US20080193070A1 - Conical Roller Bearing Comprising a Filter Cage - Google Patents
Conical Roller Bearing Comprising a Filter Cage Download PDFInfo
- Publication number
- US20080193070A1 US20080193070A1 US11/884,119 US88411906A US2008193070A1 US 20080193070 A1 US20080193070 A1 US 20080193070A1 US 88411906 A US88411906 A US 88411906A US 2008193070 A1 US2008193070 A1 US 2008193070A1
- Authority
- US
- United States
- Prior art keywords
- oil thrower
- shell
- annular
- bearing
- transversal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims description 21
- 238000005461 lubrication Methods 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 11
- 230000004888 barrier function Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 abstract 1
- 238000001914 filtration Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/467—Details of individual pockets, e.g. shape or roller retaining means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4664—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages with more than three parts, e.g. two end rings connected by individual stays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6659—Details of supply of the liquid to the bearing, e.g. passages or nozzles
- F16C33/6674—Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/76—Sealings of ball or roller bearings
- F16C33/78—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
- F16C33/7893—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a cage or integral therewith
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
Definitions
- This invention relates to a roller bearing and a shell intended to be mounted in such a roller bearing.
- This invention more particularly applies to conical roller bearings, i.e. (bearings having one inner and one outer rings comprising diagonal raceways between which conical rolling bodies are positioned.
- Such bearings are more particularly applied to the rotation of an automobile wheel with respect to said vehicle framework, thanks to their capacity to stand large axial and radial efforts.
- Roller bearings are known in which, between the inner and outer rings is mounted a shell which provides, on the one hand, the function of positioning rolling bodies with respect to one another and on the other hand the function of filtration, i.e. allows the passage of a bearing lubrication fluid while serving as a barrier to the passage of solid particles.
- the shell comprises an annular body on the transversal edges of which oil throwers generally radially extend.
- document EP-A-0 644 343 describes a conical roller bearing comprising a shell to which sealing means closing the space between the inner and outer rings are fixed. A filter is made while providing for openings in the sealing means.
- openings are not suitable for the lubrication of conical roller bearings in which the diagonal contact between the rolling bodies and the raceways generally induces the displacement of the lubrication fluid from the transversal edge on the bearing large diameter side towards the transversal edge on the bearing small diameter side.
- the sealing means in contact with the inner and outer rings create a friction couple which affects the bearing performances as regards the rings relative rotation and which causes the sealing means to wear.
- the above-mentioned embodiment makes more complex the mounting of conical roller bearings in which the mounting of the outer ring onto the inner ring is carried out after having positioned the rolling bodies on the inner ring.
- This invention aims at solving such problems by providing a conical roller bearing comprising a shell which easily combines and enhances the functions of positioning rolling bodies and of filtration.
- This invention therefore provides a roller bearing comprising at least an inner ring and an outer ring, said rings comprising diagonal raceways between which conical rolling bodies each being provided with its own rotation axis, are positioned so as to allow the relative rotation of said rings, a shell comprising a generally tapered annular body being mounted between the inner and outer rings, the body comprising equally distributed openings in each of which a rolling body is positioned generally along its own rotation axis, said shell further comprising an annular oil thrower extending generally radially to each of the body transversal edges, each annular oil thrower comprising at least one generally radial inner protrusion and one generally radial outer protrusion which extend on either side of the body towards the inner ring and the outer ring, respectively, the free end of each protrusion being positioned opposite and away from the corresponding ring so that the bearing has axial and radial functional clearances between the protrusions and the rings, the dimensions of said clearances being such as to allow the passage of a bearing lubrication fluid and
- the roller bearing according to this invention thus shows a combination of four radial and axial clearances so as to allow a regular passage of a sufficient quantity of lubrication fluid. Besides, the absence of contact between the protrusions and the rings simplifies the mounting of the bearing and makes it possible not to add a friction couple while serving as a barrier to the passage of solid particles.
- At least one of the transversal edges of the outer ring is located between the transversal edges of the inner ring, the outer and inner protrusions of the corresponding annular oil thrower having their free ends positioned opposite a radial surface of the outer ring and an axial surface of the inner ring, respectively.
- Such embodiment is suitable for the displacement of the lubrication fluid in the conical roller bearing so as to provide a satisfactory lubrication of the bearing.
- this invention relates to a shell intended to be mounted in a roller bearing according to the first aspect, said shell comprising a generally tapered annular body, the body comprising equally distributed openings in each of which a rolling body is intended to be positioned generally along its own rotation axis, said shell further comprising an annular oil thrower extending generally radially to each of the body transversal edges, each annular oil thrower comprising at least one generally radial inner protrusion and one generally radial outer protrusion which extend on either side of the body, the dimensions of each annular oil thrower being such that the free end of each protrusion is positioned opposite and away from the corresponding ring and allows axial and radial functional clearances between the protrusions and the rings, the dimensions of said clearances being such as to allow the passage of a bearing lubrication fluid and to serve as a barrier to the passage of solid particles.
- FIG. 1 is a longitudinal section view of a conical roller bearing comprising a shell according to a first embodiment, providing the positioning of conical rolling bodies with respect to one another between diagonal raceways provided on inner and outer rings, said shell comprising an annular oil thrower at each end of a tapered annular body, each oil thrower comprising continuous annular protrusions, axial and radial functional clearances being formed between the protrusions and the rings;
- FIG. 2 is a perspective view of the conical ball bearing small diameter side of FIG. 1 ;
- FIG. 3 is a view of the transversal face of the shell of the conical ball bearing small diameter side of FIG. 1 ;
- FIG. 4 is a longitudinal section view along line IV-IV in FIG. 3 ;
- FIG. 5 is a longitudinal section view of a roller bearing comprising a shell according to a second embodiment, each oil thrower comprising a plurality of adjacent protrusions, the outer transversal surface of each oil thrower being bent towards the other oil thrower;
- FIG. 6 is a perspective view of the shell of the conical ball bearing small diameter side of FIG. 5 ;
- FIG. 7 is a view of the transversal face of the shell of the conical ball bearing small diameter side of FIG. 5 ;
- FIG. 8 is a longitudinal section view along line VIII-VIII in FIG. 7 ;
- FIG. 9 is a longitudinal section view of a roller bearing comprising a shell according to a third embodiment, the oil thrower on the large diameter side being associated to the body transversal edge by associating means;
- FIG. 10 is a perspective view of the shell on the conical ball bearing large diameter side in FIG. 9 ;
- FIG. 11 is a view of the transversal face of the shell on the conical ball bearing small diameter side in FIG. 9 ;
- FIG. 12 is a longitudinal section view along line XII-XII in FIG. 11 ;
- FIGS. 13 a and 13 b are partial views of details A and B in FIG. 12 , respectively showing the means for associating the oil thrower with the body, said means comprising centering pads and hooks provided on the body transversal edge and holes provided on the annular oil thrower.
- FIG. 14 is a longitudinal section view along line XIV-XIV in FIG. 11 ;
- FIG. 15 is a perspective view of detail C in FIG. 14 ;
- FIGS. 16 a and 16 b are views of the oil thrower large diameter side and of the shell body in FIG. 9 , respectively, the oil thrower being separated from the annular body.
- roller bearing having an axis D is described.
- Such roller bearing comprises a first ring 1 and a second ring 2 which are coaxial and comprise, each, a raceway 3 , diagonal to axis D.
- axial or “longitudinal” or “side” and “radial” refer to planes parallel and perpendicular to axis D, respectively.
- outer and “inner” refer to longitudinal planes away from and close to axis D or to transversal planes located close to and away from the bearing transversal edges, respectively.
- Raceways 3 are so inclined that the radial clearance between the raceways 3 is reduced together with the radial clearance between each raceway 3 and axis D.
- the roller bearing then has a large diameter close to the transversal edge where the radial clearance between the raceways 3 of the same ring 1 , 2 is the greatest and a small diameter close to the transversal edge where the radial clearance between the raceways 3 of the same ring 1 , 2 is the smallest.
- Identical conical rolling bodies 4 are positioned between the diagonal raceways 3 so as to allow the relative rotation of the first 1 and second 2 rings with respect to axis D.
- the conical rolling bodies 4 are held in position with respect to each other between the first inner ring 1 and the second outer ring 2 by means of a shell mounted between said rings.
- the shell comprises a generally tapered annular body 5 which has an inner surface and an outer surface inclined with respect to axis D.
- the general inclination of the body 5 is substantially the same as that of raceways 3 and the axial dimension of the annular body substantially corresponds to the axial dimension of raceways 3 .
- the body 5 thickness i.e. the radial clearance between its inner and outer surfaces is generally lower than the diameter of the conical rolling bodies 4 circular sections. Besides, such thickness substantially increases from the small diameter to the large diameter of the bearing.
- the body 5 comprises equally distributed openings 6 in each of which a rolling body 4 is positioned generally along its own rotation axis R.
- the rolling bodies 4 own rotation axis R is located under the inner surface of the annular body 5 .
- the annular body 5 thus has, between two consecutive openings 6 , material bridges 7 having a general pyramidal shape the bases of which form the annular body 5 outer surface. Close to the large diameter, an axial groove 9 is made on a portion of each side face of the material bridges 7 .
- the material bridges 7 thus provide on said portion substantially parallel surfaces the transversal clearance of which is smaller than the transversal clearance of the base edges 8 .
- the conical roller bearings i.e. bearings comprising diagonal raceways 3 between which conical rolling bodies 4 are positioned, are used to allow the relative rotation of a first part integral with one of the rings with respect to a second part integral with the other ring, while supporting important axial and radial loads. More particularly, such bearings are used to allow the rotation of an automobile wheel with respect to said vehicle framework.
- the shell In addition to the function of positioning rolling bodies 4 with respect to each other between rings 1 , 2 it is provided that the shell also fulfils a filtration function, i.e. allows the passage of a bearing lubrication fluid and serves as a barrier to the passage of solid particles.
- the shell further comprises an annular oil thrower 10 which generally extends radially to each of the transversal edges of the annular body 5 .
- the shell then comprises a larger diameter annular oil thrower 10 located on the bearing large diameter side and a smaller diameter annular oil thrower 10 located on the bearing small diameter side.
- Each annular oil thrower 10 comprises at least one inner protrusion 11 and one outer protrusion 12 which are generally radial and extend on either side of the body 5 , towards the inner ring 1 and the outer ring 2 , respectively. Radial as well as axial dimensions of each annular oil thrower 10 are provided such that the free end of each protrusion 11 , 12 is positioned opposite and away from the corresponding ring 1 , 2 .
- the bearing also has axial and radial functional clearances between the inner protrusions 11 and the inner ring 1 and the outer protrusions 12 and the outer ring 12 .
- the dimensions of the functional clearances 13 are such that enable the optimum execution of the filtration function.
- execution of the filtration function is enhanced by the combination of the four functional, axial as well as radial, clearances between the protrusions 11 , 12 and the rings 1 , 2 .
- functional clearances 13 make it possible to prevent the passage of outside pollution particles without frictional contact between the protrusions 11 , 12 and the rings 1 , 2 .
- the addition of a friction couple during the relative rotation of the rings 1 , 2 and thus affecting the bearing performances is thus avoided.
- the bearing as it has just been described can easily be mounted since the functional clearances 13 allow the mounting of the outer ring 2 onto the inner ring 1 , on which the conical rolling bodies 4 positioned in the shell are mounted.
- the filtration function is easily obtained since it requires no particular machining.
- the provision of contact faces on the inner 1 and outer 2 rings, for example, is thus avoided and such rings can be standard rings.
- the provision of holes in the oil throwers 10 is also avoided.
- the outer ring 2 has a lower axial dimension than the inner ring 1 , the transversal edges of the inner 1 and outer 2 rings on the bearing small diameter side are substantially positioned in the same plane, whereas the transversal edge of the outer ring 2 on the large diameter side is located between the transversal edges of the inner ring 1 .
- this embodiment is particularly suitable for enhancing the shell filtration function in a conical roller bearing.
- the outer 11 and inner 12 protrusions of the annular oil thrower 10 may have their free ends positioned opposite a radial surface 14 of the outer ring 2 and an axial surface 15 of the inner ring 1 , respectively.
- the special position of protrusions 11 , 12 with respect to the rings 1 , 2 surfaces, on the one hand and the presence of grooves 9 , on the other hand, are combined, on the bearing large diameter side.
- Such combination makes it possible to obtain a regular passage of a sufficient quantity of lubrication fluid.
- the combination is suitable for the particular lubrication of a conical roller bearing in which the lubrication fluid is generally displaced from the large diameter side to the small diameter side, because of the inclined raceways and the conical rolling bodies 4 .
- the lubrication fluid can be “stored” on the axial wall 15 of the inner ring 1 and in the grooves 9 so that its distribution into the bearing is uniform.
- the annular body 5 and the annular oil throwers 10 are cast in one piece.
- the oil throwers 10 have an outer transversal surface 16 which is generally bulging outwards and comprise an inner protrusion 11 and an outer protrusion 12 which are annular and continuous.
- the oil throwers 10 comprise a plurality of adjacent inner 11 and outer 12 protrusions. Protrusions 11 , 12 are positioned on the transversal edges of openings 6 , so that the annular oil throwers have alternating fins 17 on the transversal edges and notches 18 between the openings 6 .
- each oil thrower 10 is curved towards the other oil thrower 10 .
- the shell may have a combination of annular oil throwers 10 according to the first or the second embodiment described hereabove.
- One of the oil throwers 10 or both oil throwers 10 may particularly be provided with an annular and continuous protrusion on one side of the body and alternating fins 17 and notches 18 on the other side of the body.
- one of the oil throwers 10 may have an outer transversal surface 16 bulging outwards and the other oil thrower 10 may have an outer transversal surface 16 bulging towards the oil thrower 10 having an outer transversal surface 16 bulging outwards.
- the shell may further be made of several parts associated by suitable means. More particularly the annular body 5 may comprise several parts, notably two parts. According to the third embodiment shown in FIGS. 9 to 16 , the annular oil thrower 10 having the greater diameter may be associated with the transversal edge of the body 5 by suitable association means. As a possibly additional variation, the oil thrower 10 having the smaller diameter may be associated with the body 5 by suitable association means.
- the association means may comprise centering pads 19 and hooks 20 positioned on the transversal edge of the annular body 5 , the centering pads 19 and the hooks 20 cooperating with holes 21 provided on the annular oil thrower 10 .
- the body 5 is provided with five hooks 20 equally distributed on the extension of the material brides 7 and with five centering pads 19 , each being positioned at the same distance from two consecutive hooks 20 .
- the oil thrower 10 may have a rim 22 extending radially from the outer protrusion 12 and partially closing each hole 21 , in order to enhance the behaviour of the hooks in the holes 21 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
- This invention relates to a roller bearing and a shell intended to be mounted in such a roller bearing.
- This invention more particularly applies to conical roller bearings, i.e. (bearings having one inner and one outer rings comprising diagonal raceways between which conical rolling bodies are positioned.
- Such bearings are more particularly applied to the rotation of an automobile wheel with respect to said vehicle framework, thanks to their capacity to stand large axial and radial efforts.
- One problem with this type of bearings is that of lubrication and protection against outside pollution solid particles, such as dust.
- Roller bearings are known in which, between the inner and outer rings is mounted a shell which provides, on the one hand, the function of positioning rolling bodies with respect to one another and on the other hand the function of filtration, i.e. allows the passage of a bearing lubrication fluid while serving as a barrier to the passage of solid particles.
- According to known embodiments, the shell comprises an annular body on the transversal edges of which oil throwers generally radially extend.
- More particularly, document EP-A-0 644 343 describes a conical roller bearing comprising a shell to which sealing means closing the space between the inner and outer rings are fixed. A filter is made while providing for openings in the sealing means.
- Such embodiment however is not totally satisfactory as regards the quality of the lubrication obtained. As a matter of fact, the localised and essentially axial openings do not make it possible to obtain the regular and uniform passage of a sufficient quantity of lubrication fluid into the bearing. The bearing then runs the risk of a quick deterioration because of the important radial and axial efforts.
- Besides, such openings are not suitable for the lubrication of conical roller bearings in which the diagonal contact between the rolling bodies and the raceways generally induces the displacement of the lubrication fluid from the transversal edge on the bearing large diameter side towards the transversal edge on the bearing small diameter side.
- Besides, the sealing means in contact with the inner and outer rings create a friction couple which affects the bearing performances as regards the rings relative rotation and which causes the sealing means to wear.
- Besides, the above-mentioned embodiment makes more complex the mounting of conical roller bearings in which the mounting of the outer ring onto the inner ring is carried out after having positioned the rolling bodies on the inner ring. This invention aims at solving such problems by providing a conical roller bearing comprising a shell which easily combines and enhances the functions of positioning rolling bodies and of filtration.
- This invention therefore provides a roller bearing comprising at least an inner ring and an outer ring, said rings comprising diagonal raceways between which conical rolling bodies each being provided with its own rotation axis, are positioned so as to allow the relative rotation of said rings, a shell comprising a generally tapered annular body being mounted between the inner and outer rings, the body comprising equally distributed openings in each of which a rolling body is positioned generally along its own rotation axis, said shell further comprising an annular oil thrower extending generally radially to each of the body transversal edges, each annular oil thrower comprising at least one generally radial inner protrusion and one generally radial outer protrusion which extend on either side of the body towards the inner ring and the outer ring, respectively, the free end of each protrusion being positioned opposite and away from the corresponding ring so that the bearing has axial and radial functional clearances between the protrusions and the rings, the dimensions of said clearances being such as to allow the passage of a bearing lubrication fluid and to serve as a barrier to the passage of solid particles.
- The roller bearing according to this invention thus shows a combination of four radial and axial clearances so as to allow a regular passage of a sufficient quantity of lubrication fluid. Besides, the absence of contact between the protrusions and the rings simplifies the mounting of the bearing and makes it possible not to add a friction couple while serving as a barrier to the passage of solid particles.
- According to a particular embodiment, at least one of the transversal edges of the outer ring is located between the transversal edges of the inner ring, the outer and inner protrusions of the corresponding annular oil thrower having their free ends positioned opposite a radial surface of the outer ring and an axial surface of the inner ring, respectively.
- Such embodiment is suitable for the displacement of the lubrication fluid in the conical roller bearing so as to provide a satisfactory lubrication of the bearing.
- According to a second aspect, this invention relates to a shell intended to be mounted in a roller bearing according to the first aspect, said shell comprising a generally tapered annular body, the body comprising equally distributed openings in each of which a rolling body is intended to be positioned generally along its own rotation axis, said shell further comprising an annular oil thrower extending generally radially to each of the body transversal edges, each annular oil thrower comprising at least one generally radial inner protrusion and one generally radial outer protrusion which extend on either side of the body, the dimensions of each annular oil thrower being such that the free end of each protrusion is positioned opposite and away from the corresponding ring and allows axial and radial functional clearances between the protrusions and the rings, the dimensions of said clearances being such as to allow the passage of a bearing lubrication fluid and to serve as a barrier to the passage of solid particles.
- Further objectives and advantages of the invention will become apparent from the following description made in reference to the appended drawings, wherein:
-
FIG. 1 is a longitudinal section view of a conical roller bearing comprising a shell according to a first embodiment, providing the positioning of conical rolling bodies with respect to one another between diagonal raceways provided on inner and outer rings, said shell comprising an annular oil thrower at each end of a tapered annular body, each oil thrower comprising continuous annular protrusions, axial and radial functional clearances being formed between the protrusions and the rings; -
FIG. 2 is a perspective view of the conical ball bearing small diameter side ofFIG. 1 ; -
FIG. 3 is a view of the transversal face of the shell of the conical ball bearing small diameter side ofFIG. 1 ; -
FIG. 4 is a longitudinal section view along line IV-IV inFIG. 3 ; -
FIG. 5 is a longitudinal section view of a roller bearing comprising a shell according to a second embodiment, each oil thrower comprising a plurality of adjacent protrusions, the outer transversal surface of each oil thrower being bent towards the other oil thrower; -
FIG. 6 is a perspective view of the shell of the conical ball bearing small diameter side ofFIG. 5 ; -
FIG. 7 is a view of the transversal face of the shell of the conical ball bearing small diameter side ofFIG. 5 ; -
FIG. 8 is a longitudinal section view along line VIII-VIII inFIG. 7 ; -
FIG. 9 is a longitudinal section view of a roller bearing comprising a shell according to a third embodiment, the oil thrower on the large diameter side being associated to the body transversal edge by associating means; -
FIG. 10 is a perspective view of the shell on the conical ball bearing large diameter side inFIG. 9 ; -
FIG. 11 is a view of the transversal face of the shell on the conical ball bearing small diameter side inFIG. 9 ; -
FIG. 12 is a longitudinal section view along line XII-XII inFIG. 11 ; -
FIGS. 13 a and 13 b are partial views of details A and B inFIG. 12 , respectively showing the means for associating the oil thrower with the body, said means comprising centering pads and hooks provided on the body transversal edge and holes provided on the annular oil thrower. -
FIG. 14 is a longitudinal section view along line XIV-XIV inFIG. 11 ; -
FIG. 15 is a perspective view of detail C inFIG. 14 ; -
FIGS. 16 a and 16 b are views of the oil thrower large diameter side and of the shell body inFIG. 9 , respectively, the oil thrower being separated from the annular body. - With reference to the Figures, a roller bearing having an axis D is described. Such roller bearing comprises a
first ring 1 and asecond ring 2 which are coaxial and comprise, each, araceway 3, diagonal to axis D. - The description made with reference to such embodiment however is directly applicable to a bearing comprising first 1 and second 2 rings on each of which two
raceways 3 are provided, with thefirst ring 1 and thesecond ring 2 being made in two parts, each comprising araceway 3. - In the following description, “axial” or “longitudinal” or “side” and “radial” refer to planes parallel and perpendicular to axis D, respectively. Besides, “outer” and “inner” refer to longitudinal planes away from and close to axis D or to transversal planes located close to and away from the bearing transversal edges, respectively.
-
Raceways 3 are so inclined that the radial clearance between theraceways 3 is reduced together with the radial clearance between eachraceway 3 and axis D. The roller bearing then has a large diameter close to the transversal edge where the radial clearance between theraceways 3 of thesame ring raceways 3 of thesame ring - Identical conical
rolling bodies 4, each of which is provided with its own rotation axis R, are positioned between thediagonal raceways 3 so as to allow the relative rotation of the first 1 and second 2 rings with respect to axis D. - The conical
rolling bodies 4 are held in position with respect to each other between the firstinner ring 1 and the secondouter ring 2 by means of a shell mounted between said rings. - The shell comprises a generally tapered
annular body 5 which has an inner surface and an outer surface inclined with respect to axis D. The general inclination of thebody 5 is substantially the same as that ofraceways 3 and the axial dimension of the annular body substantially corresponds to the axial dimension ofraceways 3. Besides, thebody 5 thickness, i.e. the radial clearance between its inner and outer surfaces is generally lower than the diameter of the conicalrolling bodies 4 circular sections. Besides, such thickness substantially increases from the small diameter to the large diameter of the bearing. - The
body 5 comprises equally distributedopenings 6 in each of which arolling body 4 is positioned generally along its own rotation axis R. On the Figures, therolling bodies 4 own rotation axis R is located under the inner surface of theannular body 5. Theannular body 5 thus has, between twoconsecutive openings 6,material bridges 7 having a general pyramidal shape the bases of which form theannular body 5 outer surface. Close to the large diameter, anaxial groove 9 is made on a portion of each side face of thematerial bridges 7. Thematerial bridges 7 thus provide on said portion substantially parallel surfaces the transversal clearance of which is smaller than the transversal clearance of thebase edges 8. - The conical roller bearings, i.e. bearings comprising
diagonal raceways 3 between which conicalrolling bodies 4 are positioned, are used to allow the relative rotation of a first part integral with one of the rings with respect to a second part integral with the other ring, while supporting important axial and radial loads. More particularly, such bearings are used to allow the rotation of an automobile wheel with respect to said vehicle framework. - Therefore, the lubrication of the bearing and its protection against the introduction, between
rings - In addition to the function of positioning
rolling bodies 4 with respect to each other betweenrings - Therefore, the shell further comprises an
annular oil thrower 10 which generally extends radially to each of the transversal edges of theannular body 5. The shell then comprises a larger diameterannular oil thrower 10 located on the bearing large diameter side and a smaller diameterannular oil thrower 10 located on the bearing small diameter side. Eachannular oil thrower 10 comprises at least oneinner protrusion 11 and oneouter protrusion 12 which are generally radial and extend on either side of thebody 5, towards theinner ring 1 and theouter ring 2, respectively. Radial as well as axial dimensions of eachannular oil thrower 10 are provided such that the free end of eachprotrusion corresponding ring inner protrusions 11 and theinner ring 1 and theouter protrusions 12 and theouter ring 12. - The dimensions of the
functional clearances 13 are such that enable the optimum execution of the filtration function. In addition, such execution of the filtration function is enhanced by the combination of the four functional, axial as well as radial, clearances between theprotrusions rings functional clearances 13 make it possible to prevent the passage of outside pollution particles without frictional contact between theprotrusions rings rings functional clearances 13 allow the mounting of theouter ring 2 onto theinner ring 1, on which theconical rolling bodies 4 positioned in the shell are mounted. - Besides, the filtration function is easily obtained since it requires no particular machining. The provision of contact faces on the inner 1 and outer 2 rings, for example, is thus avoided and such rings can be standard rings. The provision of holes in the
oil throwers 10 is also avoided. - In the Figures it is provided that at least one of the transversal edges of the
outer ring 2 will be located between the transversal edges of theinner ring 1. More particularly, theouter ring 2 has a lower axial dimension than theinner ring 1, the transversal edges of the inner 1 and outer 2 rings on the bearing small diameter side are substantially positioned in the same plane, whereas the transversal edge of theouter ring 2 on the large diameter side is located between the transversal edges of theinner ring 1. - In addition to the reduction of the bearing axial overall dimension, this embodiment is particularly suitable for enhancing the shell filtration function in a conical roller bearing.
- As a matter of fact, the outer 11 and inner 12 protrusions of the
annular oil thrower 10, on the large diameter side, may have their free ends positioned opposite aradial surface 14 of theouter ring 2 and anaxial surface 15 of theinner ring 1, respectively. - Thus, the special position of
protrusions rings grooves 9, on the other hand, are combined, on the bearing large diameter side. Such combination makes it possible to obtain a regular passage of a sufficient quantity of lubrication fluid. In addition, the combination is suitable for the particular lubrication of a conical roller bearing in which the lubrication fluid is generally displaced from the large diameter side to the small diameter side, because of the inclined raceways and the conical rollingbodies 4. As a matter of fact, the lubrication fluid can be “stored” on theaxial wall 15 of theinner ring 1 and in thegrooves 9 so that its distribution into the bearing is uniform. - According to a first embodiment shown in
FIGS. 1 to 4 , theannular body 5 and theannular oil throwers 10 are cast in one piece. Theoil throwers 10 have an outertransversal surface 16 which is generally bulging outwards and comprise aninner protrusion 11 and anouter protrusion 12 which are annular and continuous. - According to a second embodiment shown in
FIGS. 5 to 8 , theoil throwers 10 comprise a plurality of adjacent inner 11 and outer 12 protrusions.Protrusions openings 6, so that the annular oil throwers have alternating fins 17 on the transversal edges andnotches 18 between theopenings 6. - To prevent solid particles in contact with the shell from entering, the outer
transversal surface 16 of eachoil thrower 10 is curved towards theother oil thrower 10. - As a variation, not shown, the shell may have a combination of
annular oil throwers 10 according to the first or the second embodiment described hereabove. One of theoil throwers 10 or bothoil throwers 10 may particularly be provided with an annular and continuous protrusion on one side of the body and alternating fins 17 andnotches 18 on the other side of the body. Besides, one of theoil throwers 10 may have an outertransversal surface 16 bulging outwards and theother oil thrower 10 may have an outertransversal surface 16 bulging towards theoil thrower 10 having an outertransversal surface 16 bulging outwards. - The shell may further be made of several parts associated by suitable means. More particularly the
annular body 5 may comprise several parts, notably two parts. According to the third embodiment shown inFIGS. 9 to 16 , theannular oil thrower 10 having the greater diameter may be associated with the transversal edge of thebody 5 by suitable association means. As a possibly additional variation, theoil thrower 10 having the smaller diameter may be associated with thebody 5 by suitable association means. - The association means may comprise centering
pads 19 and hooks 20 positioned on the transversal edge of theannular body 5, the centeringpads 19 and thehooks 20 cooperating withholes 21 provided on theannular oil thrower 10. - In
FIG. 16 b, thebody 5 is provided with fivehooks 20 equally distributed on the extension of thematerial brides 7 and with five centeringpads 19, each being positioned at the same distance from twoconsecutive hooks 20. Besides, theoil thrower 10 may have arim 22 extending radially from theouter protrusion 12 and partially closing eachhole 21, in order to enhance the behaviour of the hooks in theholes 21.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0501423 | 2005-02-11 | ||
FR0501423A FR2882116B1 (en) | 2005-02-11 | 2005-02-11 | BEARING BEARING COMPRISING A FILTRATION CAGE |
PCT/FR2006/050121 WO2006085037A1 (en) | 2005-02-11 | 2006-02-10 | Conical roller bearing comprising a filter cage |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080193070A1 true US20080193070A1 (en) | 2008-08-14 |
US7918607B2 US7918607B2 (en) | 2011-04-05 |
Family
ID=34979554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/884,119 Expired - Fee Related US7918607B2 (en) | 2005-02-11 | 2006-02-10 | Conical roller bearing comprising a filter cage |
Country Status (7)
Country | Link |
---|---|
US (1) | US7918607B2 (en) |
EP (1) | EP1846665B1 (en) |
JP (1) | JP2008530462A (en) |
CN (1) | CN100572836C (en) |
BR (1) | BRPI0606558A2 (en) |
FR (1) | FR2882116B1 (en) |
WO (1) | WO2006085037A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100183257A1 (en) * | 2007-06-08 | 2010-07-22 | Takashi Ueno | Taper roller bearing |
US20130308891A1 (en) * | 2012-05-16 | 2013-11-21 | Jtekt Corporation | Rolling bearing |
US20140016891A1 (en) * | 2007-10-03 | 2014-01-16 | Koyo Bearings Usa Llc | Positioning means for camshaft roller bearing |
US9194429B2 (en) | 2013-08-06 | 2015-11-24 | Rolls-Royce Plc | Bearing cage deflector |
US20150369290A1 (en) * | 2014-06-24 | 2015-12-24 | Aktiebolaget Skf | Bearing cage for a rolling-element bearing, in particular for a tapered roller bearing |
US20160273585A1 (en) * | 2015-03-18 | 2016-09-22 | Aktiebolaget Skf | Roller bearing, in particular for a mirror of a motor vehicle |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2925943B1 (en) * | 2007-12-28 | 2010-05-14 | Roulements Soc Nouvelle | ASSEMBLY FOR CONICAL ROLLER BEARING AND METHOD FOR MANUFACTURING THE SAME |
FR2925944B1 (en) * | 2007-12-28 | 2010-05-14 | Roulements Soc Nouvelle | ASSEMBLY FOR TAPERED ROLLER BEARING AND METHOD OF MOUNTING |
DE102008032514B4 (en) * | 2008-07-10 | 2010-09-16 | Ab Skf | Cone or tapered roller bearings |
DE102011004210A1 (en) * | 2011-02-16 | 2012-08-16 | Schaeffler Technologies Gmbh & Co. Kg | roller bearing |
CN102359497B (en) * | 2011-08-26 | 2013-07-24 | 凌翔 | Low noise conical roller bearing |
EP2610511A1 (en) * | 2011-12-28 | 2013-07-03 | Siemens Aktiengesellschaft | Cage and rolling element bearing |
JP6212862B2 (en) * | 2012-12-27 | 2017-10-18 | 株式会社ジェイテクト | Liquid lubricated bearing and vehicle pinion shaft support device |
JP2014228074A (en) * | 2013-05-23 | 2014-12-08 | Ntn株式会社 | Conical roller bearing |
JP6389031B2 (en) * | 2013-06-10 | 2018-09-12 | Ntn株式会社 | Tapered roller bearings |
CN103352919B (en) * | 2013-07-02 | 2014-09-10 | 山东凯美瑞轴承科技有限公司 | Solid cage and reinforced solid tapered roller bearing |
JP2015021582A (en) * | 2013-07-22 | 2015-02-02 | 株式会社ジェイテクト | Tapered roller bearing and power transmission device using the same |
FR3029246B1 (en) * | 2014-12-01 | 2017-06-09 | Ntn-Snr Roulements | CAGE FOR SPHERICAL ROLLER BEARING COMPRISING A DEFLECTOR, BEARING COMPRISING SUCH A CAGE AND METHOD FOR ASSEMBLING SUCH A BEARING |
JP2017044281A (en) * | 2015-08-27 | 2017-03-02 | Ntn株式会社 | Cage and conical roller bearing |
FR3044371B1 (en) | 2015-11-27 | 2018-05-11 | Ntn-Snr Roulements | CAGE FOR BEARING SYSTEM AND BEARING SYSTEM COMPRISING SUCH A CAGE |
DE102020114324A1 (en) | 2020-05-28 | 2021-12-02 | Schaeffler Technologies AG & Co. KG | Roller bearings with a bearing cage optimized for lubrication passage |
DE102022106927A1 (en) | 2022-03-24 | 2023-09-28 | Schaeffler Technologies AG & Co. KG | Tapered roller bearings and assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3694043A (en) * | 1971-07-26 | 1972-09-26 | Gen Motors Corp | Retaining ring and cage for unit assembly of tapered bearing components |
US4664537A (en) * | 1984-10-01 | 1987-05-12 | Veb Kombinat Walzlager U. Normteile | Cage for tapered-roller bearing |
US6022148A (en) * | 1995-03-09 | 2000-02-08 | Skf Gmbh | Pocket cage for roller bearings |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5510140A (en) * | 1978-07-07 | 1980-01-24 | Nippon Seiko Kk | Lubricating roller bearing with cage |
JPS5520923A (en) * | 1978-07-29 | 1980-02-14 | Ntn Toyo Bearing Co Ltd | Conical roller bearing retainer |
JPS6170631U (en) * | 1984-10-16 | 1986-05-14 | ||
JPS6353923U (en) * | 1986-09-26 | 1988-04-11 | ||
JP2517257Y2 (en) * | 1990-03-27 | 1996-11-20 | エヌティエヌ株式会社 | Rolling bearing with filter seal |
JPH0650346A (en) * | 1992-07-29 | 1994-02-22 | Ntn Corp | Cylindrical roller bearing |
NL9301603A (en) * | 1993-09-16 | 1995-04-18 | Skf Ind Trading & Dev | Rolling bearing, method for its manufacture and cage or cage part for use in the rolling bearing. |
DE4338350A1 (en) * | 1993-11-10 | 1995-05-11 | Kugelfischer G Schaefer & Co | Tapered roller bearing with a retainer |
JPH0932858A (en) * | 1995-07-18 | 1997-02-04 | Koyo Seiko Co Ltd | Conical roller bearing |
JP3699249B2 (en) * | 1997-07-28 | 2005-09-28 | Ntn株式会社 | Hub unit bearing and manufacturing method thereof |
JP3993752B2 (en) * | 2001-03-28 | 2007-10-17 | Ntn株式会社 | Method of manufacturing cage for tapered roller bearing |
-
2005
- 2005-02-11 FR FR0501423A patent/FR2882116B1/en not_active Expired - Fee Related
-
2006
- 2006-02-10 BR BRPI0606558-9A patent/BRPI0606558A2/en not_active Application Discontinuation
- 2006-02-10 EP EP06709500A patent/EP1846665B1/en not_active Not-in-force
- 2006-02-10 US US11/884,119 patent/US7918607B2/en not_active Expired - Fee Related
- 2006-02-10 CN CNB2006800046009A patent/CN100572836C/en not_active Expired - Fee Related
- 2006-02-10 WO PCT/FR2006/050121 patent/WO2006085037A1/en active Application Filing
- 2006-02-10 JP JP2007554618A patent/JP2008530462A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3694043A (en) * | 1971-07-26 | 1972-09-26 | Gen Motors Corp | Retaining ring and cage for unit assembly of tapered bearing components |
US4664537A (en) * | 1984-10-01 | 1987-05-12 | Veb Kombinat Walzlager U. Normteile | Cage for tapered-roller bearing |
US6022148A (en) * | 1995-03-09 | 2000-02-08 | Skf Gmbh | Pocket cage for roller bearings |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100183257A1 (en) * | 2007-06-08 | 2010-07-22 | Takashi Ueno | Taper roller bearing |
US8167503B2 (en) * | 2007-06-08 | 2012-05-01 | Ntn Corporation | Taper roller bearing |
US20140016891A1 (en) * | 2007-10-03 | 2014-01-16 | Koyo Bearings Usa Llc | Positioning means for camshaft roller bearing |
US9062709B2 (en) * | 2007-10-03 | 2015-06-23 | Koyo Bearings North America Llc | Positioning means for camshaft roller bearing |
US20130308891A1 (en) * | 2012-05-16 | 2013-11-21 | Jtekt Corporation | Rolling bearing |
US8790019B2 (en) * | 2012-05-16 | 2014-07-29 | Jtekt Corporation | Rolling bearing |
US9194429B2 (en) | 2013-08-06 | 2015-11-24 | Rolls-Royce Plc | Bearing cage deflector |
US20150369290A1 (en) * | 2014-06-24 | 2015-12-24 | Aktiebolaget Skf | Bearing cage for a rolling-element bearing, in particular for a tapered roller bearing |
US20160273585A1 (en) * | 2015-03-18 | 2016-09-22 | Aktiebolaget Skf | Roller bearing, in particular for a mirror of a motor vehicle |
Also Published As
Publication number | Publication date |
---|---|
FR2882116A1 (en) | 2006-08-18 |
EP1846665B1 (en) | 2012-10-31 |
EP1846665A1 (en) | 2007-10-24 |
BRPI0606558A2 (en) | 2009-06-30 |
CN101115933A (en) | 2008-01-30 |
CN100572836C (en) | 2009-12-23 |
WO2006085037A1 (en) | 2006-08-17 |
FR2882116B1 (en) | 2007-04-27 |
US7918607B2 (en) | 2011-04-05 |
JP2008530462A (en) | 2008-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7918607B2 (en) | Conical roller bearing comprising a filter cage | |
CA2598641C (en) | Thrust bearing assembly | |
US7320549B2 (en) | Self-lubricating bushings, bearings and bearing assemblies | |
JP3887432B2 (en) | Axial rolling bearing | |
US5772338A (en) | Flange or raceway guided plastic cage for bearing assembly | |
EP0577912A1 (en) | Sealed bearing | |
US6814203B2 (en) | Stator with one-way clutch | |
CN114555962A (en) | Sealing device for wheel bearing | |
US6435326B2 (en) | End bearings for one-way clutch, manufacturing process thereof, and one-way clutch provided with at least one of such end bearings | |
US20090136166A1 (en) | Combined Roller- and Slide Bearing | |
JP2000213545A (en) | Retainer for roller bearing | |
US11193542B2 (en) | Sealed universal joint bearing and universal joint bearing assembly | |
EP0919739A3 (en) | Cage for roller bearing | |
US20230407910A1 (en) | Axial bearing assembly with cage to accommodate radial misalignment condition | |
JP7663384B2 (en) | Wheel bearing device | |
FR3057039B1 (en) | CAGE FOR BEARING BEARING AND BEARING BEARING COMPRISING SUCH A CAGE | |
JP5347804B2 (en) | Thrust roller bearing with race | |
JP2009063117A (en) | Rolling bearing | |
JPH01169176A (en) | Small-sized seal | |
JPH11325060A (en) | Full ball rolling bearing | |
WO2023149151A1 (en) | Vehicle wheel bearing device | |
JP2023184054A (en) | Rolling bearing device | |
RU2095649C1 (en) | Radially-thrust ball bearing | |
WO2018101038A1 (en) | Roller bearing | |
JP2009063116A (en) | Rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: S.N.R. ROULEMENTS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BELUFFI, STEPAHNE;BERTHIER, JULIEN;LORNAGE, SANDRINE;AND OTHERS;REEL/FRAME:020737/0581;SIGNING DATES FROM 20071103 TO 20071109 Owner name: S.N.R. ROULEMENTS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BELUFFI, STEPAHNE;BERTHIER, JULIEN;LORNAGE, SANDRINE;AND OTHERS;SIGNING DATES FROM 20071103 TO 20071109;REEL/FRAME:020737/0581 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150405 |