US20080171862A1 - Method and medicament for inhibiting the expression of a given gene - Google Patents
Method and medicament for inhibiting the expression of a given gene Download PDFInfo
- Publication number
- US20080171862A1 US20080171862A1 US11/982,325 US98232507A US2008171862A1 US 20080171862 A1 US20080171862 A1 US 20080171862A1 US 98232507 A US98232507 A US 98232507A US 2008171862 A1 US2008171862 A1 US 2008171862A1
- Authority
- US
- United States
- Prior art keywords
- dsrna
- gene
- strand
- oligoribonucleotide
- rna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/111—Antisense spanning the whole gene, or a large part of it
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/30—Production chemically synthesised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates to methods in accordance with the preambles of claims 1 and 2 . It furthermore relates to a medicament and to a use of double-stranded oligoribonucleotides and to a vector encoding them.
- Such a method is known from WO 99/32619, which was unpublished at the priority date of the present invention.
- the known process aims at inhibiting the expression of genes in cells of invertebrates.
- the double-stranded oligoribonucleotide must exhibit a sequence which is identical with the target gene and which has a length of at least 50 bases.
- the identical sequence must be 300 to 1 000 base pairs in length.
- Such an oligoribonucleotide is complicated to prepare.
- the antisense RNA takes the form of an RNA molecule which is complementary to regions of the mRNA. Inhibition of the gene expression is caused by binding to these regions. This inhibition can be employed in particular for the diagnosis and/or therapy of diseases, for example tumor diseases or viral infections.
- the disadvantage is that the antisense RNA must be introduced into the cell in an amount which is at least as high as the amount of the mRNA.
- the known antisense methods are not particularly effective.
- U.S. Pat. No. 5,712,257 discloses a medicament comprising mismatched double-stranded RNA (dsRNA) and bioactive mismatched fragments of dsRNA in the form of a ternary complex together with a surfactant.
- dsRNA mismatched double-stranded RNA
- the dsRNA used for this purpose consists of synthetic nucleic acid single strands without defined base sequence. The single strands undergo irregular base pairing, also known as “non-Watson-Crick” base pairing, giving rise to mismatched double strands.
- the known dsRNA is used to inhibit the amplification of retroviruses such as HIV. Amplification of the virus can be inhibited when non-sequence-specific dsRNA is introduced into the cells. This leads to the induction of interferon, which is intended to inhibit viral amplification. The inhibitory effect, or the activity, of this method is poor.
- dsRNA whose one strand is complementary in segments to a nematode gene to be inhibited inhibits the expression of this gene highly efficiently. It is believed that the particular activity of the dsRNA used in nematode cells is not due to the antisense principle but possibly on catalytic properties of the dsRNA, or enzymes induced by it. —Nothing is mentioned in this paper on the activity of specific dsRNA with regard to inhibiting the gene expression, in particular in mammalian and human cells.
- the object of the present invention is to do away with the disadvantages of the prior art.
- it is intended to provide as effective as possible a method, medicament or use for the preparation of a medicament, which method, medicament or use is capable of causing particularly effective inhibition of the expression of a given target gene.
- the region I which is complementary to the target gene exhibits not more than 49 successive nucleotide pairs.
- an oligoribonucleotide or a vector encoding therefor are provided in accordance with the invention. At least segments of the oligoribonucleotide exhibit a defined nucleotide sequence. The defined segment may be limited to the complementary region I. However, it is also possible that all of the double-stranded oligoribonucleotide exhibits a defined nucleotide sequence.
- dsRNA with a length of over 50 nucleotide pairs induces certain cellular mechanisms, for example the dsRNA-dependent protein kinase or the 2-5 A system, in mammalian and human cells.
- protein biosynthesis in the cell is blocked.
- the present invention overcomes this disadvantage in particular.
- dsRNA with short chain lengths into the cell or into the nucleus is facilitated markedly over longer-chain dsRNAs.
- the dsRNA or the vector it has proved advantageous for the dsRNA or the vector to be present packaged into micellar structures, preferably in liposomes.
- the dsRNA or the vector can likewise be enclosed in viral natural capsids or in chemically or enzymatically produced artificial capsids or structures derived therefrom. —The abovementioned features make it possible to introduce the dsRNA or the vector into given target cells.
- the dsRNA has 10 to 1 000, preferably 15 to 49, base pairs.
- the dsRNA can be longer than the region I, which is complementary to the target gene.
- the complementary region I can be located at the terminus or inserted into the dsRNA.
- Such dsRNA or a vector provided for coding the same can be produced synthetically or enzymatically by customary methods.
- the gene to be inhibited is expediently expressed in eukaryotic cells.
- the target gene can be selected from the following group: oncogene, cytokin gene, Id protein gene, developmental gene, prion gene. It can also be expressed in pathogenic organisms, preferably in plasmodia. It can be part of a virus or viroid which is preferably pathogenic to humans. —The method proposed makes it possible to produce compositions for the therapy of genetically determined diseases, for example cancer, viral diseases or Alzheimer's disease.
- the virus or viroid can also be a virus or viroid which is pathogenic to animals or plant-pathogenic.
- the method according to the invention also permits the provision of compositions for treating animal or plant diseases.
- segments of the dsRNA are designed as double-stranded.
- a region II which is complementary within the double-stranded structure is formed by two separate RNA single strands or by autocomplementary regions of a topologically closed RNA single strand which is preferably in circular form.
- the ends of the dsRNA can be modified to counteract degradation in the cell or dissociation into the single strands. Dissociation takes place in particular when low concentrations or short chain lengths are used. To inhibit dissociation in a particularly effective fashion, the cohesion of the complementary region II, which is caused by the nucleotide pairs, can be increased by at least one, preferably two, further chemical linkage(s). —A dsRNA according to the invention whose dissociation is reduced exhibits greater stability to enzymatic and chemical degradation in the cell or in the organism.
- the complementary region. II can be formed by autocomplementary regions of an RNA hairpin loop, in particular when using a vector according to the invention.
- the nucleotides it is expedient for the nucleotides to be chemically modified in the loop region between the double-stranded structure.
- the chemical linkage is expediently formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination. In an especially advantageous aspect, it can be formed at least one, preferably both, end(s) of the complementary region II.
- the chemical linkage can be formed by one or more linkage groups, the linkage groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- the chemical linkage can also be formed by purine analogs used in place of purines in the complementary regions II. It is also advantageous for the chemical linkage to be formed by azabenzene units introduced into the complementary regions II. Moreover, it can be formed by branched nucleotide analogs used in place of nucleotides in the complementary regions II.
- the chemical linkage can furthermore be formed by thiophosphoryl groups provided at the ends of the double-stranded region.
- the chemical linkage at the ends of the double-stranded region is preferably formed by triple-helix bonds.
- the chemical linkage can expediently be induced by ultraviolet light.
- the nucleotides of the dsRNA can be modified. This counteracts the activation, in the cell, of a double-stranded-RNA-dependent protein kinase, PKR.
- at least one 2′-hydroxyl group of the nucleotides of the dsRNA in the complementary region II is replaced by a chemical group, preferably a 2′-amino or a 2′-methyl group.
- At least one nucleotide in at least one strand of the complementary region II can also be a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2′-O, 4′-C methylene bridge.
- several nucleotides are locked nucleotides.
- a further especially advantageous embodiment provides that the dsRNA or the vector is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.
- the coat protein can be derived from polyomavitus.
- the coat protein can contain the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).
- VP1 polyomavirus virus protein 1
- VP2 virus protein 2
- the use of such coat proteins is known from, for example, DE 196 18 797 A1, whose disclosure is herewith incorporated. —The abovementioned features considerably facilitate the introduction of the dsRNA or of the vector into the cell.
- a capsid or capsid-type structure is formed from the coat protein, one side preferably faces the interior of the capsid or capsid-type structure.
- the construct formed is particularly stable.
- the dsRNA can be complementary to the primary or processed RNA transcript of the target gene.
- the cell can be a vertebrate cell or a human cell.
- At least two dsRNAs which differ from each other or at least one vector encoding them can be introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes. This makes it possible simultaneously to inhibit the expression of at least two different target genes.
- a double-stranded-RNA-dependent protein kinase, PKR one of the target genes is advantageously the PKR gene. This allows effective suppression of the PKR activity in the cell.
- the invention furthermore provides a medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene.
- dsRNA double-stranded structure
- the inhibition is already caused at concentrations which are lower by at least one order of magnitude.
- the medicament according to the invention is highly effective. Lesser side effects can be expected.
- the invention furthermore provides a medicament with at least one vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene.
- dsRNA double-stranded structure
- the medicament proposed exhibits the abovementioned advantages. By using a vector, in particular production costs can be reduced.
- the complementary region I has not more than 49 successive nucleotide pairs. —Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.
- the invention furthermore provides a use of an oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene.
- dsRNA double-stranded structure
- the inhibition is already caused at concentrations which are lower by one order of magnitude when using dsRNA.
- the use according to the invention thus makes possible the preparation of particularly effective medicaments.
- the invention furthermore provides the use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to this target gene.
- dsRNA double-stranded structure
- FIG. 1 shows the schematic representation of a plasmid for the in vitro transcription with T7- and SP6-polymerase
- FIG. 2 shows RNA following electrophoresis on an 8% polyacrylamide gel and staining with ethidium bromide
- FIG. 3 shows a representation of radioactive RNA transcripts following electrophoresis on an 8% polyacrylamide gel with 7 M urea by means of an instant imager
- FIGS. 4 a - e show Texas Red and YFP fluorescence in murine fibroblasts.
- the inhibition of transcription was detected by means of sequence homologous dsRNA in an in vitro transcription system with a nuclear extract from human HeLa cells.
- the DNA template for this experiment was plasmid pCMV1200 which had been linearized by means of BamHI.
- the plasmid shown in FIG. 1 was constructed for use in the enzymatic synthesis of the dsRNA.
- a polymerase chain reaction with the “positive control DNA” of the HelaScribe® Nuclear Extract in vitro transcription kit by Promega, Madison, USA, as DNA template was first carried out.
- One of the primers used contained the sequence of an EcoRI cleavage site and of the T7 RNA polymerase promoter as shown in sequence listing No. 1.
- the other primer contained the sequence of a BamHI cleavage site and of the SP6 RNA polymerase promoter as shown in sequence listing No. 2.
- the two primers had, at the 3′ ends, regions which were identical with or complementary to the DNA template.
- PCR was carried out by means of the “Tag PCR Core Kits” by Qiagen, Hilden, Germany, following the manufacturer's instructions.
- 1.5 mM MgCl 2 in each case 200 ⁇ M dNTP, in each case 0.5 ⁇ M primer, 2.5 U Taq DNA polymerase and approximately 100 ng of “positive control DNA” were employed as template in PCR buffer in a volume of 100 ⁇ l.
- amplification was carried out in 30 cycles of denaturation for in each case 60 seconds at 94° C., annealing for 60 seconds at 5° C. below the calculated melting point of the primers and polymerization for 1.5-2 minutes at 72° C.
- the length of the DNA fragment amplified thus was 400 base pairs, 340 base pairs corresponding to the “positive control DNA”.
- the PCR product was purified, hydrolyzed with EcoRI and BamHI and, after repurification, employed in the ligation together with a pUC18 vector which had also been hydrolyzed by EcoRI 3.0 and BamHI. E. coli XL1-blue was then transformed.
- the plasmid obtained (pCMV5) carries a DNA fragment whose 5′ end is flanked by the T7 promoter and whose 3′ end is flanked by the SP6 promoter.
- RNA 23 nucleotides in length was also synthesized. To this end, a DNA shown in sequence listing No. 4 was ligated with the pUC18 vector via the EcoRI and BamHI cleavage sites.
- Plasmid pCMV1200 was constructed as DNA template for the in-vitro transcription with HeLa nuclear extract.
- a 1 191 bp EcoRI/BamHI fragment of the positive control DNA contained in the HeLaScribe® Nuclear Extract, in vitro transcription kit was amplified by means of PCR.
- the amplified fragment encompasses the 828 bp “immediate early” CMV promoter and a 363 bp transcribable DNA fragment.
- the PCR product was ligated to the vector pGEM-T via “T-overhang” ligation.
- a BamHI cleavage site is located at the 5′ end of the fragment.
- the plasmid was linearized by hydrolysis with BamHI and used as template in the run-off transcription.
- pCMV5 plasmid DNA was linearized with EcoRI or BamHI. It was used as DNA template for an in-vitro transcription of the complementary RNA single strands with SP6 and T7 RNA polymerase, respectively.
- the transcription reaction was made up to 300 ⁇ l with H 2 O and purified by phenol extraction.
- the RNA was precipitated by addition of 150 ⁇ l of 7 M ammonium acatate [sic] and 1 125 ⁇ l of ethanol and stored at ⁇ 65° C. until used for the hybridization.
- RNA For the hybridization, 500 ⁇ l of the single-stranded RNA which had been stored in ethanol and precipitated were spun down. The resulting pellet was dried and taken up in 30 ⁇ l of PIPES buffer, pH 6.4 in the presence of 80% formamide, 400 mM NaCl and 1 mM EDTA. In each case 15 ⁇ l of the complementary single strands were combined and heated for 10 minutes at 85° C. The reactions were subsequently incubated overnight at 50° C. and cooled to room temperature.
- dsRNA single-stranded RNA
- the reactions were treated, after hybridization, with the single-strand-specific ribonucleases bovine pancreatic RNase A and Aspergillus oryzae RNase T1.
- RNase A is an endoribonuclease which is specific for pyrimidines.
- RNase T1 is an endoribonuclease which preferentially cleaves at the 3′ side of guanosines.
- dsRNA is no substrate for these ribonucleases.
- the reactions in 300 ⁇ l of Tris, pH 7.4, 300 mM NaCl and 5 mM EDTA were treated with 1.2 ⁇ l of RNaseA at a concentration of 10 mg/ml and 2 ⁇ l of RNaseT1 at a concentration of 290 ⁇ g/ml.
- the reactions were incubated for 1.5 hours at 30° C.
- the RNases were denatured by addition of 5 ⁇ l of proteinase K at a concentration of 20 mg/ml and 10 ⁇ l of 20% SDS and incubation for 30 minutes at 37° C.
- the dsRNA was purified by phenol extraction and precipitated with ethanol. To verify the completeness of the RNase digestion, two control reactions were treated with ssRNA analogously to the hybridization reactions.
- FIG. 2 shows the RNA which had been visualized in a UV transilluminator.
- the sense RNA which had been applied to lane 1 and the antisense RNA which had been applied to lane 2 showed a different migration behavior under the chosen conditions than the dsRNA of the hybridization reaction which had been applied to lane 3.
- the RNase-treated dsRNA of the hybridization reaction which had been applied to lane 6 is resistant to RNase treatment.
- the band which migrates faster in the native gel in comparison with the dsRNA applied to lane 3 results from dsRNA which is free from ssRNA. In addition to the dominant main band, weaker bands which migrate faster are observed after the RNase treatment.
- the reactions were treated with 100 ⁇ l of phenol/chloroform/isoamyl alcohol (25:24:1 v/v/v) saturated with TE buffer, pH 5.0, and the reactions were mixed vigorously for 1 minute.
- the reactions were spun for approximately 1 minute at 12 000 rpm and the top phase was transferred into a fresh reaction vessel.
- Each reaction was treated with 250 ⁇ l of ethanol.
- the reactions were mixed thoroughly and incubated for at least 15 minutes on dry ice/methanol.
- To precipitate the RNA the reactions were spun for 20 minutes at 12 000 rpm and 40° C. The supernatant was discarded. The pellet was dried in vacuo for 15 minutes and resuspended in 10 ⁇ l of H 2 O.
- RNA transcripts formed upon transcription with HeLa nuclear extract, in denaturing loading buffer were heated for 10 minutes at 90° C. and 10 ⁇ l aliquots were applied immediately to the freshly washed pockets.
- the electrophoresis was run at 40 MA. The amount of the radioactive ssRNA formed upon transcription was analyzed after electrophoresis with the aid of an Instant Imager.
- FIG. 3 shows the radioactive RNA from a representative test, shown by means of the Instant Imager. Samples obtained from the following transcription reactions were applied:
- Lane 1 without template DNA, without dsRNA
- Lane 1 50 ng of template DNA, without dsRNA
- Lane 3 50 ng of template DNA, 0.5 ⁇ g of dsRNA YFP;
- Lane 4 50 ng of template DNA, 1.5 ⁇ g of dsRNA YFP;
- Lane 5 50 ng of template DNA, 3 ⁇ g of dsRNA YFP;
- Lane 6 50 ng of template DNA, 5 ⁇ g of dsRNA YFP;
- Lane 7 without template DNA, 1.5° dsRNA YFP;
- Lane 8 50 ng of template DNA, without dsRNA
- Lane 9 50 ng of template DNA, 0.5 ⁇ g of dsRNA CMV5;
- Lane 10 50 ng of template DNA, 1.5 ⁇ g of dsRNA CMV5;
- Lane 11 50 ng of template DNA, 3 ⁇ g of dsRNA CMV5;
- Lane 12 50 ng of template DNA, 5 ⁇ g of dsRNA CMV5;
- the reduction of the transcript upon addition of sequence-specific dsRNA can therefore be ascribed unequivocally to the dsRNA itself.
- the reduction of the amount of transcript of a gene in the presence of dsRNA in a human transcription system indicates an inhibition of the expression of the gene in question. This effect can be attributed to a novel mechanism caused by the dsRNA.
- the test system used for these in-vivo experiments was the murine fibroblast cell line NIH3T3, ATCC CRL-1658.
- the YFP gene was introduced into the nuclei with the aid of microinjection. Expression of YFP was studied under the effect of simultaneously cotransfected dsRNA with sequence homology. This dsRNA YFP shows homology with the 5′-region of the YFP gene over a length of 315 bp.
- the nucleotide sequence of a strand of the dsRNA YRP is shown in sequence listing No. 5. Evaluation under the fluorescence microscope was carried out 3 hours after injection with reference to the greenish-yellow fluorescence of the YFP formed.
- a plasmid was constructed following the same principle as described in use example 1 to act as template for the production of the YFP dsRNA by means of T7 and SP6 in-vitro transcription.
- the desired gene fragment was amplified by PCR and used analogously to the above description for preparing the dsRNA.
- the dsRNA YFP obtained is identical to the dsRNA used in use example 1 as non-sequence-specific control.
- a dsRNA linked chemically at the 3′ end of the RNA as shown in sequence listing No. 8 to the 5′ end of the complementary RNA via a C18 linker group was prepared (L-dsRNA).
- synthons modified by disulfide bridges were used.
- the 3′-terminal synthon is bound to the solid support via the 3′ carbon with an aliphatic linker group via a disulfide bridge.
- the 5′-trityl protecting group is bound via a further aliphatic linker and a disulfide bridge.
- the thiol groups which form are brought into spatial vicinity.
- the single strands are linked to each other by oxidation via their aliphatic linkers and a disulfide bridge. This is followed by purification with the aid of HPLC.
- the cells were incubated in DMEM supplemented with 4.5 g/l glucose, 10% fetal bovine serum in culture dishes at 37° C. under a 7.5% CO 2 atmosphere and passaged before reaching confluence.
- the cells were detached with trypsin/EDTA. To prepare for microinjection, the cells were transferred into Petri dishes and incubated further until microcolonies formed.
- the culture dishes were removed from the incubator for approximately 10 minutes. Approximately 50 nuclei were injected singly per reaction within a marked area using the AIS microinjection system from Carl Zeiss, Göttingen, Germany. The cells were subsequently incubated for three more hours.
- borosilicate glass capillaries from Hilgenberg GmbH, Malsfeld, Germany, with a diameter of less than 0.5 ⁇ m at the tip were prepared. The microinjection was carried out using a micromanipulator from Narishige Scientific Instrument Lab., Tokyo, Japan. The injection time was 0.8 seconds and the pressure was approximately 100 hPa.
- the transfection was carried out using the plasmid pCDNA YFP, which contains an approximately 800 bp BamHI/EcoRI fragment with the YFP gene in vector pcDNA3.
- the samples injected into the nuclei contained 0.01 ⁇ g/ ⁇ l of pCDNA-YFP and Texas Red coupled to dextran-70000 in 14 mM NaCl, 3 mM KCl, 10 mM KPO 4 [sic], ph 7.5.
- RNA with a concentration of 1 ⁇ M or, in the case of the L-dsRNA, 375 ⁇ M were additionally added.
- FIGS. 4 a - e show the result for NIH3T3 cells.
- sense-YFP-ssRNA has been injected, in FIG. 4 b antisense-YFP-ssRNA, in FIG. 4 c dsRNA-YFP, in FIG. 4 d no RNA and in FIG. 4 e L-dsRNA.
- the field on the left shows in each case the fluorescence of cells with excitation at 568 nm.
- the fluorescence of the same cells at an excitation of 48.8 nm is seen on the right.
- the Texas Red fluorescence of all the cells shown demonstrates that the injection solution had been applied successfully into the nuclei and that cells with successful hits were still alive after three hours. Dead cells no longer showed Texas Red fluorescence.
- FIGS. 4 a and 4 b show that YFP expression was not visibly inhibited when the single-stranded RNA was injected into the nuclei.
- the right field of FIG. 4 c shows cells whose YFP fluorescence was no longer detectable after the injection of dsRNA-YFP.
- FIG. 4 d shows cells into which no RNA had been injected, as control.
- the cell shown in FIG. 4 e shows YFP fluorescence which can no longer be detected owing to the injection of the L-dsRNA which shows regions with sequence homology to the YFP gene. This result demonstrates that even shorter dsRNAs can be used for specifically inhibiting gene expression in mammals when the double strands are stabilized by chemically linking the single strands.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
- The invention relates to methods in accordance with the preambles of
claims - Such a method is known from WO 99/32619, which was unpublished at the priority date of the present invention. The known process aims at inhibiting the expression of genes in cells of invertebrates. To this end, the double-stranded oligoribonucleotide must exhibit a sequence which is identical with the target gene and which has a length of at least 50 bases. To achieve efficient inhibition, the identical sequence must be 300 to 1 000 base pairs in length. Such an oligoribonucleotide is complicated to prepare.
- DE 196 31 919 C2 describes an antisense RNA with specific secondary structures, the antisense RNA being present in the form of a vector encoding it. The antisense RNA takes the form of an RNA molecule which is complementary to regions of the mRNA. Inhibition of the gene expression is caused by binding to these regions. This inhibition can be employed in particular for the diagnosis and/or therapy of diseases, for example tumor diseases or viral infections. —The disadvantage is that the antisense RNA must be introduced into the cell in an amount which is at least as high as the amount of the mRNA. The known antisense methods are not particularly effective.
- U.S. Pat. No. 5,712,257 discloses a medicament comprising mismatched double-stranded RNA (dsRNA) and bioactive mismatched fragments of dsRNA in the form of a ternary complex together with a surfactant. The dsRNA used for this purpose consists of synthetic nucleic acid single strands without defined base sequence. The single strands undergo irregular base pairing, also known as “non-Watson-Crick” base pairing, giving rise to mismatched double strands. The known dsRNA is used to inhibit the amplification of retroviruses such as HIV. Amplification of the virus can be inhibited when non-sequence-specific dsRNA is introduced into the cells. This leads to the induction of interferon, which is intended to inhibit viral amplification. The inhibitory effect, or the activity, of this method is poor.
- It is known from Fire, A. et al., NATURE, Vol. 391, pp. 806 that dsRNA whose one strand is complementary in segments to a nematode gene to be inhibited inhibits the expression of this gene highly efficiently. It is believed that the particular activity of the dsRNA used in nematode cells is not due to the antisense principle but possibly on catalytic properties of the dsRNA, or enzymes induced by it. —Nothing is mentioned in this paper on the activity of specific dsRNA with regard to inhibiting the gene expression, in particular in mammalian and human cells.
- The object of the present invention is to do away with the disadvantages of the prior art. In particular, it is intended to provide as effective as possible a method, medicament or use for the preparation of a medicament, which method, medicament or use is capable of causing particularly effective inhibition of the expression of a given target gene.
- This object is achieved by the features of
claims claims 3 to 36, 39 to 73 and 76 to 112. - In accordance with the method-oriented inventions, it is provided in each case that the region I which is complementary to the target gene exhibits not more than 49 successive nucleotide pairs.
- Provided in accordance with the invention are an oligoribonucleotide or a vector encoding therefor. At least segments of the oligoribonucleotide exhibit a defined nucleotide sequence. The defined segment may be limited to the complementary region I. However, it is also possible that all of the double-stranded oligoribonucleotide exhibits a defined nucleotide sequence.
- Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.
- In particular, dsRNA with a length of over 50 nucleotide pairs induces certain cellular mechanisms, for example the dsRNA-dependent protein kinase or the 2-5 A system, in mammalian and human cells. This leads to the disappearance of the interference effect mediated by the dsRNA which exhibits a defined sequence. As a consequence, protein biosynthesis in the cell is blocked. The present invention overcomes this disadvantage in particular.
- Furthermore, the uptake of dsRNA with short chain lengths into the cell or into the nucleus is facilitated markedly over longer-chain dsRNAs.
- It has proved advantageous for the dsRNA or the vector to be present packaged into micellar structures, preferably in liposomes. The dsRNA or the vector can likewise be enclosed in viral natural capsids or in chemically or enzymatically produced artificial capsids or structures derived therefrom. —The abovementioned features make it possible to introduce the dsRNA or the vector into given target cells.
- In a further aspect, the dsRNA has 10 to 1 000, preferably 15 to 49, base pairs. Thus, the dsRNA can be longer than the region I, which is complementary to the target gene. The complementary region I can be located at the terminus or inserted into the dsRNA. Such dsRNA or a vector provided for coding the same can be produced synthetically or enzymatically by customary methods.
- The gene to be inhibited is expediently expressed in eukaryotic cells. The target gene can be selected from the following group: oncogene, cytokin gene, Id protein gene, developmental gene, prion gene. It can also be expressed in pathogenic organisms, preferably in plasmodia. It can be part of a virus or viroid which is preferably pathogenic to humans. —The method proposed makes it possible to produce compositions for the therapy of genetically determined diseases, for example cancer, viral diseases or Alzheimer's disease.
- The virus or viroid can also be a virus or viroid which is pathogenic to animals or plant-pathogenic. In this case, the method according to the invention also permits the provision of compositions for treating animal or plant diseases.
- In a further aspect, segments of the dsRNA are designed as double-stranded. A region II which is complementary within the double-stranded structure is formed by two separate RNA single strands or by autocomplementary regions of a topologically closed RNA single strand which is preferably in circular form.
- The ends of the dsRNA can be modified to counteract degradation in the cell or dissociation into the single strands. Dissociation takes place in particular when low concentrations or short chain lengths are used. To inhibit dissociation in a particularly effective fashion, the cohesion of the complementary region II, which is caused by the nucleotide pairs, can be increased by at least one, preferably two, further chemical linkage(s). —A dsRNA according to the invention whose dissociation is reduced exhibits greater stability to enzymatic and chemical degradation in the cell or in the organism.
- The complementary region. II can be formed by autocomplementary regions of an RNA hairpin loop, in particular when using a vector according to the invention. To afford protection from degradation, it is expedient for the nucleotides to be chemically modified in the loop region between the double-stranded structure.
- The chemical linkage is expediently formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination. In an especially advantageous aspect, it can be formed at least one, preferably both, end(s) of the complementary region II.
- It has furthermore proved to be advantageous for the chemical linkage to be formed by one or more linkage groups, the linkage groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains. The chemical linkage can also be formed by purine analogs used in place of purines in the complementary regions II. It is also advantageous for the chemical linkage to be formed by azabenzene units introduced into the complementary regions II. Moreover, it can be formed by branched nucleotide analogs used in place of nucleotides in the complementary regions II.
- It has proved expedient to use at least one of the following groups for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N′-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene. The chemical linkage can furthermore be formed by thiophosphoryl groups provided at the ends of the double-stranded region. The chemical linkage at the ends of the double-stranded region is preferably formed by triple-helix bonds.
- The chemical linkage can expediently be induced by ultraviolet light.
- The nucleotides of the dsRNA can be modified. This counteracts the activation, in the cell, of a double-stranded-RNA-dependent protein kinase, PKR. Advantageously, at least one 2′-hydroxyl group of the nucleotides of the dsRNA in the complementary region II is replaced by a chemical group, preferably a 2′-amino or a 2′-methyl group. At least one nucleotide in at least one strand of the complementary region II can also be a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2′-O, 4′-C methylene bridge. Advantageously, several nucleotides are locked nucleotides.
- A further especially advantageous embodiment provides that the dsRNA or the vector is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically. The coat protein can be derived from polyomavitus. The coat protein can contain the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2). The use of such coat proteins is known from, for example, DE 196 18 797 A1, whose disclosure is herewith incorporated. —The abovementioned features considerably facilitate the introduction of the dsRNA or of the vector into the cell.
- When a capsid or capsid-type structure is formed from the coat protein, one side preferably faces the interior of the capsid or capsid-type structure. The construct formed is particularly stable.
- The dsRNA can be complementary to the primary or processed RNA transcript of the target gene. —The cell can be a vertebrate cell or a human cell.
- At least two dsRNAs which differ from each other or at least one vector encoding them can be introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes. This makes it possible simultaneously to inhibit the expression of at least two different target genes. In order to suppress, in the cell, the expression of a double-stranded-RNA-dependent protein kinase, PKR, one of the target genes is advantageously the PKR gene. This allows effective suppression of the PKR activity in the cell.
- The invention furthermore provides a medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. —Surprisingly, it has emerged that such a dsRNA is suitable as medicament for inhibiting the expression of a given gene in mammalian cells. In comparison with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by at least one order of magnitude. The medicament according to the invention is highly effective. Lesser side effects can be expected.
- The invention furthermore provides a medicament with at least one vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. —The medicament proposed exhibits the abovementioned advantages. By using a vector, in particular production costs can be reduced.
- In a particularly advantageous embodiment, the complementary region I has not more than 49 successive nucleotide pairs. —Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.
- The invention furthermore provides a use of an oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. —Surprisingly, such a dsRNA is suitable for preparing a medicament for inhibiting the expression of a given gene. Compared with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by one order of magnitude when using dsRNA. The use according to the invention thus makes possible the preparation of particularly effective medicaments.
- The invention furthermore provides the use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to this target gene. —The use of a vector makes possible a particularly effective gene therapy.
- With regard to advantageous embodiments of the medicament and of the use, reference is made to the description of the above features.
- Use examples of the invention are illustrated in greater detail hereinbelow with reference to the figures, in which:
-
FIG. 1 shows the schematic representation of a plasmid for the in vitro transcription with T7- and SP6-polymerase, -
FIG. 2 shows RNA following electrophoresis on an 8% polyacrylamide gel and staining with ethidium bromide, -
FIG. 3 shows a representation of radioactive RNA transcripts following electrophoresis on an 8% polyacrylamide gel with 7 M urea by means of an instant imager, and -
FIGS. 4 a-e show Texas Red and YFP fluorescence in murine fibroblasts. - The inhibition of transcription was detected by means of sequence homologous dsRNA in an in vitro transcription system with a nuclear extract from human HeLa cells. The DNA template for this experiment was plasmid pCMV1200 which had been linearized by means of BamHI.
- The plasmid shown in
FIG. 1 was constructed for use in the enzymatic synthesis of the dsRNA. To this end, a polymerase chain reaction (PCR) with the “positive control DNA” of the HelaScribe® Nuclear Extract in vitro transcription kit by Promega, Madison, USA, as DNA template was first carried out. One of the primers used contained the sequence of an EcoRI cleavage site and of the T7 RNA polymerase promoter as shown in sequence listing No. 1. The other primer contained the sequence of a BamHI cleavage site and of the SP6 RNA polymerase promoter as shown in sequence listing No. 2. In addition, the two primers had, at the 3′ ends, regions which were identical with or complementary to the DNA template. The PCR was carried out by means of the “Tag PCR Core Kits” by Qiagen, Hilden, Germany, following the manufacturer's instructions. 1.5 mM MgCl2, in each case 200 μM dNTP, in each case 0.5 μM primer, 2.5 U Taq DNA polymerase and approximately 100 ng of “positive control DNA” were employed as template in PCR buffer in a volume of 100 μl. After initial denaturation of the template DNA by heating for 5 minutes at 94° C., amplification was carried out in 30 cycles of denaturation for in each case 60 seconds at 94° C., annealing for 60 seconds at 5° C. below the calculated melting point of the primers and polymerization for 1.5-2 minutes at 72° C. After a final polymerization of 5 minutes at 72° C., 5 μl of the reaction were analyzed by agarose-gel electrophoresis. The length of the DNA fragment amplified thus was 400 base pairs, 340 base pairs corresponding to the “positive control DNA”. The PCR product was purified, hydrolyzed with EcoRI and BamHI and, after repurification, employed in the ligation together with a pUC18 vector which had also been hydrolyzed by EcoRI 3.0 and BamHI. E. coli XL1-blue was then transformed. The plasmid obtained (pCMV5) carries a DNA fragment whose 5′ end is flanked by the T7 promoter and whose 3′ end is flanked by the SP6 promoter. By linearizing the plasmid with BamHI, it can be employed in vitro with the T7-RNA polymerase for the run-off transcription of a single-stranded RNA which is 340 nucleotides in length and shown in sequence listing No. 3. If the plasmid is linearized with EcoRI, it can be employed for the run-off transcription with SP6 RNA polymerase, giving rise to the complementary strand. In accordance with the method outlined hereinabove, an RNA 23 nucleotides in length was also synthesized. To this end, a DNA shown in sequence listing No. 4 was ligated with the pUC18 vector via the EcoRI and BamHI cleavage sites. - Plasmid pCMV1200 was constructed as DNA template for the in-vitro transcription with HeLa nuclear extract. To this end, a 1 191 bp EcoRI/BamHI fragment of the positive control DNA contained in the HeLaScribe® Nuclear Extract, in vitro transcription kit was amplified by means of PCR. The amplified fragment encompasses the 828 bp “immediate early” CMV promoter and a 363 bp transcribable DNA fragment. The PCR product was ligated to the vector pGEM-T via “T-overhang” ligation. A BamHI cleavage site is located at the 5′ end of the fragment. The plasmid was linearized by hydrolysis with BamHI and used as template in the run-off transcription.
- pCMV5 plasmid DNA was linearized with EcoRI or BamHI. It was used as DNA template for an in-vitro transcription of the complementary RNA single strands with SP6 and T7 RNA polymerase, respectively. The “Riboprobe in vitro Transcription” system by Promega, Madison, USA, was employed for this purpose. Following the manufacturer's instructions, 2 μg of linearized plasmid DNA were incubated in 100 μl of transcription buffer and 40 U T7 or SP6 RNA polymerase for 5-6 hours at 37° C. The DNA template was subsequently degraded by addition of 2.5 μl of RNase-free DNase RQ1 and incubation for 30 minutes at 37° C. The transcription reaction was made up to 300 μl with H2O and purified by phenol extraction. The RNA was precipitated by addition of 150 μl of 7 M ammonium acatate [sic] and 1 125 μl of ethanol and stored at −65° C. until used for the hybridization.
- For the hybridization, 500 μl of the single-stranded RNA which had been stored in ethanol and precipitated were spun down. The resulting pellet was dried and taken up in 30 μl of PIPES buffer, pH 6.4 in the presence of 80% formamide, 400 mM NaCl and 1 mM EDTA. In each case 15 μl of the complementary single strands were combined and heated for 10 minutes at 85° C. The reactions were subsequently incubated overnight at 50° C. and cooled to room temperature.
- Only approximately equimolar amounts of the two single strands were employed in the hybridization. This is why the dsRNA preparations contained single-stranded RNA (ssRNA) as contaminant. In order to remove these ssRNA contaminants, the reactions were treated, after hybridization, with the single-strand-specific ribonucleases bovine pancreatic RNase A and Aspergillus oryzae RNase T1. RNase A is an endoribonuclease which is specific for pyrimidines. RNase T1 is an endoribonuclease which preferentially cleaves at the 3′ side of guanosines. dsRNA is no substrate for these ribonucleases. For the RNase treatment, the reactions in 300 μl of Tris, pH 7.4, 300 mM NaCl and 5 mM EDTA were treated with 1.2 μl of RNaseA at a concentration of 10 mg/ml and 2 μl of RNaseT1 at a concentration of 290 μg/ml. The reactions were incubated for 1.5 hours at 30° C. Thereupon, the RNases were denatured by addition of 5 μl of proteinase K at a concentration of 20 mg/ml and 10 μl of 20% SDS and incubation for 30 minutes at 37° C. The dsRNA was purified by phenol extraction and precipitated with ethanol. To verify the completeness of the RNase digestion, two control reactions were treated with ssRNA analogously to the hybridization reactions.
- The dried pellet was taken up in 15 μl of TE buffer, pH 6.5, and subjected to native polyacrylamide gel electrophoresis on an 8% gel. The acrylamide gel was subsequently stained in an ethidium bromide solution and washed in a water bath.
FIG. 2 shows the RNA which had been visualized in a UV transilluminator. The sense RNA which had been applied tolane 1 and the antisense RNA which had been applied tolane 2 showed a different migration behavior under the chosen conditions than the dsRNA of the hybridization reaction which had been applied tolane 3. The RNase-treated sense RNA and antisense RNA which had been applied tolanes lane 6 is resistant to RNase treatment. The band which migrates faster in the native gel in comparison with the dsRNA applied tolane 3 results from dsRNA which is free from ssRNA. In addition to the dominant main band, weaker bands which migrate faster are observed after the RNase treatment. - In-Vitro Transcription Test with Human Nuclear Extract:
- Using the HeLaScribe® Nuclear Extract in vitro transcription kit by Promega, Madison, USA, the transcription efficiency of the abovementioned DNA fragment which is present in plasmid pCMV1200 and homologous to the “positive control DNA” was determined in the presence of the dsRNA (dsRNA-CMV5) with sequence homology. Also, the effect of the dsRNA without sequence homology, which corresponds to the yellow fluorescent protein (YFP) gene (dsRNA-YRP), was studied. This dsRNA had been generated analogously to the dsRNA with sequence homology. The sequence of a strand of this dsRNA can be found in sequence listing No. 5. Plasmid pCMV1200 was used as template for the run-off transcription. It carries the “immediate early” cytomegalovirus promoter which is recognized by the eukaryotic RNA polymerase II, and a transcribable DNA fragment. Transcription was carried out by means of the HeLa nuclear extract, which contains all the proteins which are necessary for transcription. By addition of [•-32P]rGTP to the transcription reaction, radiolabeled transcript was obtained. The [•-32P]rGTP used had a specific activity of 400 Ci/mmol, 10 mCi/ml. 3 mM MgCl2, in each case 400 μM rATP, rCTP, rUTP, 16 μM rGTP, 0.4 μM [•-32P]rGTP and depending on the
experiment 1 fmol of linearized plasmid DNA and various amounts of dsRNA in transcription buffer were employed per reaction. Each batch was made up to a volume of 8.5 μl with H2O. The reactions were mixed carefully. To start the transcription, 4 U HeLa nuclear extract in a volume of 4 μl were added and incubated for 60 minutes at 30° C. The reaction was stopped by addition of 87.5 μl of quench mix which had been warmed to 30° C. To remove the proteins, the reactions were treated with 100 μl of phenol/chloroform/isoamyl alcohol (25:24:1 v/v/v) saturated with TE buffer, pH 5.0, and the reactions were mixed vigorously for 1 minute. For phase separation, the reactions were spun for approximately 1 minute at 12 000 rpm and the top phase was transferred into a fresh reaction vessel. Each reaction was treated with 250 μl of ethanol. The reactions were mixed thoroughly and incubated for at least 15 minutes on dry ice/methanol. To precipitate the RNA, the reactions were spun for 20 minutes at 12 000 rpm and 40° C. The supernatant was discarded. The pellet was dried in vacuo for 15 minutes and resuspended in 10 μl of H2O. Each reaction was treated with 10 μl of denaturing loading buffer. The free GTP was separated from the transcript formed by means of denaturing polyacrylamide gel electrophoresis on an 8% gel with 7 M urea. The RNA transcripts formed upon transcription with HeLa nuclear extract, in denaturing loading buffer, were heated for 10 minutes at 90° C. and 10 μl aliquots were applied immediately to the freshly washed pockets. The electrophoresis was run at 40 MA. The amount of the radioactive ssRNA formed upon transcription was analyzed after electrophoresis with the aid of an Instant Imager. -
FIG. 3 shows the radioactive RNA from a representative test, shown by means of the Instant Imager. Samples obtained from the following transcription reactions were applied: - Lane 1: without template DNA, without dsRNA;
- Lane 1: 50 ng of template DNA, without dsRNA;
- Lane 3: 50 ng of template DNA, 0.5 μg of dsRNA YFP;
- Lane 4: 50 ng of template DNA, 1.5 μg of dsRNA YFP;
- Lane 5: 50 ng of template DNA, 3 μg of dsRNA YFP;
- Lane 6: 50 ng of template DNA, 5 μg of dsRNA YFP;
- Lane 7: without template DNA, 1.5° dsRNA YFP;
-
Lane 8; 50 ng of template DNA, without dsRNA; - Lane 9: 50 ng of template DNA, 0.5 μg of dsRNA CMV5;
- Lane 10: 50 ng of template DNA, 1.5 μg of dsRNA CMV5;
- Lane 11: 50 ng of template DNA, 3 μg of dsRNA CMV5;
- Lane 12: 50 ng of template DNA, 5 μg of dsRNA CMV5;
- It emerged that the amount of transcript was reduced markedly in the presence of dsRNA with sequence homology in comparison with the control reaction without dsRNA and with the reactions with dsRNA YFP without sequence homology. The positive control in
lane 2 shows that radioactive transcript was formed upon the in-vitro transcription with HeLa nuclear extract. The reaction is used for comparison with the transcription reactions which had been incubated in the presence of dsRNA.Lanes 3 to 6 show that the addition of non-sequentially-specific dsRNA YFP had no effect on the amount of transcript formed.Lanes 9 to 12 show that the addition of an amount of between 1.5 and 3 μg of sequentially-specific dsRNA CMV5 leads to a reduction in the amount of transcript formed. In order to exclude that the effects observed are based not on the dsRNA but on any contamination which might have been carried along accidentally during the preparation of the dsRNA, a further control was carried out. Single-stranded RNA was transcribed as described above and subsequently subjected to the RNase treatment. It was demonstrated by means of native polyacrylamide gel electrophoresis that the ssRNA had been degraded completely. This reaction was subjected to phenol extraction and ethanol precipitation and subsequently taken up in PE buffer, as were the hybridization reactions. This gave a sample which contained no RNA but had been treated with the same enzymes and buffers as the dsRNA.Lane 8 shows that the addition of this sample had no effect on transcription. The reduction of the transcript upon addition of sequence-specific dsRNA can therefore be ascribed unequivocally to the dsRNA itself. The reduction of the amount of transcript of a gene in the presence of dsRNA in a human transcription system indicates an inhibition of the expression of the gene in question. This effect can be attributed to a novel mechanism caused by the dsRNA. - The test system used for these in-vivo experiments was the murine fibroblast cell line NIH3T3, ATCC CRL-1658. The YFP gene was introduced into the nuclei with the aid of microinjection. Expression of YFP was studied under the effect of simultaneously cotransfected dsRNA with sequence homology. This dsRNA YFP shows homology with the 5′-region of the YFP gene over a length of 315 bp. The nucleotide sequence of a strand of the dsRNA YRP is shown in sequence listing No. 5. Evaluation under the fluorescence microscope was carried out 3 hours after injection with reference to the greenish-yellow fluorescence of the YFP formed.
- Construction of the Template Plasmid, and Preparation of the dsRNA:
- A plasmid was constructed following the same principle as described in use example 1 to act as template for the production of the YFP dsRNA by means of T7 and SP6 in-vitro transcription. Using the primer Eco_T7_YFP as shown in sequence listing No. 6 and Bam_SP6_YFP as shown in sequence listing No. 7, the desired gene fragment was amplified by PCR and used analogously to the above description for preparing the dsRNA. The dsRNA YFP obtained is identical to the dsRNA used in use example 1 as non-sequence-specific control.
- A dsRNA linked chemically at the 3′ end of the RNA as shown in sequence listing No. 8 to the 5′ end of the complementary RNA via a C18 linker group was prepared (L-dsRNA). To this end, synthons modified by disulfide bridges were used. The 3′-terminal synthon is bound to the solid support via the 3′ carbon with an aliphatic linker group via a disulfide bridge. In the 5′-terminal synthon of the complementary oligoribonucleotide which is complementary to the 3′-terminal synthon of the one oligoribonucleotide, the 5′-trityl protecting group is bound via a further aliphatic linker and a disulfide bridge. Following synthesis of the two single strands, removal of the protecting groups and hybridization of the complementary oligoribonucleotides, the thiol groups which form are brought into spatial vicinity. The single strands are linked to each other by oxidation via their aliphatic linkers and a disulfide bridge. This is followed by purification with the aid of HPLC.
- The cells were incubated in DMEM supplemented with 4.5 g/l glucose, 10% fetal bovine serum in culture dishes at 37° C. under a 7.5% CO2 atmosphere and passaged before reaching confluence. The cells were detached with trypsin/EDTA. To prepare for microinjection, the cells were transferred into Petri dishes and incubated further until microcolonies formed.
- For the microinjection, the culture dishes were removed from the incubator for approximately 10 minutes. Approximately 50 nuclei were injected singly per reaction within a marked area using the AIS microinjection system from Carl Zeiss, Göttingen, Germany. The cells were subsequently incubated for three more hours. For the microinjection, borosilicate glass capillaries from Hilgenberg GmbH, Malsfeld, Germany, with a diameter of less than 0.5 μm at the tip were prepared. The microinjection was carried out using a micromanipulator from Narishige Scientific Instrument Lab., Tokyo, Japan. The injection time was 0.8 seconds and the pressure was approximately 100 hPa. The transfection was carried out using the plasmid pCDNA YFP, which contains an approximately 800 bp BamHI/EcoRI fragment with the YFP gene in vector pcDNA3. The samples injected into the nuclei contained 0.01 μg/μl of pCDNA-YFP and Texas Red coupled to dextran-70000 in 14 mM NaCl, 3 mM KCl, 10 mM KPO4 [sic], ph 7.5. Approximately 100 μl of RNA with a concentration of 1 μM or, in the case of the L-dsRNA, 375 μM were additionally added.
- The cells were studied under a fluorescence microscope with excitation with the light of the excitation wavelength of Texas Red, 568 nm, or of YFP, 488 nm. Individual cells were documented by means of a digital cameras.
FIGS. 4 a-e show the result for NIH3T3 cells. In the cells shown inFIG. 4 a, sense-YFP-ssRNA has been injected, inFIG. 4 b antisense-YFP-ssRNA, inFIG. 4 c dsRNA-YFP, inFIG. 4 d no RNA and inFIG. 4 e L-dsRNA. - The field on the left shows in each case the fluorescence of cells with excitation at 568 nm. The fluorescence of the same cells at an excitation of 48.8 nm is seen on the right. The Texas Red fluorescence of all the cells shown demonstrates that the injection solution had been applied successfully into the nuclei and that cells with successful hits were still alive after three hours. Dead cells no longer showed Texas Red fluorescence.
- The right fields of each of
FIGS. 4 a and 4 b show that YFP expression was not visibly inhibited when the single-stranded RNA was injected into the nuclei. The right field ofFIG. 4 c shows cells whose YFP fluorescence was no longer detectable after the injection of dsRNA-YFP.FIG. 4 d shows cells into which no RNA had been injected, as control. The cell shown inFIG. 4 e shows YFP fluorescence which can no longer be detected owing to the injection of the L-dsRNA which shows regions with sequence homology to the YFP gene. This result demonstrates that even shorter dsRNAs can be used for specifically inhibiting gene expression in mammals when the double strands are stabilized by chemically linking the single strands. -
- Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. (1999). Photoregulation der Bildung und Dissoziation eines DNA-Duplexes durch cis-trans-Isomerisierung einer Azobenzoleinheit. Angew. Chem. 111, 2547-2549.
- Azhayeva, E., Azhayev, A., Auriola, S., Tengvall, U., Urtti, A. & Lönnberg, H. (1997). Inhibitory properties of double helix forming circular oligonucleotides. Nucl. Acids Res. 25, 4954-4961.
- Castelli, J., Wood, K. A. & Youle, R. J. (1998). The 2-5 A system in viral infection and apoptosis. Biomed. Pharmacother. 52, 386-390.
- Dolinnaya, N. G., Blumenfeld, M., Merenkova, I., Oretskaya, T. S., Krynetskaya, N. F., Ivanovskaya, M. G., Vasseur, M. & Shabarova, Z. A. (1993). Oligonucleotide circularization by template-directed chemical ligation. Nucl. Acids Res. 21, 5403-5407.
- Expert-Bezancon, A., Milet, M. & Carbon, P. (1983). Precise localization of several covalent RNA-RNA cross-link in Escherichia coli 16S RNA. Eur. J. Biochem. 136, 267-274.
- Fire, A., Xu, S., Mongomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
- Gao, H., Yang, M., Patel, R. & Cook, A. F. (1995). Circulaization of oligonucleotides by disulfide bridge formation. Nucl. Acids Res. 23, 2025-2029.
- Gryaznov, S. M. & Letsinger, R. L. (1993). Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. Nucl. Acids Res. 21, 1403-1408.
- Kaufman, R. J. (1999). Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: A new role for an old actor. Proc. Natl. Acad. Sci. USA 96, 11693-11695.
- Lipson, S. E. & Hearst, J. E. (1988). Psoralen cross-linking of ribosomal RNA. In Methods in Enzymology Anonymous pp. 330-341.
- Liu, Z. R., Sargueil, B. & Smith, C. W. (1998). Detection of a novel ATP-dependent cross-linked protein at the 5′ splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol. Cell. Biol. 18, 6910-6920.
- Micura, R. (1999). Cyclic oligoribonucleotides (RNA) by solid-phase synthesis. Chem. Eur. J. 5, 2077-2082.
- Skripkin, E., Isel, C., Marquet, R., Ehresmann, B. & Ehresmann, C. (1996). Prsoralen crosslinking between human
immunodeficiency virus type 1 RNA and primer tRNA3 Lys . Nucl. Acids Res. 24, 509-514. - Wang, S. & Kool, E. T. (1994). Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucl. Acids Res. 22, 2326-2333.
- Wang, Z. & Rana, T. M. (1996). RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking. Biochem. 35, 6491-6499.
- Watkins, K. P. & Agabian, N. (1991). In vivo UV cross-linking of U snRNAs that participate in trypanosome transplicing. Genes &
Development 5, 1859-1869. - Wengel, J. (1999). Synthesis of 3′-C- and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res. 32, 301-310.
- Zwieb, C., Ross, A., Rinke, J., Meinke, M. & Brimacombe, R. (1978). Evidence for RNA-RNA cross-link formation in Escherichia coli ribosomes. Nucl. Acids Res. 5, 2705-2720.
Claims (16)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/982,325 US20080171862A1 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US13/656,548 US9902954B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,513 US8877726B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,540 US20130164366A1 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/753,438 US20130177631A1 (en) | 1999-01-30 | 2013-01-29 | Method and medicament for inhibiting the expression of a given gene |
US14/218,476 US9133454B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US14/218,489 US9902955B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US15/870,380 US20180179526A1 (en) | 1999-01-30 | 2018-01-12 | Method and Medicament For Inhibiting The Expression of A Given Gene |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19903713 | 1999-01-30 | ||
DEDE19903713.2 | 1999-01-30 | ||
DEDE19956568.6 | 1999-11-24 | ||
DE19956568A DE19956568A1 (en) | 1999-01-30 | 1999-11-24 | Method and medicament for inhibiting the expression of a given gene |
PCT/DE2000/000244 WO2000044895A1 (en) | 1999-01-30 | 2000-01-29 | Method and medicament for inhibiting the expression of a defined gene |
US88980201A | 2001-09-17 | 2001-09-17 | |
US10/612,179 US8202980B2 (en) | 1999-01-30 | 2003-07-02 | Method and medicament for inhibiting the expression of a given gene |
US11/982,325 US20080171862A1 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/612,179 Continuation US8202980B2 (en) | 1999-01-30 | 2003-07-02 | Method and medicament for inhibiting the expression of a given gene |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/656,548 Continuation US9902954B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,513 Continuation US8877726B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,540 Continuation US20130164366A1 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/753,438 Continuation US20130177631A1 (en) | 1999-01-30 | 2013-01-29 | Method and medicament for inhibiting the expression of a given gene |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080171862A1 true US20080171862A1 (en) | 2008-07-17 |
Family
ID=26051592
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/382,395 Expired - Fee Related US8101584B2 (en) | 1999-01-30 | 2003-03-06 | Method and medicament for inhibiting the expression of a given gene |
US10/382,768 Expired - Fee Related US8168776B2 (en) | 1999-01-30 | 2003-03-06 | Method for making a 21 nucleotide double stranded RNA chemically linked at one end |
US10/383,099 Expired - Fee Related US8119608B2 (en) | 1999-01-30 | 2003-03-06 | Method and medicament for inhibiting the expression of a given gene |
US10/612,179 Expired - Fee Related US8202980B2 (en) | 1999-01-30 | 2003-07-02 | Method and medicament for inhibiting the expression of a given gene |
US11/982,345 Expired - Fee Related US8729037B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,305 Expired - Fee Related US8101742B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,441 Expired - Fee Related US8114981B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,325 Abandoned US20080171862A1 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,425 Expired - Fee Related US8183362B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,434 Expired - Fee Related US8114851B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US13/656,540 Abandoned US20130164366A1 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,548 Expired - Fee Related US9902954B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,513 Expired - Fee Related US8877726B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/753,438 Abandoned US20130177631A1 (en) | 1999-01-30 | 2013-01-29 | Method and medicament for inhibiting the expression of a given gene |
US14/218,476 Expired - Fee Related US9133454B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US14/218,489 Expired - Fee Related US9902955B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US15/870,380 Abandoned US20180179526A1 (en) | 1999-01-30 | 2018-01-12 | Method and Medicament For Inhibiting The Expression of A Given Gene |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/382,395 Expired - Fee Related US8101584B2 (en) | 1999-01-30 | 2003-03-06 | Method and medicament for inhibiting the expression of a given gene |
US10/382,768 Expired - Fee Related US8168776B2 (en) | 1999-01-30 | 2003-03-06 | Method for making a 21 nucleotide double stranded RNA chemically linked at one end |
US10/383,099 Expired - Fee Related US8119608B2 (en) | 1999-01-30 | 2003-03-06 | Method and medicament for inhibiting the expression of a given gene |
US10/612,179 Expired - Fee Related US8202980B2 (en) | 1999-01-30 | 2003-07-02 | Method and medicament for inhibiting the expression of a given gene |
US11/982,345 Expired - Fee Related US8729037B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,305 Expired - Fee Related US8101742B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,441 Expired - Fee Related US8114981B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/982,425 Expired - Fee Related US8183362B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US11/982,434 Expired - Fee Related US8114851B2 (en) | 1999-01-30 | 2007-10-31 | Method and medicament for inhibiting the expression of a given gene |
US13/656,540 Abandoned US20130164366A1 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,548 Expired - Fee Related US9902954B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/656,513 Expired - Fee Related US8877726B2 (en) | 1999-01-30 | 2012-10-19 | Method and medicament for inhibiting the expression of a given gene |
US13/753,438 Abandoned US20130177631A1 (en) | 1999-01-30 | 2013-01-29 | Method and medicament for inhibiting the expression of a given gene |
US14/218,476 Expired - Fee Related US9133454B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US14/218,489 Expired - Fee Related US9902955B2 (en) | 1999-01-30 | 2014-03-18 | Method and medicament for inhibiting the expression of a given gene |
US15/870,380 Abandoned US20180179526A1 (en) | 1999-01-30 | 2018-01-12 | Method and Medicament For Inhibiting The Expression of A Given Gene |
Country Status (14)
Country | Link |
---|---|
US (17) | US8101584B2 (en) |
EP (6) | EP1798285B1 (en) |
JP (14) | JP2003502012A (en) |
AT (3) | ATE297463T1 (en) |
AU (2) | AU778474B2 (en) |
CA (1) | CA2359180C (en) |
CY (3) | CY1108896T1 (en) |
DE (7) | DE19956568A1 (en) |
DK (4) | DK2363479T3 (en) |
ES (5) | ES2321409T3 (en) |
HK (1) | HK1160487A1 (en) |
PT (4) | PT1214945E (en) |
WO (1) | WO2000044895A1 (en) |
ZA (1) | ZA200105909B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040053875A1 (en) * | 1999-01-30 | 2004-03-18 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US8772262B2 (en) | 2010-10-14 | 2014-07-08 | Mie University | Preventive or therapeutic agent for fibrosis |
US9200276B2 (en) | 2009-06-01 | 2015-12-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
US10731157B2 (en) | 2015-08-24 | 2020-08-04 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotide nanoparticles for the modulation of gene expression and uses thereof |
Families Citing this family (656)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030206887A1 (en) * | 1992-05-14 | 2003-11-06 | David Morrissey | RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA) |
US20030216335A1 (en) * | 2001-11-30 | 2003-11-20 | Jennifer Lockridge | Method and reagent for the modulation of female reproductive diseases and conditions |
US9096636B2 (en) | 1996-06-06 | 2015-08-04 | Isis Pharmaceuticals, Inc. | Chimeric oligomeric compounds and their use in gene modulation |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
AUPP249298A0 (en) | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
EP2302057B1 (en) | 1998-03-20 | 2019-02-20 | Commonwealth Scientific and Industrial Research Organisation | Control of gene expression |
WO2000044914A1 (en) * | 1999-01-28 | 2000-08-03 | Medical College Of Georgia Research Institute, Inc. | Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna |
US7601494B2 (en) | 1999-03-17 | 2009-10-13 | The University Of North Carolina At Chapel Hill | Method of screening candidate compounds for susceptibility to biliary excretion |
US20070021979A1 (en) * | 1999-04-16 | 2007-01-25 | Cosentino Daniel L | Multiuser wellness parameter monitoring system |
BR0009884A (en) * | 1999-04-21 | 2002-01-08 | American Home Prod | Processes and compositions for inhibiting the function of polynucleotide sequences |
US6423885B1 (en) | 1999-08-13 | 2002-07-23 | Commonwealth Scientific And Industrial Research Organization (Csiro) | Methods for obtaining modified phenotypes in plant cells |
US7067722B2 (en) | 1999-08-26 | 2006-06-27 | Monsanto Technology Llc | Nucleic acid sequences and methods of use for the production of plants with modified polyunsaturated fatty acids |
BR0013607A (en) | 1999-08-26 | 2002-04-30 | Calgene Llc | Nucleic acid sequences and processes of use for the production of plants with modified polyunsaturated fatty acids |
US7531718B2 (en) | 1999-08-26 | 2009-05-12 | Monsanto Technology, L.L.C. | Nucleic acid sequences and methods of use for the production of plants with modified polyunsaturated fatty acids |
GB9925459D0 (en) * | 1999-10-27 | 1999-12-29 | Plant Bioscience Ltd | Gene silencing |
GB9927444D0 (en) * | 1999-11-19 | 2000-01-19 | Cancer Res Campaign Tech | Inhibiting gene expression |
US7829693B2 (en) | 1999-11-24 | 2010-11-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of a target gene |
DE10100586C1 (en) * | 2001-01-09 | 2002-04-11 | Ribopharma Ag | Inhibiting gene expression in cells, useful for e.g. treating tumors, by introducing double-stranded complementary oligoRNA having unpaired terminal bases |
DE10160151A1 (en) * | 2001-01-09 | 2003-06-26 | Ribopharma Ag | Inhibiting expression of target gene, useful e.g. for inhibiting oncogenes, by administering double-stranded RNA complementary to the target and having an overhang |
US8273866B2 (en) | 2002-02-20 | 2012-09-25 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA) |
US7491805B2 (en) | 2001-05-18 | 2009-02-17 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
US7833992B2 (en) | 2001-05-18 | 2010-11-16 | Merck Sharpe & Dohme | Conjugates and compositions for cellular delivery |
US8202979B2 (en) | 2002-02-20 | 2012-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid |
WO2003070918A2 (en) | 2002-02-20 | 2003-08-28 | Ribozyme Pharmaceuticals, Incorporated | Rna interference by modified short interfering nucleic acid |
AU2001245793A1 (en) | 2000-03-16 | 2001-09-24 | Cold Spring Harbor Laboratory | Methods and compositions for rna interference |
US8202846B2 (en) | 2000-03-16 | 2012-06-19 | Cold Spring Harbor Laboratory | Methods and compositions for RNA interference |
PT2028278E (en) * | 2000-03-30 | 2014-05-28 | Max Planck Ges Zur Förderung Der Wissenschaften E V | Rna sequence-specific mediators of rna interference |
EP1309726B2 (en) | 2000-03-30 | 2018-10-03 | Whitehead Institute For Biomedical Research | Rna sequence-specific mediators of rna interference |
US20030190635A1 (en) * | 2002-02-20 | 2003-10-09 | Mcswiggen James A. | RNA interference mediated treatment of Alzheimer's disease using short interfering RNA |
US20080032942A1 (en) | 2000-08-30 | 2008-02-07 | Mcswiggen James | RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA) |
WO2002059257A2 (en) * | 2000-10-31 | 2002-08-01 | Commonwealth Scientific And Industrial Research Organisation | Method and means for producing barley yellow dwarf virus resistant cereal plants |
US20020173478A1 (en) * | 2000-11-14 | 2002-11-21 | The Trustees Of The University Of Pennsylvania | Post-transcriptional gene silencing by RNAi in mammalian cells |
EP1873259B1 (en) | 2000-12-01 | 2012-01-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | RNA interference mediated by 21 and 22nt RNAs |
US7423142B2 (en) | 2001-01-09 | 2008-09-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of anti-apoptotic genes |
US7767802B2 (en) | 2001-01-09 | 2010-08-03 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of anti-apoptotic genes |
US8546143B2 (en) | 2001-01-09 | 2013-10-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of a target gene |
WO2003035869A1 (en) * | 2001-10-26 | 2003-05-01 | Ribopharma Ag | Use of a double-stranded ribonucleic acid for specifically inhibiting the expression of a given target gene |
DE10100588A1 (en) * | 2001-01-09 | 2002-07-18 | Ribopharma Ag | Inhibiting expression of target genes, useful e.g. for treating tumors, by introducing into cells two double-stranded RNAs that are complementary to the target |
DE10100587C1 (en) * | 2001-01-09 | 2002-11-21 | Ribopharma Ag | Inhibiting expression of target genes, e.g. oncogenes, in cells, by introduction of complementary double-stranded oligoribonucleotide, after treating the cell with interferon |
GB0104948D0 (en) * | 2001-02-28 | 2001-04-18 | Novartis Res Foundation | Novel methods |
EP1386004A4 (en) | 2001-04-05 | 2005-02-16 | Ribozyme Pharm Inc | Modulation of gene expression associated with inflammation proliferation and neurite outgrowth, using nucleic acid based technologies |
US20050196765A1 (en) * | 2001-05-18 | 2005-09-08 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA) |
US20050148530A1 (en) | 2002-02-20 | 2005-07-07 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA) |
AU2002316135B9 (en) | 2001-05-18 | 2009-05-28 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
US20050158735A1 (en) * | 2001-05-18 | 2005-07-21 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA) |
US20050159382A1 (en) * | 2001-05-18 | 2005-07-21 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA) |
US20050196767A1 (en) * | 2001-05-18 | 2005-09-08 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA) |
US20050124566A1 (en) * | 2001-05-18 | 2005-06-09 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA) |
US20030175950A1 (en) * | 2001-05-29 | 2003-09-18 | Mcswiggen James A. | RNA interference mediated inhibition of HIV gene expression using short interfering RNA |
US7109165B2 (en) | 2001-05-18 | 2006-09-19 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
WO2005014811A2 (en) * | 2003-08-08 | 2005-02-17 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF XIAP GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US20040198682A1 (en) * | 2001-11-30 | 2004-10-07 | Mcswiggen James | RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA) |
US9994853B2 (en) | 2001-05-18 | 2018-06-12 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
US20040019001A1 (en) * | 2002-02-20 | 2004-01-29 | Mcswiggen James A. | RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA |
WO2004097020A2 (en) * | 2003-04-25 | 2004-11-11 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of map kinase gene expression |
US20050203040A1 (en) * | 2001-05-18 | 2005-09-15 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA) |
US20050176025A1 (en) * | 2001-05-18 | 2005-08-11 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA) |
US20050288242A1 (en) * | 2001-05-18 | 2005-12-29 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA) |
US20050159378A1 (en) | 2001-05-18 | 2005-07-21 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA) |
WO2003070884A2 (en) * | 2002-02-20 | 2003-08-28 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF MDR P-GLYCOPROTEIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7517864B2 (en) | 2001-05-18 | 2009-04-14 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA) |
US20050143333A1 (en) * | 2001-05-18 | 2005-06-30 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA) |
US20050256068A1 (en) | 2001-05-18 | 2005-11-17 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA) |
WO2003070887A2 (en) * | 2002-02-20 | 2003-08-28 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF POLYCOMB GROUP PROTEIN EZH2 GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
AU2004266311B2 (en) * | 2001-05-18 | 2009-07-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US20050233997A1 (en) * | 2001-05-18 | 2005-10-20 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA) |
US20050014172A1 (en) | 2002-02-20 | 2005-01-20 | Ivan Richards | RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA) |
US20050182007A1 (en) * | 2001-05-18 | 2005-08-18 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA) |
US20050159381A1 (en) * | 2001-05-18 | 2005-07-21 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA) |
US8008472B2 (en) | 2001-05-29 | 2011-08-30 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA) |
WO2003006477A1 (en) | 2001-07-12 | 2003-01-23 | University Of Massachusetts | IN VIVO PRODUCTION OF SMALL INTERFERING RNAs THAT MEDIATE GENE SILENCING |
US8022272B2 (en) | 2001-07-13 | 2011-09-20 | Sungene Gmbh & Co. Kgaa | Expression cassettes for transgenic expression of nucleic acids |
US20040235171A1 (en) * | 2001-07-17 | 2004-11-25 | Milner Ann Josephine | Silencing of gene expression by sirna |
CA2454183C (en) | 2001-07-23 | 2016-09-06 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for rnai mediated inhibition of gene expression in mammals |
US10590418B2 (en) | 2001-07-23 | 2020-03-17 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for RNAi mediated inhibition of gene expression in mammals |
US7456335B2 (en) * | 2001-09-03 | 2008-11-25 | Basf Plant Science Gmbh | Nucleic acid sequences and their use in methods for achieving pathogen resistance in plants |
DE10163098B4 (en) | 2001-10-12 | 2005-06-02 | Alnylam Europe Ag | Method for inhibiting the replication of viruses |
US7745418B2 (en) | 2001-10-12 | 2010-06-29 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting viral replication |
CN1604783A (en) * | 2001-10-26 | 2005-04-06 | 里伯药品公司 | Drug for treating a fibrotic disease through rna interfence |
CN1608133A (en) * | 2001-10-26 | 2005-04-20 | 里伯药品公司 | Use of a double-stranded ribonucleic acid for treating an infection with a positivestrand rna-virus |
DE10230996A1 (en) * | 2001-10-26 | 2003-07-17 | Ribopharma Ag | Method for inhibiting viral replication, useful particularly for treating hepatitis C infection, by altering the 3'-untranslated region of the virus |
DE10202419A1 (en) * | 2002-01-22 | 2003-08-07 | Ribopharma Ag | Method of inhibiting expression of a target gene resulting from chromosome aberration |
US20060009409A1 (en) | 2002-02-01 | 2006-01-12 | Woolf Tod M | Double-stranded oligonucleotides |
WO2003064621A2 (en) | 2002-02-01 | 2003-08-07 | Ambion, Inc. | HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES |
EP2128248B2 (en) * | 2002-02-01 | 2017-01-11 | Life Technologies Corporation | Oligonucleotide compositions with enhanced efficiency |
AU2003219818A1 (en) * | 2002-02-20 | 2003-09-09 | Ribozyme Pharmaceuticals, Incorporated | RNA INTERFERENCE MEDIATED INHIBITION OF EPIDERMAL GROWTH FACTOR RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US20090253774A1 (en) | 2002-02-20 | 2009-10-08 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF PLATELET DERIVED GROWTH FACTOR (PDGF) AND PLATELET DERIVED GROWTH FACTOR RECEPTOR (PDGFR) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7691999B2 (en) | 2002-02-20 | 2010-04-06 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA) |
US9181551B2 (en) | 2002-02-20 | 2015-11-10 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US7897752B2 (en) | 2002-02-20 | 2011-03-01 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA) |
US7928218B2 (en) | 2002-02-20 | 2011-04-19 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA) |
US7910724B2 (en) | 2002-02-20 | 2011-03-22 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA) |
US20090137510A1 (en) * | 2002-02-20 | 2009-05-28 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF NF-KAPPA B/ REL-A GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US8258288B2 (en) | 2002-02-20 | 2012-09-04 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA) |
CA2463595A1 (en) * | 2002-02-20 | 2003-08-28 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of bcl2 gene expression using short interfering nucleic acid (sina) |
US7928219B2 (en) | 2002-02-20 | 2011-04-19 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (SINA) |
EP1710307A3 (en) * | 2002-02-20 | 2007-06-06 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
US20090099117A1 (en) | 2002-02-20 | 2009-04-16 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF MYOSTATIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US8013143B2 (en) | 2002-02-20 | 2011-09-06 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA) |
US8232383B2 (en) * | 2002-02-20 | 2012-07-31 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
EP1465910A4 (en) * | 2002-02-20 | 2005-03-16 | Sirna Therapeutics Inc | INHIBITION OF EXPRESSION OF RNA I-MEDIATED GENE CHECKPOINT KINASE-1 (CHK-1) USING NEAR-INTERFERENCE NUCLEIC ACID |
US20090247613A1 (en) * | 2002-02-20 | 2009-10-01 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF B-CELL CLL/LYMPHOMA-2 (BCL2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7700760B2 (en) | 2002-02-20 | 2010-04-20 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA) |
CA2457528C (en) | 2002-02-20 | 2011-07-12 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of hepatitis c virus (hcv) gene expression using short interfering nucleic acid (sina) |
US7897753B2 (en) | 2002-02-20 | 2011-03-01 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of XIAP gene expression using short interfering nucleic acid (siNA) |
AU2003210895A1 (en) * | 2002-02-20 | 2003-09-09 | Ribozyme Pharmaceuticals, Inc. | Rna interference mediated inhibition of cyclin d1 gene expression using short interfering nucleic acid (sina) |
WO2003070966A2 (en) * | 2002-02-20 | 2003-08-28 | Sirna Therapeutics, Inc | RNA INTERFERENCE MEDIATED TARGET DISCOVERY AND TARGET VALIDATION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7897757B2 (en) | 2002-02-20 | 2011-03-01 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA) |
US20090253773A1 (en) | 2002-02-20 | 2009-10-08 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7928220B2 (en) | 2002-02-20 | 2011-04-19 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA) |
US8067575B2 (en) | 2002-02-20 | 2011-11-29 | Merck, Sharp & Dohme Corp. | RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA) |
US7683165B2 (en) | 2002-02-20 | 2010-03-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA) |
US7662952B2 (en) | 2002-02-20 | 2010-02-16 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acid (siNA) |
US7667030B2 (en) | 2002-02-20 | 2010-02-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA) |
EP1432724A4 (en) | 2002-02-20 | 2006-02-01 | Sirna Therapeutics Inc | RNA inhibition mediated inhibition of MAP KINASE GENES |
EP1741781A3 (en) * | 2002-02-20 | 2007-06-06 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA) |
US7795422B2 (en) | 2002-02-20 | 2010-09-14 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA) |
JP2005517423A (en) * | 2002-02-20 | 2005-06-16 | サーナ・セラピューティクス・インコーポレイテッド | RNA interference-mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acids (siNA) |
US9657294B2 (en) | 2002-02-20 | 2017-05-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
AU2003219833A1 (en) * | 2002-02-20 | 2003-09-09 | Sirna Therapeutics Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US7667029B2 (en) | 2002-02-20 | 2010-02-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of checkpoint kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA) |
US7935812B2 (en) | 2002-02-20 | 2011-05-03 | Merck Sharp & Dohme Corp. | RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA) |
US7893248B2 (en) | 2002-02-20 | 2011-02-22 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA) |
US20090192105A1 (en) | 2002-02-20 | 2009-07-30 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCELIC ACID (siNA) |
US7678897B2 (en) | 2002-02-20 | 2010-03-16 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA) |
US7683166B2 (en) | 2002-02-20 | 2010-03-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA) |
EP1478730A4 (en) * | 2002-02-20 | 2006-01-25 | Sirna Therapeutics Inc | RNA INTERFERENCE-MEDIATED INHIBITION OF EXPRESSION OF GENES FOR TNF AND TNF RECEPTOR SUPERFAMILIES USING siNA (SHORT INTERFERING NUCLEIC ACID) |
US7566813B2 (en) | 2002-03-21 | 2009-07-28 | Monsanto Technology, L.L.C. | Nucleic acid constructs and methods for producing altered seed oil compositions |
US7166771B2 (en) | 2002-06-21 | 2007-01-23 | Monsanto Technology Llc | Coordinated decrease and increase of gene expression of more than one gene using transgenic constructs |
US7601888B2 (en) | 2002-03-21 | 2009-10-13 | Monsanto Technology L.L.C. | Nucleic acid constructs and methods for producing altered seed oil compositions |
CA2482904A1 (en) | 2002-04-18 | 2003-10-23 | Lynkeus Biotech Gmbh | Means and methods for the specific modulation of target genes in the cns and the eye and methods for their identification |
AU2003228667A1 (en) * | 2002-04-22 | 2003-12-19 | Sirna Therapeutics Inc. | Nucleic acid mediated disruption of hiv fusogenic peptide interactions |
US20040180438A1 (en) | 2002-04-26 | 2004-09-16 | Pachuk Catherine J. | Methods and compositions for silencing genes without inducing toxicity |
EP1546379A4 (en) | 2002-05-23 | 2007-09-26 | Ceptyr Inc | Modulation of ptp1b signal transduction by rna interference |
US20040248094A1 (en) * | 2002-06-12 | 2004-12-09 | Ford Lance P. | Methods and compositions relating to labeled RNA molecules that reduce gene expression |
US20100075423A1 (en) * | 2002-06-12 | 2010-03-25 | Life Technologies Corporation | Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference |
US20040033602A1 (en) * | 2002-06-12 | 2004-02-19 | Ambion, Inc. | Methods and compositions relating to polypeptides with RNase III domains that mediate RNA interference |
US7655790B2 (en) | 2002-07-12 | 2010-02-02 | Sirna Therapeutics, Inc. | Deprotection and purification of oligonucleotides and their derivatives |
US7148342B2 (en) | 2002-07-24 | 2006-12-12 | The Trustees Of The University Of Pennyslvania | Compositions and methods for sirna inhibition of angiogenesis |
US7399851B2 (en) | 2002-07-25 | 2008-07-15 | Dana Farber Cancer Institute, Inc. | Composition and method for imaging cells |
WO2004013333A2 (en) | 2002-07-26 | 2004-02-12 | Basf Plant Science Gmbh | Inversion of the negative-selective effect of negative marker proteins using selection methods |
US20050042646A1 (en) * | 2002-08-05 | 2005-02-24 | Davidson Beverly L. | RNA interference suppresion of neurodegenerative diseases and methods of use thereof |
ES2389024T3 (en) * | 2002-08-05 | 2012-10-22 | Silence Therapeutics Aktiengesellschaft | Blunt-end interfering RNA molecules |
US20050255086A1 (en) * | 2002-08-05 | 2005-11-17 | Davidson Beverly L | Nucleic acid silencing of Huntington's Disease gene |
US20040241854A1 (en) | 2002-08-05 | 2004-12-02 | Davidson Beverly L. | siRNA-mediated gene silencing |
US20040023390A1 (en) * | 2002-08-05 | 2004-02-05 | Davidson Beverly L. | SiRNA-mediated gene silencing with viral vectors |
US20080274989A1 (en) | 2002-08-05 | 2008-11-06 | University Of Iowa Research Foundation | Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof |
BRPI0313202A8 (en) | 2002-08-05 | 2016-08-16 | Atugen Ag | ADDITIONAL WAYS TO INTERFERE WITH RNA MOLECULES |
WO2004014933A1 (en) | 2002-08-07 | 2004-02-19 | University Of Massachusetts | Compositions for rna interference and methods of use thereof |
EP1529112A2 (en) | 2002-08-07 | 2005-05-11 | BASF Plant Science GmbH | Nucleic acid sequences encoding proteins associated with abiotic stress response |
US20040029275A1 (en) * | 2002-08-10 | 2004-02-12 | David Brown | Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs |
ATE435303T1 (en) | 2002-08-12 | 2009-07-15 | New England Biolabs Inc | METHODS AND COMPOSITIONS RELATED TO GENE SILENCING |
EP1393742A1 (en) | 2002-08-14 | 2004-03-03 | atugen AG | Use of protein kinase N beta |
PT1536827E (en) | 2002-08-14 | 2009-03-20 | Silence Therapeutics Ag | Use of protein kinase n beta |
WO2004022075A1 (en) | 2002-09-04 | 2004-03-18 | Novartis Ag | Treatment of neurological disorders by dsrna adminitration |
US7956176B2 (en) | 2002-09-05 | 2011-06-07 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US20040053289A1 (en) * | 2002-09-09 | 2004-03-18 | The Regents Of The University Of California | Short interfering nucleic acid hybrids and methods thereof |
US20040242518A1 (en) * | 2002-09-28 | 2004-12-02 | Massachusetts Institute Of Technology | Influenza therapeutic |
WO2004032877A2 (en) | 2002-10-10 | 2004-04-22 | Wyeth | Compositions, organisms and methodologies employing a novel human kinase |
PT1551868E (en) | 2002-10-18 | 2009-04-06 | Silence Therapeutics Ag | Factor involved in metastasis and uses thereof |
AU2003284887A1 (en) | 2002-10-24 | 2004-05-13 | Wyeth | Calcineurin-like human phosphoesterase |
US7521431B2 (en) | 2002-11-01 | 2009-04-21 | The Trustees Of The University Of Pennsylvania | Compositions and methods for siRNA inhibition of HIF-1 alpha |
US9150605B2 (en) | 2002-11-05 | 2015-10-06 | Isis Pharmaceuticals, Inc. | Compositions comprising alternating 2′-modified nucleosides for use in gene modulation |
AU2003290598A1 (en) | 2002-11-05 | 2004-06-03 | Isis Pharmaceuticals, Inc. | Modified oligonucleotides for use in rna interference |
WO2004044138A2 (en) | 2002-11-05 | 2004-05-27 | Isis Pharmaceuticals, Inc. | Chimeric oligomeric compounds and their use in gene modulation |
US9150606B2 (en) | 2002-11-05 | 2015-10-06 | Isis Pharmaceuticals, Inc. | Compositions comprising alternating 2'-modified nucleosides for use in gene modulation |
AU2003291753B2 (en) | 2002-11-05 | 2010-07-08 | Isis Pharmaceuticals, Inc. | Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation |
EP1562635A4 (en) * | 2002-11-07 | 2007-12-19 | Chang Lung Ji | Modified dendritic cells |
WO2006006948A2 (en) | 2002-11-14 | 2006-01-19 | Dharmacon, Inc. | METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY |
US9839649B2 (en) | 2002-11-14 | 2017-12-12 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US9879266B2 (en) | 2002-11-14 | 2018-01-30 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US9771586B2 (en) | 2002-11-14 | 2017-09-26 | Thermo Fisher Scientific Inc. | RNAi targeting ZNF205 |
US9719092B2 (en) | 2002-11-14 | 2017-08-01 | Thermo Fisher Scientific Inc. | RNAi targeting CNTD2 |
US9719094B2 (en) | 2002-11-14 | 2017-08-01 | Thermo Fisher Scientific Inc. | RNAi targeting SEC61G |
US9228186B2 (en) | 2002-11-14 | 2016-01-05 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US10011836B2 (en) | 2002-11-14 | 2018-07-03 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
CA2505416A1 (en) | 2002-11-21 | 2004-06-10 | Wyeth | Methods for diagnosing rcc and other solid tumors |
JP4526228B2 (en) * | 2002-11-22 | 2010-08-18 | 隆 森田 | Novel therapeutic methods and therapeutic agents using RNAi |
AU2003290664A1 (en) | 2002-11-27 | 2004-06-23 | Wei Liu | Compositions, organisms and methodologies employing a novel human kinase |
MXPA05007651A (en) | 2003-01-16 | 2005-10-26 | Univ Pennsylvania | COMPOSITIONS AND METHODS FOR siRNA INHIBITION OF ICAM-1. |
AU2004213452A1 (en) | 2003-02-14 | 2004-09-02 | Sagres Discovery, Inc. | Therapeutic GPCR targets in cancer |
EP2239329A1 (en) | 2003-03-07 | 2010-10-13 | Alnylam Pharmaceuticals, Inc. | Therapeutic compositions |
AU2004221760B2 (en) | 2003-03-21 | 2010-03-18 | Roche Innovation Center Copenhagen A/S | Short interfering RNA (siRNA) analogues |
CA2521464C (en) | 2003-04-09 | 2013-02-05 | Alnylam Pharmaceuticals, Inc. | Irna conjugates |
WO2004094345A2 (en) | 2003-04-17 | 2004-11-04 | Alnylam Pharmaceuticals Inc. | Protected monomers |
WO2004092383A2 (en) * | 2003-04-15 | 2004-10-28 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF SEVERE ACUTE RESPIRATORY SYNDROME (SARS) VIRUS GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US20090298914A1 (en) * | 2003-04-15 | 2009-12-03 | Sirna Therapeutics, Inc. | RNA Interference Mediated Inhibition of Severe Acute Respiratory Syndrome (SARS) Virus Gene Expression Using Short Interfering Nucleic Acid (siNA) |
EP2664672A1 (en) | 2003-04-17 | 2013-11-20 | Alnylam Pharmaceuticals Inc. | Modified iRNA agents |
US8017762B2 (en) | 2003-04-17 | 2011-09-13 | Alnylam Pharmaceuticals, Inc. | Modified iRNA agents |
US7851615B2 (en) | 2003-04-17 | 2010-12-14 | Alnylam Pharmaceuticals, Inc. | Lipophilic conjugated iRNA agents |
US8796436B2 (en) | 2003-04-17 | 2014-08-05 | Alnylam Pharmaceuticals, Inc. | Modified iRNA agents |
US7723509B2 (en) | 2003-04-17 | 2010-05-25 | Alnylam Pharmaceuticals | IRNA agents with biocleavable tethers |
JP2006523464A (en) | 2003-04-18 | 2006-10-19 | ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア | Compositions and methods for siRNA inhibition of angiopoietins 1, 2 and their receptor TIE2 |
EP1622572B1 (en) | 2003-04-30 | 2017-12-20 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
EP1633307A4 (en) * | 2003-06-03 | 2009-06-24 | Isis Pharmaceuticals Inc | MODULATION OF SURVIVIN EXPRESSION |
US7595306B2 (en) | 2003-06-09 | 2009-09-29 | Alnylam Pharmaceuticals Inc | Method of treating neurodegenerative disease |
EP3604537B1 (en) | 2003-06-13 | 2021-12-08 | Alnylam Europe AG | Double-stranded ribonucleic acid with increased effectiveness in an organism |
CA2530248A1 (en) * | 2003-06-25 | 2005-01-06 | Gencia Corporation | Modified vectors for organelle transfection |
CA2528963A1 (en) * | 2003-06-27 | 2005-01-13 | Sirna Therapeutics, Inc. | Rna interference mediated treatment of alzheimer's disease using short interfering nucleic acid (sina) |
WO2005007859A2 (en) * | 2003-07-11 | 2005-01-27 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF ACETYL-COA CARBOXYLASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
CN1852985A (en) | 2003-08-01 | 2006-10-25 | 巴斯福植物科学有限公司 | Process for the production of fine chemicals |
WO2005021749A1 (en) | 2003-08-28 | 2005-03-10 | Novartis Ag | Interfering rna duplex having blunt-ends and 3’-modifications |
US20070202505A1 (en) * | 2003-09-08 | 2007-08-30 | Alex Chenchik | Methods for gene function analysis |
WO2005045037A2 (en) * | 2003-10-23 | 2005-05-19 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF 5-ALPHA REDUCTASE AND ANDROGEN RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
CA2544349C (en) * | 2003-11-04 | 2020-02-18 | Geron Corporation | Rna amidates and thioamidates for rnai |
US8685946B2 (en) * | 2003-11-26 | 2014-04-01 | Universiy of Massachusetts | Sequence-specific inhibition of small RNA function |
WO2005066371A2 (en) | 2003-12-31 | 2005-07-21 | The Penn State Research Foundation | Methods for predicting and overcoming resistance to chemotherapy in ovarian cancer and for predicting colon cancer occurrence |
ATE491715T1 (en) | 2004-01-30 | 2011-01-15 | Quark Pharmaceuticals Inc | OLIGORIBONUCLEOTIDES AND METHOD FOR USE THEREOF IN THE TREATMENT OF FIBROTIC DISEASES AND OTHER DISEASES |
DK1713912T3 (en) * | 2004-01-30 | 2013-12-16 | Santaris Pharma As | Modified Short Interfering RNA (Modified siRNA) |
EP1718747B1 (en) * | 2004-02-06 | 2009-10-28 | Dharmacon, Inc. | Stabilized rnas as transfection controls and silencing reagents |
EP1747284A4 (en) | 2004-02-06 | 2009-03-11 | Wyeth Corp | Diagnosis and therapeutics for cancer |
US20090280567A1 (en) * | 2004-02-06 | 2009-11-12 | Dharmacon, Inc. | Stabilized sirnas as transfection controls and silencing reagents |
ATE452188T1 (en) | 2004-02-10 | 2010-01-15 | Sirna Therapeutics Inc | RNA INTERFERENCE-MEDIATED INHIBITION OF GENE EXPRESSION USING MULTIFUNCTIONAL SINA (SHORT INTERFERING NUCLEIC ACID) |
WO2005078848A2 (en) | 2004-02-11 | 2005-08-25 | University Of Tennessee Research Foundation | Inhibition of tumor growth and invasion by anti-matrix metalloproteinase dnazymes |
EP1737493B1 (en) | 2004-02-25 | 2011-06-29 | Dana-Farber Cancer Institute, Inc. | Inhibitors of insulin-like growth factor receptor -1 for inhibiting tumor cell growth |
WO2006074418A2 (en) | 2005-01-07 | 2006-07-13 | Diadexus, Inc. | Ovr110 antibody compositions and methods of use |
EP2636739B1 (en) | 2004-03-12 | 2014-12-10 | Alnylam Pharmaceuticals Inc. | iRNA agents targeting VEGF |
KR101147147B1 (en) * | 2004-04-01 | 2012-05-25 | 머크 샤프 앤드 돔 코포레이션 | Modified polynucleotides for reducing off-target effects in rna interference |
EP2394662B1 (en) | 2004-04-02 | 2018-03-21 | The Regents of The University of California | Methods and compositions for treating and preventing disease associated with alpha v beta 5 integrin |
CA2557532A1 (en) | 2004-04-23 | 2005-11-10 | Angela M. Christiano | Inhibition of hairless protein mrna |
DE102004025881A1 (en) | 2004-05-19 | 2006-01-05 | Beiersdorf Ag | Oligoribonucleotides for influencing hair growth |
US10508277B2 (en) | 2004-05-24 | 2019-12-17 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
EP2471921A1 (en) | 2004-05-28 | 2012-07-04 | Asuragen, Inc. | Methods and compositions involving microRNA |
US8394947B2 (en) | 2004-06-03 | 2013-03-12 | Isis Pharmaceuticals, Inc. | Positionally modified siRNA constructs |
EP1602926A1 (en) | 2004-06-04 | 2005-12-07 | University of Geneva | Novel means and methods for the treatment of hearing loss and phantom hearing |
US20060040876A1 (en) | 2004-06-10 | 2006-02-23 | Rong-Hwa Lin | Modulation of peroxisome proliferator-activated receptors |
US20100098663A2 (en) | 2004-06-22 | 2010-04-22 | The Board Of Trustees Of The University Of Illinois | Methods of Inhibiting Tumor Cell Proliferation with FoxM1 siRNA |
AU2005259799A1 (en) | 2004-07-02 | 2006-01-12 | Protiva Biotherapeutics, Inc. | Immunostimulatory siRNA molecules and uses therefor |
WO2006069610A2 (en) | 2004-07-02 | 2006-07-06 | Metanomics Gmbh | Process for the production of fine chemicals |
US7968762B2 (en) | 2004-07-13 | 2011-06-28 | Van Andel Research Institute | Immune-compromised transgenic mice expressing human hepatocyte growth factor (hHGF) |
US20060024677A1 (en) | 2004-07-20 | 2006-02-02 | Morris David W | Novel therapeutic targets in cancer |
WO2007001324A2 (en) | 2004-07-23 | 2007-01-04 | The University Of North Carolina At Chapel Hill | Methods and materials for determining pain sensitivity and predicting and treating related disorders |
EP1781784A2 (en) | 2004-08-02 | 2007-05-09 | BASF Plant Science GmbH | Method for isolation of transcription termination sequences |
CN101014245A (en) | 2004-08-03 | 2007-08-08 | 比奥根艾迪克Ma公司 | Taj in neuronal function |
EP1791567B1 (en) | 2004-08-10 | 2015-07-29 | Alnylam Pharmaceuticals Inc. | Chemically modified oligonucleotides |
EP2319925B1 (en) | 2004-08-16 | 2018-07-25 | Quark Pharmaceuticals, Inc. | Therapeutic uses of inhibitors of RTP801 |
EP1786905B1 (en) * | 2004-08-18 | 2011-08-03 | Lorus Therapeutics Inc. | Small interfering rna molecules against ribonucleotide reductase and uses thereof |
US7884086B2 (en) | 2004-09-08 | 2011-02-08 | Isis Pharmaceuticals, Inc. | Conjugates for use in hepatocyte free uptake assays |
EP1793835A4 (en) | 2004-09-10 | 2010-12-01 | Somagenics Inc | SMALL INTERFERING RNAs THAT EFFICIENTLY INHIBIT VIRAL GENE EXPRESSION AND METHODS OF USE THEREOF |
EP1794304B1 (en) | 2004-09-24 | 2013-06-19 | BASF Plant Science GmbH | Plant cells and plants with increased tolerance to environmental stress |
HUE030844T2 (en) | 2004-09-28 | 2017-06-28 | Quark Pharmaceuticals Inc | Oligoribonucleotides and methods of use thereof for treatment of alopecia, acute renal failure and other diseases |
EP1645633B1 (en) | 2004-10-05 | 2011-09-21 | SunGene GmbH | Constitutive expression cassettes for regulation of plant expression |
CA2583722C (en) | 2004-10-13 | 2012-04-24 | University Of Georgia Research Foundation, Inc. | Nematode resistant transgenic plants |
WO2007001448A2 (en) | 2004-11-04 | 2007-01-04 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
EP1655364A3 (en) | 2004-11-05 | 2006-08-02 | BASF Plant Science GmbH | Expression cassettes for seed-preferential expression in plants |
EP1838852A2 (en) | 2004-11-12 | 2007-10-03 | Asuragen, Inc. | Methods and compositions involving mirna and mirna inhibitor molecules |
US20060166234A1 (en) * | 2004-11-22 | 2006-07-27 | Barbara Robertson | Apparatus and system having dry control gene silencing compositions |
US7935811B2 (en) * | 2004-11-22 | 2011-05-03 | Dharmacon, Inc. | Apparatus and system having dry gene silencing compositions |
US7923207B2 (en) | 2004-11-22 | 2011-04-12 | Dharmacon, Inc. | Apparatus and system having dry gene silencing pools |
EP1662000B1 (en) | 2004-11-25 | 2011-03-30 | SunGene GmbH | Expression cassettes for guard cell-preferential expression in plants |
EP1666599A3 (en) | 2004-12-04 | 2006-07-12 | SunGene GmbH | Expression cassettes for mesophyll- and/or epidermis-preferential expression in plants |
EP1669455B1 (en) | 2004-12-08 | 2009-10-28 | SunGene GmbH | Expression cassettes for vascular tissue-preferential expression in plants |
EP1669456A3 (en) | 2004-12-11 | 2006-07-12 | SunGene GmbH | Expression cassettes for meristem-preferential expression in plants |
MX2007007040A (en) | 2004-12-17 | 2008-10-24 | Metanomics Gmbh | Process for the control of production of fine chemicals. |
TWI386225B (en) | 2004-12-23 | 2013-02-21 | Alcon Inc | Rnai inhibition of ctgf for treatment of ocular disorders |
US20060142228A1 (en) * | 2004-12-23 | 2006-06-29 | Ambion, Inc. | Methods and compositions concerning siRNA's as mediators of RNA interference |
ES2548515T3 (en) | 2004-12-27 | 2015-10-19 | Silence Therapeutics Gmbh | Lipid complexes coated with PEG and its use |
MX2007008065A (en) * | 2004-12-30 | 2008-03-04 | Todd M Hauser | Compositions and methods for modulating gene expression using self-protected oligonucleotides. |
WO2006072887A1 (en) | 2005-01-05 | 2006-07-13 | Eyegate Pharma Sa | Ocular iontophoresis device for delivering sirna and aptamers |
TW200639252A (en) | 2005-02-01 | 2006-11-16 | Alcon Inc | RNAi-mediated inhibition of ocular hypertension targets |
CN101155922A (en) | 2005-02-09 | 2008-04-02 | 巴斯福植物科学有限公司 | Expression cassettes for regulation of expression in monocotyledonous plants |
EP1856264B1 (en) | 2005-02-26 | 2014-07-23 | BASF Plant Science GmbH | Expression cassettes for seed-preferential expression in plants |
JPWO2006093083A1 (en) | 2005-03-03 | 2008-08-07 | 和光純薬工業株式会社 | Cross-linking agent, cross-linking method, gene expression regulation method and gene function investigation method |
EP2166102B1 (en) | 2005-03-08 | 2012-12-19 | BASF Plant Science GmbH | Expression enhancing intron sequences |
US7947660B2 (en) | 2005-03-11 | 2011-05-24 | Alcon, Inc. | RNAi-mediated inhibition of frizzled related protein-1 for treatment of glaucoma |
US20060223777A1 (en) * | 2005-03-29 | 2006-10-05 | Dharmacon, Inc. | Highly functional short hairpin RNA |
AU2006230436B2 (en) | 2005-03-31 | 2011-11-24 | Calando Pharmaceuticals, Inc. | Inhibitors of ribonucleotide reductase subunit 2 and uses thereof |
CA2604844A1 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics, Inc. | Cancer-related genes |
AU2006235276A1 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics Inc. | CACNA1E in cancer diagnosis, detection and treatment |
US20090203055A1 (en) * | 2005-04-18 | 2009-08-13 | Massachusetts Institute Of Technology | Compositions and methods for RNA interference with sialidase expression and uses thereof |
WO2006112401A1 (en) * | 2005-04-18 | 2006-10-26 | National University Corporation Hamamatsu University School Of Medicine | Composition for treatment of cancer |
WO2006120197A2 (en) | 2005-05-10 | 2006-11-16 | Basf Plant Science Gmbh | Expression cassettes for seed-preferential expression in plants |
EP1888052A2 (en) * | 2005-05-12 | 2008-02-20 | Wisconsin Alumni Research Foundation | Blockade of pin1 prevents cytokine production by activated immune cells |
FR2885808B1 (en) | 2005-05-19 | 2007-07-06 | Oreal | VECTORIZATION OF DSRNA BY CATIONIC PARTICLES AND TOPICAL USE. |
US7994399B2 (en) | 2005-06-23 | 2011-08-09 | Basf Plant Science Gmbh | Methods for the production of stably transformed, fertile Zea mays plants |
US8703769B2 (en) | 2005-07-15 | 2014-04-22 | The University Of North Carolina At Chapel Hill | Use of EGFR inhibitors to prevent or treat obesity |
EP1764107A1 (en) * | 2005-09-14 | 2007-03-21 | Gunther Hartmann | Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides |
AU2006298844B2 (en) | 2005-09-20 | 2012-01-12 | Basf Plant Science Gmbh | Methods for controlling gene expression using ta-siRAN |
EP1934348B1 (en) | 2005-10-11 | 2018-05-02 | Ben-Gurion University Of The Negev Research And Development Authority | Compositions for silencing the expression of vdac1 and uses thereof |
AU2006305886C1 (en) | 2005-10-28 | 2011-03-17 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of huntingtin gene |
CA2628300C (en) | 2005-11-02 | 2018-04-17 | Protiva Biotherapeutics, Inc. | Modified sirna molecules and uses thereof |
AU2006311725B2 (en) | 2005-11-04 | 2011-11-24 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of NAV1.8 gene |
EP1948806A2 (en) | 2005-11-08 | 2008-07-30 | BASF Plant Science GmbH | Use of armadillo repeat (arm1) polynucleotides for obtaining pathogen resistance in plants |
AU2006311730B2 (en) | 2005-11-09 | 2010-12-02 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Factor V Leiden mutant gene |
EP2468901B1 (en) | 2005-11-29 | 2017-04-05 | Cambridge Enterprise Limited | Markers for breast cancer |
WO2007070682A2 (en) | 2005-12-15 | 2007-06-21 | Massachusetts Institute Of Technology | System for screening particles |
ES2361621T7 (en) | 2005-12-30 | 2012-06-14 | Evonik Rohm Gmbh | USEFUL LACTOFERRINE PEPTIDES AS CELL PENETRATION PEPTIDES. |
WO2007087153A2 (en) | 2006-01-06 | 2007-08-02 | University Of Georgia Research Foundation | Cyst nematode resistant transgenic plants |
WO2007080143A1 (en) | 2006-01-12 | 2007-07-19 | Basf Plant Science Gmbh | Use of stomatin (stm1) polynucleotides for achieving a pathogen resistance in plants |
US7825099B2 (en) | 2006-01-20 | 2010-11-02 | Quark Pharmaceuticals, Inc. | Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes |
DOP2007000015A (en) | 2006-01-20 | 2007-08-31 | Quark Biotech Inc | THERAPEUTIC USES OF RTP801 INHIBITORS |
DK1981902T3 (en) | 2006-01-27 | 2015-10-05 | Biogen Ma Inc | Nogo Receptor Antagonists |
US20090176977A1 (en) * | 2006-01-27 | 2009-07-09 | Joacim Elmen | Lna modified phosphorothiolated oligonucleotides |
CN101421406B (en) | 2006-02-13 | 2016-08-31 | 孟山都技术有限公司 | For producing nucleic acid construct and the method that the seed oil of change forms |
US7910566B2 (en) | 2006-03-09 | 2011-03-22 | Quark Pharmaceuticals Inc. | Prevention and treatment of acute renal failure and other kidney diseases by inhibition of p53 by siRNA |
ES2556128T3 (en) | 2006-03-23 | 2016-01-13 | Roche Innovation Center Copenhagen A/S | Internally segmented small interfering RNA |
FR2898908A1 (en) | 2006-03-24 | 2007-09-28 | Agronomique Inst Nat Rech | PROCESS FOR PREPARING DIFFERENTIATED AVIAN CELLS AND GENES INVOLVED IN MAINTAINING PLURIPOTENCE |
WO2007123777A2 (en) | 2006-03-30 | 2007-11-01 | Duke University | Inhibition of hif-1 activation for anti-tumor and anti-inflammatory responses |
KR101547579B1 (en) | 2006-03-31 | 2015-08-27 | 알닐람 파마슈티칼스 인코포레이티드 | DsRNA for inhibiting expression of Eg5 gene |
CA2644273A1 (en) | 2006-04-05 | 2008-03-27 | Metanomics Gmbh | Process for the production of a fine chemical |
WO2007120787A2 (en) | 2006-04-13 | 2007-10-25 | Novartis Vaccines & Diagnostics, Inc. | Methods of treating, diagnosing or detecting cancers associated with liv-1 overexpression |
JP4812874B2 (en) | 2006-04-28 | 2011-11-09 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Composition and method for suppressing expression of JC virus gene |
GB0608838D0 (en) | 2006-05-04 | 2006-06-14 | Novartis Ag | Organic compounds |
EA015676B1 (en) | 2006-05-11 | 2011-10-31 | Элнилэм Фармасьютикалз, Инк. | Compositions and methods for inhibiting expression of the pcsk9 gene |
WO2007133807A2 (en) | 2006-05-15 | 2007-11-22 | Massachusetts Institute Of Technology | Polymers for functional particles |
EP2392583A1 (en) | 2006-05-19 | 2011-12-07 | Alnylam Europe AG. | RNAi modulation of Aha and therapeutic uses thereof |
WO2007137220A2 (en) | 2006-05-22 | 2007-11-29 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of ikk-b gene |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
EP2026843A4 (en) | 2006-06-09 | 2011-06-22 | Quark Pharmaceuticals Inc | Therapeutic uses of inhibitors of rtp801l |
WO2007150030A2 (en) | 2006-06-23 | 2007-12-27 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
ES2479668T3 (en) | 2006-07-11 | 2014-07-24 | University Of Medicine And Dentistry Of New Jersey | Cellular membrane repair proteins, nucleic acids that encode them and associated methods of use |
AU2007276388A1 (en) | 2006-07-21 | 2008-01-24 | Silence Therapeutics Ag | Means for inhibiting the expression of protein kinase 3 |
EP2412383A1 (en) | 2006-07-28 | 2012-02-01 | Children's Memorial Hospital | Methods of inhibiting tumor cell aggressiveness using the microenvironment of human embryonic stem cells |
US7872118B2 (en) | 2006-09-08 | 2011-01-18 | Opko Ophthalmics, Llc | siRNA and methods of manufacture |
JP5431940B2 (en) | 2006-09-18 | 2014-03-05 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | RNAi regulation of SCAP and its therapeutic use |
US20090209478A1 (en) | 2006-09-21 | 2009-08-20 | Tomoko Nakayama | Compositions and methods for inhibiting expression of the hamp gene |
CA2663601C (en) * | 2006-09-22 | 2014-11-25 | Dharmacon, Inc. | Duplex oligonucleotide complexes and methods for gene silencing by rna interference |
JP2010507387A (en) | 2006-10-25 | 2010-03-11 | クアーク・ファーマスーティカルス、インコーポレイテッド | Novel siRNA and method of using the same |
ATE508191T1 (en) | 2006-11-01 | 2011-05-15 | Medical Res And Infrastructure Fund Of The Tel Aviv Sourasky Medical Ct | ADIPOCYTE-SPECIFIC CONSTRUCTS AND METHODS FOR INHIBITING THE EXPRESSION OF PLATELET TYPE 12-LIPOXYGENASE |
US20080199475A1 (en) | 2006-11-27 | 2008-08-21 | Patrys Limited | Novel glycosylated peptide target in neoplastic cells |
US8444971B2 (en) | 2006-11-27 | 2013-05-21 | Diadexus, Inc. | OVR110 antibody compositions and methods of use |
EP2097448A4 (en) | 2006-12-22 | 2010-07-21 | Univ Utah Res Found | METHOD FOR DETECTING DISEASES AND OCULAR DISEASE CONDITIONS AND TREATMENT THEREOF |
US8592652B2 (en) | 2007-01-15 | 2013-11-26 | Basf Plant Science Gmbh | Use of subtilisin-like RNR9 polynucleotide for achieving pathogen resistance in plants |
US8455188B2 (en) | 2007-01-26 | 2013-06-04 | University Of Louisville Research Foundation, Inc. | Modification of exosomal components for use as a vaccine |
WO2008098165A2 (en) | 2007-02-09 | 2008-08-14 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
BRPI0808008B1 (en) | 2007-02-16 | 2016-08-09 | Basf Plant Science Gmbh | isolated nucleic acid molecule, expression cassette, expression vector, methods for excising target sequences from a plant to produce a plant with increased yield, and / or increased stress tolerance, and / or increased nutritional quality, and / or increased or modified oil content of a seed or sprout for the plant, and use of the nucleic acid molecule |
US7872119B2 (en) | 2007-02-26 | 2011-01-18 | Quark Pharmaceuticals, Inc. | Inhibitors of RTP801 and their use in disease treatment |
EP2125898B1 (en) | 2007-03-14 | 2013-05-15 | Novartis AG | Apcdd1 inhibitors for treating, diagnosing or detecting cancer |
US7812002B2 (en) | 2007-03-21 | 2010-10-12 | Quark Pharmaceuticals, Inc. | Oligoribonucleotide inhibitors of NRF2 and methods of use thereof for treatment of cancer |
PT2129680E (en) | 2007-03-21 | 2015-08-28 | Brookhaven Science Ass Llc | Combined hairpin-antisense compositions and methods for modulating expression |
PE20090064A1 (en) | 2007-03-26 | 2009-03-02 | Novartis Ag | DOUBLE-CHAIN RIBONUCLEIC ACID TO INHIBIT THE EXPRESSION OF THE HUMAN E6AP GENE AND THE PHARMACEUTICAL COMPOSITION THAT INCLUDES IT |
WO2008121604A2 (en) | 2007-03-29 | 2008-10-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of a gene from the ebola |
US20090074828A1 (en) | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
EP2146691A2 (en) | 2007-04-17 | 2010-01-27 | Baxter International Inc. | Nucleic acid microparticles for pulmonary delivery |
WO2009014565A2 (en) | 2007-04-26 | 2009-01-29 | Ludwig Institute For Cancer Research, Ltd. | Methods for diagnosing and treating astrocytomas |
US20100291042A1 (en) | 2007-05-03 | 2010-11-18 | The Brigham And Women's Hospital, Inc. | Multipotent stem cells and uses thereof |
JP5296328B2 (en) | 2007-05-09 | 2013-09-25 | 独立行政法人理化学研究所 | Single-stranded circular RNA and method for producing the same |
MX2009012568A (en) | 2007-05-22 | 2009-12-08 | Mdrna Inc | Hydroxymethyl substituted rna oligonucleotides and rna complexes. |
EP2074220A2 (en) | 2007-05-22 | 2009-07-01 | BASF Plant Science GmbH | Plant cells and plants with increased tolerance and/or resistance to environmental stress and increased biomass production-ko |
US8097422B2 (en) | 2007-06-20 | 2012-01-17 | Salk Institute For Biological Studies | Kir channel modulators |
SI2170403T1 (en) | 2007-06-27 | 2014-07-31 | Quark Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of pro-apoptotic genes |
ES2596584T3 (en) | 2007-07-05 | 2017-01-10 | Arrowhead Research Corporation | RRNA for treatment of viral infections |
US9689031B2 (en) | 2007-07-14 | 2017-06-27 | Ionian Technologies, Inc. | Nicking and extension amplification reaction for the exponential amplification of nucleic acids |
WO2009012263A2 (en) | 2007-07-18 | 2009-01-22 | The Trustees Of Columbia University In The City Of New York | Tissue-specific micrornas and compositions and uses thereof |
US8012474B2 (en) | 2007-08-02 | 2011-09-06 | Nov Immune S.A. | Anti-RANTES antibodies |
AU2008293986A1 (en) | 2007-08-23 | 2009-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Modulation of synaptogenesis |
US8183221B2 (en) | 2007-09-05 | 2012-05-22 | Medtronic, Inc. | Suppression of SCN9A gene expression and/or function for the treatment of pain |
US8361714B2 (en) | 2007-09-14 | 2013-01-29 | Asuragen, Inc. | Micrornas differentially expressed in cervical cancer and uses thereof |
EP2190995A2 (en) * | 2007-09-18 | 2010-06-02 | Intradigm Corporation | Compositions comprising k-ras sirna and methods of use |
US20100280097A1 (en) * | 2007-09-18 | 2010-11-04 | Intradigm Corporation | Compositions comprising hif-1 alpha sirna and methods of use thereof |
JP5723154B2 (en) | 2007-09-19 | 2015-05-27 | アプライド バイオシステムズ リミテッド ライアビリティー カンパニー | SiRNA sequence-independent modification format for reducing the influence of off-target phenotype in RNAi and its stabilized form |
SI2644192T1 (en) | 2007-09-28 | 2017-08-31 | Pfizer Inc. | Cancer Cell Targeting Using Nanoparticles |
KR20100085951A (en) | 2007-10-03 | 2010-07-29 | 쿠아크 파마수티칼스 인코퍼레이티드 | Novel sirna structures |
BRPI0817664A2 (en) | 2007-10-12 | 2015-03-24 | Massachusetts Inst Technology | Nanoparticles, method for preparing nanoparticles and method for therapeutically or prophylactically treating an individual |
US8097712B2 (en) | 2007-11-07 | 2012-01-17 | Beelogics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
CA2910760C (en) | 2007-12-04 | 2019-07-09 | Muthiah Manoharan | Targeting lipids |
JP5530933B2 (en) | 2007-12-10 | 2014-06-25 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Compositions and methods for inhibiting factor VII gene expression |
US20100204305A1 (en) * | 2007-12-11 | 2010-08-12 | Lorus Therapeutics Inc. | Small interfering rna molecules against ribonucleotide reductase and uses thereof |
US8614311B2 (en) | 2007-12-12 | 2013-12-24 | Quark Pharmaceuticals, Inc. | RTP801L siRNA compounds and methods of use thereof |
AU2008340002A1 (en) | 2007-12-21 | 2009-07-02 | Basf Plant Science Gmbh | Plants with increased yield (KO NUE) |
EP2242854A4 (en) * | 2008-01-15 | 2012-08-15 | Quark Pharmaceuticals Inc | Sirna compounds and methods of use thereof |
WO2009102427A2 (en) | 2008-02-11 | 2009-08-20 | Rxi Pharmaceuticals Corp. | Modified rnai polynucleotides and uses thereof |
US8188060B2 (en) | 2008-02-11 | 2012-05-29 | Dharmacon, Inc. | Duplex oligonucleotides with enhanced functionality in gene regulation |
BRPI0909779A2 (en) | 2008-03-05 | 2019-09-24 | Alnylam Pharmaceuticals Inc | compositions and processes for inhibiting the expression of eg5 and vegf genes |
US20110105588A1 (en) * | 2008-03-12 | 2011-05-05 | Intradigm Corporation | Compositions comprising notch1 sirna and methods of use thereof |
BRPI0911332A2 (en) | 2008-04-04 | 2019-09-24 | Calando Pharmaceuticals Inc | compositions and use of epas1 inhibitors |
WO2009126933A2 (en) | 2008-04-11 | 2009-10-15 | Alnylam Pharmaceuticals, Inc. | Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components |
WO2009144704A2 (en) | 2008-04-15 | 2009-12-03 | Quark Pharmaceuticals, Inc. | siRNA COMPOUNDS FOR INHIBITING NRF2 |
GB0807018D0 (en) | 2008-04-17 | 2008-05-21 | Fusion Antibodies Ltd | Antibodies and treatment |
WO2009137807A2 (en) | 2008-05-08 | 2009-11-12 | Asuragen, Inc. | Compositions and methods related to mirna modulation of neovascularization or angiogenesis |
EP2293800B1 (en) * | 2008-06-06 | 2016-10-05 | Quark Pharmaceuticals, Inc. | Compositions and methods for treatment of ear disorders |
TWI455944B (en) | 2008-07-01 | 2014-10-11 | Daiichi Sankyo Co Ltd | Double-stranded polynucleotides |
US8815818B2 (en) | 2008-07-18 | 2014-08-26 | Rxi Pharmaceuticals Corporation | Phagocytic cell delivery of RNAI |
US9089610B2 (en) | 2008-08-19 | 2015-07-28 | Nektar Therapeutics | Complexes of small-interfering nucleic acids |
WO2010028054A1 (en) | 2008-09-02 | 2010-03-11 | Alnylam Europe Ag. | Compositions and methods for inhibiting expression of mutant egfr gene |
WO2011028218A1 (en) | 2009-09-02 | 2011-03-10 | Alnylam Pharmaceuticals, Inc. | Process for triphosphate oligonucleotide synthesis |
EP2165710A1 (en) | 2008-09-19 | 2010-03-24 | Institut Curie | Tyrosine kinase receptor Tyro3 as a therapeutic target in the treatment of a bladder tumor |
AU2009293658A1 (en) | 2008-09-22 | 2010-03-25 | James Cardia | Reduced size self-delivering RNAi compounds |
EP2342616A2 (en) | 2008-09-23 | 2011-07-13 | Alnylam Pharmaceuticals Inc. | Chemical modifications of monomers and oligonucleotides with cycloaddition |
AU2009296395A1 (en) | 2008-09-25 | 2010-04-01 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of Serum Amyloid A gene |
UY32145A (en) | 2008-09-29 | 2010-04-30 | Monsanto Technology Llc | TRANSGENIC EVENT OF SOYA MON87705 AND METHODS TO DETECT THE SAME |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
EP2352744B1 (en) * | 2008-10-15 | 2016-09-21 | Somagenics, Inc. | Short hairpin rnas for inhibition of gene expression |
IL281434B2 (en) | 2008-10-20 | 2023-09-01 | Alnylam Pharmaceuticals Inc | Compounds and methods for inhibiting transthyretin expression |
EP2350264A4 (en) | 2008-11-06 | 2012-08-29 | Univ Johns Hopkins | TREATMENT OF CHRONIC INFLAMMATORY RESPIRATORY DISEASES |
WO2010054379A2 (en) | 2008-11-10 | 2010-05-14 | The United States Of America, As Represensted By The Secretary, Department Of Health And Human Services | Gene signature for predicting prognosis of patients with solid tumors |
EP3238738B1 (en) | 2008-11-10 | 2020-09-23 | Arbutus Biopharma Corporation | Novel lipids and compositions for the delivery of therapeutics |
WO2010059226A2 (en) | 2008-11-19 | 2010-05-27 | Rxi Pharmaceuticals Corporation | Inhibition of map4k4 through rnai |
SG10201500318SA (en) | 2008-12-03 | 2015-03-30 | Arcturus Therapeutics Inc | UNA Oligomer Structures For Therapeutic Agents |
NZ593743A (en) | 2008-12-04 | 2012-07-27 | Opko Ophthalmics Llc | Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms |
CA2746514C (en) | 2008-12-10 | 2018-11-27 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
EP2198879A1 (en) | 2008-12-11 | 2010-06-23 | Institut Curie | CD74 modulator agent for regulating dendritic cell migration and device for studying the motility capacity of a cell |
EP2370175A2 (en) | 2008-12-16 | 2011-10-05 | Bristol-Myers Squibb Company | Methods of inhibiting quiescent tumor proliferation |
WO2010080452A2 (en) | 2008-12-18 | 2010-07-15 | Quark Pharmaceuticals, Inc. | siRNA COMPOUNDS AND METHODS OF USE THEREOF |
JP2012513464A (en) | 2008-12-23 | 2012-06-14 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | Phosphodiesterase inhibitors and uses thereof |
WO2010074783A1 (en) | 2008-12-23 | 2010-07-01 | The Trustees Of Columbia University In The City Of New York | Phosphodiesterase inhibitors and uses thereof |
WO2010078536A1 (en) | 2009-01-05 | 2010-07-08 | Rxi Pharmaceuticals Corporation | Inhibition of pcsk9 through rnai |
US9745574B2 (en) | 2009-02-04 | 2017-08-29 | Rxi Pharmaceuticals Corporation | RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality |
EP2396408B1 (en) * | 2009-02-12 | 2017-09-20 | CuRNA, Inc. | Treatment of glial cell derived neurotrophic factor (gdnf) related diseases by inhibition of natural antisense transcript to gdnf |
CN101525388B (en) * | 2009-02-20 | 2012-02-01 | 中国人民解放军第四军医大学 | Specific double-stranded RNA binding protein chimera and its application in viral infectious diseases |
US20120041051A1 (en) | 2009-02-26 | 2012-02-16 | Kevin Fitzgerald | Compositions And Methods For Inhibiting Expression Of MIG-12 Gene |
US8975389B2 (en) | 2009-03-02 | 2015-03-10 | Alnylam Pharmaceuticals, Inc. | Nucleic acid chemical modifications |
CA2754043A1 (en) | 2009-03-12 | 2010-09-16 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes |
WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US20120016010A1 (en) | 2009-03-19 | 2012-01-19 | Merck Sharp & Dohme Corp | RNA Interference Mediated Inhibition of BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 1 (BACH1) Gene Expression Using Short Interfering Nucleic Acid (siNA) |
EP2408916A2 (en) | 2009-03-19 | 2012-01-25 | Merck Sharp&Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
MX2011010072A (en) | 2009-03-27 | 2011-10-06 | Merck Sharp & Dohme | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA). |
WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
JP2012521764A (en) | 2009-03-27 | 2012-09-20 | メルク・シャープ・エンド・ドーム・コーポレイション | RNA interference-mediated inhibition of thymic stromal lymphocyte formation factor (TSLP) gene expression using small interfering nucleic acids (siNA) |
US20100297127A1 (en) | 2009-04-08 | 2010-11-25 | Ghilardi Nico P | Use of il-27 antagonists to treat lupus |
US8283332B2 (en) | 2009-04-17 | 2012-10-09 | University Of Louisville Research Foundation, Inc. | PFKFB4 inhibitors and methods of using the same |
UA109110C2 (en) | 2009-04-22 | 2015-07-27 | Басф Плант Саєнс Компані Гмбх | POLYNUCLEOTIDE WHICH ALLOWS FOR SPECIFIC EXPRESSION of MONOCOTYLEDONOUS PLANT WHOLE SEED |
MX352992B (en) | 2009-05-05 | 2017-12-15 | Beeologics Inc | Prevention and treatment of nosema disease in bees. |
EP2258858A1 (en) | 2009-06-05 | 2010-12-08 | Universitätsklinikum Freiburg | Transgenic LSD1 animal model for cancer |
KR20220038506A (en) | 2009-06-10 | 2022-03-28 | 알닐람 파마슈티칼스 인코포레이티드 | Improved lipid formulation |
MX2011013421A (en) | 2009-06-15 | 2012-03-16 | Alnylam Pharmaceuticals Inc | Lipid formulated dsrna targeting the pcsk9 gene. |
EP2266550A1 (en) | 2009-06-15 | 2010-12-29 | Institut Curie | Antagonists of ß-catenin for preventing and/or treating neurodegenerative disorders |
WO2010147992A1 (en) | 2009-06-15 | 2010-12-23 | Alnylam Pharmaceuticals, Inc. | Methods for increasing efficacy of lipid formulated sirna |
AU2010270309A1 (en) | 2009-07-10 | 2012-02-02 | Basf Plant Science Company Gmbh | Expression cassettes for endosperm-specific expression in plants |
US8871730B2 (en) | 2009-07-13 | 2014-10-28 | Somagenics Inc. | Chemical modification of short small hairpin RNAs for inhibition of gene expression |
BR112012000908A2 (en) | 2009-07-14 | 2019-09-24 | Mayo Found Medical Education & Res | release of active agents via peptide-mediated blood-brain barrier in non-covalent association |
EP2947098B1 (en) | 2009-07-20 | 2019-11-20 | Bristol-Myers Squibb Company | Combination of anti-ctla4 antibody with gemcitabine for the synergistic treatment of proliferative diseases |
CA2767409C (en) | 2009-07-24 | 2018-10-30 | The Regents Of The University Of California | Methods and compositions for treating and preventing disease associated with .alpha.v.beta.5 integrin |
US20110039789A1 (en) * | 2009-08-14 | 2011-02-17 | Institut Curie | Use of Huntingtin Protein for the Diagnosis and the Treatment of Cancer |
AP2015008874A0 (en) | 2009-08-14 | 2015-11-30 | Alnylam Pharmaceuticals Inc | Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus |
WO2011035065A1 (en) | 2009-09-17 | 2011-03-24 | Nektar Therapeutics | Monoconjugated chitosans as delivery agents for small interfering nucleic acids |
US20150025122A1 (en) | 2009-10-12 | 2015-01-22 | Larry J. Smith | Methods and Compositions for Modulating Gene Expression Using Oligonucleotide Based Drugs Administered in vivo or in vitro |
US8962584B2 (en) | 2009-10-14 | 2015-02-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Compositions for controlling Varroa mites in bees |
JP5889198B2 (en) | 2009-11-23 | 2016-03-22 | アクアバウンティ テクノロジーズ インコーポレイテッド | Maternally induced sterility in animals |
DK2504435T3 (en) | 2009-11-26 | 2019-12-09 | Quark Pharmaceuticals Inc | SIRNA CONNECTIONS INCLUDING TERMINAL SUBSTITUTIONS |
US20120240287A1 (en) | 2009-12-03 | 2012-09-20 | Basf Plant Science Company Gmbh | Expression Cassettes for Embryo-Specific Expression in Plants |
CA2785996C (en) | 2009-12-07 | 2021-04-13 | The Johns Hopkins University | Sr-bi as a predictor of human female infertility and responsiveness to treatment |
US9687550B2 (en) | 2009-12-07 | 2017-06-27 | Arbutus Biopharma Corporation | Compositions for nucleic acid delivery |
KR101718534B1 (en) | 2009-12-09 | 2017-03-22 | 닛토덴코 가부시키가이샤 | MODULATION OF hsp47 EXPRESSION |
EP2510098B1 (en) | 2009-12-09 | 2015-02-11 | Quark Pharmaceuticals, Inc. | Methods and compositions for treating diseases, disorders or injury of the cns |
US10640457B2 (en) | 2009-12-10 | 2020-05-05 | The Trustees Of Columbia University In The City Of New York | Histone acetyltransferase activators and uses thereof |
EP2509590B1 (en) | 2009-12-10 | 2019-10-30 | The Trustees of Columbia University in the City of New York | Histone acetyltransferase activators and uses thereof |
ES2749426T3 (en) | 2009-12-18 | 2020-03-20 | Univ British Columbia | Nucleic Acid Administration Methods and Compositions |
US8293718B2 (en) | 2009-12-18 | 2012-10-23 | Novartis Ag | Organic compositions to treat HSF1-related diseases |
EP2516010A2 (en) | 2009-12-23 | 2012-10-31 | Novartis AG | Lipids, lipid compositions, and methods of using them |
WO2011084193A1 (en) | 2010-01-07 | 2011-07-14 | Quark Pharmaceuticals, Inc. | Oligonucleotide compounds comprising non-nucleotide overhangs |
MX344543B (en) | 2010-01-26 | 2016-12-19 | Nat Jewish Health | Methods and compositions for risk prediction, diagnosis, prognosis, and treatment of pulmonary disorders. |
WO2011094580A2 (en) | 2010-01-28 | 2011-08-04 | Alnylam Pharmaceuticals, Inc. | Chelated copper for use in the preparation of conjugated oligonucleotides |
WO2011100131A2 (en) | 2010-01-28 | 2011-08-18 | Alnylam Pharmacuticals, Inc. | Monomers and oligonucleotides comprising cycloaddition adduct(s) |
JP2013519869A (en) | 2010-02-10 | 2013-05-30 | ノバルティス アーゲー | Methods and compounds for muscle growth |
CN103200945B (en) | 2010-03-24 | 2016-07-06 | 雷克西制药公司 | RNA interference in eye disease |
BR112012024049A2 (en) | 2010-03-24 | 2017-03-01 | Rxi Pharmaceuticals Corp | rna interference on dermal and fibrotic indications |
RU2615143C2 (en) | 2010-03-24 | 2017-04-04 | Адвирна | Self-delivered rnai compounds of reduced size |
CA2792291A1 (en) | 2010-03-29 | 2011-10-06 | Kumamoto University | Sirna therapy for transthyretin (ttr) related ocular amyloidosis |
US8945927B2 (en) | 2010-03-29 | 2015-02-03 | Universite De Strasbourg | Polymers for delivering molecules of interest |
US9102938B2 (en) | 2010-04-01 | 2015-08-11 | Alnylam Pharmaceuticals, Inc. | 2′ and 5′ modified monomers and oligonucleotides |
AU2011237630B2 (en) | 2010-04-06 | 2016-01-21 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of CD274/PD-L1 gene |
US10913767B2 (en) | 2010-04-22 | 2021-02-09 | Alnylam Pharmaceuticals, Inc. | Oligonucleotides comprising acyclic and abasic nucleosides and analogs |
US20130260460A1 (en) | 2010-04-22 | 2013-10-03 | Isis Pharmaceuticals Inc | Conformationally restricted dinucleotide monomers and oligonucleotides |
WO2011133931A1 (en) | 2010-04-22 | 2011-10-27 | Genentech, Inc. | Use of il-27 antagonists for treating inflammatory bowel disease |
US9725479B2 (en) | 2010-04-22 | 2017-08-08 | Ionis Pharmaceuticals, Inc. | 5′-end derivatives |
CN107929306B (en) | 2010-04-23 | 2022-11-15 | 箭头制药公司 | Organic compositions for the treatment of β-ENaC-related diseases |
KR101223660B1 (en) | 2010-05-20 | 2013-01-17 | 광주과학기술원 | Pharmaceutical Compositions for Preventing or Treating Arthritis Comprising HIF-2α Inhibitor as an Active Ingredient |
JP6033218B2 (en) | 2010-05-21 | 2016-11-30 | ペプティメド, インコーポレイテッド | Reagents and methods for treating cancer |
CN107080839A (en) | 2010-05-26 | 2017-08-22 | 西莱克塔生物科技公司 | The synthesis nano-carrier vaccine of multivalence |
WO2011151321A1 (en) | 2010-05-31 | 2011-12-08 | Institut Curie | Asf1b as a prognosis marker and therapeutic target in human cancer |
EP2576579B1 (en) | 2010-06-02 | 2018-08-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods directed to treating liver fibrosis |
WO2011163121A1 (en) | 2010-06-21 | 2011-12-29 | Alnylam Pharmaceuticals, Inc. | Multifunctional copolymers for nucleic acid delivery |
US9168297B2 (en) | 2010-06-23 | 2015-10-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Regulation of skin pigmentation by neuregulin-1 (NRG-1) |
WO2012016184A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012016188A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
CN107090456B (en) | 2010-08-02 | 2022-01-18 | 瑟纳治疗公司 | Inhibition of beta 1 gene expression using short interfering nucleic acids mediated by RNA interference of catenin (cadherin-associated protein) |
EP3587574B1 (en) | 2010-08-17 | 2022-03-16 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina) |
EP3372684B1 (en) | 2010-08-24 | 2020-10-07 | Sirna Therapeutics, Inc. | Single-stranded rnai agents containing an internal, non-nucleic acid spacer |
US9233997B2 (en) | 2010-08-26 | 2016-01-12 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of prolyl hydroxylase domain 2 (PHD2) gene expression using short interfering nucleic acid (siNA) |
EP2433644A1 (en) | 2010-09-22 | 2012-03-28 | IMBA-Institut für Molekulare Biotechnologie GmbH | Breast cancer therapeutics |
US20140134231A1 (en) | 2010-10-11 | 2014-05-15 | Sanford-Burnham Medical Research Institute | Mir-211 expression and related pathways in human melanoma |
WO2012051567A2 (en) | 2010-10-15 | 2012-04-19 | The Trustees Of Columbia University In The City Of New York | Obesity-related genes and their proteins and uses thereof |
EP2632472B1 (en) | 2010-10-29 | 2017-12-13 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina) |
SG10201508981YA (en) | 2010-11-01 | 2015-11-27 | Peptimed Inc | Compositions Of A Peptide-Based System For Cell-Specific Targeting |
US9198911B2 (en) | 2010-11-02 | 2015-12-01 | The Trustees Of Columbia University In The City Of New York | Methods for treating hair loss disorders |
WO2012061537A2 (en) | 2010-11-02 | 2012-05-10 | The Trustees Of Columbia University In The City Of New York | Methods for treating hair loss disorders |
CN110123830A (en) | 2010-11-09 | 2019-08-16 | 阿尔尼拉姆医药品有限公司 | Composition and method for inhibiting the lipid of the expression of Eg5 and VEGF gene to prepare |
EP2455456A1 (en) | 2010-11-22 | 2012-05-23 | Institut Curie | Use of kinesin inhibitors in HIV infection treatment and a method for screening them |
SG190412A1 (en) | 2010-12-06 | 2013-06-28 | Quark Pharmaceuticals Inc | Double stranded oligonucleotide compounds comprising threose modifications |
US9150926B2 (en) | 2010-12-06 | 2015-10-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Diagnosis and treatment of adrenocortical tumors using human microRNA-483 |
WO2012102793A2 (en) | 2010-12-10 | 2012-08-02 | Zirus, Inc. | Mammalian genes involved in toxicity and infection |
CA2822621C (en) | 2010-12-22 | 2020-12-15 | The Trustees Of Columbia University In The City Of New York | Histone acetyltransferase modulators and uses thereof |
US20140056811A1 (en) | 2010-12-27 | 2014-02-27 | Compugen Ltd. | New cell-penetrating peptides and uses thereof |
DK2663548T3 (en) | 2011-01-11 | 2017-07-24 | Alnylam Pharmaceuticals Inc | PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY |
SG193280A1 (en) | 2011-03-03 | 2013-10-30 | Quark Pharmaceuticals Inc | Oligonucleotide modulators of the toll-like receptor pathway |
US9796979B2 (en) | 2011-03-03 | 2017-10-24 | Quark Pharmaceuticals Inc. | Oligonucleotide modulators of the toll-like receptor pathway |
EP2681314B1 (en) | 2011-03-03 | 2017-11-01 | Quark Pharmaceuticals, Inc. | Compositions and methods for treating lung disease and injury |
WO2012119764A1 (en) | 2011-03-08 | 2012-09-13 | Società Bulloneria Europea S.B.E. Spa | A high load flanged fastener to be installed by tensioning tools |
BR112013023724A2 (en) | 2011-03-15 | 2019-09-24 | Univ Utah Res Found | methods for treating disease or symptom, screening for an agent or a combination of agents, and for determining the effectiveness of an agent and treatment |
KR101291668B1 (en) | 2011-04-21 | 2013-08-01 | 서울대학교산학협력단 | Shuttle Vectors for Mycobacteria-Escherichia coli and Uses Thereof |
US10196637B2 (en) | 2011-06-08 | 2019-02-05 | Nitto Denko Corporation | Retinoid-lipid drug carrier |
TWI658830B (en) | 2011-06-08 | 2019-05-11 | 日東電工股份有限公司 | HSP47 expression regulation and enhancement of retinoid liposomes |
MX344807B (en) | 2011-06-21 | 2017-01-09 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3) genes. |
EP2723865B1 (en) | 2011-06-21 | 2019-03-27 | Alnylam Pharmaceuticals, Inc. | METHODS FOR DETERMINING ACTIVITY OF RNAi IN A SUBJECT |
EP2723861A4 (en) | 2011-06-21 | 2014-12-10 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting hepcidin antimicrobial peptide (hamp) or hamp-related gene expression |
US9068184B2 (en) | 2011-06-21 | 2015-06-30 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of protein C (PROC) genes |
EP2723390B1 (en) | 2011-06-23 | 2017-12-27 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
WO2013003697A1 (en) | 2011-06-30 | 2013-01-03 | Trustees Of Boston University | Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1) |
EP2751272A2 (en) | 2011-09-02 | 2014-07-09 | Novartis AG | Organic compositions to treat hsf1-related diseases |
CA2857374A1 (en) | 2011-09-02 | 2013-03-07 | The Trustees Of Columbia University In The City Of New York | Camkii, ip3r, calcineurin, p38 and mk2/3 inhibitors to treat metabolic disturbances of obesity |
US9644241B2 (en) | 2011-09-13 | 2017-05-09 | Interpace Diagnostics, Llc | Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease |
US9352312B2 (en) | 2011-09-23 | 2016-05-31 | Alere Switzerland Gmbh | System and apparatus for reactions |
WO2013049328A1 (en) | 2011-09-27 | 2013-04-04 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted pegylated lipids |
CA2850032C (en) | 2011-10-14 | 2022-06-07 | Genentech, Inc. | Anti-htra1 antibodies and methods of use |
HUE057604T2 (en) | 2011-10-18 | 2022-06-28 | Dicerna Pharmaceuticals Inc | Amine cationic lipids and uses thereof |
CA2851296C (en) | 2011-11-03 | 2020-08-25 | Quark Pharmaceuticals, Inc. | Methods and compositions for neuroprotection |
US20140323549A1 (en) | 2011-11-08 | 2014-10-30 | Quark Pharmaceuticals, Inc. | Methods and compositions for treating diseases, disorders or injury of the nervous system |
CA2860676A1 (en) | 2012-01-09 | 2013-07-18 | Novartis Ag | Organic compositions to treat beta-catenin-related diseases |
KR101371696B1 (en) | 2012-02-02 | 2014-03-07 | 세종대학교산학협력단 | Method for Screening of Pathogenic Factors Against Rice Blast Disease |
SG10201609345QA (en) | 2012-02-07 | 2017-01-27 | Global Bio Therapeutics Inc | Compartmentalized method of nucleic acid delivery and compositions and uses thereof |
JP6212107B2 (en) | 2012-03-29 | 2017-10-11 | ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Methods for treating hair loss disorders |
EP3358013B1 (en) | 2012-05-02 | 2020-06-24 | Sirna Therapeutics, Inc. | Short interfering nucleic acid (sina) compositions |
CN104583406A (en) | 2012-05-02 | 2015-04-29 | 诺华股份有限公司 | Organic composition for treating KRAS related diseases |
WO2013170960A1 (en) | 2012-05-16 | 2013-11-21 | Silence Therapeutics Ag | Use of vegfr1 as a biomarker for pkn3 inhibitor administration |
WO2013187556A1 (en) | 2012-06-14 | 2013-12-19 | Scripps Korea Antibody Institute | Novel antibody specific for clec14a and uses thereof |
WO2014006227A1 (en) | 2012-07-06 | 2014-01-09 | Institut Gustave-Roussy | Simultaneous detection of cannibalism and senescence as prognostic marker for cancer |
ES2817897T3 (en) | 2012-07-23 | 2021-04-08 | La Jolla Inst Allergy & Immunology | PTPRS and proteoglycans in autoimmune disease |
WO2014018375A1 (en) | 2012-07-23 | 2014-01-30 | Xenon Pharmaceuticals Inc. | Cyp8b1 and uses thereof in therapeutic and diagnostic methods |
EP2700949A1 (en) | 2012-08-24 | 2014-02-26 | IMG Institut für medizinische Genomforschung Planungsgesellschaft M.B.H. | Use of biliverdin reductase proteins as cancer marker |
CA2886120A1 (en) | 2012-10-08 | 2014-04-17 | St. Jude Children's Research Hospital | Therapies based on control of regulatory t cell stability and function via a neuropilin-1:semaphorin axis |
WO2014068072A1 (en) | 2012-10-31 | 2014-05-08 | Institut Gustave-Roussy | Identification, assessment and therapy of essential thrombocythemia with resistance to jak2 inhibitors |
SG11201506805QA (en) | 2013-02-28 | 2015-09-29 | Arrowhead Res Corp | Organic compositions to treat epas1-related diseases |
WO2014135655A1 (en) | 2013-03-06 | 2014-09-12 | Institut Curie | Compositions and methods for treating muscle-invasive bladder cancer |
MX377255B (en) | 2013-03-08 | 2025-03-07 | Novartis Ag | LIPIDS AND LIPID COMPOSITIONS FOR THE DELIVERY OF ACTIVE AGENTS. |
MX360560B (en) | 2013-03-13 | 2018-11-07 | Geneweave Biosciences Inc | Non-replicative transduction particles and transduction particle-based reporter systems. |
US9920377B2 (en) | 2013-03-15 | 2018-03-20 | Sutter West Bay Hospitals | FALZ for use as a target for therapies to treat cancer |
KR20150129847A (en) | 2013-03-15 | 2015-11-20 | 더 트러스티스 오브 컬럼비아 유니버시티 인 더 시티 오브 뉴욕 | Fusion proteins and methods thereof |
WO2014160871A2 (en) | 2013-03-27 | 2014-10-02 | The General Hospital Corporation | Methods and agents for treating alzheimer's disease |
WO2015002969A1 (en) | 2013-07-03 | 2015-01-08 | City Of Hope | Anticancer combinations |
ES2675362T3 (en) | 2013-07-10 | 2018-07-10 | Basf Se | RNAi for the control of fungi and phytopathogenic oomycetes by inhibiting CYP51 gene expression |
MX359191B (en) | 2013-07-19 | 2018-09-18 | Monsanto Technology Llc | Compositions and methods for controlling leptinotarsa. |
WO2015015496A1 (en) | 2013-07-31 | 2015-02-05 | Qbi Enterprises Ltd. | Sphingolipid-polyalkylamine-oligonucleotide compounds |
US20160208247A1 (en) | 2013-07-31 | 2016-07-21 | Qbi Enterprises Ltd. | Methods of use of sphingolipid polyalkylamine oligonucleotide compounds |
WO2015021443A1 (en) | 2013-08-08 | 2015-02-12 | Global Bio Therapeutics Usa, Inc. | Clamp device for minimally invasive procedures and uses thereof |
MX366880B (en) | 2013-08-08 | 2019-07-29 | Global Bio Therapeutics Inc | Injection device for minimally invasive procedures and uses thereof. |
CA2925129C (en) | 2013-10-04 | 2023-04-04 | Novartis Ag | 3' end caps for rnai agents for use in rna interference |
WO2015051135A2 (en) | 2013-10-04 | 2015-04-09 | Novartis Ag | Organic compositions to treat hepcidin-related diseases |
EP3052627B1 (en) | 2013-10-04 | 2018-08-22 | Novartis AG | Novel formats for organic compounds for use in rna interference |
JP6546161B2 (en) | 2013-10-04 | 2019-07-17 | ノバルティス アーゲー | Organic compounds for treating hepatitis B virus |
WO2015051044A2 (en) | 2013-10-04 | 2015-04-09 | Novartis Ag | Novel formats for organic compounds for use in rna interference |
US10584387B2 (en) | 2013-10-09 | 2020-03-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Detection of hepatitis delta virus (HDV) for the diagnosis and treatment of Sjögren's syndrome and lymphoma |
RU2016117978A (en) | 2013-10-11 | 2017-11-17 | Дженентек, Инк. | NSP4 INHIBITORS AND WAYS OF THEIR APPLICATION |
US10004814B2 (en) | 2013-11-11 | 2018-06-26 | Sirna Therapeutics, Inc. | Systemic delivery of myostatin short interfering nucleic acids (siNA) conjugated to a lipophilic moiety |
RU2744194C2 (en) | 2013-12-02 | 2021-03-03 | Фио Фармасьютикалс Корп | Cancer immunotherapy |
WO2015095346A1 (en) | 2013-12-19 | 2015-06-25 | Novartis Ag | Lipids and lipid compositions for the delivery of active agents |
EP3623361B1 (en) | 2013-12-19 | 2021-08-18 | Novartis AG | Lipids and lipid compositions for the delivery of active agents |
US9682123B2 (en) | 2013-12-20 | 2017-06-20 | The Trustees Of Columbia University In The City Of New York | Methods of treating metabolic disease |
US9274117B2 (en) | 2013-12-21 | 2016-03-01 | Catholic University Industry Academic | Use of SIRT7 as novel cancer therapy target and method for treating cancer using the same |
US10174111B2 (en) | 2013-12-27 | 2019-01-08 | National University Corporation Kochi University | Therapeutic drug for malignant tumors |
EP3105319B1 (en) | 2014-02-10 | 2020-03-25 | Institut Curie | Use of mcoln-1 modulators to regulate cell migration |
EP4368705B1 (en) | 2014-03-11 | 2025-01-01 | Cellectis | Method for generating t-cells compatible for allogenic transplantation |
WO2015148582A1 (en) | 2014-03-25 | 2015-10-01 | Arcturus Therapeutics, Inc. | Transthyretin allele selective una oligomers for gene silencing |
CN110846316B (en) | 2014-03-25 | 2023-10-31 | 阿克丘勒斯治疗公司 | UNA oligomers with reduced off-target effects in gene silencing |
US9856475B2 (en) | 2014-03-25 | 2018-01-02 | Arcturus Therapeutics, Inc. | Formulations for treating amyloidosis |
RU2016137179A (en) | 2014-03-31 | 2018-05-07 | Дебиофарм Интернэшнл Са | FGFR HYBRID PROTEINS |
US11091770B2 (en) | 2014-04-01 | 2021-08-17 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
US11279934B2 (en) | 2014-04-28 | 2022-03-22 | Phio Pharmaceuticals Corp. | Methods for treating cancer using nucleic acids targeting MDM2 or MYCN |
KR101633876B1 (en) | 2014-05-08 | 2016-06-28 | 고려대학교 산학협력단 | Use of the REV-ERBα gene for the treatment of emotional disorders and poisoning diseases |
KR101633881B1 (en) | 2014-05-08 | 2016-06-28 | 고려대학교 산학협력단 | REV-ERB Use of REV-ERB for treating dopamine-dependent disorders |
CN106794141B (en) | 2014-07-16 | 2021-05-28 | 诺华股份有限公司 | Method for encapsulating nucleic acids in lipid nanoparticle hosts |
EP3736334A1 (en) | 2014-07-16 | 2020-11-11 | Arrowhead Pharmaceuticals, Inc. | Rnai compositions to treat apoc3-related diseases |
US10378012B2 (en) | 2014-07-29 | 2019-08-13 | Monsanto Technology Llc | Compositions and methods for controlling insect pests |
CN107427552B (en) | 2014-08-22 | 2022-12-20 | 广州英恩迈生物医药科技有限公司 | Methods and compositions for preventing and treating diseases or disorders associated with abnormal levels and/or activities of the IFP35 protein family |
ES2969956T3 (en) | 2014-09-05 | 2024-05-23 | Novartis Ag | Lipids and lipid compositions for the delivery of active agents |
KR102506169B1 (en) | 2014-09-05 | 2023-03-08 | 피오 파마슈티칼스 코프. | Methods for treating aging and skin disorders using nucleic acids targeting tyr or mmp1 |
JP6841753B2 (en) | 2014-09-15 | 2021-03-10 | ザ チルドレンズ メディカル センター コーポレーション | Methods and compositions for increasing somatic cell nuclear transfer (SCNT) efficiency by removing histone H3-lysine trimethylation |
AU2015320748A1 (en) | 2014-09-25 | 2017-04-20 | Cold Spring Harbor Laboratory | Treatment of Rett Syndrome |
US20170304459A1 (en) | 2014-10-10 | 2017-10-26 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for inhalation delivery of conjugated oligonucleotide |
UA124449C2 (en) | 2014-11-12 | 2021-09-22 | Нмк, Інк. | Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same |
EP3778644A3 (en) | 2014-12-23 | 2021-06-02 | The Trustees of Columbia University in the City of New York | Fgfr-tacc fusion proteins and methods thereof |
US10264976B2 (en) | 2014-12-26 | 2019-04-23 | The University Of Akron | Biocompatible flavonoid compounds for organelle and cell imaging |
PL3256589T3 (en) | 2015-01-22 | 2022-02-21 | Monsanto Technology Llc | Compositions and methods for controlling leptinotarsa |
US10500273B2 (en) | 2015-03-02 | 2019-12-10 | 180 Therapeutics Lp | Method of treating a localized fibrotic disorder using an IL-33 antagonist |
US11085044B2 (en) | 2015-03-09 | 2021-08-10 | University Of Kentucky Research Foundation | miRNA for treatment of breast cancer |
CN111961103B (en) | 2015-03-09 | 2023-06-16 | 肯塔基大学研究基金会 | RNA nanoparticles for brain tumor treatment |
US10781446B2 (en) | 2015-03-09 | 2020-09-22 | University Of Kentucky Research Foundation | RNA nanoparticle for treatment of gastric cancer |
KR101797569B1 (en) | 2015-03-18 | 2017-11-22 | 한국교통대학교산학협력단 | Liver Targeting Metal Nano-particle Based Nucleic Acid Delivery System And Manufacturing Method Thereof |
JP6830441B2 (en) | 2015-04-01 | 2021-02-17 | アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. | Therapeutic UNA oligomers and their use |
US11279768B1 (en) | 2015-04-03 | 2022-03-22 | Precision Biologics, Inc. | Anti-cancer antibodies, combination therapies, and uses thereof |
CN107614685B (en) | 2015-04-17 | 2021-10-19 | 肯塔基大学研究基金会 | RNA nanoparticles and methods of use thereof |
EP3289104B1 (en) | 2015-04-29 | 2020-11-04 | New York University | Method for treating high-grade gliomas |
US11174313B2 (en) | 2015-06-12 | 2021-11-16 | Alector Llc | Anti-CD33 antibodies and methods of use thereof |
JP7376977B2 (en) | 2015-06-12 | 2023-11-09 | アレクトル エルエルシー | Anti-CD33 antibody and method of use thereof |
US10669528B2 (en) | 2015-06-25 | 2020-06-02 | Children's Medical Center Corporation | Methods and compositions relating to hematopoietic stem cell expansion, enrichment, and maintenance |
CN108135923B (en) | 2015-07-06 | 2021-03-02 | 菲奥医药公司 | Nucleic acid molecules targeting superoxide dismutase 1 (SOD1) |
WO2017007825A1 (en) | 2015-07-06 | 2017-01-12 | Rxi Pharmaceuticals Corporation | Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach |
WO2017015671A1 (en) | 2015-07-23 | 2017-01-26 | Arcturus Therapeutics, Inc. | Compositions for treating amyloidosis |
WO2017013270A1 (en) | 2015-07-23 | 2017-01-26 | Universite De Strasbourg | Use of leptin signaling inhibitor for protecting kidneys from patients having ciliopathy |
US10072065B2 (en) | 2015-08-24 | 2018-09-11 | Mayo Foundation For Medical Education And Research | Peptide-mediated delivery of immunoglobulins across the blood-brain barrier |
AU2016316768A1 (en) | 2015-08-28 | 2018-03-29 | Alector Llc | Anti-Siglec-7 antibodies and methods of use thereof |
CN108368507B (en) | 2015-09-02 | 2022-03-22 | 阿尔尼拉姆医药品有限公司 | iRNA compositions of programmed cell death 1 ligand 1(PD-L1) and methods of use thereof |
CA2997947A1 (en) | 2015-09-09 | 2017-03-16 | The Trustees Of Columbia University In The City Of New York | Reduction of er-mam-localized app-c99 and methods of treating alzheimer's disease |
WO2017058944A1 (en) | 2015-09-29 | 2017-04-06 | Amgen Inc. | Asgr inhibitors |
WO2017059113A1 (en) | 2015-09-29 | 2017-04-06 | Duke University | Compositions and methods for identifying and treating dystonia disorders |
CA3002744A1 (en) | 2015-10-19 | 2017-04-27 | Rxi Pharmaceuticals Corporation | Reduced size self-delivering nucleic acid compounds targeting long non-coding rna |
CN116003596A (en) | 2015-10-29 | 2023-04-25 | 艾利妥 | anti-SIGLEC-9 antibodies and methods of use thereof |
PE20181009A1 (en) | 2015-10-30 | 2018-06-26 | Genentech Inc | ANTI-HtrA1 ANTIBODIES AND METHODS OF USE OF THEM |
CN108367022A (en) | 2015-12-13 | 2018-08-03 | 日东电工株式会社 | With high activity and reduce the SIRNA structures missed the target |
US11072777B2 (en) | 2016-03-04 | 2021-07-27 | University Of Louisville Research Foundation, Inc. | Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (VSELs) |
EP3429603B1 (en) | 2016-03-15 | 2021-12-29 | Children's Medical Center Corporation | Methods and compositions relating to hematopoietic stem cell expansion |
US10883108B2 (en) | 2016-03-31 | 2021-01-05 | The Schepens Eye Research Institute, Inc. | Endomucin inhibitor as an anti-angiogenic agent |
MA45469A (en) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | BETA-CATENIN NUCLEIC ACIDS AND THEIR USES |
MA45470A (en) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | KRAS NUCLEIC ACIDS AND THEIR USES |
MA45349A (en) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | EGFR NUCLEIC ACIDS AND THEIR USES |
MA45328A (en) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | NUCLEIC ACID-POLYPEPTIDE COMPOSITIONS AND USES THEREOF |
EP4206216A1 (en) | 2016-05-13 | 2023-07-05 | 4D Molecular Therapeutics Inc. | Adeno-associated virus variant capsids and methods of use thereof |
EP3519582A1 (en) | 2016-07-29 | 2019-08-07 | Danmarks Tekniske Universitet | Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides |
WO2018057575A1 (en) | 2016-09-21 | 2018-03-29 | Alnylam Pharmaceuticals, Inc | Myostatin irna compositions and methods of use thereof |
CN110177544A (en) | 2016-11-29 | 2019-08-27 | 普尔泰克健康有限公司 | For delivering the excretion body of therapeutic agent |
US11147249B2 (en) | 2016-12-08 | 2021-10-19 | Alector Llc | Siglec transgenic mice and methods of use thereof |
WO2018109222A1 (en) | 2016-12-16 | 2018-06-21 | Universite de Bordeaux | Mmp9 inhibitors and uses thereof in the prevention or treatment of a depigmenting disorder |
WO2018213316A1 (en) | 2017-05-16 | 2018-11-22 | Alector Llc | Anti-siglec-5 antibodies and methods of use thereof |
US12150978B2 (en) | 2017-06-15 | 2024-11-26 | Cancer Advances Inc. | Compositions and methods for preventing tumors and cancer |
WO2018232230A1 (en) | 2017-06-15 | 2018-12-20 | Cancer Advances Inc. | Compositions and methods for inducing humoral and cellular immunities against tumors and cancer |
CA3066959A1 (en) | 2017-06-16 | 2018-12-20 | Imba - Institut Fur Molekulare Biotechnologie Gmbh | Blood vessel organoid, methods of producing and using said organoids |
BR112019023789A2 (en) | 2017-08-03 | 2020-07-28 | Alector Llc | anti-cd33 antibodies and methods of using them |
CN117866959A (en) | 2017-09-07 | 2024-04-12 | 北京泰德制药股份有限公司 | CKIP-1-targeted double-stranded RNA molecules and uses thereof |
CA3074303A1 (en) | 2017-09-11 | 2019-03-14 | Arrowhead Pharmaceuticals, Inc. | Rnai agents and compositions for inhibiting expression of apolipoprotein c-iii (apoc3) |
BR112020005436B1 (en) | 2017-09-20 | 2022-08-02 | 4D Molecular Therapeutics Inc | ADENO-ASSOCIATED VIRUS VARIANT CAPSID PROTEIN, INFECTIOUS AAV VIRION (RAAV) VIRION, COMPOSITIONS, PHARMACEUTICAL COMPOSITIONS AND USES OF RAAV VIRION OR PHARMACEUTICAL COMPOSITIONS |
SG11202004545XA (en) | 2017-11-27 | 2020-06-29 | 4D Molecular Therapeutics Inc | Adeno-associated virus variant capsids and use for inhibiting angiogenesis |
EP3720448A4 (en) | 2017-12-06 | 2021-11-03 | Avidity Biosciences, Inc. | COMPOSITIONS AND METHODS OF TREATMENT OF MUSCLE ATROPHY AND MYOTONIC DYSTROPHY |
US11470827B2 (en) | 2017-12-12 | 2022-10-18 | Alector Llc | Transgenic mice expressing human TREM proteins and methods of use thereof |
US11597932B2 (en) | 2017-12-21 | 2023-03-07 | Alnylam Pharmaceuticals, Inc. | Chirally-enriched double-stranded RNA agents |
US20210162007A1 (en) | 2018-04-09 | 2021-06-03 | President And Fellows Of Harvard College | Modulating nuclear receptors and methods of using same |
CN112703196A (en) | 2018-05-24 | 2021-04-23 | 圣诺制药公司 | Compositions and methods for controllably coupling polypeptide nanoparticle delivery systems for nucleic acid therapy |
BR112020024919A2 (en) | 2018-06-08 | 2021-03-09 | Alector Llc | ANTIBODIES, NUCLEIC ACID, VECTOR, HOST CELL, METHODS OF ANTIBODY PRODUCTION AND PREVENTION, REDUCING THE RISK OR TREATMENT OF CANCER AND PHARMACEUTICAL COMPOSITION |
JP7535495B2 (en) | 2018-07-27 | 2024-08-16 | アレクトル エルエルシー | Anti-Siglec-5 Antibodies and Methods of Use Thereof |
CA3108808A1 (en) | 2018-08-31 | 2020-03-05 | Alector Llc | Anti-cd33 antibodies and methods of use thereof |
EP3853250A4 (en) | 2018-09-19 | 2022-06-08 | La Jolla Institute for Immunology | PTPRS AND PROTEOGLYCANS IN RHEUMATOID ARTHRITIS |
US11708575B2 (en) | 2018-11-16 | 2023-07-25 | Nitto Denko Corporation | RNA interference delivery formulation and methods for malignant tumors |
JP7588074B2 (en) | 2018-12-27 | 2024-11-21 | サーナオミクス インコーポレイテッド | Silencing TGF-beta1 and Cox2 using siRNA delivered in combination with immune checkpoint inhibitors to treat cancer |
US12215382B2 (en) | 2019-03-01 | 2025-02-04 | The General Hospital Corporation | Liver protective MARC variants and uses thereof |
WO2021037972A1 (en) | 2019-08-27 | 2021-03-04 | Sanofi | Compositions and methods for inhibiting pcsk9 |
KR102100163B1 (en) | 2019-09-24 | 2020-04-13 | 테고사이언스 (주) | Compositions of Prevention or Treatment of Keloid or Hypertrophic scar |
JOP20220152A1 (en) | 2019-12-18 | 2023-01-30 | Novartis Ag | 3-(5-methoxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
CN115176005A (en) | 2019-12-18 | 2022-10-11 | 诺华股份有限公司 | Compositions and methods for treating hemoglobinopathies |
KR20220139886A (en) | 2020-01-08 | 2022-10-17 | 리제너론 파아마슈티컬스, 인크. | Treatment of Progressive Osteogenic Fibrodysplasia |
US12178902B1 (en) | 2020-01-12 | 2024-12-31 | University Of Southern California | Methods and compositions for fluid drainage by Piezo ion channel activation |
WO2021150300A1 (en) | 2020-01-22 | 2021-07-29 | Massachusetts Institute Of Technology | Inducible tissue constructs and uses thereof |
WO2021173965A1 (en) | 2020-02-28 | 2021-09-02 | Massachusetts Institute Of Technology | Identification of variable influenza residues and uses thereof |
MX2022011499A (en) | 2020-03-19 | 2022-10-07 | Avidity Biosciences Inc | Compositions and methods of treating facioscapulohumeral muscular dystrophy. |
WO2022147480A1 (en) | 2020-12-30 | 2022-07-07 | Ansun Biopharma, Inc. | Oncolytic virus encoding sialidase and multispecific immune cell engager |
KR20240014477A (en) | 2021-05-28 | 2024-02-01 | 상하이 레제네리드 테라피즈 컴퍼니 리미티드 | Recombinant adeno-associated virus with variant capsid and applications thereof |
EP4359527A2 (en) | 2021-06-23 | 2024-05-01 | Novartis AG | Compositions and methods for the treatment of hemoglobinopathies |
WO2023012165A1 (en) | 2021-08-02 | 2023-02-09 | Universite De Montpellier | Compositions and methods for treating cmt1a or cmt1e diseases with rnai molecules targeting pmp22 |
EP4416292A2 (en) | 2021-10-14 | 2024-08-21 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shrnas and logic gate systems |
WO2024059618A2 (en) | 2022-09-13 | 2024-03-21 | Arsenal Biosciences, Inc. | Immune cells having co-expressed tgfbr shrnas |
AU2023342285A1 (en) | 2022-09-16 | 2025-03-27 | Arsenal Biosciences, Inc. | Immune cells with combination gene perturbations |
TW202442689A (en) | 2023-03-03 | 2024-11-01 | 美商亞森諾生物科學公司 | Systems targeting psma and ca9 |
Citations (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868116A (en) * | 1985-07-05 | 1989-09-19 | Whitehead Institute For Biomedical Research | Introduction and expression of foreign genetic material in epithelial cells |
US4980286A (en) * | 1985-07-05 | 1990-12-25 | Whitehead Institute For Biomedical Research | In vivo introduction and expression of foreign genetic material in epithelial cells |
US4987071A (en) * | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
US5107065A (en) * | 1986-03-28 | 1992-04-21 | Calgene, Inc. | Anti-sense regulation of gene expression in plant cells |
US5112734A (en) * | 1989-05-26 | 1992-05-12 | Gene-Trak Systems | Target-dependent synthesis of an artificial gene for the synthesis of a replicatable rna |
US5190931A (en) * | 1983-10-20 | 1993-03-02 | The Research Foundation Of State University Of New York | Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA |
US5208149A (en) * | 1983-10-20 | 1993-05-04 | The Research Foundation Of State University Of New York | Nucleic acid constructs containing stable stem and loop structures |
US5212295A (en) * | 1990-01-11 | 1993-05-18 | Isis Pharmaceuticals | Monomers for preparation of oligonucleotides having chiral phosphorus linkages |
US5225347A (en) * | 1989-09-25 | 1993-07-06 | Innovir Laboratories, Inc. | Therapeutic ribozyme compositions and expression vectors |
US5246921A (en) * | 1990-06-26 | 1993-09-21 | The Wistar Institute Of Anatomy And Biology | Method for treating leukemias |
US5254678A (en) * | 1987-12-15 | 1993-10-19 | Gene Shears Pty. Limited | Ribozymes |
US5328470A (en) * | 1989-03-31 | 1994-07-12 | The Regents Of The University Of Michigan | Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor |
US5496698A (en) * | 1992-08-26 | 1996-03-05 | Ribozyme Pharmaceuticals, Inc. | Method of isolating ribozyme targets |
US5525468A (en) * | 1992-05-14 | 1996-06-11 | Ribozyme Pharmaceuticals, Inc. | Assay for Ribozyme target site |
US5573046A (en) * | 1993-12-09 | 1996-11-12 | Ciba Corning Diagnostics Corp. | Value housing for a fluid delivery system |
US5574142A (en) * | 1992-12-15 | 1996-11-12 | Microprobe Corporation | Peptide linkers for improved oligonucleotide delivery |
US5587361A (en) * | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5616459A (en) * | 1990-07-16 | 1997-04-01 | The Public Health Research Institute Of The City Of New York, Inc. | Selection of ribozymes that efficiently cleave target RNA |
US5624803A (en) * | 1993-10-14 | 1997-04-29 | The Regents Of The University Of California | In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom |
US5635385A (en) * | 1993-09-15 | 1997-06-03 | Temple University-Of The Commonwealth System Of Higher Education | Multi-unit ribozyme inhibition of oncogene gene expression |
US5639655A (en) * | 1993-01-19 | 1997-06-17 | Ribozyme Pharmaceuticals, Inc. | PML-RARA targeted ribozymes |
US5674683A (en) * | 1995-03-21 | 1997-10-07 | Research Corporation Technologies, Inc. | Stem-loop and circular oligonucleotides and method of using |
US5703054A (en) * | 1992-03-16 | 1997-12-30 | Isis Pharmaceuticals, Inc. | Oligonucleotide modulation of protein kinase C |
US5712257A (en) * | 1987-08-12 | 1998-01-27 | Hem Research, Inc. | Topically active compositions of mismatched dsRNAs |
US5719271A (en) * | 1992-03-05 | 1998-02-17 | Isis Pharmaceuticals, Inc. | Covalently cross-linked oligonucleotides |
US5731181A (en) * | 1996-06-17 | 1998-03-24 | Thomas Jefferson University | Chimeric mutational vectors having non-natural nucleotides |
US5739271A (en) * | 1995-06-07 | 1998-04-14 | Gen-Probe Incorporated | Thiocationic lipids |
US5789230A (en) * | 1993-10-14 | 1998-08-04 | Boehringer Ingelheim International Gmbh | Endosomolytically active particles |
US5801154A (en) * | 1993-10-18 | 1998-09-01 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide modulation of multidrug resistance-associated protein |
US5811300A (en) * | 1992-12-07 | 1998-09-22 | Ribozyme Pharmaceuticals, Inc. | TNF-α ribozymes |
US5811275A (en) * | 1993-05-17 | 1998-09-22 | The Regents Of The University Of California | HIV-specific ribozymes |
US5814500A (en) * | 1996-10-31 | 1998-09-29 | The Johns Hopkins University School Of Medicine | Delivery construct for antisense nucleic acids and methods of use |
US5824519A (en) * | 1995-11-08 | 1998-10-20 | Medical University Of South Carolina | Tissue-specific and target RNA-specific ribozymes |
US5837510A (en) * | 1989-01-23 | 1998-11-17 | Goldsmith; Mark A. | Methods and polynucleotide constructs for treating host cells for infection or hyperproliferative disorders |
US5854067A (en) * | 1996-01-19 | 1998-12-29 | Board Of Regents, The University Of Texas System | Hexokinase inhibitors |
US5864028A (en) * | 1992-11-03 | 1999-01-26 | Gene Shears Pty. Limited | Degradation resistant mRNA derivatives linked to TNF-α ribozymes |
US5866701A (en) * | 1988-09-20 | 1999-02-02 | The Board Of Regents For Northern Illinois University Of Dekalb | HIV targeted hairpin ribozymes |
US5891717A (en) * | 1996-01-19 | 1999-04-06 | Betagene, Inc. | Methods and compositions for inhibiting hexokinase |
US5898031A (en) * | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
US5908779A (en) * | 1993-12-01 | 1999-06-01 | University Of Connecticut | Targeted RNA degradation using nuclear antisense RNA |
US5939262A (en) * | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
US5968737A (en) * | 1996-11-12 | 1999-10-19 | The University Of Mississippi | Method of identifying inhibitors of glutathione S-transferase (GST) gene expression |
US5985620A (en) * | 1992-11-03 | 1999-11-16 | Gene Shears Pty. Limited | TNF-α Ribozymes |
US5998203A (en) * | 1996-04-16 | 1999-12-07 | Ribozyme Pharmaceuticals, Inc. | Enzymatic nucleic acids containing 5'-and/or 3'-cap structures |
US6054299A (en) * | 1994-04-29 | 2000-04-25 | Conrad; Charles A. | Stem-loop cloning vector and method |
US6057156A (en) * | 1997-01-31 | 2000-05-02 | Robozyme Pharmaceuticals, Inc. | Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors |
US6071890A (en) * | 1994-12-09 | 2000-06-06 | Genzyme Corporation | Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy |
US6077705A (en) * | 1996-05-17 | 2000-06-20 | Thomas Jefferson University | Ribozyme-mediated gene replacement |
US6080851A (en) * | 1992-12-04 | 2000-06-27 | American Home Products Corporation | Ribozymes with linked anchor sequences |
US6087164A (en) * | 1997-10-03 | 2000-07-11 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Methods and compositions for inducing tumor-specific cytotoxicity |
US6087172A (en) * | 1997-10-31 | 2000-07-11 | Hisamitsu Pharmaceutical Co., Inc. | Ribozymes targeted to human IL-15 mRNA |
US6099823A (en) * | 1996-02-16 | 2000-08-08 | Millennium Pharmaceuticals, Inc. | Compositions and methods for the treatment and diagnosis of cardiovascular disease |
US6100444A (en) * | 1997-02-11 | 2000-08-08 | University Of Rochester Medical Center | Prostate specific regulatory nucleic acid sequences and transgenic non-human animals expressing prostate specific antigen |
US6100087A (en) * | 1998-03-11 | 2000-08-08 | City Of Hope | Ribozymes targeted to human CCR5 mRNA |
US6127533A (en) * | 1997-02-14 | 2000-10-03 | Isis Pharmaceuticals, Inc. | 2'-O-aminooxy-modified oligonucleotides |
US6166197A (en) * | 1995-03-06 | 2000-12-26 | Isis Pharmaceuticals, Inc. | Oligomeric compounds having pyrimidine nucleotide (S) with 2'and 5 substitutions |
US6183959B1 (en) * | 1997-07-03 | 2001-02-06 | Ribozyme Pharmaceuticals, Inc. | Method for target site selection and discovery |
US6225291B1 (en) * | 1997-04-21 | 2001-05-01 | University Of Florida | Rod opsin mRNA-specific ribozyme compositions and methods for the treatment of retinal diseases |
US6245560B1 (en) * | 1990-01-18 | 2001-06-12 | The United States Of America As Represented By The Department Of Health And Human Services | Vector with multiple target response elements affecting gene expression |
US6245748B1 (en) * | 1997-09-26 | 2001-06-12 | Georgetown University | Inhibition of an FGF-binding protein using ribozymes |
US6255071B1 (en) * | 1996-09-20 | 2001-07-03 | Cold Spring Harbor Laboratory | Mammalian viral vectors and their uses |
US6271358B1 (en) * | 1998-07-27 | 2001-08-07 | Isis Pharmaceuticals, Inc. | RNA targeted 2′-modified oligonucleotides that are conformationally preorganized |
US6573046B1 (en) * | 1998-05-12 | 2003-06-03 | Valigen (Us), Inc | Eukaryotic use of improved chimeric mutational vectors |
US20030134808A1 (en) * | 1997-09-12 | 2003-07-17 | Jesper Wengel | Oligonucleotide analogues |
US20040001811A1 (en) * | 2001-01-09 | 2004-01-01 | Ribopharma Ag | Compositions and methods for inhibiting expression of anti-apoptotic genes |
US20040053875A1 (en) * | 1999-01-30 | 2004-03-18 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3852823T2 (en) | 1987-09-11 | 1995-05-24 | Hughes Howard Med Inst | TRANSDUCTION-CHANGED FIBROBLASTS AND THEIR USE. |
JP2914692B2 (en) | 1987-12-11 | 1999-07-05 | ホワイトヘツド・インスチチユート・フオー・バイオメデイカル・リサーチ | Endothelial cell genetic modification |
US5100087A (en) * | 1989-03-06 | 1992-03-31 | Ashby Stephen B | Fastening device for container liners |
JP2917998B2 (en) | 1988-02-05 | 1999-07-12 | ホワイトヘッド・インスティチュート・フォー・バイオメディカル・リサーチ | Modified hepatocytes and their uses |
US5683867A (en) * | 1990-06-11 | 1997-11-04 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: blended SELEX |
EP0556345B2 (en) | 1990-10-31 | 2005-10-12 | Cell Genesys, Inc. | Retroviral vectors useful for gene therapy |
FR2675803B1 (en) * | 1991-04-25 | 1996-09-06 | Genset Sa | CLOSED, ANTISENSE AND SENSE OLIGONUCLEOTIDES AND THEIR APPLICATIONS. |
US5238470A (en) * | 1992-02-21 | 1993-08-24 | Westavco Corporation | Emission control device |
RU94046425A (en) | 1992-07-02 | 1997-03-20 | Хайбрайдон | Self-stabilized oligonucleotide and method of genetic expression inhibition |
US6423489B1 (en) | 1992-09-10 | 2002-07-23 | Isis Pharmaceuticals, Inc. | Compositions and methods for treatment of Hepatitis C virus-associated diseases |
FR2703053B1 (en) * | 1993-03-26 | 1995-06-16 | Genset Sa | STAPLE AND SEMI-STAPLE OLIGONUCLEOTIDES, PREPARATION METHOD AND APPLICATIONS. |
US6143878A (en) | 1994-11-29 | 2000-11-07 | The University Of Queensland | Sox-9 gene and protein and use in the regeneration of bone or cartilage |
US5683873A (en) * | 1995-01-13 | 1997-11-04 | Innovir Laboratories, Inc. | EGS-mediated inactivation of target RNA |
AU727531B2 (en) * | 1995-07-25 | 2000-12-14 | Crucell Holland B.V. | Methods and means for targeted gene delivery |
US6482803B1 (en) * | 1995-09-01 | 2002-11-19 | Board Of Regents, The University Of Texas System | Modification of mutated P53 gene in tumors by retroviral delivery of ribozyme A |
US6346398B1 (en) | 1995-10-26 | 2002-02-12 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for the treatment of diseases or conditions related to levels of vascular endothelial growth factor receptor |
AU1430097A (en) * | 1996-01-16 | 1997-08-11 | Ribozyme Pharmaceuticals, Inc. | Synthesis of methoxy nucleosides and enzymatic nucleic acid molecules |
DE19618797C2 (en) | 1996-05-10 | 2000-03-23 | Bertling Wolf | Vehicle for the transport of molecular substances |
DE19631919C2 (en) * | 1996-08-07 | 1998-07-16 | Deutsches Krebsforsch | Anti-sense RNA with secondary structure |
GB9710475D0 (en) | 1997-05-21 | 1997-07-16 | Zeneca Ltd | Gene silencing |
GB9720148D0 (en) | 1997-09-22 | 1997-11-26 | Innes John Centre Innov Ltd | Gene silencing materials and methods |
US6355415B1 (en) | 1997-09-29 | 2002-03-12 | Ohio University | Compositions and methods for the use of ribozymes to determine gene function |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
EP2302057B1 (en) * | 1998-03-20 | 2019-02-20 | Commonwealth Scientific and Industrial Research Organisation | Control of gene expression |
NZ507093A (en) * | 1998-04-08 | 2003-08-29 | Commw Scient Ind Res Org | Methods and means for reducing the phenotypic expression of a nucleic acid of interest in a plant |
AU3751299A (en) | 1998-04-20 | 1999-11-08 | Ribozyme Pharmaceuticals, Inc. | Nucleic acid molecules with novel chemical compositions capable of modulating gene expression |
AR020078A1 (en) * | 1998-05-26 | 2002-04-10 | Syngenta Participations Ag | METHOD FOR CHANGING THE EXPRESSION OF AN OBJECTIVE GENE IN A PLANT CELL |
GB9827152D0 (en) | 1998-07-03 | 1999-02-03 | Devgen Nv | Characterisation of gene function using double stranded rna inhibition |
US6486299B1 (en) * | 1998-09-28 | 2002-11-26 | Curagen Corporation | Genes and proteins predictive and therapeutic for stroke, hypertension, diabetes and obesity |
MXPA01003642A (en) | 1998-10-09 | 2003-07-21 | Ingene Inc | ENZYMATIC SYNTHESIS OF ssDNA. |
MXPA01003643A (en) | 1998-10-09 | 2003-07-21 | Ingene Inc | PRODUCTION OF ssDNA IN VIVO. |
WO2000044914A1 (en) | 1999-01-28 | 2000-08-03 | Medical College Of Georgia Research Institute, Inc. | Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna |
US6200924B1 (en) | 1999-01-29 | 2001-03-13 | E. I. Du Pont De Nemours And Company | Porous highly fluorinated acidic polymer catalyst |
BR0009884A (en) * | 1999-04-21 | 2002-01-08 | American Home Prod | Processes and compositions for inhibiting the function of polynucleotide sequences |
EA200101186A1 (en) | 1999-05-10 | 2002-04-25 | Зингента Партисипейшнс Аг | REGULATION OF VIRAL GENES EXPRESSION |
US6861220B2 (en) | 1999-09-08 | 2005-03-01 | Ramot University Authority For Applied Research & Industrial Development Ltd | Genetic screening methods |
US6569623B1 (en) | 1999-09-08 | 2003-05-27 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Genetic screening methods |
WO2001029058A1 (en) | 1999-10-15 | 2001-04-26 | University Of Massachusetts | Rna interference pathway genes as tools for targeted genetic interference |
GB9927444D0 (en) | 1999-11-19 | 2000-01-19 | Cancer Res Campaign Tech | Inhibiting gene expression |
US7829693B2 (en) | 1999-11-24 | 2010-11-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of a target gene |
DE10160151A1 (en) | 2001-01-09 | 2003-06-26 | Ribopharma Ag | Inhibiting expression of target gene, useful e.g. for inhibiting oncogenes, by administering double-stranded RNA complementary to the target and having an overhang |
RU2164944C1 (en) | 1999-12-09 | 2001-04-10 | Институт молекулярной биологии им. В.А. Энгельгардта РАН | Method of alternation of organism genetic features |
GB9930691D0 (en) | 1999-12-24 | 2000-02-16 | Devgen Nv | Improvements relating to double-stranded RNA inhibition |
AU2001245793A1 (en) * | 2000-03-16 | 2001-09-24 | Cold Spring Harbor Laboratory | Methods and compositions for rna interference |
EP1272629A4 (en) | 2000-03-17 | 2004-12-22 | Benitec Australia Ltd | Genetic silencing |
EP1309726B2 (en) * | 2000-03-30 | 2018-10-03 | Whitehead Institute For Biomedical Research | Rna sequence-specific mediators of rna interference |
WO2001092513A1 (en) | 2000-05-30 | 2001-12-06 | Johnson & Johnson Research Pty Limited | METHODS FOR MEDIATING GENE SUPPRESION BY USING FACTORS THAT ENHANCE RNAi |
US20040053869A1 (en) | 2000-08-19 | 2004-03-18 | Peter Andrews | Stem cell differentiation |
US20030190635A1 (en) * | 2002-02-20 | 2003-10-09 | Mcswiggen James A. | RNA interference mediated treatment of Alzheimer's disease using short interfering RNA |
AU2001296333A1 (en) | 2000-09-26 | 2002-04-08 | The Burnham Institute | Paad domain-containing polypeptides, encoding nucleic acids, and methods of use |
WO2002068637A2 (en) | 2000-10-20 | 2002-09-06 | Ribozyme Pharmaceuticals, Inc. | Nucleic acid-based treatment of diseases or conditions related to west nile virus infection |
US20020173478A1 (en) | 2000-11-14 | 2002-11-21 | The Trustees Of The University Of Pennsylvania | Post-transcriptional gene silencing by RNAi in mammalian cells |
EP1873259B1 (en) | 2000-12-01 | 2012-01-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | RNA interference mediated by 21 and 22nt RNAs |
AU2002248173B2 (en) | 2000-12-08 | 2007-04-26 | Invitrogen Corporation | Compositions and methods for rapidly generating recombinant nucleic acid molecules |
WO2003035869A1 (en) | 2001-10-26 | 2003-05-01 | Ribopharma Ag | Use of a double-stranded ribonucleic acid for specifically inhibiting the expression of a given target gene |
US8546143B2 (en) | 2001-01-09 | 2013-10-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of a target gene |
DE10100588A1 (en) | 2001-01-09 | 2002-07-18 | Ribopharma Ag | Inhibiting expression of target genes, useful e.g. for treating tumors, by introducing into cells two double-stranded RNAs that are complementary to the target |
US6335415B1 (en) * | 2001-01-30 | 2002-01-01 | Council Of Scientific & Industrial Research | Process for the preparation of a polyester |
US7521548B2 (en) | 2001-02-07 | 2009-04-21 | Burnham Institute For Medical Research | Apoptosis modulator Bcl-B and methods for making and using same |
GB0104948D0 (en) | 2001-02-28 | 2001-04-18 | Novartis Res Foundation | Novel methods |
US20020132346A1 (en) | 2001-03-08 | 2002-09-19 | Jose Cibelli | Use of RNA interference for the creation of lineage specific ES and other undifferentiated cells and production of differentiated cells in vitro by co-culture |
US6787063B2 (en) * | 2001-03-12 | 2004-09-07 | Seiko Epson Corporation | Compositions, methods for producing films, functional elements, methods for producing functional elements, methods for producing electro-optical devices and methods for producing electronic apparatus |
EP1386004A4 (en) | 2001-04-05 | 2005-02-16 | Ribozyme Pharm Inc | Modulation of gene expression associated with inflammation proliferation and neurite outgrowth, using nucleic acid based technologies |
WO2003006477A1 (en) | 2001-07-12 | 2003-01-23 | University Of Massachusetts | IN VIVO PRODUCTION OF SMALL INTERFERING RNAs THAT MEDIATE GENE SILENCING |
GB0118223D0 (en) | 2001-07-26 | 2001-09-19 | Univ Sheffield | Stem loop RNA |
WO2003012052A2 (en) | 2001-07-30 | 2003-02-13 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Specific inhibition of gene expression by small double stranded rnas |
WO2003016572A1 (en) | 2001-08-17 | 2003-02-27 | Eli Lilly And Company | Oligonucleotide therapeutics for treating hepatitis c virus infections |
US7101995B2 (en) | 2001-08-27 | 2006-09-05 | Mirus Bio Corporation | Compositions and processes using siRNA, amphipathic compounds and polycations |
US20030198627A1 (en) * | 2001-09-01 | 2003-10-23 | Gert-Jan Arts | siRNA knockout assay method and constructs |
DE10163098B4 (en) | 2001-10-12 | 2005-06-02 | Alnylam Europe Ag | Method for inhibiting the replication of viruses |
US7745418B2 (en) | 2001-10-12 | 2010-06-29 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting viral replication |
DE10230996A1 (en) | 2001-10-26 | 2003-07-17 | Ribopharma Ag | Method for inhibiting viral replication, useful particularly for treating hepatitis C infection, by altering the 3'-untranslated region of the virus |
CN1608133A (en) | 2001-10-26 | 2005-04-20 | 里伯药品公司 | Use of a double-stranded ribonucleic acid for treating an infection with a positivestrand rna-virus |
WO2003035870A1 (en) | 2001-10-26 | 2003-05-01 | Ribopharma Ag | Drug for treating a carcinoma of the pancreas |
CN1604783A (en) | 2001-10-26 | 2005-04-06 | 里伯药品公司 | Drug for treating a fibrotic disease through rna interfence |
DE10230997A1 (en) | 2001-10-26 | 2003-07-17 | Ribopharma Ag | Drug to increase the effectiveness of a receptor-mediates apoptosis in drug that triggers tumor cells |
CA2465860A1 (en) | 2001-11-02 | 2004-04-22 | Insert Therapeutics, Inc. | Methods and compositions for therapeutic use of rna interference |
FR2832154B1 (en) | 2001-11-09 | 2007-03-16 | Centre Nat Rech Scient | OLIGONUCLEOTIDES INHIBITORS AND THEIR USE FOR SPECIFICALLY REPRESSING A GENE |
US20030148341A1 (en) | 2001-11-15 | 2003-08-07 | Sin Wun Chey | Gene amplification and overexpression in cancer |
DE10202419A1 (en) | 2002-01-22 | 2003-08-07 | Ribopharma Ag | Method of inhibiting expression of a target gene resulting from chromosome aberration |
EP1432724A4 (en) | 2002-02-20 | 2006-02-01 | Sirna Therapeutics Inc | RNA inhibition mediated inhibition of MAP KINASE GENES |
CA2463595A1 (en) | 2002-02-20 | 2003-08-28 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of bcl2 gene expression using short interfering nucleic acid (sina) |
AU2003219833A1 (en) | 2002-02-20 | 2003-09-09 | Sirna Therapeutics Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
CA2457528C (en) | 2002-02-20 | 2011-07-12 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of hepatitis c virus (hcv) gene expression using short interfering nucleic acid (sina) |
AU2003206946A1 (en) | 2002-02-22 | 2003-09-09 | Klaus Strebhardt | Agent for inhibiting development or progress of proliferative diseases and especially cancer diseases and pharmaceutical composition containing said agent |
US20030180756A1 (en) | 2002-03-21 | 2003-09-25 | Yang Shi | Compositions and methods for suppressing eukaryotic gene expression |
DE10230966A1 (en) | 2002-07-10 | 2004-01-22 | Ina-Schaeffler Kg | Electromagnetic hydraulic valve especially a proportional valve to control a camshaft angle adjuster against a combustion engine crankshaft has simplified return spring |
BRPI0313202A8 (en) | 2002-08-05 | 2016-08-16 | Atugen Ag | ADDITIONAL WAYS TO INTERFERE WITH RNA MOLECULES |
US20040137471A1 (en) | 2002-09-18 | 2004-07-15 | Timothy Vickers | Efficient reduction of target RNA's by single-and double-stranded oligomeric compounds |
EP2278005A3 (en) | 2002-11-14 | 2012-05-23 | Dharmacon, Inc. | Fuctional and hyperfunctional sirna |
DE10302421A1 (en) | 2003-01-21 | 2004-07-29 | Ribopharma Ag | New double-stranded interfering RNA, useful for inhibiting hepatitis C virus, has one strand linked to a lipophilic group to improve activity and eliminate the need for transfection auxiliaries |
GB0317988D0 (en) | 2003-07-31 | 2003-09-03 | Milner Jo | Splicing variants |
ES2385811T3 (en) * | 2005-01-07 | 2012-08-01 | Alnylam Pharmaceuticals Inc. | RSV RNAi modulation and therapeutic uses thereof |
KR101547579B1 (en) | 2006-03-31 | 2015-08-27 | 알닐람 파마슈티칼스 인코포레이티드 | DsRNA for inhibiting expression of Eg5 gene |
-
1999
- 1999-11-24 DE DE19956568A patent/DE19956568A1/en not_active Withdrawn
-
2000
- 2000-01-29 EP EP06025389.5A patent/EP1798285B1/en not_active Revoked
- 2000-01-29 EP EP15194718.1A patent/EP3018207A1/en not_active Withdrawn
- 2000-01-29 EP EP02003683.6A patent/EP1214945B2/en not_active Expired - Lifetime
- 2000-01-29 PT PT02003683T patent/PT1214945E/en unknown
- 2000-01-29 EP EP10011217.6A patent/EP2363479B1/en not_active Expired - Lifetime
- 2000-01-29 PT PT100112176T patent/PT2363479T/en unknown
- 2000-01-29 DE DE20023125U patent/DE20023125U1/en not_active Expired - Lifetime
- 2000-01-29 EP EP05002454A patent/EP1550719B1/en not_active Revoked
- 2000-01-29 ES ES05002454T patent/ES2321409T3/en not_active Expired - Lifetime
- 2000-01-29 DE DE10080167T patent/DE10080167B4/en not_active Revoked
- 2000-01-29 AT AT02003683T patent/ATE297463T1/en active
- 2000-01-29 AT AT05002454T patent/ATE418610T1/en active
- 2000-01-29 ES ES00910510T patent/ES2182791T3/en not_active Expired - Lifetime
- 2000-01-29 AU AU2000032713A patent/AU778474B2/en not_active Expired
- 2000-01-29 EP EP00910510A patent/EP1144623B9/en not_active Revoked
- 2000-01-29 AT AT00910510T patent/ATE222953T1/en not_active IP Right Cessation
- 2000-01-29 WO PCT/DE2000/000244 patent/WO2000044895A1/en active IP Right Grant
- 2000-01-29 DK DK10011217.6T patent/DK2363479T3/en active
- 2000-01-29 DK DK02003683.6T patent/DK1214945T4/en active
- 2000-01-29 ES ES02003683T patent/ES2243608T5/en not_active Expired - Lifetime
- 2000-01-29 DE DE50010528T patent/DE50010528D1/en not_active Expired - Lifetime
- 2000-01-29 PT PT60253895T patent/PT1798285T/en unknown
- 2000-01-29 ES ES06025389.5T patent/ES2628535T3/en not_active Expired - Lifetime
- 2000-01-29 DE DE50000414T patent/DE50000414D1/en not_active Revoked
- 2000-01-29 JP JP2000596137A patent/JP2003502012A/en not_active Withdrawn
- 2000-01-29 DE DE50015501T patent/DE50015501D1/en not_active Expired - Lifetime
- 2000-01-29 ES ES10011217.6T patent/ES2597953T3/en not_active Expired - Lifetime
- 2000-01-29 DK DK06025389.5T patent/DK1798285T3/en active
- 2000-01-29 DE DE10066235.8A patent/DE10066235C5/en not_active Expired - Fee Related
- 2000-01-29 CA CA002359180A patent/CA2359180C/en not_active Expired - Lifetime
- 2000-01-29 PT PT05002454T patent/PT1550719E/en unknown
- 2000-01-29 DK DK05002454T patent/DK1550719T3/en active
-
2001
- 2001-07-18 ZA ZA200105909A patent/ZA200105909B/en unknown
-
2003
- 2003-03-06 US US10/382,395 patent/US8101584B2/en not_active Expired - Fee Related
- 2003-03-06 US US10/382,768 patent/US8168776B2/en not_active Expired - Fee Related
- 2003-03-06 US US10/383,099 patent/US8119608B2/en not_active Expired - Fee Related
- 2003-07-02 US US10/612,179 patent/US8202980B2/en not_active Expired - Fee Related
-
2005
- 2005-03-09 AU AU2005201044A patent/AU2005201044B2/en not_active Expired
-
2006
- 2006-09-13 JP JP2006248529A patent/JP2006340732A/en not_active Withdrawn
- 2006-09-13 JP JP2006248528A patent/JP2007031443A/en not_active Withdrawn
-
2007
- 2007-07-17 JP JP2007186340A patent/JP2007314555A/en active Pending
- 2007-07-17 JP JP2007186341A patent/JP2007312784A/en active Pending
- 2007-07-17 JP JP2007186339A patent/JP2008005844A/en active Pending
- 2007-10-31 US US11/982,345 patent/US8729037B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/982,305 patent/US8101742B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/982,441 patent/US8114981B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/982,325 patent/US20080171862A1/en not_active Abandoned
- 2007-10-31 US US11/982,425 patent/US8183362B2/en not_active Expired - Fee Related
- 2007-10-31 US US11/982,434 patent/US8114851B2/en not_active Expired - Fee Related
-
2009
- 2009-01-08 JP JP2009002825A patent/JP2009102380A/en active Pending
- 2009-01-08 JP JP2009002826A patent/JP2009100758A/en active Pending
- 2009-01-08 JP JP2009002824A patent/JP2009100757A/en active Pending
- 2009-03-20 CY CY20091100310T patent/CY1108896T1/en unknown
- 2009-12-16 JP JP2009285706A patent/JP2010057515A/en active Pending
- 2009-12-16 JP JP2009285705A patent/JP2010057514A/en not_active Withdrawn
-
2012
- 2012-01-30 HK HK12100861.2A patent/HK1160487A1/en not_active IP Right Cessation
- 2012-10-19 US US13/656,540 patent/US20130164366A1/en not_active Abandoned
- 2012-10-19 US US13/656,548 patent/US9902954B2/en not_active Expired - Fee Related
- 2012-10-19 US US13/656,513 patent/US8877726B2/en not_active Expired - Fee Related
-
2013
- 2013-01-17 JP JP2013006076A patent/JP5990468B2/en not_active Expired - Lifetime
- 2013-01-29 US US13/753,438 patent/US20130177631A1/en not_active Abandoned
-
2014
- 2014-03-18 US US14/218,476 patent/US9133454B2/en not_active Expired - Fee Related
- 2014-03-18 US US14/218,489 patent/US9902955B2/en not_active Expired - Fee Related
-
2015
- 2015-05-13 JP JP2015098123A patent/JP6471901B2/en not_active Expired - Lifetime
-
2016
- 2016-10-12 CY CY20161101011T patent/CY1118264T1/en unknown
-
2017
- 2017-06-15 CY CY20171100634T patent/CY1119221T1/en unknown
-
2018
- 2018-01-12 US US15/870,380 patent/US20180179526A1/en not_active Abandoned
- 2018-09-19 JP JP2018174668A patent/JP2019017390A/en active Pending
Patent Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190931A (en) * | 1983-10-20 | 1993-03-02 | The Research Foundation Of State University Of New York | Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA |
US5208149A (en) * | 1983-10-20 | 1993-05-04 | The Research Foundation Of State University Of New York | Nucleic acid constructs containing stable stem and loop structures |
US4980286A (en) * | 1985-07-05 | 1990-12-25 | Whitehead Institute For Biomedical Research | In vivo introduction and expression of foreign genetic material in epithelial cells |
US4868116A (en) * | 1985-07-05 | 1989-09-19 | Whitehead Institute For Biomedical Research | Introduction and expression of foreign genetic material in epithelial cells |
US5107065A (en) * | 1986-03-28 | 1992-04-21 | Calgene, Inc. | Anti-sense regulation of gene expression in plant cells |
US4987071A (en) * | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
US6025167A (en) * | 1986-12-03 | 2000-02-15 | Competitive Technologies, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
US5712257A (en) * | 1987-08-12 | 1998-01-27 | Hem Research, Inc. | Topically active compositions of mismatched dsRNAs |
US5254678A (en) * | 1987-12-15 | 1993-10-19 | Gene Shears Pty. Limited | Ribozymes |
US5866701A (en) * | 1988-09-20 | 1999-02-02 | The Board Of Regents For Northern Illinois University Of Dekalb | HIV targeted hairpin ribozymes |
US5837510A (en) * | 1989-01-23 | 1998-11-17 | Goldsmith; Mark A. | Methods and polynucleotide constructs for treating host cells for infection or hyperproliferative disorders |
US5328470A (en) * | 1989-03-31 | 1994-07-12 | The Regents Of The University Of Michigan | Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor |
US5112734A (en) * | 1989-05-26 | 1992-05-12 | Gene-Trak Systems | Target-dependent synthesis of an artificial gene for the synthesis of a replicatable rna |
US5225347A (en) * | 1989-09-25 | 1993-07-06 | Innovir Laboratories, Inc. | Therapeutic ribozyme compositions and expression vectors |
US5521302A (en) * | 1990-01-11 | 1996-05-28 | Isis Pharmaceuticals, Inc. | Process for preparing oligonucleotides having chiral phosphorus linkages |
US5212295A (en) * | 1990-01-11 | 1993-05-18 | Isis Pharmaceuticals | Monomers for preparation of oligonucleotides having chiral phosphorus linkages |
US6245560B1 (en) * | 1990-01-18 | 2001-06-12 | The United States Of America As Represented By The Department Of Health And Human Services | Vector with multiple target response elements affecting gene expression |
US5246921A (en) * | 1990-06-26 | 1993-09-21 | The Wistar Institute Of Anatomy And Biology | Method for treating leukemias |
US5616459A (en) * | 1990-07-16 | 1997-04-01 | The Public Health Research Institute Of The City Of New York, Inc. | Selection of ribozymes that efficiently cleave target RNA |
US5587361A (en) * | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5719271A (en) * | 1992-03-05 | 1998-02-17 | Isis Pharmaceuticals, Inc. | Covalently cross-linked oligonucleotides |
US5703054A (en) * | 1992-03-16 | 1997-12-30 | Isis Pharmaceuticals, Inc. | Oligonucleotide modulation of protein kinase C |
US5525468A (en) * | 1992-05-14 | 1996-06-11 | Ribozyme Pharmaceuticals, Inc. | Assay for Ribozyme target site |
US5496698A (en) * | 1992-08-26 | 1996-03-05 | Ribozyme Pharmaceuticals, Inc. | Method of isolating ribozyme targets |
US5864028A (en) * | 1992-11-03 | 1999-01-26 | Gene Shears Pty. Limited | Degradation resistant mRNA derivatives linked to TNF-α ribozymes |
US5985620A (en) * | 1992-11-03 | 1999-11-16 | Gene Shears Pty. Limited | TNF-α Ribozymes |
US6080851A (en) * | 1992-12-04 | 2000-06-27 | American Home Products Corporation | Ribozymes with linked anchor sequences |
US5811300A (en) * | 1992-12-07 | 1998-09-22 | Ribozyme Pharmaceuticals, Inc. | TNF-α ribozymes |
US5574142A (en) * | 1992-12-15 | 1996-11-12 | Microprobe Corporation | Peptide linkers for improved oligonucleotide delivery |
US5639655A (en) * | 1993-01-19 | 1997-06-17 | Ribozyme Pharmaceuticals, Inc. | PML-RARA targeted ribozymes |
US5811275A (en) * | 1993-05-17 | 1998-09-22 | The Regents Of The University Of California | HIV-specific ribozymes |
US5635385A (en) * | 1993-09-15 | 1997-06-03 | Temple University-Of The Commonwealth System Of Higher Education | Multi-unit ribozyme inhibition of oncogene gene expression |
US5789230A (en) * | 1993-10-14 | 1998-08-04 | Boehringer Ingelheim International Gmbh | Endosomolytically active particles |
US5624803A (en) * | 1993-10-14 | 1997-04-29 | The Regents Of The University Of California | In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom |
US5801154A (en) * | 1993-10-18 | 1998-09-01 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide modulation of multidrug resistance-associated protein |
US5908779A (en) * | 1993-12-01 | 1999-06-01 | University Of Connecticut | Targeted RNA degradation using nuclear antisense RNA |
US5573046A (en) * | 1993-12-09 | 1996-11-12 | Ciba Corning Diagnostics Corp. | Value housing for a fluid delivery system |
US6054299A (en) * | 1994-04-29 | 2000-04-25 | Conrad; Charles A. | Stem-loop cloning vector and method |
US6071890A (en) * | 1994-12-09 | 2000-06-06 | Genzyme Corporation | Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy |
US6166197A (en) * | 1995-03-06 | 2000-12-26 | Isis Pharmaceuticals, Inc. | Oligomeric compounds having pyrimidine nucleotide (S) with 2'and 5 substitutions |
US5674683A (en) * | 1995-03-21 | 1997-10-07 | Research Corporation Technologies, Inc. | Stem-loop and circular oligonucleotides and method of using |
US5739271A (en) * | 1995-06-07 | 1998-04-14 | Gen-Probe Incorporated | Thiocationic lipids |
US5824519A (en) * | 1995-11-08 | 1998-10-20 | Medical University Of South Carolina | Tissue-specific and target RNA-specific ribozymes |
US5854067A (en) * | 1996-01-19 | 1998-12-29 | Board Of Regents, The University Of Texas System | Hexokinase inhibitors |
US5891717A (en) * | 1996-01-19 | 1999-04-06 | Betagene, Inc. | Methods and compositions for inhibiting hexokinase |
US6099823A (en) * | 1996-02-16 | 2000-08-08 | Millennium Pharmaceuticals, Inc. | Compositions and methods for the treatment and diagnosis of cardiovascular disease |
US5998203A (en) * | 1996-04-16 | 1999-12-07 | Ribozyme Pharmaceuticals, Inc. | Enzymatic nucleic acids containing 5'-and/or 3'-cap structures |
US6077705A (en) * | 1996-05-17 | 2000-06-20 | Thomas Jefferson University | Ribozyme-mediated gene replacement |
US6107094A (en) * | 1996-06-06 | 2000-08-22 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides and ribonucleases for cleaving RNA |
US5898031A (en) * | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
US5731181A (en) * | 1996-06-17 | 1998-03-24 | Thomas Jefferson University | Chimeric mutational vectors having non-natural nucleotides |
US5939262A (en) * | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
US6255071B1 (en) * | 1996-09-20 | 2001-07-03 | Cold Spring Harbor Laboratory | Mammalian viral vectors and their uses |
US5814500A (en) * | 1996-10-31 | 1998-09-29 | The Johns Hopkins University School Of Medicine | Delivery construct for antisense nucleic acids and methods of use |
US5968737A (en) * | 1996-11-12 | 1999-10-19 | The University Of Mississippi | Method of identifying inhibitors of glutathione S-transferase (GST) gene expression |
US6057156A (en) * | 1997-01-31 | 2000-05-02 | Robozyme Pharmaceuticals, Inc. | Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors |
US6100444A (en) * | 1997-02-11 | 2000-08-08 | University Of Rochester Medical Center | Prostate specific regulatory nucleic acid sequences and transgenic non-human animals expressing prostate specific antigen |
US6127533A (en) * | 1997-02-14 | 2000-10-03 | Isis Pharmaceuticals, Inc. | 2'-O-aminooxy-modified oligonucleotides |
US6225291B1 (en) * | 1997-04-21 | 2001-05-01 | University Of Florida | Rod opsin mRNA-specific ribozyme compositions and methods for the treatment of retinal diseases |
US6183959B1 (en) * | 1997-07-03 | 2001-02-06 | Ribozyme Pharmaceuticals, Inc. | Method for target site selection and discovery |
US20030134808A1 (en) * | 1997-09-12 | 2003-07-17 | Jesper Wengel | Oligonucleotide analogues |
US6245748B1 (en) * | 1997-09-26 | 2001-06-12 | Georgetown University | Inhibition of an FGF-binding protein using ribozymes |
US6087164A (en) * | 1997-10-03 | 2000-07-11 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Methods and compositions for inducing tumor-specific cytotoxicity |
US6087172A (en) * | 1997-10-31 | 2000-07-11 | Hisamitsu Pharmaceutical Co., Inc. | Ribozymes targeted to human IL-15 mRNA |
US6100087A (en) * | 1998-03-11 | 2000-08-08 | City Of Hope | Ribozymes targeted to human CCR5 mRNA |
US6573046B1 (en) * | 1998-05-12 | 2003-06-03 | Valigen (Us), Inc | Eukaryotic use of improved chimeric mutational vectors |
US6271358B1 (en) * | 1998-07-27 | 2001-08-07 | Isis Pharmaceuticals, Inc. | RNA targeted 2′-modified oligonucleotides that are conformationally preorganized |
US20040053875A1 (en) * | 1999-01-30 | 2004-03-18 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US20040072779A1 (en) * | 1999-01-30 | 2004-04-15 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US20040102408A1 (en) * | 1999-01-30 | 2004-05-27 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US20080166800A1 (en) * | 1999-01-30 | 2008-07-10 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080182981A1 (en) * | 1999-01-30 | 2008-07-31 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080233651A1 (en) * | 1999-01-30 | 2008-09-25 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080261303A1 (en) * | 1999-01-30 | 2008-10-23 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20040001811A1 (en) * | 2001-01-09 | 2004-01-01 | Ribopharma Ag | Compositions and methods for inhibiting expression of anti-apoptotic genes |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8114851B2 (en) | 1999-01-30 | 2012-02-14 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US9133454B2 (en) | 1999-01-30 | 2015-09-15 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US20040102408A1 (en) * | 1999-01-30 | 2004-05-27 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US20050100907A1 (en) * | 1999-01-30 | 2005-05-12 | Ribopharma, Ag | Method and medicament for inhibiting the expression of a given gene |
US20080166800A1 (en) * | 1999-01-30 | 2008-07-10 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080171861A1 (en) * | 1999-01-30 | 2008-07-17 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080182981A1 (en) * | 1999-01-30 | 2008-07-31 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080233651A1 (en) * | 1999-01-30 | 2008-09-25 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US20080261303A1 (en) * | 1999-01-30 | 2008-10-23 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
US8101584B2 (en) | 1999-01-30 | 2012-01-24 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8101742B2 (en) | 1999-01-30 | 2012-01-24 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8168776B2 (en) | 1999-01-30 | 2012-05-01 | Alnylam Pharmaceuticals, Inc. | Method for making a 21 nucleotide double stranded RNA chemically linked at one end |
US20040072779A1 (en) * | 1999-01-30 | 2004-04-15 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US8119608B2 (en) | 1999-01-30 | 2012-02-21 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8114981B2 (en) | 1999-01-30 | 2012-02-14 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8183362B2 (en) | 1999-01-30 | 2012-05-22 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8202980B2 (en) | 1999-01-30 | 2012-06-19 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US8729037B2 (en) | 1999-01-30 | 2014-05-20 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US9902955B2 (en) | 1999-01-30 | 2018-02-27 | Alnylam Pharmaceuticals, Inc. | Method and medicament for inhibiting the expression of a given gene |
US20040053875A1 (en) * | 1999-01-30 | 2004-03-18 | Ribopharma Ag | Method and medicament for inhibiting the expression of a given gene |
US9200276B2 (en) | 2009-06-01 | 2015-12-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
US9957505B2 (en) | 2009-06-01 | 2018-05-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
US9273314B2 (en) | 2010-10-14 | 2016-03-01 | Mie University | Preventive or therapeutic agent for fibrosis |
US9637743B2 (en) | 2010-10-14 | 2017-05-02 | Mie University | Preventive or therapeutic agent for fibrosis |
US8772262B2 (en) | 2010-10-14 | 2014-07-08 | Mie University | Preventive or therapeutic agent for fibrosis |
US10125366B2 (en) | 2010-10-14 | 2018-11-13 | Mie University | Preventive or therapeutic agent for fibrosis |
US10731157B2 (en) | 2015-08-24 | 2020-08-04 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotide nanoparticles for the modulation of gene expression and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8729037B2 (en) | Method and medicament for inhibiting the expression of a given gene | |
AU2008202208B2 (en) | Method and medicament for inhibiting the expression of a defined gene | |
AU2017276342A1 (en) | Method and medicament for inhibiting the expression of a defined gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALNYLAM EUROPE AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:RIBOPHARMA AG;REEL/FRAME:020476/0003 Effective date: 20040527 Owner name: RIBOPHARMA AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KREUTZER, ROLAND;LIMMER, STEFAN;REEL/FRAME:020473/0410;SIGNING DATES FROM 20031015 TO 20031020 |
|
AS | Assignment |
Owner name: ALNYLAM PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALNYLAM EUROPE AG;REEL/FRAME:023070/0300 Effective date: 20090805 Owner name: ALNYLAM PHARMACEUTICALS, INC.,MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALNYLAM EUROPE AG;REEL/FRAME:023070/0300 Effective date: 20090805 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |