US20080213241A1 - Protease composition and method for treating a digestive disorder - Google Patents
Protease composition and method for treating a digestive disorder Download PDFInfo
- Publication number
- US20080213241A1 US20080213241A1 US11/382,185 US38218506A US2008213241A1 US 20080213241 A1 US20080213241 A1 US 20080213241A1 US 38218506 A US38218506 A US 38218506A US 2008213241 A1 US2008213241 A1 US 2008213241A1
- Authority
- US
- United States
- Prior art keywords
- composition
- enzyme
- microbial
- group
- protease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 133
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000001079 digestive effect Effects 0.000 title claims abstract description 44
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title claims abstract 33
- 239000004365 Protease Substances 0.000 title claims description 48
- 108090001060 Lipase Proteins 0.000 claims abstract description 47
- 102000004882 Lipase Human genes 0.000 claims abstract description 47
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 32
- 102000038379 digestive enzymes Human genes 0.000 claims abstract description 17
- 108091007734 digestive enzymes Proteins 0.000 claims abstract description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 48
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 47
- 208000035475 disorder Diseases 0.000 claims description 44
- 240000006439 Aspergillus oryzae Species 0.000 claims description 34
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims description 34
- 244000063299 Bacillus subtilis Species 0.000 claims description 32
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 32
- 235000019419 proteases Nutrition 0.000 claims description 31
- 241000228245 Aspergillus niger Species 0.000 claims description 30
- 229940069428 antacid Drugs 0.000 claims description 28
- 239000003159 antacid agent Substances 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 28
- 230000000813 microbial effect Effects 0.000 claims description 24
- 239000004367 Lipase Substances 0.000 claims description 19
- 230000001458 anti-acid effect Effects 0.000 claims description 19
- 235000019421 lipase Nutrition 0.000 claims description 19
- 229940040461 lipase Drugs 0.000 claims description 16
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 14
- 239000003485 histamine H2 receptor antagonist Substances 0.000 claims description 11
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 10
- 238000002648 combination therapy Methods 0.000 claims description 9
- 239000002775 capsule Substances 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 8
- 239000000612 proton pump inhibitor Substances 0.000 claims description 8
- 239000002552 dosage form Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 239000002671 adjuvant Substances 0.000 claims description 6
- -1 cachet Substances 0.000 claims description 6
- 229960001380 cimetidine Drugs 0.000 claims description 6
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 claims description 6
- 229960000620 ranitidine Drugs 0.000 claims description 6
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 6
- 239000003826 tablet Substances 0.000 claims description 6
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 5
- 239000004382 Amylase Substances 0.000 claims description 5
- 108010065511 Amylases Proteins 0.000 claims description 5
- 102000013142 Amylases Human genes 0.000 claims description 5
- 108010004032 Bromelains Proteins 0.000 claims description 5
- 108010059892 Cellulase Proteins 0.000 claims description 5
- SMTZFNFIKUPEJC-UHFFFAOYSA-N Roxane Chemical compound CC(=O)OCC(=O)NCCCOC1=CC=CC(CN2CCCCC2)=C1 SMTZFNFIKUPEJC-UHFFFAOYSA-N 0.000 claims description 5
- 235000019418 amylase Nutrition 0.000 claims description 5
- 235000019835 bromelain Nutrition 0.000 claims description 5
- 229940106157 cellulase Drugs 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 5
- 229960001596 famotidine Drugs 0.000 claims description 5
- 229960003174 lansoprazole Drugs 0.000 claims description 5
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 5
- 229960004872 nizatidine Drugs 0.000 claims description 5
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 claims description 5
- 229960000381 omeprazole Drugs 0.000 claims description 5
- 229960004157 rabeprazole Drugs 0.000 claims description 5
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 claims description 5
- 229960003287 roxatidine acetate Drugs 0.000 claims description 5
- 239000003981 vehicle Substances 0.000 claims description 5
- 241000981399 Aspergillus melleus Species 0.000 claims description 4
- 241000194108 Bacillus licheniformis Species 0.000 claims description 4
- 244000285963 Kluyveromyces fragilis Species 0.000 claims description 4
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 claims description 4
- 108090000526 Papain Proteins 0.000 claims description 4
- 241000303962 Rhizopus delemar Species 0.000 claims description 4
- 241000235545 Rhizopus niveus Species 0.000 claims description 4
- 240000005384 Rhizopus oryzae Species 0.000 claims description 4
- 235000013752 Rhizopus oryzae Nutrition 0.000 claims description 4
- 241000179532 [Candida] cylindracea Species 0.000 claims description 4
- 229940055729 papain Drugs 0.000 claims description 4
- 235000019834 papain Nutrition 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 210000004185 liver Anatomy 0.000 claims description 3
- 230000035882 stress Effects 0.000 claims description 3
- 206010004053 Bacterial toxaemia Diseases 0.000 claims description 2
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 2
- 208000036004 Cow milk intolerance Diseases 0.000 claims description 2
- 208000001640 Fibromyalgia Diseases 0.000 claims description 2
- 208000004262 Food Hypersensitivity Diseases 0.000 claims description 2
- 208000007882 Gastritis Diseases 0.000 claims description 2
- 206010020772 Hypertension Diseases 0.000 claims description 2
- 208000013016 Hypoglycemia Diseases 0.000 claims description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 2
- 206010025476 Malabsorption Diseases 0.000 claims description 2
- 208000004155 Malabsorption Syndromes Diseases 0.000 claims description 2
- 208000019695 Migraine disease Diseases 0.000 claims description 2
- 206010027603 Migraine headaches Diseases 0.000 claims description 2
- 208000013222 Toxemia Diseases 0.000 claims description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 2
- 230000009429 distress Effects 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 235000020932 food allergy Nutrition 0.000 claims description 2
- 210000000232 gallbladder Anatomy 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 208000013403 hyperactivity Diseases 0.000 claims description 2
- 201000001421 hyperglycemia Diseases 0.000 claims description 2
- 230000002218 hypoglycaemic effect Effects 0.000 claims description 2
- 230000000968 intestinal effect Effects 0.000 claims description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 claims description 2
- 208000017169 kidney disease Diseases 0.000 claims description 2
- 239000007937 lozenge Substances 0.000 claims description 2
- 208000011580 syndromic disease Diseases 0.000 claims description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 2
- 210000002438 upper gastrointestinal tract Anatomy 0.000 claims description 2
- 108010079522 solysime Proteins 0.000 claims 9
- 241000228212 Aspergillus Species 0.000 claims 6
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims 6
- 241000235402 Rhizomucor Species 0.000 claims 6
- 241000235527 Rhizopus Species 0.000 claims 6
- 108090000270 Ficain Proteins 0.000 claims 3
- 241000193385 Geobacillus stearothermophilus Species 0.000 claims 3
- 235000019836 ficin Nutrition 0.000 claims 3
- POTUGHMKJGOKRI-UHFFFAOYSA-N ficin Chemical compound FI=CI=N POTUGHMKJGOKRI-UHFFFAOYSA-N 0.000 claims 3
- 241000235403 Rhizomucor miehei Species 0.000 claims 2
- 241000193389 Bacillus thermoproteolyticus Species 0.000 claims 1
- 206010049119 Emotional distress Diseases 0.000 claims 1
- 230000002496 gastric effect Effects 0.000 abstract description 21
- 230000002708 enhancing effect Effects 0.000 abstract description 6
- 235000015872 dietary supplement Nutrition 0.000 abstract description 5
- 239000008177 pharmaceutical agent Substances 0.000 abstract description 3
- 102000035195 Peptidases Human genes 0.000 description 77
- 239000003814 drug Substances 0.000 description 41
- 229940124597 therapeutic agent Drugs 0.000 description 31
- 102000004190 Enzymes Human genes 0.000 description 24
- 108090000790 Enzymes Proteins 0.000 description 24
- 229940088598 enzyme Drugs 0.000 description 24
- 230000000694 effects Effects 0.000 description 23
- 239000002253 acid Substances 0.000 description 18
- 210000002784 stomach Anatomy 0.000 description 17
- 230000001225 therapeutic effect Effects 0.000 description 17
- 201000006549 dyspepsia Diseases 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 239000012530 fluid Substances 0.000 description 12
- 230000029087 digestion Effects 0.000 description 11
- 229940079593 drug Drugs 0.000 description 10
- 235000013305 food Nutrition 0.000 description 10
- 208000024798 heartburn Diseases 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 8
- 102000057297 Pepsin A Human genes 0.000 description 7
- 108090000284 Pepsin A Proteins 0.000 description 7
- 235000019833 protease Nutrition 0.000 description 7
- 239000000796 flavoring agent Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229940111202 pepsin Drugs 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 239000012458 free base Substances 0.000 description 4
- 235000011073 invertase Nutrition 0.000 description 4
- 235000012054 meals Nutrition 0.000 description 4
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 235000019700 dicalcium phosphate Nutrition 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 235000013355 food flavoring agent Nutrition 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 230000013777 protein digestion Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000005070 sphincter Anatomy 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- 206010000060 Abdominal distension Diseases 0.000 description 2
- 241000906543 Actaea racemosa Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000169597 Chamaelirium luteum Species 0.000 description 2
- 244000155563 Cnicus benedictus Species 0.000 description 2
- 235000007856 Cnicus benedictus Nutrition 0.000 description 2
- 235000016623 Fragaria vesca Nutrition 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 240000004670 Glycyrrhiza echinata Species 0.000 description 2
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 2
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 2
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 2
- 206010020601 Hyperchlorhydria Diseases 0.000 description 2
- 244000179291 Mahonia aquifolium Species 0.000 description 2
- 244000246386 Mentha pulegium Species 0.000 description 2
- 235000016257 Mentha pulegium Nutrition 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 235000003910 Mitchella repens Nutrition 0.000 description 2
- 244000273245 Mitchella repens Species 0.000 description 2
- 240000009023 Myrrhis odorata Species 0.000 description 2
- 235000007265 Myrrhis odorata Nutrition 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010059820 Polygalacturonase Proteins 0.000 description 2
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 235000008981 Smilax officinalis Nutrition 0.000 description 2
- 240000002493 Smilax officinalis Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 102400000472 Sucrase Human genes 0.000 description 2
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 2
- 240000002299 Symphytum officinale Species 0.000 description 2
- 235000005865 Symphytum officinale Nutrition 0.000 description 2
- 102000004357 Transferases Human genes 0.000 description 2
- 108090000992 Transferases Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 208000024330 bloating Diseases 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229960005069 calcium Drugs 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000005301 cimicifuga racemosa Nutrition 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000001573 invertase Substances 0.000 description 2
- 229940010454 licorice Drugs 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229940039506 mylanta Drugs 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- WNQJZQMIEZWFIN-UHFFFAOYSA-N 1-(benzenesulfonyl)-4-(2-chlorobenzoyl)piperazine Chemical compound ClC1=CC=CC=C1C(=O)N1CCN(S(=O)(=O)C=2C=CC=CC=2)CC1 WNQJZQMIEZWFIN-UHFFFAOYSA-N 0.000 description 1
- UBLAMKHIFZBBSS-UHFFFAOYSA-N 3-Methylbutyl pentanoate Chemical compound CCCCC(=O)OCCC(C)C UBLAMKHIFZBBSS-UHFFFAOYSA-N 0.000 description 1
- 108010011619 6-Phytase Proteins 0.000 description 1
- ULGJWNIHLSLQPZ-UHFFFAOYSA-N 7-[(6,8-dichloro-1,2,3,4-tetrahydroacridin-9-yl)amino]-n-[2-(1h-indol-3-yl)ethyl]heptanamide Chemical compound C1CCCC2=NC3=CC(Cl)=CC(Cl)=C3C(NCCCCCCC(=O)NCCC=3C4=CC=CC=C4NC=3)=C21 ULGJWNIHLSLQPZ-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 206010000087 Abdominal pain upper Diseases 0.000 description 1
- 235000017771 Acacia greggii Nutrition 0.000 description 1
- 235000007754 Achillea millefolium Nutrition 0.000 description 1
- 240000000073 Achillea millefolium Species 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 240000006054 Agastache cana Species 0.000 description 1
- 244000152526 Agathosma crenulata Species 0.000 description 1
- 235000013388 Agathosma crenulata Nutrition 0.000 description 1
- 244000307697 Agrimonia eupatoria Species 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 244000208874 Althaea officinalis Species 0.000 description 1
- 235000006576 Althaea officinalis Nutrition 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009051 Ambrosia paniculata var. peruviana Nutrition 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 244000061520 Angelica archangelica Species 0.000 description 1
- 241000382455 Angelica sinensis Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 235000014722 Aralia cordata Nutrition 0.000 description 1
- 244000024251 Aralia cordata Species 0.000 description 1
- 235000004446 Aralia racemosa Nutrition 0.000 description 1
- 235000007650 Aralia spinosa Nutrition 0.000 description 1
- 241000208340 Araliaceae Species 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 235000012871 Arctostaphylos uva ursi Nutrition 0.000 description 1
- 244000139693 Arctostaphylos uva ursi Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000003097 Artemisia absinthium Nutrition 0.000 description 1
- 240000001851 Artemisia dracunculus Species 0.000 description 1
- 235000017731 Artemisia dracunculus ssp. dracunculus Nutrition 0.000 description 1
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 1
- 235000002453 Asclepias tuberosa Nutrition 0.000 description 1
- 240000008482 Asclepias tuberosa Species 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 101000765308 Aspergillus niger N-(5'-phosphoribosyl)anthranilate isomerase Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 235000009269 Barosma crenulata Nutrition 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 101710130006 Beta-glucanase Proteins 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 235000007689 Borago officinalis Nutrition 0.000 description 1
- 240000004355 Borago officinalis Species 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 235000011305 Capsella bursa pastoris Nutrition 0.000 description 1
- 240000008867 Capsella bursa-pastoris Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 235000002567 Capsicum annuum Nutrition 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000005747 Carum carvi Nutrition 0.000 description 1
- 240000000467 Carum carvi Species 0.000 description 1
- 239000010369 Cascara Substances 0.000 description 1
- 235000006693 Cassia laevigata Nutrition 0.000 description 1
- 244000025596 Cassia laevigata Species 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010031396 Catechol oxidase Proteins 0.000 description 1
- 102000030523 Catechol oxidase Human genes 0.000 description 1
- 241000205586 Caulophyllum thalictroides Species 0.000 description 1
- 235000005940 Centaurea cyanus Nutrition 0.000 description 1
- 240000004385 Centaurea cyanus Species 0.000 description 1
- 241000501711 Centaurium Species 0.000 description 1
- 235000004032 Centella asiatica Nutrition 0.000 description 1
- 244000146462 Centella asiatica Species 0.000 description 1
- 241001310324 Cetraria islandica Species 0.000 description 1
- 240000003538 Chamaemelum nobile Species 0.000 description 1
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 1
- 241000050051 Chelone glabra Species 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 235000009917 Crataegus X brevipes Nutrition 0.000 description 1
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 description 1
- 235000009685 Crataegus X maligna Nutrition 0.000 description 1
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 description 1
- 235000009486 Crataegus bullatus Nutrition 0.000 description 1
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 description 1
- 235000009682 Crataegus limnophila Nutrition 0.000 description 1
- 240000000171 Crataegus monogyna Species 0.000 description 1
- 235000004423 Crataegus monogyna Nutrition 0.000 description 1
- 235000002313 Crataegus paludosa Nutrition 0.000 description 1
- 235000009840 Crataegus x incaedua Nutrition 0.000 description 1
- 235000015655 Crocus sativus Nutrition 0.000 description 1
- 244000124209 Crocus sativus Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 235000018783 Dacrycarpus dacrydioides Nutrition 0.000 description 1
- 108010001682 Dextranase Proteins 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 244000281702 Dioscorea villosa Species 0.000 description 1
- 235000000504 Dioscorea villosa Nutrition 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 240000003173 Drymaria cordata Species 0.000 description 1
- 244000133098 Echinacea angustifolia Species 0.000 description 1
- 241001632410 Eleutherococcus senticosus Species 0.000 description 1
- 241000508725 Elymus repens Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 241000218671 Ephedra Species 0.000 description 1
- 241000195955 Equisetum hyemale Species 0.000 description 1
- 241000207934 Eriodictyon Species 0.000 description 1
- 235000002683 Eriodictyon californicum Nutrition 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 241000201295 Euphrasia Species 0.000 description 1
- 235000013483 European cranberry bush Nutrition 0.000 description 1
- 235000014066 European mistletoe Nutrition 0.000 description 1
- 239000001653 FEMA 3120 Substances 0.000 description 1
- 235000016622 Filipendula ulmaria Nutrition 0.000 description 1
- 244000308505 Filipendula ulmaria Species 0.000 description 1
- 235000000093 Filipendula ulmaria ssp. denudata Nutrition 0.000 description 1
- 235000000092 Filipendula ulmaria ssp. ulmaria Nutrition 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 241000556215 Frangula purshiana Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 241001071795 Gentiana Species 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 244000259229 Grindelia squarrosa Species 0.000 description 1
- 235000005717 Grindelia squarrosa Nutrition 0.000 description 1
- 235000001287 Guettarda speciosa Nutrition 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000208680 Hamamelis mollis Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 235000008418 Hedeoma Nutrition 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 244000025221 Humulus lupulus Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 244000267823 Hydrangea macrophylla Species 0.000 description 1
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 1
- 241000735432 Hydrastis canadensis Species 0.000 description 1
- 235000004185 Hyptis suaveolens Nutrition 0.000 description 1
- 235000010650 Hyssopus officinalis Nutrition 0.000 description 1
- 102100021496 Insulin-degrading enzyme Human genes 0.000 description 1
- 108090000828 Insulysin Proteins 0.000 description 1
- 235000002598 Inula helenium Nutrition 0.000 description 1
- 244000116484 Inula helenium Species 0.000 description 1
- 235000013740 Juglans nigra Nutrition 0.000 description 1
- 244000184861 Juglans nigra Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 102100038609 Lactoperoxidase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000005993 Lactuca saligna Species 0.000 description 1
- 235000003127 Lactuca serriola Nutrition 0.000 description 1
- 235000006173 Larrea tridentata Nutrition 0.000 description 1
- 244000073231 Larrea tridentata Species 0.000 description 1
- 235000010658 Lavandula latifolia Nutrition 0.000 description 1
- 241000208672 Lobelia Species 0.000 description 1
- 244000126155 Lycopus uniflorus Species 0.000 description 1
- 235000002280 Lycopus uniflorus Nutrition 0.000 description 1
- 102100037611 Lysophospholipase Human genes 0.000 description 1
- 235000002823 Mahonia aquifolium Nutrition 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 244000137850 Marrubium vulgare Species 0.000 description 1
- 235000005321 Marrubium vulgare Nutrition 0.000 description 1
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 235000014749 Mentha crispa Nutrition 0.000 description 1
- 244000078639 Mentha spicata Species 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 235000003805 Musa ABB Group Nutrition 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000009134 Myrica cerifera Nutrition 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 235000017879 Nasturtium officinale Nutrition 0.000 description 1
- 240000005407 Nasturtium officinale Species 0.000 description 1
- 235000010679 Nepeta cataria Nutrition 0.000 description 1
- 240000009215 Nepeta cataria Species 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 244000227633 Ocotea pretiosa Species 0.000 description 1
- 235000004263 Ocotea pretiosa Nutrition 0.000 description 1
- 241000219925 Oenothera Species 0.000 description 1
- 235000004496 Oenothera biennis Nutrition 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 235000011203 Origanum Nutrition 0.000 description 1
- 240000000783 Origanum majorana Species 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 208000035467 Pancreatic insufficiency Diseases 0.000 description 1
- 235000011925 Passiflora alata Nutrition 0.000 description 1
- 235000000370 Passiflora edulis Nutrition 0.000 description 1
- 235000011922 Passiflora incarnata Nutrition 0.000 description 1
- 240000002690 Passiflora mixta Species 0.000 description 1
- 235000013750 Passiflora mixta Nutrition 0.000 description 1
- 235000013731 Passiflora van volxemii Nutrition 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 244000062780 Petroselinum sativum Species 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 235000009074 Phytolacca americana Nutrition 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 240000007320 Pinus strobus Species 0.000 description 1
- 235000008578 Pinus strobus Nutrition 0.000 description 1
- 235000015266 Plantago major Nutrition 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- 244000236480 Podophyllum peltatum Species 0.000 description 1
- 235000014258 Polygonum bistorta Nutrition 0.000 description 1
- 244000233952 Polygonum bistorta Species 0.000 description 1
- 102100032709 Potassium-transporting ATPase alpha chain 2 Human genes 0.000 description 1
- 244000023431 Proboscidea parviflora Species 0.000 description 1
- 235000019096 Proboscidea parviflora Nutrition 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 101710180316 Protease 2 Proteins 0.000 description 1
- 101710127332 Protease I Proteins 0.000 description 1
- 108010083204 Proton Pumps Proteins 0.000 description 1
- 235000010401 Prunus avium Nutrition 0.000 description 1
- 241001290151 Prunus avium subsp. avium Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000008296 Prunus serotina Species 0.000 description 1
- 235000014441 Prunus serotina Nutrition 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 240000003085 Quassia amara Species 0.000 description 1
- 235000009694 Quassia amara Nutrition 0.000 description 1
- 235000009137 Quercus alba Nutrition 0.000 description 1
- 244000274906 Quercus alba Species 0.000 description 1
- 235000002226 Ranunculus ficaria Nutrition 0.000 description 1
- 244000081426 Ranunculus ficaria Species 0.000 description 1
- 241000219100 Rhamnaceae Species 0.000 description 1
- 244000299790 Rheum rhabarbarum Species 0.000 description 1
- 235000009411 Rheum rhabarbarum Nutrition 0.000 description 1
- 244000152640 Rhipsalis cassutha Species 0.000 description 1
- 235000012300 Rhipsalis cassutha Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 241001092459 Rubus Species 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- 235000015422 Rumex crispus ssp. crispus Nutrition 0.000 description 1
- 235000015426 Rumex crispus ssp. fauriei Nutrition 0.000 description 1
- 244000207667 Rumex vesicarius Species 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 244000057114 Sapium sebiferum Species 0.000 description 1
- 240000006661 Serenoa repens Species 0.000 description 1
- 235000005318 Serenoa repens Nutrition 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 244000061457 Solanum nigrum Species 0.000 description 1
- 241000689674 Soleirolia Species 0.000 description 1
- 235000009225 Stachys officinalis Nutrition 0.000 description 1
- 244000303286 Stachys officinalis Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010055297 Sterol Esterase Proteins 0.000 description 1
- 102000000019 Sterol Esterase Human genes 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 240000000785 Tagetes erecta Species 0.000 description 1
- 239000010233 Taheebo Substances 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 101710137710 Thioesterase 1/protease 1/lysophospholipase L1 Proteins 0.000 description 1
- 244000053655 Thunbergia mysorensis Species 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 235000015724 Trifolium pratense Nutrition 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 240000000143 Turnera diffusa Species 0.000 description 1
- 240000000377 Tussilago farfara Species 0.000 description 1
- 235000004869 Tussilago farfara Nutrition 0.000 description 1
- 241001473768 Ulmus rubra Species 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 244000274883 Urtica dioica Species 0.000 description 1
- 235000009108 Urtica dioica Nutrition 0.000 description 1
- 235000013832 Valeriana officinalis Nutrition 0.000 description 1
- 244000126014 Valeriana officinalis Species 0.000 description 1
- 235000010599 Verbascum thapsus Nutrition 0.000 description 1
- 244000178289 Verbascum thapsus Species 0.000 description 1
- 244000133094 Verbena hastata Species 0.000 description 1
- 235000010780 Verbena hastata Nutrition 0.000 description 1
- 244000050591 Veronicastrum sibiricum Species 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- 244000172533 Viola sororia Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 108700040099 Xylose isomerases Proteins 0.000 description 1
- 235000004552 Yucca aloifolia Nutrition 0.000 description 1
- 235000012044 Yucca brevifolia Nutrition 0.000 description 1
- 235000017049 Yucca glauca Nutrition 0.000 description 1
- 240000005780 Yucca gloriosa Species 0.000 description 1
- 241000949456 Zanthoxylum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- HZVVJJIYJKGMFL-UHFFFAOYSA-N almasilate Chemical compound O.[Mg+2].[Al+3].[Al+3].O[Si](O)=O.O[Si](O)=O HZVVJJIYJKGMFL-UHFFFAOYSA-N 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 108010003977 aminoacylase I Proteins 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000001142 anti-diarrhea Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000002402 anti-lipaemic effect Effects 0.000 description 1
- 230000000767 anti-ulcer Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003435 antirheumatic agent Substances 0.000 description 1
- 239000001138 artemisia absinthium Substances 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229940038481 bee pollen Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960004217 benzyl alcohol Drugs 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 229940062650 buchu Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 1
- 229940095618 calcium glycerophosphate Drugs 0.000 description 1
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001390 capsicum minimum Substances 0.000 description 1
- 108010089934 carbohydrase Proteins 0.000 description 1
- 235000021257 carbohydrate digestion Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229940071704 cascara sagrada Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 230000001989 choleretic effect Effects 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 230000002060 circadian Effects 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 235000000125 common agrimony Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940089639 cornsilk Drugs 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- JAUGGEIKQIHSMF-UHFFFAOYSA-N dialuminum;dimagnesium;dioxido(oxo)silane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O JAUGGEIKQIHSMF-UHFFFAOYSA-N 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 229960002380 dibutyl phthalate Drugs 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 239000009588 dong quai Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 235000014134 echinacea Nutrition 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- YERABYSOHUZTPQ-UHFFFAOYSA-P endo-1,4-beta-Xylanase Chemical compound C=1C=CC=CC=1C[N+](CC)(CC)CCCNC(C(C=1)=O)=CC(=O)C=1NCCC[N+](CC)(CC)CC1=CC=CC=C1 YERABYSOHUZTPQ-UHFFFAOYSA-P 0.000 description 1
- 125000002587 enol group Chemical group 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- ZDKZHVNKFOXMND-UHFFFAOYSA-N epinepetalactone Chemical compound O=C1OC=C(C)C2C1C(C)CC2 ZDKZHVNKFOXMND-UHFFFAOYSA-N 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000021149 fatty food Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000009246 food effect Effects 0.000 description 1
- 239000008369 fruit flavor Substances 0.000 description 1
- 108010066429 galactomannanase Proteins 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 210000003736 gastrointestinal content Anatomy 0.000 description 1
- 230000005176 gastrointestinal motility Effects 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 235000005679 goldenseal Nutrition 0.000 description 1
- 235000015810 grayleaf red raspberry Nutrition 0.000 description 1
- 235000007400 gumweed Nutrition 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 230000002443 hepatoprotective effect Effects 0.000 description 1
- 239000012676 herbal extract Substances 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 210000000111 lower esophageal sphincter Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229940099076 maalox Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 235000001035 marshmallow Nutrition 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 239000001683 mentha spicata herb oil Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000013546 non-drug therapy Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 235000011197 perejil Nutrition 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940085127 phytase Drugs 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940013788 quassia Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 235000013526 red clover Nutrition 0.000 description 1
- 239000004248 saffron Substances 0.000 description 1
- 235000013974 saffron Nutrition 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000010018 saw palmetto extract Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 229940048730 senega Drugs 0.000 description 1
- 229940124513 senna glycoside Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000019721 spearmint oil Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 235000004952 turnera diffusa Nutrition 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 235000016788 valerian Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 229940118846 witch hazel Drugs 0.000 description 1
- 239000001231 zea mays silk Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
- A61K33/10—Carbonates; Bicarbonates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
Definitions
- the present invention is related to methods, kits, combinations, and compositions for treating a digestive disorder in a subject in need thereof with a digestive enzyme.
- Saliva contains an enzyme called ptyalin, an ⁇ -amylase, which begins the process of digestion by breaking down carbohydrates. Ptyalin remains active in the stomach and continues its digestion of carbohydrates until acid is produced in the stomach and gastric pH decreases. Along with acid, the stomach also produces an enzyme known as pepsin. Pepsin is a protease, which digests proteins. Pepsin is only active at the low pH of the stomach. The partially digested mixture then moves into the small intestine where the acid is neutralized by bicarbonate and the pH elevates to neutral.
- the various proteases, carbohydrases and lipases produced by the pancreas and the cells of the small intestine then further break down the partially digested food into a form that can be absorbed by the body. This is the ideal digestive process. However, most people occasionally suffer from some kind of digestive disorder. The most commonly occurring digestive problems are heartburn, indigestion and flatulence.
- Heartburn and other maladies caused by the acid in the stomach can be a mild annoyance, or they can be a sign of a pathological disorder, such as gastroesophageal reflux disease (GERD).
- Gastroesophageal reflux occurs when the stomach contents, particularly the acid, move up into the esophagus, and is usually caused by a weakened lower esophageal sphincter. Though this condition can be caused by an abnormality in the esophageal sphincter, frequently it results from external factors. Certain foods can cause the sphincter to relax, and obesity puts excess pressure on the sphincter, which can cause or worsen the condition.
- the lining of the esophagus is not equipped to resist the corrosion caused by the acid and slowly erodes. If left untreated this erosion can lead to esophageal cancer.
- digestive problems can result from many other factors as well.
- the consumption of too many fatty foods, physical and emotional stress, smoking, alcohol, other health conditions, exposure to pollution and pathogens, amount of exercise, and the amount and type of food consumed can all contribute to digestive disturbances. Any situation that impedes the secretion of stomach acid and bicarbonate, or the release of the proper digestive enzymes can negatively impact digestion.
- Medications useful in treating heartburn are antacids and H 2 blockers.
- Antacids which are mostly calcium carbonate, magnesium hydroxide, aluminum hydroxide, and/or sodium bicarbonate tablets, work by neutralizing the acid produced in the stomach.
- H 2 blockers are drugs that inhibit the production of acid in the stomach. Both types of medication are effective in treating heartburn and usually eliminate symptoms within a short period of time.
- Pepsin is a protease produced in the stomach that is activated by the acid in the stomach. Pepsin is active in a very narrow pH range, pH 1-3. This enzyme loses activity very rapidly above pH 3 and is inactive at a pH of more than 3.5. Antacids and H 2 blockers relieve symptoms of heartburn by raising the pH of the stomach. Experiments have shown that the pH of the stomach is raised to between 5 and 6 when antacids are administered. At that high pH level pepsin is rendered inactive consequently halting protein digestion in the stomach. It has escaped mainstream attention that the near-epidemic use of antacids in the U.S. brings some consequence.
- pancreatic insufficiency Apart from the disturbance of normal human gut microbial flora, raising the pH of the gastric environment renders the endogenous proteolytic enzyme pepsin inactive. This unintended effect, in turn, may exacerbate one of the potential underlying conditions of indigestion: pancreatic insufficiency.
- Supplemental digestive enzymes can alleviate the problem of poor digestion due to poor internal production of digestive enzymes, and enable enhanced absorption of nutrients from ingested food from the digestive tract.
- Fungal proteases have a broad pH range and work in acidic as well as neutral environments. As shown below, a combination of fungal and bacterial proteases and fungal lipases, with either antacids or H 2 blockers are not only effective in relieving heartburn but also ensure that protein and fat digestion continues in the stomach.
- the present invention is directed to a composition, comprising: (a) at least one protease; (b) at least one lipase; and (c) an antacid.
- the composition may be prepared in the form of tablets, capsules, powders, solutions, suspensions, and troches for oral administration. Alternatively, compositions comprising an antacid plus a protease or lipase are also described herein.
- the present invention is also directed to a method for increasing the digestion of protein in the gastrointestinal tract by administering an effective amount of the above composition.
- Such improved digestion alleviates heartburn, acid indigestion, sour stomach, and other gastrointestinal disorders related to poor protein digestion.
- the methods, kits, combinations, and compositions of the present invention provide enhanced treatment options for treating a digestive disorder in a subject in need thereof as compared to those currently available.
- ranitidine cimetidine
- famotidine nizatidine
- roxatidine acetate any other histamine H 2 receptor antagonist can, if desired, be substituted in whole or in part for such compounds in the methods, kits, combinations, and compositions herein described.
- omeprazole lansoprazole, or rabeprazole
- any other proton pump inhibiting agent can, if desired, be substituted in whole or in part for such agents in the methods, kits, combinations, and compositions herein described.
- any other antacid can if desired, be substituted in whole or in part for calcium carbonate in the methods, kits, combinations, and compositions herein described.
- antacids may include sodium bicarbonate, other calcium salts, aluminum salts, and magnesium salts.
- the present invention is directed to methods, kits, combinations, and compositions for treating, preventing or reducing the risk of developing a digestive disorder, or the symptoms associated with or related to a digestive disorder, in a subject in need thereof.
- the composition comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject.
- the method comprises administering to a subject in need thereof a digestive-disorder-effective amount of a composition comprising an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject.
- a composition comprising an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject.
- the method comprises administering to a subject in need thereof a combination therapy of an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject.
- a pharmaceutical composition is made by combining a digestive-disorder-effective amount of a compound that comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject; and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
- a method of making a pharmaceutical composition comprises combining a digestive-disorder-effective amount of a compound that comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject; and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
- the present invention is also useful for veterinary treatment of companion mammals, exotic animals, and farm animals, including mammals, birds, rodents, and the like. More particularly, the methods, kits, combinations, and compositions of the present invention are useful for treatment of a digestive disorder in a horse, cow, chicken, pig, dog, or cat.
- the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are formulated in a single composition.
- the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are administered in a sequential manner.
- the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are administered in a substantially simultaneous manner.
- the amount of Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme in the methods, kits, combinations, and compositions of the present invention together make a digestive-disorder-effective amount.
- the method, kit, combination, or composition comprises at least about 500 HUT Aspergillus oryzae protease enzyme. In another embodiment of the present invention, the composition comprises about 500 HUT to about 500,000 HUT Aspergillus oryzae protease enzyme. In still another embodiment of the present invention, the method, kit, combination, or composition comprises about 8,000 HUT Aspergillus oryzae protease enzyme.
- the method, kit, combination, or composition comprises at least about 750 PC Bacillus subtilis protease enzyme. In another embodiment of the present invention, the composition comprises about 750 PC to about 750,000 PC Bacillus subtilis protease enzyme. In yet another embodiment of the present invention, the method, kit, combination, or composition comprises about 3,000 PC Bacillus subtilis protease enzyme.
- the method, kit, combination, or composition comprises at least about 10 FCCLU Aspergillus niger lipase enzyme. In yet another embodiment of the present invention, the composition comprises about 10 FCCLU to about 20,000 FCCLU Aspergillus niger lipase enzyme. In yet another embodiment of the present invention, the method, kit, combination, or composition comprises about 100 FCCLU Aspergillus niger lipase enzyme.
- the proteases and lipases of the present invention will preferably have an activity level relating to a pH range useful for the purpose of gastric digestion of proteins in combination with an antacid and the resultant gastric pH conditions.
- the digestive activity of the present invention is not necessarily restricted to the stomach, but may be sustained throughout the gastrointestinal tract due to the effective pH range of the enzymes used.
- the present invention includes methods, kits, combinations, and compositions for reversing, halting, or slowing the progression of a digestive disorder once it becomes clinically evident, or treating the symptoms associated with or related to a digestive disorder.
- the subject may already have a digestive disorder at the time of administration, or be at risk of developing a digestive disorder.
- a kit of the present invention comprises a composition comprising an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent for raising gastric pH of the subject, and/or a digestive enzyme useful in enhancing digestive activity in the subject.
- the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are provided as separate components of a kit.
- the kit can also contain a set of instructions.
- the agent for raising gastric pH of the subject may comprise an antacid, a histamine H 2 receptor antagonist, or a proton pump inhibitor.
- an antacid neutralizes the otherwise acidic character of the fluid in the gastrointestinal tract.
- the antacid includes aluminum hydroxide, magnesium aluminosilicate, magnesium silicate, aluminum silicate, hydrotalcite, magnesium oxide, magnesia alumina hydrate, aluminum hydroxide, magnesium hydroxide, sodium bicarbonate, sodium carbonate, magnesium carbonate, calcium carbonate, magnesium aluminometasilicate, anhydrous calcium hydrogenphosphate, calcium lactate, calcium glycerophosphate, and calcium hydrogenphosphate.
- the antacid is calcium carbonate.
- the antacid is aluminum hydroxide or magnesium hydroxide such as Maalox® or Mylanta® antacid, which are available commercially.
- the dose of antacid administered depends on the particular one used. For example, when the antacid is Mylanta®, between 15 ml and 30 ml is administered to an adult human per dose.
- Combinations of antacids can be used in the methods, kits, combinations, and compositions herein described.
- the histamine H 2 receptor antagonist is ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate.
- the dosage of the H 2 receptor antagonist administered depends on the particular one used. For example, when the H 2 receptor antagonist is cimetidine or ranitidine, between 200 and 800 mg per day is administered to an adult human in single or divided doses.
- the proton pump inhibitor comprises omeprazole, lansoprazole, or rabeprazole at doses known in the art.
- the optional digestive enzyme comprises a proteolytic enzyme (protein digestion), a lipolytic enzyme (fat digestion), an amylolytic enzyme (carbohydrate digestion), and/or a cellulase (fiber digestion).
- proteolytic enzyme protein digestion
- lipolytic enzyme fat digestion
- amylolytic enzyme carbohydrate digestion
- cellulase fiber digestion
- Specific classes of digestive enzymes useful in the methods, kits, combinations, and compositions of the present invention include amylase, protease (for example, protease I and II), invertase, maltase, bromelain, cellulase, lipase, sucrase, lactase, or lipase.
- enzyme types useful in the methods, kits, combinations, and compositions of the present invention include alcohol dehydrogenase, alpha-acetoloactate decarboxylase, amino acylase, alpha-amylase, beta-amylase, amylo-glucosidase, bromelain, catalase, cholesterol esterase, col GmbHase, cyclodextrin gluco transferase, dextranase, deaminase, elastase, alpha-galactosidase, beta-galactosidase, galacto mannanase, beta-glucanase, beta-glucosidase, glucose isomerase, glucose oxidase, gluco transferase, hemicellulase, hyaluronidase, insulinase, invertase (syn.
- laccase lacto peroxidase, lipase, lysozyme, 5′-nucleotidease, papain, pentosanase, pectinase, polygalacturonase, peroxidase, phospholipase A2, phospholipase D, phytase, polyphenol oxidase, pronase, proteinase (for example, serine type proteinase, thiol type proteinase, carboxyl-acid type proteinase, microbial metallo type proteinase), pullunase, rennets, tannase, urease, urokinase, and xylanase.
- These optional digestive enzymes may be from a plant, animal, or microorganism source. Combinations of the above-mentioned enzymes can be used in the methods, kits, combinations, and compositions herein described.
- the methods, kits, combinations, and compositions of the present invention are useful in treatment and prevention of a very wide range of digestive disorders, including, for example, upper gastrointestinal tract distress (such as heartburn, indigestion, stomachache, sour stomach), inflammatory bowel disease, gastritis, irritable bowel syndrome, ulcerative colitis, dairy intolerance, gallbladder stress, malabsorption, intestinal toxemia, food allergies, sugar intolerance, hyperglycemia, hypoglycemia, hypertension, kidney disease, adult onset diabetes, liver problems, fibromyalgia, migraine headaches, postmenstrual syndrome, and hyperactivity in children.
- upper gastrointestinal tract distress such as heartburn, indigestion, stomachache, sour stomach
- inflammatory bowel disease such as heartburn, indigestion, stomachache, sour stomach
- gastritis such as indigestion, stomachache, sour stomach
- irritable bowel syndrome such as ulcerative colitis
- dairy intolerance such as gallbladder stress
- a therapeutic agent (or the therapeutic agents) of the present invention are used in a method, kit, combination, and/or composition in a digestive-disorder-effective amount.
- a “digestive-disorder-effective amount” is intended to qualify the amount of an agent (or agents) required to treat or prevent a digestive disorder in a subject, or relieve to some extent one or more of the symptoms associated with, or related to, a digestive disorder in a subject. In a mammal, this includes, but is not limited to, improving or alleviating the above stated diseases.
- Such symptoms may include, for example, nausea following a meal, headache prior to or following a meal, a feeling of bloating or tenderness in the rib cage area, bloating, burps or belches, diarrhea, constipation, pain or tenderness in the upper abdomen, and/or nausea relieved by eating or bowel movement.
- prevent in relation to a digestive disorder, means no digestive disorder, condition, or disease development if none had occurred, or no further digestive disorder, condition, or disease development if there had already been development of a digestive disorder, condition, or disease.
- compositions of the present invention are used in a “digestive-disorder-effective amount” this means that the concentration of the therapeutic agent (or agents) is such that a therapeutic level of agent is delivered over the term that the composition is to be used. Such delivery is dependent on a number of variables including the time period for which the individual dosage unit is to be used, or the flux rate of the therapeutic agent into the gastric fluid or blood serum of the subject. It is understood, however, that specific dose levels of the therapeutic agents of the present invention for any particular subject depends upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, and diet of the subject, the time of administration, the rate of excretion, the drug combination, and the severity of the particular disorder being treated and form of administration.
- Treatment dosages generally may be titrated to optimize safety and efficacy. Typically, dosage-effect relationships from in vitro and/or in vivo tests initially can provide useful guidance on the proper doses for subject administration. Studies in animal models generally may be used for guidance regarding effective dosages for treatment of a digestive disorder in accordance with the present invention. In terms of treatment protocols, it should be appreciated that the dosage to be administered will depend on several factors, including the particular agent that is administered, the route administered, the condition of the particular subject, etc. Generally speaking, one will desire to administer an amount of the agent that is effective to achieve a gastric fluid concentration or serum level commensurate with the concentrations found to be effective in vitro.
- an agent is found to demonstrate in vitro activity at, for example, 10 ng/ml of gastric fluid, one will desire to administer an amount of the agent that is effective to provide about a 10 ng/ml concentration in vivo. Determination of these parameters is well within the skill of the art. These considerations, as well as effective formulations and administration procedures, are well known in the art and are described in standard textbooks.
- a digestive-disorder-effective amount of a therapeutic agent of the present invention is dependent, among other things, on the body weight of the subject.
- the therapeutic agent is an Aspergillus oryzae protease enzyme and the subject is a child or a small animal (for example, a dog)
- an amount of the enzyme in the relatively low range of about 500 HUT to about 5,000 HUT is likely to provide gastric fluid concentrations consistent with therapeutic effectiveness.
- the subject is an adult human or a large animal (for example, a horse)
- achievement of such concentrations of the enzyme are likely to require dose units containing a relatively greater amount of the Aspergillus oryzae protease enzyme.
- a therapeutically effective amount of Aspergillus oryzae protease enzyme per dose unit in a composition of the present invention is typically about 8,000 HUT, but can range from about 500 HUT to about 500,000 HUT; a therapeutically effective amount of Bacillus subtilis protease enzyme per dose unit in a composition of the present invention is typically about 3,000 PC, but can range from about 750 PC to about 750,000 PC; and a therapeutically effective amount of Aspergillus niger lipase enzyme per dose unit in a composition of the present invention is typically about 100 FCCLU, but can range from about 10 FCCLU to about 20,000 FCCLU.
- an amount of the agent per dose unit can be in a range known to be therapeutically effective for such drugs.
- compositions of the present invention can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic compounds or as a combination of therapeutic compounds.
- compositions of the present invention include those suitable for oral or buccal (for example, sublingual), or nasogastric administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular compound which is being used.
- an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, and an Aspergillus niger lipase enzyme are formulated into a capsule dosage form for oral administration.
- compositions of the present invention can be administered for treating, preventing, or reducing the risk of developing a digestive disorder in a subject by any means that produce contact of these compounds with their site of action in the body, for example in the gastrointestinal fluid or tract of a subject, including the stomach and/or the small intestine, or in the ileum, blood serum, and/or liver of a subject.
- compositions of the present invention can be administered in dosage forms containing conventional nontoxic pharmaceutically acceptable carriers, excipients, adjuvants, and vehicles as desired.
- Adjuvants that can be used in the methods, kits, combinations, and compositions of the present invention include preservatives, wetting agents, or emulsifying agents.
- Exemplary preservatives include, for example, methylparaben, propylparaben, phenol, and benzyl alcohol.
- wetting agents and emulsifying agents are well known in the art.
- Exemplary excipients include, for example, magnesium stearate, stearic acid, acacia gum, fructose, modified cellulose gum, colloidal silicon dioxide, gelatin, glutens, artificial colors, microcrystalline cellulose, dibasic calcium phosphate, aspartame, and natural flavoring agents.
- Carriers may be prepared from a wide range of materials. Without being limited thereto, such materials include diluents, binders and adhesives, lubricants, plasticizers, disintegrants, colorants, bulking substances, flavoring agents, sweeteners and miscellaneous materials such as buffers and adsorbents in order to prepare a particular composition.
- materials include diluents, binders and adhesives, lubricants, plasticizers, disintegrants, colorants, bulking substances, flavoring agents, sweeteners and miscellaneous materials such as buffers and adsorbents in order to prepare a particular composition.
- Sweetening agents may include, for example, materials such as water-soluble sweetening agents, water-soluble artificial sweeteners, and dipeptide-based sweeteners, including salts thereof and mixtures thereof.
- Flavoring agents may include, for example, synthetic flavor oils, and/or oils from plants leaves, flowers, fruits and so forth, and combinations thereof are useful.
- Non-limiting exemplary flavor oils include spearmint oil, peppermint oil, cinnamon oil, and oil of wintergreen (methylsalicylate).
- Also useful are artificial, natural, or synthetic fruit flavors such as citrus oils including lemon, orange, grape, lime, and grapefruit, and fruit essences including apple, strawberry, cherry, pineapple, and so forth, without limitation.
- Binders may be selected from a wide range of materials such as hydroxypropylmethylcellulose, ethylcellulose, or other suitable cellulose derivatives, povidone, acrylic and methacrylic acid co-polymers, pharmaceutical glaze, gums, milk derivatives, such as whey, starches, and derivatives, as well as other conventional binders well known to persons skilled in the art.
- Exemplary non-limiting solvents include water, ethanol, isopropyl alcohol, methylene chloride, or mixtures and combinations thereof.
- Exemplary non-limiting bulking substances include sugar, lactose, gelatin, starch, and silicon dioxide.
- plasticizers include diethyl phthalate, diethyl sebacate, triethyl citrate, cronotic acid, propylene glycol, butyl phthalate, dibutyl sebacate, caster oil and mixtures thereof, without limitation.
- the plasticizers may be hydrophobic as well as hydrophilic in nature. Water-insoluble hydrophobic substances, such as diethyl phthalate, diethyl sebacate, and castor oil can be used to delay the release of water-soluble substances.
- corn starch may act as both a filler and disintegrant.
- the pertinent sections of Remington's The Science and Practice of Pharmacy (2000) relating to carriers, dosage forms and excipients are hereby incorporated herein by reference.
- formulations of the present invention can be administered by any conventional means available for use in conjunction with a dietary supplement or a pharmaceutical drug, either as individual therapeutic compounds or as a combination of therapeutic compounds.
- the pharmaceutical composition of the present invention is administered one to four times a day, or as many times as necessary to achieve the desired therapeutic effect. In another embodiment the composition of the present invention is administered one to four times a day on alternate days. In another embodiment the composition of the present invention is administered in one to about four doses per day on a weekly, biweekly, or monthly basis. In yet another embodiment the composition of the present invention is administered at least about 5 minutes before a meal. In yet another embodiment the composition of the present invention is administered about 20 to about 60 minutes before a meal.
- the methods, kits, combinations, and compositions of the present invention optionally include a salt, an ester, an amide, an enantiomer, an isomer, a tautomer, a prodrug, or a derivative of an agent of the present invention.
- Certain compounds of the present invention may exist in different isomeric (for example, enantiomers and diastereoisomers) forms. The invention contemplates all such isomers both in pure form and in admixture, including racemic mixtures. Enol forms are also included.
- Certain compounds of the invention also form pharmaceutically acceptable salts, for example, acid addition salts.
- the nitrogen atoms may form salts with acids.
- suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic, and other mineral and carboxylic acids well known to those in the art.
- the salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner.
- the free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous hydroxide, potassium carbonate, ammonia, and sodium bicarbonate.
- a suitable dilute aqueous base solution such as dilute aqueous hydroxide, potassium carbonate, ammonia, and sodium bicarbonate.
- the free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid salts are equivalent to their respective free base forms for purposes of the invention. See, e.g., S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 66: 1-19 (1977).
- Individual enantiomeric forms of compounds of the present invention can be separated from mixtures thereof by techniques well known in the art.
- a mixture of diastereoisomeric salts may be formed by reacting the compounds of the present invention with an optically pure form of the acid, followed by purification of the mixture of diastereoisomers by recrystallization or chromatography and subsequent recovery of the resolved compound from the salt by basification.
- the optical isomers of the compounds of the present invention can be separated from one another by chromatographic techniques employing separation on an optically active chromatographic medium.
- the therapeutic agents of the present invention can be used alone in a “combination therapy,” or used with another therapeutic agent, such as a dietary supplement or pharmaceutical agent that is effective at treating, preventing, or reducing the risk of developing a digestive disorder in a subject, or the symptoms associated with or related to a digestive disorder in a subject in need thereof.
- combination therapy embraces the administration of an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, and an Aspergillus niger lipase enzyme together, or with another therapeutic agent (or combination of agents), such as a dietary supplement or a pharmaceutical agent that is effective at treating, preventing, or reducing the risk of developing a digestive disorder in a subject, or the symptoms associated with or related to a digestive disorder in a subject in need thereof, as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of these therapeutic agents for the treatment of a digestive disorder in a subject.
- another therapeutic agent or combination of agents
- the beneficial effects of the combination include, but are not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of the therapeutic agents.
- Administration of these therapeutic agents in combination typically is carried out over a defined time period (usually simultaneously, minutes, hours, days, weeks, months, or years depending upon the combination selected).
- “Combination therapy” generally is not intended to encompass the administration of two or more of these therapeutic agents as part of separate monotherapy regimens that incidentally and arbitrarily result in the combinations of the present invention.
- “Combination therapy” is intended to embrace administration of these therapeutic agents in a sequential manner, that is, where each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner.
- Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single tablet or capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules, or tablets, for each of the therapeutic agents. Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route. The sequence in which the therapeutic agents are administered is not narrowly critical. “Combination therapy” also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients, such as, but not limited to, agents for improving the enzymatic or chemical breakdown of ingested food, and with non-drug therapies, such as, but not limited to, surgery.
- the therapeutic compounds that make up the combination therapy may be in a combined dosage form or in separate dosage forms intended for substantially simultaneous or sequential administration.
- the therapeutic compounds that make up the combination therapy may also be administered sequentially, with either therapeutic compound being administered by a regimen calling for two-step administration.
- a regimen may call for sequential administration of the therapeutic compounds with spaced-apart administration of the separate, active agents.
- the time period between the multiple administration steps may range from, for example, a few minutes to several hours to days, depending upon the properties of each therapeutic compound such as potency, solubility, bioavailability, and plasma half-life and kinetic profile of the therapeutic compound, as well as depending upon the effect of food ingestion and the age and condition of the subject. Circadian variation of the target molecule concentration may also determine the optimal dose interval.
- the therapeutic agents of the present invention may be added separately or combined with food before ingestion.
- the therapeutic agents are generally combined in bulk with the food before being provided for consumption.
- the therapeutic agents can be in the form of a liquid, solution, or a powder, for example, which is then sprinkled onto or into the food at a predetermined dose.
- the powder may be contained in a capsule, packet, bottle or jar.
- the therapeutic agents are provided in the form of a liquid or solution, the liquid or solution may be contained in a capsule, packet, bottle or jar for easy dispensing of the therapeutic agents.
- compositions of the invention can also contain a drug compatible with the digestive enzymes herein described and/or of potentiating the activity of the active ingredients present.
- a drug compatible with the digestive enzymes herein described and/or of potentiating the activity of the active ingredients present include agents such as anticholinergic drugs, antihistamines, adrenergic, antiulcer, antacids, antidiarrheal, and anti-inflammatory drugs, sedatives, antipyretis, choleretics antirheumatic agents, analgesic drugs, diuretics, antiseptic agents, antilipemic hepatoprotective drugs, and drugs active on gastrointestinal motility (e.g., metoclopramide).
- agents such as anticholinergic drugs, antihistamines, adrenergic, antiulcer, antacids, antidiarrheal, and anti-inflammatory drugs, sedatives, antipyretis, choleretics antirheumatic agents,
- the methods, kits, combinations, and compositions are used with a dietary supplement such as a herb or herbal derivative, including, for example, agrimony, alfalfa, aloe vera, amaranth, angelica, anise, barberry, basil, bayberry, bee pollen, birch, bistort, blackberry, black cohosh, black walnut, blessed thistle, blue cohosh, blue vervain, boneset, borage, buchu, buckthorn, bugleweed, burdock, capsicum, cayenne, caraway, cascara sagrada, catnip, celery, centaury, chamomile, chaparral, chickweed, chicory, chinchona, cloves, coltsfoot, comfrey, cornsilk, couch grass, cramp bark, culver's root, cyani, cornflower, damiana, dandelion, devils claw, dong quai, echin
- Herbal derivatives refer to herbal extracts, and substances derived from plants and plant parts, such as leaves, flowers, and roots, without limitation.
- the herbal or herbal derivative is black cohosh, licorice, false unicorn, siberian ginseng, sarsaparilla, squaw vine, blessed thistle, and combinations thereof.
- a composition of the present invention can be used to provide a daily dosage to the subject of at least about 500 HUT Aspergillus oryzae protease enzyme, at least about 750 PC Bacillus subtilis protease enzyme, and at least about 10 FCCLU Aspergillus niger lipase enzyme; or about 500 HUT to about 500,000 HUT Aspergillus oryzae protease enzyme, about 750 PC to about 750,000 PC Bacillus subtilis protease enzyme, and about 10 FCCLU to about 20,000 FCCLU Aspergillus niger lipase enzyme.
- the daily dose can be administered in one to about four doses per day.
- Initial treatment of a digestive disorder can begin with a dose regimen as indicated above. Treatment is generally continued as necessary over a period of a few hours to several days to several weeks to several months or years until the digestive disorder has been controlled or eliminated.
