US20080145867A1 - Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition - Google Patents
Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition Download PDFInfo
- Publication number
- US20080145867A1 US20080145867A1 US11/820,014 US82001407A US2008145867A1 US 20080145867 A1 US20080145867 A1 US 20080145867A1 US 82001407 A US82001407 A US 82001407A US 2008145867 A1 US2008145867 A1 US 2008145867A1
- Authority
- US
- United States
- Prior art keywords
- seq
- lpcat
- plant
- nucleic acid
- yeast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108700016155 Acyl transferases Proteins 0.000 title abstract description 60
- 235000014113 dietary fatty acids Nutrition 0.000 title abstract description 23
- 229930195729 fatty acid Natural products 0.000 title abstract description 23
- 239000000194 fatty acid Substances 0.000 title abstract description 23
- 150000004665 fatty acids Chemical class 0.000 title abstract description 22
- 238000004519 manufacturing process Methods 0.000 title abstract description 13
- 102000045404 acyltransferase activity proteins Human genes 0.000 title abstract description 7
- 108700014220 acyltransferase activity proteins Proteins 0.000 title abstract description 7
- 108090000623 proteins and genes Proteins 0.000 title description 31
- 239000000203 mixture Substances 0.000 title description 8
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 title description 3
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims description 36
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 35
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 28
- 238000012216 screening Methods 0.000 claims description 13
- 102100038805 Lysophospholipid acyltransferase 2 Human genes 0.000 claims description 10
- 108010052187 1-Acylglycerophosphocholine O-Acyltransferase Proteins 0.000 claims description 8
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 abstract description 66
- 108020004707 nucleic acids Proteins 0.000 abstract description 20
- 102000039446 nucleic acids Human genes 0.000 abstract description 20
- 230000001965 increasing effect Effects 0.000 abstract description 6
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 abstract description 5
- 230000002018 overexpression Effects 0.000 abstract description 3
- 241000196324 Embryophyta Species 0.000 description 79
- 210000004027 cell Anatomy 0.000 description 45
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 43
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 42
- 150000001413 amino acids Chemical group 0.000 description 41
- 102000057234 Acyl transferases Human genes 0.000 description 31
- 239000002773 nucleotide Substances 0.000 description 30
- 125000003729 nucleotide group Chemical group 0.000 description 30
- 230000000694 effects Effects 0.000 description 22
- 241000219194 Arabidopsis Species 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 16
- 239000013598 vector Substances 0.000 description 16
- 230000009466 transformation Effects 0.000 description 13
- 108700020675 O-deacetyl platelet activating factor Proteins 0.000 description 12
- 241001491687 Thalassiosira pseudonana Species 0.000 description 12
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 238000003556 assay Methods 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 235000004443 Ricinus communis Nutrition 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 210000005253 yeast cell Anatomy 0.000 description 8
- 241000208818 Helianthus Species 0.000 description 7
- VLBPIWYTPAXCFJ-XMMPIXPASA-O Lyso-PAF C-16-d4 Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](O)COP(O)(=O)OCC[N+](C)(C)C VLBPIWYTPAXCFJ-XMMPIXPASA-O 0.000 description 7
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 7
- 241000209140 Triticum Species 0.000 description 7
- 235000021307 Triticum Nutrition 0.000 description 7
- 240000008042 Zea mays Species 0.000 description 7
- 241000209219 Hordeum Species 0.000 description 6
- 241000209094 Oryza Species 0.000 description 6
- 240000000528 Ricinus communis Species 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 230000009261 transgenic effect Effects 0.000 description 6
- 241000701489 Cauliflower mosaic virus Species 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 235000003222 Helianthus annuus Nutrition 0.000 description 5
- 240000003829 Sorghum propinquum Species 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000001131 transforming effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 244000105624 Arachis hypogaea Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 244000075850 Avena orientalis Species 0.000 description 4
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 4
- 241000219146 Gossypium Species 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 241000209056 Secale Species 0.000 description 4
- 244000299461 Theobroma cacao Species 0.000 description 4
- 235000009470 Theobroma cacao Nutrition 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 150000002190 fatty acyls Chemical group 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- WRGQSWVCFNIUNZ-GDCKJWNLSA-N 1-oleoyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)COP(O)(O)=O WRGQSWVCFNIUNZ-GDCKJWNLSA-N 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 244000144730 Amygdalus persica Species 0.000 description 3
- 240000001436 Antirrhinum majus Species 0.000 description 3
- 235000002567 Capsicum annuum Nutrition 0.000 description 3
- 240000004160 Capsicum annuum Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- 102100023740 Lysophosphatidylcholine acyltransferase 1 Human genes 0.000 description 3
- 101710143642 Lysophosphatidylcholine acyltransferase 1 Proteins 0.000 description 3
- 102100023738 Lysophosphatidylcholine acyltransferase 2 Human genes 0.000 description 3
- 101710143643 Lysophosphatidylcholine acyltransferase 2 Proteins 0.000 description 3
- 235000011430 Malus pumila Nutrition 0.000 description 3
- 244000070406 Malus silvestris Species 0.000 description 3
- 235000015103 Malus silvestris Nutrition 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 235000006040 Prunus persica var persica Nutrition 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 240000000851 Vaccinium corymbosum Species 0.000 description 3
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 3
- 235000014787 Vitis vinifera Nutrition 0.000 description 3
- 240000006365 Vitis vinifera Species 0.000 description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 3
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 3
- 239000001511 capsicum annuum Substances 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002313 glycerolipids Chemical class 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- VLBPIWYTPAXCFJ-XMMPIXPASA-N lysophosphatidylcholine O-16:0/0:0 Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C VLBPIWYTPAXCFJ-XMMPIXPASA-N 0.000 description 3
- 235000009973 maize Nutrition 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- ZPDQFUYPBVXUKS-YADHBBJMSA-N 1-stearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OC[C@H](N)C(O)=O ZPDQFUYPBVXUKS-YADHBBJMSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 2
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 2
- 235000005781 Avena Nutrition 0.000 description 2
- 241000722877 Borago Species 0.000 description 2
- 235000007689 Borago officinalis Nutrition 0.000 description 2
- 240000004355 Borago officinalis Species 0.000 description 2
- 235000011331 Brassica Nutrition 0.000 description 2
- 241000219198 Brassica Species 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000006008 Brassica napus var napus Nutrition 0.000 description 2
- 240000000385 Brassica napus var. napus Species 0.000 description 2
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 2
- 241000219193 Brassicaceae Species 0.000 description 2
- 241000701502 Carnation etched ring virus Species 0.000 description 2
- WLYGSPLCNKYESI-RSUQVHIMSA-N Carthamin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1[C@@]1(O)C(O)=C(C(=O)\C=C\C=2C=CC(O)=CC=2)C(=O)C(\C=C\2C([C@](O)([C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C(O)=C(C(=O)\C=C\C=3C=CC(O)=CC=3)C/2=O)=O)=C1O WLYGSPLCNKYESI-RSUQVHIMSA-N 0.000 description 2
- 241000208809 Carthamus Species 0.000 description 2
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 2
- 244000020518 Carthamus tinctorius Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 235000003901 Crambe Nutrition 0.000 description 2
- 241000220246 Crambe <angiosperm> Species 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 241000219992 Cuphea Species 0.000 description 2
- 240000001689 Cyanthillium cinereum Species 0.000 description 2
- 102000002148 Diacylglycerol O-acyltransferase Human genes 0.000 description 2
- 108010001348 Diacylglycerol O-acyltransferase Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 235000001942 Elaeis Nutrition 0.000 description 2
- 241000512897 Elaeis Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 101710091951 Glycerol-3-phosphate acyltransferase Proteins 0.000 description 2
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 2
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000009438 Gossypium Nutrition 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241001072282 Limnanthes Species 0.000 description 2
- 241000208202 Linaceae Species 0.000 description 2
- 241000208204 Linum Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 101710097496 Lysophospholipid acyltransferase Proteins 0.000 description 2
- 101710163746 Lysophospholipid acyltransferase 2 Proteins 0.000 description 2
- 101710163717 Lysophospholipid acyltransferase 5 Proteins 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 241000795633 Olea <sea slug> Species 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 241000390166 Physaria Species 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 102000053067 Pyruvate Dehydrogenase Acetyl-Transferring Kinase Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000862632 Soja Species 0.000 description 2
- 241000209072 Sorghum Species 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000255588 Tephritidae Species 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 241000208241 Tropaeolum Species 0.000 description 2
- 235000004424 Tropaeolum majus Nutrition 0.000 description 2
- 240000001260 Tropaeolum majus Species 0.000 description 2
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- CWRILEGKIAOYKP-SSDOTTSWSA-M [(2r)-3-acetyloxy-2-hydroxypropyl] 2-aminoethyl phosphate Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCCN CWRILEGKIAOYKP-SSDOTTSWSA-M 0.000 description 2
- 101710159466 [Pyruvate dehydrogenase (acetyl-transferring)] kinase, mitochondrial Proteins 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 150000001982 diacylglycerols Chemical class 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- -1 hydroxyl fatty acids Chemical class 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- UOXRPRZMAROFPH-IESLQMLBSA-N lysophosphatidylinositol Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OC1[C@H](O)[C@@H](O)C(O)[C@@H](O)[C@H]1O UOXRPRZMAROFPH-IESLQMLBSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012340 reverse transcriptase PCR Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- ASWBNKHCZGQVJV-HSZRJFAPSA-N 1-hexadecanoyl-sn-glycero-3-phosphocholine Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-HSZRJFAPSA-N 0.000 description 1
- 108010054662 2-acylglycerophosphate acyltransferase Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101100022455 Arabidopsis thaliana LPCAT1 gene Proteins 0.000 description 1
- 101100022458 Arabidopsis thaliana LPCAT2 gene Proteins 0.000 description 1
- JHFNSBBHKSZXKB-VKHMYHEASA-N Asp-Gly Chemical compound OC(=O)C[C@H](N)C(=O)NCC(O)=O JHFNSBBHKSZXKB-VKHMYHEASA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- RZZPDXZPRHQOCG-OJAKKHQRSA-M CDP-choline(1-) Chemical compound O[C@@H]1[C@H](O)[C@@H](COP([O-])(=O)OP([O-])(=O)OCC[N+](C)(C)C)O[C@H]1N1C(=O)N=C(N)C=C1 RZZPDXZPRHQOCG-OJAKKHQRSA-M 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- FPQMQEOVSKMVMA-ACRUOGEOSA-N Lys-Tyr-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)NC(=O)[C@H](CCCCN)N)O FPQMQEOVSKMVMA-ACRUOGEOSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 108010003541 Platelet Activating Factor Proteins 0.000 description 1
- QEWBZBLXDKIQPS-STQMWFEESA-N Pro-Gly-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O QEWBZBLXDKIQPS-STQMWFEESA-N 0.000 description 1
- 238000012341 Quantitative reverse-transcriptase PCR Methods 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- SSJMZMUVNKEENT-IMJSIDKUSA-N Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CO SSJMZMUVNKEENT-IMJSIDKUSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- GRQCSEWEPIHLBI-JQWIXIFHSA-N Trp-Asn Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O)=CNC2=C1 GRQCSEWEPIHLBI-JQWIXIFHSA-N 0.000 description 1
- XLVRTKPAIXJYOH-HOCLYGCPSA-N Trp-His-Gly Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CN=CN3)C(=O)NCC(=O)O)N XLVRTKPAIXJYOH-HOCLYGCPSA-N 0.000 description 1
- 241001464837 Viridiplantae Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- JUGOREOARAHOCO-UHFFFAOYSA-M acetylcholine chloride Chemical compound [Cl-].CC(=O)OCC[N+](C)(C)C JUGOREOARAHOCO-UHFFFAOYSA-M 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000020978 long-chain polyunsaturated fatty acids Nutrition 0.000 description 1
- 108010083942 mannopine synthase Proteins 0.000 description 1
- 230000010436 membrane biogenesis Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000004305 normal phase HPLC Methods 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- MNBKLUUYKPBKDU-BBECNAHFSA-N palmitoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MNBKLUUYKPBKDU-BBECNAHFSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
Definitions
- the invention relates generally to biotechnology, and, more particularly, to lyso-phosphatidylcholine (LPC) acyltransferase, polynucleotides that encode LPC acyltransferases, and associated methods.
- LPC lyso-phosphatidylcholine
- PC Phosphatidylcholine
- DAG diacylglycerol
- LPCAT LPC acyltransferases
- LPCAT enzymes catalyze the acylation of LPC molecules to form PC and play a pivotal role in membrane biogenesis. They can also exert a reversible reaction to release the fatty acyl chain esterified to the sn-2 position of PC, thereby contributing to a continuous remodeling of fatty acyl-CoA and PC pools.
- LPCAT glycerolipid metabolism of eukaryotic systems
- PUFA very long chain polyunsaturated fatty acid
- this enzyme is believed to represent a bottleneck for acyl exchange between the fatty acyl elongation and de-saturation systems.
- the function of this enzyme is largely unknown, but it has been proposed that the enzyme is involved in the selective incorporation of fatty acids into storage pool.
- LPCAT Previously reported LPCAT share a substantial sequence homology to glycerol-3-phosphate acyltransferase and lysophosphatidic acyltransferase.
- the LPCAT sequences disclosed herein are unrelated to any known LPCAT sequences, and belong to a new class of LPCAT.
- Four conserved motifs were identified in this novel class of LPCAT enzymes. The identified motifs are different from previously reported LPCAT, which contain motifs having a high degree of similarity to those in other known acyltransferases employing glycerol-3-phosphate and lysophosphatidic acid as substrates.
- sequence information of the motifs identified herein is novel, and can lead to the identification of new class of LPCAT genes from a broad spectrum of species.
- a lyso-phosphatidylcholine acyltransferase gene or class of genes is identified.
- the LPC acyltransferase gene may be expressed or overexpressed in a cell and used to modify glycerolipid biosynthesis in a cell.
- Such an LPC acyltransferase gene may be expressed or overexpressed in a cell and used to modulate or enhance production of fatty acids, especially polyunsaturated fatty acids (PUFA) or other unusual fatty acids, and/or to increased oil content in the cell.
- the LPC acyltransferase gene may be expressed or overexpressed in planta in order to modify glycerolipid biosynthesis in a plant.
- the LPC acyltransferase gene is expressed or overexpressed in planta in order to enhance the production of fatty acids in a plant.
- a plant, plant seed or progeny thereof includes a recombinant cell having an LPC acyltransferase gene.
- a vector having an LPC acyltransferase gene.
- the vector may be used to transform a cell, thus producing a recombinant cell having the LPC acyltransferase gene.
- the cell may comprise, for example, a bacterial cell, a yeast cell, or a plant cell.
- a recombinant cell expresses an LPC acyltransferase gene and produces an LPC acyltransferase polypeptide that may be isolated or purified from the cell.
- nucleotide and deduced amino acid sequences associated with an LPC acyltransferase gene are disclosed.
- the sequence, or a portion thereof, may be used to identify genes from other species that encode polypeptides with LPC acyltransferase activity.
- a process for producing fatty acids includes transforming a cell with an LPC acyltransferase gene.
- the transformed cell expresses the fatty acid acyltransferase gene and produces fatty acids.
- the fatty acids may be isolated or purified from the recombinant cell or culture media in which the cell grows, and subsequently incorporated into a composition.
- knock-out mutants disrupted in LPC acyltransferase gene of yeast and plants are identified.
- a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- a nucleotide sequence encoding a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- an isolated or recombinant nucleic acid molecule encoding an LPC acyltransferase and a cell transformed with the isolated or recombinant nucleic acid molecule as described herein.
- a process for increasing fatty acid production in a cell comprising: transforming a cell with a nucleic acid molecule encoding an LPC acyltransferase; and, growing the cell under conditions wherein said LPC acyltransferase is expressed.
- a purified or an isolated LPC acyltransferase are also provided.
- LPCAT enzymes play a critical role in remodeling fatty acid and PC pools as well as PC synthesis.
- the remodeled fatty acyl chains in the form of acyl-CoA or esterified at the sn-2 position of PC can be used for triacylglycerol synthesis.
- this novel type of LPCAT isolated from the organisms where very-long-chain polyunsaturated fatty acids (VLCPUFA) are present at a high level can be used to increase the production of VLCPUFA.
- VLCPUFA very-long-chain polyunsaturated fatty acids
- this novel type of LPCAT isolated from species containing high amount of unusual fatty acids can be used to increase the production of unusual fatty acids.
- LPCAT enzymes isolated from castor bean are useful in increasing the production of hydroxyl fatty acids in oil seeds.
- the enzyme activity described herein provides support that the motif-based gene searching is a useful approach.
- FIG. 1 is a graph of LPCAT activity (nmol/mg ⁇ h) of wild type (WT) and YOC175c mutant yeast strains.
- FIG. 2 is an alignment of LPCAT sequences from different species that revealing, among other things, four conserved motifs unique for this type of LPCAT enzymes.
- FIG. 3 is another alignment of LPCAT sequences from different plant species that revealed four conserved motifs (SEQ ID NOS: 81-84).
- FIG. 4 is depicts the expression of the TpLCAT in lpcat mutant was able to complement the sensitivity of the lpcat mutant to Lyso-PAF.
- FIG. 5 is a graph showing the expression of TpLPCAT in yeast.
- LPCAT assays were performed on cell lysates of yeast lpcat mutant strain By02431 transformed with TpLPCAT/pYES2.1 and pYes2.1/V5-His-TOPO plasmid only (control) in the presence of 14 C-Lyso-PC and different acyl-CoAs.
- FIG. 6 comprises TLC plates of LPCAT assays on cell lysates of yeast lpcat mutant strain By02431 transformed with TpLPCAT/pYES2.1 and pYes2.1/V5-His-TOPO plasmid only (control) in the presence of 14 C-Lyso-PC and different acyl-CoAs. 1, 3, 5, 7, 9, 11, and 13-TpLPCAT; 2, 4, 6, 8, 10, 12, and 14-empty vector.
- FIG. 7 shows a LysoPAF sensitivity test of YOR175c mutant, AtLPCATs transformant, wherein A is VO/BY02431, B is AtLPCAT1/BY02431, and C is AtLPCAT2/BY02431.
- FIG. 8 is a graph showing the Lyso-lipid substrate specificity of Arabidopsis LPCATs.
- the nucleic acid molecule encoding the LPC acyltransferase is derived from yeast, plant and mammal species.
- Yeast species include, for example, species of the genus Saccharomyces, for example Saccharomyces cerevisiae.
- Plant species include, for example, species of the family Brassicaceae. Of the family Brassicaceae, species of genus Brassica and genus Arabidopsis are of particular note, for example Arabidopsis thaliana .
- Mammalian species include mouse and human.
- nucleic acid molecule encoding an LPC acyltransferase from S. cerevisiae and two nucleic acid molecules encoding two different isoforms of LPC acyltransferase from A. thaliana .
- LPC acyltransferases encoded by the aforementioned nucleic acid molecules.
- nucleic acid molecule having a nucleotide sequence encoding an LPC acyltransferase such as amino acid sequence comprising SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO:11; SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17; SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, and SEQ ID NO:35.
- LPC acyltransferase such as amino acid sequence comprising SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO:11; SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17; SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID
- an isolated or recombinant nucleic acid molecule having a nucleotide sequence comprising SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34.
- the LPC acyltransferase encoded by a nucleic acid molecule comprises an amino acid sequence comprises an amino acid sequence having at least 60% homology to the aforementioned sequences. Homology is more preferably at least 70%, 80%, 90%, or 95%. It will be appreciated that this disclosure embraces the degeneracy of codon usage as would be understood by one of ordinary skill in the art.
- Homologs of the LPC acyltransferase genes described herein obtained from other organisms, for example plants may be obtained by screening appropriate libraries that include the homologs, wherein the screening is performed with the nucleotide sequence of the specific LPC acyltransferase genes of the instant invention or portions or probes thereof, or identified by sequence homology search using sequence alignment search programs such as BLAST, FASTA.
- Hybridization conditions may be stringent in that hybridization will occur if there is at least a 90%, 95% or 97% identity with the nucleic acid molecule that encodes the LPC acyltransferase of the instant invention.
- the stringent conditions may include those used for known Southern hybridizations such as, for example, incubation overnight at 42° C.
- Nucleic acid molecules that code for an LPC acyltransferase may be transformed into an organism, for example a plant.
- an organism for example a plant.
- genes and gene constructs can be introduced into organisms, for example plants, and a combination of transformation and tissue culture techniques have been successfully integrated into effective strategies for creating transgenic organisms, for example crop plants. These methods, which can be used in the invention, have been described elsewhere (Potrykus, 1991; Vasil, 1994; Walden and Wingender, 1995; Songstad et al., 1995), and are well known to persons skilled in the art.
- Agrobacterium Ti-plasmid-mediated transformation e.g., hypocotyl (DeBlock et al., 1989) or cotyledonary petiole (Moloney et al., 1989) wound infection
- particle bombardment/biolistic methods Sanford et al., 1987; Nehra. et al., 1994; Becker et al., 1994
- polyethylene glycol-assisted, protoplast transformation Rhodes et al., 1988; Shimamoto et al., 1989
- plant promoters to direct any intended up- or down-regulation of transgene expression using constitutive promoters (e.g., those based on CaMV35S), or by using promoters which can target gene expression to particular cells, tissues (e.g., napin promoter for expression of transgenes in developing seed cotyledons), organs (e.g., roots), to a particular developmental stage, or in response to a particular external stimulus (e.g., heat shock).
- constitutive promoters e.g., those based on CaMV35S
- Promoters for use herein may be inducible, constitutive, or tissue-specific or have various combinations of such characteristics.
- Useftil promoters include, but are not limited to constitutive promoters such as carnation etched ring virus (CERV), cauliflower mosaic virus (CaMV) 35S promoter, or more particularly the double enhanced cauliflower mosaic virus promoter, comprising two CaMV 35S promoters in tandem (referred to as a “Double 35S”promoter).
- tissue-specific or developmentally regulated promoter may be desirable to use a tissue-specific or developmentally regulated promoter instead of a constitutive promoter in certain circumstances.
- a tissue-specific promoter allows for overexpression in certain tissues without affecting expression in other tissues.
- a preferred promoter used in overexpression of enzymes in seed tissue is an ACP promoter as described in PCT International Publication WO 92/18634, published Oct. 29, 1992, the disclosure of which is herein incorporated by reference.
- the promoter and termination regulatory regions will be functional in the host plant cell and may be heterologous (that is, not naturally occurring) or homologous (derived from the plant host species) to the plant cell and the gene. Suitable promoters which may be used are described above.
- the termination regulatory region may be derived from the 3′ region of the gene from which the promoter was obtained or from another gene. Suitable termination regions which may be used are well known in the art and include Agrobacterium tumefaciens nopaline synthase terminator (Tnos), A. tumefaciens mannopine synthase terminator (Tmas) and the CaMV 35S terminator (T35S). Particularly preferred termination regions for use herein include the pea ribulose bisphosphate carboxylase small subunit termination region (TrbcS) or the Tnos termination region. Such gene constructs may suitably be screened for activity by transformation into a host plant via Agrobacterium and screening for increased isoprenoid levels.
- Tnos Agrobacterium tumefaciens nopaline synthase terminator
- Tmas A. tumefaciens mannopine synthase terminator
- T35S CaMV 35S terminator
- the nucleotide sequences for the genes may be extracted from the GenBank® (a registered trademark of the U.S. Department of Health and Human Services) nucleotide database and searched for restriction enzymes that do not cut. These restriction sites may be added to the genes by conventional methods such as incorporating these sites in PCR primers or by sub-cloning.
- a DNA construct for use herein is comprised within a vector, most suitably an expression vector adapted for expression in an appropriate host (plant) cell. It will be appreciated that any vector which is capable of producing a plant comprising the introduced DNA sequence will be sufficient.
- Suitable vectors are well known to those skilled in the art and are described in general technical references such as Pouwels et al., Cloning Vectors. A Laboratory Manual, Elsevier, Amsterdam (1986). Particularly suitable vectors include the Ti plasmid vectors.
- Transformation techniques for introducing the DNA constructs into host cells are well known in the art and include such methods as micro-injection, using polyethylene glycol, electroporation, or high velocity ballistic penetration.
- a preferred method relies on Agrobacterium -mediated transformation. After transformation of the plant cells or plant, those plant cells or plants into which the desired DNA has been incorporated may be selected by such methods as antibiotic resistance, herbicide resistance, tolerance to amino-acid analogues or using phenotypic markers.
- RNA samples may be used to determine whether the plant cell shows an increase in gene expression, for example, Northern blotting or quantitative reverse transcriptase PCR (RT-PCR).
- RT-PCR quantitative reverse transcriptase PCR
- Whole transgenic plants may be regenerated from the transformed cell by conventional methods.
- Such transgenic plants having improved isoprenoid levels may be propagated and self-pollinated to produce homozygous lines.
- Such plants produce seeds containing the genes for the introduced trait and can be grown to produce plants that will produce the selected phenotype.
- Plants that may be modified or used for fatty acid production according to the instant invention include, without limitation, borage ( Borago spp.), Canola, castor ( Ricinus communis ); cocoa bean ( Theobroma cacao ), corn ( Zea mays ), cotton ( Gossypium spp), Crambe spp., Cuphea spp., flax ( Linum spp.), Lesquerella and Limnanthes spp., Linola, nasturtium ( Tropaeolum spp.), Oeanothera spp., olive ( Olea spp.), palm ( .Elaeis spp.), peanut ( Arachis spp.), rapeseed, safflower ( Carthamus spp.), soybean ( Glycine and Soja spp.), sunflower ( Helianthus spp.), tobacco ( Nicotiana spp.), Vernonia spp., wheat ( Triticum
- genomic or sequence libraries of each of these plants may be screened with the nucleotide or amino acid sequences described herein (e.g., for one or more of the hereinafter identified conserved motifs (SEQ ID NO:46 through SEQ ID NO:49) for other sequences that encode or are homologous to sequences associated with the LPC acyltransferase of the instant invention.
- Plants transformed with a nucleotide sequence of the instant invention that codes for an LPC acyltransferase may be grown. Seeds of the transgenic plants are harvested and fatty acids of the seeds are extracted. The extracted fatty acids are used for subsequent incorporation into a composition, for example a pharmaceutical composition, a nutraceutical composition or a food composition.
- a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- a nucleotide sequence encoding a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- other methods of enhancing or altering oil production may also be used with the plant to be transformed (e.g., incorporating, for expression in the plant, a nucleic acid sequence selected from the group consisting of a nucleic acid sequence encoding a peptide having, for example, Brassica pyruvate dehydrogenase kinase activity (see, e.g., U.S. Pat. No. 7,214,859 to Marilla et al. (May 8, 2007), U.S. Pat. No. 6,500,670 to Zou et al. (Decemer 2002), and U.S. Pat. No. 6,256,636 to Randall et al.
- a nucleic acid sequence selected from the group consisting of a nucleic acid sequence encoding a peptide having, for example, Brassica pyruvate dehydrogenase kinase activity (see, e.g., U.S. Pat. No. 7,214,859 to Marilla e
- a process for producing a genetically transformed plant seed comprises introducing the nucleic acid into the plant seed.
- Also described is a vector comprising SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, and/or SEQ ID NO:34.
- nucleic acid sequence encoding a polypeptide having lyso-phosphatidylcholine acyltransferase activity
- nucleic acid sequence comprises SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO: 14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34, or a fragment of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28,
- a method for increasing fatty acid production in a cell comprising transforming a cell with a nucleic acid molecule encoding a lyso-phosphatidylcholine acyltransferase; and growing the cell under conditions wherein the lyso-phosphatidylcholine acyltransferase is expressed.
- the method can further comprise isolating the fatty acid.
- the lyso-phosphatidylcholine acyltransferase preferably comprises at least one motif selected from the group consisting of SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, and any combination thereof.
- Also described is a method of altering oil content in a plant comprising screening for a peptide encoded by a nucleotide sequence for at least one of four motifs selected from the group consisting of SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, and SEQ ID NO: 49; selecting the peptide based upon the presence of at least one of the four motifs; and expressing the nucleotide sequence encoding the peptide in the plant to alter the oil content of the plant.
- Also described is a method of changing the oil content of a plant or plant seed comprising introducing a nucleic acid construct comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO:11; SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17; SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and an amino acid sequence having at least 60% homology to any thereof having lyso-phosphatidylcholine acyltransferase activity into a plant transformation vector; transforming a genome of a plant or plant seed with the plant transformation vector; expressing the nucleic acid sequence; growing the plant or plant seed; and extracting the oil from the group consist
- the methods can further comprise incorporating, for expression in the plant, a nucleic acid sequence selected from the group consisting of a nucleic acid sequence encoding a peptide having pyruvate dehydrogenase kinase activity, a nucleic acid sequence encoding a peptide having diacylglycerol acyltransferase activity, a nucleic acid sequence encoding a peptide having glycerol-3-phosphate dehydrogenase activity, and any combination thereof.
- the methods preferably involve a plant of the group consisting of borage ( Borago spp.), Canola, castor ( Ricinus communis ); cocoa bean ( Theobroma cacao ), corn ( Zea mays ), cotton ( Gossypium spp), Crambe spp., Cuphea spp., flax ( Linum spp.), Lesquerella and Limnanthes spp., Linola, nasturtium ( Tropaeolum spp.), Oeanothera spp., olive ( Olea spp.), palm ( .Elaeis spp.), peanut ( Arachis spp.), rapeseed, safflower ( Carthamus spp.), soybean ( Glycine and Soja spp.), sunflower ( Helianthus spp.), tobacco ( Nicotiana spp.), Vernonia spp,, wheat ( Triticum spp.), barley ( Horde
- Nucleotide sequences of nucleic acid molecules of the invention were identified through yeast genetic and functional screening.
- Yeast S. cerevisiae LPC acyltransferase gene was identified based on enzyme assays of yeast mutant strains in which the gene, YOR175c, was knocked out. The enzyme activity was assessed using 14C-labeled acyl-CoA and lyso-phosphatidylcholine. The reaction product of the lyso-phosphatidylcholine and radio-labeled acyl-CoA was separated through TLC and measured through scintillation counting.
- YOR175c encodes LPC acyltransferase. Details are given below for the In Vitro Assay protocol for LPCAT (lyso-phosphatidylcholine (LPC) acyltransferase) activity.
- Yeast culture One colony each of wild-type (strain BY4741) and LPCAT mutants (YOR175c deletion strains Y12431, Y02431) are inoculated in 10 ml YPD media and grown overnight. After 24 hr, another 20 ml YPD media is added and growth is continued for another 24 hr.
- Protein extraction Yeast cultures are spun at 2800 rpm at 4° C. for 20 min. The supernatant is discarded and the yeast pellet washed with 10 ml of ice cold IB buffer (80 mM HEPES, 320 mM sucrose, 5 mM EDTA pH8, 10 mM KCl, 2 mM DTT). The pellets are spun again and re-suspend in 500 ⁇ l of IB buffer. Yeast cells are divided and transferred into 2 tubes appropriate for a mini-bead beater. 0.5 mm cold glass beads are added to fill completely the tube. To break the yeast cell, three 60 s pulses of the mini-bead beater are used. The mixtures are spun again to remove unbroken cells and debris.
- IB buffer 80 mM HEPES, 320 mM sucrose, 5 mM EDTA pH8, 10 mM KCl, 2 mM DTT.
- the pellets are spun again and re-suspend in 500
- Protein assay conditions A reaction is conducted using the recipe for fatty-CoA substrate specificity, as listed in Table 1.
- reaction mixture is allowed to sit in a water bath at 30° C. and stirred at 100 rpm for 30 min.
- the reaction is then terminated by adding 2 ml of CH 2 Cl 2 : Isopropanol (1:2).
- the mixture is allowed to sit at room temperature for 15-30 min with occasional vortexing.
- Phases are separated by adding 2 ml CH 2 Cl 2 followed by 2 ml IM KCl in H 3 PO 4 .
- the lower layer is transferred to a clean tube and the upper aqueous phase is backwashed twice with CH 2 Cl 2 and centrifuged, saving the organic phase each time.
- Organic phases are combined and dried under nitrogen.
- Dried material is taken up in 200 ⁇ l CH 2 Cl 2 : MeOH (2:1) and protein is separated by thin layer chromatography (TLC) using silica G (250 ⁇ m) commercial plate. Plates are developed to within 2 cm of top in ethyl acetate:isooctane:acetic acid (45:15:10, V/V/V), then dried and scraped. The phosphatidyl choline region is counted in 4 ml Aquasol-2 by a scintillation counter.
- the YOR175c gene from S. cerevisiae has been identified as encoding an LPC acyltransferase.
- the coding sequence of this yeast LPC acyltransferase gene is SEQ ID NO: 1:
- the deduced amino acid sequence of the yeast LPC acyltransferase encoded by the gene is SEQ ID NO: 2:
- the nucleotide sequence of the yeast LPC acyltransferase gene was used to search for homologous sequences using computer programs designed to search for homologous sequences.
- readily commercially available computer programs that may be used for such searches include without limitation, BLASTN, BLASTX and TBLASTX which may be used to search for nucleotide sequences, and BLASTP and TBLASTN which may be used to search for amino acid sequences.
- BLASTN BLASTN
- BLASTX and TBLASTX
- BLASTP and TBLASTN which may be used to search for amino acid sequences.
- Such computer programs are readily accessible at the web-site www.ncbi.nlm.nih.gov.
- Two plant ( A. thaliana ) homologs were identified through sequence alignment searching using BLAST.
- the two homologs are cDNA sequences that encode two different isoforms of LPC acyltransferase.
- Nucleotide sequence of Arabidopsis LPC acyltransferase 1 cDNA is SEQ ID NO: 3:
- the deduced amino acid sequence of Arabidopsis LPC acyltransferase 1 is SEQ ID NO: 4:
- Nucleotide sequence of Arabidopsis LPC acyltransferase 2 cDNA is SEQ ID NO: 5:
- the deduced amino acid sequence of Arabidopsis LPC acyltransferase 2 is SEQ ID NO: 6:
- Transformation protocol is adapted from that described by Bechtold et al. ( 1993 ). Plants are grown in moist soil at a density of 10-12 plants per pot, in 4-inch square pots, and are covered with a nylon screen fixed in place with an elastic band. When the plants reach the stage at which bolts emerge, plants are watered, the bolts and some of the leaves are clipped, and the plants are infiltrated in Agrobacterium suspension as outlined below.
- Agrobacterium transformed with the LPC acyltransferase gene of the instant invention is grown in a 25 mL suspension in LB medium containing kanamycin at a concentration of 50 ⁇ g/mL.
- the Agrobacterium is cultured for two to three days. The day before infiltration, this “seed culture” is added to 400 mL of LB medium containing 50 ⁇ glmL kanamycin.
- the absorbance at 600 nm is >2.0, the cells are harvested by centrifugation (5,000 times g, 10 min in a GSA rotor at room temperature) and are re-suspended in 3 volumes of infiltration medium (1/times Murashige and Skoog salts, 1 times.
- the Agrobacterium suspension is poured into a beaker and the potted plants are inverted into the beaker so that the bolts and entire rosettes are submerged.
- the beaker is placed into a large Bell jar and a vacuum is drawn using a vacuum pump, until bubbles form on the leaf and stem surfaces and the solution starts to bubble a bit, and the vacuum is rapidly released.
- Pots are removed from the beaker, are laid on their side in a plastic tray and are covered with a plastic dome, to maintain humidity. The following day, the plants are uncovered, set upright and are allowed to grow for approximately four weeks in a growth chamber under continuous light conditions as described by Katavic et al., (1995). When the siliques are mature and dry, seeds are harvested and selected for positive transformants.
- Seeds are harvested from vacuum-infiltration transformation procedures, and are sterilized by treating for 1 min in ethanol and 5 min in. 50% bleach/0.05% TweenTM 20TM in sterile distilled water. The seeds are rinsed several times with sterile distilled water. Seeds are plated by re-suspending them in sterile 0.1% agarose at room temperature (about 1 mL agarose for every 500-1000 seeds), and applying a volume equivalent to about 2,000-4,000 seeds onto 150 ⁇ 15 mm selection plates (1/2 ⁇ Murashige and Skoog salts, 0.8% agar, autoclave, cool and add 1 ⁇ B5 vitamins and kanamycin at a final concentration of 50 ⁇ g/mL).
- the plates are dried in a laminar flow hood until seed no longer flows when the plates are tipped.
- the plates are vernalized for two nights at 4° C. in the dark, and are moved to a growth chamber (conditions as described by Katavic et al., 1995). After 7-10 days, transformants are clearly identifiable as dark green plants with healthy green secondary leaves and roots that extend over and into the selective medium.
- Seedlings are transplanted to soil, plants are grown to maturity and mature seeds (T 2 generation as defined in Katavic et al., 1994) are collected and analyzed. T 2 seeds are propagated.
- the vegetative growth patterns are monitored by measuring shoot tissue dry weights, and/or by counting the number of rosette leaves present by the time plants began to enter the generative (flower initiation) stage.
- Floral initiation beginning of generative phase of growth
- Floral initiation beginning of generative phase of growth
- Data is reported in terms of percentage of plants flowering/bolting on a given day after planting (d.a.p.).
- Cells or plants transformed with the LPC acyltransferase gene of the instant invention are grown to maturity and mature seeds are harvested.
- Fatty acids are extracted from the cells or plants transformed with the LPC acyltransferase gene.
- Normal-phase HPLC analysis is used to assay for the production of fatty acids in the transformed cells or plants.
- LPCAT full-length or partial sequences of LPCAT from various plant species, including apple, barley, Capsicum annuum, castor bean, grapevine, maize, peach, rice, tomato, snapdragon, sorghum, sunflower, vaccinium corymbosum and wheat as well as Arabidopsis.
- Sequence 1 (accession number Os02g0676000 (SEQ ID NO: 22)) MGLEMEGMAAAIGVSVPVLRFLLCFAATIPTGLMWRAVPGAAGRHLYAGL TGAALSYLSFGATSNLLFVVPMAFGYLAMLLCRRLAGLVTFLGAFGFLIA CHMYYMSGDAWKEGGIDATGALMVLTLKIISCAINYSDGMLKEEGLRDAQ KKYRLAKLPSLIEYFGYCLCCGSHFAGPVYEMKDYLEYTERKGLWASPTP SPLLPTLRALVQAGACMGLYLYLSPQFPLSRFSEPLYYEWGFWHRLFYQY MSGFTARWKYYFIWSLSEAAIIISGLGFSGWSDSSPPKAKWDRAKNVDVL GVELATSAVQLPLMWNIQVSTWLRYYVYERLVQKGKKPGFLQLLGTQTVS AVWHGLYPGYIIFFVQSALMINGSKVIYRWQQAVSNPVFHAILVFVNFSY TLMVLNY
- Sequence 1 (accession number AAR99097 (SEQ ID NO: 38)) MLEPPKFIENDCYNGSRTFTWLADMVGLSVDLVNFLICQISALFLASLFR SMLHPSKVSSKLRHTFALSIGLAFGYFCFGQQAIHIAGLPAICYIVIRTQ DPRIVQRAVLLVAMSYLLCVHLMRQLYDYGSYALDITGPLMIITQKVTSL AFSIHDGFVRGDEELTKAQQYHAIRKMPSALEYFSYVWHFQSILAGPLVF YKDYIEFVEGYNLLSTPPGNGNLDSSKREVVLEPSPTKAVIRKVVGSLVC AFIFMKFVKIYPVKDMKEDDFMNNTSMVYKYWYAMMATTCIRFKYYHAWL LADAICNNSGLGFTGYDKDGNSKWDLISNINVLSFEFSTNMRDAINNWNC GTNRWLRTLVYERVPQQYGTLLTFALSAVWHGFYPGYYLTFATGAVVVTA
- Sequence 1 (accession number EAX01013 (SEQ ID NO: 40)) MKCCFHHIIPRVNFVVCQLFALLAAIWFRTYLHSSKTSSFIRHVVATLLG LYLALFCFGWYALHFLVQSGISYCIMIIIGVENMHNYCFVFALGYLTVCQ VTRVYIFDYGQYSADFSGPMMIITQKITSLACEIHDGMFRKDEELTSSQR DLAVRRMPSLLEYLSYNCNFMGILAGPLCSYKDYITFIEGRSYHITQSGE NGKEETQYERTEPSPNTAVVQKLLVCGLSLLFHLTICTTLPVEYNIDEHF QATASWPTKIIYLYISLLAARPKYYFAWTLADAINNAAGFGFRGYDENGA ARWDLISNLRIQQIEMSTSFKMFLDNWNIQTALWLKRVCYERTSFSPTIQ TFILSAIWHGVYPGYYLTFLTGVLMTLAARAMRNNFRHYFIEPSQLKLFY
- Sequence 1 (accession number AAH24653 (SEQ ID NO: 42)) MAARPPASLSYRTTGSTCLHPLSQLLGIPLDQVNFVACQL FALSAAFWFRIYLHPGKASPEVRHTLATILGIYFVVFCFGWYAVHLFVLV LMCYGVMVSASVSNIHRYSFFVAMGYLTICHISRIYIFHYGILTTDFSGP LMIVTQKITTLAFQVHDGLGRKAEDLSAEQHRLAVKAKPSLLEYLSYHLN FMSVIAGPCNNFKDYVAFIEGRHIHMKLLEVNWTQRGFQSLPEPSPTGAV IQKLCVTLMSLLLFLTLSKSFPVTFLIDDWFVHKANFLSRLWYLYVVMQA AKPKYYFAWTLADAVHNAAGFGFNGMDTDGKSRWDLLSNLNIWKIETATS FKMYLENWNIQTSTWLKCVCYERVSWYPTVLTFLLSALWHGVYPGY
- Motif 1 M V(I) L(I) ⁇ ⁇ K L(V,I) ⁇ ⁇ ⁇ ⁇ ⁇ D G (or Met Xaa Xaa Xaa Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Gly (SEQ ID NO:46), wherein the Xaa at position 2 can be Val or Ile, the Xaa at position 3 can be Leu or Ile, the Xaa at position 7 can be Leu, Val, or Ile, while the other Xaa's in the motif may be any amino acid.
- Motif 4 S A ⁇ W H G ⁇ ⁇ P G Y ⁇ ⁇ T(F) F (or Ser Ala Xaa Trp His Gly Xaa Xaa Pro Gly Tyr Xaa Xaa Xaa Phe (SEQ ID NO:49) wherein Xaa at position 14 is Thr or Phe, while the other Xaa's in the motif may be any amino acid.
- FIG. 3 depicts another alignment of LPCAT sequences from different plant species that revealed the following motifs:
- PCR primers were designed for nucleotide sequence of the putative TpLPCAT obtained by a BLAST search of the sequenced T. pseudonana genome using the yeast LPCAT sequence. Plasmid from a cDNA library of T. pseudonana was used as template.
- a 50 ⁇ l PCR reaction contained 50 ng of plasmid DNA, 20 pM of each primer: 5′-GGTATGCTCATCTGCTACCCCCTC-3′ (SEQ ID NO:89) and 5′-TTAAGTCTCCTTCGTCTTTGGTGTAG-3′ (SEQ ID NO:90) and 1 ⁇ l of BD AdvantageTM 2 Polymerase Mix (Clontech Laboratories, Inc.), and was amplified in a thermocycler during 30 cycles of the following program: 94° C for 30 sec, 58° C. for 30 sec, and 72° C. for 1 min 30 sec.
- the PCR product was purified, and subsequently cloned into the pYES2.1/V5-His-TOPO expression vector (Invitrogen).
- TpLPCAT in yeast The TpLPCAT in pYES2.1/V5-His-TOPO plasmid was transformed into yeast lpcat mutant By02431 using the method provided by the producer's manual (Invitrogen). Yeast cells transformed with pYES2.1/V5-His-TOPO plasmid only were used as a control. Transformants were selected by growth on synthetic complete medium lacking uracil (SC-ura), supplemented with 2% (w/v) glucose. The colonies were transferred into liquid SC-ura with 2% (w/v) glucose and grown at 28° C. overnight.
- SC-ura synthetic complete medium lacking uracil
- the colonies were transferred into liquid SC-ura with 2% (w/v) glucose and grown at 28° C. overnight.
- the overnight cultures were diluted to an OD 0.4 in induction medium (SC-ura+2% Galactose+1% Raffinose), and were induced by incubating at 28° C. for 24 hours.
- the yeast cells were collected and broken using glass beads.
- the protein concentrations in the lysates were normalized using the Biorad assay (Bradford 1976) and then assayed for LPCAT activity.
- T. pseudonana LPCAT cDNA clone was amplified by PCR from an algae cDNA library.
- the nucleotide sequence had an open reading frame of 1,323 bp encoding a polypeptide of 440 amino acids with a calculated molecular mass of 49.75 kD
- TpLPCAT Expression of TpLPCAT in Yeast: To confirm the function of the protein encoded by the TpLPCAT, the full-length coding region of TpLPCAT was cloned into a yeast expression vector pYES2.1/V5-His-TOPO under the control of the galactose-inducible GAL1 promoter, and the construct was used to transform a LPCAT-deficient yeast strain By02431(a yeast lpcat strain). Yeast cells harboring an empty pYES2.1 vector plasmid were used as a control.
- yeast lpcat strain is hypersensitive to lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine).
- lyso-PAF lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine.
- microsomal membrane fractions prepared from lysates of the induced yeast cells were assayed for LPCAT activity using 14C-labelled Lyso-PC as acceptor, and different unlabeled acyl-CoAs as acyl donors.
- expression of the TpLPCAT in yeast lpcat mutant resulted in a restoration of LPCAT function and produced a recombinant LPCAT protein capable of incorporating a range of different acyl-CoAs into PC including 14:0-, 16:0-, 16:1-, 18:0-, 18:1-, 18:2-, and 22:6(DHA)-, with the most preference of 18:1-CoA, and efficiently utilization of the very long chain polyunsaturated fatty acid--22:6-CoA(DHA) ( FIGS. 5 & 6 ).
- Yeast extract Yeast Nitrogen Base
- Bacto-peptone Bacto-agar were purchased from DifcoTM, D-glucose, D-galactose and D-raffinose were from Sigma.
- SC minimal medium and plates was prepared according to Invitrogen's recipe described for the pYES2.1 TOPO TA Cloning Kit.
- Lyso-PAF sensitivity Yeast strains BY02431 carrying pYES 2.1-AtLPCATs or the empty vector were first grown in 15 ml of SC-Leu-His-ura medium containing 2% glucose. Yeast transformant strains of AtLPCATs were first grown in YPD overnight. Protein expression induction were carried out by protocol described in Invitrogen manufacturer manual for yeast expression vector pYES2.1. After 12 hr induction, 5 ⁇ l cultures were inoculated onto YPD plate with 10 ⁇ g/ml LysoPAF. The plates were incubated at 28° C. for 2 days. The final lysoPAF is 10 ⁇ g/ml.
- Yeast strains BY02431 carrying pYES 2.1-AtLPCATs or the empty vector were first grown in 15 ml of SC-Leu-His-ura medium containing 2% glucose.
- Yeast transformant strains of AtLPCATs were first grown in YPD overnight. Protein expression induction were carried out by protocol described in Invitrogen manufacturer manual for yeast expression vector pYES2.1.
- the cells were washed first with distilled water and then with wall-breaking buffer (50 mM sodium phosphate, pH7.4; 1 mM EDTA; 1 mM PMSF; 5% glycerol) and spun down at 4,000 rpm (Eppendorf Centrifuge 5145C) to re-pellet cells.
- the cells, resuspended in 1 ml cell wall-breaking buffer, were shaken vigorously in the presence of acid-washed glass beads (diameter 0.5 mm) in a mini-bead beater at 5,000 rpm for 3′ 1-min intervals.
- the resultant homogenate was centrifuged at 1,500′ g for 5 min at 4° C.
- the supernatant was decanted for in vitro assay. Protein concentration was measured using Bio-Rad Protein Assay Kit for final AtSAT1 activity calculation.
- AtLPCAT substrate specificity was determined by counting incorporation of 14C-labeled lysophosphatidylcholine or 14C-labled palmityl-CoA into phosphatidylcholine. All assays were performed at least twice. 200 ml reaction mixture contained 50 mg microsomal protein, 50 mM acyl-CoA and 45 mM palmitoyl-PC, pH7.4. 14C-lysophosphatidylcholine (1.4 nCi/nmol) or 14C-palmityl-CoA (5.5 nCi/nmol) was used to assess fatty-CoA or lyso-lipid substrate specificity. Reaction was allowed for 10 min at 30° C. All radiolabel chemicals for these assays were purchased from ARC, Inc.
- Lyso-PAF sensitivity test ( FIG. 7 ): The yeast lpcat strain is deficient in its endogenous LPCAT and hypersensitive to lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine). The lpcat yeast mutant is incapable of growth in the presence of 10 ug/ml lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine).
- Lyso-lipid substrate specificity ( FIG. 8 ): LPA (lysophosphatidic acid), LPC (lysophosphatidic choline), LPE (lysophosphatidylethanolamine), LPG (lysophosphatidylglycerol), LPI (lysophosphatidyl inositol) and LPS (lysophosphatidyl serine) were first tested as substrates to compare their acyltransferase activity. The results clearly showed that Atlg12640 and Atlg63050 both exhibited high activity towards LPC ( FIG. 8 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application claims the benefit, under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/874,497 filed Dec. 13, 2006, the contents of the entirety of which is incorporated by this reference.
- The invention relates generally to biotechnology, and, more particularly, to lyso-phosphatidylcholine (LPC) acyltransferase, polynucleotides that encode LPC acyltransferases, and associated methods.
- Phosphatidylcholine (PC) serves not only as a major component of cellular membranes, but also as a major source of fatty acyl donors for triacylglycerol biosynthesis in eukaryotic organisms. At least three pathways through which PC is generated exist: (i) the CDP-choline pathway where diacylglycerol (DAG) is a direct precursor; (ii) a pathway where CDP-DAG is a direct precursor, involving phosphatidylserine formation and decarboxylation and phosphatidylethanolamine methylation (Zheng and Zou, 2001); and (iii) a pathway with LPC as substrate. The third pathway is exerted by LPC acyltransferases (LPCAT).
- LPCAT enzymes catalyze the acylation of LPC molecules to form PC and play a pivotal role in membrane biogenesis. They can also exert a reversible reaction to release the fatty acyl chain esterified to the sn-2 position of PC, thereby contributing to a continuous remodeling of fatty acyl-CoA and PC pools.
- The significance of LPCAT in glycerolipid metabolism of eukaryotic systems has been noted for many years. For genetic engineering of plant-based production of very long chain polyunsaturated fatty acid (PUFA), this enzyme is believed to represent a bottleneck for acyl exchange between the fatty acyl elongation and de-saturation systems. In higher plants, the function of this enzyme is largely unknown, but it has been proposed that the enzyme is involved in the selective incorporation of fatty acids into storage pool.
- Although LPCAT relating to the synthesis of surfactant lipid located on the surface of (pulmonary) cells have been reported in mammalian systems (Chen X et al., PNAS 2006 103:11724-11729; Nakanishi H et al., JBC 2006 281: 20140-20147), an LPC transferase involved in membrane or storage lipid synthesis has not been reported.
- Recently, a mitochondrial acyl-CoA independent LPCAT from Saccharomyces cerevisiae has been identified. This enzyme has been shown to function in cardiolipin metabolism (Testet et al. 2005). In addition, Shindou et al. (2007) reported that aceyl-CoA:lyso-PAF (platelet-activating factor) acetyltransferase possesses LPCAT activity.
- Novel types of LPCAT enzymes whose sequences are unrelated to any known LPCAT enzymes have been identified.
- Previously reported LPCAT share a substantial sequence homology to glycerol-3-phosphate acyltransferase and lysophosphatidic acyltransferase. In contrast, the LPCAT sequences disclosed herein are unrelated to any known LPCAT sequences, and belong to a new class of LPCAT. Four conserved motifs were identified in this novel class of LPCAT enzymes. The identified motifs are different from previously reported LPCAT, which contain motifs having a high degree of similarity to those in other known acyltransferases employing glycerol-3-phosphate and lysophosphatidic acid as substrates. In contrast, sequence information of the motifs identified herein is novel, and can lead to the identification of new class of LPCAT genes from a broad spectrum of species.
- Thus, in certain embodiments, a lyso-phosphatidylcholine acyltransferase gene or class of genes is identified. The LPC acyltransferase gene may be expressed or overexpressed in a cell and used to modify glycerolipid biosynthesis in a cell. Such an LPC acyltransferase gene may be expressed or overexpressed in a cell and used to modulate or enhance production of fatty acids, especially polyunsaturated fatty acids (PUFA) or other unusual fatty acids, and/or to increased oil content in the cell. The LPC acyltransferase gene may be expressed or overexpressed in planta in order to modify glycerolipid biosynthesis in a plant. In certain embodiments, the LPC acyltransferase gene is expressed or overexpressed in planta in order to enhance the production of fatty acids in a plant.
- In certain embodiments, a plant, plant seed or progeny thereof includes a recombinant cell having an LPC acyltransferase gene.
- In certain embodiments, a vector is provided having an LPC acyltransferase gene. The vector may be used to transform a cell, thus producing a recombinant cell having the LPC acyltransferase gene. The cell may comprise, for example, a bacterial cell, a yeast cell, or a plant cell.
- In certain embodiments, a recombinant cell expresses an LPC acyltransferase gene and produces an LPC acyltransferase polypeptide that may be isolated or purified from the cell.
- In certain embodiments, nucleotide and deduced amino acid sequences associated with an LPC acyltransferase gene are disclosed. The sequence, or a portion thereof, may be used to identify genes from other species that encode polypeptides with LPC acyltransferase activity.
- In certain embodiments, a process for producing fatty acids includes transforming a cell with an LPC acyltransferase gene. The transformed cell expresses the fatty acid acyltransferase gene and produces fatty acids. The fatty acids may be isolated or purified from the recombinant cell or culture media in which the cell grows, and subsequently incorporated into a composition.
- In certain embodiments, knock-out mutants disrupted in LPC acyltransferase gene of yeast and plants are identified.
- In certain embodiments, a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase. Similarly, a nucleotide sequence encoding a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- Also provided is an isolated or recombinant nucleic acid molecule encoding an LPC acyltransferase, and a cell transformed with the isolated or recombinant nucleic acid molecule as described herein. Also provided is a process for increasing fatty acid production in a cell, the process comprising: transforming a cell with a nucleic acid molecule encoding an LPC acyltransferase; and, growing the cell under conditions wherein said LPC acyltransferase is expressed. Also provided is a use of an isolated or recombinant nucleic acid molecule encoding an LPC acyltransferase for producing an LPC acyltransferase in a cell. Also provided is a purified or an isolated LPC acyltransferase.
- LPCAT enzymes play a critical role in remodeling fatty acid and PC pools as well as PC synthesis. The remodeled fatty acyl chains in the form of acyl-CoA or esterified at the sn-2 position of PC can be used for triacylglycerol synthesis. Thus, this novel type of LPCAT isolated from the organisms where very-long-chain polyunsaturated fatty acids (VLCPUFA) are present at a high level can be used to increase the production of VLCPUFA. As well, this novel type of LPCAT isolated from species containing high amount of unusual fatty acids can be used to increase the production of unusual fatty acids. For instance, LPCAT enzymes isolated from castor bean are useful in increasing the production of hydroxyl fatty acids in oil seeds.
- The enzyme activity described herein provides support that the motif-based gene searching is a useful approach.
-
FIG. 1 is a graph of LPCAT activity (nmol/mg·h) of wild type (WT) and YOC175c mutant yeast strains. -
FIG. 2 is an alignment of LPCAT sequences from different species that revealing, among other things, four conserved motifs unique for this type of LPCAT enzymes. -
FIG. 3 is another alignment of LPCAT sequences from different plant species that revealed four conserved motifs (SEQ ID NOS: 81-84). -
FIG. 4 is depicts the expression of the TpLCAT in lpcat mutant was able to complement the sensitivity of the lpcat mutant to Lyso-PAF. -
FIG. 5 is a graph showing the expression of TpLPCAT in yeast. LPCAT assays were performed on cell lysates of yeast lpcat mutant strain By02431 transformed with TpLPCAT/pYES2.1 and pYes2.1/V5-His-TOPO plasmid only (control) in the presence of 14C-Lyso-PC and different acyl-CoAs. -
FIG. 6 comprises TLC plates of LPCAT assays on cell lysates of yeast lpcat mutant strain By02431 transformed with TpLPCAT/pYES2.1 and pYes2.1/V5-His-TOPO plasmid only (control) in the presence of 14C-Lyso-PC and different acyl-CoAs. 1, 3, 5, 7, 9, 11, and 13-TpLPCAT; 2, 4, 6, 8, 10, 12, and 14-empty vector. -
FIG. 7 shows a LysoPAF sensitivity test of YOR175c mutant, AtLPCATs transformant, wherein A is VO/BY02431, B is AtLPCAT1/BY02431, and C is AtLPCAT2/BY02431. -
FIG. 8 is a graph showing the Lyso-lipid substrate specificity of Arabidopsis LPCATs. - Preferably, the nucleic acid molecule encoding the LPC acyltransferase is derived from yeast, plant and mammal species. Yeast species include, for example, species of the genus Saccharomyces, for example Saccharomyces cerevisiae. Plant species include, for example, species of the family Brassicaceae. Of the family Brassicaceae, species of genus Brassica and genus Arabidopsis are of particular note, for example Arabidopsis thaliana. Mammalian species include mouse and human.
- In particular, provided are a nucleic acid molecule encoding an LPC acyltransferase from S. cerevisiae and two nucleic acid molecules encoding two different isoforms of LPC acyltransferase from A. thaliana. There is also provided the LPC acyltransferases encoded by the aforementioned nucleic acid molecules.
- Provided herein is an isolated or recombinant nucleic acid molecule having a nucleotide sequence encoding an LPC acyltransferase such as amino acid sequence comprising SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO:11; SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17; SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, and SEQ ID NO:35. In particular, there is provided an isolated or recombinant nucleic acid molecule having a nucleotide sequence comprising SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34. Preferably, the LPC acyltransferase encoded by a nucleic acid molecule comprises an amino acid sequence comprises an amino acid sequence having at least 60% homology to the aforementioned sequences. Homology is more preferably at least 70%, 80%, 90%, or 95%. It will be appreciated that this disclosure embraces the degeneracy of codon usage as would be understood by one of ordinary skill in the art.
- Homologs of the LPC acyltransferase genes described herein obtained from other organisms, for example plants, may be obtained by screening appropriate libraries that include the homologs, wherein the screening is performed with the nucleotide sequence of the specific LPC acyltransferase genes of the instant invention or portions or probes thereof, or identified by sequence homology search using sequence alignment search programs such as BLAST, FASTA.
- Further included are nucleic acid molecules that hybridize to the above disclosed sequences. Hybridization conditions may be stringent in that hybridization will occur if there is at least a 90%, 95% or 97% identity with the nucleic acid molecule that encodes the LPC acyltransferase of the instant invention. The stringent conditions may include those used for known Southern hybridizations such as, for example, incubation overnight at 42° C. in a solution having 50% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 micrograms/milliliter denatured, sheared salmon sperm DNA, following by washing the hybridization support in 0.1×SSC at about 65° C. Other known hybridization conditions are well known and are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor, N.Y. (2001), incorporated herein in its entirety by this reference.
- Nucleic acid molecules that code for an LPC acyltransferase may be transformed into an organism, for example a plant. As known in the art, there are a number of ways by which genes and gene constructs can be introduced into organisms, for example plants, and a combination of transformation and tissue culture techniques have been successfully integrated into effective strategies for creating transgenic organisms, for example crop plants. These methods, which can be used in the invention, have been described elsewhere (Potrykus, 1991; Vasil, 1994; Walden and Wingender, 1995; Songstad et al., 1995), and are well known to persons skilled in the art. For example, one skilled in the art will certainly be aware that, in addition to Agrobacterium-mediated transformation of Arabidopsis by vacuum infiltration (Bechtold et at., 1993) or wound inoculation (Katavic et al., 1994), it is equally possible to transform other plant and crop species, using Agrobacterium Ti-plasmid-mediated transformation (e.g., hypocotyl (DeBlock et al., 1989) or cotyledonary petiole (Moloney et al., 1989) wound infection), particle bombardment/biolistic methods (Sanford et al., 1987; Nehra. et al., 1994; Becker et al., 1994) or polyethylene glycol-assisted, protoplast transformation (Rhodes et al., 1988; Shimamoto et al., 1989) methods.
- As will also be apparent to persons skilled in the art, and as described elsewhere (Meyer, 1995; Dada et al., 1997), it is possible to utilize plant promoters to direct any intended up- or down-regulation of transgene expression using constitutive promoters (e.g., those based on CaMV35S), or by using promoters which can target gene expression to particular cells, tissues (e.g., napin promoter for expression of transgenes in developing seed cotyledons), organs (e.g., roots), to a particular developmental stage, or in response to a particular external stimulus (e.g., heat shock).
- Promoters for use herein may be inducible, constitutive, or tissue-specific or have various combinations of such characteristics. Useftil promoters include, but are not limited to constitutive promoters such as carnation etched ring virus (CERV), cauliflower mosaic virus (CaMV) 35S promoter, or more particularly the double enhanced cauliflower mosaic virus promoter, comprising two CaMV 35S promoters in tandem (referred to as a “Double 35S”promoter).
- It may be desirable to use a tissue-specific or developmentally regulated promoter instead of a constitutive promoter in certain circumstances. A tissue-specific promoter allows for overexpression in certain tissues without affecting expression in other tissues. By way of illustration, a preferred promoter used in overexpression of enzymes in seed tissue is an ACP promoter as described in PCT International Publication WO 92/18634, published Oct. 29, 1992, the disclosure of which is herein incorporated by reference.
- The promoter and termination regulatory regions will be functional in the host plant cell and may be heterologous (that is, not naturally occurring) or homologous (derived from the plant host species) to the plant cell and the gene. Suitable promoters which may be used are described above.
- The termination regulatory region may be derived from the 3′ region of the gene from which the promoter was obtained or from another gene. Suitable termination regions which may be used are well known in the art and include Agrobacterium tumefaciens nopaline synthase terminator (Tnos), A. tumefaciens mannopine synthase terminator (Tmas) and the CaMV 35S terminator (T35S). Particularly preferred termination regions for use herein include the pea ribulose bisphosphate carboxylase small subunit termination region (TrbcS) or the Tnos termination region. Such gene constructs may suitably be screened for activity by transformation into a host plant via Agrobacterium and screening for increased isoprenoid levels.
- Suitably, the nucleotide sequences for the genes may be extracted from the GenBank® (a registered trademark of the U.S. Department of Health and Human Services) nucleotide database and searched for restriction enzymes that do not cut. These restriction sites may be added to the genes by conventional methods such as incorporating these sites in PCR primers or by sub-cloning.
- Preferably, a DNA construct for use herein is comprised within a vector, most suitably an expression vector adapted for expression in an appropriate host (plant) cell. It will be appreciated that any vector which is capable of producing a plant comprising the introduced DNA sequence will be sufficient.
- Suitable vectors are well known to those skilled in the art and are described in general technical references such as Pouwels et al., Cloning Vectors. A Laboratory Manual, Elsevier, Amsterdam (1986). Particularly suitable vectors include the Ti plasmid vectors.
- Transformation techniques for introducing the DNA constructs into host cells are well known in the art and include such methods as micro-injection, using polyethylene glycol, electroporation, or high velocity ballistic penetration. A preferred method relies on Agrobacterium-mediated transformation. After transformation of the plant cells or plant, those plant cells or plants into which the desired DNA has been incorporated may be selected by such methods as antibiotic resistance, herbicide resistance, tolerance to amino-acid analogues or using phenotypic markers.
- Various assays may be used to determine whether the plant cell shows an increase in gene expression, for example, Northern blotting or quantitative reverse transcriptase PCR (RT-PCR). Whole transgenic plants may be regenerated from the transformed cell by conventional methods. Such transgenic plants having improved isoprenoid levels may be propagated and self-pollinated to produce homozygous lines. Such plants produce seeds containing the genes for the introduced trait and can be grown to produce plants that will produce the selected phenotype.
- Plants that may be modified or used for fatty acid production according to the instant invention include, without limitation, borage (Borago spp.), Canola, castor (Ricinus communis); cocoa bean (Theobroma cacao), corn (Zea mays), cotton (Gossypium spp), Crambe spp., Cuphea spp., flax (Linum spp.), Lesquerella and Limnanthes spp., Linola, nasturtium (Tropaeolum spp.), Oeanothera spp., olive (Olea spp.), palm (.Elaeis spp.), peanut (Arachis spp.), rapeseed, safflower (Carthamus spp.), soybean (Glycine and Soja spp.), sunflower (Helianthus spp.), tobacco (Nicotiana spp.), Vernonia spp., wheat (Triticum spp.), barley (Hordeum spp.), rice (Oryza spp.), oat (Avena spp.) sorghum (Sorghum spp.), rye (Secale spp.) or other members of the Gramineae. It will further be apparent to those of ordinary skill in the art that genomic or sequence libraries of each of these plants may be screened with the nucleotide or amino acid sequences described herein (e.g., for one or more of the hereinafter identified conserved motifs (SEQ ID NO:46 through SEQ ID NO:49) for other sequences that encode or are homologous to sequences associated with the LPC acyltransferase of the instant invention.
- Plants transformed with a nucleotide sequence of the instant invention that codes for an LPC acyltransferase may be grown. Seeds of the transgenic plants are harvested and fatty acids of the seeds are extracted. The extracted fatty acids are used for subsequent incorporation into a composition, for example a pharmaceutical composition, a nutraceutical composition or a food composition.
- In certain embodiments, a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase. Similarly, a nucleotide sequence encoding a peptide comprising one or more of the four motifs may be used as an LPC Acyltransferase.
- In certain embodiments, other methods of enhancing or altering oil production may also be used with the plant to be transformed (e.g., incorporating, for expression in the plant, a nucleic acid sequence selected from the group consisting of a nucleic acid sequence encoding a peptide having, for example, Brassica pyruvate dehydrogenase kinase activity (see, e.g., U.S. Pat. No. 7,214,859 to Marilla et al. (May 8, 2007), U.S. Pat. No. 6,500,670 to Zou et al. (Decemer 2002), and U.S. Pat. No. 6,256,636 to Randall et al. (July 2001), the contents of the entirety of each of which is incorporated herein by this reference), a nucleic acid sequence encoding a peptide having diacylglycerol acyltransferase activity (see, e.g., U.S. Pat. No. 7,015,373 and U.S. Pat. No. 6,500,670 to Zou et al. (December 2002), the contents of the entirety of each of which is incorporated herein by this reference), a nucleic acid sequence encoding a peptide having glycerol-3-phosphate dehydrogenase activity (see, e.g., U.S. Pat. No. 7,112,724, the contents of the entirety of which is incorporated herein by this reference), and combinations thereof).
- Also described is a method of transforming a cell or a plant, the method comprising introducing the isolated, purified or recombinant nucleic acid into the cell or plant. A process for producing a genetically transformed plant seed comprises introducing the nucleic acid into the plant seed.
- Also described is a vector comprising SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, and/or SEQ ID NO:34.
- Also described is a vector comprising a nucleic acid sequence encoding a polypeptide having lyso-phosphatidylcholine acyltransferase activity, wherein the nucleic acid sequence comprises SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO: 14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34, or a fragment of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34, or having 90% identity with SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, or SEQ ID NO:34, wherein the fragment encodes the polypeptide having the lyso-phosphatidylcholine acyltransferase activity.
- Also described is a method for increasing fatty acid production in a cell, the method comprising transforming a cell with a nucleic acid molecule encoding a lyso-phosphatidylcholine acyltransferase; and growing the cell under conditions wherein the lyso-phosphatidylcholine acyltransferase is expressed. The method can further comprise isolating the fatty acid. In such a method, the lyso-phosphatidylcholine acyltransferase preferably comprises at least one motif selected from the group consisting of SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, and any combination thereof.
- Also described is a method of altering oil content in a plant comprising screening for a peptide encoded by a nucleotide sequence for at least one of four motifs selected from the group consisting of SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, and SEQ ID NO: 49; selecting the peptide based upon the presence of at least one of the four motifs; and expressing the nucleotide sequence encoding the peptide in the plant to alter the oil content of the plant.
- Also described is a method of changing the oil content of a plant or plant seed, the method comprising introducing a nucleic acid construct comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO:11; SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17; SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, and an amino acid sequence having at least 60% homology to any thereof having lyso-phosphatidylcholine acyltransferase activity into a plant transformation vector; transforming a genome of a plant or plant seed with the plant transformation vector; expressing the nucleic acid sequence; growing the plant or plant seed; and extracting the oil from the plant seed.
- The methods can further comprise incorporating, for expression in the plant, a nucleic acid sequence selected from the group consisting of a nucleic acid sequence encoding a peptide having pyruvate dehydrogenase kinase activity, a nucleic acid sequence encoding a peptide having diacylglycerol acyltransferase activity, a nucleic acid sequence encoding a peptide having glycerol-3-phosphate dehydrogenase activity, and any combination thereof.
- The methods preferably involve a plant of the group consisting of borage (Borago spp.), Canola, castor (Ricinus communis); cocoa bean (Theobroma cacao), corn (Zea mays), cotton (Gossypium spp), Crambe spp., Cuphea spp., flax (Linum spp.), Lesquerella and Limnanthes spp., Linola, nasturtium (Tropaeolum spp.), Oeanothera spp., olive (Olea spp.), palm (.Elaeis spp.), peanut (Arachis spp.), rapeseed, safflower (Carthamus spp.), soybean (Glycine and Soja spp.), sunflower (Helianthus spp.), tobacco (Nicotiana spp.), Vernonia spp,, wheat (Triticum spp.), barley (Hordeum spp.), rice (Oryza spp.), oat (Avena spp.) sorghum (Sorghum spp.), rye (Secale spp.) or other members of the Gramineae.
- The invention is further described with the aid of the following illustrative Examples.
- Nucleotide sequences of nucleic acid molecules of the invention were identified through yeast genetic and functional screening. Yeast (S. cerevisiae) LPC acyltransferase gene was identified based on enzyme assays of yeast mutant strains in which the gene, YOR175c, was knocked out. The enzyme activity was assessed using 14C-labeled acyl-CoA and lyso-phosphatidylcholine. The reaction product of the lyso-phosphatidylcholine and radio-labeled acyl-CoA was separated through TLC and measured through scintillation counting. Deletion of the YOR175c gene in yeast resulted in a 90% reduction of LPC acyltransferase activity (
FIG. 1 ). Therefore, YOR175c encodes LPC acyltransferase. Details are given below for the In Vitro Assay protocol for LPCAT (lyso-phosphatidylcholine (LPC) acyltransferase) activity. - Yeast culture: One colony each of wild-type (strain BY4741) and LPCAT mutants (YOR175c deletion strains Y12431, Y02431) are inoculated in 10 ml YPD media and grown overnight. After 24 hr, another 20 ml YPD media is added and growth is continued for another 24 hr.
- Protein extraction: Yeast cultures are spun at 2800 rpm at 4° C. for 20 min. The supernatant is discarded and the yeast pellet washed with 10 ml of ice cold IB buffer (80 mM HEPES, 320 mM sucrose, 5 mM EDTA pH8, 10 mM KCl, 2 mM DTT). The pellets are spun again and re-suspend in 500 μl of IB buffer. Yeast cells are divided and transferred into 2 tubes appropriate for a mini-bead beater. 0.5 mm cold glass beads are added to fill completely the tube. To break the yeast cell, three 60 s pulses of the mini-bead beater are used. The mixtures are spun again to remove unbroken cells and debris.
- Protein assay conditions: A reaction is conducted using the recipe for fatty-CoA substrate specificity, as listed in Table 1.
-
TABLE 1 Solution Volume added 450 μM lyso-PC (18:1) 50 μl 180 μM 14C 18:1-CoA (10 nCi/nmol) 50 μl Microsome 400 μg protein pH 7.4 HEPES to make fine volume 0.5 ml - The reaction mixture is allowed to sit in a water bath at 30° C. and stirred at 100 rpm for 30 min. The reaction is then terminated by adding 2 ml of CH2Cl2: Isopropanol (1:2). The mixture is allowed to sit at room temperature for 15-30 min with occasional vortexing. Phases are separated by adding 2 ml CH2Cl2 followed by 2 ml IM KCl in H3PO4. The lower layer is transferred to a clean tube and the upper aqueous phase is backwashed twice with CH2Cl2 and centrifuged, saving the organic phase each time. Organic phases are combined and dried under nitrogen. Dried material is taken up in 200 μl CH2Cl2: MeOH (2:1) and protein is separated by thin layer chromatography (TLC) using silica G (250 μm) commercial plate. Plates are developed to within 2 cm of top in ethyl acetate:isooctane:acetic acid (45:15:10, V/V/V), then dried and scraped. The phosphatidyl choline region is counted in 4 ml Aquasol-2 by a scintillation counter.
- The YOR175c gene from S. cerevisiae has been identified as encoding an LPC acyltransferase. The coding sequence of this yeast LPC acyltransferase gene is SEQ ID NO: 1:
-
ATGTACAATCCTGTGGACGCTGTTTTAACAAAGATAATTACCAACTATGGGATTGATAGT TTTACACTGCGATATGCTATCTGCTTATTGGGATCGTTCCCACTGAATGCTATTTTGAAG AGAATTCCCGAGAAGCGTATAGGTTTAAAATGTTGTTTTATCATTTCTATGTCGATGTTT TACTTATTCGGTGTGCTGAATCTAGTAAGTGGATTCAGGACCCTGTTTATTAGTACCATG TTTACTTACTTGATCTCAAGATTTTACCGTTCCAAGTTTATGCCACACTTGAATTTCATG TTTGTTATGGGTCATTTGGCAATAAATCATATACACGCCCAATTCCTTAACGAACAGACT CAAACTACCGTTGACATTACAAGTTCACAAATGGTTTTAGCCATGAAACTAACTTCTTTT GCATGGTCGTACTATGATGGTTCATGCACTAGCGAAAGCGATTTCAAAGATTTGACTGAG CATCAAAAATCTCGTGCTGTCAGAGGTCATCCACCCTTATTAAAGTTCCTGGCATATGCA TTTTTCTATTCAACGTTGCTAACTGGCCCAAGTTTCGATTATGCCGATTTTGACAGCTGG TTGAATTGTGAGATGTTCCGTGACTTGCCTGAAAGCAAAAAGCCTATGAGAAGACACCAC CCTGGTGAAAGAAGACAGATTCCAAAGAATGGTAAACTTGCATTATGGAAAGTTGTTCAA GGTCTTGCTTGGATGATTTTAAGTACACTAGGAATGAAGCACTTCCCCGTAAAATACGTT TTGGACAAAGATGGCTTCCCAACGAGATCTTTTATATTCAGAATCCATTACTTATTCTTG CTTGGTTTCATCCATAGATTCAAGTACTACGCTGCCTGGACTATTTCGGAAGGATCTTGT ATTTTGTGCGGTTTGGGTTATAATGGTTATGATTCAAAGACACAAAAGATCAGATGGGAT CGTGTCAGAAATATTGACATTTGGACCGTAGAAACGGCGCAGAATACGCGTGAAATGTTG GAAGCATGGAATATGAATACTAACAAGTGGCTAAAATACTCTGTTTATTTACGTGTCACA AAGAAGGGCAAAAAACCTGGTTTCCGCTCAACTTTGTTTACTTTCCTAACTTCCGCATTT TGGCATGGTACCAGACCTGGGTACTATCTGACTTTTGCGACAGGGGCTTTGTACCAAACA TGTGGTAAAATCTACAGACGCAATTTTAGACCAATTTTCTTGCGAGAAGATGGTGTCACT CCTTTGCCTTCTAAAAAAATCTACGATTTAGTTGGCATATATGCAATTAAACTAGCATTT GGTTACATGGTGCAACCATTTATTATCCTTGATTTGAAGCCATCTTTAATGGTATGGGGC TCTGTTTATTTCTATGTTCATATTATTGTTGCTTTCTCATTTTTCCTATTCAGAGGACCA TATGCTAAACAAGTTACTGAATTTTTTAAATCCAAACAACCTAAAGAAATATTCATTAGA AAACAAAAGAAGTTGGAAAAAGATATTTCTGCAAGCTCTCCAAACTTGGGTGGTATATTG AAGGCAAAGATTGAACATGAAAAGGGAAAGACAGCAGAAGAAGAAGAAATGAACTTAGGT ATTCCACCAATTGAGTTAGAAAAGTGGGACAATGCTAAGGAAGATTGGGAAGATTTCTGC AAAGATTACAAAGAATGGAGAAATAAAAATGGTCTTGAAATAGAAGAGGAAAACCTTTCT AAAGCTTTTGAAAGATTCAAGCAGGAATTTTCTAACGCTGCAAGTGGATCAGGTGAACGT GTGAGAAAAATGAGTTTTAGTGGTTACTCACCAAAGCCTATTTCAAAAAAGGAAGAGTAG - The deduced amino acid sequence of the yeast LPC acyltransferase encoded by the gene is SEQ ID NO: 2:
-
MYNPVDAVLTKIITNYGIDSFTLRYAICLLGSFPLNAILKRIPEKRIGLKCCFIISMSMF YLFGVLNLVSGFRTLFISTMFTYLISRFYRSKFMPHLNFMFVMGHLAINHIHAQFLNEQT QTTVDITSSQMVLAMKLTSFAWSYYDGSCTSESDFKDLTEHQKSRAVRGHPPLLKFLAYA FFYSTLLTGPSFDYADFDSWLNCEMFRDLPESKKPMRRHHPGERRQIPKNGKLALWKVVQ GLAWMILSTLGMKHFPVKYVLDKDGFPTRSFIFRIHYLFLLGFIHRFKYYAAWTISEGSC ILCGLGYNGYDSKTQKIRWDRVRNIDIWTVETAQNTREMLEAWNMNTNKWLKYSVYLRVT KKGKKPGFRSTLFTFLTSAFWHGTRPGYYLTFATGALYQTCGKIYRRNFRPIFLREDGVT PLPSKKIYDLVGIYAIKLAFGYMVQPFIILDLKPSLMVWGSVYFYVHIIVAFSFFLFRGP YAKQVTEFFKSKQPKEIFIRKQKKLEKDISASSPNLGGILKAKIEHEKGKTAEEEEMNLG IPPIELEKWDNAKEDWEDFCKDYKEWRNKNGLEIEEENLSKAFERFKQEFSNAASGSGER VRKMSFSGYSPKPISKKEE - The nucleotide sequence of the yeast LPC acyltransferase gene was used to search for homologous sequences using computer programs designed to search for homologous sequences. For instance, readily commercially available computer programs that may be used for such searches include without limitation, BLASTN, BLASTX and TBLASTX which may be used to search for nucleotide sequences, and BLASTP and TBLASTN which may be used to search for amino acid sequences. Such computer programs are readily accessible at the web-site www.ncbi.nlm.nih.gov.
- Two plant (A. thaliana) homologs were identified through sequence alignment searching using BLAST. The two homologs are cDNA sequences that encode two different isoforms of LPC acyltransferase.
-
Arabidopsis LPC acyltransferase 1 - Nucleotide sequence of
Arabidopsis LPC acyltransferase 1 cDNA is SEQ ID NO: 3: -
1 ACCAACAACC ACACGACACG ACACGACCGA TCTATAGATT CGGCGAGATC 51 AGAAGAAAGC TTCCCGGAGC AACTCGGTCG TTGTGACTCA TTCCGAGTTA 101 AAAAAAACGG GTTTTCGACA CCATGGATAT GAGTTCAATG GCTGGTTCAA 151 TCGGAGTTTC GGTAGCCGTA CTCCGATTCC TCCTCTGTTT CGTTGCCACG 201 ATCCCTGTTT CATTCGCTTG TCGAATCGTC CCGAGTAGAC TCGGTAAACA 251 CTTGTATGCC GCTGCTTCAG GTGCTTTCCT CTCTTACCTC TCCTTTGGCT 301 TCTCCTCCAA CCTTCACTTC CTTGTTCCGA TGACGATCGG ATATGCTTCA 351 ATGGCGATTT ATAGACCCAA GTGTGGAATC ATCACTTTCT TCCTCGGTTT 401 CGCTTATCTT ATTGGCTGTC ATGTGTTTTA TATGAGTGGT GATGCGTGGA 451 AAGAAGGAGG AATCGATTCT ACTGGAGCGT TAATGGTGTT GACGCTGAAA 501 GTCATCTCAT GTTCAATGAA TTACAATGAT GGGATGTTGA AGGAGGAAGG 551 TCTACGTGAA GCTCAGAAGA AAAACAGATT GATTCAGATG CCGTCTTTGA 601 TTGAGTACTT TGGTTACTGC CTTTGTTGTG GTAGCCATTT TGCTGGTCCT 651 GTTTATGAAA TGAAAGATTA TCTTGAATGG ACCGAAGGGA AAGGGATTTG 701 GGATACTACT GAGAAAAGAA AGAAGCCATC GCCTTATGGA GCTACAATCC 751 GAGCTATTTT GCAAGCTGCG ATTTGCATGG CTCTGTATCT CTATTTAGTG 801 CCTCAATATC CGTTAACTCG GTTCACAGAA CCAGTGTATC AAGAATGGGG 851 ATTCTTGAGA AAATTTAGTT ACCAATACAT GGCTGGATTC ACGGCTCGTT 901 GGAAGTATTA CTTCATCTGG TCAATTTCAG AGGCTTCTAT TATCATCTCT 951 GGTTTGGGTT TCAGTGGTTG GACTGATGAT GCTTCACCAA AGCCCAAATG 1001 GGACCGTGCC AAGAACGTAG ATATTCTCGG TGTTGAACTA GCTAAGAGCG 1051 CGGTTCAGAT TCCACTTGTG TGGAACATAC AAGTCAGCAC GTGGCTCCGT 1101 CACTATGTGT ATGAGAGACT TGTGCAGAAC GGAAAGAAAG CGGGTTTCTT 1151 CCAGTTACTA GCTACACAAA CCGTCAGCGC GGTTTGGCAT GGACTGTATC 1201 CTGGATATAT GATGTTCTTT GTTCAGTCAG CTTTGATGAT CGCAGGCTCA 1251 CGGGTTATTT ACCGGTGGCA ACAAGCGATC AGTCCGAAAA TGGCAATGCT 1301 GAGAAATATA ATGGTCTTCA TCAACTTCCT TTACACTGTT TTGGTTCTCA 1351 ACTACTCAGC CGTCGGTTTC ATGGTGTTAA GCTTGCACGA AACACTTACC 1401 GCCTACGGAA GCGTATATTA CATTGGAACA ATCATACCTG TTGGATTGAT 1451 TCTCCTCAGT TACGTTGTGC CTGCAAAACC TTCAAGACCA AAACCGCGTA 1501 AAGAAGAATA AGCAGTTATC TTCTTCTCTT AACGGTAAGT AAGTTTCCCG 1551 CGCTTGCCAG CTTCTTCTTC TTCTTCTGTA ACATTTGGAA ACAAACCGAT 1601 CCGGTTCTTG TTTCTCTCTG ATTTTTTAGC ACCGATATTT TTTTTGTATT 1651 TGTTGCTTAT AAATCTTATT TTTCACACTT CTTTTTTTTA ATTAGTATTG 1701 GATTTGCAAT TATATAGACA ATAAGTATAA ATATGTAACT GTAAATTGCA 1751 AATGGGAAAA AATAGTAGTG TTTATGTTTG - The deduced amino acid sequence of
Arabidopsis LPC acyltransferase 1 is SEQ ID NO: 4: -
1 MDMSSMAGSI GVSVAVLRFL LCFVATIPVS FACRIVPSRL GKHLYAAASG 51 AFLSYLSFGF SSNLHFLVPM TIGYASMAIY RPKCGIITFF LGFAYLIGCH 101 VFYMSGDAWK EGGIDSTGAL MVLTLKVISC SMNYNDGMLK EEGLREAQKK 151 NRLIQMPSLI EYFGYCLCCG SHFAGPVYEM KDYLEWTEGK GIWDTTEKRK 201 KPSPYGATIR AILQAAICMA LYLYLVPQYP LTRFTEPVYQ EWGFLRKFSY 251 QYMAGFTARW KYYFIWSISE ASIIISGLGF SGWTDDASPK PKWDRAKNVD 301 ILGVELAKSA VQIPLVWNIQ VSTWLRHYVY ERLVQNGKKA GFFQLLATQT 351 VSAVWHGLYP GYMMFFVQSA LMIAGSRVIY RWQQAISPKM AMLRNIMVFI 401 NFLYTVLVLN YSAVGFMVLS LHETLTAYGS VYYIGTIIPV GLILLSYVVP 451 AKPSRPKPRK EE -
Arabidopsis LPC acyltransferase 2 - Nucleotide sequence of
Arabidopsis LPC acyltransferase 2 cDNA is SEQ ID NO: 5: -
1 AGATGTCCGA ACTGTGAGAG TCGTCGTCGT CGTCGTAACT CAGTCCGAGT 51 TGACACAATC TTCCACTTCA CGCAAGATAC AACCATGGAA TTGCTTGACA 101 TGAACTCAAT GGCTGCCTCA ATCGGCGTCT CGGTCGCCGT TCTCCGTTTC 151 CTCCTCTGTT TCGTCGCAAC GATACCAATC TCATTTTTAT GGCGATTCAT 201 CCCGAGTCGA CTCGGTAAAC ACATATACTC AGCTGCTTCT GGAGCTTTCC 251 TCTCTTATCT CTCCTTTGGC TTCTCCTCAA ATCTTCACTT CCTTGTCCCA 301 ATGACGATTG GTTACGCTTC AATGGCGATT TATCGACCCT TGTCTGGATT 351 CATTACTTTC TTCCTAGGCT TCGCTTATCT CATTGGCTGT CATGTGTTTT 401 ATATGAGTGG TGATGCTTGG AAAGAAGGAG GAATTGATTC TACTGGAGCT 451 TTGATGGTAT TAACACTGAA AGTGATTTCG TGTTCGATAA ACTACAACGA 501 TGGAATGTTG AAAGAAGAAG GTCTACGTGA GGCTCAGAAG AAGAACCGTT 551 TGATTCAGAT GGCTTCTCTT ATTGAGTACT TTGGTTATTG CCTCTGTTGT 601 GGAAGCCATT TGGCTGGCCC GGTTTTCGAA ATGAAAGATT ATCTCGAATG 651 GACTGAAGAG AAAGGAATTT GGGCTGTTTC TGAAAAAGGA AAGAGACCAT 701 CGCCTTATGG AGCAATGATT CGAGCTGTGT TTCAAGCTGC GATTTGTATG 751 GCTCTCTATC TCTATTTAGT ACCTCAGTTT CCGTTAACTC GGTTCACTGA 801 ACCAGTGTAC CAAGAATGGG GATTCTTGAA GAGATTTGGT TACCAATACA 851 TGGCGGGTTT CACGGCTCGT TGGAAGTATT ACTTTATATG GTCTATCTCA 901 GAGGCTTCTA TTATTATCTC TGGTTTGGGT TTCAGTGGTT GGACTGATGA 951 AACTCAGACA AAGGCTAAAT GGGACCGCGC TAAGAATGTC GATATTTTGG 1001 GGGTTGAGCT TGCCAAGAGT GCGGTTCAGA TTCCGCTTTT CTGGAACATA 1051 CAAGTCAGCA CATGGCTCCG TCACTACGTA TATGAGAGAA TTGTGAAGCC 1101 CGGGAAGAAA GCGGGTTTCT TCCAATTGCT AGCTACGCAA ACCGTCAGTG 1151 CTGTGTGGCA TGGACTGTAT CCTGGATACA TTATATTCTT TGTGCAATCA 1201 GCATTGATGA TCGATGGTTC GAAAGCTATT TACCGGTGGC AACAAGCAAT 1251 ACCTCCGAAA ATGGCAATGC TGAGAAATGT TTTGGTTCTC ATCAATTTCC 1301 TCTACACAGT AGTGGTTCTC AATTACTCAT CCGTCGGTTT CATGGTTTTA 1351 AGCTTGCACG AAACACTAGT CGCCTTCAAG AGTGTATATT ACATTGGAAC 1401 AGTTATACCT ATCGCTGTGC TTCTTCTCAG CTACTTAGTT CCTGTGAAGC 1451 CTGTTAGACC AAAGACCAGA AAAGAAGAAT AATGTTGTCT TTTTAAAAAA 1501 TCAACAACAT TTTGGTTCTT TTCTTTTTTT CCACTTGGAC CGTTTTATGT 1551 AAAACAAGAG AAATCAAGAT TTGAGGTTTT ATTCTTCTTC TCCTTCCCAA 1601 TTTTCGAAAA TGATTTTATT TTTTCTGATA TATATCTAAG CTAGTCCAAA 1651 GTCAACTCG - The deduced amino acid sequence of
Arabidopsis LPC acyltransferase 2 is SEQ ID NO: 6: -
1 MELLDMNSMA ASIGVSVAVL RFLLCFVATI PISFLWRFIP SRLGKHIYSA 51 ASGAFLSYLS FGFSSNLHFL VPMTIGYASM AIYRPLSGFI TFFLGFAYLI 101 GCHVFYMSGD AWKEGGIDST GALMVLTLKV ISCSINYNDG MLKEEGLREA 151 QKKNRLIQMP SLIEYFGYCL CCGSHFAGPV FEMKDYLEWT EEKGIWAVSE 201 KGKRPSPYGA MIRAVFQAAI CMALYLYLVP QFPLTRFTEP VYQEWGFLKR 251 FGYQYMAGFT ARWKYYFIWS ISEASIIISG LGFSGWTDET QTKAKWDRAK 301 NVDILGVELA KSAVQIPLFW NIQVSTWLRH YVYERIVKPG KKAGFFQLLA 351 TQTVSAVWHG LYPGYIIFFV QSALMIDGSK AIYRWQQAIP PKMAMLRNVL 401 VLINFLYTVV VLNYSSVGFM VLSLHETLVA FKSVYYIGTV IPIAVLLLSY 451 LVPVKPVRPK TRKEE - Transformation protocol is adapted from that described by Bechtold et al. (1993). Plants are grown in moist soil at a density of 10-12 plants per pot, in 4-inch square pots, and are covered with a nylon screen fixed in place with an elastic band. When the plants reach the stage at which bolts emerge, plants are watered, the bolts and some of the leaves are clipped, and the plants are infiltrated in Agrobacterium suspension as outlined below.
- Agrobacterium transformed with the LPC acyltransferase gene of the instant invention is grown in a 25 mL suspension in LB medium containing kanamycin at a concentration of 50 μg/mL. The Agrobacterium is cultured for two to three days. The day before infiltration, this “seed culture” is added to 400 mL of LB medium containing 50 μglmL kanamycin. When the absorbance at 600 nm is >2.0, the cells are harvested by centrifugation (5,000 times g, 10 min in a GSA rotor at room temperature) and are re-suspended in 3 volumes of infiltration medium (1/times Murashige and Skoog salts, 1 times. B5 vitamins, 5.0% sucrose, 0.044 μM benzylaminopurine) to an optical density at 600 nm of 0.8. The Agrobacterium suspension is poured into a beaker and the potted plants are inverted into the beaker so that the bolts and entire rosettes are submerged. The beaker is placed into a large Bell jar and a vacuum is drawn using a vacuum pump, until bubbles form on the leaf and stem surfaces and the solution starts to bubble a bit, and the vacuum is rapidly released. The necessary time and pressure vanes from one lab setup to the next; but good infiltration is visibly apparent as uniformly darkened, water-soaked tissue. Pots are removed from the beaker, are laid on their side in a plastic tray and are covered with a plastic dome, to maintain humidity. The following day, the plants are uncovered, set upright and are allowed to grow for approximately four weeks in a growth chamber under continuous light conditions as described by Katavic et al., (1995). When the siliques are mature and dry, seeds are harvested and selected for positive transformants.
- Seeds are harvested from vacuum-infiltration transformation procedures, and are sterilized by treating for 1 min in ethanol and 5 min in. 50% bleach/0.05
% Tween™ 20™ in sterile distilled water. The seeds are rinsed several times with sterile distilled water. Seeds are plated by re-suspending them in sterile 0.1% agarose at room temperature (about 1 mL agarose for every 500-1000 seeds), and applying a volume equivalent to about 2,000-4,000 seeds onto 150×15 mm selection plates (1/2×Murashige and Skoog salts, 0.8% agar, autoclave, cool and add 1×B5 vitamins and kanamycin at a final concentration of 50 μg/mL). The plates are dried in a laminar flow hood until seed no longer flows when the plates are tipped. The plates are vernalized for two nights at 4° C. in the dark, and are moved to a growth chamber (conditions as described by Katavic et al., 1995). After 7-10 days, transformants are clearly identifiable as dark green plants with healthy green secondary leaves and roots that extend over and into the selective medium. - Seedlings are transplanted to soil, plants are grown to maturity and mature seeds (T2 generation as defined in Katavic et al., 1994) are collected and analyzed. T2 seeds are propagated. The vegetative growth patterns are monitored by measuring shoot tissue dry weights, and/or by counting the number of rosette leaves present by the time plants began to enter the generative (flower initiation) stage. Floral initiation (beginning of generative phase of growth) is analyzed by recording, on a daily basis, the percentage of plants in which a flower bud first appears and/or the percentage of plants that are bolting (as described by Zhang et al. 1997). Data is reported in terms of percentage of plants flowering/bolting on a given day after planting (d.a.p.).
- Cells or plants transformed with the LPC acyltransferase gene of the instant invention are grown to maturity and mature seeds are harvested. Fatty acids are extracted from the cells or plants transformed with the LPC acyltransferase gene. Normal-phase HPLC analysis is used to assay for the production of fatty acids in the transformed cells or plants.
- (1) Identification of LPCAT from the alga Thalassiosira pseudonana
- We made use of the sequence information of LPCAT from S. cerevisiae (SEQ ID NO: 1) and identified a sequence coding for LPCAT from the alga T. pseudonana. This algal LPCAT shows 27% identity at the amino acid to the yeast LPCAT which is encoded by YOR175c.
- The nucleotide and amino acid sequences of LPCAT from T. pseudonana
- a. The nucleotide sequence of LPCAT from the alga T. pseudonana
-
(SEQ ID NO: 7) ATGCGATTGTATTTGCAATTCAACTTATCCATCAATGATTA TTGTCACTTCTTCACAGTACCATCCTTTGTCAAAGAGGGCGTCGAGTCTC TCTCTGCATCCACCGGACAAGACGTCGAGACTCTCGAGTACCTCCTTGGT ATGCTCATCTGCTACCCCCTCGGAATGATCATGCTCGCTCTACCCTACGG AAAAGTAAAACATCTCTTCTCCTTCATCCTCGGAGCCTTCCTACTTCAAT TCACCATTGGTATCCAGTGGATTCATCACTTAATCTCCTCAATGATTGCC TACGTCATGTTCCTCGTCCTTCCTGCCAAATTTGCCAAAACGGCAGTGCC TGTGTTTGCCATGATCTACATCACCGCGGGACATTTGCATCGTCAATACA TCAATTATCTTGGGTGGGATATGGACTTCACGGGGCCTCAGATGGTGCTT ACGATGAAACTCTACATGCTTGCTTACAACCTTGCGGATGGGGACTTGCT CAAGAAGGGAAAGGAGGATAGGGCTGCAAAGAAGTGTGCGGATGTCGCTA TTTCGTCTGTTCCCGGAATCATTGAGTACTTGGGCTACACGTTCTGCTTT GCCAGTGTTTTAGCAGGCCCTGCTTTTGAGTACAAATTCTACGCCGATGC ATGCGACGGATCACTCTTGTACGACAAATCTGGCAAACCCAAAGGAAAGA TCCCCAGTCAGGTGTGGCCTACATTGCGTCCTCTTTTTGGAAGTCTCTTG TGTCTCGGCATCTTTGTTGTGGGAACTGGAATGTATCCTCTTTTGGATCC CAACGATCCTCAGAATGCCACTCCTATCCCTCTCACTCCAGAGATGTTGG CCAAACCAGCCTATGCTCGATACGCTTACTCGTGGCTTGCACTCTTTTTC ATCCGATTTAAGTATTACTTTGCTTGGATGAACGCCGAAGGAGCAAGCAA CATTTGGTATGCTGGATTTGAGGGATTTGATGCCAGCGGCAACCCCAAAG GATGGGAGGTATCCAATAACATTGACGTAATTCAGTTCGAGACTGCACCC AATCTCAAGACTTTGAGTGCTGCTTGGAATAAGAAGACTGCGAACTGGTT GGCGAAGTATGTGTACATTCGCACGGGTGGTTCTCTCTTTGCGACGTACG GAATGAGTGCTTTCTGGCATGGCTTCTACCCTGGATACTACCTCTTCTTC ATGTCGGTACCCATGATGGCTTTCTGTGAGAGGATTGGAAGGAAGAAACT TACACCTCGTTTCGGAAATGGAAAGAAGTGGAGTCCTTATGGCATTGTGT GCATTATCGCCACATCGTTGATGACGGAATACATGATTCAGCCATTCCAA CTACTTGCGTTTGATTGGGCCTGGGAGAACTGGAGCAGCTACTACTTTGC TGGACACATTGTTTGTGTTGTGTTTTACCTCGTTGTGTCCAACATGCCTA CACCAAAGACGAAGGAGACTTAA - b. The amino acid sequence of LPCAT from T. pseudonana
-
(SEQ ID NO: 8) MRLYLQFNLSINDYCHFFTVPSFVKEGVESLSASTGQDVETLEYLLGMLI CYPLGMIMLALPYGKVKHLFSFILGAFLLQFTIGIQWIHHLISSMIAYVM FLVLPAKFAKTAVPVFAMIYITAGHLHRQYINYLGWDMDFTGPQMVLTMK LYMLAYNLADGDLLKKGKEDRAAKKCADVAISSVPGIIEYLGYTFCFASV LAGPAFEYKFYADACDGSLLYDKSGKPKGKIPSQVWPTLRPLFGSLLCLG IFVVGTGMYPLLDPNDPQNATPIPLTPEMLAKPAYARYAYSWLALFFIRF KYYFAWMNAEGASNIWYAGFEGFDASGNPKGWEVSNNIDVIQFETAPNLK TLSAAWNKKTANWLAKYVYIRTGGSLFATYGMSAFWHGFYPGYYLFFMSV PMMAFCERIGRKKLTPRFGNGKKWSPYGIVCIIATSLMTEYMIQPFQLLA FDWAWENWSSYYFAGHIVCVVFYLVVSNMPTPKTKET - (2) Identification of LPCAT from diverse plant species
- Taking the same approach as described above, identified were the full-length or partial sequences of LPCAT from various plant species, including apple, barley, Capsicum annuum, castor bean, grapevine, maize, peach, rice, tomato, snapdragon, sorghum, sunflower, vaccinium corymbosum and wheat as well as Arabidopsis.
- (1) The partial nucleotide sequence of LPCAT from apple
-
(SEQ ID NO: 9) TCAGGAGGCCCAAATTTCCTTTGTCAAGATTTACTGAGCCCA TATACCAAGAATGGGGGTTTTGGAAACGACTTTTCTACCAGTATATGTCT GGATTCACAGCAAGGTGGAAATATTATTTCATTTGGTCAATATCAGAGGC TTCTATCATTCTTTCTGGCCTCGGTTTCAGTGGCTGGACAGAGTCCTCAC CACCAAAACCTCGATGGGATCGTGCAAAAAATGTTGATATTATAGGCGTT GAGTTTGCAAAGAGTTCAGTTCAGTTACCACTTGTTTGGAACATACAAGT CAGCACCTGGCTTCGCCATTATGTTTATGATAGGCTTGTTAAACCTGGAA AGAAGCCTGGTTTCTTCCAGTTGCTGGCTACACAGACCGTCAGTGCTGTT TGGCATGGCCTCTATCCTGGCTACATCATATTCTTTGTTCAGTCAGCGTT GATGATTGCTGGATCAAGAGTGATTTACCGATGGCAGCAAGCTGTACCTC CAACTATGGATGTTGTTAAGAAGATATTGGTGTTCATCAACTTTGCTTAC ACTGTCTTGGTTCTGAACTACTCCTGTGTTGGTTTCATTGTATTAAGCCT TCGTGAAACACTGGCCTCGTATGGAAGCGTGCATTTC - The partial amino acid sequence of LPCAT from apple
-
(SEQ ID NO: 10) RRPKFPLSRFTEPIYQEWGFWKRLFYQYMSGFTARWKYYF IWSISEASIILSGLGFSGWTESSPPKPRWDRAKNVDIIGVEFAKSSVQLP LVWNIQVSTWLRHYVYDRLVKPGKKPGFFQLLATQTVSAVWHGLYPGYII FFVQSALMIAGSRVIYRWQQAVPPTMDVVKKILVFINFAYTVLVLNYSCV GFIVLSLRETLASYGSVHF - (2) The partial amino acid sequence of LPCAT from barley
-
(SEQ ID NO: 11) EAAIIISGLGFTGWSDSSPPKAKWDRAINVDILGVELAGSAA QLPLKWNIQVSTWLRYYVYERLIQKGKKPGFLQLLGTQTVSAIWHGLYPG YMIFFVQSALMINGSKVIYRWQQAVKQFRPPHYPVFTKLLHTP - (3) The partial nucleotide sequence of LPCAT from Capsicum annuum
-
(SEQ ID NO: 12) GGCACGAGAAACGGTTGGGTTACCAATATATGGCTGGCTT TACTGCCCGGTGGAAGTATTATTTTATCTGGTCAATCTCTGAAGCTGCTA TAATCATATCTGGACTGGGTTTCAGTGGTTGGACAGACTCTTCTCCGCCA AAACCACGTTGGGACCGTGCAAAAAATGTTGATGTATTGGGTGTTGAGTT AGCAAAGAGCTCGGTTCAGTTGCCTGCTGTCTGGAACATTCAAGTCAGCA CATGGCTGCGGCATTATGTATATGAAAGGCTCATACAAAAGGGAAGGAAG CCTGGTTTCTTCCAGTTACTGGCTACCCAAACTGTCAGTGCCGTATGGCA TGGATTATATCCTGGGTATATCATATTCTTTGTACAGTCCGCTTTGATGA TTGCTGGATCAAGAGTCCTTTACAGATGGCAGCAAGCTGCTAAAGGTTCT ATGTTTGAGAAGATACTGGTAGCAATGAATTTTGCATACACACTGCTGGT TCTAAATTACTCCGCTGTTGGGTTCATGGTATTAAGCCTGCATGAAACTC TTACTGCTTATGGAAGTGTATACTATGTTGGAACAATTATACCAATTGCT CTCATCCTGCTCAGTAAAGTAATTAAGCCTCCAAGACCCTGCACATCTAA AG - The partial amino acid sequence of LPCAT from Capsicum annuum
-
(SEQ ID NO: 13) HEKRLGYQYMAGFTARWKYYFIWSISEAAIIISGLGFSGWTD SSPPKPRWDRAKNVDVLGVELAKSSVQLPAVWNIQVSTWLRHYVYERLIQ KGRKPGFFQLLATQTVSAVWHGLYPGYIIFFVQSALMIAGSRVLYRWQQA AKGSMFEKILVAMNFAYTLLVLNYSAVGFMVLSLHETLTAYGSVYYVGTI IPIALILLSKVIKPPRPCTSK - (4) The partial nucleotide sequence of LPCAT from castor bean
-
(SEQ ID NO: 14) ATTCATTTATACTTGGTGCCCCACTATCCTTTATCCCGGTTC ACTGATCCTGTGTACCAAGAATGGGGCTTCTGGAAACGATTAACTTATCA GTATATGTCAGGTTTAACAGCACGTTGGAAATACTACTTCATCTGGTCAA TTTCCGAGGCCTCCATTATTATCTCTGGATTGGGTTTCAGTGGTTGGACA GATACTTCTCCACCAAAGCCACAGTGGGATCGCGCTAGAAACGTTGACAT TCTAGGTGTTGAGTTTGCAAAGAGTGCAGCTGAGTTGCCACTTGTGTGGA ACATACAAGTCAGCACATGGCTTCGCCACTATGTTTATGATCGACTTGTT CCAAAGGGAAAGAAAGCTGGTTTCGTTCAGTTGTTGGCCACTCAGACTAC CAGTGCTGTTTGGCATGGATTATATCCTGGATACATTATATTCTTTGTCC AGTCAGCATTAATGATTGCAGGTTCGAAAGTCATATACAGATGGCAACAA GCTATACCTTCAAATAAGGCTCTTGAAAAGAAGATACTAGTGTTTATGAA CTTTGCTTACACAGTTTTGGTTCTAAATTACTCCTGTGTTGGTTTCATGG TTTTAAGCTTGCATGAAACGATTGCAGCATATGGAAGTGTATATTTTATT GGCACCATAGTGCCCGTTGTATTTTTCCTCCTTGGCTTCATTATTAAACC AGCAAGGCCTTCCAGGTCTAAACACGGAACGATGAGTGAGGTAGAAACTG TTTTTCTTCTCCTT - The partial amino acid sequence of LPCAT from castor bean
-
(SEQ ID NO: 15) IHLYLVPHYPLSRFTDPVYQEWGFWKRLTYQYMSGLTARWKY YFIWSISEASIIISGLGFSGWTDTSPPKPQWDRARNVDILGVEFAKSAAE LPLVWNIQVSTWLRHYVYDRLVPKGKKAGFLQLLATQTTSAVWHGLYPGY IIFFVQSALMIAGSKVIYRWQQAIPSNKALEKKILVFMNFAYTVLVLNYS CVGFMVLSLHETIAAYGSVYFIGTIVPVVFFLLGFIIKPARPSRSKHGTM SEVETVFLLL - (5) The partial nucleotide sequence of LPCAT from grapevine
-
(SEQ ID NO: 16) CTCGTCCAATCTCCACTTCCTCGTTCCCATGCTTCTTGGCTA CGCGGCTATGCTTCTCTGTCGCCGTCGATGCGGTGTGATCACCTTTTTCT TGGGATTCGGCTACCTCATTGGCTGCCATGTATACTACATGAGTGGGGAT GCATGGAAGGAAGGGGGTATTGATGCTACTGGAGCTCTAATGGTTTTAAC ATTGAAAGTCATTTCATGTGCAATGAATTATAATGATGGATTGTTAAAAG AAGACGGTTTGCGTGAGGCACAGAAGAAAAACCGATTGCTTAAGTTACCA TCATTGATCGAGTACTTTGGTTATTGTCTCTGCTGTGGAAGTCACTTTGC TGGACCAGTTTATGAAATAAAGGATTATCTTGAATGGACAGAAAGAAAAG GGATTTGGGCCAAATCAGAGAAAGGGCCACCACCATCACCTTATGGGGCA ACGATTCGAGCTCTTATCCAAGCTGCCTTTTGCATGGGCTTGTATGTGTA TCTAGTACCCCATTTTCCCTTGACCATATTTACTGATCCTGTATATCAAG AATGGGGCTTCTGGAAACGGTTGGGATACCAATATATGTGTGGCTTTACA GCACGCTGGAAATACTATTTCATCTGGTCAATCTCTGAGGCAGCTGTCAT TATTTCTGGCCTGGGATTCAGTGGGTGGACAGAATCTTCCCCACCAAAAC CAAAATGGGACCGTGCAAAGAATGTTGACATTTTAGGTGTTGAGTTGGCA AAGAGTGCAGTAACACTGCCACTTGTTTGGAACATACAAGTCAGCACCTG GCTACGTTATTATGTTTATGAGAGGCTCATTCAAAATGGGAAGAAACCTG GTTTCTTCCAGTTGCTGGCTACACAAACTGTCAGTGCTGTTTGGCATGGA TTATATCCTGGATACATCATATTCTTTGTTCAGTCTGCACTGATG - The partial amino acid sequence of LPCAT from grapevine
-
(SEQ ID NO: 17) SSNLHFLVPMLLGYAAMLLCRRRCGVITFFLGFGYLIGCHVYYMSGDAWK EGGIDATGALMVLTLKVISCAMNYNDGLLKEDGLREAQKKNRLLKLPSLI EYFGYCLCCGSHFAGPVYEIKDYLEWTERKGIWAKSEKGPPPSPYGATIR ALIQAAFCMGLYVYLVPHFPLTIFTDPVYQEWGFWKRLGYQYMCGFTARW KYYFIWSISEAAVIISGLGFSGWTESSPPKPKWDRAKNVDILGVELAKSA VTLPLVWNIQVSTWLRYYVYERLIQNGKKPGFFQLLATQTVSAVWHGLYP GYIIFFVQSALM - (6) The partial nucleotide sequence of LPCAT from maize
-
(SEQ ID NO: 18) CATTTCGTGTCTCATAAACTACAGTGATGGTATCTTGAAGGAAGAGGGTT TACGCGATGCTCAGATTAAACACCGATTGACTAAGCTTCCTTCTCTAATT GAATATTTTGGGTACTGTCTCTGTTGTGGGAGCCACTTTGCTGGACCGGT ATATGAGATGAAAGATTATCTTGAATGGACTGAAAGGAAAGGAATATGGG CTAGCCCAACTCCTTCGCCATTGTTACCTACTTTGCGTGCTCTAGTTCAG GCTGGTATATGCATGGGGTTATATTTATACCTGTCACCTAAATTTCCACT CTCACGGTTTAGTGAGCCCCTATATTATGAATGGGGTTTTTGGCACCGAC TCTTCTATCAGTACATGTCAGGCTTTACCGGTCGTTGGAAATATTACTTT ATATGGTCAATTTCAGAAGCCTCAATTATCATATCTGGTCTAGGCTTTAC TGGTTGGTCGGAATCTTCTCCCCCAAAAGCCAAATGGGATCGTGCAAAAA ATGTTGATGTATTAGGTGTTGAATTAGCTGGAAGTTCAGTTGAATTGCCC CTTGTGTGGAATATTCAAGTGAGCACATGGCTACGATACTATGTCTATGA GAGGTTAATTCAGAAAGGAAAGAAACCAGGTTTCCTTCAATTGTTGGGTA CACAGACAGTCAGTGCCATCTGGCATGGACTATATCCTGGATATATCATA TTCTTTTTTTCATCAGCATTGATGATNAATGGTTCACGAGTTATATACAG ATGGCAGCAAGCAGCGAGCAGTTCATTCCTGAGCGGTATCCTGGCCCTTC TAATTTTGCTATACATTGCTGGGGCTTACTACTCCTGCATCGGGGTCCAG GTACTGAGCTTCAA - The partial amino acid sequence of LPCAT from maize
-
(SEQ ID NO: 19) ISCLINYSDGILKEEGLRDAQIKHRLTKLPSLIEYFGYCLCCGSHFAGPV YEMKDYLEWTERKGIWASPTPSPLLPTLRALVQAGICMGLYLYLSPKFPL SRFSEPLYYEWGFWHRLFYQYMSGFTARWKYYFIWSISEASIIISGLGFT GWSESSPPKAKWDRAKNVDVLGVELAGSSVQLPLVWNIQVSTWLRYYVYE RLIQKGKKPGFLQLLGTQTVSAIWHGLYPGYIIFFFSSALMXNGSRVIYR WQQAASSSFLSGILALLILLYIAGAYYSCIGVQVLSF - (7) The partial nucleotide sequence of LPCAT from peach
-
(SEQ ID NO: 20) AAATATTATTTCATCTGGTCAATTTCAGAGGCTTCTATCATTCTTTCTGG TTTGGGTTTCACTGGCTGGACAGAATCTTCACCACCAAAGCCGCGATGGG ATCGTGCAAAAAATGTTGATATTCTAGGCGTTGAGTTTGCAAAGAGTTCA GTTCAGTTACCACTTGTTTGGAACATACAAGTCAGCACCTGGCTACGTCA TTATGTTTATGAAAGGCTTGTTAAACCTGGCAAGAAGGCTGGTTTCTTCC AGTTGCTGACTACACAGACCGTCAGTGCGGTTTGGCATGGACTCTATCCT GGGTACATCATATTCTTTGTTCAGTCAGCATTGATGATTGCTGGTTCAAG AGTGATTTACAGATGGCAACAAGCTGTACCTCAAAACATGGATGCTGTTA AGAACATACTGGTGTTCATAAACTTTGCTTACACTCTCTTGGTTCTGAAC TACTCCTGCGTTGGTTTCATTGTATTAAGCCTTCGTGAAACACTTGCCTC ATATGGGAGCGTGCATTTCATCGGAACCATTCTTCCGATAGCATTGATAC TACTGAGTTACGTAATAAAACCTCCAAGGCCTGCAAGATCAAAGGCTCGG AAGGAAGAGTGAGGTTGTCANCCGCAACAGCATTTTTAACG - The partial amino acid sequence of LPCAT from peach
-
(SEQ ID NO: 21) KYYFIWSISEASIILSGLGFTGWTESSPPKPRWDRAKNVDILGVEFAKSS VQLPLVWNIQVSTWLRHYVYERLVKPGKKAGFFQLLTTQTVSAVWHGLYP GYIIFFVQSALMIAGSRVIYRWQQAVPQNMDAVKNILVFINFAYTLLVLN YSCVGFIVLSLRETLASYGSVHFIGTILPIALILLSYVIKPPRPARSKAR KEE - (8) The full-length or partial amino acid sequence of LPCAT from rice
-
Sequence 1 (accession number Os02g0676000 (SEQ ID NO: 22)) MGLEMEGMAAAIGVSVPVLRFLLCFAATIPTGLMWRAVPGAAGRHLYAGL TGAALSYLSFGATSNLLFVVPMAFGYLAMLLCRRLAGLVTFLGAFGFLIA CHMYYMSGDAWKEGGIDATGALMVLTLKIISCAINYSDGMLKEEGLRDAQ KKYRLAKLPSLIEYFGYCLCCGSHFAGPVYEMKDYLEYTERKGLWASPTP SPLLPTLRALVQAGACMGLYLYLSPQFPLSRFSEPLYYEWGFWHRLFYQY MSGFTARWKYYFIWSLSEAAIIISGLGFSGWSDSSPPKAKWDRAKNVDVL GVELATSAVQLPLMWNIQVSTWLRYYVYERLVQKGKKPGFLQLLGTQTVS AVWHGLYPGYIIFFVQSALMINGSKVIYRWQQAVSNPVFHAILVFVNFSY TLMVLNYSCIGFQVLSFKETLASYQSVYYIGTIVPIVVVLLGYVIKPARP VKPKARKAE Sequence 2 (accession number EAY87053 (SEQ ID NO: 23)) MYYMSGDAWKEGGIDATGALMVLTLKIISCAINYSDGMLKEEGLRDAQKK YRLAKLPSLIEYFGYCLCCGSHFAGPVYEMKDYLEYTERKGLWASPTPSP LLPTLRALVQAGACMGLYLYLSPQFPLSRFSEPLYYEWGFWHRLFYQYMS GFTARWKYYFIWSLSEAAIIISGLGFSGWSDSSPPKAKWDRAKNVDVLGV ELATSAVQLPLMWNIQVSTWLRYYVYERLVQKGKKPGFLQLLGTQTVSAV WHGLYPGYIIFFVQSALMINGSKVIYRWQQAVSNPVFHAILVFVNFSYTL MVLNYSCIGFQFVFTMLYTLRFLQVLSFKETLASYQSVYYIGTIVPIVVV LLGYVIKPARPVKPKARKAE - (9) The partial nucleotide sequence of LPCAT from snapdragon
-
(SEQ ID NO: 24) GCATTAATTACAACGATGGATTACTTAAAAAGGAAGATCTACGTGAGCCA CAAAAGAAAAACCGCTTGCTCAAGATGCCATCATTACTTGAGTACATTGG TTACTGTTTGTGTTGTGGAAGTCACTTTGCTGGTCCTGTGTATGAAATGA AAGATTATCTTGAATGGACTGAGAGGAAAGGGATCTGGCAACATACAACC AAGGGACCGAAACCTTCTCCGTATTGGGCGACTCTCAGGGCTATTTTGCA AGCTGCCATCTGTATGGGCTTGTATCTATATCTTGTACCACATTACCCAC TTTCCAGATTCACGGAGCCAGAATACCAAGAGTATGGGTTCTGGAAACGG TTAAGTTACCAGTACATGTCAGGCTTCACCGCTCGTTGGAAGTACTATTT CATTTGGTCTATCTCAGAAGCTTCCATAATTATTTCTGGCCTGGGGTTCA GTGGCTGGACAGATTCTGATCCACCCAAAGCACTGTGGGATCGTGCAAAA AATGTTGATGTATTAGGTGTTGAGTTGGCAAAGAGTTCTGTGCAGTTACC ACTTGTATGGAATATTCAAGTTAGCACCTGGCTTAAACACTATGTCTATG AGAGGCTGGTTCAGAAAGGTAAGAAACCAGGCTTCTTCCAGTTGCTGGCT ACCCAGACCGTGAGTGCAGTGTGGCATGGATTGTACCCTGGGTACATCAT ATTCTTT - The partial amino acid sequence of LPCAT from snapdragon
-
(SEQ ID NO: 25) INYNDGLLKKEDLREPQKKNRLLKMPSLLEYIGYCLCCGSHFAGPVYEMK DYLEWTERKGIWQHTTKGPKPSPYWATLRAILQAAICMGLYLYLVPHYPL SRFTEPEYQEYGFWKRLSYQYMSGFTARWKYYFIWSISEASIIISGLGFS GWTDSDPPKALWDRAKNVDVLGVELAKSSVQLPLVWNIQVSTWLKHYVYE RLVQKGKKPGFFQLLATQTVSAVWHGLYPGYIIFF - (10) The partial nucleotide sequence of LPCAT from sorghum
-
(SEQ ID NO: 26) GCACGAGGCTCTCACGGTTTAGTGAGCCCTTATATTATGAATGGGGTTTC TGGCACCGACTCTTCTATCAGTACATGTCAGGCTTCACTGCTCGTTGGAA ATATTACTTTATATGGTCAATTTCAGAAGCCTCAATTATCATATCTGGTC TGGGCTTTACTGGTTGGTCAGAATCTTCTCCCCCGAAAGCCAAATGGGAT CGTGCGAAAAATGTTGATGTATTAGGTGTTGAATTAGCTGGAAGTGCAGT TCAAATTCCCCTTGTGTGGAATATTCAAGTGAGCACATGGTTACGATACT ATGTCTATGAGAGGCTAATTCAGAAAGGAAAGAAACCAGGTTTCCTTCAG TTGTTGGGTACACAGACAGTCAGCGCCATCTGGCATGGACTGTATCCTGG ATATATCATATTCTTTGTTCAGTCAGCATTGATGATAAATGGTTCACGAG TTATATACAGATGGCAGCAAGCAGTGAGCAGTTCATTCCTCCGCGGTATC CTGGCTTTTCTAAATTTTGCTTATACATTGCTGGTGCTTAACTACTCCTG CATCGGGTTCCTGGTACTGAGCTTCAAAGAAACCTTGGCGTCCTACCAGA GCGTATATTATGTTGGCACAATTGTTCCCATTGTGTTTCTCCTGCTGGGC AAT - The partial amino acid sequence of LPCAT from sorghum
-
(SEQ ID NO: 27) TRLSRFSEPLYYEWGFWHRLFYQYMSGFTARWKYYFIWSISEASIIISGL GFTGWSESSPPKAKWDRAKNVDVLGVELAGSAVQIPLVWNIQVSTWLRYY VYERLIQKGKKPGFLQLLGTQTVSAIWHGLYPGYIIFFVQSALMINGSRV IYRWQQAVSSSFLRGILAFLNFAYTLLVLNYSGIGFLVLSFKETLASYQS VYYVGTIVPIVFLLLGN - (11) The partial nucleotide sequence of LPCAT from sunflower
-
(SEQ ID NO: 28) GAAAACCGCATACTTAAGTTGCCATCTTTAATCGAGTATGTGGGATATTG CTTATGCTGCGGAAGTCACTTTGCTGGTCCGGTTTACGAAATCAAAGATT ATTTGGATTGGACCGAAAGAAAGGGGATTTGGACAAAGTCCGAGAAAGGC ACACCATCACCATTTTTGCCAACACTACGAGCGATTCTCCAAGCGGGTTT CTGTATGGGTTTGTATTTATATCTATCGCCTTCGTATCCGCTTTCAAGAT TCAGTGAGCCGATATATCAAGAATGGGGATTTGTGAAACGTCTGACCGTC CAATACATGTCGGGCTTCACCGCGCGTTGGAAATACTATTTCATTTGGTC TATCTCAGAAGCTTCTATCATTATTTCGGGCTTCGGTTTCAGTGGCTGGA CTGATTCTTCTCCACCAAAAGCCCGATGGGACCGTGCGAAAAACGTTGAC GTTTTGGGTGTTGAGTTTGCAAAGAGTTCAGTTGAGTTACCACTCGTGTG GAATATCCAAGTCAGCACATGGCTTCGTCACTATGTTTATGACAGACTTG TTCAAAAGGGAAAGAAGCCTGGCTTTTTCCAATTGTTAGCAACACAGACT GTTAGCGCTGTCTGGCATGGATTATATCCTGGGTACTTGATATTCTTTGT TCAATCTGCTTTGATGATTTCCGGGTCAAGAGCCATTTACAGATGGCAGC AGGCGGTTCCGCCAACCGTTAAGAAGTTTTTGATGCTCATGAACTTTGCT TACACGCTTCTTGTTCTTAACTACTCCTGCATAGGTTTTATGGTATTAAG CCTACACGAAACACTGGCTGCATACGGAAGTGTATACTACGTTGGAAACA TCATTCCAGTGGCGT - The partial amino acid sequence of LPCAT from sunflower
-
(SEQ ID NO: 29) ENRILKLPSLIEYVGYCLCCGSHFAGPVYEIKDYLDWTERK GIWTKSEKGTPSPFLPTLRAILQAGFCMGLYLYLSPSYPLSRFSEPIYQE WGFVKRLTVQYMSGFTARWKYYFIWSISEASIIISGFGFSGWTDSSPPKA RWDRAKNVDVLGVEFAKSSVELPLVWNIQVSTWLRHYVYDRLVQKGKKPG FFQLLATQTVSAVWHGLYPGYLIFFVQSALMISGSRAIYRWQQAVPPTVK KFLMLMNFAYTLLVLNYSCIGFMVLSLHETLAAYGSVYYVGNIIPVA - (12) The partial nucleotide sequence of LPCAT from tomato
-
(SEQ ID NO: 30) GGTATGGGGTTGTATCTCTATCTGGTGCCTCAGTTCCCACTTTCCAGGTT CACTGAGTCAGTATACCACGAATGGGGTTTCTTCAAACGACTGGGTTACC AATATATGGCTGGCTTTACTGCCCGGTGGAAATATTATTTTATTTGGTCA ATCTCTGAAGCTTCTATAATCATATCTGGACTGGGTTTCAGTGGTTGGAC AAACTCTTCTCCGCCAAAACCACGTTGGGACCGAGCAAAAAATGTTGATG TATTGGGTGTTGAGTTAGCAAAGAGCTCGGTTCAGTTACCACTAGTATGG AACATTCAAGTCAGCACATGGCTGCGGCATTATGTGTATGAAAGGCTCGT ACAGAAGGGAAGGAAGCCTGGTTTCTTCCAGTTGCTGGCTACCCAAACTG TCAGTGCCGTTTGGCATGGATTATATCCTGGATACATCATATTCTTTGTT CAGTCCGCTTTGATGATTGCTGGATCAAGAGTCATTTACAGATGGCAGCA AGCTACAAAAGGTACTATGTTTGAGAAGATACTGATAGCAATGAATTTTG CATACACACTGCTGGTTCTAAACTACTCCGCTGTTGGATTCATGGTATTA AGTCTGCATGAAACTCTTACTGCTTATGGAAGTGTATACTATATTGGAAC AATTGTACCAATTCTTCTCATCCTGCTTAGTAAAGTGATTAAGCCTCCAA GACCTGCGACGTCTAAAGCTAGGAAAGCAGAGTAAATCCAAGTCAGTT - The partial amino acid sequence of LPCAT from tomato
-
(SEQ ID NO: 31) GMGLYLYLVPQFPLSRFTESVYHEWGFFKRLGYQYMAG FTARWKYYFIWSISEASIIISGLGFSGWTNSSPPKPRWDRAKNVDVLGVE LAKSSVQLPLVWNIQVSTWLRHYVYERLVQKGRKPGFFQLLATQTVSAVW HGLYPGYIIFFVQSALMIAGSRVIYRWQQATKGTMFEKILIAMNFAYTLL VLNYSAVGFMVLSLHETLTAYGSVYYIGTIVPILLILLSKVIKPPRPATS KARKAE - (13) The partial nucleotide sequence of LPCAT from Vaccinium corymbosum
-
(SEQ ID NO:32) GGGGTTGGGTTACCAGTACATGGCTGGCTTTACAGCACGGTGGAAGTATT ATTTCATTTGGTCAATCTCAGAAGCTTCCATCATCATTTCTGGCCTGGGG TTCAGTGGTTGGACAGATTCTTCTCCACCAAAACCAAAATGGGACCGTGC AAAGAATGTAGATATTTTGCGGGTTGAGTTTGCAAAGACTGCAGCTCAGA TTCCACTTGCATGGAACATTCAAGTCAGCACCTGGCTACGCCATTATGTT TATGAGAGGCTCGTGCAGAAGGGAAAGAAACCTGGTTTCTTTCAGTTGTT GGCTACCCAGACTGTCAGTGCTGTTTGGCATGGTTTATATCCTGGATACA TCATATTCTTTGTGCAGTCAGCATTGATGATTGCTGGTTCAAGAGTTATT TATAGATGGCAGCAAGCTGTTCCTCCTAAAATGGATCTGGTGAAGAAAGT ATTCGTACTTTTAAACTTTGCTTACACAGTTCTGGTGTTGAACTACTCCT CTGTCGGTTTCATGGTACTAAGCCTACATGAAACAATTGTTGCATACGGG AGCGTGTATTCGTTGGAACCATTGTTCCCATACTTGTAATCCTCCTTGGT TACGTAATT - The partial amino acid sequence of LPCAT from Vaccinium corymbosum
-
(SEQ ID NO: 33) GLGYQYMAGFTARWKYYFIWSISEASIIISGLGFSGWTDSSPPKPKWDRA KNVDILRVEFAKTAAQIPLAWNIQVSTWLRHYVYERLVQKGKKPGFFQLL ATQTVSAVWHGLYPGYIIFFVQSALMIAGSRVIYRWQQAVPPKMDLVKKV FVLLNFAYTVLVLNYSSVGFMYLSLHETIVAYGSVYSLEPLFPYL - (14) The partial nucleotide sequence of LPCAT from wheat
-
(SEQ ID NO: 34) CACTTTGCTGGACCAGTATATGAGATGAAAGATTATCTTGAATGGACTGA AAGGAAAGGAATATGGGCCGGCTCAACTCCTTCACCATTATTACCTACTC TGCGTGCTCTAGTTCAGGCTGGAATATGCATGGGGTTATATTTGTATCTG TCACCTATGTTTCCCCATTCATAATATAGAGGTTCACTAAATCGTGAAAG GGGTTTCTGGCACCGGCTCTTCTTTCAATACATGTCAGGATTTACTGCTC GATGGAAATACTACTTTATATGGTCAGTCTCAGAAGCTGCAATTATTATA TCTGGCCTGGGTTTCACTGGTTGGTCTGATTCTTCTCCCCCAAAAGCCAA ATGGGACCGTGCTATAAATGTTGATATTCTGGGCGTCGAGCTAGCTGGAA GTGCAGCTCAATTGCCACTTAAGTGGAATATTCAAGTGAGCACATGGCTA AGATACTATGTGTATGAGAGGTTAATTCAGAAAGGGAAGAAGCCTGGTTT CCTTCAGTTGTTGGGTACACAGACAGTCAGTGCTATCTGGCATGGACTGT ATCCAGGATATATGTTTTTCTTTGTTCAGTCAGCGTTGATGATAAATGGT TCAAAAGTTATATACAGATGGCAACAAGCTGTGAGCAATCCAGGCCTCCG CACTATCCTGTCTTTACTAAATTGTGCATACACCATGATGGTGCTTAACT ACTCATGCATTGGCTTCCAGGTACTGAGCTTCCAGGAGACCTTAGCATCC TACAAGAGCGTGTATTATGTCGGCACAATCGTTCCTATTCTATGTGTCTT GCTGGGCTATGTCGTCAAGCCCACGAGACCTGTGAAGCCGA - The partial amino acid sequence of LPCAT from wheat
-
(SEQ ID NO: 35) HFAGPVYEMKDYLEWTERKGIWAGSTPSPLLPTLRALVQAGICMGLYLYL SPMFPHS*YRGSLNRERGFWHRLFFQYMSGFTARWKYYFIWSVSEAAIII SGLGFTGWSDSSPPKAKWDRAINVDILGVELAGSAAQLPLKWNIQVSTWL RYYVYERLIQKGKKPGFLQLLGTQTVSAIWHGLYPGYMFFFVQSALMING SKVIYRWQQAVSNPGLRTILSLLNCAYTMMVLNYSCIGFQVLSFQETLAS YKSVYYVGTIVPILCVLLGYVVKPTRPVKP - (15) The amino acid sequences of LPCAT from A. thaliana
-
Sequence (accession number At1g12640 (SEQ ID NO: 36)) MDMSSMAGSIGVSVAVLRFLLCFVATIPVSFACRIVPSRL GKHLYAAASGAFLSYLSFGFSSNLHFLVPMTIGYASMAIYRPKCGIITFF LGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVISCSMNYNDGMLK EEGLREAQKKNRLIQMPSLIEYFGYCLCCGSHFAGPVYEMKDYLEWTEGK GIWDTTEKRKKPSPYGATIRAILQAAICMALYLYLVPQYPLTRFTEPVYQ EWGFLRKFSYQYMAGFTARWKYYFIWSISEASIIISGLGFSGWTDDASPK PKWDRAKNVDILGVELAKSAVQIPLVWNIQVSTWLRHYVYERLVQNGKKA GFFQLLATQTVSAVWHGLYPGYMMFFVQSALMIAGSRVIYRWQQAISPKM AMLRNIMVFINFLYTVLVLNYSAVGFMVLSLHETLTAYGSVYYIGTIIPV GLILLSYVVPAKPSRPKPRKEE Sequence (accession number At1g63050 (SEQ ID NO: 37)) MELLDMNSMAASIGVSVAVLRFLLCFVATIPISFLWRFIP SRLGKHIYSAASGAFLSYLSFGFSSNLHFLVPMTIGYASMAIYRPLSGFI TFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVISCSINYNDG MLKEEGLREAQKKNRLIQMPSLIEYFGYCLCCGSHFAGPVFEMKDYLEWT EEKGIWAVSEKGKRPSPYGAMIRAVFQAAICMALYLYLVPQFPLTRFTEP VYQEWGFLKRFGYQYMAGFTARWKYYFIWSISEASIIISGLGFSGWTDET QTKAKWDRAKNVDILGVELAKSAVQIPLFWNIQVSTWLRHYVYERIVKPG KKAGFFQLLATQTVSAVWHGLYPGYIIFFVQSALMIDGSKAIYRWQQAIP PKMAMLRNVLVLINFLYTVVVLNYSSVGFMVLSLHETLVAFKSVYYIGTV IPIAVLLLSYLVPVKPVRPKTRKEE - The amino acid sequences of LCPAT from fruit fly, human, mouse, S. pombe and Aspergillus oryzae
- (1) The amino acid sequences of LCPAT from fruit fly
-
Sequence 1 (accession number AAR99097 (SEQ ID NO: 38)) MLEPPKFIENDCYNGSRTFTWLADMVGLSVDLVNFLICQISALFLASLFR SMLHPSKVSSKLRHTFALSIGLAFGYFCFGQQAIHIAGLPAICYIVIRTQ DPRIVQRAVLLVAMSYLLCVHLMRQLYDYGSYALDITGPLMIITQKVTSL AFSIHDGFVRGDEELTKAQQYHAIRKMPSALEYFSYVWHFQSILAGPLVF YKDYIEFVEGYNLLSTPPGNGNLDSSKREVVLEPSPTKAVIRKVVGSLVC AFIFMKFVKIYPVKDMKEDDFMNNTSMVYKYWYAMMATTCIRFKYYHAWL LADAICNNSGLGFTGYDKDGNSKWDLISNINVLSFEFSTNMRDAINNWNC GTNRWLRTLVYERVPQQYGTLLTFALSAVWHGFYPGYYLTFATGAVVVTA ARTGRRLFRHRFQSTQVTRMFYDILTCLITRVVLGYATFPFVLLEFMGSI KLYLRFYLCLHIISLVTIFILPKFIRGERRLRTSNGNGNVRLSGSGNTKD AVTTSVESTAALTAGNDLNEDKEEDKHAQCKVHTPTQQQPAAGPHKTTVE QPTEQPNNVNLRSRPQQQQPHLEKKAMPPTCARDAVSVPHDQCEMDQLSS KLKEKIEAETKNIEEFIDKTVTETVSGIVEFKNDLMRDIEFPKLKLPGSN GAISLDSSNGGGLRKRNISSVHDNGTDPGHATADLHPPLEENGAAFLKKE IEVINAVVQQAVPAVLSNGHAK Sequence 2 (accession number AAO41223 (SEQ ID NO: 39)) MAEFEEDLPHNGLMDGIASGVGVPVEALRLLLTILAGYPV AALYQKFISVIADKTVHHMFFAGCGAGLCYFNYGLDTYHSLIAILTTYFL VLLLRKKTQIFLAINFVFHMSYLLLGYFYTSSNDYDILWTMPHCILVLRM IGYGFDITDGLKEESELSKDQKETALKKPPSLLELLAFSYFPSGFLVGPQ FPFRRYKAFVDGEFRQHEGNVEAGVRRFGAGAFYLIVCQVGLRYLPDSYF LTPEFAQVSFVKRIYLLGFWAKFSLYKYISCWLLTEGALICIGLTYKGED KNGQPDWSGCSNVKLKLLETGNTMEHYVQSFNVNTNQWVGQYIYKRLKFL NNRTISYGAALGFLAVWHGYHSGYYMTFLMEYMVVSTEKQITRFYTKVVL PQWGHILNNSDIYKLLYFITLKSYNVVYMGWCLTAFVFLKYERWIVVYGA VSYYGFTFLVLWAAFYHTFNHFFRSSSRKLAGEDQKLQDSNTDKLVEEKK PEDKKSE - (2) The amino acid sequences of LCPAT from human
-
Sequence 1 (accession number EAX01013 (SEQ ID NO: 40)) MKCCFHHIIPRVNFVVCQLFALLAAIWFRTYLHSSKTSSFIRHVVATLLG LYLALFCFGWYALHFLVQSGISYCIMIIIGVENMHNYCFVFALGYLTVCQ VTRVYIFDYGQYSADFSGPMMIITQKITSLACEIHDGMFRKDEELTSSQR DLAVRRMPSLLEYLSYNCNFMGILAGPLCSYKDYITFIEGRSYHITQSGE NGKEETQYERTEPSPNTAVVQKLLVCGLSLLFHLTICTTLPVEYNIDEHF QATASWPTKIIYLYISLLAARPKYYFAWTLADAINNAAGFGFRGYDENGA ARWDLISNLRIQQIEMSTSFKMFLDNWNIQTALWLKRVCYERTSFSPTIQ TFILSAIWHGVYPGYYLTFLTGVLMTLAARAMRNNFRHYFIEPSQLKLFY DVITWIVTQVAISYTVVPFVLLSIKPSLTFYSSWYYCLHILGILVLLLLP VKKTQRRKNTHENIQLSQSKKFDEGENSLGQNSFSTTNNVCNQNQEIASR HSSLKQ Sequence 2 (accession number Q6ZWT7 (SEQ ID NO: 41)) MATTSTTGSTLLQPLSNAVQLPIDQVNFVVCQLFALLAAIWFRTYLHSSK TSSFIRHVVATLLGLYLALFCFGWYALHFLVQSGISYCIMIIIGVENMHN YCFVFALGYLTVCQVTRVYIFDYGQYSADFSGPMMIITQKITSLACEIHD GMFRKDEELTSSQRDLAVRRMPSLLEYLSYNCNFMGILAGPLCSYKDYIT FIEGRSYHITQSGENGKEETQYERTEPSPNTAVVQKLLVCGLSLLFHLTI CTTLPVEYNIDEHFQATASWPTKIIYLYISLLAARPKYYFAWTLADAINN AAGFGFRGYDENGAARWDLISNLRIQQIEMSTSFKMFLDNWNIQTALWLK RVCYERTSFSPTIQTFILSAIWHGVYPGYYLTFLTGVLMTLAARAMRNNF RHYFIEPSQLKLFYDVITWIVTQVAISYTVVPFVLLSIKPSLTFYSSWYY CLHILGILVLLLLPVKKTQRRKNTHENIQLSQSRKFDEGENSLGQNSFST TNNVCNQNQEIASRHSSLKQ Sequence 3 (accession number Q6P1A2 (SEQ ID NO: 85)) MASSAEGDEGTVVALAGVLQSGFQELSLNKLATSLGASEQ ALRLIISIFLGYPFALFYRHYLFYKETYLIHLFHTFTGLSIAYFNFGNQL YHSLLCIVLQFLILRLMGRTITAVLTTFCFQMAYLLAGYYYTATGNYDIK WTMPHCVLTLKLIGLAVDYFDGGKDQNSLSSEQQKYAIRGVPSLLEVAGF SYFYGAFLVGPQFSMNHYMKLVQGELIDIPGKIPNSIIPALKRLSLGLFY LVGYTLLSPHITEDYLLTEDYDNHPFWFRCMYMLIWGKFVLYKYVTCWLV TEGVCILTGLGFNGFEEKGKAKWDACANMKVWLFETNPRFTGTIASFNIN TNAWVARYIFKRLKFLGNKELSQGLSLLFLALWHGLHSGYLVCFQMEFLI VIVERQAARLIQESPTLSKLAAITVLQPFYYLVQQTIHWLFMGYSMTAFC LFTWDKWLKVYKSIYFLGHIFFLSLLFILPYIHKAMVPRKEKLKKME Sequence 4 (accession number Q6ZNC8 (SEQ ID NO: 86)) MAAEPQPSSLSYRTTGSTYLHPLSELLGIPLDQVNFVVCQ LVALFAAFWFRIYLRPGTTSSDVRHAVATIFGIYFVIFCFGWYSVHLFVL VLMCYAIMVTASVSNIHRYSFFVAMGYLTICHISRIYIFHYGILTTDFSG PLMIVTQKITTLAFQVHDGLGRRAEDLSAEQHRLAIKVKPSFLEYLSYLL NFMSVIAGPCNNFKDYIAFIEGKHIHMKLLEVNWKRKGFHSLPEPSPTGA VIHKLGITLVSLLLFLTLTKTFPVTCLVDDWFVHKASFPARLCYLYVVMQ ASKPKYYFAWTLADAVNNAAGFGFSGVDKNGNFCWDLLSNLNIWKIETAT SFKMYLENWNIQTATWLKCVCYQRVPWYPTVLTFILSALWHGVYPGYYFT FLTGILVTLAARAVRNNYRHYFLSSRALKAVYDAGTWAVTQLAVSYTVAP FVMLAVEPTISLYKSMYFYLHIISLLIILFLPMKPQAHTQRRPQTLNSIN KRKTD Sequence 5 (accession number XP_001129292 (SEQ ID NO: 87)) MVMMMMMKVLLLLMKQRGAGLPAPAGVEPRPSSHHPKARV RLQGDESVRPRGCSQLWAFTRHSPRQRGFSARSLFWFVVLPAPTFVPNFP WRWLGGVPHIVPPAATPGPFVVCRLSQRGVGGRDIPGRRNRGVRGKDALP CSHPRSAPHDAGQPFSGDARHPRAEREVGRALLPATAPGEGGRMGVRVCM RSLPFAAAALGSGGRVPEQPPVRMDRVVERVRKAALWGAWRGAACPARAS ERPPERLMHGSGDGLLGFSFVRASLTVFGEEAGPSFLLAVLCAVVWGGRG EDVVSDVQACPAEQGFLLAEPSVFGVNFVVCQLFALLAAIWFRTYLHSSK TSSFIRHVVATLLGLYLALFCFGWYALHFLVQSGISYCIMIIIGVENMHN YCFVFALGYLTVCQVTRVYIFDYGQYSADFSGPMMIITQKITSLACEIHD GMFRKDEELTSSQRDLAVRRMPSLLEYLSYNCNFMGILAGPLCSYKDYIT FIEGRSYHITQSGENGKEETQYERTEPSPNTAVVQKLLVCGLSLLFHLTI CTTLPVEYNIDEHFQATASWPTKIIYLYISLLAARPKYYFAWTLADAINN AAGFGFRGYDENGAARWDLISNLRIQQIEMSTSFKMFLDNWNIQTALWLK RVCYERTSFSPTIQTFILSAIWHGVYPGYYLTFLTGVLMTLAARAMRNNF RHYFIEPSQLKLFYDVITWIVTQVAISYTVVPFVLLSIKPSLTFYSSWYY CLHILGILVLLLLPVKKTQRRKNTHENIQLSQSKKFDEGENSLGQNSFST TNNVCNQNQEIASRHSSLKQ Sequence 6 (accession number XP_001131044 (SEQ ID NO: 88)) MVNFVVCQLVALFAAFWFRIYLRPGTTSSDVRHAVATIFG IYFVIFCFGWYSVHLFVLVLMCYAIMVTASVSNIHRYSFFVAMGYLTICH ISRIYIFHYGILTTDFSGPLMIVTQKITTLAFQVHDGLGRRAEDLSAEQH RLAIKVKPSFLEYLSYLLNFMSVIAGPCNNFKDYIAFIEGKHIHMKLLEV NWKRKGFHSLPEPSPTGAVIHKLGITLVSLLLPLTLTKTFPVTCLVDDWF VHKASFPARLCYLYVVMQASKPKYYFAWTLADAVNNAAGFGFSGVDKNGN FCWDLLSNLNIWKIETATSFKMYLENWNIQTATWLKCVCYQRVPWYPTVL TFILSALWHGVYPGYYFTFLTGILVTLAARAVRNNYRHYFLSSRALKAVY DAGTWAVTQLAVSYTVAPFVMLAVEPTISLYKSMYFYLHIISLLIILFLP MKPQAHTQRRPQTLNSINKRKTD - (3) The amino acid sequences of LCPAT from mouse
-
Sequence 1 (accession number AAH24653 (SEQ ID NO: 42)) MAARPPASLSYRTTGSTCLHPLSQLLGIPLDQVNFVACQL FALSAAFWFRIYLHPGKASPEVRHTLATILGIYFVVFCFGWYAVHLFVLV LMCYGVMVSASVSNIHRYSFFVAMGYLTICHISRIYIFHYGILTTDFSGP LMIVTQKITTLAFQVHDGLGRKAEDLSAEQHRLAVKAKPSLLEYLSYHLN FMSVIAGPCNNFKDYVAFIEGRHIHMKLLEVNWTQRGFQSLPEPSPTGAV IQKLCVTLMSLLLFLTLSKSFPVTFLIDDWFVHKANFLSRLWYLYVVMQA AKPKYYFAWTLADAVHNAAGFGFNGMDTDGKSRWDLLSNLNIWKIETATS FKMYLENWNIQTSTWLKCVCYERVSWYPTVLTFLLSALWHGVYPGYYFTF LTGVPVTLAARAVRNNYRHHFLSSKARKIAYDVVTWAVTQLAVSYTAAPF VMLAVEPTISLYKSVFFFLHIICLLIILFLPIKPHQPQRQSRSPNSVKKK AD Sequence 2 (accession number AAH25429 (SEQ ID NO: 43)) MATTSTTGSTLLQPLSNAVQLPIDQVNFVVCQLFALLAAVWFRTYLHSSK TSSFIRHVVATLLGLYLAFFCFGWYALHFLVQSGISYCIMIIAGVESMQQ CCFVFALGYLSVCQITRVYIFDYGQYSADFSGPMMIITQKITSLAYEIHD GMFRKDEELTPSQRGLAVRRMPSLLEYVSYTCNFMGILAGPLCSYKDYIA FIEGRASHVAQPSENGKDEQHGKADPSPNAAVTEKLLVCGLSLLFHLTIS NMLPVEYNIDEHFQATASWPTKATYLYVSLLAARPKYYFAWTLADAINNA AGFGFRGYDKNGVARWDLISNLRIQQIEMSTSFKMFLDNWNIQTALWLKR VCYERATFSPTIQTFFLSAIWHGVYPGYYLTFLTGVLMTLAARAVRWRFR HYFLEPPQLKLFYDLITWVATQITISYTVVPFVLLSIKPSFTFYSSWYYC LHVCSILVLLLLPVKKSQRRTSTQENVHLSQAKKFDERDNPLGQNSFSTM NNVCNQNRDTGSRHSSLTQ - (4) The amino acid sequences of LCPAT from S. pombe
-
Sequence (accession number CAA16861 (SEQ ID NO: 44)) MAYLIDIPFEYFSSFLGVHPDQLKLLFCFLSAYPFAGILK RLPSAPWIRNLFSISIGLFYLIGVHHLYDGVLVLLFDALFTYFVAAFYRS SRMPWIIFWILGHTFSSHVIRYIYPSENTDITASQMVLCMKLTAFAWSVY DGRLPSSELSSYQKDRALRKIPNILYFLGYVFFFPSLLVGPAFDYVDYER FITLSMFKPLADPYEKQITPHSLEPALGRCWRGLLWLILFITGSSIYPLK FLLTPKFASSPILLKYGYVCITAFVARMKYYGAWELSDGACILSGIGYNG LDSSKHPRWDRVKNIDPIKFEFADNIKCALEAWNMNTNKWLRNYVYLRVA KKGKRPGFKSTLSTFTVSAMWHGVSAGYYLTFVSAAFIQTVAKYTRRHVR PFFLKPDMETPGPFKRVYDVIGMVATNLSLSYLIISFLLLNLKESIHVWK ELYFIVHIYILIALAVFNSPIRSKLDNKIRSRVNSYKLKSYEQSMKSTSD TDMLNMSVPKREDFENDE - (5) The amino acid sequences of LCPAT from Aspergillus oryzae
-
Sequence (accession number BAE61812 (SEQ ID NO: 45)) MLPYVDLLKLIASFLLSYPLAALLKRIPDAQPWKKNAFIIAVSLFYLVGL FDLWDGLRTLAYSAAGIYAIAYYIDGSLMPWIGFIFLMGHMSISHIYRQI IDDAHVTDITGAQMVLVMKLSSFCWNVHDGRLSQEQLSDPQKYAAIKDFP GILDYLGYVLFFPSLFAGPSFEYVDYRRWIDTTLFDVPPGTDPSKVPPTR KKRKIPRSGTPAAKKALAGLGWILAFLQLGSLYNQELVLDETFMQYSFVQ RVWILHMLGFTARLKYYGVWYLTEGACVLSGMGYNGFDPKSGKVFWNRLE NVDPWSLETAQNSHGYLGSWNKNTNHWLRNYVYLRVTPKGKKPGFRASLA TFVTSAFWHGFYPGYYLTFVLGSFIQTVAKNFRRHVRPFFLTPDGSRPTA YKKYYDIASYVVTQLTLSFAVMPFIFLSFGDSIKVWHSVYFYGIVGNIVS LAFFVSPARGLLLKKLKARNKPHVPRAVSSENIRQPTLGLPNDAIQEFDD AVQEIRAEIESRQRRGSLAHMPIGDELKAAVEDKIGRGH - Alignment of the LPCAT sequences from different species that reveals four conserved motifs unique for this novel type of LPCAT enzymes (
FIG. 2 ). They are not present in the previously identified glycerol-3-phosphate acyltransferases, lyso-phosphatidic acid acyltransferases, and known LPCAT enzymes. The sequences of these motifs are as follows. The letter “φ” represents a certain amino acid. - Motif 1: M V(I) L(I) φ φ K L(V,I) φ φ φ φ φ φ D G (or Met Xaa Xaa Xaa Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Gly (SEQ ID NO:46), wherein the Xaa at
position 2 can be Val or Ile, the Xaa atposition 3 can be Leu or Ile, the Xaa atposition 7 can be Leu, Val, or Ile, while the other Xaa's in the motif may be any amino acid. - Motif 2: R φ K Y Y φ φ W φ φ φ E(D) A(G) φ φ φ φ G φ G F(Y) φ G (or Arg Xaa Lys Tyr Tyr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Gly Xaa Xaa Gly (SEQ ID NO:47), wherein the Xaa at
position 12 is Glu or Asp, wherein the Xaa atposition 13 is Ala or Gly, wherein the Xaa atposition 22 is Phe or Tyr, while the other Xaa's in the motif may be any amino acid. - Motif 3: E φ φ φ φ φ φ φ φ φ φ φ W N φ φ T(V) φ φ W (or Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asn Xaa Xaa Xaa Xaa Xaa Trp (SEQ ID NO:48) wherein the Xaa at
position 17 is Thr or Val, while the other Xaa's in the motif may be any amino acid. - Motif 4: S A φ W H G φ φ P G Y φ φ T(F) F (or Ser Ala Xaa Trp His Gly Xaa Xaa Pro Gly Tyr Xaa Xaa Xaa Phe (SEQ ID NO:49) wherein Xaa at
position 14 is Thr or Phe, while the other Xaa's in the motif may be any amino acid. -
FIG. 3 depicts another alignment of LPCAT sequences from different plant species that revealed the following motifs: -
Motif 5 (SEQ ID NO: 81): E A φ φ I I(L) S G φ G F S(T) G W; Motif 6 (SEQ ID NO: 82): W D R A φ N V D; Motif 7 (SEQ ID NO: 83): W N I Q V S T W L φ φ Y V Y; and Motif 8 (SEQ ID NO: 84): G F φ Q L L φ T Q T φ S A φ W H G L Y P G Y. - Materials and Methods
- Isolation of the LPCAT cDNA from T. pseudonana: PCR primers were designed for nucleotide sequence of the putative TpLPCAT obtained by a BLAST search of the sequenced T. pseudonana genome using the yeast LPCAT sequence. Plasmid from a cDNA library of T. pseudonana was used as template. A 50 μl PCR reaction contained 50 ng of plasmid DNA, 20 pM of each primer: 5′-GGTATGCTCATCTGCTACCCCCTC-3′ (SEQ ID NO:89) and 5′-TTAAGTCTCCTTCGTCTTTGGTGTAG-3′ (SEQ ID NO:90) and 1 μl of
BD Advantage™ 2 Polymerase Mix (Clontech Laboratories, Inc.), and was amplified in a thermocycler during 30 cycles of the following program: 94° C for 30 sec, 58° C. for 30 sec, and 72° C. for 1 min 30 sec. The PCR product was purified, and subsequently cloned into the pYES2.1/V5-His-TOPO expression vector (Invitrogen). - Expression of TpLPCAT in yeast: The TpLPCAT in pYES2.1/V5-His-TOPO plasmid was transformed into yeast lpcat mutant By02431 using the method provided by the producer's manual (Invitrogen). Yeast cells transformed with pYES2.1/V5-His-TOPO plasmid only were used as a control. Transformants were selected by growth on synthetic complete medium lacking uracil (SC-ura), supplemented with 2% (w/v) glucose. The colonies were transferred into liquid SC-ura with 2% (w/v) glucose and grown at 28° C. overnight. The overnight cultures were diluted to an OD 0.4 in induction medium (SC-ura+2% Galactose+1% Raffinose), and were induced by incubating at 28° C. for 24 hours. The yeast cells were collected and broken using glass beads. The protein concentrations in the lysates were normalized using the Biorad assay (Bradford 1976) and then assayed for LPCAT activity.
- Identification of LPCAT from the algae Thalassiosira pseudonana
- Isolation of the LPCAT cDNA from T. pseudonana A full-length T. pseudonana LPCAT cDNA clone was amplified by PCR from an algae cDNA library. The nucleotide sequence had an open reading frame of 1,323 bp encoding a polypeptide of 440 amino acids with a calculated molecular mass of 49.75 kD
- Expression of TpLPCAT in Yeast: To confirm the function of the protein encoded by the TpLPCAT, the full-length coding region of TpLPCAT was cloned into a yeast expression vector pYES2.1/V5-His-TOPO under the control of the galactose-inducible GAL1 promoter, and the construct was used to transform a LPCAT-deficient yeast strain By02431(a yeast lpcat strain). Yeast cells harboring an empty pYES2.1 vector plasmid were used as a control. We also discovered that the yeast lpcat strain is hypersensitive to lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine). Expression of the TpLPCAT in yeast lpcat mutant was able to overcome lyso-PAF the sensitivity of the lpcat mutant (
FIG. 4 ). - The microsomal membrane fractions prepared from lysates of the induced yeast cells were assayed for LPCAT activity using 14C-labelled Lyso-PC as acceptor, and different unlabeled acyl-CoAs as acyl donors. Under our assay conditions, expression of the TpLPCAT in yeast lpcat mutant resulted in a restoration of LPCAT function and produced a recombinant LPCAT protein capable of incorporating a range of different acyl-CoAs into PC including 14:0-, 16:0-, 16:1-, 18:0-, 18:1-, 18:2-, and 22:6(DHA)-, with the most preference of 18:1-CoA, and efficiently utilization of the very long chain polyunsaturated fatty acid--22:6-CoA(DHA) (
FIGS. 5 & 6 ). - Experimental procedure:
- TA-cloning and yeast complementation: Total RNA was prepared from Arabidopsis seedlings using RNeasy Plant Mini Kit (Qiagen). RT-PCR of the ORFs of Arabidopsis Atlg12460, Atlg63050 was performed with primer pairs designed based on sequences of gene annotation available at TAIR (The Arabidopsis Information Resources). The cDNA was cloned into vector pYES2.1 using pYES2.1 TOPO TA Cloning Kit according to the manufacturer's protocol (Invitrogen). Correctly-oriented positive colonies were identified through double digestion with restriction enzyme, followed by verification through DNA sequencing. The construct was introduced into yeast strain YOR175c, BY02431. Yeast extract, Yeast Nitrogen Base, Bacto-peptone, and Bacto-agar were purchased from Difco™, D-glucose, D-galactose and D-raffinose were from Sigma. SC minimal medium and plates was prepared according to Invitrogen's recipe described for the pYES2.1 TOPO TA Cloning Kit.
- Lyso-PAF sensitivity: Yeast strains BY02431 carrying pYES 2.1-AtLPCATs or the empty vector were first grown in 15 ml of SC-Leu-His-ura medium containing 2% glucose. Yeast transformant strains of AtLPCATs were first grown in YPD overnight. Protein expression induction were carried out by protocol described in Invitrogen manufacturer manual for yeast expression vector pYES2.1. After 12 hr induction, 5 μl cultures were inoculated onto YPD plate with 10 μg/ml LysoPAF. The plates were incubated at 28° C. for 2 days. The final lysoPAF is 10 μg/ml.
- In vitro assay: Yeast strains BY02431 carrying pYES 2.1-AtLPCATs or the empty vector were first grown in 15 ml of SC-Leu-His-ura medium containing 2% glucose. Yeast transformant strains of AtLPCATs were first grown in YPD overnight. Protein expression induction were carried out by protocol described in Invitrogen manufacturer manual for yeast expression vector pYES2.1. After 24 hr of growth in the galactose induction conditions, the cells were washed first with distilled water and then with wall-breaking buffer (50 mM sodium phosphate, pH7.4; 1 mM EDTA; 1 mM PMSF; 5% glycerol) and spun down at 4,000 rpm (Eppendorf Centrifuge 5145C) to re-pellet cells. The cells, resuspended in 1 ml cell wall-breaking buffer, were shaken vigorously in the presence of acid-washed glass beads (diameter 0.5 mm) in a mini-bead beater at 5,000 rpm for 3′ 1-min intervals. The resultant homogenate was centrifuged at 1,500′ g for 5 min at 4° C. The supernatant was decanted for in vitro assay. Protein concentration was measured using Bio-Rad Protein Assay Kit for final AtSAT1 activity calculation.
- AtLPCAT substrate specificity was determined by counting incorporation of 14C-labeled lysophosphatidylcholine or 14C-labled palmityl-CoA into phosphatidylcholine. All assays were performed at least twice. 200 ml reaction mixture contained 50 mg microsomal protein, 50 mM acyl-CoA and 45 mM palmitoyl-PC, pH7.4. 14C-lysophosphatidylcholine (1.4 nCi/nmol) or 14C-palmityl-CoA (5.5 nCi/nmol) was used to assess fatty-CoA or lyso-lipid substrate specificity. Reaction was allowed for 10 min at 30° C. All radiolabel chemicals for these assays were purchased from ARC, Inc.
- Lyso-PAF sensitivity test (
FIG. 7 ): The yeast lpcat strain is deficient in its endogenous LPCAT and hypersensitive to lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine). The lpcat yeast mutant is incapable of growth in the presence of 10 ug/ml lyso-PAF (lyso-Platelet-activating factor, 1-O-alkyl-sn-glycero-3-phosphocholine). However, when the Arabidopsis LPCAT genes, Atlg12640 and Atlg63050, were introduced into the yeast mutant, the transformants could survive on lyso-PAF-containing YPD plate. These results indicated that the Arabidopsis genes encode for LPCAT. - In vitro enzyme characterization with the yeast cell free lysate expressing the Arabidopsis LPCATs was further conducted.
- Lyso-lipid substrate specificity (
FIG. 8 ): LPA (lysophosphatidic acid), LPC (lysophosphatidic choline), LPE (lysophosphatidylethanolamine), LPG (lysophosphatidylglycerol), LPI (lysophosphatidyl inositol) and LPS (lysophosphatidyl serine) were first tested as substrates to compare their acyltransferase activity. The results clearly showed that Atlg12640 and Atlg63050 both exhibited high activity towards LPC (FIG. 8 ). - References: The contents of the following references are incorporated herein in their entirety.
- Abbadi A, Domergue F, Bauer J, Napier J A, Welti R, Zähinger U, Cirpus P, Heinz E (2004). Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plat Cell 16: 2734-2748.
Bechtold, N., Ellis, J. and Pellefer, G. (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Ser. Ill Sci. Vie, 316: 1194-1199.
Becker, D., Brettschneider, R. and. Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. PIant J. 5: 299-307.
Chen X, Hyatt B A, Mucenski M L, Mason R J, Shannon J M (2006). Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc. Natl. Acad. Sci. USA103: 11724-11729.
Datla, R, Anderson, J. W. and Selvaraj, G. (1997) Plant promoters for transgene expression. Biotechnology Annual Review 3: 269-296.
DeBlock, M., DeBrouwer, D. and Tenning, P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694-701.
Domergue F, Abbadi A, Heinz E (2005). Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trend Plant Sci 10: 112-116.
Huang Y S, Pereira S L, Leonard A E (2004). Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie 86: 793-798.
Katavic, Y., Haughn, G. W., Reed, D., Martin, M. and Kunst, L. (1994) In planta transformation of Arabidopsis thaliana. Mol. Gen. Genet. 245: 363-370.
Meyer, P. (1995) Understanding and controlling transgene expression. Trends in Biotechnology:13: 332-337.
Moloney, M. M., Walker, J. M. and. Sharma, K. K. (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep. 8: 238-242.
Napier J A, Beaudoin F, Michaelson L V, Sayanova O (2004). The production of long chain polyunsaturated fatty acids in transgenic plants by reverse-engineering. Biochimic 86: 785-793.
Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L. Baga, M. and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated. scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5: 285-297.
Potrykus, L. (1991) Gene transfer to plants: Assessment of publish approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 205-225.
Pouwels et al., Cloning Vectors. A laboratory manual, Elsevier, Amsterdam (1986).
Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus C M (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22: 739-745.
Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D. and Detmer, J. J. (1988) Genetically transformed maize plants from protoplasts. Science 240: 204-207.
Sanford, J. C., Klein, T. M., Wolf, E. D. and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Technol. 5: 27-37.
Shimamoto, K., Terada, R., Izawa, T. and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 335: 274-276.
Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S, Taguchi R, Shimizu T (2007). A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells: Cloning and characterization of acetyl-CoA: lyso-PAF acetyltransferase. J Biol Chem. 282: 6532-6539.
Songstad D. D., Somers, D. A. and. Griesbach, R. J. (1995) Advances in alternative DNA delivery techniques. Plant Cell, Tissue and Organ Culture 40: 1-15.
Testet E, Laroche-Traineau J, Noubhani A, Coulon D, Bunoust O, Camougrand N, Manon S, Lessire R, Bessoule J J (2005). Ypr140wp, ‘the yeast tafazzin’, displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. Biochem J 387: 617-626.
Vasil, I. K. (1994) Molecular improvement of cereals. Plant Mol. Biol. 5: 925-937.
Walden, R. and Wingender, R. (1995) Gene-transfer and plant regeneration techniques. Trends in Biotechnology 13: 324-331.
Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005). Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23: 1013-1017.
Claims (10)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/820,014 US7732155B2 (en) | 2006-12-13 | 2007-06-15 | Methods for identifying lysophosphatidylcholine acyltransferases |
AU2007334364A AU2007334364B2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
CA2671674A CA2671674C (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
PCT/US2007/025650 WO2008076377A2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
CA2862907A CA2862907C (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
US12/448,061 US8383886B2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
US13/745,257 US9228175B2 (en) | 2006-12-13 | 2013-01-18 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87449706P | 2006-12-13 | 2006-12-13 | |
US11/820,014 US7732155B2 (en) | 2006-12-13 | 2007-06-15 | Methods for identifying lysophosphatidylcholine acyltransferases |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/025650 Continuation WO2008076377A2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
US12/448,061 Continuation US8383886B2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080145867A1 true US20080145867A1 (en) | 2008-06-19 |
US7732155B2 US7732155B2 (en) | 2010-06-08 |
Family
ID=39527771
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/820,014 Expired - Fee Related US7732155B2 (en) | 2006-12-13 | 2007-06-15 | Methods for identifying lysophosphatidylcholine acyltransferases |
US12/448,061 Expired - Fee Related US8383886B2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
US13/745,257 Expired - Fee Related US9228175B2 (en) | 2006-12-13 | 2013-01-18 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/448,061 Expired - Fee Related US8383886B2 (en) | 2006-12-13 | 2007-12-13 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
US13/745,257 Expired - Fee Related US9228175B2 (en) | 2006-12-13 | 2013-01-18 | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition |
Country Status (3)
Country | Link |
---|---|
US (3) | US7732155B2 (en) |
CA (2) | CA2862907C (en) |
WO (1) | WO2008076377A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010110375A1 (en) * | 2009-03-26 | 2010-09-30 | サントリーホールディングス株式会社 | Novel lysophospholipid acyltransferase |
WO2010130725A1 (en) * | 2009-05-13 | 2010-11-18 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
US20100317882A1 (en) * | 2009-06-16 | 2010-12-16 | E. I. Du Pont De Nemours And Company | LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES |
WO2010147907A1 (en) | 2009-06-16 | 2010-12-23 | E. I. Du Pont De Nemours And Company | High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica |
WO2013192007A1 (en) | 2012-06-19 | 2013-12-27 | E. I. Du Pont De Nemours And Company | MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES |
US20140161959A1 (en) * | 2009-12-24 | 2014-06-12 | E.I. Du Pont De Nemours And Company | Plant Membrane O-Acyl Transferase (MBOAT) Family Protein Sequences and their Uses for Altering Fatty Acid Compositions |
WO2014100061A1 (en) | 2012-12-21 | 2014-06-26 | E. I. Du Pont De Nemours And Company | Down-regulation of a polynucleotide encoding a sou2 sorbitol utilization protein to modify lipid production in microbial cells |
US9701989B2 (en) | 2012-12-21 | 2017-07-11 | E I Du Pont De Nemours And Company | Recombinant microbial cells that produce at least 28% eicosapentaenoic acid as dry cell weight |
AU2015202044B2 (en) * | 2009-05-13 | 2017-11-23 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
CN113527464A (en) * | 2021-07-19 | 2021-10-22 | 新景智源生物科技(苏州)有限公司 | TCR recognizing MBOAT2 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7732155B2 (en) | 2006-12-13 | 2010-06-08 | National Research Council Of Canada | Methods for identifying lysophosphatidylcholine acyltransferases |
WO2009001315A2 (en) * | 2007-06-26 | 2008-12-31 | Staahl Ulf | Use of a class of genes encoding lysophospholipid acyl transferases for application in agriculture, biotechnology, and medicine |
CA2724995A1 (en) | 2008-05-21 | 2009-11-26 | National Research Council Of Canada | Reduction of lyso-phosphatidylcholine acyltransferase activity |
NO2443248T3 (en) * | 2009-06-16 | 2018-05-26 | ||
JP5798729B2 (en) | 2009-12-25 | 2015-10-21 | 花王株式会社 | Method for producing fatty acid-containing lipid using modified thioesterase |
JP5764339B2 (en) | 2010-05-06 | 2015-08-19 | 花王株式会社 | Thiesterase and method for producing fatty acid or lipid using the same |
JP5925651B2 (en) | 2012-09-20 | 2016-05-25 | 花王株式会社 | Method for producing lipid using modified thioesterase |
WO2015031335A1 (en) | 2013-08-28 | 2015-03-05 | Brookhaven Science Associates Llc | Engineering cyclopropane fatty acid accumulation in plants |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050028558A1 (en) * | 2003-08-06 | 2005-02-10 | Hoya Corporation | Process for producing glass molded lens |
US20060046253A1 (en) * | 2004-09-02 | 2006-03-02 | Suntory Limited | Method for analyzing genes of industrial yeasts |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69231875T2 (en) | 1991-04-09 | 2001-10-04 | Unilever N.V., Rotterdam | PLANT PROMOTER INVOLVES IN CONTROL OF LIPID BIOSYNTHESIS IN SEEDS |
US6500670B1 (en) * | 1997-02-10 | 2002-12-31 | National Research Council Of Canada | Plant pyruvate dehydrogenase kinase gene |
US6265636B1 (en) * | 1998-06-19 | 2001-07-24 | Pioneer Hi-Bred International, Inc. | Pyruvate dehydrogenase kinase polynucleotides, polypeptides and uses thereof |
US7135617B2 (en) * | 1998-07-02 | 2006-11-14 | Calgene Llc | Diacylglycerol acyl transferase proteins |
US7015373B1 (en) * | 1998-12-17 | 2006-03-21 | National Research Council Of Canada | Diacylglycerol acyltransferase gene from plants |
WO2001021820A1 (en) * | 1999-09-22 | 2001-03-29 | National Research Council Of Canada | Transgenic manipulation of sn-glycerol-3-phosphate and glycerol production with a feedback defective glycerol-3-phosphate dehydrogenase gene |
US7759547B2 (en) | 1999-09-22 | 2010-07-20 | National Research Council Of Canada | Methods of producing and growing plants having improved phosphorus utilization |
US20050208558A1 (en) | 1999-10-19 | 2005-09-22 | Applera Corporation | Detection kits, such as nucleic acid arrays, for detecting the expression or 10,000 or more Drosophila genes and uses thereof |
ATE498013T1 (en) * | 2000-05-12 | 2011-02-15 | Cropdesign Nv | NUCLEIC ACID CODING FOR CELL CYCLE PROTEINS AND THEIR USE |
US7214859B2 (en) * | 2002-08-16 | 2007-05-08 | National Research Council Of Canada | Brassica pyruvate dehydrogenase kinase gene |
US7732155B2 (en) * | 2006-12-13 | 2010-06-08 | National Research Council Of Canada | Methods for identifying lysophosphatidylcholine acyltransferases |
EP2234474B1 (en) | 2007-12-21 | 2016-10-26 | National Research Council of Canada | Diacylglycerol acyltransferase 2 genes and proteins encoded thereby from algae |
CA2717940C (en) | 2008-03-26 | 2019-08-13 | Zhifu Zheng | Algal glycerol-3-phosphate acyltransferase |
US7983064B2 (en) * | 2008-09-08 | 2011-07-19 | Cheng Uei Precision Industry Co., Ltd. | Power adapter |
US9410160B2 (en) * | 2009-04-10 | 2016-08-09 | Dow Agrosciences Llc | Plant SNF1-related protein kinase gene |
-
2007
- 2007-06-15 US US11/820,014 patent/US7732155B2/en not_active Expired - Fee Related
- 2007-12-13 WO PCT/US2007/025650 patent/WO2008076377A2/en active Search and Examination
- 2007-12-13 CA CA2862907A patent/CA2862907C/en not_active Expired - Fee Related
- 2007-12-13 CA CA2671674A patent/CA2671674C/en not_active Expired - Fee Related
- 2007-12-13 US US12/448,061 patent/US8383886B2/en not_active Expired - Fee Related
-
2013
- 2013-01-18 US US13/745,257 patent/US9228175B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050028558A1 (en) * | 2003-08-06 | 2005-02-10 | Hoya Corporation | Process for producing glass molded lens |
US20060046253A1 (en) * | 2004-09-02 | 2006-03-02 | Suntory Limited | Method for analyzing genes of industrial yeasts |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790906B2 (en) | 2009-03-26 | 2014-07-29 | Suntory Holdings Limited | Lysophospholipid acyltransferase |
US9315835B2 (en) | 2009-03-26 | 2016-04-19 | Suntory Holdings Limited | Lysophospholipid acyltransferase |
WO2010110375A1 (en) * | 2009-03-26 | 2010-09-30 | サントリーホールディングス株式会社 | Novel lysophospholipid acyltransferase |
US9212371B2 (en) | 2009-05-13 | 2015-12-15 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
EP2821492A3 (en) * | 2009-05-13 | 2015-04-08 | BASF Plant Science Company GmbH | Acyltransferases and uses thereof in fatty acid production |
AU2015202044B2 (en) * | 2009-05-13 | 2017-11-23 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
US9828589B2 (en) | 2009-05-13 | 2017-11-28 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
WO2010130725A1 (en) * | 2009-05-13 | 2010-11-18 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
AU2010247438B2 (en) * | 2009-05-13 | 2015-01-29 | Basf Plant Science Company Gmbh | Acyltransferases and uses thereof in fatty acid production |
US8524485B2 (en) | 2009-06-16 | 2013-09-03 | E I Du Pont De Nemours And Company | Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases |
WO2010147907A1 (en) | 2009-06-16 | 2010-12-23 | E. I. Du Pont De Nemours And Company | High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica |
US20100317882A1 (en) * | 2009-06-16 | 2010-12-16 | E. I. Du Pont De Nemours And Company | LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES |
US9029122B2 (en) | 2009-06-16 | 2015-05-12 | E I Du Pont De Nemours And Company | Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases |
US20140161959A1 (en) * | 2009-12-24 | 2014-06-12 | E.I. Du Pont De Nemours And Company | Plant Membrane O-Acyl Transferase (MBOAT) Family Protein Sequences and their Uses for Altering Fatty Acid Compositions |
US9006514B2 (en) * | 2009-12-24 | 2015-04-14 | E. I. Du Pont De Nemours And Company | Plant membrane O-acyl transferase (MBOAT) family protein sequences and their uses for altering fatty acid compositions |
WO2013192002A1 (en) | 2012-06-19 | 2013-12-27 | E. I. Du Pont De Nemours And Company | IMPROVED PRODUCTION OF POLYUNSATURATED FATTY ACIDS BY COEXPRESSION OF ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES AND PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASES |
JP2015519920A (en) * | 2012-06-19 | 2015-07-16 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Improved production of polyunsaturated fatty acids by co-expression of acyl CoA: lysophosphatidylcholine acyltransferase and phospholipid: diacylglycerol acyltransferase |
US9347075B2 (en) | 2012-06-19 | 2016-05-24 | E I Du Pont De Nemours And Company | Nucleic acids encoding mutant acyl-CoA:lysophosphatidylcholine acyltransferases |
US9416382B2 (en) | 2012-06-19 | 2016-08-16 | E I Du Pont De Nemours And Company | Production of polyunsaturated fatty acids by coexpression of acyl-CoA:lysophosphatidylcholine acyltransferases and phospholipid:diacylglycerol acyltransferases |
WO2013192007A1 (en) | 2012-06-19 | 2013-12-27 | E. I. Du Pont De Nemours And Company | MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES |
US9005940B2 (en) | 2012-12-21 | 2015-04-14 | E I Du Pont De Nemours And Company | Down-regulation of a polynucleotide encoding a Sou2 sorbitol utilization protein to modify lipid production in microbial cells |
US9441209B2 (en) | 2012-12-21 | 2016-09-13 | E I Du Pont De Nemours And Company | Down-regulation of a polynucleotide encoding a Sou2 sorbitol utilization protein to modify lipid production in microbial cells |
US9701989B2 (en) | 2012-12-21 | 2017-07-11 | E I Du Pont De Nemours And Company | Recombinant microbial cells that produce at least 28% eicosapentaenoic acid as dry cell weight |
WO2014100061A1 (en) | 2012-12-21 | 2014-06-26 | E. I. Du Pont De Nemours And Company | Down-regulation of a polynucleotide encoding a sou2 sorbitol utilization protein to modify lipid production in microbial cells |
CN113527464A (en) * | 2021-07-19 | 2021-10-22 | 新景智源生物科技(苏州)有限公司 | TCR recognizing MBOAT2 |
Also Published As
Publication number | Publication date |
---|---|
US9228175B2 (en) | 2016-01-05 |
US8383886B2 (en) | 2013-02-26 |
US20130152230A1 (en) | 2013-06-13 |
CA2671674A1 (en) | 2008-06-26 |
WO2008076377A2 (en) | 2008-06-26 |
US20100016431A1 (en) | 2010-01-21 |
WO2008076377A3 (en) | 2009-03-12 |
US7732155B2 (en) | 2010-06-08 |
CA2862907C (en) | 2020-08-25 |
AU2007334364A1 (en) | 2008-06-26 |
CA2671674C (en) | 2015-11-03 |
CA2862907A1 (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7732155B2 (en) | Methods for identifying lysophosphatidylcholine acyltransferases | |
US11939614B2 (en) | Genes and proteins for aromatic polyketide synthesis | |
EP2234474B1 (en) | Diacylglycerol acyltransferase 2 genes and proteins encoded thereby from algae | |
Xu et al. | Cloning and characterization of an acyl‐CoA‐dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site‐directed mutagenesis to modify enzyme activity and oil content | |
AU2012283708B2 (en) | Genes and proteins for alkanoyl-CoA synthesis | |
US7939714B2 (en) | Diacylglycerol acyltransferase nucleic acid sequences and associated products | |
US8124835B2 (en) | Acyl-coa-dependent diacylglycerol acyltransferas 1 (DGAT1) gene from Tropaeolum majus, protein encoded thereby and uses thereof | |
AU2007334364B2 (en) | Genes encoding a novel type of lysophophatidylcholine acyltransferases and their use to increase triacylglycerol production and/or modify fatty acid composition | |
CA2717940C (en) | Algal glycerol-3-phosphate acyltransferase | |
US20060206960A1 (en) | Higher plant cytosolic er-based glycerol-3-phosphate acyltransferase genes | |
ZHENG et al. | Patent 2709067 Summary |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL RESEARCH COUNCIL OF CANADA, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZOU, JITAO;CHEN, QILIN;XU, JINGYU;REEL/FRAME:023135/0729;SIGNING DATES FROM 20090710 TO 20090717 Owner name: DOW AGROSCIENCES LCC, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHENG, ZHIFU;REEL/FRAME:023135/0762 Effective date: 20090805 Owner name: NATIONAL RESEARCH COUNCIL OF CANADA,CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZOU, JITAO;CHEN, QILIN;XU, JINGYU;SIGNING DATES FROM 20090710 TO 20090717;REEL/FRAME:023135/0729 Owner name: DOW AGROSCIENCES LCC,INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHENG, ZHIFU;REEL/FRAME:023135/0762 Effective date: 20090805 Owner name: NATIONAL RESEARCH COUNCIL OF CANADA, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZOU, JITAO;CHEN, QILIN;XU, JINGYU;SIGNING DATES FROM 20090710 TO 20090717;REEL/FRAME:023135/0729 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220608 |