US20080185117A1 - A core-setting apparatus used for a molding apparatus and a method for setting a core - Google Patents
A core-setting apparatus used for a molding apparatus and a method for setting a core Download PDFInfo
- Publication number
- US20080185117A1 US20080185117A1 US12/020,164 US2016408A US2008185117A1 US 20080185117 A1 US20080185117 A1 US 20080185117A1 US 2016408 A US2016408 A US 2016408A US 2008185117 A1 US2008185117 A1 US 2008185117A1
- Authority
- US
- United States
- Prior art keywords
- core
- lower mold
- molding
- handling tool
- cope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000003110 molding sand Substances 0.000 claims description 16
- 238000005273 aeration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/108—Installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C11/00—Moulding machines characterised by the relative arrangement of the parts of same
- B22C11/10—Moulding machines characterised by the relative arrangement of the parts of same with one or more flasks forming part of the machine, from which only the sand moulds made by compacting are removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C15/00—Moulding machines characterised by the compacting mechanism; Accessories therefor
- B22C15/02—Compacting by pressing devices only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C15/00—Moulding machines characterised by the compacting mechanism; Accessories therefor
- B22C15/02—Compacting by pressing devices only
- B22C15/08—Compacting by pressing devices only involving pneumatic or hydraulic mechanisms
Definitions
- These inventions relate to a core-setting apparatus used for a flaskless molding apparatus for producing a pair of an upper and a lower mold, which molding apparatus uses a match plate, and a method for setting a core.
- a core-setting apparatus sets a core in a lower mold in the drag flask, wherein the core-setting apparatus is disposed above the drag flask.
- the present inventions have been conceived to solve these problems. Namely, the purpose of them is to provide a core-setting apparatus used for a molding apparatus and a method for setting a core in a mold that can simplify the structure of the molding apparatus and that can maintain the core in a highly accurate position.
- a core-setting apparatus is used for a molding apparatus for producing an upper and a lower mold of these inventions.
- the molding apparatus has processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means
- a handling tool to handle the core comprising a holding means to hold the core and a rotatable rod supporting the handling tool about its axis,
- a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from the location above the lower mold, and
- an actuator for lowering and lifting the cope flask together with the carrier and the handling tool which are located above the drag flask, wherein the actuator is mounted on the main body of the molding apparatus.
- the core-setting apparatus of these inventions that are used for the molding apparatus further comprises a pair of perpendicularly movable rails disposed at both outer side walls of the cope flask, wherein the rails can be moved perpendicularly together with the cope flask, and wherein the carrier and the handling tool can also be lowered and lifted together with the cope flask when the carrier and the handling tool are moved to a position above the drag flask by using the pair of perpendicularly movable rails.
- the molding apparatus has processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means
- a holding step to hold the core by operating a holding means after inserting the core in a handling tool
- a positioning step to position the core held by the handling tool so that the core faces the lower mold by moving a carrier supporting a rotatable rod of the handling tool to the position above the lower mold and by rotating the handling tool forwardly about the rotatable rod,
- a lowering step to lower the core to just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, by forwardly moving an actuator for lowering or lifting the cope flask, wherein the actuator, which is mounted on the main body of the molding apparatus, can lower and lift the carrier, which is transferred to the position above the lower mold, and can also lower and lift the handling tool together with the cope flask,
- a removing and rotating step to take the carrier from the position above the lower mold and to inversely rotate the handling tool.
- the method for setting the core used for the molding apparatus for producing the upper and the lower mold of these inventions further comprises:
- a pressurizing step to pressurize the core by compressed air while setting the core after lowering it to a position just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, and releasing the core from the holding means.
- a core-setting apparatus used for a molding apparatus having processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means
- a handling tool to handle the core comprising a holding means to hold the core and a rotatable rod supporting the handling tool about its axis,
- a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from a location above the lower mold, and
- FIG. 1 is an elevational and a partial sectional view of the main structure of the molding apparatus.
- FIG. 2 is an elevational view of the core-setting apparatus of these inventions showing one of the embodiments used for the molding apparatus.
- FIG. 3 is a plane view of FIG. 2 . Part of FIG. 2 is omitted. FIG. 3 shows that the carrier and a transferring carriage are moved forward.
- FIG. 4 is a view of the right side of FIG. 2 . Part of FIG. 2 is omitted.
- FIG. 5 is a plane view of a pair of molding spaces defined in the flasks by the molding apparatus. Some relevant elements are omitted.
- FIG. 6 is an elevational and a partially sectional view of a pair of molding spaces defined in the flasks by the molding apparatus. Some relevant elements are omitted.
- FIG. 7 is an elevational view of the core-setting apparatus. and shows that the core is held in the handling tool, which is at an initial position.
- FIG. 8 is an elevational view of the core-setting apparatus. It shows that the carrier is moved to a position above the lower mold, and that the core faces the lower mold.
- FIG. 9 is an elevational view of the core-setting apparatus, and shows that the core is lowered to just in front of the surface of the lower mold.
- FIG. 10 is an elevational view of the core-setting apparatus, and shows that the carrier and the empty handling tool are lifted.
- FIG. 11 is an elevational view of the core-setting apparatus, and shows that the carrier is removed from the position above the lower mold, and that the handling tool is located at an initial position.
- a main body A of a molding apparatus comprises:
- a cope flask 2 and a drag flask 3 which can hold therebetween a match plate 1 , having patterns 1 a , 1 a , at both its sides,
- an upper squeezing member 4 which is insertable into the opening positioned on the opposite side of the cope flask 2 from the match plate 1 ,
- a lower squeezing member 7 which is insertable in the filling frame 6 , wherein the lower squeezing member 7 is disposed so that its pressurizing surface faces the horizontal direction.
- FIG. 1 shows the main body A of the molding apparatus at the initial position.
- the match plate 1 , the cope flask 2 , the drag flask 3 , and the upper squeezing member 4 are disposed at the horizontal position, and the pressurizing surface of the upper squeezing member 4 faces perpendicularly downward.
- the match plate 1 , the cope flask 2 , the drag flask 3 , and the upper squeezing member 4 can be integrally rotated so that they are disposed at the perpendicular position.
- the filling frame 6 and the lower squeezing member 7 cannot rotate, and the pressurizing surface of the lower squeezing member 7 is fixed so that it faces horizontally.
- the filling frame 6 is disposed at the fixed position, which the drag flask comes in contact with.
- the lower squeezing member 7 is also insertable into the drag flask, which is at the perpendicular position, through the filling frame.
- a sand-supplying mechanism 8 disposed at an upper-central portion of the main body A, fills molding spaces located below the sand-supplying mechanism 8 with molding sand.
- FIG. 1 does not show the molding spaces located below the sand-supplying mechanism 8 .
- a pair of first cylinders 9 (upper cylinders) horizontally extending (see FIGS. 2 and 3 ) and a second cylinder 10 (a lower cylinder) also horizontally extending (see FIG. 1 ) face each other and are disposed near a location below the sand-supplying mechanism 8 .
- the respective cylinders drive the upper squeezing member 4 and the lower squeezing member 7 .
- the first and the second cylinder are each hydraulic. However, electrically-driven cylinders may be used.
- FIGS. 1 and 2 a rotating shaft 11 , disposed at the top-right side of the base 5 , extends in the direction connecting the rear to the front of the main body A (perpendicular to the sheets showing FIGS. 1 and 2 ).
- FIGS. 1 and 2 show just the front-end surface of the rotating shaft 11 .
- the rotating shaft 11 is rotatably supported by a pair of bearings 12 disposed at the base 5 with a predetermined interval in the direction connecting the rear to the front of the main body A ( FIG. 2 shows only the front bearing 12 ).
- a rotating frame 13 extending substantially perpendicularly, is fixed to the rotating shaft 11 near the central portion in its longitudinal direction.
- the drag flask 3 which has a sand-filling port at its left side wall, is disposed at the right side and bottom end of the rotating frame 13 by means of a supporting member 14 .
- a pair of guide rods 15 are disposed at the right side of the rotating frame 13 with a predetermined interval in the direction connecting the rear to the front of the main body A ( FIGS. 1 and 3 show only the front guide rod 15 ).
- a retaining member 16 which retains the match plate 1 above the drag flask 3 , is slidable and is supported by the pair of the guide rods 15 perpendicularly extending by means of a guide holder 17 .
- the cope flask 2 which has a sand-filling port at its left side wall, is also slidable and is supported above the retaining member 16 by means of another guide holder 18 .
- the retaining member 16 is supported by guide rails 19 extending in the direction connecting the rear to the front of the molding apparatus so that it can move along the guide rails 19 .
- the guide rails 19 can ascend and descend by extending and contracting a third cylinder 20 disposed at the rotating frame 13 .
- the cope flask 2 is connected to a fourth cylinder 21 , which extends downwardly, through a support structure (not shown).
- the distal end of the piston rod of the fourth cylinder 21 is connected to the rotating frame 13 .
- the cope flask can move forward to and backward from the retaining member 16 by extending and contracting a fourth cylinder 21 .
- a pair of fifth cylinders 22 is disposed at the central portions of the front and the rear side surface of the cope flask 2 (only the front side surface of the cope flask 2 is shown in FIG. 2 ).
- the upper squeezing member 4 connects the distal ends of the piston rods of the pair of the fifth cylinders 22 so that the cylinders 22 can move the upper squeezing member 4 forward to or backward from the cope flask 2 by their extending and contracting motions.
- the pair of the fifth cylinders 22 can be rotated together with the cope flask 2 and the upper squeezing member 4 .
- Two pairs of sixth cylinders 23 are disposed at the right and left ends of the front and the rear side surface of the cope flask 2 so that the cylinders 23 can move the match plate 1 away from the cope flask 2 .
- Four seventh cylinders 24 (see FIG. 2 ), upwardly extending, are disposed at the front and the rear side surface of the drag flask 3 (see FIG. 1 ) so that the cylinders 24 can move the match plate 1 away from the drag flask 3 .
- the third cylinder 20 can be used as a substitute for two of the four seventh cylinders 24 , two cylinders 24 can be omitted.
- a pair of eighth cylinders 25 extending rightward is disposed at the front and the rear side of the upper surface of the base 5 .
- the upper portion of the rotating frame 13 connects the distal ends of the piston rods of the pair of the eighth cylinders 25 through a connecting mechanism 26 .
- the rotating frame 13 can rotate about the rotating shaft 11 by extending and contracting the eighth cylinders 25 .
- the sand-supplying mechanism 8 of the main body A is disposed between the pair of the eighth cylinders 25 at the upper surface of the base 5 .
- an aeration mechanism 28 for ejecting compressed air to fluidize molding sand is disposed below the sand-tank 27 of the sand-supplying mechanism 8 .
- FIG. 5 a plane view
- FIG. 6 an elevational view
- the match plate 1 the cope and the drag flask 2 , 3 , the upper and the lower squeezing member 4 , 7 , and the filling frame 6 , which are positioned just under the sand-supplying mechanism 8 by rotating them together with related members from the position in FIGS. 1 and 2 after defining the upper and the lower molding space as explained above.
- a supporting frame 29 (see FIG. 5 ), having a C-like shape in the sectional plane view, is fixed to the base 5 (see FIGS. 1 and 2 ) below the sand-supplying mechanism 8 (see FIG. 6 ).
- the filling frame 6 which is positioned perpendicularly, is disposed at the inner left side of the supporting frame 29 , so that the filling frame 6 comes into contact with the drag flask 3 when the lower molding space is defined.
- the second cylinder 10 horizontally extending to the right, is disposed at the central portion of the left frame of the supporting frame 29 .
- the distal end of the piston rod of the cylinder 10 is fixed to the lower squeezing member 7 .
- the lower squeezing member 7 is in a perpendicular position.
- Each of the first cylinders 9 horizontally extending to the left, is disposed at the pair of the open ends of the supporting frame 29 .
- a handling tool 101 is provided with and is rotatably supported by a rotatable rod 102 .
- the rotatable rod 102 is also rotatably supported by a carrier 104 , which is used for transferring the handling tool 101 , by means of bearings 103 , 103 (see FIG. 4 ) disposed at both its ends.
- the rotatable rod 102 can be rotated by a driving motor. (not shown)
- the portion contacting the core of the handling tool 101 is made from resin, and is designed so that it can be changed (not shown). Further, the handling tool 101 is provided with a holding means (not shown) to hold the core.
- a vacuuming means is used for holding the core and acts as the holding means.
- the holding means is not limited to the vacuuming means.
- a clamping means to mechanically clamp the core can also be used for the holding means.
- the carrier 104 for transferring the handling tool is provided with four rollers 104 a , 104 a disposed at the upper portion of its inside.
- a pair of guide members 105 , 105 (see FIGS. 2 and 3 ) is fixed to the front side of the carrier 104 at a predetermined interval.
- a roller 106 is slidably disposed between the pair of the guide members 105 , 105 . Further, the roller 106 is disposed at an arm 107 .
- the arm 107 is connected to a rotating shaft of a motor 108 , explained below.
- a carriage 109 is disposed over the carrier 104 and provided with four rollers 109 a , 109 a disposed at the upper portion of the outside of the carriage 109 .
- a pair of horizontally movable rails 110 , 110 is fixed to the lower portion of the outside of the carriage 109 .
- the rails can move horizontally together with the carriage 109 .
- the rollers 104 a , 104 a of the carrier 104 are disposed on the pair of the horizontally movable rails 110 , 110 .
- the motor 108 is disposed at the lower portion of the front side of the carriage 109 and is fixed to the carriage 109 by means of a supporting member 111 .
- the rollers 109 a , 109 a of the carriage 109 are disposed on rails 112 , 112 , which are located under the rollers 109 a , 109 a .
- the rails 112 , 112 are supported by being fixed to supporting frames 113 .
- the frames 113 are supported by columns (not shown).
- a pair of perpendicularly movable rails 114 , 114 is fixed to two of the outer sides of the cope flask 2 in the main body A of the molding apparatus through fixing members 115 , 115 (see FIG. 3 ) so that the rails 114 , 114 can perpendicularly move together with the cope flask 2 .
- the carrier 104 and the handling tool 101 can perpendicularly move together with the cope flask 2 by moving the carrier 104 and the handling tool 101 to a position above the drag flask 3 through the perpendicularly movable rails 114 , 114 .
- the upper surfaces of the perpendicularly movable rails 114 , 114 correspond to those of the horizontally movable rails 110 , 110 .
- C denotes a transferring mechanism to transfer the match plate 1 between the cope flask 2 and the drag flask 3 together with the retaining member 16 .
- 30 denotes a receiving member that is used for placing an upper and a lower mold that is stripped from the cope flask 2 and the drag flask 3 .
- 31 denotes a cylinder for pushing the upper and the lower mold placed on the receiving member 30 out from it.
- the match plate 1 is held between the cope flask 2 and the drag flask 3 by sequentially stacking the drag flask 3 , the match plate 1 , and the cope flask 2 in a substantially horizontal condition by contracting the fourth cylinder 21 of the main body A, which cylinder extends downward.
- the rotating frame 13 is rotated clockwise about the rotating shaft 11 by extending the pair of the eighth cylinders 25 of the main body A.
- the upper squeezing member 4 is transferred between the first cylinders 9 and the filling frame 6 together with the cope flask 2 and the drag flask 3 holding the match plate 1 and located at the perpendicular position.
- the upper and the lower molding space shown in FIG. 5 start to be defined by extending the second cylinder 10 at a predetermined length, and by contracting the pair of the fifth cylinders 22 .
- the upper molding space is defined by inserting the upper squeezing member 4 into the cope flask 3 from its side opposite the match plate 1 . Since the cope flask 2 and the drag flask 3 holding the match plate 1 , the upper squeezing member 4 , and the fifth cylinders 22 for moving the upper squeezing member 4 can all be rotated together, during the rotation of the rotating frame 13 the upper molding space can be defined. Further, when the rotating frame 13 is rotating, the lower squeezing member 7 is inserted into the drag flask 3 through the filling frame 6 .
- the flask 3 is moved near the filling frame 6 and is placed in the substantially perpendicular position by the rotation of the rotating frame 13 . After the rotation of the rotating frame 13 is completed, the lower molding space is also defined by contacting the drag flask 3 to the filling frame 6 .
- the upper and the lower molding space are filled with the molding sand by supplying compressed air into the aeration mechanism 28 of the sand-tank 27 from a source of compressed air (not shown).
- a source of compressed air not shown.
- these inventions are not limited by these configurations.
- the molding sand in the upper and the lower molding space is squeezed by respectively moving the upper and lower squeezing members 4 , 7 toward the match plate 1 by respectively extending the first cylinders 9 and the second cylinder 10 .
- the upper and the lower mold is respectively produced in the upper and the lower molding space.
- the cope flask 2 and the drag flask 3 which respectively include the upper and lower mold in the flasks, are rotated and moved by the counterclockwise rotation of the rotating frame 13 by contracting the eighth cylinders 25 .
- the cope flask 2 is lifted by extending the fourth cylinder 21 .
- the match plate 1 is pushed down from the cope flask 2 by extending the sixth cylinders 23 .
- the match plate 1 is pushed up from the drag flask 3 by the seventh cylinders 24 .
- the match plate 1 is removed from between the cope flask 2 and the drag flask 3 together with the retaining member 16 by driving the transferring mechanism C.
- the operations for setting a core in the mold start. Below, these operations are explained in detail.
- the carriage 109 is fixed to the position by a fixing means (not shown).
- the handling tool 101 is inclined at a predetermined angle (in this embodiment, the angle is 30 degrees) by rotating it about the rotatable rod 102 so that the top of the handling tool 101 moves backward (toward the main body A), the core N is held in the handling tool 101 by suctioning it by driving the vacuuming means. (See FIG. 7 .)
- the arm 107 is rotated 180 degrees so that it moves toward the main body A by driving the motor 108 .
- the roller 106 slidably reciprocates between the pair of the guide members 105 , 105 , and the carrier 104 moves to above the lower mold.
- the handling tool is rotated (in FIG. 7 , clockwise) so that the core N faces downward by driving the motor for rotating the rotatable rod 102 .
- the holding surface 101 a of the handling tool 101 faces downward
- the core N held by the handling tool, faces toward the lower mold. (See FIG. 8 .)
- an actuator for lifting and lowering the cope flask 2 which actuator is mounted on the main body A, is driven.
- the actuator can lift and lower both the cope flask 2 together with the handling tool 101 and the carrier 104 , which are transferred to above the lower mold.
- the perpendicularly movable rails 114 , 114 are lowered together with the cope flask 2 by contracting the fourth cylinder 21 .
- the core N held by the handling tool 101 disposed at the carrier 104 , is lowered to just in front of the surface of the lower mold (in this embodiment, the clearance between the core N and the surface of the lower mold is 1 mm). (See FIG. 9 .)
- the core N is lowered, it is released from the handling tool 101 by stopping the vacuuming means and is set in the lower mold.
- the perpendicularly movable rails 114 , 114 are lifted by inversely driving the actuator together with the cope flask 2 , namely, by extending the fourth cylinder 21 .
- the carrier 104 and the vacant handling tool 101 are also lifted. (See FIG. 10 .)
- the arm 107 is rotated 180 degrees so that it moves toward the core-setting apparatus B by inversely driving the motor 108 .
- the roller 106 slidably reciprocates between the pair of the guide members 105 , 105 , and the carrier 104 is removed from above the lower mold.
- the handling tool 101 is inversely rotated (in FIG. 10 , counterclockwise) so that the handling tool returns to the initial position, explained previously, by inversely driving the motor for rotating the rotatable rod 102 .
- the handling tool 101 is placed at the initial position. (See FIG. 11 .)
- the cope flask 2 is lowered and stacked on the drag flask 3 by contracting the forth cylinder 21 .
- the upper surface of the receiving member 30 is contacted by the bottom surface of the lower mold by driving a lifting and lowering cylinder (not shown).
- the upper squeezing member 4 pushes down the upper mold in the cope flask 2 by contracting the fifth cylinders 22 .
- the upper and lower molds are stripped from the cope flask 2 and the drag flask 3 by lowering the receiving member 30 by driving the lifting and lowering cylinder (not shown).
- the upper squeezing member 4 is lifted by extending the fifth cylinders 22 .
- the carriage 109 is kept at the forward position.
- the carrier 104 and the carriage 109 are manually moved backward by releasing the fixing means for the carriage 109 .
- the handling tool 101 is transferred to the space between the cope flask 2 and drag flask 3 so that the core N faces downward, wherein the space is used for inserting and holding the match plate 1 .
- the core N is set in the lower mold in the main body A of the molding apparatus, which main body has a high stiffness and a high dimensional accuracy.
- These operations are similar to the operations for holding the match plate 1 between the cope flask 2 and the drag flask 3 .
- a core is set in a lower mold by lifting a drag flask while it is drawn out from a molding apparatus. Namely, it is cantilevered.
- the core in the mold can be held very accurately.
- the core is set in the lower mold in an operation similar to that where the match plate 1 is held between the cope flask 2 and the drag flask 3 .
- the carrier 104 and the carriage 109 are manually moved forward and backward.
- these inventions are not limited to this embodiment. It is also possible to use an actuator (say, a cylinder or a motor) for moving them forward and backward.
- the core N held in the handling tool 101 disposed at the carrier 104 , is lowered to just in front of the surface of the lower mold.
- these inventions are not limited to this embodiment. It is also possible to lower the core N until it contacts the surface of the lower mold.
- the core N is released from the handling tool 101 by stopping the vacuuming means, and is then set in the lower mold.
- these inventions are not limited to this embodiment. It is more preferable that the core N be set in the lower mold by pressurizing the core N with compressed air after stopping the vacuuming means, because the core N can be definitely released from the handling tool, and so any possible trouble in releasing the core N from the handling tool can be prevented.
- a vacuuming and pressurizing means can be used for the holding means instead of the vacuuming means alone, to pressurize the core N with the compressed air.
- the handling tool 101 is rotated by rotating the rotatable rod 102 by the driving motor (not shown).
- the driving motor not shown
- an arm can be attached to one end of the rotatable rod 102 so that the rod 102 can be rotated by driving a cylinder connected to the distal end of the arm.
- a cam mechanism can be used for rotating the rotatable rod 102 , instead of the actuator.
- the carriage 109 is fixed to its position by a fixing means (not shown).
- a fixing means not shown.
- the carriage can be positioned so that a little clearance (for example, 1 mm) between the horizontally movable rails 110 , 110 and the perpendicularly movable rails 114 , 114 can be maintained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Casting Devices For Molds (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
These inventions provide a core-setting apparatus and a method for setting the core in a lower mold used for a molding apparatus, wherein the core-setting apparatus has a simple structure and can maintain the core in the mold in a highly accurate position. The inventions consist of: the core-setting apparatus to set a core in the lower mold while the upper and the lower mold and a match plate are separated from each other after molding the upper and lower mold that comprises: a handling tool having a holding means and a rotatable rod, wherein the handling tool is rotatably supported by the rod, a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from the location above the lower mold, and an actuator for lowering and lifting the cope flask together with the carrier and the handling tool which are located above the drag flask, wherein the actuator is mounted on the main body of the molding apparatus.
Description
- These inventions relate to a core-setting apparatus used for a flaskless molding apparatus for producing a pair of an upper and a lower mold, which molding apparatus uses a match plate, and a method for setting a core.
- Conventionally, as one core-setting apparatus that is used for a flaskless molding apparatus for producing a pair of an upper and a lower mold by using a match plate, there is a type of apparatus that comprises the following:
- after a drag flask is placed outside the apparatus by moving it forward from the apparatus, wherein the drag flask is movable forward and backward,
- a core-setting apparatus sets a core in a lower mold in the drag flask, wherein the core-setting apparatus is disposed above the drag flask. (See
Patent Document 1.) -
- Patent Document 1: Pamphlet of International Patent Laid-open Publication No. WO 02/43901 (See
FIG. 3 .)
- Patent Document 1: Pamphlet of International Patent Laid-open Publication No. WO 02/43901 (See
- However, for the inventions of
Patent Document 1, since a drag flask must be able to move backward and forward, it becomes a problem in that the structure of the apparatus becomes complicated. Further, since a core is set in a mold by lifting the drag flask under the condition that the drag flask is placed outside the apparatus by moving it forward from the apparatus, that is, while the drag flask is supported in a cantilevered state, it becomes another problem in that it is hard to keep the position of the core accurate. - The present inventions have been conceived to solve these problems. Namely, the purpose of them is to provide a core-setting apparatus used for a molding apparatus and a method for setting a core in a mold that can simplify the structure of the molding apparatus and that can maintain the core in a highly accurate position.
- To solve these problems, a core-setting apparatus is used for a molding apparatus for producing an upper and a lower mold of these inventions. The molding apparatus has processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a sand-filling step to fill the molding spaces with molding sand, and
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means,
- characterized in that the core-setting apparatus to set a core in the lower mold while the upper and the lower mold and the match plate are separated each other after molding the upper and the lower mold comprises:
- a handling tool to handle the core, comprising a holding means to hold the core and a rotatable rod supporting the handling tool about its axis,
- a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from the location above the lower mold, and
- an actuator for lowering and lifting the cope flask together with the carrier and the handling tool which are located above the drag flask, wherein the actuator is mounted on the main body of the molding apparatus.
- The core-setting apparatus of these inventions that are used for the molding apparatus further comprises a pair of perpendicularly movable rails disposed at both outer side walls of the cope flask, wherein the rails can be moved perpendicularly together with the cope flask, and wherein the carrier and the handling tool can also be lowered and lifted together with the cope flask when the carrier and the handling tool are moved to a position above the drag flask by using the pair of perpendicularly movable rails.
- To solve the above problems, the method for setting a core is used for the molding apparatus for producing an upper and a lower mold of these inventions. The molding apparatus has processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a sand-filling step to fill the molding spaces with molding sand, and
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means,
- characterized in that the method for setting the core in the lower mold while the upper and the lower mold and the match plate are separated from each other after molding the upper and the lower mold comprises:
- a holding step to hold the core by operating a holding means after inserting the core in a handling tool,
- a positioning step to position the core held by the handling tool so that the core faces the lower mold by moving a carrier supporting a rotatable rod of the handling tool to the position above the lower mold and by rotating the handling tool forwardly about the rotatable rod,
- a lowering step to lower the core to just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, by forwardly moving an actuator for lowering or lifting the cope flask, wherein the actuator, which is mounted on the main body of the molding apparatus, can lower and lift the carrier, which is transferred to the position above the lower mold, and can also lower and lift the handling tool together with the cope flask,
- a setting step to set the core in the lower mold by releasing the core from the holding means at the lowered position,
- a lifting step to lift the carrier and the handling tool by inversely moving the actuator for lowering and lifting the cope flask, and
- a removing and rotating step to take the carrier from the position above the lower mold and to inversely rotate the handling tool.
- The method for setting the core used for the molding apparatus for producing the upper and the lower mold of these inventions further comprises:
- a pressurizing step to pressurize the core by compressed air while setting the core after lowering it to a position just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, and releasing the core from the holding means.
- These inventions include the following technical features:
- a core-setting apparatus used for a molding apparatus having processes comprising:
- a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
- a sand-filling step to fill the molding spaces with molding sand, and
- a squeezing step to squeeze the molding sand in the molding spaces by the upper and the lower squeeze means,
- characterized in that the core-setting apparatus to set a core in the lower mold while the upper and the lower mold and the match plate are separated from each other after molding the upper and the lower mold comprises:
- a handling tool to handle the core, comprising a holding means to hold the core and a rotatable rod supporting the handling tool about its axis,
- a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from a location above the lower mold, and
- an actuator for lowering and lifting the cope flask together with the carrier and the handling tool which are located above the drag flask, wherein the actuator is mounted on the main body of the molding apparatus. Since these inventions have these technical features, they have different types of effects, such as that the structure of the apparatus can be simplified, and that it is possible to maintain the accuracy of the position of the core when the core is set in the lower mold.
-
FIG. 1 is an elevational and a partial sectional view of the main structure of the molding apparatus. -
FIG. 2 is an elevational view of the core-setting apparatus of these inventions showing one of the embodiments used for the molding apparatus. -
FIG. 3 is a plane view ofFIG. 2 . Part ofFIG. 2 is omitted.FIG. 3 shows that the carrier and a transferring carriage are moved forward. -
FIG. 4 is a view of the right side ofFIG. 2 . Part ofFIG. 2 is omitted. -
FIG. 5 is a plane view of a pair of molding spaces defined in the flasks by the molding apparatus. Some relevant elements are omitted. -
FIG. 6 is an elevational and a partially sectional view of a pair of molding spaces defined in the flasks by the molding apparatus. Some relevant elements are omitted. -
FIG. 7 is an elevational view of the core-setting apparatus. and shows that the core is held in the handling tool, which is at an initial position. -
FIG. 8 is an elevational view of the core-setting apparatus. It shows that the carrier is moved to a position above the lower mold, and that the core faces the lower mold. -
FIG. 9 is an elevational view of the core-setting apparatus, and shows that the core is lowered to just in front of the surface of the lower mold. -
FIG. 10 is an elevational view of the core-setting apparatus, and shows that the carrier and the empty handling tool are lifted. -
FIG. 11 is an elevational view of the core-setting apparatus, and shows that the carrier is removed from the position above the lower mold, and that the handling tool is located at an initial position. - One embodiment of these inventions is now explained in detail based on figures. As in
FIG. 1 , a main body A of a molding apparatus comprises: - a cope
flask 2 and adrag flask 3, which can hold therebetween amatch plate 1, having patterns 1 a, 1 a, at both its sides, - an upper squeezing
member 4, which is insertable into the opening positioned on the opposite side of the copeflask 2 from thematch plate 1, - a filling
frame 6 perpendicularly fixed to abase 5, and - a lower squeezing
member 7, which is insertable in the fillingframe 6, wherein the lower squeezingmember 7 is disposed so that its pressurizing surface faces the horizontal direction. -
FIG. 1 shows the main body A of the molding apparatus at the initial position. In this stage, thematch plate 1, the copeflask 2, thedrag flask 3, and the upper squeezingmember 4 are disposed at the horizontal position, and the pressurizing surface of the upper squeezingmember 4 faces perpendicularly downward. As explained below, thematch plate 1, the copeflask 2, thedrag flask 3, and the upper squeezingmember 4 can be integrally rotated so that they are disposed at the perpendicular position. - In contrast, the filling
frame 6 and the lower squeezingmember 7 cannot rotate, and the pressurizing surface of the lower squeezingmember 7 is fixed so that it faces horizontally. When the copeflask 2 and thedrag flask 3 holding thematch plate 1 therebetween are at the perpendicular position after they rotate, the fillingframe 6 is disposed at the fixed position, which the drag flask comes in contact with. The lower squeezingmember 7 is also insertable into the drag flask, which is at the perpendicular position, through the filling frame. - A sand-supplying mechanism 8, disposed at an upper-central portion of the main body A, fills molding spaces located below the sand-supplying mechanism 8 with molding sand. (Here,
FIG. 1 does not show the molding spaces located below the sand-supplying mechanism 8.) A pair of first cylinders 9 (upper cylinders) horizontally extending (seeFIGS. 2 and 3 ) and a second cylinder 10 (a lower cylinder) also horizontally extending (seeFIG. 1 ) face each other and are disposed near a location below the sand-supplying mechanism 8. The respective cylinders drive the upper squeezingmember 4 and the lower squeezingmember 7. In this embodiment, the first and the second cylinder are each hydraulic. However, electrically-driven cylinders may be used. - As shown in
FIGS. 1 and 2 , a rotatingshaft 11, disposed at the top-right side of thebase 5, extends in the direction connecting the rear to the front of the main body A (perpendicular to the sheets showingFIGS. 1 and 2 ). Thus,FIGS. 1 and 2 show just the front-end surface of therotating shaft 11. The rotatingshaft 11 is rotatably supported by a pair ofbearings 12 disposed at thebase 5 with a predetermined interval in the direction connecting the rear to the front of the main body A (FIG. 2 shows only the front bearing 12). Arotating frame 13, extending substantially perpendicularly, is fixed to therotating shaft 11 near the central portion in its longitudinal direction. - Especially, as shown in
FIG. 1 , thedrag flask 3, which has a sand-filling port at its left side wall, is disposed at the right side and bottom end of therotating frame 13 by means of a supportingmember 14. A pair ofguide rods 15, substantially extending perpendicularly, are disposed at the right side of therotating frame 13 with a predetermined interval in the direction connecting the rear to the front of the main body A (FIGS. 1 and 3 show only the front guide rod 15). - Further, as shown in
FIG. 1 , a retainingmember 16, which retains thematch plate 1 above thedrag flask 3, is slidable and is supported by the pair of theguide rods 15 perpendicularly extending by means of aguide holder 17. The copeflask 2, which has a sand-filling port at its left side wall, is also slidable and is supported above the retainingmember 16 by means of anotherguide holder 18. Further, the retainingmember 16 is supported byguide rails 19 extending in the direction connecting the rear to the front of the molding apparatus so that it can move along the guide rails 19. The guide rails 19 can ascend and descend by extending and contracting athird cylinder 20 disposed at therotating frame 13. The copeflask 2 is connected to afourth cylinder 21, which extends downwardly, through a support structure (not shown). The distal end of the piston rod of thefourth cylinder 21 is connected to therotating frame 13. The cope flask can move forward to and backward from the retainingmember 16 by extending and contracting afourth cylinder 21. - Especially, as shown in
FIG. 2 , a pair offifth cylinders 22 is disposed at the central portions of the front and the rear side surface of the cope flask 2 (only the front side surface of the copeflask 2 is shown inFIG. 2 ). The upper squeezingmember 4 connects the distal ends of the piston rods of the pair of thefifth cylinders 22 so that thecylinders 22 can move the upper squeezingmember 4 forward to or backward from the copeflask 2 by their extending and contracting motions. Thus, the pair of thefifth cylinders 22 can be rotated together with the copeflask 2 and the upper squeezingmember 4. Two pairs ofsixth cylinders 23, downwardly extending, are disposed at the right and left ends of the front and the rear side surface of the copeflask 2 so that thecylinders 23 can move thematch plate 1 away from the copeflask 2. Four seventh cylinders 24 (seeFIG. 2 ), upwardly extending, are disposed at the front and the rear side surface of the drag flask 3 (seeFIG. 1 ) so that the cylinders 24 can move thematch plate 1 away from thedrag flask 3. In addition, since thethird cylinder 20 can be used as a substitute for two of the four seventh cylinders 24, two cylinders 24 can be omitted. A pair ofeighth cylinders 25 extending rightward is disposed at the front and the rear side of the upper surface of thebase 5. The upper portion of therotating frame 13 connects the distal ends of the piston rods of the pair of theeighth cylinders 25 through a connectingmechanism 26. The rotatingframe 13 can rotate about the rotatingshaft 11 by extending and contracting theeighth cylinders 25. - As shown in
FIG. 2 , the sand-supplying mechanism 8 of the main body A is disposed between the pair of theeighth cylinders 25 at the upper surface of thebase 5. As shown inFIG. 1 , anaeration mechanism 28 for ejecting compressed air to fluidize molding sand is disposed below the sand-tank 27 of the sand-supplying mechanism 8. -
FIG. 5 , a plane view, andFIG. 6 , an elevational view, show thematch plate 1, the cope and thedrag flask member frame 6, which are positioned just under the sand-supplying mechanism 8 by rotating them together with related members from the position inFIGS. 1 and 2 after defining the upper and the lower molding space as explained above. As inFIGS. 5 and 6 , a supporting frame 29 (seeFIG. 5 ), having a C-like shape in the sectional plane view, is fixed to the base 5 (seeFIGS. 1 and 2 ) below the sand-supplying mechanism 8 (seeFIG. 6 ). - Especially, as shown in
FIG. 5 , the fillingframe 6, which is positioned perpendicularly, is disposed at the inner left side of the supportingframe 29, so that the fillingframe 6 comes into contact with thedrag flask 3 when the lower molding space is defined. Thesecond cylinder 10, horizontally extending to the right, is disposed at the central portion of the left frame of the supportingframe 29. The distal end of the piston rod of thecylinder 10 is fixed to the lower squeezingmember 7. The lower squeezingmember 7 is in a perpendicular position. Each of thefirst cylinders 9, horizontally extending to the left, is disposed at the pair of the open ends of the supportingframe 29. - Next, a core-setting apparatus B is explained. A
handling tool 101 is provided with and is rotatably supported by arotatable rod 102. Therotatable rod 102 is also rotatably supported by acarrier 104, which is used for transferring thehandling tool 101, by means ofbearings 103, 103 (seeFIG. 4 ) disposed at both its ends. Here, therotatable rod 102 can be rotated by a driving motor. (not shown) - The portion contacting the core of the
handling tool 101 is made from resin, and is designed so that it can be changed (not shown). Further, thehandling tool 101 is provided with a holding means (not shown) to hold the core. In this embodiment, a vacuuming means is used for holding the core and acts as the holding means. The holding means is not limited to the vacuuming means. For example, a clamping means to mechanically clamp the core can also be used for the holding means. - The
carrier 104 for transferring the handling tool is provided with fourrollers guide members 105, 105 (seeFIGS. 2 and 3 ) is fixed to the front side of thecarrier 104 at a predetermined interval. Aroller 106 is slidably disposed between the pair of theguide members roller 106 is disposed at anarm 107. Thearm 107 is connected to a rotating shaft of amotor 108, explained below. - A
carriage 109 is disposed over thecarrier 104 and provided with fourrollers carriage 109. A pair of horizontallymovable rails carriage 109. The rails can move horizontally together with thecarriage 109. Therollers carrier 104 are disposed on the pair of the horizontallymovable rails motor 108 is disposed at the lower portion of the front side of thecarriage 109 and is fixed to thecarriage 109 by means of a supportingmember 111. - The
rollers carriage 109 are disposed onrails rollers rails frames 113. Here, theframes 113 are supported by columns (not shown). A pair of perpendicularlymovable rails flask 2 in the main body A of the molding apparatus through fixingmembers 115, 115 (seeFIG. 3 ) so that therails flask 2. Thus, thecarrier 104 and thehandling tool 101 can perpendicularly move together with the copeflask 2 by moving thecarrier 104 and thehandling tool 101 to a position above thedrag flask 3 through the perpendicularlymovable rails movable rails movable rails - “C” denotes a transferring mechanism to transfer the
match plate 1 between the copeflask 2 and thedrag flask 3 together with the retainingmember 16. “30” denotes a receiving member that is used for placing an upper and a lower mold that is stripped from the copeflask 2 and thedrag flask 3. Further, “31” denotes a cylinder for pushing the upper and the lower mold placed on the receivingmember 30 out from it. - Below, the operations of the apparatus having the constitution explained in the above paragraphs are explained. From the state shown in
FIG. 1 , thematch plate 1 is held between the copeflask 2 and thedrag flask 3 by sequentially stacking thedrag flask 3, thematch plate 1, and the copeflask 2 in a substantially horizontal condition by contracting thefourth cylinder 21 of the main body A, which cylinder extends downward. - Next, while the
first cylinders 9 of the main body are contracted, the rotatingframe 13 is rotated clockwise about the rotatingshaft 11 by extending the pair of theeighth cylinders 25 of the main body A. As a result of this operation, the upper squeezingmember 4 is transferred between thefirst cylinders 9 and the fillingframe 6 together with the copeflask 2 and thedrag flask 3 holding thematch plate 1 and located at the perpendicular position. At the same time that therotating frame 13 rotates, the upper and the lower molding space shown inFIG. 5 start to be defined by extending thesecond cylinder 10 at a predetermined length, and by contracting the pair of thefifth cylinders 22. For more detail, note that while thematch plate 1 is held between the copeflask 2 and thedrag flask 3, the upper molding space is defined by inserting the upper squeezingmember 4 into the copeflask 3 from its side opposite thematch plate 1. Since the copeflask 2 and thedrag flask 3 holding thematch plate 1, the upper squeezingmember 4, and thefifth cylinders 22 for moving the upper squeezingmember 4 can all be rotated together, during the rotation of therotating frame 13 the upper molding space can be defined. Further, when therotating frame 13 is rotating, the lower squeezingmember 7 is inserted into thedrag flask 3 through the fillingframe 6. Theflask 3 is moved near the fillingframe 6 and is placed in the substantially perpendicular position by the rotation of therotating frame 13. After the rotation of therotating frame 13 is completed, the lower molding space is also defined by contacting thedrag flask 3 to the fillingframe 6. - Next, the upper and the lower molding space are filled with the molding sand by supplying compressed air into the
aeration mechanism 28 of the sand-tank 27 from a source of compressed air (not shown). When the molding spaces are filled with the molding sand, it is preferable to supply compressed air in the sand-tank 27 so as to shorten the time for filling the molding space with the molding sand. However, these inventions are not limited by these configurations. - Next, the molding sand in the upper and the lower molding space is squeezed by respectively moving the upper and lower squeezing
members match plate 1 by respectively extending thefirst cylinders 9 and thesecond cylinder 10. By these squeezing operations, the upper and the lower mold is respectively produced in the upper and the lower molding space. - Then, the cope
flask 2 and thedrag flask 3, which respectively include the upper and lower mold in the flasks, are rotated and moved by the counterclockwise rotation of therotating frame 13 by contracting theeighth cylinders 25. - Next, the cope
flask 2 is lifted by extending thefourth cylinder 21. Then thematch plate 1 is pushed down from the copeflask 2 by extending thesixth cylinders 23. At the same time, thematch plate 1 is pushed up from thedrag flask 3 by the seventh cylinders 24. - Then, the
match plate 1 is removed from between the copeflask 2 and thedrag flask 3 together with the retainingmember 16 by driving the transferring mechanism C. When the state shown byFIG. 2 is achieved, the operations for setting a core in the mold start. Below, these operations are explained in detail. First, after the horizontallymovable rails movable rails carrier 104 and thecarriage 109 forward, thecarriage 109 is fixed to the position by a fixing means (not shown). - Next, after setting a core N on the holding
surface 101 a of thehandling tool 101 that is at an initial state, namely, thehandling tool 101 is inclined at a predetermined angle (in this embodiment, the angle is 30 degrees) by rotating it about therotatable rod 102 so that the top of thehandling tool 101 moves backward (toward the main body A), the core N is held in thehandling tool 101 by suctioning it by driving the vacuuming means. (SeeFIG. 7 .) - Then, the
arm 107 is rotated 180 degrees so that it moves toward the main body A by driving themotor 108. As a result of this operation, theroller 106 slidably reciprocates between the pair of theguide members carrier 104 moves to above the lower mold. When thecarrier 104 begins to move toward the main body A, simultaneously the handling tool is rotated (inFIG. 7 , clockwise) so that the core N faces downward by driving the motor for rotating therotatable rod 102. As a result of these operations, since while thecarrier 104 is transferred to above the lower mold the holdingsurface 101 a of thehandling tool 101 faces downward, the core N, held by the handling tool, faces toward the lower mold. (SeeFIG. 8 .) - Then an actuator for lifting and lowering the cope
flask 2, which actuator is mounted on the main body A, is driven. The actuator can lift and lower both the copeflask 2 together with thehandling tool 101 and thecarrier 104, which are transferred to above the lower mold. Namely, the perpendicularlymovable rails flask 2 by contracting thefourth cylinder 21. As a result of these operations, the core N, held by thehandling tool 101 disposed at thecarrier 104, is lowered to just in front of the surface of the lower mold (in this embodiment, the clearance between the core N and the surface of the lower mold is 1 mm). (SeeFIG. 9 .) After the core N is lowered, it is released from thehandling tool 101 by stopping the vacuuming means and is set in the lower mold. - Next, the perpendicularly
movable rails flask 2, namely, by extending thefourth cylinder 21. Thus, thecarrier 104 and thevacant handling tool 101 are also lifted. (SeeFIG. 10 .) - Then, the
arm 107 is rotated 180 degrees so that it moves toward the core-setting apparatus B by inversely driving themotor 108. As a result of this operation, theroller 106 slidably reciprocates between the pair of theguide members carrier 104 is removed from above the lower mold. When thecarrier 104 begins to move toward the core-setting apparatus B, simultaneously thehandling tool 101 is inversely rotated (inFIG. 10 , counterclockwise) so that the handling tool returns to the initial position, explained previously, by inversely driving the motor for rotating therotatable rod 102. As a result of these operations, while thecarrier 104 is removed from above the lower mold, thehandling tool 101 is placed at the initial position. (SeeFIG. 11 .) - In the main body A, the cope
flask 2 is lowered and stacked on thedrag flask 3 by contracting theforth cylinder 21. Then the upper surface of the receivingmember 30 is contacted by the bottom surface of the lower mold by driving a lifting and lowering cylinder (not shown). Next, the upper squeezingmember 4 pushes down the upper mold in the copeflask 2 by contracting thefifth cylinders 22. Then, the upper and lower molds are stripped from the copeflask 2 and thedrag flask 3 by lowering the receivingmember 30 by driving the lifting and lowering cylinder (not shown). Next, the upper squeezingmember 4 is lifted by extending thefifth cylinders 22. Then, the upper and lower molds that are placed on the receivingmember 30 are pushed out from it by extending thecylinder 31 for pushing the molds. As a result of a series of these operations, a flaskless upper mold and a flaskless lower mold can be produced. - Incidentally, for the next operations for producing another pair of molds, if it is necessary to set a core in the molds then the
carriage 109 is kept at the forward position. In contrast, when molds that need no core are to be produced, namely, if it is unnecessary to set a core in the molds, thecarrier 104 and thecarriage 109 are manually moved backward by releasing the fixing means for thecarriage 109. - For the present inventions, the
handling tool 101 is transferred to the space between the copeflask 2 and dragflask 3 so that the core N faces downward, wherein the space is used for inserting and holding thematch plate 1. Then the core N is set in the lower mold in the main body A of the molding apparatus, which main body has a high stiffness and a high dimensional accuracy. These operations are similar to the operations for holding thematch plate 1 between the copeflask 2 and thedrag flask 3. In contrast, in the prior art, a core is set in a lower mold by lifting a drag flask while it is drawn out from a molding apparatus. Namely, it is cantilevered. Thus, in comparison with the prior art, by the present inventions the core in the mold can be held very accurately. Further, for the present inventions, the core is set in the lower mold in an operation similar to that where thematch plate 1 is held between the copeflask 2 and thedrag flask 3. Thus, since there is no need to constitute the molding apparatus so that the drag flask is movable forward and backward, a molding apparatus that has a simple structure can be provided. - For the embodiment of these inventions, the
carrier 104 and thecarriage 109 are manually moved forward and backward. However, these inventions are not limited to this embodiment. It is also possible to use an actuator (say, a cylinder or a motor) for moving them forward and backward. - Further, for the embodiment of these inventions, the core N, held in the
handling tool 101 disposed at thecarrier 104, is lowered to just in front of the surface of the lower mold. However, these inventions are not limited to this embodiment. It is also possible to lower the core N until it contacts the surface of the lower mold. - Further, for the embodiment of these inventions, after the core N, held by the
handling tool 101 disposed at thecarrier 104, is lowered to just in front of the surface of the lower mold (or until it contacts that surface), the core N is released from thehandling tool 101 by stopping the vacuuming means, and is then set in the lower mold. However, these inventions are not limited to this embodiment. It is more preferable that the core N be set in the lower mold by pressurizing the core N with compressed air after stopping the vacuuming means, because the core N can be definitely released from the handling tool, and so any possible trouble in releasing the core N from the handling tool can be prevented. Incidentally, a vacuuming and pressurizing means can be used for the holding means instead of the vacuuming means alone, to pressurize the core N with the compressed air. - Further, for the embodiment of these inventions, the
handling tool 101 is rotated by rotating therotatable rod 102 by the driving motor (not shown). However, these inventions are not limited to this embodiment. Also an arm can be attached to one end of therotatable rod 102 so that therod 102 can be rotated by driving a cylinder connected to the distal end of the arm. Further, a cam mechanism can be used for rotating therotatable rod 102, instead of the actuator. - Further, for the embodiments of these inventions, after the horizontally
movable rails movable rails carrier 104 and thecarriage 109 forward, thecarriage 109 is fixed to its position by a fixing means (not shown). However, these inventions are not limited to this embodiment. Also, the carriage can be positioned so that a little clearance (for example, 1 mm) between the horizontallymovable rails movable rails
Claims (4)
1. A core-setting apparatus used for a molding apparatus for producing an upper and a lower mold, the molding apparatus having processes comprising:
a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
a sand-filling step to fill the molding spaces with molding sand, and
a squeezing step to squeeze the molding sand in the molding spaces by means of the upper and the lower squeeze means,
characterized in that the core-setting apparatus to set a core in the lower mold while the upper and the lower mold and the match plate are separated from each other after molding the upper and the lower mold comprises:
a handling tool to handle the core, comprising a holding means to hold the core and a rotatable rod supporting the handling tool about its axis,
a carrier for transferring the handling tool, wherein the carrier supports the rotatable rod and is moved to or from the location above the lower mold, and
an actuator for lowering and lifting the cope flask together with the carrier and the handling tool which are located above the drag flask, wherein the actuator is mounted on the main body of the molding apparatus.
2. The core-setting apparatus of claim 1 , wherein it further comprises a pair of perpendicularly movable rails disposed at both outer side walls of the cope flask, wherein the rails can be moved perpendicularly together with the cope flask, and wherein the carrier and the handling tool can also be lowered and lifted together with the cope flask when the carrier and the handling tool are moved to a position above the drag flask by using the pair of perpendicularly movable rails.
3. A method for setting a core used for a molding apparatus for producing an upper and a lower mold, the molding apparatus having processes comprising:
a molding-space-defining step to define molding spaces, each space having a predetermined volume, in a cope and a drag flask by inserting an upper and a lower squeeze means into the cope and the drag flask respectively while a match plate is held between the cope and the drag flask,
a sand-filling step to fill the molding spaces with molding sand, and
a squeezing step to squeeze the molding sand in the molding spaces by means of the upper and the lower squeeze means,
characterized in that the method for setting the core in the lower mold while the upper and the lower mold and the match plate are separated from each other after molding the upper and the lower mold comprises:
a holding step to hold the core by operating a holding means after inserting the core in a handling tool,
a positioning step to position the core held by the handling tool so that the core faces the lower mold by moving a carrier supporting a rotatable rod of the handling tool to a position above the lower mold and by forwardly rotating the handling tool about the rotatable rod,
a lowering step to lower the core to just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, by forwardly moving an actuator for lowering or lifting the cope flask, wherein the actuator, which is mounted on the main body of the molding apparatus, can lower and lift the carrier, which is transferred to the position above the lower mold, and can lower and lift the handling tool together with the cope flask,
a setting step to set the core in the lower mold by releasing the core from the holding means at the lowered position,
a lifting step to lift the carrier and the handling tool by inversely moving the actuator for lowering and lifting the cope flask, and
a removing and rotating step to take the carrier from the position above the lower mold and to inversely rotate the handling tool.
4. The method for setting the core of claim 3 , further comprising:
a pressurizing step to pressurize the core by compressed air while setting the core after lowering the core to just in front of the surface of the lower mold or to a position where the core contacts the surface, which core is held by the handling tool, and releasing the core from the holding means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/260,618 US8132613B2 (en) | 2007-10-11 | 2008-10-29 | Core-setting apparatus used for a molding apparatus and a method for setting a core |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007265425 | 2007-10-11 | ||
JP2007-265425 | 2007-10-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/260,618 Continuation-In-Part US8132613B2 (en) | 2007-10-11 | 2008-10-29 | Core-setting apparatus used for a molding apparatus and a method for setting a core |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080185117A1 true US20080185117A1 (en) | 2008-08-07 |
Family
ID=39414299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/020,164 Abandoned US20080185117A1 (en) | 2007-10-11 | 2008-01-25 | A core-setting apparatus used for a molding apparatus and a method for setting a core |
Country Status (9)
Country | Link |
---|---|
US (1) | US20080185117A1 (en) |
EP (1) | EP2195130B1 (en) |
JP (1) | JP5057243B2 (en) |
CN (1) | CN101821035B (en) |
AT (1) | ATE548141T1 (en) |
BR (1) | BRPI0817213B1 (en) |
DK (1) | DK2195130T3 (en) |
PL (1) | PL2195130T3 (en) |
WO (1) | WO2009047920A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110496939A (en) * | 2019-08-14 | 2019-11-26 | 聊城新泺机械有限公司 | A kind of core box clasp mould mechanism of resin sand sand core |
CN113042692A (en) * | 2021-03-03 | 2021-06-29 | 李学亮 | Sand adding amount automatic regulating device for machining of core making machine |
US11103918B2 (en) | 2018-03-19 | 2021-08-31 | Honda Motor Co., Ltd. | Core blowing apparatus for robotic system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0820554B1 (en) * | 2007-11-28 | 2017-05-30 | Sintokogio Ltd | core clamping method and apparatus for a molding apparatus for the production of molds without a mold box |
CN102151801A (en) * | 2010-11-16 | 2011-08-17 | 苏州苏铸成套装备制造有限公司 | Moving-out and coring device |
CN102328033B (en) * | 2011-11-01 | 2013-06-05 | 江苏万工科技集团有限公司 | Locking mechanism for sand mould supporting plate |
CN103192030B (en) * | 2013-03-29 | 2015-07-15 | 常州南车汽车零部件有限公司 | Automatic cold iron feeding method and device for vertical split flask-less shoot-squeeze molding line |
CN104028704B (en) * | 2014-06-05 | 2016-05-11 | 遵义久志通用机械有限公司 | A kind of automation stack casting machine |
CN106734887B (en) * | 2016-11-15 | 2018-11-02 | 盛瑞传动股份有限公司 | A kind of anti-mould shift locating piece and positioning groove molding machine |
JP7396612B2 (en) * | 2019-04-22 | 2023-12-12 | パインパシフィック コーポレーション リミテッド | Casting mold manufacturing equipment |
JP7559658B2 (en) | 2021-04-08 | 2024-10-02 | 新東工業株式会社 | Molding unit, molding machine and molding method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1462867A (en) * | 1973-06-25 | 1977-01-26 | Dansk Ind Syndikat | System for making sand moulds with one or more cores |
US3910343A (en) * | 1974-08-16 | 1975-10-07 | Alexei Ivanovich Popov | Device for placing cores into removable-flask moulds |
GB1457845A (en) * | 1974-08-27 | 1976-12-08 | Kh Vnii Litejnogo Mash Liteino | Device for placing cores into removable-flask moulds |
US4590982A (en) * | 1984-12-11 | 1986-05-27 | Hunter William A | Automatic core setting machine |
US4848440A (en) * | 1984-12-21 | 1989-07-18 | Hunter Automated Machinery Corporation | Mold core setter with improved vacuum system |
JPS62168640A (en) * | 1986-01-21 | 1987-07-24 | Kooyoo:Kk | Method for setting core for rotary type molding machine |
DK37386A (en) * | 1986-01-24 | 1987-07-25 | Dansk Ind Syndikat | core setter |
JP3424231B2 (en) * | 1999-10-26 | 2003-07-07 | 新東工業株式会社 | Method of determining set of core to main type and apparatus therefor |
PL1695776T3 (en) * | 2003-12-18 | 2011-05-31 | Sintokogio Ltd | Method and device for forming flaskless cope and drag, and method of replacing matchplate |
CN100534666C (en) * | 2003-12-18 | 2009-09-02 | 新东工业株式会社 | Method and device for forming flaskless cope and drag, and method of replacing matchplate |
WO2005089983A1 (en) * | 2004-03-18 | 2005-09-29 | Sintokogio, Ltd. | Method of forming molding-flask-less, upper and lower molds and device therefor |
CN100589899C (en) * | 2005-06-13 | 2010-02-17 | 新东工业株式会社 | Apparatus for molding flask-free upper casting mold and lower casting mold |
-
2008
- 2008-01-25 US US12/020,164 patent/US20080185117A1/en not_active Abandoned
- 2008-01-29 CN CN2008801115043A patent/CN101821035B/en active Active
- 2008-01-29 EP EP08710815A patent/EP2195130B1/en active Active
- 2008-01-29 BR BRPI0817213A patent/BRPI0817213B1/en active IP Right Grant
- 2008-01-29 AT AT08710815T patent/ATE548141T1/en active
- 2008-01-29 DK DK08710815.5T patent/DK2195130T3/en active
- 2008-01-29 WO PCT/JP2008/051883 patent/WO2009047920A1/en active Application Filing
- 2008-01-29 PL PL08710815T patent/PL2195130T3/en unknown
- 2008-08-07 JP JP2008204664A patent/JP5057243B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11103918B2 (en) | 2018-03-19 | 2021-08-31 | Honda Motor Co., Ltd. | Core blowing apparatus for robotic system |
CN110496939A (en) * | 2019-08-14 | 2019-11-26 | 聊城新泺机械有限公司 | A kind of core box clasp mould mechanism of resin sand sand core |
CN113042692A (en) * | 2021-03-03 | 2021-06-29 | 李学亮 | Sand adding amount automatic regulating device for machining of core making machine |
Also Published As
Publication number | Publication date |
---|---|
PL2195130T3 (en) | 2012-06-29 |
BRPI0817213B1 (en) | 2015-12-08 |
ATE548141T1 (en) | 2012-03-15 |
DK2195130T3 (en) | 2012-05-07 |
BRPI0817213A2 (en) | 2015-03-10 |
WO2009047920A1 (en) | 2009-04-16 |
JP5057243B2 (en) | 2012-10-24 |
CN101821035A (en) | 2010-09-01 |
CN101821035B (en) | 2012-10-17 |
JP2009107013A (en) | 2009-05-21 |
EP2195130B1 (en) | 2012-03-07 |
EP2195130A1 (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2195130B1 (en) | A core-setting apparatus used for a molding apparatus and a method for setting a core | |
JP4756399B2 (en) | Core setting device, mold making machine and core setting method in mold making machine | |
JP4285577B2 (en) | Cast frame unit, upper and lower mold making equipment, and casting line | |
US8011415B2 (en) | Flaskless molding apparatus for an upper and a lower mold | |
US8230898B2 (en) | Core-setting method and apparatus for a molding apparatus for producing flaskless molds | |
JP4281742B2 (en) | Forming method of upper and lower molds without casting frame, its apparatus, and method of replacing match plate | |
US7654303B2 (en) | Method and apparatus for molding an upper and a lower mold having no flask | |
US8132613B2 (en) | Core-setting apparatus used for a molding apparatus and a method for setting a core | |
JP4502077B2 (en) | Molding machine | |
EP1486270B1 (en) | Molding and transporting apparatus and method therefor | |
JP4374619B2 (en) | Molding method for upper and lower molds without casting frames | |
JP5594593B2 (en) | Punched frame mold making apparatus and punched frame mold making method | |
US7757744B2 (en) | Method of changing a match plate in a flaskless molding apparatus for an upper mold and a lower mold | |
JP3966353B2 (en) | Cast frame unit for molding machine and molding method using the same | |
WO2013108449A1 (en) | Flaskless mold making device, flaskless mold making method, and sand receiving device | |
CN114310262A (en) | Full-automatic earpiece pin inserting equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SINTOKOGIO, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRATA, MINORU;SAKAGUCHI, KOICHI;REEL/FRAME:020769/0282 Effective date: 20080317 |