- Subjects undergoing treatment with a composition of the invention can be routinely monitored by any of the methods well known in the art to determine effectiveness of therapy. Continuous analysis of data from such monitoring permits modification of the treatment regimen during therapy so that optimally effective doses are administered at any point in time, and so that the duration of treatment can be determined. In this way, the treatment regimen and dosing schedule can be rationally modified over the course of therapy so that the lowest amount of the composition exhibiting satisfactory effectiveness is administered, and so that administration is continued only for so long as is necessary to successfully treat the condition or disorder.
- the pharmaceutical composition is a tablet, capsule, cachet, lozenge, dispensable powder; powder for suspension, or granule, or packet and is comprised of the dry substances in approximate weights and/or activity units as described below in Table Nos. 1-6:
- Any suitable antacid can be added to the above formulation in an amount effective to elevate gastric pH.
- the International Union of Biochemistry classifies the protease from Aspergillus oryzae as microbial metallo type proteinase 3.4.24.4.
- the International Union of Biochemistry classifies the protease from Bacillus subtilis as serine type proteinase 3.4.21.14.
- the International Union of Biochemistry classifies the lipase from Aspergillus niger as triacylglycerol acylhydrolase 3.1.1.3.
- the above formulations may be formulated as solutions, suspensions or emulsions as known in the art.
- Toxicity and therapeutic efficacy of the therapeutic agents of the present invention can be determined by standard pharmaceutical procedures, for example, for determining LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
- Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
There is provided methods, kits, combinations, and compositions comprising protease enzymes and a lipase enzyme for treating a digestive disorder in a subject in need thereof. The methods, kits, combinations, and compositions may also be used along with an agent (or combination of agents) for raising the gastric pH, a digestive enzyme useful in enhancing digestive activity, a dietary supplement, or a pharmaceutical agent.
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 10/249,303, filed Mar. 28, 2003. This application claims priority to this previous application, and this application is hereby incorporated by reference herein in its entirety.
- The present invention is related to methods, kits, combinations, and compositions for treating a digestive disorder in a subject in need thereof with a digestive enzyme.
- Digestion of food begins in the mouth, continues in the stomach and is completed in the small intestine. Saliva contains an enzyme called ptyalin, an α-amylase, which begins the process of digestion by breaking down carbohydrates. Ptyalin remains active in the stomach and continues its digestion of carbohydrates until acid is produced in the stomach and gastric pH decreases. Along with acid, the stomach also produces an enzyme known as pepsin. Pepsin is a protease, which digests proteins. Pepsin is only active at the low pH of the stomach. The partially digested mixture then moves into the small intestine where the acid is neutralized by bicarbonate and the pH elevates to neutral. The various proteases, carbohydrases and lipases produced by the pancreas and the cells of the small intestine then further break down the partially digested food into a form that can be absorbed by the body. This is the ideal digestive process. However, most people occasionally suffer from some kind of digestive disorder. The most commonly occurring digestive problems are heartburn, indigestion and flatulence.
- Heartburn and other maladies caused by the acid in the stomach can be a mild annoyance, or they can be a sign of a pathological disorder, such as gastroesophageal reflux disease (GERD). Gastroesophageal reflux occurs when the stomach contents, particularly the acid, move up into the esophagus, and is usually caused by a weakened lower esophageal sphincter. Though this condition can be caused by an abnormality in the esophageal sphincter, frequently it results from external factors. Certain foods can cause the sphincter to relax, and obesity puts excess pressure on the sphincter, which can cause or worsen the condition. The lining of the esophagus is not equipped to resist the corrosion caused by the acid and slowly erodes. If left untreated this erosion can lead to esophageal cancer.
- However, digestive problems can result from many other factors as well. The consumption of too many fatty foods, physical and emotional stress, smoking, alcohol, other health conditions, exposure to pollution and pathogens, amount of exercise, and the amount and type of food consumed can all contribute to digestive disturbances. Any situation that impedes the secretion of stomach acid and bicarbonate, or the release of the proper digestive enzymes can negatively impact digestion.
- There are numerous medications available that can effectively treat heartburn and indigestion. Medications useful in treating heartburn are antacids and H2 blockers. Antacids, which are mostly calcium carbonate, magnesium hydroxide, aluminum hydroxide, and/or sodium bicarbonate tablets, work by neutralizing the acid produced in the stomach. On the other hand, H2 blockers are drugs that inhibit the production of acid in the stomach. Both types of medication are effective in treating heartburn and usually eliminate symptoms within a short period of time.
- Pepsin, as mentioned earlier, is a protease produced in the stomach that is activated by the acid in the stomach. Pepsin is active in a very narrow pH range, pH 1-3. This enzyme loses activity very rapidly above pH 3 and is inactive at a pH of more than 3.5. Antacids and H2 blockers relieve symptoms of heartburn by raising the pH of the stomach. Experiments have shown that the pH of the stomach is raised to between 5 and 6 when antacids are administered. At that high pH level pepsin is rendered inactive consequently halting protein digestion in the stomach. It has escaped mainstream attention that the near-epidemic use of antacids in the U.S. brings some consequence. Apart from the disturbance of normal human gut microbial flora, raising the pH of the gastric environment renders the endogenous proteolytic enzyme pepsin inactive. This unintended effect, in turn, may exacerbate one of the potential underlying conditions of indigestion: pancreatic insufficiency.
- For these and other reasons, therefore, it would be a difficult but much desired advance in the art to provide effective methods, kits, combinations, and/or compositions for supplementing the activity of internally produced digestive enzymes. Supplemental digestive enzymes can alleviate the problem of poor digestion due to poor internal production of digestive enzymes, and enable enhanced absorption of nutrients from ingested food from the digestive tract.
- Fungal proteases have a broad pH range and work in acidic as well as neutral environments. As shown below, a combination of fungal and bacterial proteases and fungal lipases, with either antacids or H2 blockers are not only effective in relieving heartburn but also ensure that protein and fat digestion continues in the stomach.
- As hereinafter described, the present invention is an improvement over the disclosures of U.S. Pat. Nos. 6,013,680 and 5,629,013.
- The present invention is directed to a composition, comprising: (a) at least one protease; (b) at least one lipase; and (c) an antacid. The composition may be prepared in the form of tablets, capsules, powders, solutions, suspensions, and troches for oral administration. Alternatively, compositions comprising an antacid plus a protease or lipase are also described herein.
- The present invention is also directed to a method for increasing the digestion of protein in the gastrointestinal tract by administering an effective amount of the above composition. Such improved digestion alleviates heartburn, acid indigestion, sour stomach, and other gastrointestinal disorders related to poor protein digestion.
- The methods, kits, combinations, and compositions of the present invention provide enhanced treatment options for treating a digestive disorder in a subject in need thereof as compared to those currently available.
- While the present invention may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present disclosure is to be considered only as an exemplification of the principles of the invention, and it is not intended to limit the invention to the embodiments illustrated. Where the invention is illustrated herein with particular reference to an Aspergillus oryzae or Bacillus subtilis protease enzyme, it will be understood that any other protease enzyme can, if desired, be substituted in whole or in part for the Aspergillus oryzae or Bacillus subtilis protease enzyme, in the methods, kits, combinations, and compositions herein described. Where the invention is illustrated herein with particular reference to an Aspergillus niger lipase enzyme, it will be understood that any other lipase enzyme can, if desired, be substituted in whole or in part for the Aspergillus niger lipase enzyme in the methods, kits, combinations, and compositions herein described. Suitable enzymes are identified in ETA's Partial List of Enzymes, which is incorporated herein by reference. For example, Aspergillus niger, Aspergillus oryzae, Aspergillus melleus, Rhizopus niveus, Rhizopus delemar, Rhizopus oryzae, Bacillus subtilis, Bacillus thermoproeolyticus, Bacillus licheniformis, Bacillus stearothennophilus, Candida pseudotropicalis, Candida cylindracea, and Rhizomucar miehei.
- Where the invention is illustrated herein with particular reference to ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate, it will be understood that any other histamine H2 receptor antagonist can, if desired, be substituted in whole or in part for such compounds in the methods, kits, combinations, and compositions herein described. Where the invention is illustrated herein with particular reference to omeprazole, lansoprazole, or rabeprazole, it will be understood that any other proton pump inhibiting agent can, if desired, be substituted in whole or in part for such agents in the methods, kits, combinations, and compositions herein described. Where the invention is illustrated herein with particular reference to calcium carbonate, it will be understood that any other antacid, can if desired, be substituted in whole or in part for calcium carbonate in the methods, kits, combinations, and compositions herein described. Such antacids may include sodium bicarbonate, other calcium salts, aluminum salts, and magnesium salts.
- The present invention is directed to methods, kits, combinations, and compositions for treating, preventing or reducing the risk of developing a digestive disorder, or the symptoms associated with or related to a digestive disorder, in a subject in need thereof. In one embodiment, the composition comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject.
- In another embodiment of the present invention, the method comprises administering to a subject in need thereof a digestive-disorder-effective amount of a composition comprising an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject.
- In another embodiment of the present invention, the method comprises administering to a subject in need thereof a combination therapy of an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject.
- In yet another embodiment of the present invention, a pharmaceutical composition is made by combining a digestive-disorder-effective amount of a compound that comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject; and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
- In still another embodiment of the present invention, a method of making a pharmaceutical composition is provided. The method comprises combining a digestive-disorder-effective amount of a compound that comprises an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent (or combination of agents) for raising the gastric pH of the subject, or a digestive enzyme useful in enhancing the digestive activity in the subject; and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
- Besides being useful for human treatment of a digestive disorder, the present invention is also useful for veterinary treatment of companion mammals, exotic animals, and farm animals, including mammals, birds, rodents, and the like. More particularly, the methods, kits, combinations, and compositions of the present invention are useful for treatment of a digestive disorder in a horse, cow, chicken, pig, dog, or cat.
- In another embodiment of the present invention, the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are formulated in a single composition.
- In still another embodiment of the present invention, the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are administered in a sequential manner.
- In another embodiment of the present invention, the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are administered in a substantially simultaneous manner.
- In one embodiment, the amount of Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme in the methods, kits, combinations, and compositions of the present invention together make a digestive-disorder-effective amount.
- In yet another embodiment of the present invention, the method, kit, combination, or composition comprises at least about 500 HUT Aspergillus oryzae protease enzyme. In another embodiment of the present invention, the composition comprises about 500 HUT to about 500,000 HUT Aspergillus oryzae protease enzyme. In still another embodiment of the present invention, the method, kit, combination, or composition comprises about 8,000 HUT Aspergillus oryzae protease enzyme.
- In another embodiment of the present invention, the method, kit, combination, or composition comprises at least about 750 PC Bacillus subtilis protease enzyme. In another embodiment of the present invention, the composition comprises about 750 PC to about 750,000 PC Bacillus subtilis protease enzyme. In yet another embodiment of the present invention, the method, kit, combination, or composition comprises about 3,000 PC Bacillus subtilis protease enzyme.
- In another embodiment of the present invention, the method, kit, combination, or composition comprises at least about 10 FCCLU Aspergillus niger lipase enzyme. In yet another embodiment of the present invention, the composition comprises about 10 FCCLU to about 20,000 FCCLU Aspergillus niger lipase enzyme. In yet another embodiment of the present invention, the method, kit, combination, or composition comprises about 100 FCCLU Aspergillus niger lipase enzyme.
- Although not required, the proteases and lipases of the present invention will preferably have an activity level relating to a pH range useful for the purpose of gastric digestion of proteins in combination with an antacid and the resultant gastric pH conditions. Further, the digestive activity of the present invention is not necessarily restricted to the stomach, but may be sustained throughout the gastrointestinal tract due to the effective pH range of the enzymes used.
- The present invention includes methods, kits, combinations, and compositions for reversing, halting, or slowing the progression of a digestive disorder once it becomes clinically evident, or treating the symptoms associated with or related to a digestive disorder. The subject may already have a digestive disorder at the time of administration, or be at risk of developing a digestive disorder.
- A kit of the present invention comprises a composition comprising an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, an Aspergillus niger lipase enzyme, and optionally an agent for raising gastric pH of the subject, and/or a digestive enzyme useful in enhancing digestive activity in the subject. In one embodiment of the present invention, the Aspergillus oryzae protease enzyme, Bacillus subtilis protease enzyme, and Aspergillus niger lipase enzyme are provided as separate components of a kit. The kit can also contain a set of instructions.
- In one embodiment of the present invention, the agent for raising gastric pH of the subject may comprise an antacid, a histamine H2 receptor antagonist, or a proton pump inhibitor.
- An antacid neutralizes the otherwise acidic character of the fluid in the gastrointestinal tract. Illustratively, the antacid includes aluminum hydroxide, magnesium aluminosilicate, magnesium silicate, aluminum silicate, hydrotalcite, magnesium oxide, magnesia alumina hydrate, aluminum hydroxide, magnesium hydroxide, sodium bicarbonate, sodium carbonate, magnesium carbonate, calcium carbonate, magnesium aluminometasilicate, anhydrous calcium hydrogenphosphate, calcium lactate, calcium glycerophosphate, and calcium hydrogenphosphate. In one embodiment of the present invention, the antacid is calcium carbonate. In another embodiment, the antacid is aluminum hydroxide or magnesium hydroxide such as Maalox® or Mylanta® antacid, which are available commercially. The dose of antacid administered depends on the particular one used. For example, when the antacid is Mylanta®, between 15 ml and 30 ml is administered to an adult human per dose. Combinations of antacids can be used in the methods, kits, combinations, and compositions herein described.
- In still another embodiment of the present invention, the histamine H2 receptor antagonist is ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate. The dosage of the H2 receptor antagonist administered depends on the particular one used. For example, when the H2 receptor antagonist is cimetidine or ranitidine, between 200 and 800 mg per day is administered to an adult human in single or divided doses.
- In yet another embodiment of the present invention, the proton pump inhibitor comprises omeprazole, lansoprazole, or rabeprazole at doses known in the art.
- In still another embodiment of the present invention, the optional digestive enzyme comprises a proteolytic enzyme (protein digestion), a lipolytic enzyme (fat digestion), an amylolytic enzyme (carbohydrate digestion), and/or a cellulase (fiber digestion). Specific classes of digestive enzymes useful in the methods, kits, combinations, and compositions of the present invention include amylase, protease (for example, protease I and II), invertase, maltase, bromelain, cellulase, lipase, sucrase, lactase, or lipase. Other enzyme types useful in the methods, kits, combinations, and compositions of the present invention include alcohol dehydrogenase, alpha-acetoloactate decarboxylase, amino acylase, alpha-amylase, beta-amylase, amylo-glucosidase, bromelain, catalase, cholesterol esterase, collangenase, cyclodextrin gluco transferase, dextranase, deaminase, elastase, alpha-galactosidase, beta-galactosidase, galacto mannanase, beta-glucanase, beta-glucosidase, glucose isomerase, glucose oxidase, gluco transferase, hemicellulase, hyaluronidase, insulinase, invertase (syn. with sucrase), laccase, lacto peroxidase, lipase, lysozyme, 5′-nucleotidease, papain, pentosanase, pectinase, polygalacturonase, peroxidase, phospholipase A2, phospholipase D, phytase, polyphenol oxidase, pronase, proteinase (for example, serine type proteinase, thiol type proteinase, carboxyl-acid type proteinase, microbial metallo type proteinase), pullunase, rennets, tannase, urease, urokinase, and xylanase. These optional digestive enzymes may be from a plant, animal, or microorganism source. Combinations of the above-mentioned enzymes can be used in the methods, kits, combinations, and compositions herein described.
- The methods, kits, combinations, and compositions of the present invention are useful in treatment and prevention of a very wide range of digestive disorders, including, for example, upper gastrointestinal tract distress (such as heartburn, indigestion, stomachache, sour stomach), inflammatory bowel disease, gastritis, irritable bowel syndrome, ulcerative colitis, dairy intolerance, gallbladder stress, malabsorption, intestinal toxemia, food allergies, sugar intolerance, hyperglycemia, hypoglycemia, hypertension, kidney disease, adult onset diabetes, liver problems, fibromyalgia, migraine headaches, postmenstrual syndrome, and hyperactivity in children.
- A therapeutic agent (or the therapeutic agents) of the present invention are used in a method, kit, combination, and/or composition in a digestive-disorder-effective amount. A “digestive-disorder-effective amount” is intended to qualify the amount of an agent (or agents) required to treat or prevent a digestive disorder in a subject, or relieve to some extent one or more of the symptoms associated with, or related to, a digestive disorder in a subject. In a mammal, this includes, but is not limited to, improving or alleviating the above stated diseases. Such symptoms may include, for example, nausea following a meal, headache prior to or following a meal, a feeling of bloating or tenderness in the rib cage area, bloating, burps or belches, diarrhea, constipation, pain or tenderness in the upper abdomen, and/or nausea relieved by eating or bowel movement.
- The term “prevent” or “prevention,” in relation to a digestive disorder, means no digestive disorder, condition, or disease development if none had occurred, or no further digestive disorder, condition, or disease development if there had already been development of a digestive disorder, condition, or disease.
- When the compositions of the present invention are used in a “digestive-disorder-effective amount” this means that the concentration of the therapeutic agent (or agents) is such that a therapeutic level of agent is delivered over the term that the composition is to be used. Such delivery is dependent on a number of variables including the time period for which the individual dosage unit is to be used, or the flux rate of the therapeutic agent into the gastric fluid or blood serum of the subject. It is understood, however, that specific dose levels of the therapeutic agents of the present invention for any particular subject depends upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, and diet of the subject, the time of administration, the rate of excretion, the drug combination, and the severity of the particular disorder being treated and form of administration. Treatment dosages generally may be titrated to optimize safety and efficacy. Typically, dosage-effect relationships from in vitro and/or in vivo tests initially can provide useful guidance on the proper doses for subject administration. Studies in animal models generally may be used for guidance regarding effective dosages for treatment of a digestive disorder in accordance with the present invention. In terms of treatment protocols, it should be appreciated that the dosage to be administered will depend on several factors, including the particular agent that is administered, the route administered, the condition of the particular subject, etc. Generally speaking, one will desire to administer an amount of the agent that is effective to achieve a gastric fluid concentration or serum level commensurate with the concentrations found to be effective in vitro. Thus, where an agent is found to demonstrate in vitro activity at, for example, 10 ng/ml of gastric fluid, one will desire to administer an amount of the agent that is effective to provide about a 10 ng/ml concentration in vivo. Determination of these parameters is well within the skill of the art. These considerations, as well as effective formulations and administration procedures, are well known in the art and are described in standard textbooks.
- It will also be understood that a digestive-disorder-effective amount of a therapeutic agent of the present invention is dependent, among other things, on the body weight of the subject. Illustratively, where the therapeutic agent is an Aspergillus oryzae protease enzyme and the subject is a child or a small animal (for example, a dog), an amount of the enzyme in the relatively low range of about 500 HUT to about 5,000 HUT is likely to provide gastric fluid concentrations consistent with therapeutic effectiveness. Where the subject is an adult human or a large animal (for example, a horse), achievement of such concentrations of the enzyme are likely to require dose units containing a relatively greater amount of the Aspergillus oryzae protease enzyme. For an adult human, a therapeutically effective amount of Aspergillus oryzae protease enzyme per dose unit in a composition of the present invention is typically about 8,000 HUT, but can range from about 500 HUT to about 500,000 HUT; a therapeutically effective amount of Bacillus subtilis protease enzyme per dose unit in a composition of the present invention is typically about 3,000 PC, but can range from about 750 PC to about 750,000 PC; and a therapeutically effective amount of Aspergillus niger lipase enzyme per dose unit in a composition of the present invention is typically about 100 FCCLU, but can range from about 10 FCCLU to about 20,000 FCCLU. For other therapeutic agents of the present invention, an amount of the agent per dose unit can be in a range known to be therapeutically effective for such drugs.
- The compositions of the present invention can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic compounds or as a combination of therapeutic compounds.
- The compositions of the present invention include those suitable for oral or buccal (for example, sublingual), or nasogastric administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular compound which is being used. In one embodiment of the present invention an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, and an Aspergillus niger lipase enzyme are formulated into a capsule dosage form for oral administration.
- The pharmaceutical compositions of the present invention can be administered for treating, preventing, or reducing the risk of developing a digestive disorder in a subject by any means that produce contact of these compounds with their site of action in the body, for example in the gastrointestinal fluid or tract of a subject, including the stomach and/or the small intestine, or in the ileum, blood serum, and/or liver of a subject.
- The pharmaceutical compositions of the present invention can be administered in dosage forms containing conventional nontoxic pharmaceutically acceptable carriers, excipients, adjuvants, and vehicles as desired.
- Adjuvants that can be used in the methods, kits, combinations, and compositions of the present invention include preservatives, wetting agents, or emulsifying agents.
- Exemplary preservatives include, for example, methylparaben, propylparaben, phenol, and benzyl alcohol.
- Wetting agents and emulsifying agents are well known in the art.
- Exemplary excipients include, for example, magnesium stearate, stearic acid, acacia gum, fructose, modified cellulose gum, colloidal silicon dioxide, gelatin, glutens, artificial colors, microcrystalline cellulose, dibasic calcium phosphate, aspartame, and natural flavoring agents.
- Carriers may be prepared from a wide range of materials. Without being limited thereto, such materials include diluents, binders and adhesives, lubricants, plasticizers, disintegrants, colorants, bulking substances, flavoring agents, sweeteners and miscellaneous materials such as buffers and adsorbents in order to prepare a particular composition.
- Sweetening agents may include, for example, materials such as water-soluble sweetening agents, water-soluble artificial sweeteners, and dipeptide-based sweeteners, including salts thereof and mixtures thereof.
- Flavoring agents may include, for example, synthetic flavor oils, and/or oils from plants leaves, flowers, fruits and so forth, and combinations thereof are useful. Non-limiting exemplary flavor oils include spearmint oil, peppermint oil, cinnamon oil, and oil of wintergreen (methylsalicylate). Also useful are artificial, natural, or synthetic fruit flavors such as citrus oils including lemon, orange, grape, lime, and grapefruit, and fruit essences including apple, strawberry, cherry, pineapple, and so forth, without limitation.
- Binders may be selected from a wide range of materials such as hydroxypropylmethylcellulose, ethylcellulose, or other suitable cellulose derivatives, povidone, acrylic and methacrylic acid co-polymers, pharmaceutical glaze, gums, milk derivatives, such as whey, starches, and derivatives, as well as other conventional binders well known to persons skilled in the art.
- Exemplary non-limiting solvents include water, ethanol, isopropyl alcohol, methylene chloride, or mixtures and combinations thereof.
- Exemplary non-limiting bulking substances include sugar, lactose, gelatin, starch, and silicon dioxide.
- Exemplary plasticizers include diethyl phthalate, diethyl sebacate, triethyl citrate, cronotic acid, propylene glycol, butyl phthalate, dibutyl sebacate, caster oil and mixtures thereof, without limitation. The plasticizers may be hydrophobic as well as hydrophilic in nature. Water-insoluble hydrophobic substances, such as diethyl phthalate, diethyl sebacate, and castor oil can be used to delay the release of water-soluble substances.
- The skilled artisan will recognize that certain excipients may play multiple roles within any one formulation. For example, corn starch may act as both a filler and disintegrant. The pertinent sections of Remington's The Science and Practice of Pharmacy (2000) relating to carriers, dosage forms and excipients are hereby incorporated herein by reference.
- The formulations of the present invention can be administered by any conventional means available for use in conjunction with a dietary supplement or a pharmaceutical drug, either as individual therapeutic compounds or as a combination of therapeutic compounds.
- In one embodiment, the pharmaceutical composition of the present invention is administered one to four times a day, or as many times as necessary to achieve the desired therapeutic effect. In another embodiment the composition of the present invention is administered one to four times a day on alternate days. In another embodiment the composition of the present invention is administered in one to about four doses per day on a weekly, biweekly, or monthly basis. In yet another embodiment the composition of the present invention is administered at least about 5 minutes before a meal. In yet another embodiment the composition of the present invention is administered about 20 to about 60 minutes before a meal.
- Additionally, the methods, kits, combinations, and compositions of the present invention optionally include a salt, an ester, an amide, an enantiomer, an isomer, a tautomer, a prodrug, or a derivative of an agent of the present invention. Certain compounds of the present invention may exist in different isomeric (for example, enantiomers and diastereoisomers) forms. The invention contemplates all such isomers both in pure form and in admixture, including racemic mixtures. Enol forms are also included.
- Certain compounds of the invention also form pharmaceutically acceptable salts, for example, acid addition salts. For example, the nitrogen atoms may form salts with acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic, and other mineral and carboxylic acids well known to those in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous hydroxide, potassium carbonate, ammonia, and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid salts are equivalent to their respective free base forms for purposes of the invention. See, e.g., S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 66: 1-19 (1977).
- Individual enantiomeric forms of compounds of the present invention can be separated from mixtures thereof by techniques well known in the art. For example, a mixture of diastereoisomeric salts may be formed by reacting the compounds of the present invention with an optically pure form of the acid, followed by purification of the mixture of diastereoisomers by recrystallization or chromatography and subsequent recovery of the resolved compound from the salt by basification. Alternatively, the optical isomers of the compounds of the present invention can be separated from one another by chromatographic techniques employing separation on an optically active chromatographic medium.
- The therapeutic agents of the present invention can be used alone in a “combination therapy,” or used with another therapeutic agent, such as a dietary supplement or pharmaceutical agent that is effective at treating, preventing, or reducing the risk of developing a digestive disorder in a subject, or the symptoms associated with or related to a digestive disorder in a subject in need thereof. The phrase “combination therapy” embraces the administration of an Aspergillus oryzae protease enzyme, a Bacillus subtilis protease enzyme, and an Aspergillus niger lipase enzyme together, or with another therapeutic agent (or combination of agents), such as a dietary supplement or a pharmaceutical agent that is effective at treating, preventing, or reducing the risk of developing a digestive disorder in a subject, or the symptoms associated with or related to a digestive disorder in a subject in need thereof, as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of these therapeutic agents for the treatment of a digestive disorder in a subject. The beneficial effects of the combination include, but are not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of the therapeutic agents. Administration of these therapeutic agents in combination typically is carried out over a defined time period (usually simultaneously, minutes, hours, days, weeks, months, or years depending upon the combination selected). “Combination therapy” generally is not intended to encompass the administration of two or more of these therapeutic agents as part of separate monotherapy regimens that incidentally and arbitrarily result in the combinations of the present invention. “Combination therapy” is intended to embrace administration of these therapeutic agents in a sequential manner, that is, where each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner. Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single tablet or capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules, or tablets, for each of the therapeutic agents. Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route. The sequence in which the therapeutic agents are administered is not narrowly critical. “Combination therapy” also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients, such as, but not limited to, agents for improving the enzymatic or chemical breakdown of ingested food, and with non-drug therapies, such as, but not limited to, surgery.
- The therapeutic compounds that make up the combination therapy may be in a combined dosage form or in separate dosage forms intended for substantially simultaneous or sequential administration. The therapeutic compounds that make up the combination therapy may also be administered sequentially, with either therapeutic compound being administered by a regimen calling for two-step administration. Thus, a regimen may call for sequential administration of the therapeutic compounds with spaced-apart administration of the separate, active agents. The time period between the multiple administration steps may range from, for example, a few minutes to several hours to days, depending upon the properties of each therapeutic compound such as potency, solubility, bioavailability, and plasma half-life and kinetic profile of the therapeutic compound, as well as depending upon the effect of food ingestion and the age and condition of the subject. Circadian variation of the target molecule concentration may also determine the optimal dose interval. Examples of suitable pharmaceutically-acceptable formulations containing the therapeutic compounds are given above. Additionally, drug formulations are discussed in, for example, Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms (Marcel Decker, New York, N.Y., 1980). Furthermore, the therapeutic agents of the present invention may be added separately or combined with food before ingestion. When combined, the therapeutic agents are generally combined in bulk with the food before being provided for consumption. When added separately, the therapeutic agents can be in the form of a liquid, solution, or a powder, for example, which is then sprinkled onto or into the food at a predetermined dose. When the therapeutic agents are provided in the form of a powder, the powder may be contained in a capsule, packet, bottle or jar. When the therapeutic agents are provided in the form of a liquid or solution, the liquid or solution may be contained in a capsule, packet, bottle or jar for easy dispensing of the therapeutic agents.
- As an optional component, the compositions of the invention can also contain a drug compatible with the digestive enzymes herein described and/or of potentiating the activity of the active ingredients present. These include agents such as anticholinergic drugs, antihistamines, adrenergic, antiulcer, antacids, antidiarrheal, and anti-inflammatory drugs, sedatives, antipyretis, choleretics antirheumatic agents, analgesic drugs, diuretics, antiseptic agents, antilipemic hepatoprotective drugs, and drugs active on gastrointestinal motility (e.g., metoclopramide).
- In another embodiment of the present invention, the methods, kits, combinations, and compositions are used with a dietary supplement such as a herb or herbal derivative, including, for example, agrimony, alfalfa, aloe vera, amaranth, angelica, anise, barberry, basil, bayberry, bee pollen, birch, bistort, blackberry, black cohosh, black walnut, blessed thistle, blue cohosh, blue vervain, boneset, borage, buchu, buckthorn, bugleweed, burdock, capsicum, cayenne, caraway, cascara sagrada, catnip, celery, centaury, chamomile, chaparral, chickweed, chicory, chinchona, cloves, coltsfoot, comfrey, cornsilk, couch grass, cramp bark, culver's root, cyani, cornflower, damiana, dandelion, devils claw, dong quai, echinacea, elecampane, ephedra, eucalyptus, evening primrose, eyebright, false unicorn, fennel, fenugreek, figwort, flaxseed, garlic, gentian, ginger, ginseng, golden seal, gotu kola, gum weed, hawthorn, hops, horehound, horseradish, horsetail, hoshouwu, hydrangea, hyssop, iceland moss, irish moss, jojoba, juniper, kelp, lady's slipper, lemon grass, licorice, lobelia, mandrake, marigold, marjoram, marshmallow, mistletoe, mullein, mustard, myrrh, nettle, oatstraw, oregon grape, papaya, parsley, passion flower, peach, pennyroyal, peppermint, periwinkle, plantain, pleurisy root, pokeweed, prickly ash, psyllium, quassia, queen of the meadow, red clover, red raspberry, redmond clay, rhubarb, rose hips, rosemary, rue, safflower, saffron, sage, St. Johns Wart, sarsaparilla, sassafras, saw palmetto, skullcap, senega, senna, shepherd's purse, slippery elm, spearmint, spikenard, squawvine, stillingia, strawberry, taheebo, thyme, uva ursi, valerian, violet, watercress, white oak bark, white pine bark, wild cherry, wild lettuce, wild yam, willow, wintergreen, witch hazel, wood betony, wormwood, yarrow, yellow dock, yerba santa, yucca, and combinations thereof. Herbal derivatives, as used herein, refer to herbal extracts, and substances derived from plants and plant parts, such as leaves, flowers, and roots, without limitation. For example, the herbal or herbal derivative is black cohosh, licorice, false unicorn, siberian ginseng, sarsaparilla, squaw vine, blessed thistle, and combinations thereof.
- The use of the term “about” in the present disclosure means “approximately,” and use of the term “about” indicates that dosages and amounts outside that cited may also be effective and safe, and such dosages and amounts are also encompassed by the scope of the present claims.
- For treatment of a digestive disorder in a subject in need thereof, a composition of the present invention can be used to provide a daily dosage to the subject of at least about 500 HUT Aspergillus oryzae protease enzyme, at least about 750 PC Bacillus subtilis protease enzyme, and at least about 10 FCCLU Aspergillus niger lipase enzyme; or about 500 HUT to about 500,000 HUT Aspergillus oryzae protease enzyme, about 750 PC to about 750,000 PC Bacillus subtilis protease enzyme, and about 10 FCCLU to about 20,000 FCCLU Aspergillus niger lipase enzyme. The daily dose can be administered in one to about four doses per day.
- Initial treatment of a digestive disorder can begin with a dose regimen as indicated above. Treatment is generally continued as necessary over a period of a few hours to several days to several weeks to several months or years until the digestive disorder has been controlled or eliminated. Subjects undergoing treatment with a composition of the invention can be routinely monitored by any of the methods well known in the art to determine effectiveness of therapy. Continuous analysis of data from such monitoring permits modification of the treatment regimen during therapy so that optimally effective doses are administered at any point in time, and so that the duration of treatment can be determined. In this way, the treatment regimen and dosing schedule can be rationally modified over the course of therapy so that the lowest amount of the composition exhibiting satisfactory effectiveness is administered, and so that administration is continued only for so long as is necessary to successfully treat the condition or disorder.
- In an embodiment of the present invention, the pharmaceutical composition is a tablet, capsule, cachet, lozenge, dispensable powder; powder for suspension, or granule, or packet and is comprised of the dry substances in approximate weights and/or activity units as described below in Table Nos. 1-6:
-
TABLE NO. 1 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Aspergillus oryzae protease 8,000 HUT enzyme Bacillus subtilis protease 3,000 PC enzyme Aspergillus niger lipase 100 FCCLU enzyme -
TABLE NO. 2 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Protease Aspergillus oryzae 500 HUT Protease Bacillus subtilis 750 PC Lipase Aspergillus niger 10 LU -
TABLE NO. 3 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Protease Aspergillus oryzae 250,000 HUT Protease Bacillus subtilis 375,000 PC Lipase Aspergillus niger 10,000 LU -
TABLE NO. 4 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Protease Aspergillus oryzae 500,000 HUT Protease Bacillus subtilis 750,000 PC Lipase Aspergillus niger 20,000 LU -
TABLE NO. 5 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Protease Aspergillus oryzae 8,000 HUT Protease Bacillus subtilis 3,000 PC Lipase Aspergillus niger 100 LU Calcium (from Calcium 300 mg Carbonate) Microcrystalline Cellulose 500 mg Fructose 1000 mg Natural Flavor 250 mg -
TABLE NO. 6 ENZYME ACTIVITY OR SUBSTANCE AMOUNT PER UNIT Amylase 2,000 DU's Protease 5,000 HUT's Lipase 100 FCC LU's - Any suitable antacid can be added to the above formulation in an amount effective to elevate gastric pH.
- The International Union of Biochemistry (IUB) classifies the protease from Aspergillus oryzae as microbial metallo type proteinase 3.4.24.4.
- The International Union of Biochemistry (IUB) classifies the protease from Bacillus subtilis as serine type proteinase 3.4.21.14.
- The International Union of Biochemistry (IUB) classifies the lipase from Aspergillus niger as triacylglycerol acylhydrolase 3.1.1.3.
- The above formulations may be formulated as solutions, suspensions or emulsions as known in the art.
- Methods of isolating and purifying enzymes are well known in the art, and sources of enzymes are readily available from enzyme supplier companies (see, for example, T. Godfrey and S. West editors, Industrial Enzymology (Macmillan Press Ltd, 2nd Edition, 1996)).
- Toxicity and therapeutic efficacy of the therapeutic agents of the present invention can be determined by standard pharmaceutical procedures, for example, for determining LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- The following examples are provided for exemplification of the present invention and are not intended to be limiting in any way.
- Applicants tested the activity of Aspergillus oryzae protease in simulated gastric fluid after the addition of varying amounts of calcium carbonate. They found that after nearly 700 mg of calcium carbonate was added to the fluid, the protease activity remained above 75% of optimal activity.
- Applicants tested the activity of Bacillus subtilis protease in simulated gastric fluid after the addition of varying amounts of calcium carbonate. They found that after 1200 mg of calcium carbonate was added to the fluid, the protease activity remained above 85% of optimal activity.
- Applicants tested the activity of lipase in simulated gastric fluid after the addition of varying amounts of calcium carbonate. They found that after calcium carbonate was added to the fluid, the lipase activity was not significantly diminished.
- The contents of all cited references throughout this application are hereby expressly incorporated by reference. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of food science, pharmacology, and pharmaceutics, which are within the skill of the art.
- Although the invention has been described with respect to specific embodiments and examples, it should be appreciated that other embodiments utilizing the concept of the present invention are possible without departing from the scope of the invention. The present invention is defined by the claimed elements, and any and all modifications, variations, or equivalents that fall within the true spirit and scope of the underlying principles.
Claims (65)
1. A composition, comprising:
(a) at least about 500 HUT of a microbial or plant protease enzyme;
(b) at least about 750 PC of a microbial or plant protease enzyme; and
(c) at least about 10 FCCLU of a microbial lipase enzyme.
2. The composition of claim 1 , wherein the microbial protease is selected from the group consisting of Aspergillus, Rhizopus, Bacillus, Candida, and Rhizomucor.
3. The composition of claim 2 , wherein the Aspergillus is selected from the group consisting of Aspergillus niger, Aspergillus oryzae, and Aspergillus melleus.
4. The composition of claim 2 , wherein the Rhizopus is selected from the group consisting of Rhizopus niveus, Rhizopus delemar, and Rhizopus oryzae.
5. The composition of claim 2 , wherein the Bacillus is selected from the group consisting of Bacillus subtilis, Bacillus thermoproteolyticus, Bacillus licheniformis, and Bacillus stearothermophilus.
6. The composition of claim 2 , wherein the Candida is selected from the group consisting of Candida pseudotropicalis and Candida cylindracea.
7. The composition of claim 2 , wherein the Rhizomucor is Rhizomucor miehei.
8. The composition of claim 1 , wherein the plant protease is selected from the group consisting of bromelain, papain, and ficin.
9. The composition of claim 1 , further comprising an agent selected from the group consisting of an antacid, a histamine H2 receptor antagonist, and a proton pump inhibitor.
10. The composition of claim 9 , wherein the antacid is calcium carbonate.
11. The composition of claim 9 , wherein the histamine H2 receptor antagonist is selected from the group consisting of ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate.
12. The composition of claim 9 , wherein the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, and rabeprazole.
13. The composition of claim 1 , wherein the composition further comprises a digestive enzyme selected from the group consisting of a protease, a lipase, an amylase, and a cellulase.
14. The composition of claim 1 , wherein the composition comprises about 500 HUT to about 500,000 HUT of a microbial or plant protease enzyme.
15. The composition of claim 1 , wherein the composition comprises about 8,000 HUT of a microbial or plant protease enzyme.
16. The composition of claim 1 , wherein the composition comprises about 750 PC to about 750,000 PC of a microbial or plant protease enzyme.
17. The composition of claim 1 , wherein the composition comprises about 3,000 PC of a microbial or plant protease enzyme.
18. The composition of claim 1 , wherein the composition comprises about 10 FCCLU to about 20,000 FCCLU of a microbial lipase enzyme.
19. The composition of claim 1 , wherein the composition comprises about 100 FCCLU of a microbial lipase enzyme.
20. The composition of claim 1 , wherein the composition is administered orally.
21. The composition of claim 1 , wherein the composition is in a dosage form comprising a tablet, capsule, cachet, lozenge, dispensable powder, granule, solution, suspension, or emulsion.
22. A method for treating or reducing the risk of developing a digestive disorder in a subject in need thereof, comprising: administering to the subject an effective amount of a composition which comprises:
(a) at least about 500 HUT of a microbial or plant protease enzyme;
(b) at least about 750 PC of a microbial or plant protease enzyme; and
(c) at least about 10 FCCLU of a microbial lipase enzyme.
23. The composition of claim 22 , wherein the microbial protease is selected from the group consisting of Aspergillus, Rhizopus, Bacillus, Candida, and Rhizomucor.
24. The composition of claim 23 , wherein the Aspergillus is selected from the group consisting of Aspergillus niger, Aspergillus oryzae, and Aspergillus melleus.
25. The composition of claim 23 , wherein the Rhizopus is selected from the group consisting of Rhizopus niveus, Rhizopus delemar, and Rhizopus oryzae.
26. The composition of claim 23 , wherein the Bacillus is selected from the group consisting of Bacillus subtilis, Bacillus thernoproteolyticus, Bacillus licheniformis, and Bacillus stearothermophilus.
27. The composition of claim 23 , wherein the Candida is selected from the group consisting of Candida pseudotropicalis and Candida cylindracea.
28. The composition of claim 23 , wherein the Rhizomucor is Rhizomucor miehei.
29. The composition of claim 22 , wherein the plant protease is selected from the group consisting of bromelain, papain, and ficin.
30. The method of claim 22 , further comprising an agent selected from the group consisting of an antacid, a histamine H2 receptor antagonist, or a proton pump inhibitor.
31. The method of claim 30 , wherein the antacid is calcium carbonate.
32. The method of claim 30 , wherein the histamine H2 receptor antagonist is selected from the group consisting of ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate.
33. The method of claim 30 , wherein the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, and rabeprazole.
34. The method of claim 22 , wherein the composition further comprises a digestive enzyme selected from the group of a protease, a lipase, an amylase, and a cellulase.
35. The method of claim 22 , wherein the composition comprises about 500 HUT to about 500,000 HUT of a microbial or plant protease enzyme.
36. The method of claim 15 , wherein the composition comprises about 8,000 HUT of a microbial or plant protease enzyme.
37. The method of claim 22 , wherein the composition comprises about 750 PC to about 750,000 PC of a microbial or plant protease enzyme.
38. The method of claim 22 , wherein the composition comprises about 3,000 PC of a microbial or plant protease enzyme.
39. The method of claim 22 , wherein the composition comprises about 10 FCCLU to about 20,000 FCCLU of a microbial lipase enzyme.
40. The method of claim 22 , wherein the composition comprises about 100 FCCLU of a microbial lipase enzyme.
41. A method for treating or reducing the risk of developing a digestive disorder in a subject in need thereof, comprising: administering to the subject in a combination therapy at least about 500 HUT of a microbial or plant protease enzyme, at least about 750 PC of a microbial or plant protease enzyme, at least about 10 FCCLU of a microbial lipase enzyme, and an agent selected from the group consisting of an antacid, an H2 receptor antagonist, and a proton pump inhibitor.
42. The method of claim 41 , wherein the antacid is calcium carbonate.
43. The method of claim 41 , wherein the histamine H2 receptor antagonist is selected from the group consisting of ranitidine, cimetidine, famotidine, nizatidine, and roxatidine acetate.
44. The method of claim 41 , wherein the proton pump inhibitor is selected from the group consisting of omeprazole, lansoprazole, and rabeprazole.
45. The method of claim 41 , wherein the composition further comprises a protease, a lipase, an amylase, and a cellulase.
46. The method of claim 41 , wherein the composition comprises about 500 HUT to about 500,000 HUT of a microbial or plant protease enzyme.
47. The method of claim 41 , wherein the composition comprises about 8,000 HUT of a microbial or plant protease enzyme.
48. The method of claim 41 , wherein the composition comprises about 750 PC to about 750,000 PC of a microbial or plant protease enzyme.
49. The method of claim 41 , wherein the composition comprises about 3,000 PC of a microbial or plant protease enzyme.
50. The method of claim 41 , wherein the composition comprises about 10 FCCLU to about 20,000 FCCLU of a microbial lipase enzyme.
51. The method of claim 41 , wherein the composition comprises about 100 FCCLU of a microbial lipase enzyme.
52. The method of claim 41 , wherein the protease enzymes and the lipase enzyme are formulated in a single composition.
53. The method of claim 41 , wherein the protease enzymes and the lipase enzyme are provided as a separate component of a kit.
54. The method of claim 41 , wherein the protease enzymes and the lipase enzyme are administered in a sequential manner.
55. The method of claim 41 , wherein the protease enzymes and the lipase enzyme are administered in a substantially simultaneous manner.
56. The method according to claim 41 , wherein the digestive disorder is selected from the group consisting of upper gastrointestinal tract distress, inflammatory bowel disease, gastritis, irritable bowel syndrome, ulcerative colitis, dairy intolerance, gallbladder stress, malabsorption, intestinal toxemia, food allergies, sugar intolerance, hyperglycemia, hypoglycemia, hypertension, kidney disease, adult onset diabetes, liver problems, fibromyalgia, migraine headaches, postmenstrual syndrome, and hyperactivity in children.
57. The method composition of claim 41 , wherein the microbial protease is selected from the group consisting of Aspergillus, Rhizopus, Bacillus, Candida, and Rhizomucor.
58. The method composition of claim 41 , wherein the Aspergillus is selected from the group consisting of Aspergillus niger, Aspergillus oryzae, and Aspergillus melleus.
59. The method composition of claim 41 , wherein the Rhizopus is selected from the group consisting of Rhizopus niveus, Rhizopus delemar, and Rhizopus oryzae.
60. The method composition of claim 41 , wherein the Bacillus is selected from the group consisting of Bacillus subtilis, Bacillus thermoproeolyticus, Bacillus licheniformis, and Bacillus stearothermophilus.
61. The method composition of claim 41 , wherein the Candida is selected from the group consisting of Candida pseudotropicalis and Candida cylindracea.
62. The method composition of claim 41 , wherein the Rhizomucor is Rhizomucar miehei.
63. The method composition of claim 41 , wherein the plant protease is selected from the group consisting of bromelain, papain, and ficin.
64. A composition made by combining a digestive-disorder-effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
65. A method for making a composition, comprising: combining a digestive-disorder-effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier, excipient, adjuvant, and/or vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/382,185 US20080213241A1 (en) | 2003-03-28 | 2006-05-08 | Protease composition and method for treating a digestive disorder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/249,303 US7067124B2 (en) | 2003-03-28 | 2003-03-28 | Protease composition and method for treating a digestive disorder |
US11/382,185 US20080213241A1 (en) | 2003-03-28 | 2006-05-08 | Protease composition and method for treating a digestive disorder |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/249,303 Continuation US7067124B2 (en) | 2003-03-28 | 2003-03-28 | Protease composition and method for treating a digestive disorder |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080213241A1 true US20080213241A1 (en) | 2008-09-04 |
Family
ID=32987052
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/249,303 Expired - Lifetime US7067124B2 (en) | 2003-03-28 | 2003-03-28 | Protease composition and method for treating a digestive disorder |
US11/382,185 Abandoned US20080213241A1 (en) | 2003-03-28 | 2006-05-08 | Protease composition and method for treating a digestive disorder |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/249,303 Expired - Lifetime US7067124B2 (en) | 2003-03-28 | 2003-03-28 | Protease composition and method for treating a digestive disorder |
Country Status (1)
Country | Link |
---|---|
US (2) | US7067124B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110142993A1 (en) * | 2009-12-10 | 2011-06-16 | Timothy Bowser | Method for Making Pet and Animal Comestibles |
US8268305B1 (en) | 2011-09-23 | 2012-09-18 | Bio-Cat, Inc. | Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase |
US20130156884A1 (en) * | 2011-12-19 | 2013-06-20 | Triarco Industries | Protease enzymes for increased protein digestion rate and absorption and methods of using the same |
WO2018217833A1 (en) * | 2017-05-25 | 2018-11-29 | Muhammed Majeed | Enzyme composition for management of metabolic health |
KR102701876B1 (en) * | 2024-02-07 | 2024-09-04 | 주식회사 대호 | Enzyme complex feed additive |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2563237C (en) * | 2004-04-07 | 2012-10-09 | Rutgers, The State University Of New Jersey | Appetite-suppressing compositions and methods |
DE102006013624B4 (en) * | 2005-11-23 | 2012-03-15 | Pro Natura Gesellschaft für gesunde Ernährung mbH | Means for use in fructose intolerance |
US20080050455A1 (en) * | 2006-02-01 | 2008-02-28 | L.C.M. Equine Nutraceuticals, Inc. | Equine gastric ulcer therapy compositions and equine ulcer management method |
WO2007118077A2 (en) * | 2006-04-03 | 2007-10-18 | The Johns Hopkins University | Mycobacterial catalase-peroxidase in the diagnosis and treatment of sarcoidosis |
US7282224B1 (en) | 2006-06-09 | 2007-10-16 | Guthy-Renker Corporation | Pain relief composition |
US20080081035A1 (en) * | 2006-10-03 | 2008-04-03 | National Enzyme Company | Therapeutic protease compositions |
US20080107747A1 (en) * | 2006-10-23 | 2008-05-08 | Roederer Joy E | Pain relief composition |
US7998476B2 (en) | 2006-11-22 | 2011-08-16 | Standard Biologics, Inc. | Method of treatment using Aspergillus oryzae protease |
US9011843B2 (en) * | 2006-12-14 | 2015-04-21 | Master Supplements, Inc. | Formulations including monovalent alginate to enhance effectiveness of administered digestive enzymes |
DE102007008664B4 (en) | 2007-02-20 | 2021-07-29 | Vitacare Gmbh & Co. Kg | Means for use in fructose intolerance |
US20080213320A1 (en) * | 2007-03-01 | 2008-09-04 | Jeremy B. Eisenstein | Compositions for treatment of gastro-esophageal reflux disorders |
US20090068174A1 (en) * | 2007-09-12 | 2009-03-12 | Kansas University Medical Center Research Institute, Inc. | Therapeutic alkaline protease compositions and use in facilitating the transport of agents across the gastrointestinal mucosal lining |
EP2254591B1 (en) * | 2008-02-08 | 2017-07-26 | Prothera, Inc. | Inhibition and treatment of gastrointestinal biofilms |
US20100092550A1 (en) * | 2008-10-14 | 2010-04-15 | Nelson Cabral | Alka-eeze |
WO2011037618A2 (en) * | 2009-09-23 | 2011-03-31 | Todd Ehrlich | Dietary supplements in beverages or other forms, and methods of use and production |
EP2580965B1 (en) | 2009-11-26 | 2018-07-18 | D. Xign Limited | Appetite regulating dietary supplement |
EP2883458A1 (en) * | 2013-12-11 | 2015-06-17 | DSM IP Assets B.V. | Medicament and method for treating innate immune response diseases |
WO2021172546A1 (en) * | 2020-02-28 | 2021-09-02 | 天野エンザイム株式会社 | Digestive enzyme agent |
US20240382569A1 (en) * | 2021-09-02 | 2024-11-21 | Bio-Cat, Inc. | Fungal enzyme mixtures and uses thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4079125A (en) * | 1975-06-10 | 1978-03-14 | Johnson & Johnson | Preparation of enteric coated digestive enzyme compositions |
US4808417A (en) * | 1986-12-27 | 1989-02-28 | Toa Pharmaceutical Co., Ltd. | Feed additive for fish cultivation |
-
2003
- 2003-03-28 US US10/249,303 patent/US7067124B2/en not_active Expired - Lifetime
-
2006
- 2006-05-08 US US11/382,185 patent/US20080213241A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4079125A (en) * | 1975-06-10 | 1978-03-14 | Johnson & Johnson | Preparation of enteric coated digestive enzyme compositions |
US4808417A (en) * | 1986-12-27 | 1989-02-28 | Toa Pharmaceutical Co., Ltd. | Feed additive for fish cultivation |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110142993A1 (en) * | 2009-12-10 | 2011-06-16 | Timothy Bowser | Method for Making Pet and Animal Comestibles |
US8268305B1 (en) | 2011-09-23 | 2012-09-18 | Bio-Cat, Inc. | Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase |
US9555083B2 (en) | 2011-09-23 | 2017-01-31 | Bio-Cat, Inc. | Methods and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase |
US20130156884A1 (en) * | 2011-12-19 | 2013-06-20 | Triarco Industries | Protease enzymes for increased protein digestion rate and absorption and methods of using the same |
WO2018217833A1 (en) * | 2017-05-25 | 2018-11-29 | Muhammed Majeed | Enzyme composition for management of metabolic health |
KR102701876B1 (en) * | 2024-02-07 | 2024-09-04 | 주식회사 대호 | Enzyme complex feed additive |
Also Published As
Publication number | Publication date |
---|---|
US20040191237A1 (en) | 2004-09-30 |
US7067124B2 (en) | 2006-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080213241A1 (en) | Protease composition and method for treating a digestive disorder | |
US5854267A (en) | Method for preventing heartburn | |
EP2854839B1 (en) | Methods of treating celiac disease | |
US20180243282A1 (en) | Preparation and Use of Combination Enzyme and Gastrointestinal Modulator Delivery Systems | |
CN107249578B (en) | Method for treating envenomation and related pharmaceutical composition, system and kit | |
US6262316B1 (en) | Oral preparation for the prophylactic and therapeutic treatment of Helicobacter sp. infection | |
US5989588A (en) | Methods and compositions for preventing and treating heartburn | |
US7776831B2 (en) | Use of antifungal compositions to treat upper gastrointestinal conditions | |
WO1996038170A1 (en) | Composition to improve digestibility and utilisation of nutrients | |
DiMagno | Gastric acid suppression and treatment of severe exocrine pancreatic insufficiency | |
CN1207045A (en) | Nisin in combination with glycerol monolaurate active against helicobacter | |
US20210322358A1 (en) | Method for Treating Lysosomal Storage Disease | |
JP2004534050A (en) | Methods for preventing and treating diseases and conditions associated with cellular stress | |
US20040005308A1 (en) | Composition and method for treating non-bacterial prostatitis | |
JP2020522491A (en) | Methods and compositions for treating diarrhea associated with bile acid diarrhea, small bowel resection or gallbladder removal and short bowel syndrome | |
US6013680A (en) | Digestive enzyme-containing medicament | |
KR20010024050A (en) | Antimicrobials | |
KR102345298B1 (en) | Composition for eliminating hangover comprising egg shell as effective component | |
EP0387945A1 (en) | A composition for the treatment of exocrine insufficiency of the pancreas, and the use of said composition | |
KR20170052688A (en) | Preparations for treatment and prevention of alcohol flushing and alcohol-induced hypersensitivity reactions | |
WO1997025032A2 (en) | Monoglyceride compositions and their use against helicobacter | |
US20140186467A1 (en) | Composition and use for eradication of hiv, treatment of aids and other diseases including tuberculosis in a human | |
WO1996008238A1 (en) | Use of paracellular absorption enhancers such as glucose for enhaincing the absorption of histamine h2-antagonists | |
EP1019066B1 (en) | Methods and compositions for preventing and treating heartburn | |
US9402885B2 (en) | Method of treating GERD with alpha and beta galactosidases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |