US20080256503A1 - Power management architecture and method of modulating oscillator frequency based on voltage supply - Google Patents
Power management architecture and method of modulating oscillator frequency based on voltage supply Download PDFInfo
- Publication number
- US20080256503A1 US20080256503A1 US11/876,076 US87607607A US2008256503A1 US 20080256503 A1 US20080256503 A1 US 20080256503A1 US 87607607 A US87607607 A US 87607607A US 2008256503 A1 US2008256503 A1 US 2008256503A1
- Authority
- US
- United States
- Prior art keywords
- path
- design structure
- design
- frequency
- logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/03—Astable circuits
- H03K3/0315—Ring oscillators
Definitions
- the invention relates to a method and system for modulating frequency based on voltage supply, and more particularly, to a power management architecture and method of modulating oscillator frequency based on voltage supply.
- the invention is also directed to a design structure on which a circuit resides.
- low power environments include radio frequency ID (RFID) applications, as well as devices which measure vibrations in a structure.
- RFID radio frequency ID
- devices which measure vibrations in a structure.
- RFID radio frequency ID
- the devices do not have a typical power supply, e.g., AC adapter, batteries, large capacitors or other supply storage devices. Due to this lack of any typical power supply in these devices, the available power is intermittent as is the supply voltage, and as such, the logic clock frequency must be changed to meet timing.
- Control of the load (logic) to efficiently use the voltage supply variation is complex and the process and circuitry used in this complex control consumes energy.
- To control the voltage and frequency independently requires a processor (or state machine) sequencing that insures all frequency settings can be supported by corresponding voltages.
- using this type of control in an environment with inexact tolerances will make inefficient use of available power.
- a state machine or processor may be used to determine the required voltage/frequency relationship.
- a state machine or process is very costly in power consumption. This, of course, will decrease the overall performance of the device. Also, the use of a state machine is very complex since it requires a lot of circuitry.
- voltage and clock frequency In order to minimize power for a given performance power consumption currently two controls are necessary, voltage and clock frequency.
- This control could be internal or external. Voltage and clock frequency must be controlled carefully to insure that the clock frequency can be supported by any given voltage.
- the internal or external controls provide control to a DAC and a divider, as shown in FIG. 1 .
- the logic chip is driven by a programmable power supply. When low power operation is desired (trading off maximum performance) the clock frequency can be reduced (via the oscillator/divider) which, in turn, allows the power supply to be reduced. In such a system, the supply voltage cannot be reduced without first reducing the clock frequency.
- the oscillator frequency does not track the power supply; instead, control over the power supply and/or oscillator/divider is by the controlled logic and an external logic controller.
- a system for modulating oscillator frequency based on voltage supply includes a logic unit having a logic operation frequency and a device to produce self-adjusting clocks to match the logic operation frequency.
- the device is configured to use supply voltage as an independent variable to optimize device parameters for different voltage variations in the supply voltage.
- a system comprises a logic unit having a logic operation frequency and module which optimizes frequency to substantially match the logic operation of the logic unit using only a supply voltage as the control variable.
- a method for determining a slowest path in a circuit comprises finding a path with worst case slack for Vmin to Vmax and extracting and saving path data of the path with the worst case slack.
- V DD Vmax
- a design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design.
- the design structure comprises: a logic unit having a logic operation frequency; and a device to produce self-adjusting clocks to match the logic operation frequency, the device being configured to use supply voltage as an independent variable to optimize device parameters for different voltage variations in the supply voltage.
- the design structure comprises a netlist, which describes the circuit.
- the design structure resides on storage medium as a data format used for the exchange of layout data of integrated circuits.
- the design structure includes at least one of test data files, characterization data, verification data, or design specifications.
- FIG. 1 is representative of a conventional system requiring two points of control
- FIG. 2 shows an exemplary control flow diagram according to an embodiment of the invention
- FIG. 3 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 4 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 5 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 6 shows an exemplary timing using a frequency doubler in accordance to an embodiment of the invention
- FIG. 7 shows an exemplary circuit layout according to an embodiment of the invention.
- FIG. 8 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 9 shows an exemplary circuit layout according to an embodiment of the invention.
- FIG. 10 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 11 shows out of phase alignment between clocks in a pipeline clocking
- FIG. 12 shows an exemplary circuit layout according to an embodiment of the invention
- FIG. 13 is a flow diagram implementing steps according to an embodiment of the invention.
- FIG. 14 is a flow diagram of a design process used in semiconductor design, manufacturing, and/or test.
- the invention relates to a method and system for modulating frequency based on voltage supply, and more particularly, to a power management architecture and method of modulating oscillator frequency based on voltage supply.
- the system and method of the invention reduces the complexity and additional control circuitry that consumes energy.
- the system and method of the invention also removes many of the inexact tolerances from the control that erode efficient use of power.
- the system and method of the invention is configured to modulate the frequency of the oscillator based on the supply voltage in a way that mimics the device operation.
- the transfer function of the oscillator may be open loop (programmed into the oscillator circuit) or closed loop with reference circuits/paths to track device parameters.
- the invention includes:
- FIG. 2 shows an illustrative general flow diagram, implementing the embodiments of the invention.
- FIG. 2 (and other flow diagrams described herein) may equally represent a high-level block diagram of the invention.
- the steps of FIG. 2 (and other flow diagrams described herein) may be implemented and executed from either a server, in a client server relationship, or they may run on a user workstation with operative information conveyed to the user workstation.
- the invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements.
- the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.
- the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system.
- a computer-usable or computer readable medium can be any system that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, system, or device.
- the medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or system or device) or a propagation medium.
- Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk.
- Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
- the voltage is changed in accordance with the invention.
- a decision is made to raise the power consumed by the device.
- the voltage is changed in accordance with the invention. As shown, the voltage may be changed without concern for frequency look-up since frequency is changed automatically in accordance with the invention and, as such, there is no requirement for complex circuitry or other drawbacks noted in conventional systems.
- FIG. 3 shows an exemplary circuit layout which may be used for implementing aspects of the invention.
- the circuit layout 100 of FIG. 3 is provided as an illustrative example. Accordingly, it should be understood by those of ordinary skill in the art that other circuit layouts can also be used to implement the invention.
- clock frequency is directly controlled by available power (voltage).
- the invention includes a voltage and control oscillator (VCO) 105 driving the system clock (logic unit) 110 , where the VCO transfer function would be matched to the logic operation of the logic unit 110 .
- the transfer function is designed into the VCO circuitry.
- the voltage can be measured and a table used to select the appropriate frequency, directly from the VCO 105 .
- the circuitry 100 simplifies the control and minimizes the power for a given performance.
- the design of the control for the VCO frequency for the system is provided through Vdd using the inherent supply voltage/frequency relationship of the VCO 105 .
- This embodiment also takes advantage of the performance (delay and frequency) coupling between the on chip VCO 105 and the logic unit 110 .
- the coupling of delay and frequency between the VCO 105 and logic unit 110 is designed into the circuit for optimal power performance, as can be implemented by one of ordinary skill in the art after reading and understanding the present disclosure.
- the frequency can be adjusted based on the Vdd, e.g., a decrease in the Vdd will result in a decrease in the frequency and an increase in the Vdd will result in an increase in the frequency.
- FIG. 4 shows another exemplary circuit layout in accordance with the invention.
- a Ring Oscillator (RO) 115 is used to implement the invention.
- the RO 115 may include a series of inventors which will match the oscillator frequency to the speed of the logic unit 110 for a given voltage. That is, in implementation, the RO 115 will ring at the same or substantially the same frequency as the logic unit 110 , using only the supply voltage as the variable.
- the cycle time is the latch to latch delay
- the T longest path is the longest logic path, which will act as a limiting factor
- the guardband is the delay in the wirings.
- the longest logic path will set a limit on the RO 115 to never run faster than the circuit, itself. It should be understood by those of skill in the art that the logic should be as fast as possible for a given voltage, but should not be faster than the given frequency for a given voltage.
- the longest path is created by copying design data from the logic unit 110 , and inserting it into the RO 115 .
- FIG. 5 shows another exemplary circuit layout in accordance with the invention.
- the RO 115 has a “slow path” feedback designated generally as reference numeral 118 .
- this embodiment uses the longest path found in the timing analysis to create a duplicate path 118 that will track the actual circuit.
- the path 118 is copied from the worst case path found in the timing analysis. In this manner, by adding a feedback path (e.g., wiring) 118 to the RO 115 , it is possible to add an additional delay into the circuit.
- a feedback path e.g., wiring
- the feedback path 118 may include control structures designed to be sensitive to critical process parameters like channel length (or overlap capacitances, or other parameters that are critical to particular applications) to further tune the RO 115 . Circuits used in the feedback path 118 may also be selected to track variations in specific process parameters (or performance shifts over time).
- the feedback path 118 (or RO 115 ) can be trimmed or adjusted (i.e., by adding/deleting stages). This can be done digitally, with fuses, or physically in the design. This trimming/adjustment can be performed to accentuate specific sensitivities, if the desire is to have the RO 115 track particular process parameters. Also, it is contemplated that a variety of trimming options can be switched in/out, each making the RO 115 sensitive to a specific process parameter. Such examples include extremely short or long channel devices, gate vs. overlap caps, low vs. high Vt devices, etc. It is possible to place the reference (e.g., RO and feedback path) close to the logic path to minimize cross-chip differences. Moreover, as shown with reference to FIG. 5 , the RO 115 may include a single inverter (resulting in an odd number of invertors), with a “NAND” gate and a “NOR” gate, in series. This is one of many different options to tune the RO 115 .
- a frequency doubler 120 may be inserted between the RO 115 and the logic unit 110 .
- the RO 115 may have been sensitized to ring at two times the required frequency. But, by using the frequency doubler 120 , the frequency will be corrected to run at an appropriate frequency for the designed logic unit.
- the frequency doubler 120 will provide a pulse at each transition, as shown graphically in FIG. 6 .
- FIG. 7 shows another exemplary circuit layout in accordance with the invention.
- the RO 115 has a switchable “slow path” feedback.
- the slowest path may not be unique, several paths may be selected for monitoring, where the slowest path for the current conditions is switched into the ring oscillator's feedback loop.
- timing analysis can be used at the various voltages to determine the slowest path and switch in its “dual” reference path.
- path “A” represents a long path that is dominated by logic delay
- path “B” represents a path that is dominated by wire length
- path “C” represents a path that is a mixture of the path “A” and path “B”.
- the paths “A”, “B” and “C” can be selected from the worst case timing corners over a supply voltage. In such a scenario, the supply voltage is sampled/digitized and the correct feedback path selected based on the power supply voltage. In this example, the worst case path will automatically be selected since the circuit is configured to wait for all paths to accumulate prior to switching.
- the frequency doubler 120 may be inserted between the RO 115 and the logic unit 110 .
- FIG. 8 shows another exemplary circuit layout in accordance with the invention.
- switching of the “critical” paths can be eliminated by using logic to detect the slowest path.
- a set/reset latch 125 is provided in the path between the RO 115 and the logic unit 110 .
- the frequency doubler 120 may be inserted between the set/reset latch 125 and the logic unit 110 .
- At the input of the set (S) is an “AND” gate 130 and at the input of the reset (R) is a “NOR” gate 135 .
- the output of the “AND” gate 130 will provide a signal to the set (S) and at the output of the “OR” gate 135 will provide a signal to the reset (R).
- Three paths, A, B, C, are selected as being critical with some combination of parameters. In this embodiment, the rising edges of the critical paths are provided to the “AND” gate 130 such that the slowest path controls the output of the “AND” gate 130 to the set/reset latch 125 . When the last path makes the low to high transition the output of the set/reset latch 125 goes high.
- the AND/OR gates provide the information on the slowest transition and the set/reset latch 125 can discriminate between the rising edge and falling edge.
- FIG. 9 shows another exemplary circuit layout in accordance with the invention.
- the RO with slowest path feedback based on transition direction may be selected as described above.
- paths may be selected based on clock phase or transition sensitivities. Some paths may be found to have “negative slack” only on a low phase of the clock (or “0”>“1” data transition) or the high phase of the clock (or a “1”>“0” transition). In this scenario, only the edge of concern needs to be sampled as the “worst case” timing.
- path “A” is found to have “worst case slack” on both clock low (rising edge) and clock high (falling edge), so it is included in the reference path on both the “1” and “0” feedback path.
- Path “B” is found to only cause negative slack on clock high, so it is not included in the clock low “worst case” timing reference.
- Path “C” is only found to have a worst case slack with clock low and is only included in the rising edge test.
- the set/reset latch 125 is provided in the path between the RO 115 and the logic unit 110 .
- At the input of the set (S) function is an “AND” gate 130 and at the input of the reset (R) function is a “NOR” gate 135 .
- the input paths at the “AND” gate 130 reach “1”; whereas, the input paths at the “NOR” gate reach “0”.
- the circuit can wait for the “worst” path before it allows the last edge of the timing to propagate through the set/reset latch 125 . Accordingly, the slowest path can be selected automatically and dynamically thus ensuring that the RO 115 has an oscillation that is always ringing at the longest path regardless of voltage, after sampling any number of paths.
- FIG. 10 shows another exemplary circuit layout in accordance with the invention.
- paths C 1a and C 1b drive the “AND” gate 130 and paths C 2a and C 2b drive the “NOR” gate 135 .
- paths C 1a and C 1b are fed to the set input of the set/reset latch 125 ; whereas, paths C 2a and C 2b are fed to the reset input of the set/reset latch 125 .
- the inverters 115 a in paths C 1a , C 1b , C 2a and C 2b are provided to correct polarity.
- the clock C 2 is the inverse of clock C 1 however the duty cycle of these clocks for optimal frequency for a given power needs to be related to the delay of the logic circuits preceding the corresponding clocked latch (C 1 -ILatch or C 2 -Latch).
- the output of the set/reset latch 125 will feed to either an inverter 125 a through C 1 or a buffer 125 b through C 2 .
- the inverter 125 a will phase shift the signal 180 degrees in order to provide a clock speed with the appropriate phase relationship between C 1 and C 2 .
- This structure allows the clock duty cycle as well as the frequency to match the individual circuits in each phase of the pipeline.
- FIG. 12 shows another exemplary circuit layout using the set/reset latch 125 of embodiments of FIGS. 8-10 .
- the reference circuits 140 a , 140 b and 140 c can be moved across chip, near the circuit they are trying to match. In this case the reference circuits are in separate power islands 140 a , 140 b , 140 c which may or may not have power applied at any given time.
- fencing 150 is needed to switch inactive circuits out of the oscillator feedback loop.
- FIG. 13 is a flow diagram implementing steps of the invention to determine a worst case path.
- the process is set to find the slow corners for Vmin and the fast corners for Vmax (or any corners of Vx between Vmin to Vmax).
- a path with worst case slack is found for Vmin to Vmax.
- a determination is made as to whether the same path has been found, as in a previous implementation of the process. If the same path was not found, then the system extracts and saves the path data at step 1320 and continues to step 1325 .
- the present invention provides an architecture and method using a VCO or ring oscillator (or similar structures) to produce self-adjusting clocks optimized for process/voltage variations.
- the architecture and method is configured to manage power using supply voltage as the independent variable while optimizing clock frequency over power/process variations.
- the architecture and method uses circuits (gates and wiring) in the RO designed to be sensitive to critical process parameters like channel length (or overlap capacitances, etc.).
- the method includes process steps for selecting critical circuits (paths) for use in dynamic power control/clock optimization.
- the circuits can be selected to track variations in specific process parameters. Multiple feedback paths may be used, if desired, to ensure that across-chip process variations are accounted for in global clocking (slowest path selected).
- the paths may be dynamically selected based on transition direction or clock phase. Additionally, feedback paths (oscillator feedback paths) can be trimmed or adjusted, digitally, with fuses, or physically in design. This trimming/adjustment can be done to accentuate specific sensitivities, if the desire is to have the oscillator track particular process parameters. A variety of trimming options can be switched in/out, each making the oscillator sensitive to a specific process parameter.
- FIG. 14 is a flow diagram of a design process used in semiconductor design, manufacturing, and/or test.
- FIG. 14 shows a block diagram of an example design flow 1000 .
- Design flow 1000 may vary depending on the type of IC being designed.
- ASIC application specific IC
- Design structure 1020 is preferably an input to a design process 1010 and may come from an IP provider, a core developer, or other design company or may be generated by the operator of the design flow, or from other sources.
- Design structure 1020 comprises the circuits and/or structures of the present invention (See, e.g., FIGS.
- Design structure 1020 may be contained on one or more machine readable medium.
- design structure 1020 may be a text file or a graphical representation of the circuits and/or structures of the present invention.
- Design process 1010 preferably synthesizes (or translates) the circuits and/or structures of the present invention into a netlist 1080 , where netlist 1080 is, for example, a list of wires, transistors, logic gates, control circuits, I/O, models, etc.
- netlist 1080 that describes the connections to other elements and circuits in an integrated circuit design and recorded on at least one of machine readable medium. This may be an iterative process in which netlist 1080 is resynthesized one or more times depending on design specifications and parameters for the circuits.
- Design process 1010 may include using a variety of inputs; for example, inputs from library elements 1030 which may house a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.), design specifications 1040 , characterization data 1050 , verification data 1060 , design rules 1070 , and test data files 1085 (which may include test patterns and other testing information). Design process 1010 may further include, for example, standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
- standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
- Design process 1010 preferably translates an embodiment of the invention as shown in the accompanying figures, along with any additional integrated circuit design or data (if applicable), into a second design structure 1090 .
- Design structure 1090 resides on a storage medium in a data format used for the exchange of layout data of integrated circuits (e.g. information stored in a GDSII (GDS 2 ), GL 1 , OASIS, or any other suitable format for storing such design structures).
- Design structure 1090 may comprise information such as, for example, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a semiconductor manufacturer to produce an embodiment of the invention as shown in at least FIGS.
- Design structure 1090 may then proceed to a stage 1095 where, for example, design structure 1090 proceeds to tape-out, is released to manufacturing, is released to a mask house, is sent to another design house, is sent back to the customer, etc.
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
- The present application is a continuation in part of U.S. application Ser. No. 11/531,050, filed on Sep. 12, 2006, the disclosure of which is expressly incorporated by reference herein in its entirety.
- The invention relates to a method and system for modulating frequency based on voltage supply, and more particularly, to a power management architecture and method of modulating oscillator frequency based on voltage supply. The invention is also directed to a design structure on which a circuit resides.
- For operation in low or ultra-low power environments it is important to be able to operate from a variable power supply. Examples of low power environments include radio frequency ID (RFID) applications, as well as devices which measure vibrations in a structure. In such devices, it is not uncommon to collect limited and intermittent amounts of energy from an outside source such as, for example, light, vibrations, etc. In an attempt to keep form factor and cost low the devices do not have a typical power supply, e.g., AC adapter, batteries, large capacitors or other supply storage devices. Due to this lack of any typical power supply in these devices, the available power is intermittent as is the supply voltage, and as such, the logic clock frequency must be changed to meet timing.
- Control of the load (logic) to efficiently use the voltage supply variation is complex and the process and circuitry used in this complex control consumes energy. To control the voltage and frequency independently requires a processor (or state machine) sequencing that insures all frequency settings can be supported by corresponding voltages. In addition, using this type of control in an environment with inexact tolerances will make inefficient use of available power.
- More specifically, in known systems, it is necessary to build a frequency look-up table which includes a listing of frequencies that support respective voltages. However, it is not a trivial task to build such a look-up table since the relationship between voltage and frequency is not a straightforward function; that is, frequency and voltage do not have a linear relationship. To build a look-up table it is thus necessary to perform a complex timing analysis for each circuit at different voltages to determine respective frequencies. This timing analysis can then be used to create frequency look-up tables.
- Also, a state machine or processor may be used to determine the required voltage/frequency relationship. However, the use of a state machine or process is very costly in power consumption. This, of course, will decrease the overall performance of the device. Also, the use of a state machine is very complex since it requires a lot of circuitry.
- By way of a more specific example, in current systems, in order to minimize power for a given performance power consumption currently two controls are necessary, voltage and clock frequency. This control could be internal or external. Voltage and clock frequency must be controlled carefully to insure that the clock frequency can be supported by any given voltage. The internal or external controls provide control to a DAC and a divider, as shown in
FIG. 1 . In this example, the logic chip is driven by a programmable power supply. When low power operation is desired (trading off maximum performance) the clock frequency can be reduced (via the oscillator/divider) which, in turn, allows the power supply to be reduced. In such a system, the supply voltage cannot be reduced without first reducing the clock frequency. If the supply voltage is reduced without first reducing the clock frequency, timings will not be met. In such known systems, the oscillator frequency does not track the power supply; instead, control over the power supply and/or oscillator/divider is by the controlled logic and an external logic controller. - In a first aspect of the invention, a system for modulating oscillator frequency based on voltage supply includes a logic unit having a logic operation frequency and a device to produce self-adjusting clocks to match the logic operation frequency. The device is configured to use supply voltage as an independent variable to optimize device parameters for different voltage variations in the supply voltage.
- In another aspect of the invention, a system comprises a logic unit having a logic operation frequency and module which optimizes frequency to substantially match the logic operation of the logic unit using only a supply voltage as the control variable.
- In yet another aspect of the invention, a method for determining a slowest path in a circuit comprises finding a path with worst case slack for Vmin to Vmax and extracting and saving path data of the path with the worst case slack. When a last process corner is found and VDD=Vmax, the process creates and places a feedback reference path into the circuit.
- In yet another aspect of the invention, a design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure comprises: a logic unit having a logic operation frequency; and a device to produce self-adjusting clocks to match the logic operation frequency, the device being configured to use supply voltage as an independent variable to optimize device parameters for different voltage variations in the supply voltage.
- In embodiments, the design structure comprises a netlist, which describes the circuit. The design structure resides on storage medium as a data format used for the exchange of layout data of integrated circuits. The design structure includes at least one of test data files, characterization data, verification data, or design specifications. The design structure further comprises one or more components for: finding a path with worst case slack for Vmin to Vmax; extracting and saving path data of the path with the worst case slack; and creating and placing a feedback reference path into the circuit when a last process corner is found and VDD=Vmax.
-
FIG. 1 is representative of a conventional system requiring two points of control; -
FIG. 2 shows an exemplary control flow diagram according to an embodiment of the invention; -
FIG. 3 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 4 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 5 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 6 shows an exemplary timing using a frequency doubler in accordance to an embodiment of the invention; -
FIG. 7 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 8 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 9 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 10 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 11 shows out of phase alignment between clocks in a pipeline clocking; -
FIG. 12 shows an exemplary circuit layout according to an embodiment of the invention; -
FIG. 13 is a flow diagram implementing steps according to an embodiment of the invention; and -
FIG. 14 is a flow diagram of a design process used in semiconductor design, manufacturing, and/or test. - The invention relates to a method and system for modulating frequency based on voltage supply, and more particularly, to a power management architecture and method of modulating oscillator frequency based on voltage supply. The system and method of the invention reduces the complexity and additional control circuitry that consumes energy. The system and method of the invention also removes many of the inexact tolerances from the control that erode efficient use of power.
- In embodiments, the system and method of the invention is configured to modulate the frequency of the oscillator based on the supply voltage in a way that mimics the device operation. By way of example, the transfer function of the oscillator (frequency/power supply) may be open loop (programmed into the oscillator circuit) or closed loop with reference circuits/paths to track device parameters.
- In embodiments, there are several options to accomplish the functionality of the invention with various levels of complexity in design, timing analysis, and timing optimization as discussed in more detail below. For example, the invention includes:
- (i) In an open loop system, the supply voltage is monitored and the corresponding frequency is selected (Algorithmic/table-driven);
- (ii) A ring oscillator (RO) driving the system clocks, where the RO is running off the same supply as the logic;
- (iii) As a refinement of (ii), a “slow path” is duplicated in the RO;
- (iv) As a refinement of (iii), a plurality of “slow” paths are switched into the RO based on supply voltage;
- (v) As a refinement of (iv), the slowest path is automatically selected;
- (vi) As a refinement of (v), the slowest paths are selected based on clock phase or transition direction; and/or
- (vii) As a refinement of (v) or (vi), the sampled logic may be moved near the circuits to be monitored or drive oscillators on different power islands while tracking the operation of the critical path.
-
FIG. 2 shows an illustrative general flow diagram, implementing the embodiments of the invention.FIG. 2 (and other flow diagrams described herein) may equally represent a high-level block diagram of the invention. The steps ofFIG. 2 (and other flow diagrams described herein) may be implemented and executed from either a server, in a client server relationship, or they may run on a user workstation with operative information conveyed to the user workstation. Additionally, the invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. - In an embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc. Furthermore, the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any system that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, system, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or system or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.
- Referring back to
FIG. 2 , atstep 200, a decision is made to lower the power consumed by the device. Atstep 205, the voltage is changed in accordance with the invention. Similarly, atstep 210, a decision is made to raise the power consumed by the device. At step 215, the voltage is changed in accordance with the invention. As shown, the voltage may be changed without concern for frequency look-up since frequency is changed automatically in accordance with the invention and, as such, there is no requirement for complex circuitry or other drawbacks noted in conventional systems. -
FIG. 3 shows an exemplary circuit layout which may be used for implementing aspects of the invention. Thecircuit layout 100 ofFIG. 3 is provided as an illustrative example. Accordingly, it should be understood by those of ordinary skill in the art that other circuit layouts can also be used to implement the invention. In theexemplary circuit layout 100, clock frequency is directly controlled by available power (voltage). In this implementation, the invention includes a voltage and control oscillator (VCO) 105 driving the system clock (logic unit) 110, where the VCO transfer function would be matched to the logic operation of thelogic unit 110. In embodiments, the transfer function is designed into the VCO circuitry. Alternatively, the voltage can be measured and a table used to select the appropriate frequency, directly from theVCO 105. - More specifically, in embodiments shown in
FIG. 3 , thecircuitry 100 simplifies the control and minimizes the power for a given performance. In this manner, the design of the control for the VCO frequency for the system is provided through Vdd using the inherent supply voltage/frequency relationship of theVCO 105. This embodiment also takes advantage of the performance (delay and frequency) coupling between the onchip VCO 105 and thelogic unit 110. The coupling of delay and frequency between theVCO 105 andlogic unit 110 is designed into the circuit for optimal power performance, as can be implemented by one of ordinary skill in the art after reading and understanding the present disclosure. Thus, using the system of the invention, the frequency can be adjusted based on the Vdd, e.g., a decrease in the Vdd will result in a decrease in the frequency and an increase in the Vdd will result in an increase in the frequency. -
FIG. 4 shows another exemplary circuit layout in accordance with the invention. In this implementation, a Ring Oscillator (RO) 115 is used to implement the invention. In this implementation, theRO 115 may include a series of inventors which will match the oscillator frequency to the speed of thelogic unit 110 for a given voltage. That is, in implementation, theRO 115 will ring at the same or substantially the same frequency as thelogic unit 110, using only the supply voltage as the variable. - In the embodiment of
FIG. 4 , -
Cycle Time=Tlongest path+guardband. - In implementation, the cycle time is the latch to latch delay, the Tlongest path is the longest logic path, which will act as a limiting factor, and the guardband is the delay in the wirings. The longest logic path will set a limit on the
RO 115 to never run faster than the circuit, itself. It should be understood by those of skill in the art that the logic should be as fast as possible for a given voltage, but should not be faster than the given frequency for a given voltage. In an embodiment, the longest path is created by copying design data from thelogic unit 110, and inserting it into theRO 115. -
FIG. 5 shows another exemplary circuit layout in accordance with the invention. In this implementation, theRO 115 has a “slow path” feedback designated generally asreference numeral 118. In more particularity, in a variation of the RO ofFIG. 4 , this embodiment uses the longest path found in the timing analysis to create aduplicate path 118 that will track the actual circuit. In the embodiment shown inFIG. 5 , thepath 118 is copied from the worst case path found in the timing analysis. In this manner, by adding a feedback path (e.g., wiring) 118 to theRO 115, it is possible to add an additional delay into the circuit. - The feedback path 118 (or RO 115) may include control structures designed to be sensitive to critical process parameters like channel length (or overlap capacitances, or other parameters that are critical to particular applications) to further tune the
RO 115. Circuits used in thefeedback path 118 may also be selected to track variations in specific process parameters (or performance shifts over time). - In an embodiment, the feedback path 118 (or RO 115) can be trimmed or adjusted (i.e., by adding/deleting stages). This can be done digitally, with fuses, or physically in the design. This trimming/adjustment can be performed to accentuate specific sensitivities, if the desire is to have the
RO 115 track particular process parameters. Also, it is contemplated that a variety of trimming options can be switched in/out, each making theRO 115 sensitive to a specific process parameter. Such examples include extremely short or long channel devices, gate vs. overlap caps, low vs. high Vt devices, etc. It is possible to place the reference (e.g., RO and feedback path) close to the logic path to minimize cross-chip differences. Moreover, as shown with reference toFIG. 5 , theRO 115 may include a single inverter (resulting in an odd number of invertors), with a “NAND” gate and a “NOR” gate, in series. This is one of many different options to tune theRO 115. - In an optional embodiment, a
frequency doubler 120 may be inserted between theRO 115 and thelogic unit 110. In this embodiment, theRO 115 may have been sensitized to ring at two times the required frequency. But, by using thefrequency doubler 120, the frequency will be corrected to run at an appropriate frequency for the designed logic unit. As thus should be understood, in this optional implementation, thefrequency doubler 120 will provide a pulse at each transition, as shown graphically inFIG. 6 . -
FIG. 7 shows another exemplary circuit layout in accordance with the invention. In the embodiment ofFIG. 7 , theRO 115 has a switchable “slow path” feedback. In the embodiment ofFIG. 7 , in the case where the slowest path may not be unique, several paths may be selected for monitoring, where the slowest path for the current conditions is switched into the ring oscillator's feedback loop. In this case, timing analysis can be used at the various voltages to determine the slowest path and switch in its “dual” reference path. - In the embodiment of
FIG. 7 , three paths, A, B and C, represent different mixes of logic and path lengths which may show up in a timing analysis. In this example, path “A” represents a long path that is dominated by logic delay, path “B” represents a path that is dominated by wire length, while path “C” represents a path that is a mixture of the path “A” and path “B”. The paths “A”, “B” and “C” can be selected from the worst case timing corners over a supply voltage. In such a scenario, the supply voltage is sampled/digitized and the correct feedback path selected based on the power supply voltage. In this example, the worst case path will automatically be selected since the circuit is configured to wait for all paths to accumulate prior to switching. In optional embodiments, thefrequency doubler 120 may be inserted between theRO 115 and thelogic unit 110. -
FIG. 8 shows another exemplary circuit layout in accordance with the invention. In the embodiment ofFIG. 8 , switching of the “critical” paths can be eliminated by using logic to detect the slowest path. In this example, a set/reset latch 125 is provided in the path between theRO 115 and thelogic unit 110. In optional embodiments, thefrequency doubler 120 may be inserted between the set/reset latch 125 and thelogic unit 110. - At the input of the set (S) is an “AND”
gate 130 and at the input of the reset (R) is a “NOR”gate 135. Thus, the output of the “AND”gate 130 will provide a signal to the set (S) and at the output of the “OR”gate 135 will provide a signal to the reset (R). Three paths, A, B, C, are selected as being critical with some combination of parameters. In this embodiment, the rising edges of the critical paths are provided to the “AND”gate 130 such that the slowest path controls the output of the “AND”gate 130 to the set/reset latch 125. When the last path makes the low to high transition the output of the set/reset latch 125 goes high. Likewise, on the negative transitions, all paths must be “0” to satisfy the “NOR” (negative “OR”) for the set/reset latch 125 to go low. Accordingly, the output of the “NOR”gate 135 is a “1” and the reset function of the set/reset latch 125 resets the signal to “0”. On the other hand, the output of the “AND”gate 130 is a “0” and the set function of the set/reset latch 125 outputs the “0”. Thus, as should be understood, the AND/OR gates provide the information on the slowest transition and the set/reset latch 125 can discriminate between the rising edge and falling edge. -
FIG. 9 shows another exemplary circuit layout in accordance with the invention. In the embodiment ofFIG. 9 , the RO with slowest path feedback based on transition direction may be selected as described above. For example, optionally, paths may be selected based on clock phase or transition sensitivities. Some paths may be found to have “negative slack” only on a low phase of the clock (or “0”>“1” data transition) or the high phase of the clock (or a “1”>“0” transition). In this scenario, only the edge of concern needs to be sampled as the “worst case” timing. - In the example of
FIG. 9 , path “A” is found to have “worst case slack” on both clock low (rising edge) and clock high (falling edge), so it is included in the reference path on both the “1” and “0” feedback path. Path “B” is found to only cause negative slack on clock high, so it is not included in the clock low “worst case” timing reference. Path “C” is only found to have a worst case slack with clock low and is only included in the rising edge test. - Still referring to
FIG. 9 , the set/reset latch 125 is provided in the path between theRO 115 and thelogic unit 110. At the input of the set (S) function is an “AND”gate 130 and at the input of the reset (R) function is a “NOR”gate 135. In this example, the input paths at the “AND”gate 130 reach “1”; whereas, the input paths at the “NOR” gate reach “0”. In this manner, and as discussed above, the circuit can wait for the “worst” path before it allows the last edge of the timing to propagate through the set/reset latch 125. Accordingly, the slowest path can be selected automatically and dynamically thus ensuring that theRO 115 has an oscillation that is always ringing at the longest path regardless of voltage, after sampling any number of paths. -
FIG. 10 shows another exemplary circuit layout in accordance with the invention. In more particularity, referring toFIG. 10 , paths C1a and C1b drive the “AND”gate 130 and paths C2a and C2b drive the “NOR”gate 135. In this manner, paths C1a and C1b are fed to the set input of the set/reset latch 125; whereas, paths C2a and C2b are fed to the reset input of the set/reset latch 125. In embodiments, theinverters 115 a in paths C1a, C1b, C2a and C2b are provided to correct polarity. Due to the placement and number of invertors (e.g., odd number of invertors), input paths at the “AND”gate 130 reach “1” and the input paths at the “NOR”gate 135 reach “0”. Accordingly, the output of the “NOR”gate 135 is a “1” and the reset of the set/reset latch 125 resets the signal to “0”. Thus, as should be understood by those of skill in the art, the reset can convert the “0” to a “1”, on its output. On the other hand, the output of the “AND”gate 130 is a “0” and the set of the set/reset latch 125 outputs the “0”. - As should be understood, in a conventional single level latch (transparent latch) pipeline, as shown in
FIG. 11 , there is an inherent problem in getting the appropriate clock duty cycle and frequency, i.e., the clock C2 is the inverse of clock C1 however the duty cycle of these clocks for optimal frequency for a given power needs to be related to the delay of the logic circuits preceding the corresponding clocked latch (C1-ILatch or C2-Latch). To compensate for this inherent problem in pipeline clocking, in the embodiment ofFIG. 10 , the output of the set/reset latch 125 will feed to either aninverter 125 a through C1 or abuffer 125 b through C2. Theinverter 125 a will phase shift the signal 180 degrees in order to provide a clock speed with the appropriate phase relationship between C1 and C2. This structure allows the clock duty cycle as well as the frequency to match the individual circuits in each phase of the pipeline. -
FIG. 12 shows another exemplary circuit layout using the set/reset latch 125 of embodiments ofFIGS. 8-10 . In this embodiment, thereference circuits separate power islands -
FIG. 13 is a flow diagram implementing steps of the invention to determine a worst case path. Atstep 1300, the process is set for Vdd=Vmin to Vmax. Atstep 1305, the process is set to find the slow corners for Vmin and the fast corners for Vmax (or any corners of Vx between Vmin to Vmax). Atstep 1310, a path with worst case slack is found for Vmin to Vmax. Atstep 1315, a determination is made as to whether the same path has been found, as in a previous implementation of the process. If the same path was not found, then the system extracts and saves the path data atstep 1320 and continues to step 1325. If the same path was found atstep 1315, atstep 1325, a determination is made as to whether the path is associated with the last process corner. If it is not, then the process reverts back tostep 1310. If it is the last process corner, at step 1330 a determination is made as to whether VDD=Vmax. If VDD is not equal to Vmax, the process returns to step 1300. If VDD=Vmax, then the process creates and places the feedback reference paths atstep 1335. - As should now be understood, the present invention provides an architecture and method using a VCO or ring oscillator (or similar structures) to produce self-adjusting clocks optimized for process/voltage variations. The architecture and method is configured to manage power using supply voltage as the independent variable while optimizing clock frequency over power/process variations. The architecture and method uses circuits (gates and wiring) in the RO designed to be sensitive to critical process parameters like channel length (or overlap capacitances, etc.). The method includes process steps for selecting critical circuits (paths) for use in dynamic power control/clock optimization. The circuits can be selected to track variations in specific process parameters. Multiple feedback paths may be used, if desired, to ensure that across-chip process variations are accounted for in global clocking (slowest path selected). The paths may be dynamically selected based on transition direction or clock phase. Additionally, feedback paths (oscillator feedback paths) can be trimmed or adjusted, digitally, with fuses, or physically in design. This trimming/adjustment can be done to accentuate specific sensitivities, if the desire is to have the oscillator track particular process parameters. A variety of trimming options can be switched in/out, each making the oscillator sensitive to a specific process parameter.
-
FIG. 14 is a flow diagram of a design process used in semiconductor design, manufacturing, and/or test.FIG. 14 shows a block diagram of anexample design flow 1000.Design flow 1000 may vary depending on the type of IC being designed. For example, adesign flow 1000 for building an application specific IC (ASIC) may differ from adesign flow 1000 for designing a standard component.Design structure 1020 is preferably an input to adesign process 1010 and may come from an IP provider, a core developer, or other design company or may be generated by the operator of the design flow, or from other sources.Design structure 1020 comprises the circuits and/or structures of the present invention (See, e.g.,FIGS. 4 , 5, 7-10 and 12) in the form of schematics or HDL, a hardware-description language (e.g., Verilog, VHDL, C, etc.).Design structure 1020 may be contained on one or more machine readable medium. For example,design structure 1020 may be a text file or a graphical representation of the circuits and/or structures of the present invention.Design process 1010 preferably synthesizes (or translates) the circuits and/or structures of the present invention into anetlist 1080, wherenetlist 1080 is, for example, a list of wires, transistors, logic gates, control circuits, I/O, models, etc. that describes the connections to other elements and circuits in an integrated circuit design and recorded on at least one of machine readable medium. This may be an iterative process in which netlist 1080 is resynthesized one or more times depending on design specifications and parameters for the circuits. -
Design process 1010 may include using a variety of inputs; for example, inputs fromlibrary elements 1030 which may house a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.),design specifications 1040,characterization data 1050,verification data 1060,design rules 1070, and test data files 1085 (which may include test patterns and other testing information).Design process 1010 may further include, for example, standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc. One of ordinary skill in the art of integrated circuit design can appreciate the extent of possible electronic design automation tools and applications used indesign process 1010 without deviating from the scope and spirit of the invention. The design structure of the invention is not limited to any specific design flow. -
Design process 1010 preferably translates an embodiment of the invention as shown in the accompanying figures, along with any additional integrated circuit design or data (if applicable), into asecond design structure 1090.Design structure 1090 resides on a storage medium in a data format used for the exchange of layout data of integrated circuits (e.g. information stored in a GDSII (GDS2), GL1, OASIS, or any other suitable format for storing such design structures).Design structure 1090 may comprise information such as, for example, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a semiconductor manufacturer to produce an embodiment of the invention as shown in at leastFIGS. 4 , 5, 7-10 and 12.Design structure 1090 may then proceed to astage 1095 where, for example,design structure 1090 proceeds to tape-out, is released to manufacturing, is released to a mask house, is sent to another design house, is sent back to the customer, etc. - While the invention has been described in terms of exemplary embodiments, those skilled in the art will recognize that the invention can be practiced with modifications and in the spirit and scope of the appended claims.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/876,076 US20080256503A1 (en) | 2006-09-12 | 2007-10-22 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
US12/787,167 US8174329B2 (en) | 2006-09-12 | 2010-05-25 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/531,050 US20080068100A1 (en) | 2006-09-12 | 2006-09-12 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
US11/876,076 US20080256503A1 (en) | 2006-09-12 | 2007-10-22 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/531,050 Continuation-In-Part US20080068100A1 (en) | 2006-09-12 | 2006-09-12 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/787,167 Continuation US8174329B2 (en) | 2006-09-12 | 2010-05-25 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080256503A1 true US20080256503A1 (en) | 2008-10-16 |
Family
ID=39854925
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/876,076 Abandoned US20080256503A1 (en) | 2006-09-12 | 2007-10-22 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
US12/787,167 Active US8174329B2 (en) | 2006-09-12 | 2010-05-25 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/787,167 Active US8174329B2 (en) | 2006-09-12 | 2010-05-25 | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Country Status (1)
Country | Link |
---|---|
US (2) | US20080256503A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010058249A1 (en) * | 2008-11-24 | 2010-05-27 | Freescale Semiconductor, Inc. | Method and apparatus for generating a clock signal |
WO2011081951A1 (en) * | 2009-12-14 | 2011-07-07 | Qualcomm Incorporated | Adaptive clock generators, systems, and methods |
WO2011085179A1 (en) * | 2010-01-08 | 2011-07-14 | Analog Devices, Inc. | Systems and methods for minimizing power consumption |
WO2012158634A1 (en) * | 2011-05-13 | 2012-11-22 | Oracle International Corporation | Synchronized output of multiple ring oscillators |
CN108153635A (en) * | 2018-01-18 | 2018-06-12 | 郑州云海信息技术有限公司 | Installed System Memory marginal test method, system equipment and computer readable storage medium |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9939883B2 (en) | 2012-12-27 | 2018-04-10 | Nvidia Corporation | Supply-voltage control for device power management |
US9170642B2 (en) | 2013-03-21 | 2015-10-27 | Applied Micro Circuits Corporation | Dynamic power control |
US9766649B2 (en) | 2013-07-22 | 2017-09-19 | Nvidia Corporation | Closed loop dynamic voltage and frequency scaling |
US9602083B2 (en) * | 2013-07-03 | 2017-03-21 | Nvidia Corporation | Clock generation circuit that tracks critical path across process, voltage and temperature variation |
US10103719B2 (en) | 2013-07-22 | 2018-10-16 | Nvidia Corporation | Integrated voltage regulator with in-built process, temperature and aging compensation |
TWI561959B (en) * | 2014-07-03 | 2016-12-11 | Nvidia Corp | Clock generation circuit that tracks critical path across process, voltage and temperature variation |
US20160112200A1 (en) | 2014-10-17 | 2016-04-21 | 21, Inc. | Cryptographic hashing circuitry having improved scheduling efficiency |
US9659123B2 (en) | 2014-10-17 | 2017-05-23 | 21, Inc. | Systems and methods for flexibly optimizing processing circuit efficiency |
US10409827B2 (en) | 2014-10-31 | 2019-09-10 | 21, Inc. | Digital currency mining circuitry having shared processing logic |
US9942046B2 (en) * | 2015-05-06 | 2018-04-10 | 21, Inc. | Digital currency mining circuitry with adaptable difficulty compare capabilities |
FR3056861B1 (en) * | 2016-09-23 | 2018-11-23 | Stmicroelectronics (Rousset) Sas | METHOD AND SYSTEM FOR MANAGING THE OPERATION OF RING OSCILLATORS |
US10659014B2 (en) | 2017-10-13 | 2020-05-19 | Samsung Electronics Co., Ltd. | Clock control in semiconductor system |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227675A (en) * | 1990-09-20 | 1993-07-13 | Fujitsu Limited | Voltage generator for a semiconductor integrated circuit |
US5315271A (en) * | 1990-12-10 | 1994-05-24 | Aerospatiale Societe Nationale Industrielle | Process and device for synchronizing two digital pulse sequences S and RF of the same high frequency |
US5329254A (en) * | 1991-08-09 | 1994-07-12 | Sony Corporation | Semiconductor integrated circuit having clock signal generator |
US5461591A (en) * | 1993-12-02 | 1995-10-24 | Goldstar Electron Co., Ltd. | Voltage generator for semiconductor memory device |
US5490182A (en) * | 1993-05-25 | 1996-02-06 | Nec Corporation | Phase-locked loop circuit having ring oscillator |
US5847617A (en) * | 1996-08-12 | 1998-12-08 | Altera Corporation | Variable-path-length voltage-controlled oscillator circuit |
US5899336A (en) * | 1996-10-04 | 1999-05-04 | Chuo Pack Industry Co., Ltd. | Sheet of corrugated paper for producing a package |
US6104253A (en) * | 1997-05-21 | 2000-08-15 | North Carolina State University | Integrated circuits having cooperative ring oscillator clock circuits therein to minimize clock skew |
US6252465B1 (en) * | 1999-06-25 | 2001-06-26 | Mitsubishi Denki Kabushiki Kaisha | Data phase locked loop circuit |
US6445253B1 (en) * | 2000-12-18 | 2002-09-03 | Api Networks, Inc. | Voltage-controlled oscillator with ac coupling to produce highly accurate duty cycle square wave output |
US6737926B2 (en) * | 2001-08-30 | 2004-05-18 | Micron Technology, Inc. | Method and apparatus for providing clock signals at different locations with minimal clock skew |
US6781431B2 (en) * | 2000-09-19 | 2004-08-24 | Rensas Technology Corp. | Clock generating circuit |
US6933869B1 (en) * | 2004-03-17 | 2005-08-23 | Altera Corporation | Integrated circuits with temperature-change and threshold-voltage drift compensation |
US6995621B1 (en) * | 2003-09-17 | 2006-02-07 | Hewlett-Packard Development Company, L.P. | On-chip variable oscillator method and apparatus |
US20070250800A1 (en) * | 2006-04-25 | 2007-10-25 | Cypress Semiconductor Corporation | Automated integrated circuit development |
US7315213B2 (en) * | 2003-10-17 | 2008-01-01 | Fujitsu Limited | Semiconductor device and voltage-controlled oscillation circuit |
US20080068100A1 (en) * | 2006-09-12 | 2008-03-20 | Goodnow Kenneth J | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5857109A (en) * | 1992-11-05 | 1999-01-05 | Giga Operations Corporation | Programmable logic device for real time video processing |
US6819195B1 (en) * | 2003-03-07 | 2004-11-16 | Ami Semiconductor, Inc. | Stimulated quick start oscillator |
US7355486B2 (en) * | 2006-03-31 | 2008-04-08 | International Business Machines Corporation | Current controlled oscillation device and method having wide frequency range |
-
2007
- 2007-10-22 US US11/876,076 patent/US20080256503A1/en not_active Abandoned
-
2010
- 2010-05-25 US US12/787,167 patent/US8174329B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227675A (en) * | 1990-09-20 | 1993-07-13 | Fujitsu Limited | Voltage generator for a semiconductor integrated circuit |
US5315271A (en) * | 1990-12-10 | 1994-05-24 | Aerospatiale Societe Nationale Industrielle | Process and device for synchronizing two digital pulse sequences S and RF of the same high frequency |
US5329254A (en) * | 1991-08-09 | 1994-07-12 | Sony Corporation | Semiconductor integrated circuit having clock signal generator |
US5490182A (en) * | 1993-05-25 | 1996-02-06 | Nec Corporation | Phase-locked loop circuit having ring oscillator |
US5461591A (en) * | 1993-12-02 | 1995-10-24 | Goldstar Electron Co., Ltd. | Voltage generator for semiconductor memory device |
US5847617A (en) * | 1996-08-12 | 1998-12-08 | Altera Corporation | Variable-path-length voltage-controlled oscillator circuit |
US5899336A (en) * | 1996-10-04 | 1999-05-04 | Chuo Pack Industry Co., Ltd. | Sheet of corrugated paper for producing a package |
US6104253A (en) * | 1997-05-21 | 2000-08-15 | North Carolina State University | Integrated circuits having cooperative ring oscillator clock circuits therein to minimize clock skew |
US6252465B1 (en) * | 1999-06-25 | 2001-06-26 | Mitsubishi Denki Kabushiki Kaisha | Data phase locked loop circuit |
US6781431B2 (en) * | 2000-09-19 | 2004-08-24 | Rensas Technology Corp. | Clock generating circuit |
US6445253B1 (en) * | 2000-12-18 | 2002-09-03 | Api Networks, Inc. | Voltage-controlled oscillator with ac coupling to produce highly accurate duty cycle square wave output |
US6737926B2 (en) * | 2001-08-30 | 2004-05-18 | Micron Technology, Inc. | Method and apparatus for providing clock signals at different locations with minimal clock skew |
US6995621B1 (en) * | 2003-09-17 | 2006-02-07 | Hewlett-Packard Development Company, L.P. | On-chip variable oscillator method and apparatus |
US7315213B2 (en) * | 2003-10-17 | 2008-01-01 | Fujitsu Limited | Semiconductor device and voltage-controlled oscillation circuit |
US6933869B1 (en) * | 2004-03-17 | 2005-08-23 | Altera Corporation | Integrated circuits with temperature-change and threshold-voltage drift compensation |
US20070250800A1 (en) * | 2006-04-25 | 2007-10-25 | Cypress Semiconductor Corporation | Automated integrated circuit development |
US20080068100A1 (en) * | 2006-09-12 | 2008-03-20 | Goodnow Kenneth J | Power management architecture and method of modulating oscillator frequency based on voltage supply |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8558626B2 (en) | 2008-11-24 | 2013-10-15 | Freescale Semiconductor, Inc. | Method and apparatus for generating a clock signal |
US20110199159A1 (en) * | 2008-11-24 | 2011-08-18 | Freescale Semiconductor ,Inc, | Method and apparatus for generating a clock signal |
WO2010058249A1 (en) * | 2008-11-24 | 2010-05-27 | Freescale Semiconductor, Inc. | Method and apparatus for generating a clock signal |
JP2013514045A (en) * | 2009-12-14 | 2013-04-22 | クアルコム,インコーポレイテッド | Adaptive clock generator, system and method |
WO2011081951A1 (en) * | 2009-12-14 | 2011-07-07 | Qualcomm Incorporated | Adaptive clock generators, systems, and methods |
KR101459533B1 (en) | 2009-12-14 | 2014-11-10 | 퀄컴 인코포레이티드 | Adaptive clock generators, systems, and methods |
US8008961B2 (en) | 2009-12-14 | 2011-08-30 | Qualcomm Incorporated | Adaptive clock generators, systems, and methods |
CN102714492A (en) * | 2009-12-14 | 2012-10-03 | 高通股份有限公司 | Adaptive clock generators, systems, and methods |
US8258861B2 (en) | 2010-01-08 | 2012-09-04 | Analog Devices, Inc. | Systems and methods for minimizing power consumption |
US20110169563A1 (en) * | 2010-01-08 | 2011-07-14 | Wreeju Bhaumik | Systems and methods for minimizing power consumption |
WO2011085179A1 (en) * | 2010-01-08 | 2011-07-14 | Analog Devices, Inc. | Systems and methods for minimizing power consumption |
US8395454B2 (en) | 2011-05-13 | 2013-03-12 | Oracle International Corporation | Synchronized output of multiple ring oscillators |
WO2012158634A1 (en) * | 2011-05-13 | 2012-11-22 | Oracle International Corporation | Synchronized output of multiple ring oscillators |
CN103782516A (en) * | 2011-05-13 | 2014-05-07 | 甲骨文国际公司 | Synchronized output of multiple ring oscillators |
CN108153635A (en) * | 2018-01-18 | 2018-06-12 | 郑州云海信息技术有限公司 | Installed System Memory marginal test method, system equipment and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
US8174329B2 (en) | 2012-05-08 |
US20100231306A1 (en) | 2010-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8174329B2 (en) | Power management architecture and method of modulating oscillator frequency based on voltage supply | |
US20080068100A1 (en) | Power management architecture and method of modulating oscillator frequency based on voltage supply | |
Oklobdzija et al. | Digital system clocking: high-performance and low-power aspects | |
US6493856B2 (en) | Automatic circuit generation apparatus and method, and computer program product for executing the method | |
Flynn et al. | Low power methodology manual: for system-on-chip design | |
US8018271B2 (en) | Semiconductor integrated circuit | |
US9065440B2 (en) | Bypassable clocked storage circuitry for dynamic voltage-frequency scaling | |
US8627252B2 (en) | Method for selectively implementing low threshold voltage transistors in digital logic designs | |
TWI643458B (en) | Power saving with dual-rail supply voltage scheme | |
US7543258B2 (en) | Clock design apparatus and clock design method | |
KR100661673B1 (en) | Processing Systems, Clock Modules, and Clock Signal Generation Methods | |
CN103684355A (en) | Clock gating latch, method of operation thereof and integrated circuit employing same | |
US8897083B1 (en) | Memory interface circuitry with data strobe signal sharing capabilities | |
JP2000151369A (en) | Semiconductor device | |
US20030110462A1 (en) | Method for reducing design effect of wearout mechanisms on signal skew in integrated circuit design | |
US7844843B2 (en) | Implementing power savings in HSS clock-gating circuit | |
US7996807B2 (en) | Integrated test waveform generator (TWG) and customer waveform generator (CWG), design structure and method | |
US7669151B1 (en) | Methods for reducing power supply simultaneous switching noise | |
KR100487099B1 (en) | How to generate clock signal and clock driven circuit | |
US7151396B2 (en) | Clock delay compensation circuit | |
US6412099B1 (en) | Apparatus and method for converting logical connection information of circuit | |
JP3466755B2 (en) | Electronics | |
CN114077570A (en) | Semiconductor device with a plurality of transistors | |
US20020070759A1 (en) | Semiconductor integrated circuit device including circuit block having hierarchical structure and method of designing the same | |
US8037337B2 (en) | Structures including circuits for noise reduction in digital systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODNOW, KENNETH J.;OGILVIE, CLARENCE R.;REYNOLDS, CHRISTOPHER B.;AND OTHERS;REEL/FRAME:019994/0484;SIGNING DATES FROM 20071003 TO 20071015 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |