The container was placed in a controlled humidity cell at 100% RH for 2 weeks. The powder was found to be a an approximately equal weight (1:1) mixture of form O and sesquihydrate.
- Gatifloxacin in form TE (200 mg powder) was spread as a thin layer in a container having short sides. The container was placed in a controlled humidity cell at 80% RH for 2 weeks. The powder was found to be an approximately equal weight mixture (1:1) of form O and sesquihydrate.
- 5 g of gatifloxacin were suspended in 40 mL of 1-butanol. The mixture was heated to reflux temperature until complete dissolution of the material. The solution was then stirred at this temperature for 5 minutes, cooled to ambient temperature, and then to 5° C. The stirring was maintained at this temperature for one hour and then the mixture was filtered under vacuum. The solid obtained was put in an atmospheric oven at 60° C. for 40 hours.
- The sample was analyzed by PXRD and found to be form C.
Claims (8)
1-18. (canceled)
19. A crystalline form of gatifloxacin characterized by x-ray reflections at about 6.0°, 14.1°, 21.1° and 22.5°±0.2° 2θ.
20. The crystalline form of gatifloxacin of claim 19 having an x-ray diffraction diagram substantially as shown in FIG. 3 .
21. The crystalline form of gatifloxacin of claim 19 having a water content of about 1 wt-% to about 3 wt-%.
22. A method of making the crystalline gatifloxacin of claim 19 comprising the steps of:
a) providing, at reflux, a solution of gatifloxacin in acetonitrile,
b) cooling the solution to ambient temperature at a cooling rate of at least about 1° C. per minute whereby a suspension is obtained,
c) further crash cooling the suspension to about 5° C. or less,
d) isolating the solid from the suspension, and
e) treating the isolated solid with moist gas to obtain form V.
23. Gatifloxacin crystalline form V.
24. (canceled)
25. A pharmaceutical composition comprising gatifloxacin form V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/217,251 US20080269488A1 (en) | 2002-06-14 | 2008-07-01 | Novel crystalline forms of gatifloxacin |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38909302P | 2002-06-14 | 2002-06-14 | |
US42333802P | 2002-11-01 | 2002-11-01 | |
US10/462,945 US7411067B2 (en) | 2002-06-14 | 2003-06-16 | Crystalline forms of gatifloxacin |
US12/217,251 US20080269488A1 (en) | 2002-06-14 | 2008-07-01 | Novel crystalline forms of gatifloxacin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/462,945 Division US7411067B2 (en) | 2002-06-14 | 2003-06-16 | Crystalline forms of gatifloxacin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080269488A1 true US20080269488A1 (en) | 2008-10-30 |
Family
ID=29740100
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/462,945 Expired - Fee Related US7411067B2 (en) | 2002-06-14 | 2003-06-16 | Crystalline forms of gatifloxacin |
US12/217,251 Abandoned US20080269488A1 (en) | 2002-06-14 | 2008-07-01 | Novel crystalline forms of gatifloxacin |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/462,945 Expired - Fee Related US7411067B2 (en) | 2002-06-14 | 2003-06-16 | Crystalline forms of gatifloxacin |
Country Status (8)
Country | Link |
---|---|
US (2) | US7411067B2 (en) |
EP (1) | EP1471911A1 (en) |
JP (1) | JP2005532364A (en) |
CN (1) | CN1674902A (en) |
AU (1) | AU2003243615A1 (en) |
CA (1) | CA2489377A1 (en) |
IL (1) | IL165690A0 (en) |
WO (1) | WO2003105851A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781585B2 (en) | 2004-06-04 | 2010-08-24 | Matrix Laboratories Ltd | Crystalline forms of Gatifloxacin |
CA2621616A1 (en) * | 2007-02-19 | 2008-08-19 | Alcon Research, Ltd. | Topical gatifloxacin formulations |
MX2009010550A (en) | 2007-03-29 | 2009-12-14 | Progenics Pharm Inc | Crystal forms of (r) -n-methylnaltrexone bromide and uses thereof. |
SG10202012791TA (en) | 2013-11-15 | 2021-01-28 | Akebia Therapeutics Inc | Solid forms of {[5-(3-chlorophenyl)-3-hydroxypyridine-2-carbonyl]amino}acetic acid, compositions, and uses thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880283A (en) * | 1994-12-21 | 1999-03-09 | Kyorin Pharmaceutical Co., Ltd. | 8-alkoxyquinolonecarboxylic acid hydrate with excellent stability and process for producing the same |
US6413969B1 (en) * | 2000-09-13 | 2002-07-02 | Bristol-Myers Squibb Company | Gatifloxacin pentahydrate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE207479T1 (en) | 1992-01-31 | 2001-11-15 | Chugai Pharmaceutical Co Ltd | CRYSTALS OF DERIVATIVES OF CHINOZONE CARBOXYLIC ACID HYDRATES |
EP1492535B1 (en) | 2002-04-08 | 2005-10-26 | Dr. Reddy's Laboratories Ltd. | Anhydrous crystalline forms i and ii of 1-cyclopropyl-6-fluoro-8-methoxy-7-(3-methyl-1-piperazinyl) 4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (gatifloxacin) |
-
2003
- 2003-06-16 US US10/462,945 patent/US7411067B2/en not_active Expired - Fee Related
- 2003-06-16 AU AU2003243615A patent/AU2003243615A1/en not_active Abandoned
- 2003-06-16 WO PCT/US2003/019046 patent/WO2003105851A1/en not_active Application Discontinuation
- 2003-06-16 EP EP03760424A patent/EP1471911A1/en not_active Withdrawn
- 2003-06-16 JP JP2004512754A patent/JP2005532364A/en active Pending
- 2003-06-16 CN CNA038193094A patent/CN1674902A/en active Pending
- 2003-06-16 CA CA002489377A patent/CA2489377A1/en not_active Abandoned
-
2004
- 2004-12-09 IL IL16569004A patent/IL165690A0/en unknown
-
2008
- 2008-07-01 US US12/217,251 patent/US20080269488A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880283A (en) * | 1994-12-21 | 1999-03-09 | Kyorin Pharmaceutical Co., Ltd. | 8-alkoxyquinolonecarboxylic acid hydrate with excellent stability and process for producing the same |
US6413969B1 (en) * | 2000-09-13 | 2002-07-02 | Bristol-Myers Squibb Company | Gatifloxacin pentahydrate |
Also Published As
Publication number | Publication date |
---|---|
US20040038988A1 (en) | 2004-02-26 |
AU2003243615A1 (en) | 2003-12-31 |
WO2003105851A1 (en) | 2003-12-24 |
JP2005532364A (en) | 2005-10-27 |
CN1674902A (en) | 2005-09-28 |
EP1471911A1 (en) | 2004-11-03 |
CA2489377A1 (en) | 2003-12-24 |
US7411067B2 (en) | 2008-08-12 |
IL165690A0 (en) | 2006-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060252771A1 (en) | Novel crystalline forms of gatifloxacin and processes for preparation | |
JP3803672B2 (en) | New polymorphs and pseudopolymorphs | |
EP3765464A1 (en) | Solid state forms of relugolix | |
WO2019094409A1 (en) | Salts and solid state forms of ozanimod | |
US20060258677A1 (en) | Novel crystalline forms of gatifloxacin and processes for preparation | |
US20080269488A1 (en) | Novel crystalline forms of gatifloxacin | |
EP1507531B1 (en) | Stable pharmaceutical compositions of desloratadine | |
US7396839B2 (en) | Crystalline forms of gatifloxacin | |
US7423153B2 (en) | Crystalline forms of gatifloxacin | |
US7301024B2 (en) | Crystalline forms of gatifloxacin and processes for preparation | |
US10995083B2 (en) | Cocrystal of 2-(6-methyl-pyridine-2-yl)-3-yl-[6-amide-quinoline-4-yl]-5,6-dihydro-4H-pyrrole[1,2-b]pyrazole, preparation method therefor, and pharmaceutical composition | |
US20080139623A1 (en) | Amorphous and crystalline forms of pantoprazole magnesium salt | |
EP1645274A1 (en) | Process for making gatifloxacin form omega | |
WO2008130630A2 (en) | Polymorphic form of rimonabant hydrochloride and processes for preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |