US20080141725A1 - Optical fiber and method of manufacturing the same - Google Patents
Optical fiber and method of manufacturing the same Download PDFInfo
- Publication number
- US20080141725A1 US20080141725A1 US12/068,888 US6888808A US2008141725A1 US 20080141725 A1 US20080141725 A1 US 20080141725A1 US 6888808 A US6888808 A US 6888808A US 2008141725 A1 US2008141725 A1 US 2008141725A1
- Authority
- US
- United States
- Prior art keywords
- optical fiber
- covering layer
- die
- longitudinal direction
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/104—Coating to obtain optical fibres
- C03C25/1065—Multiple coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
- C03C25/18—Extrusion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02214—Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
- G02B6/0228—Characterised by the wavelength dispersion slope properties around 1550 nm
Definitions
- the present invention relates to an optical fiber capable of compensating polarization mode dispersion effectively, and a method of manufacturing the same.
- the polarization mode dispersion characteristic is caused by a transmission speed difference of optical signals between polarization waves perpendicular to each other, and depends on the symmetry of a refractive index distribution of the optical fiber.
- the cross section shape of the refractive index distribution in a core portion (light propagation portion), through which a major part of light propagates, is closer to a perfect circle, the PMD characteristic in terms of the optical fiber itself becomes better.
- the cross section shape of the refractive index distribution in the core portion of the optical fiber can be made close to the perfect circle, force is applied to the optical fiber from the outside, and a stress originating from this external force is generated, thus causing double refraction.
- the application of the stress to the optical fiber depends on placement states of the optical fiber (for example, a spool winding, a ribbon/loose tube, a cable wound around a drum, a cable after laying and the like).
- an object of the present invention is to provide an optical fiber which can suppress deterioration of a polarization mode dispersion characteristic thereof to acquire a good polarization mode dispersion characteristic thereof.
- the optical fiber according to the present invention comprises a glass portion having a core and a cladding; and one or more covering layers formed around the glass portion, wherein an arrangement form of the covering layer with respect to the glass portion on a cross section perpendicular to a longitudinal direction of the optical fiber is continuously changed in a longitudinal direction of the optical fiber.
- the change of the arrangement form is performed in such a manner that a center of the glass portion and a center of the covering layer on a cross section perpendicular to a longitudinal direction of the optical fiber are decentered from each other, and a decenter direction on the cross section is changed in the longitudinal direction of the optical fiber.
- the covering layer is formed to be a two-layered structure composed of an internal covering layer and an external covering layer, and at least one of centers of the internal and external covering layers may be decentered from the center of the glass portion.
- a decenter amount which is a distance between the center of the glass portion and the center of the covering layer, should be set to 12.5 ⁇ m or more.
- the change of the arrangement form may be performed in such a manner that an outer peripheral shape of the covering layer in cross section perpendicular to the longitudinal direction of the optical fiber is uncircularized, and the outer peripheral shape of the covering layer in cross section, which is uncircularized, is changed in the longitudinal direction of the optical fiber.
- the covering layer is formed to be the two-layered structure composed of the internal covering layer and the external covering layer, an outer peripheral shape in cross section, which is the boundary surface between the internal and external covering layers, is uncircularized, and an arrangement of the shape thereof is changed in the longitudinal direction of the optical fiber.
- out-of-roundness of the covering layer should be set to 5.0 ⁇ m or more.
- the change of the arrangement form of the covering layer should be made with a periodicity in the longitudinal direction of the optical fiber.
- the periodicity should preferably be 0.5 m or less, and more preferably 0.2 m or less.
- the periodicity itself may be changed in the longitudinal direction.
- the optical fiber according to the present invention can be manufactured in such a manner by drawing a bare optical fiber from a rotating preform; passing the drawn optical fiber through a die in a state where the drawn bare optical fiber rotates while describing a predetermined minute circle and coating resin onto an outer periphery of the drawn bare optical fiber with this die, and curing the coated resin.
- the optical fiber according to the present invention may be manufactured in such a manner by drawing a bare optical fiber from a preform; passing the drawn bare optical fiber through a die which rotates with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with this die; and curing the coated resin.
- the optical fiber according to the present invention can be manufactured also in such a manner by drawing a bare optical fiber from a preform; passing the drawn bare optical fiber through a die which is arranged with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with this die; swinging the optical fiber coated with the resin after passing through the die, thereby twisting the preform and the bare optical fiber, which are positioned on an upstream; and curing the coated resin.
- a shape of an ejection port of the die may be uncircularized.
- the optical fiber of the present invention suppresses continuity in the longitudinal direction of a vector of a stress applied to the optical fiber by decentering the covering layer with respect to the glass portion and making the covering layer uncircular, whereby deterioration of the polarization mode dispersion characteristic can be prevented, and a good polarization mode dispersion characteristic in the longitudinal direction of the optical fiber can be acquired as a whole.
- the foregoing optical fiber can be suitably manufactured.
- FIG. 1 is a side view of an optical fiber according to the present invention
- FIGS. 2A to 2E are transverse cross section views of a first embodiment of the optical fiber according to the present invention.
- FIGS. 3A to 3E are transverse cross section views of a second embodiment of the optical fiber according to the present invention.
- FIGS. 4A to 4E are transverse cross section views of a third embodiment of the optical fiber according to the present invention.
- FIGS. 5A to 5E are transverse cross section views of a fourth embodiment of the optical fiber according to the present invention.
- FIG. 6 and FIG. 7 are transverse cross section views of fifth and sixth embodiments of the optical fiber of the present invention, respectively.
- FIG. 8 to FIG. 14 are configuration views of manufacturing apparatuses for carrying out methods of manufacturing optical fibers according to the present invention.
- FIG. 1 is an external view of the optical fiber 1 according to the present invention.
- the optical fiber according to the present invention has a feature in the shape of a transverse section and the change in a longitudinal direction. Accordingly, different positions of the optical fiber in the longitudinal direction are denoted by the symbols A, B, C, D and E, respectively as shown in FIG. 1 , and descriptions are made in the embodiments to be described below with reference to the cross sections at the respective positions thereof.
- the symbols A, B, C, D and E assigned to the respective ends of the reference numerals indicate the transverse cross sections in the positions A, B, C, D and E, which are the cross section views in the sections perpendicular to the longitudinal direction of the optical fiber 1 .
- the optical fiber 1 of this embodiment comprises a glass portion 2 including a core 2 a having a high refractive index and a cladding 2 b having a low refractive index, which is formed around the core 2 a , and a covering layer 3 , which is composed of an internal covering layer 3 a having a low Young's modulus and an external covering layer 3 b having a high Young's modulus.
- An external diameter of the glass portion 2 is 125 ⁇ m
- an external diameter of the internal covering layer 3 a ranges from 170 to 200 ⁇ m
- an external diameter of the external covering layer 3 b ranges from 235 to 265 ⁇ m.
- any of the internal and external covering layers 3 a and 3 b is a resin covering layer using ultra violet-curing resin.
- the glass portion 2 , the internal covering layer 3 a and the external covering layer 3 b assume a circular shape on a section (transverse plane) perpendicular to the longitudinal direction (extending direction) of the optical fiber 1 , the circular shape having an out-of-roundness approximately equal to zero.
- the center of the glass portion 2 and the center of the external surface of the external covering layer 3 b are approximately coincident with each other as the center O 1 .
- the center O 2 of the boundary plane of the internal covering layer 3 a and the external covering layer 3 b is decentered from the center O 1 .
- the direction in which the center O 2 decenters from the center O 1 (herein after the direction is referred to as a decenter direction) is indicated by the arrow line extending from the center O 1 .
- the dencentering direction is changed in accordance with the longitudinal direction of the optical fiber 1 .
- the decenter direction is rotated in a certain direction (clockwise in FIGS. 2A to 2E ) along the longitudinal direction (direction of the arrow L in FIG. 1 ) of the optical fiber 1 .
- an optical fiber is often applied with a predetermined lateral pressure also from the outside thereof depending on its install state.
- the lateral pressure from the outside of the optical fiber acts on the optical fiber almost from a certain direction.
- the lateral pressure acts on the optical fiber in a direction perpendicular to the body of the spool.
- the lateral pressure acts thereon in a direction perpendicular to the bottom of the slot.
- the lateral pressure acting on the optical fiber from the outside thereof causes a stress to act on the glass portion through the covering layer, thus causing double refraction.
- a refractive index distribution of a light propagation portion (core portion) of the optical fiber is uncircularized as a result of the double refraction, and polarization mode dispersion occurs. Since the polarization mode dispersion arises from the lateral pressure from the outside of the optical fiber, the polarization mode dispersion inevitably occurs even if the optical fiber itself has a structure causing no polarization mode dispersion.
- the glass portion 2 and the internal covering layer 3 a are decentered from each other in the optical fiber 1 of this embodiment, continuity in the longitudinal direction of the vector of the stress applied to the optical fiber 1 is controlled, and hence deterioration of the polarization mode dispersion characteristic can be prevented.
- the center of the glass portion 2 and the center of the internal covering layer 3 a are approximately coincident with each other as the center O 1 .
- the center O 2 of the external covering layer 3 b is decentered from the center O 1 .
- the decenter direction (arrow direction in FIGS. 3A to 3E ) is changed in the longitudinal direction of the optical fiber 1 .
- the decenter direction is rotated in a certain direction (clockwise in FIGS. 3A to 3E ) along the longitudinal direction (direction of the arrow L in FIG. 1 ) of the optical fiber 1 .
- the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 is consequently controlled. Also with such a configuration, similarly to the foregoing first embodiment, deterioration of the polarization mode dispersion characteristic is prevented by controlling the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 , and, as a whole, the polarization mode characteristic in the longitudinal direction of the optical fiber 1 can be improved.
- the style of the change of the decenter direction is not limited as such.
- the direction of the rotation may be inverted alternately clockwise and counterclockwise.
- the decenter direction need not to be rotated or inverted at certain intervals, and the decenter direction may be rotated or inverted at odd intervals.
- the rotation of the decenter direction should be made twice or more per 1 m, and the rotation thereof should more preferably be made five times or more per 1 m.
- the cycle of the rotation of the decenter direction should be set to 0.5 m or less, and should more preferably be set to 0.2 m or less.
- the cycle of the rotation of the decenter direction exceeds 0.5 m, the change of the decenter amount in the longitudinal direction is insufficient, and it is impossible to acquire a good polarization mode dispersion characteristic.
- the reason why the change of the decenter amount is set to 0.2 m or less is that the change of the decenter amount in the longitudinal direction can be fully acquired and the effect of the acquisition of the improved polarization mode dispersion characteristic can be sufficiently achieved.
- the foregoing decenter amount (distance X in FIGS. 2A and 3A ) should be preferably set to 12.5 ⁇ m or more. If the decenter amount is less than 12.5 ⁇ m, the change of the decenter amount in the longitudinal direction is insufficient, and it is impossible to acquire a good polarization mode dispersion characteristic.
- the outer peripheral shape of the internal covering layer 3 a in cross section (perpendicular to the longitudinal direction of the optical fiber 1 ), that is, the shape of the boundary surface between the internal covering layer 3 a and the external covering layer 3 b , is uncircularized.
- “Uncircularize” means that the shape is intentionally made not to be a perfect circle.
- the out-of-roundness of the outer periphery of the internal covering layer 3 a in cross section is intentionally made to be large on the cross section perpendicular to the longitudinal direction of the optical fiber 1 .
- the out-of-roundness is defined as a difference between the maximum diameter of an inscribed circle and the minimum diameter of a circumscribed circle.
- the outer peripheral shape of the internal covering layer 3 a in cross section is made to be elliptical as one mode of uncircularize.
- the outer peripheral shape of the internal covering layer 3 a in cross section which is made to be elliptical, is changed in the longitudinal direction of the optical fiber 1 .
- the direction of the major axis of the ellipse rotates in a certain direction (clockwise in FIGS. 4A to 4E ) along the longitudinal direction of the optical fiber 1 .
- the optical fiber 1 of the embodiment has the internal covering layer 3 a , in which the outer peripheral shape in cross-section is uncircularized. Accordingly, the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 is suppressed, and hence the deterioration of the polarization mode dispersion characteristic is prevented. Thus, it is possible to acquire the good polarization mode dispersion characteristic as a whole in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the external covering layer 3 b in cross section (cross sections of FIGS. 5A to 5E ), which is perpendicular to the longitudinal direction (extending direction) of the optical fiber 1 , is uncircularized.
- the out-of-roundness of the external covering layer 3 b is made to be large.
- the outer peripheral shape of the external covering layer 3 b in cross section is made to be elliptical as one mode of uncircularize.
- the outer peripheral shape of the external covering layer 3 b in cross section, which is made to be elliptical, is changed in the longitudinal direction of the optical fiber 1 .
- the direction of the major axis of the ellipse rotates in the certain direction (clockwise in FIGS. 5A to 5E ) along the longitudinal direction of the optical fiber 1 .
- the optical fiber 1 of this embodiment has the external covering layer 3 b which is uncircularized, the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 is suppressed, and the deterioration of the polarization mode dispersion characteristic is prevented.
- the polarization mode dispersion characteristic in the longitudinal direction of the optical fiber 1 can be improved as a whole.
- the respective the outer peripheral shapes of the internal and external covering layers 3 a and 3 b in cross section which are uncircularized, are not changed in the longitudinal direction of the optical fiber 1 , but the respective major axis of the ellipses of the internal and external covering layers 3 a and 3 b in cross section changes so as to rotate in the certain direction.
- the mode of the change is not limited as such.
- the direction of the rotation of the major axis of the ellipse may be alternately inverted.
- the rotation of the major axis of the ellipse and the inversion of the rotation thereof need not to be performed at certain intervals, but may be performed at odd intervals.
- the outer periphery of the covering layer in cross section is not only made to be an elliptical shape, but also may be made to be other shapes such as an egg-like shape. Moreover, the outer peripheral shape of the covering layer in cross section is not changed by rotating the direction of the major axis of the ellipse, but a change from an elliptical shape to an egg-like shape may be adopted. Alternatively, a technique in which a ratio of the major axis of the ellipse to the minor axis thereof is changed may be conceived.
- the rotation should be preferably made twice or more per 1 m (the cycle is 0.5 m or less).
- the rotation should be more preferably made five times or more per 1 m (the cycle is 0.2 m or less) The reasons of this are as follows.
- the out-of-roundness accompanied with uncircularization described above should preferably be set to 5.0 ⁇ m or more.
- the out-of-roundness is less than 5.0 ⁇ m, the change of the state where the outer peripheral shape of the external covering layer in cross section, which is uncircularized, in the longitudinal direction of the optical fiber is insufficient, and hence a good polarization mode dispersion characteristic cannot be acquired.
- the fifth embodiment aims at the improvement of the polarization mode dispersion characteristic by the foregoing decentering of the covering layer 3 as well as the improvement of the polarization mode dispersion characteristic by uncircularization of the covering layer 3 .
- the centers of the glass portion 2 and the internal covering layer 3 a are approximately coincident with each other as the center O 1 on the cross section perpendicular to the longitudinal direction of the optical fiber 1 .
- the center O 2 of the external covering layer 3 b is decentered from the center O 1 .
- the outer peripheral shape of the internal covering layer 3 a in cross section, which is perpendicular to the longitudinal direction of the optical fiber 1 , that is, the boundary shape between the internal covering layer 3 a and the external covering layer 3 b , is uncircularized. Also with such a configuration, similarly to the first embodiment and the like, the deterioration of the polarization mode dispersion characteristic can be prevented by suppressing the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 , and the polarization mode dispersion characteristic in the longitudinal direction of the optical fiber 1 can be improved as a whole.
- this embodiment also aims at both the improvement of the polarization mode dispersion characteristic by the foregoing decentering of the covering layer 3 as well as the improvement of the polarization mode dispersion characteristic by uncircularization of the covering layer 3 .
- the centers of the glass portion 2 and the external covering layer 3 b are approximately coincident with each other as the center O 1 .
- the center O 2 of the internal covering layer 3 a is decentered from the center O 1 .
- the outer peripheral shape of the external covering layer 3 b in cross section which is perpendicular to the longitudinal direction of the optical fiber 1 , is uncircularized.
- the deterioration of the polarization mode dispersion characteristic can be prevented by suppressing the continuity in the longitudinal direction of the stress vector applied to the optical fiber 1 , and the polarization mode dispersion characteristic in the longitudinal direction of the optical fiber 1 can be improved as a whole.
- FIG. 8 The manufacturing apparatus of the foregoing optical fibers 1 illustrated in FIGS. 2A to 2E or FIGS. 3A to 3E is illustrated in FIG. 8 .
- the outline of the manufacturing apparatus is constructed on the basis of an ordinary optical fiber manufacturing apparatus.
- an optical fiber preform 10 is attached to the apparatus, and the apparatus itself comprises a heater 11 for heating a lower end of the preform 10 ; a first coating device 12 for coating ultra violet-curing resin onto a glass fiber 10 a which is drawn from the preform 10 , the ultra violet-curing resin serving as the internal covering layer 3 a ; a first ultra violet radiation furnace 13 for curing the resin coated by the first coating device 12 ; a second coating device 14 for coating ultra violet-curing resin onto the glass fiber 10 a on which the internal covering layer 3 a is formed, the ultra violet-curing resin serving as the external covering layer 3 b ; a second ultra violet radiation furnace 15 for curing the ultra violet-curing resin coated by the second coating device 14 ; and a reel 16
- the heater 11 , the first coating device 12 , the first ultra violet radiation furnace 13 , the second coating device 14 , the second ultra violet radiation furnace 15 , and the reel 16 are placed sequentially from the upstream side to the downstream side on the fiber-drawing path for the optical fiber 1 .
- a driving device 17 for rotating the preform is provided in a fitting portion of the preform 10 .
- the preform 10 is rotated so that the center axis of the drawn optical fiber (glass fiber 10 a ) describes a minute circle.
- the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) is decentered, and the covering layer 3 can be changed in the longitudinal direction of the optical fiber 1 .
- FIG. 9 The modification of the foregoing manufacturing apparatus of FIG. 8 is shown in FIG. 9 .
- ultra violet-curing resin forming the internal covering layer 3 a and ultra violet-curing resin forming the external covering layer 3 b are coated onto the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the driving device 17 for rotating the preform is arranged in the fitting portion of the preform 10 .
- the preform 10 is rotated by this driving device 17 so that the center axis of the drawn optical fiber (glass fiber 10 a ) describes a minute circle.
- the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) is decentered, and the covering layer 3 can be changed in the longitudinal direction of the optical fiber 1 .
- FIG. 10 A manufacturing apparatus for manufacturing the optical fiber 1 shown in FIGS. 2A to 2E is shown in FIG. 10 .
- adjustment is made so that the center of the ejection port of the die in the first coating device 12 , which coats the resin for forming the internal covering layer 3 a , slightly deviates from the center of the axis of the drawn optical fiber (glass fiber 10 a ).
- the driving device 18 for rotating the die on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a ) is also arranged.
- the die of the first coating device 12 that is, the ejection port thereof, is rotated by the driving device 18 during the optical fiber (glass fiber 10 a ) drawing.
- the internal covering layer 3 a is decentered, and hence the internal covering layer 3 a can be changed in the longitudinal direction of the optical fiber 1 .
- FIG. 11 The modification of the foregoing manufacturing apparatus of FIG. 10 is shown in FIG. 11 .
- ultra violet-curing resin forming the internal covering layer 3 a and ultra violet-curing resin forming the external covering layer 3 b are coated onto the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the center of the ejection port of the die in the coating device 12 a which coats the resin for forming the internal covering layer 3 a , slightly deviates from the center axis of the drawn optical fiber (glass fiber 10 a ).
- the driving device 18 for rotating the die which coats the resin for forming the internal covering layer 3 a , on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a ) is also arranged.
- the die of the coating device 12 a which coats the resin for forming the internal covering layer 3 a is rotated by the driving device 18 during the optical fiber (glass fiber 10 a ) drawing.
- the internal covering layer 3 a is decentered (at this time, the center of the ultra violet-curing resin for forming the external covering layer 3 b is not decentered), the internal covering layer 3 a is decentered, and hence the internal covering layer 3 a can be changed in the longitudinal direction of the optical fiber 1 .
- FIG. 12 A manufacturing apparatus for manufacturing the optical fiber 1 shown in FIGS. 3A to 3E is shown in FIG. 12 .
- adjustment is made so that the center of the ejection port of the die in the second coating device 14 , which coats the resin for forming the external covering layer 3 b , slightly deviates from the center axis of the drawn optical fiber (glass fiber 10 a in which the internal covering layer 3 a is formed).
- the driving device 19 for rotating the die on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a ) is also arranged.
- the die of the second coating device 14 that is, the ejection port thereof, is rotated by the driving device 19 during the optical fiber (glass fiber 10 a in which the internal covering layer 3 a is formed) drawing.
- the external covering layer 3 b is decentered, and hence the external covering layer 3 b can be changed in the longitudinal direction of the optical fiber 1 .
- the optical fiber 1 shown in FIGS. 3A to 3E can also be manufactured by the manufacturing apparatus shown in FIG. 11 .
- FIG. 13 shows another example of the manufacturing apparatus for manufacturing the optical fiber 1 shown in FIG. 3 . Also in this embodiment, adjustment is made so that the center of the ejection port of the die in the second coating device 14 , which coats the resin for forming the external covering layer 3 b , slightly deviates from the center of the drawn optical fiber (glass fiber 10 a in which the internal covering layer 3 a is formed).
- the manufacturing apparatus has no mechanism for rotating the die of the second coating device 14 , but has a roller 20 swinging instead of this mechanism.
- a driving device 21 for swinging the roller 20 is arranged accompanied with the roller 20 .
- the roller 20 is positioned between the second ultra violet radiation furnace 15 and the reel 16 , and the drawn optical fiber contacts with the periphery plane of the roller 20 .
- the optical fiber 1 which contacts with the roller 20 moves while rolling on the periphery of the roller 20 .
- a twist is applied to the optical fiber 1 .
- the twist applied to the optical fiber 1 is propagated also to the upstream of the drawn optical fiber 1 , and reaches to a portion of the ultra violet-curing resin coated by the second coating device 14 .
- the external covering layer 3 b is decentered, and this decenter direction is changed in the longitudinal direction of the optical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the decenter direction is also inverted alternately. Also with such a structure, the external covering layer 3 b is decentered, and can be changed in the longitudinal direction of the optical fiber 1 .
- FIG. 14 the modification of the foregoing manufacturing apparatus of FIG. 13 is shown.
- ultra violet-curing resin forming the internal covering layer 3 a and ultra violet-curing resin forming the external covering layer 3 b are coated onto the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the roller 20 is positioned between the ultra violet radiation furnace 13 a and the reel 16 , and the drawn optical fiber 1 contacts with the periphery plane of the roller 20 .
- the optical fiber 1 which contacts with the roller 20 moves while rolling on the periphery plane of the roller 20 .
- a twist is applied to the optical fiber 1 .
- the twist applied to the optical fiber 1 is propagated also to the upstream of the drawn optical fiber 1 , and reaches to a portion of the ultra violet-curing resin forming the external covering layer 3 b coated by the coating device 12 a.
- the external covering layer 3 a is decentered and the decenter direction is changed in the longitudinal direction of the optical fiber 1 due to the foregoing twist. Since the foregoing twist is applied to the optical fiber 1 so as to be inverted alternately, the decenter direction is also inverted alternately. Also with such a structure, the external covering layer 3 b is decentered, and the external covering layer 3 b can be changed in the longitudinal direction of the optical fiber 1 .
- a first example of a manufacturing apparatus itself is almost the same as that shown in FIG. 8 .
- the ejection port shape of the die of the first coating device 12 or the second coating device 14 is uncircularized (herein, elliptical). Therefore, the outer peripheral shape of the internal covering layer 3 a or the external covering layer 3 b in cross section is uncircularized, and the preform 10 is rotated by the driving device 17 positioned at the fitting portion of the preform 10 , whereby the outer peripheral shape of the covering layer in cross section which was uncircularized can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the ultra violet-curing resin for forming the internal covering layer 3 a and the ultra violet-curing resin for forming the external covering layer 3 b are coated onto the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the ejection port shape of the die in the coating device 12 a for either the internal covering layer 3 a or the external covering layer 3 b is uncircularize (herein, elliptical).
- the preform 10 is rotated by the driving device 17 positioned at the fitting portion of the preform 10 , whereby the outer peripheral shape of the covering layer in cross section, which was uncircularized, can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the basic constitution of the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing manufacturing apparatus shown in FIG. 10 .
- the ejection port shape of the die in the first coating device 12 for forming the internal covering layer 3 a in which the shape thereof in cross section is intended to be uncircular, is uncircularized (herein, elliptical).
- the outer peripheral shape of the internal covering layer 3 a in cross section is uncircularized, and further the die, that is, the ejection port, of the first coating device 12 is rotated by the driving device 18 arranged concomitantly with the first coating device 12 , whereby the outer peripheral shape of the internal covering layer 3 a in cross section can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the internal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the internal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the ultra violet-curing resin for forming the internal covering layer 3 a and the ultra violet-curing resin for forming the external covering layer 3 b are coated onto the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the ejection port shape of the die for ejecting the ultra violet-curing resin forming the internal covering layer 3 a in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein elliptical).
- the driving device 18 Accompanied with the coating device 12 a , arranged is the driving device 18 which rotates the die in a plane perpendicular to the fiber-drawing direction of the drawn optical fiber 1 (glass fiber 10 a ).
- the die coats the ultra violet-curing resin for forming the internal covering layer 3 a.
- the die of the coating device 12 a that is, the ejection port thereof, which coats the ultra violet-curing resin forming the internal covering layer 3 a , is rotated by the driving device 18 during the optical fiber (glass fiber 10 a ) drawing.
- the driving device 18 since the surface shape of the ultra violet-curing resin coated by the coating device 12 a , which forms the internal covering layer 3 a , in cross section is uncircularized, the outer peripheral shape of the internal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the basic constitution of the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing manufacturing apparatus shown in FIG. 12 .
- the ejection port shape of the die in the second coating device 14 for forming the external covering layer 3 b in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein, elliptical).
- the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized, and further the die, that is, the ejection port, in the second coating device 14 is rotated by the driving device 19 arranged concomitantly with the second coating device 14 , whereby the outer peripheral shape of the external covering layer 3 b in cross section, which was uncircularized, can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the optical fiber 1 shown in FIGS. 5A to 5E can be manufactured by the manufacturing apparatus shown in FIG. 11 .
- the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing apparatus of FIG. 13 .
- the ejection port shape of the die in the second coating device 14 forming the external covering layer 3 b in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein elliptical).
- the manufacturing apparatus has no mechanism for rotating the die of the second coating device 14 , but has a roller 20 swinging instead of this mechanism.
- a driving device 21 for swinging the roller 20 is arranged accompanied with the roller 20 .
- the roller 20 is positioned between the second ultra violet radiation furnace 15 and the reel 16 , and the drawn optical fiber 1 contacts with the periphery plane of the roller 20 .
- the optical fiber 1 which contacts with the roller 20 moves while rolling on the periphery plane of the roller 20 .
- a twist is applied to the optical fiber 1 .
- the twist applied to the optical fiber 1 is propagated also to the upstream of the drawn optical fiber 1 , and reaches to a portion of the ultra violet-curing resin coated by the second coating device 14 .
- the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized.
- the state where the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized can be changed in the longitudinal direction of the optical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the direction of the major axis of the ellipse is inverted alternately in the above described example. Also with such a structure, the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shape of the covering layer 3 (the internal covering layer 3 a or the external covering layer 3 b ) in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the ultra violet-curing resin for forming the internal covering layer 3 a and the ultra violet-curing resin for forming the external covering layer 3 b are coated on to the glass fiber 10 a within the coating device 12 a at about the same time.
- the coating device 12 a can coat a plurality of layers simultaneously.
- the ultra violet-curing resin forming the internal covering layer 3 a and the ultra violet-curing resin forming the external covering layer 3 b are cured at about the same time.
- the ejection port of the die in the coating device 12 a for coating the resin, which forms the external covering layer 3 b is uncircularized.
- the roller 20 swinging is arranged instead of this mechanism.
- the driving device 21 for swinging the roller 20 is also arranged.
- the roller 20 is positioned between the ultra violet radiation furnace 13 a and the reel 16 , and the drawn optical fiber 1 contacts with the periphery plane of the roller 20 .
- the optical fiber 1 which contacts with the roller 20 moves while rolling on the periphery plane of the roller 20 .
- a twist is applied to the optical fiber 1 .
- the twist applied to the optical fiber 1 is propagated also to the upstream of the drawn optical fiber 1 , and reaches to a portion of the ultra violet-curing resin forming the external covering layer 3 b , which is coated by the coating device 12 a.
- the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized.
- the state where the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized can be changed in the longitudinal direction of the optical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the state where the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized is also inverted alternately in the above described example. Also with such a structure, the outer peripheral shape of the external covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of the optical fiber 1 .
- the outer peripheral shapes of the internal and external covering layers 3 a and 3 b in cross section are made to be elliptical, the direction of the major axis in cross section of the ejection port in the first coating device 12 and the direction of the major axis in cross section of the ejection port in the second coating device 14 are not made to be coincident with each other, and a predetermined angle between them should be provided.
- the ejection port shape of the die may be deformed in the case where the shape in cross section of the covering layer 3 (the external shape of the internal and external covering layers 3 a and 3 b ) is changed in the longitudinal direction.
- the present invention provides an optical fiber which can be suitably used for WDM transmissions and the like, and a method of manufacturing the same.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
An optical fiber 1 comprising a glass portion 2 having a core 2 a and a cladding 2 b, and one or more covering layers 3 formed around the glass portion 2, in which an arrangement form of the covering layer 3 with respect to the glass portion 2 in cross section perpendicular to a longitudinal direction thereof is changed continuously in the longitudinal direction thereof.
Description
- The present invention relates to an optical fiber capable of compensating polarization mode dispersion effectively, and a method of manufacturing the same.
- In recent years, as a wavelength division multiplexing (WDM) transmission and an optical amplification technology progress, while an effective core area (Aeff) of an optical fiber has been scaled up, a more reduction of a polarization mode dispersion (PMD) characteristic has been desired. The polarization mode dispersion characteristic is caused by a transmission speed difference of optical signals between polarization waves perpendicular to each other, and depends on the symmetry of a refractive index distribution of the optical fiber. To be more specific, as the cross section shape of the refractive index distribution in a core portion (light propagation portion), through which a major part of light propagates, is closer to a perfect circle, the PMD characteristic in terms of the optical fiber itself becomes better. On the contrary, when the cross section shape thereof is uncircularized, the PMD characteristic becomes worse. Therefore, in the manufacture of the optical fiber, various contrivances for achieving a out-of-roundness of the cross section shape of the refractive index distribution in the core portion to acquire a good polarization mode dispersion characteristic have been made.
- However, though the cross section shape of the refractive index distribution in the core portion of the optical fiber can be made close to the perfect circle, force is applied to the optical fiber from the outside, and a stress originating from this external force is generated, thus causing double refraction. As a result, there is a problem that the light propagation portion is uncircularized and the polarization mode dispersion characteristic is deteriorated. The application of the stress to the optical fiber depends on placement states of the optical fiber (for example, a spool winding, a ribbon/loose tube, a cable wound around a drum, a cable after laying and the like).
- Accordingly, an object of the present invention is to provide an optical fiber which can suppress deterioration of a polarization mode dispersion characteristic thereof to acquire a good polarization mode dispersion characteristic thereof.
- To achieve the foregoing object, the optical fiber according to the present invention comprises a glass portion having a core and a cladding; and one or more covering layers formed around the glass portion, wherein an arrangement form of the covering layer with respect to the glass portion on a cross section perpendicular to a longitudinal direction of the optical fiber is continuously changed in a longitudinal direction of the optical fiber.
- The change of the arrangement form is performed in such a manner that a center of the glass portion and a center of the covering layer on a cross section perpendicular to a longitudinal direction of the optical fiber are decentered from each other, and a decenter direction on the cross section is changed in the longitudinal direction of the optical fiber.
- The covering layer is formed to be a two-layered structure composed of an internal covering layer and an external covering layer, and at least one of centers of the internal and external covering layers may be decentered from the center of the glass portion.
- A decenter amount, which is a distance between the center of the glass portion and the center of the covering layer, should be set to 12.5 μm or more.
- The change of the arrangement form may be performed in such a manner that an outer peripheral shape of the covering layer in cross section perpendicular to the longitudinal direction of the optical fiber is uncircularized, and the outer peripheral shape of the covering layer in cross section, which is uncircularized, is changed in the longitudinal direction of the optical fiber.
- When the covering layer is formed to be the two-layered structure composed of the internal covering layer and the external covering layer, an outer peripheral shape in cross section, which is the boundary surface between the internal and external covering layers, is uncircularized, and an arrangement of the shape thereof is changed in the longitudinal direction of the optical fiber.
- In this case, out-of-roundness of the covering layer, which is uncircularized, should be set to 5.0 μm or more.
- The change of the arrangement form of the covering layer should be made with a periodicity in the longitudinal direction of the optical fiber. The periodicity should preferably be 0.5 m or less, and more preferably 0.2 m or less. The periodicity itself may be changed in the longitudinal direction.
- The optical fiber according to the present invention can be manufactured in such a manner by drawing a bare optical fiber from a rotating preform; passing the drawn optical fiber through a die in a state where the drawn bare optical fiber rotates while describing a predetermined minute circle and coating resin onto an outer periphery of the drawn bare optical fiber with this die, and curing the coated resin.
- Alternatively, the optical fiber according to the present invention may be manufactured in such a manner by drawing a bare optical fiber from a preform; passing the drawn bare optical fiber through a die which rotates with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with this die; and curing the coated resin.
- The optical fiber according to the present invention can be manufactured also in such a manner by drawing a bare optical fiber from a preform; passing the drawn bare optical fiber through a die which is arranged with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with this die; swinging the optical fiber coated with the resin after passing through the die, thereby twisting the preform and the bare optical fiber, which are positioned on an upstream; and curing the coated resin.
- A shape of an ejection port of the die may be uncircularized.
- According to the optical fiber of the present invention suppresses continuity in the longitudinal direction of a vector of a stress applied to the optical fiber by decentering the covering layer with respect to the glass portion and making the covering layer uncircular, whereby deterioration of the polarization mode dispersion characteristic can be prevented, and a good polarization mode dispersion characteristic in the longitudinal direction of the optical fiber can be acquired as a whole. Moreover, according to the method of manufacturing an optical fiber of the present invention, the foregoing optical fiber can be suitably manufactured.
-
FIG. 1 is a side view of an optical fiber according to the present invention; -
FIGS. 2A to 2E are transverse cross section views of a first embodiment of the optical fiber according to the present invention; -
FIGS. 3A to 3E are transverse cross section views of a second embodiment of the optical fiber according to the present invention; -
FIGS. 4A to 4E are transverse cross section views of a third embodiment of the optical fiber according to the present invention; -
FIGS. 5A to 5E are transverse cross section views of a fourth embodiment of the optical fiber according to the present invention; -
FIG. 6 andFIG. 7 are transverse cross section views of fifth and sixth embodiments of the optical fiber of the present invention, respectively; and -
FIG. 8 toFIG. 14 are configuration views of manufacturing apparatuses for carrying out methods of manufacturing optical fibers according to the present invention. - Embodiments of an optical fiber of the present invention will be described with reference to the accompanying drawings. To facilitate the comprehension of the explanation, the same reference numerals denote the same parts, where possible, throughout the drawings, and a repeated explanation will be omitted.
-
FIG. 1 is an external view of theoptical fiber 1 according to the present invention. The optical fiber according to the present invention has a feature in the shape of a transverse section and the change in a longitudinal direction. Accordingly, different positions of the optical fiber in the longitudinal direction are denoted by the symbols A, B, C, D and E, respectively as shown inFIG. 1 , and descriptions are made in the embodiments to be described below with reference to the cross sections at the respective positions thereof. The symbols A, B, C, D and E assigned to the respective ends of the reference numerals indicate the transverse cross sections in the positions A, B, C, D and E, which are the cross section views in the sections perpendicular to the longitudinal direction of theoptical fiber 1. - The
optical fiber 1 of this embodiment comprises aglass portion 2 including acore 2 a having a high refractive index and acladding 2 b having a low refractive index, which is formed around thecore 2 a, and acovering layer 3, which is composed of aninternal covering layer 3 a having a low Young's modulus and anexternal covering layer 3 b having a high Young's modulus. An external diameter of theglass portion 2 is 125 μm, an external diameter of theinternal covering layer 3 a ranges from 170 to 200 μm, and an external diameter of theexternal covering layer 3 b ranges from 235 to 265 μm. Any of the internal andexternal covering layers glass portion 2, theinternal covering layer 3 a and theexternal covering layer 3 b assume a circular shape on a section (transverse plane) perpendicular to the longitudinal direction (extending direction) of theoptical fiber 1, the circular shape having an out-of-roundness approximately equal to zero. - Moreover, the center of the
glass portion 2 and the center of the external surface of theexternal covering layer 3 b are approximately coincident with each other as the center O1. On the contrary, the center O2 of the boundary plane of theinternal covering layer 3 a and theexternal covering layer 3 b is decentered from the center O1. InFIGS. 2A to 2E , the direction in which the center O2 decenters from the center O1 (herein after the direction is referred to as a decenter direction) is indicated by the arrow line extending from the center O1. It is understood that the dencentering direction is changed in accordance with the longitudinal direction of theoptical fiber 1. In this embodiment, the decenter direction is rotated in a certain direction (clockwise inFIGS. 2A to 2E ) along the longitudinal direction (direction of the arrow L inFIG. 1 ) of theoptical fiber 1. - As described above, generally, an optical fiber is often applied with a predetermined lateral pressure also from the outside thereof depending on its install state. The lateral pressure from the outside of the optical fiber acts on the optical fiber almost from a certain direction. For example, in a state where the optical fiber is wound around a spool, the lateral pressure acts on the optical fiber in a direction perpendicular to the body of the spool. In a state where the optical fiber is formed to be a tape-like shape to be accommodated in a slot, the lateral pressure acts thereon in a direction perpendicular to the bottom of the slot.
- The lateral pressure acting on the optical fiber from the outside thereof causes a stress to act on the glass portion through the covering layer, thus causing double refraction. At this time, when the stress acts on the glass portion from a certain direction along the longitudinal direction of the optical fiber, a refractive index distribution of a light propagation portion (core portion) of the optical fiber is uncircularized as a result of the double refraction, and polarization mode dispersion occurs. Since the polarization mode dispersion arises from the lateral pressure from the outside of the optical fiber, the polarization mode dispersion inevitably occurs even if the optical fiber itself has a structure causing no polarization mode dispersion.
- Herein, since the
glass portion 2 and theinternal covering layer 3 a are decentered from each other in theoptical fiber 1 of this embodiment, continuity in the longitudinal direction of the vector of the stress applied to theoptical fiber 1 is controlled, and hence deterioration of the polarization mode dispersion characteristic can be prevented. - In this embodiment, as shown in
FIGS. 3A to 3E , the center of theglass portion 2 and the center of theinternal covering layer 3 a are approximately coincident with each other as the center O1. On the contrary, the center O2 of theexternal covering layer 3 b is decentered from the center O1. The decenter direction (arrow direction inFIGS. 3A to 3E ) is changed in the longitudinal direction of theoptical fiber 1. Particularly, in this embodiment, the decenter direction is rotated in a certain direction (clockwise inFIGS. 3A to 3E ) along the longitudinal direction (direction of the arrow L inFIG. 1 ) of theoptical fiber 1. - Since the
glass portion 2 and theexternal covering layer 3 b are decentered from each other in theoptical fiber 1 of this embodiment, the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1 is consequently controlled. Also with such a configuration, similarly to the foregoing first embodiment, deterioration of the polarization mode dispersion characteristic is prevented by controlling the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1, and, as a whole, the polarization mode characteristic in the longitudinal direction of theoptical fiber 1 can be improved. - Although the decenter direction is changed so as to rotate in the certain direction along the longitudinal direction of the
optical fiber 1 in the foregoing first and second embodiments, the style of the change of the decenter direction is not limited as such. For example, the direction of the rotation may be inverted alternately clockwise and counterclockwise. Furthermore, in all cases, the decenter direction need not to be rotated or inverted at certain intervals, and the decenter direction may be rotated or inverted at odd intervals. - When the decenter direction is rotated along the longitudinal direction of the
optical fiber 1, the rotation of the decenter direction should be made twice or more per 1 m, and the rotation thereof should more preferably be made five times or more per 1 m. Specifically, the cycle of the rotation of the decenter direction should be set to 0.5 m or less, and should more preferably be set to 0.2 m or less. When the cycle of the rotation of the decenter direction exceeds 0.5 m, the change of the decenter amount in the longitudinal direction is insufficient, and it is impossible to acquire a good polarization mode dispersion characteristic. Furthermore, the reason why the change of the decenter amount is set to 0.2 m or less is that the change of the decenter amount in the longitudinal direction can be fully acquired and the effect of the acquisition of the improved polarization mode dispersion characteristic can be sufficiently achieved. - Furthermore, the foregoing decenter amount (distance X in
FIGS. 2A and 3A ) should be preferably set to 12.5 μm or more. If the decenter amount is less than 12.5 μm, the change of the decenter amount in the longitudinal direction is insufficient, and it is impossible to acquire a good polarization mode dispersion characteristic. - In this embodiment, as shown in
FIGS. 4A to 4E , the outer peripheral shape of theinternal covering layer 3 a in cross section (perpendicular to the longitudinal direction of the optical fiber 1), that is, the shape of the boundary surface between theinternal covering layer 3 a and theexternal covering layer 3 b, is uncircularized. “Uncircularize” means that the shape is intentionally made not to be a perfect circle. Specifically, the out-of-roundness of the outer periphery of theinternal covering layer 3 a in cross section is intentionally made to be large on the cross section perpendicular to the longitudinal direction of theoptical fiber 1. Herein, the out-of-roundness is defined as a difference between the maximum diameter of an inscribed circle and the minimum diameter of a circumscribed circle. In this embodiment, the outer peripheral shape of theinternal covering layer 3 a in cross section is made to be elliptical as one mode of uncircularize. - The outer peripheral shape of the
internal covering layer 3 a in cross section, which is made to be elliptical, is changed in the longitudinal direction of theoptical fiber 1. To be more specific, in this embodiment, the direction of the major axis of the ellipse rotates in a certain direction (clockwise inFIGS. 4A to 4E ) along the longitudinal direction of theoptical fiber 1. As described above, theoptical fiber 1 of the embodiment has theinternal covering layer 3 a, in which the outer peripheral shape in cross-section is uncircularized. Accordingly, the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1 is suppressed, and hence the deterioration of the polarization mode dispersion characteristic is prevented. Thus, it is possible to acquire the good polarization mode dispersion characteristic as a whole in the longitudinal direction of theoptical fiber 1. - In this embodiment, the outer peripheral shape of the
external covering layer 3 b in cross section (cross sections ofFIGS. 5A to 5E ), which is perpendicular to the longitudinal direction (extending direction) of theoptical fiber 1, is uncircularized. In the cross section perpendicular to the longitudinal direction of theoptical fiber 1, the out-of-roundness of theexternal covering layer 3 b is made to be large. In this embodiment, the outer peripheral shape of theexternal covering layer 3 b in cross section is made to be elliptical as one mode of uncircularize. - The outer peripheral shape of the
external covering layer 3 b in cross section, which is made to be elliptical, is changed in the longitudinal direction of theoptical fiber 1. Particularly, in this embodiment, the direction of the major axis of the ellipse rotates in the certain direction (clockwise inFIGS. 5A to 5E ) along the longitudinal direction of theoptical fiber 1. Since theoptical fiber 1 of this embodiment has theexternal covering layer 3 b which is uncircularized, the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1 is suppressed, and the deterioration of the polarization mode dispersion characteristic is prevented. Thus, the polarization mode dispersion characteristic in the longitudinal direction of theoptical fiber 1 can be improved as a whole. - In the foregoing third and fourth embodiments, the respective the outer peripheral shapes of the internal and external covering layers 3 a and 3 b in cross section, which are uncircularized, are not changed in the longitudinal direction of the
optical fiber 1, but the respective major axis of the ellipses of the internal and external covering layers 3 a and 3 b in cross section changes so as to rotate in the certain direction. However, the mode of the change is not limited as such. For example, the direction of the rotation of the major axis of the ellipse may be alternately inverted. Also in any case, the rotation of the major axis of the ellipse and the inversion of the rotation thereof need not to be performed at certain intervals, but may be performed at odd intervals. The outer periphery of the covering layer in cross section is not only made to be an elliptical shape, but also may be made to be other shapes such as an egg-like shape. Moreover, the outer peripheral shape of the covering layer in cross section is not changed by rotating the direction of the major axis of the ellipse, but a change from an elliptical shape to an egg-like shape may be adopted. Alternatively, a technique in which a ratio of the major axis of the ellipse to the minor axis thereof is changed may be conceived. - When the uncircularized shape is rotated in the longitudinal direction of the
optical fiber 1, the rotation should be preferably made twice or more per 1 m (the cycle is 0.5 m or less). The rotation should be more preferably made five times or more per 1 m (the cycle is 0.2 m or less) The reasons of this are as follows. When the rotation is made less than two times (the cycle exceeds 0.5 m), the change of the state where the uncircularized shape in the longitudinal direction of theoptical fiber 1 is insufficient, it is impossible to acquire a good polarization mode dispersion characteristic, and furthermore, since the state where the outer peripheral shape of the external covering layer in cross section is uncircularized in the longitudinal direction of the optical fiber is sufficiently changed by setting the rotation number to be 5 rotations/m or more (the cycle is 0.2 m or less), effects that a good polarization mode dispersion characteristic is acquired can be achieved. - Moreover, the out-of-roundness accompanied with uncircularization described above should preferably be set to 5.0 μm or more. When the out-of-roundness is less than 5.0 μm, the change of the state where the outer peripheral shape of the external covering layer in cross section, which is uncircularized, in the longitudinal direction of the optical fiber is insufficient, and hence a good polarization mode dispersion characteristic cannot be acquired.
- The fifth embodiment aims at the improvement of the polarization mode dispersion characteristic by the foregoing decentering of the
covering layer 3 as well as the improvement of the polarization mode dispersion characteristic by uncircularization of thecovering layer 3. In the fifth embodiment illustrated inFIG. 6 , the centers of theglass portion 2 and theinternal covering layer 3 a are approximately coincident with each other as the center O1 on the cross section perpendicular to the longitudinal direction of theoptical fiber 1. On the contrary, the center O2 of theexternal covering layer 3 b is decentered from the center O1. Furthermore, the outer peripheral shape of theinternal covering layer 3 a in cross section, which is perpendicular to the longitudinal direction of theoptical fiber 1, that is, the boundary shape between theinternal covering layer 3 a and theexternal covering layer 3 b, is uncircularized. Also with such a configuration, similarly to the first embodiment and the like, the deterioration of the polarization mode dispersion characteristic can be prevented by suppressing the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1, and the polarization mode dispersion characteristic in the longitudinal direction of theoptical fiber 1 can be improved as a whole. - Similarly to the fifth embodiment, this embodiment also aims at both the improvement of the polarization mode dispersion characteristic by the foregoing decentering of the
covering layer 3 as well as the improvement of the polarization mode dispersion characteristic by uncircularization of thecovering layer 3. As shown inFIG. 7 , the centers of theglass portion 2 and theexternal covering layer 3 b are approximately coincident with each other as the center O1. On the contrary, the center O2 of theinternal covering layer 3 a is decentered from the center O1. Furthermore, the outer peripheral shape of theexternal covering layer 3 b in cross section, which is perpendicular to the longitudinal direction of theoptical fiber 1, is uncircularized. Also with such a configuration, similarly to the foregoing first embodiment and the like, the deterioration of the polarization mode dispersion characteristic can be prevented by suppressing the continuity in the longitudinal direction of the stress vector applied to theoptical fiber 1, and the polarization mode dispersion characteristic in the longitudinal direction of theoptical fiber 1 can be improved as a whole. - Next, methods of manufacturing the foregoing
optical fibers 1 will be described with reference to manufacturing apparatuses. First, the case where thecovering layer 3 is decentered will be described. - The manufacturing apparatus of the foregoing
optical fibers 1 illustrated inFIGS. 2A to 2E orFIGS. 3A to 3E is illustrated inFIG. 8 . The outline of the manufacturing apparatus is constructed on the basis of an ordinary optical fiber manufacturing apparatus. Specifically, anoptical fiber preform 10 is attached to the apparatus, and the apparatus itself comprises aheater 11 for heating a lower end of thepreform 10; afirst coating device 12 for coating ultra violet-curing resin onto aglass fiber 10 a which is drawn from thepreform 10, the ultra violet-curing resin serving as theinternal covering layer 3 a; a first ultraviolet radiation furnace 13 for curing the resin coated by thefirst coating device 12; asecond coating device 14 for coating ultra violet-curing resin onto theglass fiber 10 a on which theinternal covering layer 3 a is formed, the ultra violet-curing resin serving as theexternal covering layer 3 b; a second ultraviolet radiation furnace 15 for curing the ultra violet-curing resin coated by thesecond coating device 14; and areel 16 for winding theoptical fiber 1 on which the two-layered covering layer is formed. - The
heater 11, thefirst coating device 12, the first ultraviolet radiation furnace 13, thesecond coating device 14, the second ultraviolet radiation furnace 15, and thereel 16 are placed sequentially from the upstream side to the downstream side on the fiber-drawing path for theoptical fiber 1. To decenter the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) from theglass portion 2, a drivingdevice 17 for rotating the preform is provided in a fitting portion of thepreform 10. Thepreform 10 is rotated so that the center axis of the drawn optical fiber (glass fiber 10 a) describes a minute circle. As a result, since the center axis of theglass fiber 10 a deviates from the centers of the ejection ports of the first andsecond coating devices internal covering layer 3 a or theexternal covering layer 3 b) is decentered, and thecovering layer 3 can be changed in the longitudinal direction of theoptical fiber 1. - The modification of the foregoing manufacturing apparatus of
FIG. 8 is shown inFIG. 9 . In the manufacturing apparatus shown inFIG. 9 , ultra violet-curing resin forming theinternal covering layer 3 a and ultra violet-curing resin forming theexternal covering layer 3 b are coated onto theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - Also herein, to decenter the covering layer 3 (the
internal covering layer 3 a or theexternal covering layer 3 b), the drivingdevice 17 for rotating the preform is arranged in the fitting portion of thepreform 10. Thepreform 10 is rotated by this drivingdevice 17 so that the center axis of the drawn optical fiber (glass fiber 10 a) describes a minute circle. As a result, since theglass fiber 10 a deviates from the center of the ejection port of thecoating device 12 a, the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) is decentered, and thecovering layer 3 can be changed in the longitudinal direction of theoptical fiber 1. - A manufacturing apparatus for manufacturing the
optical fiber 1 shown inFIGS. 2A to 2E is shown inFIG. 10 . In this embodiment, adjustment is made so that the center of the ejection port of the die in thefirst coating device 12, which coats the resin for forming theinternal covering layer 3 a, slightly deviates from the center of the axis of the drawn optical fiber (glass fiber 10 a). Accompanied with thefirst coating device 12, the drivingdevice 18 for rotating the die on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a) is also arranged. - The die of the
first coating device 12, that is, the ejection port thereof, is rotated by the drivingdevice 18 during the optical fiber (glass fiber 10 a) drawing. As a result, since the center of the ultra violet-curing resin coated by thefirst coating device 12 is decentered, theinternal covering layer 3 a is decentered, and hence theinternal covering layer 3 a can be changed in the longitudinal direction of theoptical fiber 1. - The modification of the foregoing manufacturing apparatus of
FIG. 10 is shown inFIG. 11 . In the manufacturing apparatus shown inFIG. 11 , ultra violet-curing resin forming theinternal covering layer 3 a and ultra violet-curing resin forming theexternal covering layer 3 b are coated onto theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - Also in the modification, adjustment is made so that the center of the ejection port of the die in the
coating device 12 a, which coats the resin for forming theinternal covering layer 3 a, slightly deviates from the center axis of the drawn optical fiber (glass fiber 10 a). Accompanied with thecoating device 12 a, the drivingdevice 18 for rotating the die, which coats the resin for forming theinternal covering layer 3 a, on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a) is also arranged. - The die of the
coating device 12 a which coats the resin for forming theinternal covering layer 3 a, that is, the ejection port thereof, is rotated by the drivingdevice 18 during the optical fiber (glass fiber 10 a) drawing. As a result, since the center of the ultra violet-curing resin, which is coated by thecoating device 12 a and forms theinternal covering layer 3 a, is decentered (at this time, the center of the ultra violet-curing resin for forming theexternal covering layer 3 b is not decentered), theinternal covering layer 3 a is decentered, and hence theinternal covering layer 3 a can be changed in the longitudinal direction of theoptical fiber 1. - A manufacturing apparatus for manufacturing the
optical fiber 1 shown inFIGS. 3A to 3E is shown inFIG. 12 . In this embodiment, adjustment is made so that the center of the ejection port of the die in thesecond coating device 14, which coats the resin for forming theexternal covering layer 3 b, slightly deviates from the center axis of the drawn optical fiber (glass fiber 10 a in which theinternal covering layer 3 a is formed). Accompanied with thesecond coating device 14, the drivingdevice 19 for rotating the die on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a) is also arranged. - The die of the
second coating device 14, that is, the ejection port thereof, is rotated by the drivingdevice 19 during the optical fiber (glass fiber 10 a in which theinternal covering layer 3 a is formed) drawing. As a result, since the center of the ultra violet-curing resin coated by thesecond coating device 14 is decentered, theexternal covering layer 3 b is decentered, and hence theexternal covering layer 3 b can be changed in the longitudinal direction of theoptical fiber 1. - Note that, if the driving
device 18 is designed such that the die which coats the resin for forming theexternal covering layer 3 b is rotated on a plane perpendicular to the fiber-drawing direction of the drawn optical fiber (glass fiber 10 a) in the manufacturing apparatus shown inFIG. 11 , theoptical fiber 1 shown inFIGS. 3A to 3E can also be manufactured by the manufacturing apparatus shown inFIG. 11 . -
FIG. 13 shows another example of the manufacturing apparatus for manufacturing theoptical fiber 1 shown inFIG. 3 . Also in this embodiment, adjustment is made so that the center of the ejection port of the die in thesecond coating device 14, which coats the resin for forming theexternal covering layer 3 b, slightly deviates from the center of the drawn optical fiber (glass fiber 10 a in which theinternal covering layer 3 a is formed). However, the manufacturing apparatus has no mechanism for rotating the die of thesecond coating device 14, but has aroller 20 swinging instead of this mechanism. A drivingdevice 21 for swinging theroller 20 is arranged accompanied with theroller 20. - The
roller 20 is positioned between the second ultraviolet radiation furnace 15 and thereel 16, and the drawn optical fiber contacts with the periphery plane of theroller 20. Herein, when theroller 20 is swung, theoptical fiber 1 which contacts with theroller 20 moves while rolling on the periphery of theroller 20. A twist is applied to theoptical fiber 1. The twist applied to theoptical fiber 1 is propagated also to the upstream of the drawnoptical fiber 1, and reaches to a portion of the ultra violet-curing resin coated by thesecond coating device 14. - Therefore, since the ejection port of the die is decentered by the
second coating device 14, theexternal covering layer 3 b is decentered, and this decenter direction is changed in the longitudinal direction of theoptical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the decenter direction is also inverted alternately. Also with such a structure, theexternal covering layer 3 b is decentered, and can be changed in the longitudinal direction of theoptical fiber 1. - In
FIG. 14 , the modification of the foregoing manufacturing apparatus ofFIG. 13 is shown. In the manufacturing apparatus shown inFIG. 14 , ultra violet-curing resin forming theinternal covering layer 3 a and ultra violet-curing resin forming theexternal covering layer 3 b are coated onto theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - Also in the manufacturing apparatus of
FIG. 14 , adjustment is made so that the center of the ejection port of the die in thecoating device 12 a for coating the resin, which forms theexternal covering layer 3 b, slightly deviates from the center of the drawn optical fiber (glass fiber 10 a in which theinternal covering layer 3 a is formed). Moreover, there is no mechanism which rotates the die for coating the resin for forming theexternal covering layer 3 b, and theroller 20 swinging is arranged instead of this mechanism. Moreover, accompanied with theroller 20, the drivingdevice 21 for swinging theroller 20 is also arranged. - The
roller 20 is positioned between the ultraviolet radiation furnace 13 a and thereel 16, and the drawnoptical fiber 1 contacts with the periphery plane of theroller 20. Herein, when theroller 20 is swung, theoptical fiber 1 which contacts with theroller 20 moves while rolling on the periphery plane of theroller 20. A twist is applied to theoptical fiber 1. The twist applied to theoptical fiber 1 is propagated also to the upstream of the drawnoptical fiber 1, and reaches to a portion of the ultra violet-curing resin forming theexternal covering layer 3 b coated by thecoating device 12 a. - Therefore, since the ejection port of the die which coats the resin for forming the
external covering layer 3 b is decentered in thecoating device 12 a, theexternal covering layer 3 a is decentered and the decenter direction is changed in the longitudinal direction of theoptical fiber 1 due to the foregoing twist. Since the foregoing twist is applied to theoptical fiber 1 so as to be inverted alternately, the decenter direction is also inverted alternately. Also with such a structure, theexternal covering layer 3 b is decentered, and theexternal covering layer 3 b can be changed in the longitudinal direction of theoptical fiber 1. - Next, the case where the shape of the
covering layer 3 in cross section is uncircularized will be described. - A first example of a manufacturing apparatus itself is almost the same as that shown in
FIG. 8 . In accordance with theinternal covering layer 3 a or theexternal covering layer 3 b in which the outer peripheral shape in cross section is intended to be uncircularized, the ejection port shape of the die of thefirst coating device 12 or thesecond coating device 14 is uncircularized (herein, elliptical). Therefore, the outer peripheral shape of theinternal covering layer 3 a or theexternal covering layer 3 b in cross section is uncircularized, and thepreform 10 is rotated by the drivingdevice 17 positioned at the fitting portion of thepreform 10, whereby the outer peripheral shape of the covering layer in cross section which was uncircularized can be changed in the longitudinal direction of theoptical fiber 1. As a result, the outer peripheral shape of the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - Alternatively, also by approximately the same apparatus as the manufacturing apparatus shown in
FIG. 9 , the outer peripheral shape of the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. In this manufacturing apparatus, the ultra violet-curing resin for forming theinternal covering layer 3 a and the ultra violet-curing resin for forming theexternal covering layer 3 b are coated onto theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - In accordance with the
internal covering layer 3 a or theexternal covering layer 3 b in which the outer peripheral shape in cross section is intended to be made uncircular, the ejection port shape of the die in thecoating device 12 a for either theinternal covering layer 3 a or theexternal covering layer 3 b is uncircularize (herein, elliptical). Thepreform 10 is rotated by the drivingdevice 17 positioned at the fitting portion of thepreform 10, whereby the outer peripheral shape of the covering layer in cross section, which was uncircularized, can be changed in the longitudinal direction of theoptical fiber 1. As a result, the outer peripheral shape of the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - Next, a method of manufacturing the
optical fiber 1 shown inFIGS. 4A to 4E will be described. The basic constitution of the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing manufacturing apparatus shown inFIG. 10 . The ejection port shape of the die in thefirst coating device 12 for forming theinternal covering layer 3 a, in which the shape thereof in cross section is intended to be uncircular, is uncircularized (herein, elliptical). Therefore, the outer peripheral shape of theinternal covering layer 3 a in cross section is uncircularized, and further the die, that is, the ejection port, of thefirst coating device 12 is rotated by the drivingdevice 18 arranged concomitantly with thefirst coating device 12, whereby the outer peripheral shape of theinternal covering layer 3 a in cross section can be changed in the longitudinal direction of theoptical fiber 1. As a result, the outer peripheral shape of theinternal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - Alternatively, also by approximately the same apparatus as the manufacturing apparatus shown in
FIG. 11 , the outer peripheral shape of theinternal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. In this manufacturing apparatus, the ultra violet-curing resin for forming theinternal covering layer 3 a and the ultra violet-curing resin for forming theexternal covering layer 3 b are coated onto theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - In this manufacturing method, the ejection port shape of the die for ejecting the ultra violet-curing resin forming the
internal covering layer 3 a, in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein elliptical). Accompanied with thecoating device 12 a, arranged is the drivingdevice 18 which rotates the die in a plane perpendicular to the fiber-drawing direction of the drawn optical fiber 1 (glass fiber 10 a). The die coats the ultra violet-curing resin for forming theinternal covering layer 3 a. - The die of the
coating device 12 a, that is, the ejection port thereof, which coats the ultra violet-curing resin forming theinternal covering layer 3 a, is rotated by the drivingdevice 18 during the optical fiber (glass fiber 10 a) drawing. As a result, since the surface shape of the ultra violet-curing resin coated by thecoating device 12 a, which forms theinternal covering layer 3 a, in cross section is uncircularized, the outer peripheral shape of theinternal covering layer 3 a in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - Next, a method of manufacturing the
optical fiber 1 shown inFIGS. 5A to 5E will be described. The basic constitution of the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing manufacturing apparatus shown inFIG. 12 . The ejection port shape of the die in thesecond coating device 14 for forming theexternal covering layer 3 b, in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein, elliptical). Therefore, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized, and further the die, that is, the ejection port, in thesecond coating device 14 is rotated by the drivingdevice 19 arranged concomitantly with thesecond coating device 14, whereby the outer peripheral shape of theexternal covering layer 3 b in cross section, which was uncircularized, can be changed in the longitudinal direction of theoptical fiber 1. As a result, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - In the manufacturing apparatus shown in
FIG. 11 , if the drivingdevice 18 is designed such that the die which coats the resin forming theexternal covering layer 3 b is rotated in a plane perpendicular to the fiber-drawn direction of the optical fiber (glass fiber 10 a) formed by the fiber-drawing, theoptical fiber 1 shown inFIGS. 5A to 5E can be manufactured by the manufacturing apparatus shown inFIG. 11 . - Next, another example of the method of manufacturing the
optical fiber 1 shown inFIGS. 5A to 5E will be described. The basic constitution of the manufacturing apparatus used for this manufacturing method is approximately the same as the foregoing apparatus ofFIG. 13 . Also in this embodiment, the ejection port shape of the die in thesecond coating device 14 forming theexternal covering layer 3 b, in which the outer peripheral shape thereof in cross section is intended to be uncircular, is uncircularized (herein elliptical). However, the manufacturing apparatus has no mechanism for rotating the die of thesecond coating device 14, but has aroller 20 swinging instead of this mechanism. A drivingdevice 21 for swinging theroller 20 is arranged accompanied with theroller 20. - The
roller 20 is positioned between the second ultraviolet radiation furnace 15 and thereel 16, and the drawnoptical fiber 1 contacts with the periphery plane of theroller 20. Herein, when theroller 20 is swung, theoptical fiber 1 which contacts with theroller 20 moves while rolling on the periphery plane of theroller 20. A twist is applied to theoptical fiber 1. The twist applied to theoptical fiber 1 is propagated also to the upstream of the drawnoptical fiber 1, and reaches to a portion of the ultra violet-curing resin coated by thesecond coating device 14. - Therefore, since the ejection port of the die is uncircularized (elliptical) in the
second coating device 14, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized. The state where the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized can be changed in the longitudinal direction of theoptical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the direction of the major axis of the ellipse is inverted alternately in the above described example. Also with such a structure, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - Alternatively, also by the same apparatus as the manufacturing apparatus shown in
FIG. 14 , the outer peripheral shape of the covering layer 3 (theinternal covering layer 3 a or theexternal covering layer 3 b) in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. In this manufacturing apparatus, the ultra violet-curing resin for forming theinternal covering layer 3 a and the ultra violet-curing resin for forming theexternal covering layer 3 b are coated on to theglass fiber 10 a within thecoating device 12 a at about the same time. Thecoating device 12 a can coat a plurality of layers simultaneously. Thereafter, in the ultraviolet radiation furnace 13 a, the ultra violet-curing resin forming theinternal covering layer 3 a and the ultra violet-curing resin forming theexternal covering layer 3 b are cured at about the same time. - Also in this manufacturing apparatus, the ejection port of the die in the
coating device 12 a for coating the resin, which forms theexternal covering layer 3 b, is uncircularized. Moreover, there is no mechanism in thecoating device 12 a, which rotates the die for coating the resin for forming theexternal covering layer 3 b, and theroller 20 swinging is arranged instead of this mechanism. Accompanied with theroller 20, the drivingdevice 21 for swinging theroller 20 is also arranged. - The
roller 20 is positioned between the ultraviolet radiation furnace 13 a and thereel 16, and the drawnoptical fiber 1 contacts with the periphery plane of theroller 20. Herein, when theroller 20 is swung, theoptical fiber 1 which contacts with theroller 20 moves while rolling on the periphery plane of theroller 20. A twist is applied to theoptical fiber 1. The twist applied to theoptical fiber 1 is propagated also to the upstream of the drawnoptical fiber 1, and reaches to a portion of the ultra violet-curing resin forming theexternal covering layer 3 b, which is coated by thecoating device 12 a. - Therefore, since the ejection port of the die, which coats the resin for forming the
external covering layer 3 b, is uncircularized in thecoating device 12 a, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized. The state where the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized can be changed in the longitudinal direction of theoptical fiber 1 by the foregoing twist. Since the foregoing twist is applied so as to be inverted alternately, the state where the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized is also inverted alternately in the above described example. Also with such a structure, the outer peripheral shape of theexternal covering layer 3 b in cross section is uncircularized, and can be changed in the longitudinal direction of theoptical fiber 1. - When the outer peripheral shapes of the internal and external covering layers 3 a and 3 b in cross section are made to be elliptical, the direction of the major axis in cross section of the ejection port in the
first coating device 12 and the direction of the major axis in cross section of the ejection port in thesecond coating device 14 are not made to be coincident with each other, and a predetermined angle between them should be provided. Moreover, when the state of the uncircular is changed in the longitudinal direction of the optical fiber, the ejection port shape of the die may be deformed in the case where the shape in cross section of the covering layer 3 (the external shape of the internal and external covering layers 3 a and 3 b) is changed in the longitudinal direction. - The present invention provides an optical fiber which can be suitably used for WDM transmissions and the like, and a method of manufacturing the same.
Claims (7)
1-11. (canceled)
12. A method of manufacturing an optical fiber, comprising the steps of:
drawing a bare optical fiber from a rotating preform;
passing the drawn bare optical fiber through a die in a state where the drawn bare optical fiber rotates while describing a predetermined minute circle, thereby coating resin onto an outer periphery of the drawn bare optical fiber with the die; and
curing the coated resin.
13. A method of manufacturing an optical fiber, comprising the steps of:
drawing a bare optical fiber from a preform;
passing the drawn bare optical fiber through a die which rotates with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with the die; and
curing the coated resin.
14. A method of manufacturing an optical fiber, comprising the steps of:
drawing a bare optical fiber from a preform;
passing the fiber-drawn bare optical fiber through a die which is arranged with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with the die;
swinging the optical fiber coated with the resin after passing through the die and twisting the preform and the bare optical fiber, which are positioned on an upstream; and
curing the coated resin.
15. The method according to claim 12 , wherein an ejection port shape of the die is uncircularized.
16. A method of manufacturing an optical fiber, comprising the steps of:
drawing a bare optical fiber from a preform;
passing the drawn bare optical fiber through a die which rotates with a center thereof deviating from a center of the optical fiber and coating resin onto an outer periphery of the bare optical fiber with the die; and
curing the coated resin, wherein an ejection port shape of the die is uncircularized.
17. The method according to claim 14 , wherein an ejection port shape of the die is uncircularized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/068,888 US20080141725A1 (en) | 2001-03-16 | 2008-02-13 | Optical fiber and method of manufacturing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-076430 | 2001-03-16 | ||
JP2001076430 | 2001-03-16 | ||
PCT/JP2002/002366 WO2002074713A1 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
US10/240,197 US7366383B2 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
US12/068,888 US20080141725A1 (en) | 2001-03-16 | 2008-02-13 | Optical fiber and method of manufacturing the same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/002366 Division WO2002074713A1 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
US10/240,197 Division US7366383B2 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080141725A1 true US20080141725A1 (en) | 2008-06-19 |
Family
ID=18933362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/240,197 Expired - Lifetime US7366383B2 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
US12/068,888 Abandoned US20080141725A1 (en) | 2001-03-16 | 2008-02-13 | Optical fiber and method of manufacturing the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/240,197 Expired - Lifetime US7366383B2 (en) | 2001-03-16 | 2002-03-13 | Optical fiber and method of manufacturing the optical fiber |
Country Status (8)
Country | Link |
---|---|
US (2) | US7366383B2 (en) |
EP (1) | EP1386892A4 (en) |
JP (1) | JP3952949B2 (en) |
KR (1) | KR20030085553A (en) |
CN (1) | CN100351195C (en) |
CA (1) | CA2440938A1 (en) |
TW (1) | TWI238271B (en) |
WO (1) | WO2002074713A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012054047A1 (en) * | 2010-10-22 | 2012-04-26 | Ipg Photonics Corporation | Fiber with asymmetrical core and method for manufacturing same |
US9031099B2 (en) | 2013-04-19 | 2015-05-12 | Ipg Photonics Corporation | Fiber with asymmetrical core and method for manufacturing same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1132759A4 (en) * | 1999-09-16 | 2006-07-19 | Sumitomo Electric Industries | OPTICAL FIBER |
JP4729391B2 (en) * | 2005-11-24 | 2011-07-20 | 株式会社フジクラ | communication cable |
JP4962401B2 (en) * | 2008-04-30 | 2012-06-27 | 住友電気工業株式会社 | Optical fiber ribbon and manufacturing method thereof |
US20110265520A1 (en) * | 2010-04-28 | 2011-11-03 | Xin Chen | Methods For Determining The Rotational Characteristics Of An Optical Fiber |
CN104597561A (en) * | 2015-02-17 | 2015-05-06 | 通鼎互联信息股份有限公司 | Small size optical fiber and manufacturing method thereof |
WO2018000232A1 (en) * | 2016-06-29 | 2018-01-04 | 华为技术有限公司 | Multi-core optical fibre |
JP6612964B1 (en) * | 2018-12-27 | 2019-11-27 | 株式会社フジクラ | Optical fiber manufacturing method and optical fiber manufacturing apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4608273A (en) * | 1984-08-02 | 1986-08-26 | Standard Telephones And Cables Public Limited Company | Optical fibres |
US4949038A (en) * | 1984-12-21 | 1990-08-14 | National Research Development Corporation | Optical fiber having a helical core for sensing a magnetic field |
US5298047A (en) * | 1992-08-03 | 1994-03-29 | At&T Bell Laboratories | Method of making a fiber having low polarization mode dispersion due to a permanent spin |
US5897680A (en) * | 1995-08-16 | 1999-04-27 | Plasma Optical Fibre B.V. | Method of making a twisted optical fiber with low polarisation mode dispersion |
US5915059A (en) * | 1996-06-25 | 1999-06-22 | Kabushiki Kaisha Toshiba | Optical fiber cable and a method for manufacturing the same |
US6076376A (en) * | 1995-03-01 | 2000-06-20 | Sumitomo Electric Industries, Ltd. | Method of making an optical fiber having an imparted twist |
US6317553B1 (en) * | 1999-05-07 | 2001-11-13 | Lucent Technologies Inc. | Coated fiber strands having one or more heterogeneous regions and methods of making the same |
US6687440B2 (en) * | 2001-02-28 | 2004-02-03 | The Boeing Company | Optical fiber having an elevated threshold for stimulated brillouin scattering |
US6876806B2 (en) * | 2000-11-14 | 2005-04-05 | Optiva, Inc. | Optical waveguides and method of fabrication thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2101762B (en) * | 1981-07-07 | 1984-11-28 | Central Electr Generat Board | Optic fibre |
JPS5954645A (en) * | 1982-09-21 | 1984-03-29 | Sumitomo Electric Ind Ltd | Manufacturing method of optical fiber core wire |
JPH0640166B2 (en) * | 1985-09-30 | 1994-05-25 | 日立電線株式会社 | Polarization-maintaining optical fiber |
JPH06194550A (en) * | 1992-12-25 | 1994-07-15 | Fujikura Ltd | Coated optical fiber and its coloring method |
EP0630865A1 (en) * | 1993-06-22 | 1994-12-28 | Sumitomo Electric Industries, Limited | Optical fiber preform, optical fiber and their manufacturing methods |
JP3491642B2 (en) | 1993-06-22 | 2004-01-26 | 住友電気工業株式会社 | Optical fiber preform, optical fiber, and manufacturing method thereof |
JP3303460B2 (en) * | 1993-09-09 | 2002-07-22 | 住友電気工業株式会社 | Glass fiber for optical transmission and method of manufacturing the same |
JP3557606B2 (en) * | 1995-03-01 | 2004-08-25 | 住友電気工業株式会社 | Optical fiber and method of manufacturing optical fiber |
JPH08334660A (en) * | 1995-06-05 | 1996-12-17 | Fujikura Ltd | Low polarization dispersion optical fiber |
EP0842909B1 (en) * | 1996-11-13 | 2002-03-13 | Fibre Ottiche Sud F.O.S. S.p.A. | Apparatus and method for forming an optical fiber |
JPH11302042A (en) * | 1998-04-21 | 1999-11-02 | Fujikura Ltd | Production of optical fiber and apparatus for production |
-
2002
- 2002-03-13 JP JP2002573724A patent/JP3952949B2/en not_active Expired - Lifetime
- 2002-03-13 KR KR10-2003-7012017A patent/KR20030085553A/en not_active Application Discontinuation
- 2002-03-13 WO PCT/JP2002/002366 patent/WO2002074713A1/en active Application Filing
- 2002-03-13 CN CNB028066065A patent/CN100351195C/en not_active Expired - Fee Related
- 2002-03-13 EP EP02705136A patent/EP1386892A4/en not_active Withdrawn
- 2002-03-13 CA CA002440938A patent/CA2440938A1/en not_active Abandoned
- 2002-03-13 US US10/240,197 patent/US7366383B2/en not_active Expired - Lifetime
- 2002-03-15 TW TW091104903A patent/TWI238271B/en not_active IP Right Cessation
-
2008
- 2008-02-13 US US12/068,888 patent/US20080141725A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4608273A (en) * | 1984-08-02 | 1986-08-26 | Standard Telephones And Cables Public Limited Company | Optical fibres |
US4949038A (en) * | 1984-12-21 | 1990-08-14 | National Research Development Corporation | Optical fiber having a helical core for sensing a magnetic field |
US5298047A (en) * | 1992-08-03 | 1994-03-29 | At&T Bell Laboratories | Method of making a fiber having low polarization mode dispersion due to a permanent spin |
US6076376A (en) * | 1995-03-01 | 2000-06-20 | Sumitomo Electric Industries, Ltd. | Method of making an optical fiber having an imparted twist |
US5897680A (en) * | 1995-08-16 | 1999-04-27 | Plasma Optical Fibre B.V. | Method of making a twisted optical fiber with low polarisation mode dispersion |
US5915059A (en) * | 1996-06-25 | 1999-06-22 | Kabushiki Kaisha Toshiba | Optical fiber cable and a method for manufacturing the same |
US6317553B1 (en) * | 1999-05-07 | 2001-11-13 | Lucent Technologies Inc. | Coated fiber strands having one or more heterogeneous regions and methods of making the same |
US6876806B2 (en) * | 2000-11-14 | 2005-04-05 | Optiva, Inc. | Optical waveguides and method of fabrication thereof |
US6687440B2 (en) * | 2001-02-28 | 2004-02-03 | The Boeing Company | Optical fiber having an elevated threshold for stimulated brillouin scattering |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012054047A1 (en) * | 2010-10-22 | 2012-04-26 | Ipg Photonics Corporation | Fiber with asymmetrical core and method for manufacturing same |
KR101222014B1 (en) | 2010-10-22 | 2013-01-15 | 아이피지 포토닉스 코포레이션 | Fiber with asymmetrical core and method for manufacturing the same |
US9031099B2 (en) | 2013-04-19 | 2015-05-12 | Ipg Photonics Corporation | Fiber with asymmetrical core and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
KR20030085553A (en) | 2003-11-05 |
EP1386892A4 (en) | 2008-05-07 |
US20030044147A1 (en) | 2003-03-06 |
JPWO2002074713A1 (en) | 2004-07-08 |
WO2002074713A1 (en) | 2002-09-26 |
TWI238271B (en) | 2005-08-21 |
US7366383B2 (en) | 2008-04-29 |
CA2440938A1 (en) | 2002-09-26 |
CN100351195C (en) | 2007-11-28 |
CN1511121A (en) | 2004-07-07 |
EP1386892A1 (en) | 2004-02-04 |
JP3952949B2 (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080141725A1 (en) | Optical fiber and method of manufacturing the same | |
US6898355B2 (en) | Functionally strained optical fibers | |
JP5827361B2 (en) | Crosstalk operation technology in multi-core fiber | |
EP2799920B1 (en) | Multicore optical fiber | |
US9057815B2 (en) | Angular alignment of optical fibers for fiber optic ribbon cables, and related methods | |
JP2012123247A (en) | Multi-core fiber | |
US9453979B2 (en) | Multi-core optical fiber tape | |
JP2016532137A (en) | Stretchable fiber optic cable | |
WO2016047658A1 (en) | Optical fibre ribbon, and optical-fibre-ribbon production method | |
JP4547848B2 (en) | Optical fiber, method for manufacturing the same, and optical transmission system including the same | |
WO2021101654A1 (en) | Optical fiber cable with drop cables having preattached optical connectors and method to strand the same | |
KR100851047B1 (en) | Optical Fiber with Air holes and Manufacturing Method for Optical Fiber thereof | |
EP4231065A1 (en) | Trench assisted multi-core optical fiber with reduced crosstalk | |
CN112777927B (en) | Bending insensitive optical fiber preform and preparation method thereof | |
CN110346865B (en) | Polarization maintaining optical fiber used in multiple bands | |
US20050034443A1 (en) | Optical fibers twinning apparatus and process | |
JP3662668B2 (en) | Optical fiber | |
JP3745831B2 (en) | Optical fiber | |
JP7613595B2 (en) | Fiber optic cable | |
US20240280745A1 (en) | Multicore optical fiber and multicore optical fiber cable | |
US20030021559A1 (en) | Functionally tensioned optical fibers to form ribbons with controlled geometry, optimized residual strain and reduced attenuation | |
JP3584619B2 (en) | Optical cable and method for manufacturing the same | |
JP7502080B2 (en) | Optical fiber and methods for processing and manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |