US20080178581A1 - Utilizing biomass - Google Patents
Utilizing biomass Download PDFInfo
- Publication number
- US20080178581A1 US20080178581A1 US12/016,161 US1616108A US2008178581A1 US 20080178581 A1 US20080178581 A1 US 20080178581A1 US 1616108 A US1616108 A US 1616108A US 2008178581 A1 US2008178581 A1 US 2008178581A1
- Authority
- US
- United States
- Prior art keywords
- biomass
- fuel
- biocatalyst
- bio
- exhaust emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 75
- 102000004190 Enzymes Human genes 0.000 claims abstract description 87
- 108090000790 Enzymes Proteins 0.000 claims abstract description 87
- 239000011942 biocatalyst Substances 0.000 claims abstract description 79
- 239000002551 biofuel Substances 0.000 claims abstract description 65
- 238000002485 combustion reaction Methods 0.000 claims abstract description 42
- 238000001914 filtration Methods 0.000 claims abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 239000006227 byproduct Substances 0.000 claims abstract description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003225 biodiesel Substances 0.000 claims abstract description 10
- 238000005507 spraying Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 103
- 239000007788 liquid Substances 0.000 claims description 56
- 239000000446 fuel Substances 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 19
- 238000000605 extraction Methods 0.000 claims description 18
- 239000000839 emulsion Substances 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000007921 spray Substances 0.000 claims description 6
- 231100000331 toxic Toxicity 0.000 claims description 4
- 230000002588 toxic effect Effects 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 8
- 238000000855 fermentation Methods 0.000 abstract description 5
- 230000004151 fermentation Effects 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 46
- 239000007789 gas Substances 0.000 description 45
- 239000003921 oil Substances 0.000 description 17
- 235000019198 oils Nutrition 0.000 description 17
- 239000000976 ink Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 244000215068 Acacia senegal Species 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- -1 photovoltaic panels Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/023—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/32—Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
- C10L1/328—Oil emulsions containing water or any other hydrophilic phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present disclosure relates to production and processing of bio-fuel.
- bio-fuel In particular, to systems and methods for utilization of natural resources for production of bio-fuel, and purification of gas emissions from internal combustion engines.
- a biomass is fermented to produce a bio-fuel and carbon.
- the bio-fuel can be at least ethanol and bio-diesel and the resulting carbon can be used to produce ink for printers.
- a biocatalyst can be extracted from the tree matter prior to fermentation.
- a component of the biocatalyst is used to cleanse internal combustion engine exhaust emissions by spraying the biocatalyst onto an exhaust emission gas. The sprayed exhaust emission gas can be filtered and the filtration by-product can be collected.
- FIG. 1 illustrates a flow diagram for utilizing a biomass.
- FIG. 2 illustrates a flow diagram for utilizing a biomass.
- FIG. 3 illustrates a component diagram of a system for utilizing a biomass.
- FIG. 4 illustrates a component diagram of a system for utilizing a biomass.
- FIG. 5 illustrates a flow diagram for reducing exhaust emissions.
- FIG. 6 illustrates a flow diagram for reducing exhaust emissions.
- a method for maximizing utilization of a biomass is described.
- a biomass is plant or animal matter, either alive or previously alive.
- the method maximizes the benefit derived from a biomass natural resource such as tree matter or a biomass such as copy or recycled paper. This benefit is derived from processing a part of the biomass previously considered to be waste or excess into usable products.
- glycosylation is a process or result of an addition of saccharides to proteins and lipids. It is an enzyme-directed site-specific process and does not rely on nor use chemicals.
- Bio-diesel refers to a diesel-equivalent processed fuel consisting of short chain alkyl (methyl or ethyl) esters, made by transesterification of vegetable oils or animal fats, which can be used (alone, or blended with conventional diesel fuel) in unmodified diesel-engine vehicles.
- the bio-fuel can be further processed to create water emulsion fuel.
- Water emulsion fuel is a mixture of a fuel and water.
- moisture in the water emulsion fuel is abruptly heated up and sets off tiny explosions, causing the oil around the water to diffuse.
- the area in contact with combustion air increases, allowing improved combustion efficiency.
- Water emulsion fuel has not developed its popularity in warmer regions because, unlike Northern European countries that are located in cold regions that are currently using water emulsion fuel, there has been no urgent concern for fuel cost.
- a quick diffusion of water emulsion fuel is expected, as demonstrated by the fact that some major private power generator makers have begun the sale of prototype private power generators that are compatible with water emulsion fuel.
- FIG. 1 illustrates process flow operations 100 for utilizing a biomass.
- the process flow operations 100 are, particularly, for processing a tree matter biomass.
- the process flow operations begin at initialization block 102 where a biocatalyst is extracted from the tree matter.
- the biocatalyst tree oil can be extracted from tree matter such as thinned timber, tree bark, and branches collected as the result of forest maintenance, which are currently being disposed of as waste material.
- the biocatalyst can be extracted by steam distillation, extraction or either means, or compounds prepared by synthesis.
- a biocatalyst and bio-fuel can be produced from the usage and processing of the tree matter.
- the extraction of a biocatalyst liquid makes effective use of thinned timber leaving no part of a tree as waste, thus protecting forests by maximizing the use of trees.
- the tree matter can further be processed to produce biomass fuel which in turn can help reduce the carbon dioxide emissions, thus adding to the overall efficiency of the process. While the present disclosure is directed to the use of excess tree matter or recycled paper, it could readily use other vegetation or animal matter. Control transfers to operation 104 .
- process flow operation 104 the tree matter, after biocatalyst extraction, is ground into a finer consistency, such as small pieces or ground to a powder. Control transfers to operation 106 .
- process flow operation 106 the ground tree matter is put in a tank or “bio-reactor” with water and an enzyme to ferment, a process know as bio-refinement.
- bio-refining makes use of closed-system reactors (heat and catalysts) or fermentors (fermentation systems using heat and enzymes).
- the enzyme utilized is made by extracting a protein from one of a variety of mushrooms, but there are potentially other enzymes that may induce the same glycosylation process. Control transfers to operation 108 .
- the fermented biomass is processed or separated into bio-fuel and carbon.
- the carbon is of a nature suitable for ink and is used to make a cellulosic alternative ink for inkjet toner in process block 110 .
- a carcinogen namely, aldehyde
- toners that are made from petroleum and coals can be carcinogenic. This hazardous issue is noted on the official websites of various copier and fax manufacturers. These copier and fax manufacturers are well aware of the hazardous nature of the toners made from petroleum and coals and are eager to utilize cellulosic alternatives.
- Carbon inks are commonly made from lampblack or soot and gum arabic. Gum arabic keeps the carbon particles in suspension and adhered to the paper. The carbon particles do not fade over time even when in sunlight or bleached.
- One benefit of carbon ink is that it is not harmful to the paper and is chemically stable.
- carbon inks made from carbon nano-tubes have been successfully created. They are similar in composition to the traditional inks in that they use a polymer to suspend the carbon nano-tubes. These inks can be used in inkjet printers and produce electrically conductive patterns. Control transfers to operation 112 .
- a polymer is produced from the fermented biomass.
- the polymer produced is a cellulose-based plastic or synthetic resin material. Control transfers to operation 114 .
- the bio-fuel is combusted in an internal combustion engine or may be further processed to create water emulsion fuel. Control transfers to operation 116 .
- the biocatalyst liquid is sprayed on the exhaust gas from the internal combustion engine in a vessel.
- a component of the biocatalyst adheres to exhaust emission gas and is used to cleanse the emissions produced by an internal combustion engine. Control transfers to operation 118 .
- the biocatalyst liquid has been sprayed onto the exhaust gas from the internal combustion engine in the vessel for more effectively capturing the exhaust gas emissions with a filter.
- the biocatalyst adheres to the particles of gas, expands and can be filtered by a particle filter (e.g., a ceramic filter). This filter drastically reduces the emission of the exhaust gas.
- the filter cleans effectively and is environmentally friendly. Control transfers to operation 120
- the biocatalyst sprayed on the exhaust emissions is collected from the filter.
- products such as carbon nano-tubes, lithium batteries, hydrogen batteries, tire materials, photovoltaic panels, fuel cell electrodes, etc. can be produced from the captured exhaust gas obtained through the filtering process.
- a multiple-fold approach of processing a biomass is utilized.
- a purification agent i.e., biocatalyst liquid
- an energy source i.e., bio-fuel
- carbon extracted from used biocatalyst liquid may be used to manufacture or produce secondary products.
- the system and method permits: (i) the efficient extraction from biomass resources of: (a) biocatalyst liquid; (b) bio-diesel; and (c) a polymer, (ii) the reduction of harmful exhaust gas emission by: (a) using the biocatalyst liquid for efficient filtering of exhaust gas; and (b) mixing the bio-diesel with heavy diesel to create hybrid diesel; (iii) the production of a polymer, such as lignin, that is used in many industries to make products ranging from home appliances to auto parts; (iv) the production of a non-carcinogenic cellulosic ink; and (v) the production of commercially valuable nano materials by recycling the captured exhaust gas.
- a polymer such as lignin
- FIG. 2 illustrates process flow operations 200 for utilizing a biomass.
- the process flow operations 200 are, particularly, for processing a paper biomass.
- the process flow operations begin at initialization block 210 where the paper is ground into a pulp. Control transfers to operation 220 .
- process flow operation 220 the ground up or pulped paper is put in a tank with water and an enzyme to ferment.
- the enzyme utilized is different from that used for tree matter but is still extracted from one of a variety of mushrooms.
- the enzyme is extracted from a protein produced from the mushrooms, but there are potentially other enzymes that may induce the same glucosylation process. Control transfers to operation 230 .
- the fermented paper is processed or separated into bio-fuel and carbon.
- the carbon such as that resulting from fermented tree matter, is used to make ink for printers such as inkjet toner in process block 240 and the bio-fuel is combusted in an internal combustion engine or may be further processed to create water emulsion fuel in operation 250 , thus concluding the process flow operations 200 .
- FIG. 3 illustrates a component diagram of a system for processing fuel and fuel combustion emissions.
- a manufacturer 304 receives a natural resource supply from a natural resource provider 302 .
- the natural resources can at least be tree matter. Natural resources received by a manufacturer can include vegetation material as well as non-renewable resources. For example, trees, such as timber or bamboo, can be provided to the manufacturer 304 .
- the manufacturer 304 can in turn use the natural resource received from the natural resource provider 302 to produce both bio-purifiers fluids and bio-fuels. As discussed below, one or more mechanisms can be utilized to produce bio-fuel and bio-purifier fluids. Once the manufacturer has produced bio-fuel, the manufacturer 304 can sell such bio-fuel to consumers 306 , 308 and 310 .
- Consumers 306 , 308 and 310 can for example be transportation companies, factories or any other company or entity that utilizes bio-fuel to combust such bio-fuel in a internal combustion engine. Furthermore, manufacturer 304 can also supply and sell bio-purifier fluids to consumers 306 , 308 and 310 .
- FIG. 4 illustrates a component diagram of a system for processing fuel and fuel combustion emissions according to another embodiment.
- timber trees 402 can be utilized by a manufacturer 304 to produce a biocatalyst liquid 404 .
- Timber trees 402 can be processed to extract tree oil from chipped timber obtained from the timber trees 402 .
- the biocatalyst liquid 404 can then be sold to multiple biocatalyst liquid consumers.
- Biocatalyst liquid can be utilized by consumers to spray the biocatalyst liquid onto the exhaust gas of internal combustion engines operated by biocatalyst liquid consumers.
- the gas particles can attach to the catalyst oil and expand.
- the expanded particles can be collected as a combustion by-product in the form of carbon.
- the manufacturer 304 can sell to or supply various consumers, such as biocatalyst liquid consumers 410 and biocatalyst liquid and bio-fuel consumer 412 with the biocatalyst liquid 404 .
- a biocatalyst system can be installed inside the exhaust pipe of the internal combustion engine (e.g., ship's diesel engine). As the biocatalyst liquid is sprayed onto the exhaust emission, the biocatalyst liquid captures particle organic matter emissions (e.g., NOx and SOx), and makes it significantly more efficient in filtering the emission. The gas can then be purified by a ceramic filter.
- the internal combustion engine e.g., ship's diesel engine.
- biocatalyst liquid 404 is produced from the extraction of tree oil
- timber resources that are left from such extraction can be collected as biomass 406 .
- the remainder of the same tree can be further treated and processed to create bio-diesel in a cost effective manner due to the prior treatment of the same trees for extraction of the biocatalyst liquid.
- biomass 406 is disposed of as organic waste
- the methods and systems disclosed herein utilize biomass 406 to further produce bio-fuel 408 .
- Manufacturer 404 can further sell or supply the bio-fuel 408 to one or more consumers.
- the manufacturer 404 can provide the bio-fuel 408 to a consumer of the biocatalyst liquid.
- biocatalyst liquid and bio-fuel consumer 412 can utilize both products provided by the manufacturer 304 to efficiently combust bio-fuel in an environmentally safe manner.
- bio-fuel consumer 414 can also consume bio-fuel and thereby produce toxic emissions.
- the utilization of bio-fuel by consumers who operate internal combustion engines will permit the emissions of such bio-engines to contain a lesser percentage of carbon dioxide, thereby making such emissions more environmentally friendly.
- consumers who further treat such emissions with the biocatalyst liquid as produced by manufacturer 304 can further capture particles of carbon from such emissions, thereby reducing the impact to the environment by the emissions gases.
- the emissions gas is sprayed with the biocatalyst liquid which adheres to the particles of gas.
- the particles of gas can then expand and be filtered by a particle filter (e.g., a ceramic filter).
- the filtered particles can then be collected as filtration by-product 416 .
- the filtration by-product 416 from various biocatalyst liquid consumers can be utilized to recycle and produce additional materials.
- new material such as carbon nano tube, lithium battery, hydrogen battery, tire material, photovoltaic panel, fuel cell electrode, etc. can be produced from the captured exhaust gas obtained through the filtering process.
- These nano materials can be sold for profit of the consumer and operator of the internal combustion engine.
- the bio-fuel consumer 414 and/or the biocatalyst liquid and bio-fuel consumer 412 can mix the bio-fuel produced and supplied by the manufacturer 304 with regular heavy oil. This mix can yield a high quality fuel that when combusted, contains a reduced percentage of carbon dioxide emissions.
- the bio-fuel can be used directly without mixing with any heavy oils or any other alternative fuels and be combusted for example in a fuel oil boiler.
- the biomass 406 can be used directly as the source of fuel without the necessity of transforming the biomass 406 into bio-fuel 408 such that the biomass can be for example combusted at a biomass boiler.
- FIG. 5 illustrates a flow diagram for processing fuel and fuel combustion emission filtering according to one embodiment.
- a biocatalyst liquid is produced from extracted tree oil from tree matter. Once the tree oil is extracted from the trees, a biomass of dried, chipped timber or ground residue remains after the extraction of the biocatalyst liquid.
- Process 500 continues at process block 504 .
- the biomass can be processed to produce bio-fuel.
- Process 500 continues at process block 506 .
- the biocatalyst liquid is provided to at least one consumer.
- the at least one consumer can be for example a shipping company, a transportation company, and/or any other entity that can utilize a biocatalyst liquid to treat emissions from a internal combustion engine. Such emissions can be treated by spraying a biocatalyst liquid onto the emission from the internal combustion engine and further filtrate the sprayed emissions so as to capture the sprayed particles of emitted gas on the filter.
- Process 500 continues at process block 508 .
- the bio-fuel is provided to the at least one consumer so that the consumer can combust the bio-fuel in the internal combustion engine to reduce or further reduce toxic emissions from the internal combustion engine.
- FIG. 6 illustrates a flow diagram for processing fuel and fuel combustion emission filtering according to another embodiment.
- a biocatalyst liquid is sprayed onto exhaust emission gas produced by an internal combustion engine operated by a consumer.
- the biocatalyst liquid is produced by extracting tree oil from tree matter.
- Process 600 continues at process block 604 .
- the sprayed exhaust emission gas is filtrated.
- Process 600 continues at process block 604 .
- the bio-fuel produced from the biomass residue that remains after the extraction of tree oil can be combusted in an internal combustion engine.
- a method for utilizing a biomass comprises fermenting a biomass, that can be paper or tree matter, and processing the fermented biomass to produce a bio-fuel and carbon.
- the bio-fuel can be at least ethanol and bio-diesel and resulting carbon is used to produce ink.
- the bio-fuel can be used to produce water emulsion fuel.
- the method further comprises extracting a biocatalyst from the tree matter prior to fermentation.
- the biocatalyst is used to spray onto exhaust emission gas produced by an internal combustion engine.
- the sprayed exhaust emission gas can be filtered and the filtration by-product can be collected.
- a polymer can also be produced from the fermented tree matter.
- the method comprises grinding a biomass, that can be paper or tree matter, fermenting the biomass and processing the fermented biomass to produce bio-fuel and carbon.
- the bio-fuel can be at least ethanol and bio-diesel and resulting carbon is used to produce ink.
- the bio-fuel can be used to produce water emulsion fuel.
- the method further comprises extracting a biocatalyst from the tree matter prior to fermentation.
- the biocatalyst is used to spray onto exhaust emission gas produced by an internal combustion engine.
- the sprayed exhaust emission gas can be filtered and the filtration by-product can be collected.
- a polymer can also be produced from the fermented tree matter.
- the method comprises producing a biocatalyst liquid by extracting an oil from tree matter. A biomass residue remains after the extraction of the biocatalyst liquid, which is processed to produce a bio-fuel.
- the biocatalyst liquid is sprayed onto exhaust emission gas produced by an internal combustion engine and the sprayed exhaust emission gas is filtered. A filtration by-product from the filtering of the exhaust emission gas is collected.
- the method comprises spraying a biocatalyst liquid onto exhaust emission gas produced by an internal combustion engine.
- the biocatalyst liquid is produced by extracting an oil from tree matter.
- the sprayed exhaust emission gas is filtered, a bio-fuel produced from a biomass residue that remains after the extraction of the tree oil is combusted and the filtration by-product from the filtering of the exhaust emission gas is collected.
- a method of doing business for utilizing a biomass comprises producing a biocatalyst liquid by extracting tree oil from tree matter.
- a biomass residue remains after the extraction of the biocatalyst liquid and is further processed to produce a bio-fuel.
- the biocatalyst liquid is provided to at least one consumer and is utilized by the at least one consumer to spray the biocatalyst liquid onto exhaust emission gas.
- the exhaust gas emissions are filtered where the exhaust emission gas being produced by an internal combustion engine operated by the at least one consumer.
- a bio-fuel is provided to the at least one consumer such that the at least one consumer can combust the bio-fuel in the internal combustion engine operated by the at least one consumer to reduce toxic emissions.
- a filtration by-product from filtering the exhaust emission gas is collected.
- the method comprises spraying a biocatalyst liquid onto exhaust emission gas produced by an internal combustion engine operated by a consumer, where biocatalyst liquid is produced by extracting tree oil from tree matter.
- the sprayed exhaust emission gas is filtered and a bio-fuel produced from a biomass residue that remains after the extraction of the tree oil is produced.
- a filtration by-product from the filtering of the exhaust emission gas is collected.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Mycology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Improving the beneficial use of waste material from a vegetation source, a biomass is fermented to produce a bio-fuel and carbon. The bio-fuel can be at least ethanol and bio-diesel and the resulting carbon can used to produce ink for printers. When the biomass is tree matter, a biocatalyst can extracted from the tree matter prior to fermentation. A component of the biocatalyst is used to cleanse internal combustion engine exhaust emissions by spraying the biocatalyst onto a exhaust emission gas. The sprayed exhaust emission gas can be filtered and the filtration by-product can be collected.
Description
- This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/885,862, filed Jan. 19, 2007, the contents of which are incorporated by reference herein in its entirety.
- 1. Field
- The present disclosure relates to production and processing of bio-fuel. In particular, to systems and methods for utilization of natural resources for production of bio-fuel, and purification of gas emissions from internal combustion engines.
- 2. General Background
- It is recognized that many waste products generated by human society can, ultimately, be refashioned into usable forms. If this transformation could be achieved in an energy-efficient manner, and on a large enough scale, then there could be enormous benefits to society.
- The beneficial use of waste material from a vegetation source is improved. A biomass is fermented to produce a bio-fuel and carbon. The bio-fuel can be at least ethanol and bio-diesel and the resulting carbon can be used to produce ink for printers. When the biomass is tree matter, a biocatalyst can be extracted from the tree matter prior to fermentation. A component of the biocatalyst is used to cleanse internal combustion engine exhaust emissions by spraying the biocatalyst onto an exhaust emission gas. The sprayed exhaust emission gas can be filtered and the filtration by-product can be collected.
- While the specification concludes with claims defining the features of the present disclosure that are regarded as novel, it is believed that the present disclosure will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward:
-
FIG. 1 illustrates a flow diagram for utilizing a biomass. -
FIG. 2 illustrates a flow diagram for utilizing a biomass. -
FIG. 3 illustrates a component diagram of a system for utilizing a biomass. -
FIG. 4 illustrates a component diagram of a system for utilizing a biomass. -
FIG. 5 illustrates a flow diagram for reducing exhaust emissions. -
FIG. 6 illustrates a flow diagram for reducing exhaust emissions. - A method for maximizing utilization of a biomass is described. A biomass is plant or animal matter, either alive or previously alive. The method maximizes the benefit derived from a biomass natural resource such as tree matter or a biomass such as copy or recycled paper. This benefit is derived from processing a part of the biomass previously considered to be waste or excess into usable products.
- While the present disclosure is directed to the use of excess or waste products, it is not intended to be limited to their use. The present disclosure can readily accommodate non-waste biomass, such as a biomass cultivated for an intended use of the teachings herein.
- The process relies on glycosylation. Glycosylation is a process or result of an addition of saccharides to proteins and lipids. It is an enzyme-directed site-specific process and does not rely on nor use chemicals.
- One feature of the present disclosure is the production of a bio-fuel. The bio-fuel described herein includes ethanol or any other alcohol and bio-diesel or any derivative thereof. Bio-diesel refers to a diesel-equivalent processed fuel consisting of short chain alkyl (methyl or ethyl) esters, made by transesterification of vegetable oils or animal fats, which can be used (alone, or blended with conventional diesel fuel) in unmodified diesel-engine vehicles. The bio-fuel can be further processed to create water emulsion fuel.
- Water emulsion fuel is a mixture of a fuel and water. When water emulsion fuel is sprayed inside a blazing boiler furnace, moisture in the water emulsion fuel is abruptly heated up and sets off tiny explosions, causing the oil around the water to diffuse. As a result, the area in contact with combustion air increases, allowing improved combustion efficiency.
- Water emulsion fuel has not developed its popularity in warmer regions because, unlike Northern European countries that are located in cold regions that are currently using water emulsion fuel, there has been no urgent concern for fuel cost. However, with the recent sky-rocketing oil prices, a quick diffusion of water emulsion fuel is expected, as demonstrated by the fact that some major private power generator makers have begun the sale of prototype private power generators that are compatible with water emulsion fuel.
-
FIG. 1 illustratesprocess flow operations 100 for utilizing a biomass. Theprocess flow operations 100 are, particularly, for processing a tree matter biomass. The process flow operations begin atinitialization block 102 where a biocatalyst is extracted from the tree matter. The biocatalyst tree oil can be extracted from tree matter such as thinned timber, tree bark, and branches collected as the result of forest maintenance, which are currently being disposed of as waste material. The biocatalyst can be extracted by steam distillation, extraction or either means, or compounds prepared by synthesis. A biocatalyst and bio-fuel can be produced from the usage and processing of the tree matter. - As such, the extraction of a biocatalyst liquid makes effective use of thinned timber leaving no part of a tree as waste, thus protecting forests by maximizing the use of trees. After extraction of the tree oil, the tree matter can further be processed to produce biomass fuel which in turn can help reduce the carbon dioxide emissions, thus adding to the overall efficiency of the process. While the present disclosure is directed to the use of excess tree matter or recycled paper, it could readily use other vegetation or animal matter. Control transfers to
operation 104. - In
process flow operation 104, the tree matter, after biocatalyst extraction, is ground into a finer consistency, such as small pieces or ground to a powder. Control transfers tooperation 106. - In
process flow operation 106, the ground tree matter is put in a tank or “bio-reactor” with water and an enzyme to ferment, a process know as bio-refinement. Most bio-refining makes use of closed-system reactors (heat and catalysts) or fermentors (fermentation systems using heat and enzymes). The enzyme utilized is made by extracting a protein from one of a variety of mushrooms, but there are potentially other enzymes that may induce the same glycosylation process. Control transfers tooperation 108. - In
process flow operation 108, the fermented biomass is processed or separated into bio-fuel and carbon. The carbon is of a nature suitable for ink and is used to make a cellulosic alternative ink for inkjet toner inprocess block 110. Unofficially, as petroleum and coals contain a carcinogen, namely, aldehyde, toners that are made from petroleum and coals can be carcinogenic. This hazardous issue is noted on the official websites of various copier and fax manufacturers. These copier and fax manufacturers are well aware of the hazardous nature of the toners made from petroleum and coals and are eager to utilize cellulosic alternatives. - Carbon inks are commonly made from lampblack or soot and gum arabic. Gum arabic keeps the carbon particles in suspension and adhered to the paper. The carbon particles do not fade over time even when in sunlight or bleached. One benefit of carbon ink is that it is not harmful to the paper and is chemically stable. Recently, carbon inks made from carbon nano-tubes have been successfully created. They are similar in composition to the traditional inks in that they use a polymer to suspend the carbon nano-tubes. These inks can be used in inkjet printers and produce electrically conductive patterns. Control transfers to
operation 112. - In
process block 112, a polymer is produced from the fermented biomass. The polymer produced is a cellulose-based plastic or synthetic resin material. Control transfers tooperation 114. - In
process block 114, the bio-fuel is combusted in an internal combustion engine or may be further processed to create water emulsion fuel. Control transfers tooperation 116. - In
process block 116, the biocatalyst liquid is sprayed on the exhaust gas from the internal combustion engine in a vessel. A component of the biocatalyst adheres to exhaust emission gas and is used to cleanse the emissions produced by an internal combustion engine. Control transfers tooperation 118. - In
process block 118, the biocatalyst liquid has been sprayed onto the exhaust gas from the internal combustion engine in the vessel for more effectively capturing the exhaust gas emissions with a filter. The biocatalyst adheres to the particles of gas, expands and can be filtered by a particle filter (e.g., a ceramic filter). This filter drastically reduces the emission of the exhaust gas. The filter cleans effectively and is environmentally friendly. Control transfers tooperation 120 - In
process block 120, the biocatalyst sprayed on the exhaust emissions is collected from the filter. By treating and processing the captured exhaust gas from the filter, products such as carbon nano-tubes, lithium batteries, hydrogen batteries, tire materials, photovoltaic panels, fuel cell electrodes, etc. can be produced from the captured exhaust gas obtained through the filtering process. - As such, a multiple-fold approach of processing a biomass is utilized. First, a purification agent (i.e., biocatalyst liquid) is produced, second, an energy source (i.e., bio-fuel) is produced from effectively processing the tree matter and additional usable products, a polymer and an ink for printers.
- In addition, carbon extracted from used biocatalyst liquid may be used to manufacture or produce secondary products.
- Since the method disclosed herein not only purifies the exhaust gas from internal combustion engines and reduces the emission of carbon dioxide, but also produces a new material and a new energy source in the course of process, there is no loss for consumers (e.g., operators of internal combustion engines such as shipping companies, etc.).
- The system and method permits: (i) the efficient extraction from biomass resources of: (a) biocatalyst liquid; (b) bio-diesel; and (c) a polymer, (ii) the reduction of harmful exhaust gas emission by: (a) using the biocatalyst liquid for efficient filtering of exhaust gas; and (b) mixing the bio-diesel with heavy diesel to create hybrid diesel; (iii) the production of a polymer, such as lignin, that is used in many industries to make products ranging from home appliances to auto parts; (iv) the production of a non-carcinogenic cellulosic ink; and (v) the production of commercially valuable nano materials by recycling the captured exhaust gas.
-
FIG. 2 illustratesprocess flow operations 200 for utilizing a biomass. The process flowoperations 200 are, particularly, for processing a paper biomass. The process flow operations begin atinitialization block 210 where the paper is ground into a pulp. Control transfers tooperation 220. - In
process flow operation 220, the ground up or pulped paper is put in a tank with water and an enzyme to ferment. The enzyme utilized is different from that used for tree matter but is still extracted from one of a variety of mushrooms. The enzyme is extracted from a protein produced from the mushrooms, but there are potentially other enzymes that may induce the same glucosylation process. Control transfers tooperation 230. - In
process flow operation 230, the fermented paper is processed or separated into bio-fuel and carbon. The carbon, such as that resulting from fermented tree matter, is used to make ink for printers such as inkjet toner inprocess block 240 and the bio-fuel is combusted in an internal combustion engine or may be further processed to create water emulsion fuel inoperation 250, thus concluding theprocess flow operations 200. -
FIG. 3 illustrates a component diagram of a system for processing fuel and fuel combustion emissions. Amanufacturer 304 receives a natural resource supply from anatural resource provider 302. The natural resources can at least be tree matter. Natural resources received by a manufacturer can include vegetation material as well as non-renewable resources. For example, trees, such as timber or bamboo, can be provided to themanufacturer 304. Themanufacturer 304 can in turn use the natural resource received from thenatural resource provider 302 to produce both bio-purifiers fluids and bio-fuels. As discussed below, one or more mechanisms can be utilized to produce bio-fuel and bio-purifier fluids. Once the manufacturer has produced bio-fuel, themanufacturer 304 can sell such bio-fuel toconsumers Consumers manufacturer 304 can also supply and sell bio-purifier fluids toconsumers -
FIG. 4 illustrates a component diagram of a system for processing fuel and fuel combustion emissions according to another embodiment. In one embodiment,timber trees 402 can be utilized by amanufacturer 304 to produce abiocatalyst liquid 404.Timber trees 402 can be processed to extract tree oil from chipped timber obtained from thetimber trees 402. Thebiocatalyst liquid 404 can then be sold to multiple biocatalyst liquid consumers. - Biocatalyst liquid can be utilized by consumers to spray the biocatalyst liquid onto the exhaust gas of internal combustion engines operated by biocatalyst liquid consumers. As the exhaust gas is emitted from the internal combustion engine, the gas particles can attach to the catalyst oil and expand. Using one or more filters, the expanded particles can be collected as a combustion by-product in the form of carbon. In one embodiment, the
manufacturer 304 can sell to or supply various consumers, such as biocatalystliquid consumers 410 and biocatalyst liquid andbio-fuel consumer 412 with thebiocatalyst liquid 404. - A biocatalyst system can be installed inside the exhaust pipe of the internal combustion engine (e.g., ship's diesel engine). As the biocatalyst liquid is sprayed onto the exhaust emission, the biocatalyst liquid captures particle organic matter emissions (e.g., NOx and SOx), and makes it significantly more efficient in filtering the emission. The gas can then be purified by a ceramic filter.
- Once the
biocatalyst liquid 404 is produced from the extraction of tree oil, timber resources that are left from such extraction can be collected asbiomass 406. As such, the remainder of the same tree can be further treated and processed to create bio-diesel in a cost effective manner due to the prior treatment of the same trees for extraction of the biocatalyst liquid. - While in
conventional methods biomass 406 is disposed of as organic waste, the methods and systems disclosed herein utilizebiomass 406 to further producebio-fuel 408.Manufacturer 404 can further sell or supply thebio-fuel 408 to one or more consumers. In one example, themanufacturer 404 can provide the bio-fuel 408 to a consumer of the biocatalyst liquid. As such, biocatalyst liquid andbio-fuel consumer 412 can utilize both products provided by themanufacturer 304 to efficiently combust bio-fuel in an environmentally safe manner. - Furthermore,
bio-fuel consumer 414 can also consume bio-fuel and thereby produce toxic emissions. In general, the utilization of bio-fuel by consumers who operate internal combustion engines will permit the emissions of such bio-engines to contain a lesser percentage of carbon dioxide, thereby making such emissions more environmentally friendly. As previously mentioned, consumers who further treat such emissions with the biocatalyst liquid as produced bymanufacturer 304 can further capture particles of carbon from such emissions, thereby reducing the impact to the environment by the emissions gases. - In one example, the emissions gas is sprayed with the biocatalyst liquid which adheres to the particles of gas. The particles of gas can then expand and be filtered by a particle filter (e.g., a ceramic filter). The filtered particles can then be collected as filtration by-
product 416. - Finally, the filtration by-
product 416 from various biocatalyst liquid consumers can be utilized to recycle and produce additional materials. By treating and processing the captured exhaust gas from the filter, new material, such as carbon nano tube, lithium battery, hydrogen battery, tire material, photovoltaic panel, fuel cell electrode, etc. can be produced from the captured exhaust gas obtained through the filtering process. These nano materials can be sold for profit of the consumer and operator of the internal combustion engine. - In one embodiment, the
bio-fuel consumer 414 and/or the biocatalyst liquid andbio-fuel consumer 412 can mix the bio-fuel produced and supplied by themanufacturer 304 with regular heavy oil. This mix can yield a high quality fuel that when combusted, contains a reduced percentage of carbon dioxide emissions. In another embodiment, the bio-fuel can be used directly without mixing with any heavy oils or any other alternative fuels and be combusted for example in a fuel oil boiler. In yet another example, thebiomass 406 can be used directly as the source of fuel without the necessity of transforming thebiomass 406 intobio-fuel 408 such that the biomass can be for example combusted at a biomass boiler. -
FIG. 5 illustrates a flow diagram for processing fuel and fuel combustion emission filtering according to one embodiment. Atprocess block 502, a biocatalyst liquid is produced from extracted tree oil from tree matter. Once the tree oil is extracted from the trees, a biomass of dried, chipped timber or ground residue remains after the extraction of the biocatalyst liquid. Process 500 continues atprocess block 504. - At
process block 504, the biomass can be processed to produce bio-fuel. Process 500 continues atprocess block 506. Atprocess block 506, the biocatalyst liquid is provided to at least one consumer. As previously mentioned, the at least one consumer can be for example a shipping company, a transportation company, and/or any other entity that can utilize a biocatalyst liquid to treat emissions from a internal combustion engine. Such emissions can be treated by spraying a biocatalyst liquid onto the emission from the internal combustion engine and further filtrate the sprayed emissions so as to capture the sprayed particles of emitted gas on the filter. Process 500 continues atprocess block 508. Atprocess block 508, the bio-fuel is provided to the at least one consumer so that the consumer can combust the bio-fuel in the internal combustion engine to reduce or further reduce toxic emissions from the internal combustion engine. -
FIG. 6 illustrates a flow diagram for processing fuel and fuel combustion emission filtering according to another embodiment. Atprocess block 602, a biocatalyst liquid is sprayed onto exhaust emission gas produced by an internal combustion engine operated by a consumer. The biocatalyst liquid is produced by extracting tree oil from tree matter. Process 600 continues atprocess block 604. Atprocess block 604, the sprayed exhaust emission gas is filtrated. Process 600 continues atprocess block 604. Atprocess block 606, the bio-fuel produced from the biomass residue that remains after the extraction of tree oil can be combusted in an internal combustion engine. - A method for utilizing a biomass is described. The method comprises fermenting a biomass, that can be paper or tree matter, and processing the fermented biomass to produce a bio-fuel and carbon. The bio-fuel can be at least ethanol and bio-diesel and resulting carbon is used to produce ink. The bio-fuel can be used to produce water emulsion fuel.
- When the biomass is tree matter, the method further comprises extracting a biocatalyst from the tree matter prior to fermentation. The biocatalyst is used to spray onto exhaust emission gas produced by an internal combustion engine. The sprayed exhaust emission gas can be filtered and the filtration by-product can be collected. A polymer can also be produced from the fermented tree matter.
- Another method for utilizing a biomass is also described. The method comprises grinding a biomass, that can be paper or tree matter, fermenting the biomass and processing the fermented biomass to produce bio-fuel and carbon. The bio-fuel can be at least ethanol and bio-diesel and resulting carbon is used to produce ink. The bio-fuel can be used to produce water emulsion fuel.
- When the biomass is tree matter, the method further comprises extracting a biocatalyst from the tree matter prior to fermentation. The biocatalyst is used to spray onto exhaust emission gas produced by an internal combustion engine. The sprayed exhaust emission gas can be filtered and the filtration by-product can be collected. A polymer can also be produced from the fermented tree matter.
- Another method for reducing exhaust emissions is described. The method comprises producing a biocatalyst liquid by extracting an oil from tree matter. A biomass residue remains after the extraction of the biocatalyst liquid, which is processed to produce a bio-fuel. The biocatalyst liquid is sprayed onto exhaust emission gas produced by an internal combustion engine and the sprayed exhaust emission gas is filtered. A filtration by-product from the filtering of the exhaust emission gas is collected.
- Another method for reducing exhaust emissions is described. The method comprises spraying a biocatalyst liquid onto exhaust emission gas produced by an internal combustion engine. The biocatalyst liquid is produced by extracting an oil from tree matter. The sprayed exhaust emission gas is filtered, a bio-fuel produced from a biomass residue that remains after the extraction of the tree oil is combusted and the filtration by-product from the filtering of the exhaust emission gas is collected.
- A method of doing business for utilizing a biomass is described. The method comprises producing a biocatalyst liquid by extracting tree oil from tree matter. A biomass residue remains after the extraction of the biocatalyst liquid and is further processed to produce a bio-fuel. The biocatalyst liquid is provided to at least one consumer and is utilized by the at least one consumer to spray the biocatalyst liquid onto exhaust emission gas. The exhaust gas emissions are filtered where the exhaust emission gas being produced by an internal combustion engine operated by the at least one consumer. A bio-fuel is provided to the at least one consumer such that the at least one consumer can combust the bio-fuel in the internal combustion engine operated by the at least one consumer to reduce toxic emissions. A filtration by-product from filtering the exhaust emission gas is collected.
- Another method of doing business for utilizing a biomass is described. The method comprises spraying a biocatalyst liquid onto exhaust emission gas produced by an internal combustion engine operated by a consumer, where biocatalyst liquid is produced by extracting tree oil from tree matter. The sprayed exhaust emission gas is filtered and a bio-fuel produced from a biomass residue that remains after the extraction of the tree oil is produced. A filtration by-product from the filtering of the exhaust emission gas is collected.
- Although certain illustrative embodiments and methods have been disclosed herein, it can be apparent form the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods can be made without departing from the true spirit and scope of the art disclosed. Many other examples of the art disclosed exist, each differing from others in matters of detail only. Accordingly, it is intended that the art disclosed shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.
Claims (29)
1. A method for utilizing a biomass, the method comprising:
fermenting a biomass;
processing the fermented biomass to produce a bio-fuel and carbon; and
producing ink from the carbon.
2. The method of claim 1 , wherein the biomass is paper.
3. The method of claim 1 , wherein the biomass is tree matter.
4. The method of claim 3 , further comprising:
extracting a biocatalyst from the tree matter; and
using the biocatalyst to spray exhaust emission gas produced by an internal combustion engine.
5. The method of claim 3 , further comprising producing a polymer from the fermented biomass.
6. The method of claim 4 , further comprising:
filtering the sprayed exhaust emission gas; and
collecting a filtration by-product from filtering the sprayed exhaust emission gas.
7. The method of claim 1 , wherein the bio-fuel is bio-diesel.
8. The method of claim 1 , wherein the bio-fuel is ethanol.
9. The method of claim 1 , wherein the bio-fuel is used to produce water emulsion fuel.
10. A method for utilizing a biomass, the method comprising:
grinding a biomass;
fermenting the biomass;
processing the fermented biomass to produce bio-fuel and carbon; and
producing ink from the carbon.
11. The method of claim 10 , wherein the biomass is paper.
12. The method of claim 11 , wherein the biomass is tree matter.
13. The method of claim 1 , wherein the bio-fuel is used to produce water emulsion fuel.
14. The method of claim 12 , further comprising:
extracting a biocatalyst from the tree matter, the biocatalyst being for spraying exhaust emission gas produced by an internal combustion engine; and
producing a polymer from the fermented biomass.
15. The method of claim 14 , further comprising:
filtering the sprayed exhaust emission gas; and
collecting a filtration by-product from filtering the sprayed exhaust emission gas.
16. A method for reducing exhaust emissions, the method comprising:
producing a biocatalyst liquid by extracting an oil from tree matter, wherein a biomass residue remains after the extraction of the biocatalyst liquid;
processing the biomass residue to produce a bio-fuel;
spraying the biocatalyst liquid onto an exhaust emission gas produced by an internal combustion engine; and
filtering the sprayed exhaust emission gas.
17. The method of claim 16 , further comprising collecting a filtration by-product from the filtering of the exhaust emission gas.
18. The method of claim 16 , wherein the bio-fuel is used to produce water emulsion fuel.
19. The method of claim 16 , further comprising producing a polymer from the biomass residue.
20. The method of claim 16 , further comprising producing ink from the biomass residue.
21. A method for reducing exhaust emissions, the method comprising:
spraying a biocatalyst liquid onto an exhaust emission gas produced by an internal combustion engine, wherein the biocatalyst liquid is produced by extracting an oil from tree matter;
filtering the sprayed exhaust emission gas; and
combusting a bio-fuel produced from a biomass residue that remains after the extraction of the tree oil.
22. The method of claim 21 , further comprising collecting a filtration by-product from the filtering of the exhaust emission gas.
23. The method of claim 21 , wherein the bio-fuel is used to produce water emulsion fuel.
24. The method of claim 21 , further comprising producing a polymer from the biomass residue.
25. The method of claim 21 , further comprising producing ink from the biomass residue.
26. A method for doing business of utilizing a biomass, the method comprising:
producing biocatalyst liquid by extracting tree oil from tree matter, wherein a biomass residue remains after the extraction of the biocatalyst liquid;
processing the biomass to produce a bio-fuel;
providing the biocatalyst liquid to at least one consumer, wherein the biocatalyst liquid is utilized by the at least one consumer to spray the biocatalyst liquid onto an exhaust emission gas and filter the sprayed exhaust emission gas, the exhaust emission gas being produced by an internal combustion engine operated by the at least one consumer; and
providing the bio-fuel to the at least one consumer such that the at least one consumer can combust the bio-fuel in the internal combustion engine operated by the at least one consumer to reduce toxic emissions.
27. The method of claim 26 , further comprising collecting filtration by-product from the filtering of the exhaust emission gas.
28. A method of doing business for utilizing a biomass, the method comprising:
spraying a biocatalyst liquid onto an exhaust emission gas produced by an internal engine operated by a consumer, wherein the biocatalyst liquid is produced by extracting tree oil from tree matter;
filtering the sprayed exhaust emission gas; and
combusting bio-fuel produced from a biomass residue that remains after the extraction of the tree oil.
29. The method of claim 28 , further comprising collecting filtration by-product from the filtering of the exhaust emission gas.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/016,161 US20080178581A1 (en) | 2007-01-19 | 2008-01-17 | Utilizing biomass |
PCT/IB2008/000782 WO2008125933A2 (en) | 2007-01-19 | 2008-01-18 | Utilizing biomass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88586207P | 2007-01-19 | 2007-01-19 | |
US12/016,161 US20080178581A1 (en) | 2007-01-19 | 2008-01-17 | Utilizing biomass |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080178581A1 true US20080178581A1 (en) | 2008-07-31 |
Family
ID=39666389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/016,161 Abandoned US20080178581A1 (en) | 2007-01-19 | 2008-01-17 | Utilizing biomass |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080178581A1 (en) |
WO (1) | WO2008125933A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080295797A1 (en) * | 2007-05-30 | 2008-12-04 | Peter Randall | Systems and methods for engine emissions reduction on ships |
US20100240114A1 (en) * | 2009-03-18 | 2010-09-23 | Palmer Labs, Llc | Biomass production and processing and methods of use thereof |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4931388A (en) * | 1986-03-06 | 1990-06-05 | Katinger Hermann W | Retaining biocatalyst particles in a liquid mixture |
US5173413A (en) * | 1991-02-28 | 1992-12-22 | Coughlin Robert W | Enhanced bioconversion of toxic substances |
US5472875A (en) * | 1991-05-01 | 1995-12-05 | Energy Biosystems Corporation | Continuous process for biocatalytic desulfurization of sulfur-bearing heterocyclic molecules |
US5510265A (en) * | 1991-03-15 | 1996-04-23 | Energy Biosystems Corporation | Multistage process for deep desulfurization of a fossil fuel |
US6165964A (en) * | 1996-09-13 | 2000-12-26 | Cosmo Ace Co. | Aqueous solution of essential oil, and antimicrobial agents, microbicides and antimicrobial finishes for washing |
US20030022364A1 (en) * | 2001-07-13 | 2003-01-30 | Co2 Solution Inc. | Triphasic bioreactor and process for gas effluent treatment |
US20030064428A1 (en) * | 1998-12-31 | 2003-04-03 | Herman Heath H. | Methods and devices for remediation and fermentation |
US20030085156A1 (en) * | 2001-11-06 | 2003-05-08 | Schoonover Roger E. | Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids |
US20030097782A1 (en) * | 2001-03-22 | 2003-05-29 | Jordan Frederick L. | Method and composition for using organic, plant-derived, oil-extracted materials in diesel fuels for reduced emissions |
US20030166040A1 (en) * | 2001-04-20 | 2003-09-04 | Wilkins Antoinette E. | Product removal process for use in a biofermentation system |
US6660509B1 (en) * | 1995-03-28 | 2003-12-09 | Kinetic Biosystems, Inc. | Methods and devices for remediation and fermentation |
US20040200137A1 (en) * | 2001-04-27 | 2004-10-14 | Frank Bongardt | Fuel additives |
US20050081436A1 (en) * | 2003-10-09 | 2005-04-21 | Bryan Bertram | Purification of biodiesel with adsorbent materials |
US20060037237A1 (en) * | 2004-08-23 | 2006-02-23 | Flint Hills Resources, L.P. | Blending biodiesel with diesel fuel in cold locations |
US20060048517A1 (en) * | 2002-09-27 | 2006-03-09 | Sylvie Fradette | Process and a plant for recycling carbon dioxide emissions from power plants into useful carbonated species |
US20060201056A1 (en) * | 2000-04-14 | 2006-09-14 | Oryxe Energy International, Inc. | Biodiesel fuel additive |
US20060225341A1 (en) * | 2004-12-20 | 2006-10-12 | Rodolfo Rohr | Production of biodiesel |
US20060236598A1 (en) * | 2005-04-26 | 2006-10-26 | Flint Hills Resources, L.P. | Low temperature biodiesel diesel blend |
US20070010681A1 (en) * | 2005-07-06 | 2007-01-11 | Intecnial S/A And Fundacao Regional Integrada | Process for the production of biodiesel in continuous mode without catalysts |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006108165A2 (en) * | 2005-04-06 | 2006-10-12 | Ohmcraft, Inc. | Conductive ink with nanotubes |
-
2008
- 2008-01-17 US US12/016,161 patent/US20080178581A1/en not_active Abandoned
- 2008-01-18 WO PCT/IB2008/000782 patent/WO2008125933A2/en active Application Filing
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4931388A (en) * | 1986-03-06 | 1990-06-05 | Katinger Hermann W | Retaining biocatalyst particles in a liquid mixture |
US5173413A (en) * | 1991-02-28 | 1992-12-22 | Coughlin Robert W | Enhanced bioconversion of toxic substances |
US5510265A (en) * | 1991-03-15 | 1996-04-23 | Energy Biosystems Corporation | Multistage process for deep desulfurization of a fossil fuel |
US5472875A (en) * | 1991-05-01 | 1995-12-05 | Energy Biosystems Corporation | Continuous process for biocatalytic desulfurization of sulfur-bearing heterocyclic molecules |
US6660509B1 (en) * | 1995-03-28 | 2003-12-09 | Kinetic Biosystems, Inc. | Methods and devices for remediation and fermentation |
US6165964A (en) * | 1996-09-13 | 2000-12-26 | Cosmo Ace Co. | Aqueous solution of essential oil, and antimicrobial agents, microbicides and antimicrobial finishes for washing |
US20030064428A1 (en) * | 1998-12-31 | 2003-04-03 | Herman Heath H. | Methods and devices for remediation and fermentation |
US20060201056A1 (en) * | 2000-04-14 | 2006-09-14 | Oryxe Energy International, Inc. | Biodiesel fuel additive |
US20030097782A1 (en) * | 2001-03-22 | 2003-05-29 | Jordan Frederick L. | Method and composition for using organic, plant-derived, oil-extracted materials in diesel fuels for reduced emissions |
US20030097783A1 (en) * | 2001-03-22 | 2003-05-29 | Jordan Frederick L. | Method and composition for using organic, plant-derived, oil-extracted materials in gasolines for reduced emissions |
US20050208615A1 (en) * | 2001-04-20 | 2005-09-22 | Wilkins Antoinette E | Product removal process for use in a biofermentation system |
US20030166040A1 (en) * | 2001-04-20 | 2003-09-04 | Wilkins Antoinette E. | Product removal process for use in a biofermentation system |
US6812000B2 (en) * | 2001-04-20 | 2004-11-02 | E. I. Du Pont De Nemours And Company | Product removal process for use in a biofermentation system |
US20040200137A1 (en) * | 2001-04-27 | 2004-10-14 | Frank Bongardt | Fuel additives |
US20030022364A1 (en) * | 2001-07-13 | 2003-01-30 | Co2 Solution Inc. | Triphasic bioreactor and process for gas effluent treatment |
US20030085156A1 (en) * | 2001-11-06 | 2003-05-08 | Schoonover Roger E. | Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids |
US7001504B2 (en) * | 2001-11-06 | 2006-02-21 | Extractica, Llc. | Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids |
US20060048517A1 (en) * | 2002-09-27 | 2006-03-09 | Sylvie Fradette | Process and a plant for recycling carbon dioxide emissions from power plants into useful carbonated species |
US20050081436A1 (en) * | 2003-10-09 | 2005-04-21 | Bryan Bertram | Purification of biodiesel with adsorbent materials |
US20060037237A1 (en) * | 2004-08-23 | 2006-02-23 | Flint Hills Resources, L.P. | Blending biodiesel with diesel fuel in cold locations |
US20060225341A1 (en) * | 2004-12-20 | 2006-10-12 | Rodolfo Rohr | Production of biodiesel |
US20060236598A1 (en) * | 2005-04-26 | 2006-10-26 | Flint Hills Resources, L.P. | Low temperature biodiesel diesel blend |
US20070010681A1 (en) * | 2005-07-06 | 2007-01-11 | Intecnial S/A And Fundacao Regional Integrada | Process for the production of biodiesel in continuous mode without catalysts |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080295797A1 (en) * | 2007-05-30 | 2008-12-04 | Peter Randall | Systems and methods for engine emissions reduction on ships |
US8011330B2 (en) * | 2007-05-30 | 2011-09-06 | Peter Randall | Systems and methods for engine emissions reduction on ships |
US20100240114A1 (en) * | 2009-03-18 | 2010-09-23 | Palmer Labs, Llc | Biomass production and processing and methods of use thereof |
US8633011B2 (en) | 2009-03-18 | 2014-01-21 | Palmer Labs, Llc | Biomass production and processing and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2008125933A2 (en) | 2008-10-23 |
WO2008125933A3 (en) | 2009-03-19 |
WO2008125933A9 (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Foo et al. | The conundrum of waste cooking oil: Transforming hazard into energy | |
Callegari et al. | Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review | |
Osman et al. | Conversion of biomass to biofuels and life cycle assessment: a review | |
Mathew et al. | Recent advances in biodiesel production: Challenges and solutions | |
Guo et al. | Bioenergy and biofuels: History, status, and perspective | |
Khan et al. | Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management | |
Jegannathan et al. | Harnessing biofuels: a global Renaissance in energy production? | |
Ganguly et al. | The second-and third-generation biofuel technologies: comparative perspectives | |
Chakma et al. | Bioenergy from rice crop residues: role in developing economies | |
Damian et al. | A comprehensive review of the resource efficiency and sustainability in biofuel production from industrial and agricultural waste | |
Zulqarnain et al. | Comprehensive review on biodiesel production from palm oil mill effluent | |
Asase et al. | Biofuels: present and future | |
Singh et al. | Biofuels: Historical perspectives and public opinions | |
US20080178581A1 (en) | Utilizing biomass | |
Dubey et al. | Biomass: sustainable energy solution from agriculture | |
Ghosh et al. | Biomass energy potential in India: a review | |
WO2017026027A1 (en) | Method for effectively utilizing energy in waste-incineration facility with ethanol production equipment | |
Hossain et al. | Biofuel: marine biotechnology securing alternative sources of renewable energy | |
Datta et al. | Evolution, challenges and benefits of biofuel production and its potential role in meeting global energy demands | |
KR101392870B1 (en) | Production method of bio disel using waste oil extracted from food waste | |
Segovia‐Hernández et al. | Present and future of biofuels | |
Akram et al. | The prospect of sustainable biofuel in Bangladesh: challenges and solution | |
Khan et al. | Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes | |
Prasad et al. | Production and Use of Biofuel from Agricultural Resources: Transition Towards Low Carbon Economy | |
Kumar et al. | Biodiesel Production from Agricultural Waste Biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JUON CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIMOTO, TETSURO;NISHIMOTO, KIYOHIRO;REEL/FRAME:020416/0644 Effective date: 20080123 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |