US20080118766A1 - Mixed powder for powder metallurgy and green compact using the same - Google Patents
Mixed powder for powder metallurgy and green compact using the same Download PDFInfo
- Publication number
- US20080118766A1 US20080118766A1 US12/015,180 US1518008A US2008118766A1 US 20080118766 A1 US20080118766 A1 US 20080118766A1 US 1518008 A US1518008 A US 1518008A US 2008118766 A1 US2008118766 A1 US 2008118766A1
- Authority
- US
- United States
- Prior art keywords
- powder
- resin
- green compact
- thermosetting resin
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011812 mixed powder Substances 0.000 title claims abstract description 65
- 238000004663 powder metallurgy Methods 0.000 title abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 96
- 239000011347 resin Substances 0.000 claims abstract description 96
- 239000000843 powder Substances 0.000 claims abstract description 91
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 37
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 28
- 229920001225 polyester resin Polymers 0.000 claims abstract description 22
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004593 Epoxy Substances 0.000 claims abstract description 8
- 238000005520 cutting process Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 18
- 239000000314 lubricant Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 claims description 4
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229940037312 stearamide Drugs 0.000 claims description 3
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 claims description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 3
- -1 cresol compound Chemical class 0.000 description 21
- 239000002253 acid Substances 0.000 description 14
- 239000000178 monomer Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 125000003700 epoxy group Chemical group 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 150000008064 anhydrides Chemical class 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000004645 polyester resin Substances 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 7
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 125000002843 carboxylic acid group Chemical group 0.000 description 5
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 5
- 239000006247 magnetic powder Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- XWAMHGPDZOVVND-UHFFFAOYSA-N 1,2-octadecanediol Chemical compound CCCCCCCCCCCCCCCCC(O)CO XWAMHGPDZOVVND-UHFFFAOYSA-N 0.000 description 2
- UNVGBIALRHLALK-UHFFFAOYSA-N 1,5-Hexanediol Chemical compound CC(O)CCCCO UNVGBIALRHLALK-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- ARYIITVULFDIQB-UHFFFAOYSA-N (2-methyloxiran-2-yl)methyl prop-2-enoate Chemical compound C=CC(=O)OCC1(C)CO1 ARYIITVULFDIQB-UHFFFAOYSA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- IBTLFDCPAJLATQ-UHFFFAOYSA-N 1-prop-2-enoxybutane Chemical compound CCCCOCC=C IBTLFDCPAJLATQ-UHFFFAOYSA-N 0.000 description 1
- LWJHSQQHGRQCKO-UHFFFAOYSA-N 1-prop-2-enoxypropane Chemical compound CCCOCC=C LWJHSQQHGRQCKO-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- FBFIDNKZBQMMEQ-UHFFFAOYSA-N 3-(3-phenylpentan-3-yl)benzene-1,2-diamine Chemical compound C=1C=CC(N)=C(N)C=1C(CC)(CC)C1=CC=CC=C1 FBFIDNKZBQMMEQ-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 description 1
- ANOPCGQVRXJHHD-UHFFFAOYSA-N 3-[3-(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]propan-1-amine Chemical compound C1OC(CCCN)OCC21COC(CCCN)OC2 ANOPCGQVRXJHHD-UHFFFAOYSA-N 0.000 description 1
- OJPSFJLSZZTSDF-UHFFFAOYSA-N 3-ethoxyprop-1-ene Chemical compound CCOCC=C OJPSFJLSZZTSDF-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 1
- QLIQIXIBZLTPGQ-UHFFFAOYSA-N 4-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=C(C(O)=O)C=C1 QLIQIXIBZLTPGQ-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- CSHJJWDAZSZQBT-UHFFFAOYSA-N 7a-methyl-4,5-dihydro-3ah-2-benzofuran-1,3-dione Chemical compound C1=CCCC2C(=O)OC(=O)C21C CSHJJWDAZSZQBT-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- WUAIVKFIBCXSJI-UHFFFAOYSA-N butane-1,3-diol;butane-1,4-diol Chemical compound CC(O)CCO.OCCCCO WUAIVKFIBCXSJI-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- OYOFUEDXAMRQBB-UHFFFAOYSA-N cyclohexylmethanediamine Chemical compound NC(N)C1CCCCC1 OYOFUEDXAMRQBB-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- ZITKDVFRMRXIJQ-UHFFFAOYSA-N dodecane-1,2-diol Chemical compound CCCCCCCCCCC(O)CO ZITKDVFRMRXIJQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- WNMORWGTPVWAIB-UHFFFAOYSA-N ethenyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC=C WNMORWGTPVWAIB-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- JZRGFKQYQJKGAK-UHFFFAOYSA-N ethenyl cyclohexanecarboxylate Chemical compound C=COC(=O)C1CCCCC1 JZRGFKQYQJKGAK-UHFFFAOYSA-N 0.000 description 1
- BLZSRIYYOIZLJL-UHFFFAOYSA-N ethenyl pentanoate Chemical compound CCCCC(=O)OC=C BLZSRIYYOIZLJL-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- QVTWBMUAJHVAIJ-UHFFFAOYSA-N hexane-1,4-diol Chemical compound CCC(O)CCCO QVTWBMUAJHVAIJ-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 description 1
- GLOBUAZSRIOKLN-UHFFFAOYSA-N pentane-1,4-diol Chemical compound CC(O)CCCO GLOBUAZSRIOKLN-UHFFFAOYSA-N 0.000 description 1
- XLMFDCKSFJWJTP-UHFFFAOYSA-N pentane-2,3-diol Chemical compound CCC(O)C(C)O XLMFDCKSFJWJTP-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- CDXZRBLOGJXGTN-UHFFFAOYSA-N prop-2-enoxycyclohexane Chemical compound C=CCOC1CCCCC1 CDXZRBLOGJXGTN-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
Definitions
- the present invention relates to a mixed powder for powder metallurgy to be used as a feedstock of a green compact having an adequate density and strength even before the sintering process and having an excellent machinability, and a green compact using the mixed powder as a feedstock.
- a powder metallurgy is a technology used for producing machine parts and oil-impregnated bearings from a metal powder. Since highly accurate products can be efficiently mass-produced, the powder metallurgy is indispensable particularly in the automobile industry and the like.
- this powder metallurgy in general, a mixed powder including a metal powder is molded by compression and the resultant green compact is then dewaxed. Subsequently, for example, in an iron-based powder metallurgy, the compact is sintered at a temperature of about 1,000° C. to about 1,300° C. In this sintering process, the mixed metal powder forms an alloy, thereby increasing the strength of the compact. A cutting operation is then performed on the resultant sintered compact.
- Such a sintered compact has an excessively high strength from the viewpoint of a cutting operation. Furthermore, the lifetime of a cutting tool used is shortened because of the high strength of the sintered compact.
- a green compact cannot be subjected to a cutting operation prior to sintering because the green compact is brittle. Accordingly, a technology is desired by which the strength of a green compact prior to the sintering process is increased, so that the green compact can subsequently be subjected to a cutting operation and finally sintered.
- a document by Tianjun Liu et al. discloses an example of such a technology.
- a polymer lubricant is added to a mixed powder, which constitutes a feedstock, and a green compact made of the resultant mixed powder is heated at a temperature lower than the sintering temperature. Consequently, the strength of the compact can be increased only by this heat treatment and thus a cutting operation can be performed prior to the sintering process.
- the fluidity of the mixed powder is one of its important characteristics.
- a low fluidity of a mixed powder causes the following problems. For example, a bulging can occur at the upper part of a discharging hole of a hopper, resulting in a discharge failure. Also, the mixed powder can become clogged in a hose connecting from the hopper to a shoe box. Furthermore, even if a mixed powder having a low fluidity is compulsorily discharged from the hose, the powder may not satisfactorily fill a die, in particular, a die having thin walls. Consequently, a satisfactory compact may not be formed. For these reasons, a raw powder for powder metallurgy having excellent fluidity has been strongly desired.
- thermosetting resin is added to a magnetic powder or the like, and a heat treatment is then performed.
- a compact is cured without sintering while the magnetic properties of the compact are ensured.
- the resultant compact is used without further treatment. Accordingly, this manufacturing technology of a bonded magnet may be applied to the powder metallurgy.
- known manufacturing technologies of bonded magnets cannot be applied to the powder metallurgy as they are.
- Japanese Unexamined Patent Application Publication Nos. 4-284602 paragraph No. 0007, and Examples
- 6-112022 paragraph Nos. 0015 and 0016, and Examples
- 6-188137 paragraph Nos. 0015 and 0020, and Examples
- 8-31677 paragraph Nos. 0031 and 0033, and Examples
- the type and the particle diameter of the thermosetting resin are not studied in detail because these technologies relate to a bonded magnet and their objects are different from the object of the present invention.
- thermosetting resin is relatively large from the viewpoint of application to the powder metallurgy.
- the content of a thermosetting resin binder is 0.5 to 4 mass percent base on an alloy.
- 0.5 to 5 parts by weight (in particular, 1 to 3 parts by weight) of a thermosetting resin is added to 100 parts by weight of a magnetic powder.
- the amount of a thermosetting resin relative to the total amount of an alloy powder is 2 mass percent or more. According to investigations made by the inventors of the present invention, when a thermosetting resin is excessively added to a mixed powder for powder metallurgy, the fluidity of the powder and the density of the green compact are decreased.
- the compounding ratio of the epoxy resin powder to the magnetic powder is 0.1 to 0.5 mass percent.
- An inorganic additive is added to the mixed powder in order to suppress the abrasion with a die during molding.
- a component that improves the strength or machinability of the compact is not considered.
- the content of this inorganic additive is very small (20 to 40 mass percent of the total amount of the resin binder, 0.02 to 0.2 mass percent of the total amount of the magnetic powder). Therefore, even if the inorganic additive has a function of enhancing the strength of the compact or the like, the function may not be fulfilled in such a small content.
- a mixed powder for powder metallurgy to be used as a feedstock of a green compact. Because of its excellent fluidity, the mixed powder provides a high productivity. Furthermore, a green compact using the mixed powder as a feedstock has an adequate density and strength, and is excellent in terms of machinability. Therefore, a cutting operation can be performed prior to the sintering process, and in addition, the lifetime of a cutting tool used can be extended. Also, it is an object of the present invention to provide a green compact using this mixed powder as a feedstock for powder metallurgy, the green compact having an excellent strength and the like even before sintering.
- the inventors of the present invention have extensively studied, in particular, the composition of a mixed powder for powder metallurgy and found the following: When a component for improving mechanical properties and a thermosetting resin powder are added to a base powder, and in addition, an appropriate thermosetting resin powder is used, a green compact having an adequate density and strength can be produced.
- the present invention has been made on the basis of this finding.
- a mixed powder for powder metallurgy of the present invention is used as a feedstock of a green compact, and the mixed powder includes an iron powder and/or an iron alloy powder, a component for improving mechanical properties, and a thermosetting resin powder.
- the thermosetting resin powder is composed of at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin.
- the average particle diameter of the thermosetting resin powder is 100 ⁇ m or less
- the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
- the mixed powder for powder metallurgy preferably further includes a lubricant.
- a lubricant can decrease the coefficient of friction between the green compact and a die. As a result, the generation of die galling and damage of the die can be suppressed.
- the lubricant is preferably at least one compound selected from the group consisting of ethylenebisstearamide, stearamide, zinc stearate, and lithium stearate. This is because these compounds are excellent as an additional component of the mixed powder for powder metallurgy.
- the component for improving mechanical properties is preferably at least one substance selected from the group consisting of copper, nickel, chromium, molybdenum, graphite, and manganese sulfide. This is because these substances are diffused into the iron powder or the like during the sintering process. Consequently, the hardness or the toughness of the compact can be improved or the machinability of the compact can be improved.
- a green compact of the present invention is made of the above-described mixed powder for powder metallurgy.
- the mixed powder for powder metallurgy of the present invention has excellent fluidity and the like and provides an excellent productivity. Furthermore, since a green compact using this mixed powder as a feedstock has an adequate density and strength even before sintering, the green compact can be subjected to a cutting operation. In addition, since the green compact does not have an excessively high strength, the lifetime of a cutting tool used can be extended. Accordingly, the mixed powder for powder metallurgy of the present invention and the green compact using the mixed powder as a feedstock are excellent for industrial application from the viewpoint that the productivity of powder metallurgy can be improved.
- a mixed powder for powder metallurgy of the present invention includes an iron powder and/or an iron alloy powder, a component for improving mechanical properties, and a thermosetting resin powder.
- the thermosetting resin powder is composed of at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin; the average particle diameter of the thermosetting resin powder is 100 ⁇ m or less; and the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
- the component for improving mechanical properties is added in order to improve the mechanical properties such as the hardness and the toughness of a compact or to improve the machinability of the compact by diffusing into a base iron powder or the like during the sintering process.
- the component for improving mechanical properties include metal powders used for alloys such as copper, nickel, chromium, and molybdenum powders; and inorganic powders such as graphite and manganese sulfide powders. These components may be used alone or in combinations of two or more powders.
- the component for improving mechanical properties may be mixed with an iron powder or the like when used. Alternatively, for example, graphite may be uniformly adhered to an iron powder or the like with a binder therebetween when used.
- the content of metal powder used for alloys serving as a component for improving mechanical properties is 0.1 to 4 mass percent (hereinafter, unless otherwise stated, the “mass percent” is simply represented by “%”) relative to the total amount of a base iron powder or the like. At a content of less than 0.1%, a satisfactory improvement of mechanical properties may not be achieved because of a small amount of diffusion in the base powder. On the other hand, at a content exceeding 4%, the improvement of mechanical properties is also decreased. In addition, at such an excessively high content, a green compact having a satisfactory density may not be produced because the compressibility is impaired.
- the content of inorganic powder such as graphite is 0.1% to 1% relative to the total amount of a base iron powder or the like. At a content of less than 0.1%, the improvement may not be satisfactory. At a content exceeding 1%, the mechanical properties may be impaired.
- thermosetting resin powder of the present invention is cured on the surface or inside of a green compact by a simple heat treatment to increase the bonding strength between base iron particles or the like. As a result, even prior to the sintering process, a cutting operation can be performed.
- the material of the thermosetting resin powder of the present invention mainly include (1) epoxy-polyester-based resins, (2) epoxy-based resins, (3) acrylic-based resins, and (4) mixtures including at least two of these.
- thermosetting resin powder is not a liquid but must be a powder because it must exhibit fluidity during the production process of a green compact. Accordingly, powder coatings that do not include a pigment and are colorless (i.e., clear powder coatings) can be used for the thermosetting resin powder.
- epoxy-polyester-based resin refers to an epoxy-group-containing resin crosslinked with a carboxylic-acid-group-containing polyester resin serving as a curing agent.
- Examples of the epoxy-group-containing resin include compounds having at least two epoxy groups per molecule. More specifically, examples of the epoxy-group-containing resin include reaction products of a novolak-type phenolic resin and epichlorohydrin; reaction products of a bisphenol resin (A, B, F types, and the like) and epichlorohydrin; reaction products of a novolak-type phenolic resin, a bisphenol resin (A, B, F types, and the like), and epichlorohydrin; reaction products of a novolak-type phenolic resin and a bisphenol resin (A, B, F types, and the like); reaction products of a cresol compound such as cresol novolak, and epichlorohydrin; glycidyl ethers obtained by reacting an alcohol compound such as ethylene glycol, propylene glycol, 1,4-butanediol, polyethylene glycol, polypropylene glycol, neopentyl glycol, or glycerol with epichlorohydr
- the “carboxylic-acid-group-containing polyester resin” includes at least two carboxylic acid groups or carboxylic anhydride groups.
- Examples of the carboxylic-acid-group-containing polyester resin include resins obtained by condensation polymerization using an acid component mainly composed of a polycarboxylic acid and an alcohol component mainly composed of a polyhydric alcohol.
- the acid component examples include terephthalic acid, isophthalic acid, phthalic acid, and anhydrides thereof; aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and anhydrides thereof; saturated aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and anhydrides thereof; lactones such as ⁇ -butyrolactone and ⁇ -caprolactone; aromatic hydroxymonocarboxylic acids such as p-hydroxyethoxybenzoic acid; and hydroxycarboxylic acids corresponding to these.
- aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and anhydrides thereof
- alcohol component examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol 1,4-butanediol, 1,2-pentanediol, 2,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,4-hexanediol, 1,5-hexanediol, 2,5-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, alkylene oxide adducts of bisphenol A, alkylene oxide adducts of bisphenol S, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,2-dodecanediol, 1,2-octadecane
- the molar ratio of the total amount of epoxy group in the epoxy-group-containing resin to the total amount of acid group in the carboxylic-acid-group-containing polyester resin is appropriately determined according to the minimum melt viscosity. In general, the molar ratio is preferably 1/1 to 1/0.5, and more preferably 1/0.8 to 1/0.6.
- epoxy-based resin refers to an epoxy-group-containing resin crosslinked with an amine curing agent or an acid curing agent.
- epoxy-group-containing resins as those described as a component of the above epoxy-polyester-based resin can be used for this epoxy-group-containing resin.
- amine curing agent examples include chain aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, and hexamethylenediamine; cyclic aliphatic amines such as menthanediamine, isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, diaminocyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, and 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5.5]undecane; and aromatic amines such as m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and diaminodie
- the acid curing agent examples include aliphatic acid anhydrides such as dodecenylsuccinic anhydride, polyadipic anhydride, polyazelaic anhydride, polysebacic anhydride, poly(ethyloctadecanedioic) anhydride, and poly(phenylhexadecanedioic) anhydride; alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl himic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, a trialkyltetrahydrophthalic anhydride, and methylcyclohexenedicarboxylic anhydride; aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bistrimellitate,
- the “acrylic-based resin” refers to an acrylic resin having a glycidyl group in the side chain, the acrylic resin being crosslinked with a dibasic acid serving as a curing agent.
- Examples of a monomer constituting the “acrylic resin having a glycidyl group in the side chain” include glycidyl acrylate, glycidyl methacrylate, ⁇ -methylglycidyl acrylate, and ⁇ -methylglycidyl methacrylate. These monomers may be used in combinations of two or more monomers. Alternatively, these monomers may be copolymerized with another monomer to prepare the acrylic resin.
- alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether
- esters of an alkyl carboxylic acid and vinyl alcohol such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, and vinyl cyclohexanecarboxylate
- alkyl allyl ethers such as ethyl allyl ether, propyl allyl ether, butyl allyl ether, isobutyl allyl ether, and cyclohexyl allyl ether
- alkyl allyl esters such as ethyl allyl ester, propyl allyl ester, butyl allyl ester, isobutyl allyl ester, and cyclohexyl allyl ester
- alkenes such as ethylene
- the above-described monomers are polymerized and are then crosslinked with a dibasic acid to prepare the acrylic-based resin used in the present invention.
- the same acid curing agents as those used in the epoxy-based resin can be used as this dibasic acid.
- another resin may be added.
- the other resin include polyurethane-based resins prepared by curing a hydroxyl-group-containing polyester resin with an isocyanate curing agent, polyester-based resins prepared by curing a carboxyl-group-containing polyester resin with triglycidyl isocyanate or the like, resins prepared by curing a hydroxyl-group-containing polyester resin with an acrylic resin having an isocyanate group in the side chain, and resins prepared by curing a carboxyl-group-containing polyester resin with an acrylic resin having a glycidyl group in the side chain.
- the average particle diameter of thermosetting resin powder is 100 ⁇ m or less. When a thermosetting resin powder having an average particle diameter of exceeding 100 ⁇ m is used, it is difficult to coat entire base iron particles or the like with the resin melted by a heat treatment. In such a case, the strength of a compact may not be satisfactorily improved.
- the average particle diameter of thermosetting resin powder is more preferably 80 ⁇ m or less, particularly 60 ⁇ m or less. Although the lower limit is not particularly limited, the lower limit is generally about 30 ⁇ m. With respect to the “average particle diameter” in the present invention, when a commercially available resin powder is used, the value described in a catalog or the like should be referred to as the average particle diameter.
- the particle size distribution is measured by a normal particle size distribution analyzer. Subsequently, the particle diameter at the cumulative value of 50% (D 50 ) from the smallest particle diameter is determined from the result and defined as the average particle diameter.
- the content of resin powder is 0.05% to 1.0% relative to the total amount of an iron powder and/or an iron alloy powder.
- a resin powder content of less than 0.05% the strength of a green compact cannot be satisfactorily improved and cutting operation prior to the sintering process cannot be performed.
- a resin powder content exceeding 1.0% the fluidity of a mixed powder is decreased, thus reducing the productivity. In such a case, the density of a green compact is also decreased.
- Some of the commercially available resin powders include a pigment for the purpose of coloring.
- a commercially available resin powder including a pigment may be used for the resin powder in the present invention. However, since the pigment may have an adverse effect on the strength of a green compact, a pigment-free resin powder is preferably used.
- a lubricant may be added to the mixed powder for powder metallurgy of the present invention.
- the lubricant decreases the coefficient of friction between the green compact and a die, thereby suppressing the generation of die galling and damage of the die.
- Preferable examples of the lubricant usable in the present invention include ethylenebisstearamide, stearamide, zinc stearate, lithium stearate, and mixtures of at least two of these. These lubricants should be selected according to the intended purpose of the compact when used.
- the content of the lubricant is 0.05% to 1.0% relative to the total amount of a base iron powder or the like. At a content of less than 0.05%, the lubricity may be insufficient. At a content exceeding 1.0%, the curing of a resin powder may not be satisfactorily performed and the fluidity of mixed powder may be insufficient.
- the above-described mixed powder for powder metallurgy of the present invention is molded by a normal method to produce a green compact.
- a die is filled with the mixed powder and a pressure of 5 to 7 t/cm 2 (490 to 686 MPa) is applied.
- a heat treatment is performed in order that the thermosetting resin powder is cured to increase the strength of the green compact.
- the conditions for the heat treatment mainly depend on the type of thermosetting resin powder added, in general, the heat treatment is simply performed at about 150° C. to about 200° C. for 10 to 30 minutes (more preferably 15 to 20 minutes).
- a green compact cannot be subjected to a cutting operation prior to sintering because the green compact is brittle.
- the resultant green compact has a strength of at least 30 MPa measured in accordance with Japan Powder Metallurgy Association (JPMA) Standard M09-1992.
- JPMA Japan Powder Metallurgy Association
- the use of the mixed powder for powder metallurgy of the present invention as a feedstock can provide a green compact capable of being subjected to a cutting operation.
- the green compact of the present invention since the green compact of the present invention has an adequate density and strength even prior to the sintering process, the green compact can be subjected to a cutting operation, and in addition, the lifetime of a cutting tool used can be extended.
- a pure iron powder (trade name: “Atomel 300M”, from Kobe Steel, Ltd.) was used as a base metal powder.
- a commercially available copper powder (2.0 mass percent of the amount of the pure iron powder) (hereinafter, the “mass percent” is simply referred to as “%”), a graphite powder (0.8%), ethylenebisstearamide (0.75%), and a clear powder coating (0.3%) composed of an epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., a resin produced by reacting an epoxy resin with a dibasic acid polyester, average particle diameter: 40 ⁇ m) were added to the pure iron powder.
- the mixture was agitated at a high speed with a mixer with blades.
- the apparent density of the resultant mixed powder was measured in accordance with Japanese Industrial Standard (JIS) Z2504.
- the flow rate was also measured in accordance with JIS Z2502.
- a green compact having a diameter of 11.3 mm and a height of 10 mm was produced at a pressure of 5 t/cm 2 (490.3 MPa) in accordance with Japan Society of Powder and Powder Metallurgy (JSPM) Standard 1-64 (a metal powder compressibility testing method) using the above mixed powder as a feedstock.
- the green compact was heated at 170° C. for 15 minutes. The density of the green compact was then measured. Also, the strength of the green compact was measured in accordance with JPMA M09-1992.
- a green compact having a diameter of 25 mm and a height of 15 mm was produced at a surface pressure of 490 MPa using the above mixed powder as a feedstock to measure a ejection force, which is an indicator of lubricity.
- the draw-out pressure was calculated by dividing a load required for drawing out the green compact from the die during molding by the area of contact between the die and the green compact.
- a mixed powder was produced as in Example 1 except that a clear powder coating composed of an acrylic-based resin (Konac No. 4600 from BASF NOF Coatings Co., Ltd., a resin produced by crosslinking an acrylic resin having a glycidyl group in the side chain with a dibasic acid, average particle diameter: 40 ⁇ m) was used instead of the clear powder coating composed of the epoxy-polyester-based resin used in Example 1. Furthermore, a green compact was produced as in Example 1 except that the green compact was heated at 180° C. for 15 minutes. These samples are referred to as No. 2. The apparent density of the mixed powder, the density of the green compact, and the like were measured as in Example 1. Table 1 shows the results.
- a mixed powder and a green compact made of the mixed powder were produced as in Example 1 except that a clear powder coating composed of an epoxy-based resin (Konac No. 3700 from BASF NOF Coatings Co., Ltd., a resin produced by curing an uncured epoxy resin with an amine curing agent, average particle diameter: 40 ⁇ m) was used as a thermosetting resin powder, and the green compact was heated at 160° C. for 15 minutes. These samples are referred to as No. 3. The apparent density of the mixed powder and the like were measured by the same methods. Table 1 shows the results.
- an epoxy-based resin Konac No. 3700 from BASF NOF Coatings Co., Ltd., a resin produced by curing an uncured epoxy resin with an amine curing agent, average particle diameter: 40 ⁇ m
- Example 1 Mixed powders and green compacts made of the mixed powders were produced as in Example 1 except that the content of the clear powder coating composed of the epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., average particle diameter: 40 ⁇ m) was 1.0% (No. 4) or 0.1% (No. 5).
- the apparent density of the mixed powders and the like were measured as in Example 1. Table 1 shows the results.
- mixed powders and green compacts made of the mixed powders were produced as in Example 1 except that the average particle diameter of the clear powder coating composed of the epoxy-polyester-based resin was 150 ⁇ m (No. 9) or 250 ⁇ m (No. 10) instead of 40 ⁇ m.
- the green compacts composed of a mixed powder in which the average particle diameter of the resin powder exceeded the range in the present invention also showed the same results (Nos. 9 and 10).
- the green compact had a satisfactory strength, but had a low density. This green compact was also not suited for a cutting operation, and in addition, the mixed powder itself had a low fluidity (No. 8).
- the mixed powders for powder metallurgy containing a resin powder within the content range specified in the present invention had excellent fluidity, and green compacts made of these mixed powders had an adequate density and strength and thus were suited for a cutting operation.
Landscapes
- Powder Metallurgy (AREA)
Abstract
A mixed powder for powder metallurgy to be used as a feedstock of a green compact includes an iron powder and/or an iron alloy powder, a component for improving mechanical properties, and a thermosetting resin powder. In the mixed powder, the thermosetting resin powder is composed of at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin. In addition, the average particle diameter of the thermosetting resin powder is 100 μm or less, and the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
Description
- 1. Field of the Invention
- The present invention relates to a mixed powder for powder metallurgy to be used as a feedstock of a green compact having an adequate density and strength even before the sintering process and having an excellent machinability, and a green compact using the mixed powder as a feedstock.
- 2. Description of the Related Art
- A powder metallurgy is a technology used for producing machine parts and oil-impregnated bearings from a metal powder. Since highly accurate products can be efficiently mass-produced, the powder metallurgy is indispensable particularly in the automobile industry and the like. In this powder metallurgy, in general, a mixed powder including a metal powder is molded by compression and the resultant green compact is then dewaxed. Subsequently, for example, in an iron-based powder metallurgy, the compact is sintered at a temperature of about 1,000° C. to about 1,300° C. In this sintering process, the mixed metal powder forms an alloy, thereby increasing the strength of the compact. A cutting operation is then performed on the resultant sintered compact.
- However, such a sintered compact has an excessively high strength from the viewpoint of a cutting operation. Furthermore, the lifetime of a cutting tool used is shortened because of the high strength of the sintered compact. On the other hand, a green compact cannot be subjected to a cutting operation prior to sintering because the green compact is brittle. Accordingly, a technology is desired by which the strength of a green compact prior to the sintering process is increased, so that the green compact can subsequently be subjected to a cutting operation and finally sintered.
- A document by Tianjun Liu et al. (Funtai oyobi Funmatsu yakin (Journal of the Japan Society of Powder and Powder Metallurgy) Vol. 50, No. 11, pp. 832-836 (2003)) discloses an example of such a technology. According to this technology, a polymer lubricant is added to a mixed powder, which constitutes a feedstock, and a green compact made of the resultant mixed powder is heated at a temperature lower than the sintering temperature. Consequently, the strength of the compact can be increased only by this heat treatment and thus a cutting operation can be performed prior to the sintering process. However, since a polymer lubricant is used as a lubricant, its lubricity during compression molding may be insufficient. In addition, although the temperature is as relatively low as 190° C., it takes about an hour to complete the heat treatment before the cutting operation can be performed. Therefore, this heat treatment decreases the productivity.
- In the powder metallurgy, when a mixed powder is discharged from a storage hopper or when a die is filled with the mixed powder, the fluidity of the mixed powder is one of its important characteristics. Specifically, a low fluidity of a mixed powder causes the following problems. For example, a bulging can occur at the upper part of a discharging hole of a hopper, resulting in a discharge failure. Also, the mixed powder can become clogged in a hose connecting from the hopper to a shoe box. Furthermore, even if a mixed powder having a low fluidity is compulsorily discharged from the hose, the powder may not satisfactorily fill a die, in particular, a die having thin walls. Consequently, a satisfactory compact may not be formed. For these reasons, a raw powder for powder metallurgy having excellent fluidity has been strongly desired.
- Although the object is different from that of the present invention, the following technology for producing a bonded magnet is known: A thermosetting resin is added to a magnetic powder or the like, and a heat treatment is then performed. Thus, a compact is cured without sintering while the magnetic properties of the compact are ensured. The resultant compact is used without further treatment. Accordingly, this manufacturing technology of a bonded magnet may be applied to the powder metallurgy. However, known manufacturing technologies of bonded magnets cannot be applied to the powder metallurgy as they are.
- For example, Japanese Unexamined Patent Application Publication Nos. 4-284602 (paragraph No. 0007, and Examples), 6-112022 (paragraph Nos. 0015 and 0016, and Examples), 6-188137 (paragraph Nos. 0015 and 0020, and Examples), and 8-31677 (paragraph Nos. 0031 and 0033, and Examples) disclose methods for producing a bonded magnet in which a mixture of an alloy powder and a thermosetting resin (binder) is used as a feedstock. However, the type and the particle diameter of the thermosetting resin are not studied in detail because these technologies relate to a bonded magnet and their objects are different from the object of the present invention. In addition, the content of thermosetting resin is relatively large from the viewpoint of application to the powder metallurgy. For example, according to Japanese Unexamined Patent Application Publication No. 4-284602, the content of a thermosetting resin binder is 0.5 to 4 mass percent base on an alloy. According to Japanese Unexamined Patent Application Publication No. 6-112022, 0.5 to 5 parts by weight (in particular, 1 to 3 parts by weight) of a thermosetting resin is added to 100 parts by weight of a magnetic powder. However, in Examples in these patent documents, the amount of a thermosetting resin relative to the total amount of an alloy powder is 2 mass percent or more. According to investigations made by the inventors of the present invention, when a thermosetting resin is excessively added to a mixed powder for powder metallurgy, the fluidity of the powder and the density of the green compact are decreased.
- According to Japanese Unexamined Patent Application Publication No. 10-303009 (Claims), an epoxy resin powder having an average particle diameter of 50 μm or less, which is used as a resin binder, is mixed with a magnetic powder to mold a bonded magnet. The compounding ratio of the epoxy resin powder to the magnetic powder is 0.1 to 0.5 mass percent. An inorganic additive is added to the mixed powder in order to suppress the abrasion with a die during molding. However, in this mixed powder, a component that improves the strength or machinability of the compact is not considered. In addition, the content of this inorganic additive is very small (20 to 40 mass percent of the total amount of the resin binder, 0.02 to 0.2 mass percent of the total amount of the magnetic powder). Therefore, even if the inorganic additive has a function of enhancing the strength of the compact or the like, the function may not be fulfilled in such a small content.
- In view of the above-described situation, it is an object of the present invention to provide a mixed powder for powder metallurgy to be used as a feedstock of a green compact. Because of its excellent fluidity, the mixed powder provides a high productivity. Furthermore, a green compact using the mixed powder as a feedstock has an adequate density and strength, and is excellent in terms of machinability. Therefore, a cutting operation can be performed prior to the sintering process, and in addition, the lifetime of a cutting tool used can be extended. Also, it is an object of the present invention to provide a green compact using this mixed powder as a feedstock for powder metallurgy, the green compact having an excellent strength and the like even before sintering.
- To solve the above-described problems, the inventors of the present invention have extensively studied, in particular, the composition of a mixed powder for powder metallurgy and found the following: When a component for improving mechanical properties and a thermosetting resin powder are added to a base powder, and in addition, an appropriate thermosetting resin powder is used, a green compact having an adequate density and strength can be produced. The present invention has been made on the basis of this finding.
- Specifically, a mixed powder for powder metallurgy of the present invention is used as a feedstock of a green compact, and the mixed powder includes an iron powder and/or an iron alloy powder, a component for improving mechanical properties, and a thermosetting resin powder. In the mixed powder, the thermosetting resin powder is composed of at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin. In addition, the average particle diameter of the thermosetting resin powder is 100 μm or less, and the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
- The mixed powder for powder metallurgy preferably further includes a lubricant. This is because the lubricant can decrease the coefficient of friction between the green compact and a die. As a result, the generation of die galling and damage of the die can be suppressed. The lubricant is preferably at least one compound selected from the group consisting of ethylenebisstearamide, stearamide, zinc stearate, and lithium stearate. This is because these compounds are excellent as an additional component of the mixed powder for powder metallurgy.
- The component for improving mechanical properties is preferably at least one substance selected from the group consisting of copper, nickel, chromium, molybdenum, graphite, and manganese sulfide. This is because these substances are diffused into the iron powder or the like during the sintering process. Consequently, the hardness or the toughness of the compact can be improved or the machinability of the compact can be improved.
- Furthermore, a green compact of the present invention is made of the above-described mixed powder for powder metallurgy.
- The mixed powder for powder metallurgy of the present invention has excellent fluidity and the like and provides an excellent productivity. Furthermore, since a green compact using this mixed powder as a feedstock has an adequate density and strength even before sintering, the green compact can be subjected to a cutting operation. In addition, since the green compact does not have an excessively high strength, the lifetime of a cutting tool used can be extended. Accordingly, the mixed powder for powder metallurgy of the present invention and the green compact using the mixed powder as a feedstock are excellent for industrial application from the viewpoint that the productivity of powder metallurgy can be improved.
- A mixed powder for powder metallurgy of the present invention includes an iron powder and/or an iron alloy powder, a component for improving mechanical properties, and a thermosetting resin powder. The thermosetting resin powder is composed of at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin; the average particle diameter of the thermosetting resin powder is 100 μm or less; and the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
- For example, commercially available normal iron powders and/or iron alloy powders used for a material for metallurgy can be used in the present invention.
- The component for improving mechanical properties is added in order to improve the mechanical properties such as the hardness and the toughness of a compact or to improve the machinability of the compact by diffusing into a base iron powder or the like during the sintering process. Examples of the component for improving mechanical properties include metal powders used for alloys such as copper, nickel, chromium, and molybdenum powders; and inorganic powders such as graphite and manganese sulfide powders. These components may be used alone or in combinations of two or more powders. The component for improving mechanical properties may be mixed with an iron powder or the like when used. Alternatively, for example, graphite may be uniformly adhered to an iron powder or the like with a binder therebetween when used.
- The content of metal powder used for alloys serving as a component for improving mechanical properties is 0.1 to 4 mass percent (hereinafter, unless otherwise stated, the “mass percent” is simply represented by “%”) relative to the total amount of a base iron powder or the like. At a content of less than 0.1%, a satisfactory improvement of mechanical properties may not be achieved because of a small amount of diffusion in the base powder. On the other hand, at a content exceeding 4%, the improvement of mechanical properties is also decreased. In addition, at such an excessively high content, a green compact having a satisfactory density may not be produced because the compressibility is impaired. The content of inorganic powder such as graphite is 0.1% to 1% relative to the total amount of a base iron powder or the like. At a content of less than 0.1%, the improvement may not be satisfactory. At a content exceeding 1%, the mechanical properties may be impaired.
- The thermosetting resin powder of the present invention is cured on the surface or inside of a green compact by a simple heat treatment to increase the bonding strength between base iron particles or the like. As a result, even prior to the sintering process, a cutting operation can be performed. Examples of the material of the thermosetting resin powder of the present invention mainly include (1) epoxy-polyester-based resins, (2) epoxy-based resins, (3) acrylic-based resins, and (4) mixtures including at least two of these.
- The thermosetting resin powder is not a liquid but must be a powder because it must exhibit fluidity during the production process of a green compact. Accordingly, powder coatings that do not include a pigment and are colorless (i.e., clear powder coatings) can be used for the thermosetting resin powder.
- The “epoxy-polyester-based resin” refers to an epoxy-group-containing resin crosslinked with a carboxylic-acid-group-containing polyester resin serving as a curing agent.
- Examples of the epoxy-group-containing resin include compounds having at least two epoxy groups per molecule. More specifically, examples of the epoxy-group-containing resin include reaction products of a novolak-type phenolic resin and epichlorohydrin; reaction products of a bisphenol resin (A, B, F types, and the like) and epichlorohydrin; reaction products of a novolak-type phenolic resin, a bisphenol resin (A, B, F types, and the like), and epichlorohydrin; reaction products of a novolak-type phenolic resin and a bisphenol resin (A, B, F types, and the like); reaction products of a cresol compound such as cresol novolak, and epichlorohydrin; glycidyl ethers obtained by reacting an alcohol compound such as ethylene glycol, propylene glycol, 1,4-butanediol, polyethylene glycol, polypropylene glycol, neopentyl glycol, or glycerol with epichlorohydrin; glycidyl esters obtained by reacting a carboxylic acid such as succinic acid, adipic acid, phthalic acid, terephthalic acid, hexahydrophthalic acid, or trimellitic acid with epichlorohydrin; reaction products of a hydroxycarboxylic acid such as p-hydroxybenzoic acid or oxynaphthoic acid and epichlorohydrin; triglycidyl isocyanurate and derivatives thereof. These epoxy-group-containing resins may be used in combinations of two or more resins.
- The “carboxylic-acid-group-containing polyester resin” includes at least two carboxylic acid groups or carboxylic anhydride groups. Examples of the carboxylic-acid-group-containing polyester resin include resins obtained by condensation polymerization using an acid component mainly composed of a polycarboxylic acid and an alcohol component mainly composed of a polyhydric alcohol.
- Examples of the acid component include terephthalic acid, isophthalic acid, phthalic acid, and anhydrides thereof; aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and anhydrides thereof; saturated aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and anhydrides thereof; lactones such as γ-butyrolactone and ε-caprolactone; aromatic hydroxymonocarboxylic acids such as p-hydroxyethoxybenzoic acid; and hydroxycarboxylic acids corresponding to these. These acid components may be used in combinations of two or more components.
- Examples of the alcohol component include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol 1,4-butanediol, 1,2-pentanediol, 2,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,4-hexanediol, 1,5-hexanediol, 2,5-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, alkylene oxide adducts of bisphenol A, alkylene oxide adducts of bisphenol S, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,2-dodecanediol, 1,2-octadecanediol, trimethylolpropane, glycerin, and pentaerythritol. These alcohol components may be used in combinations of two or more components.
- The molar ratio of the total amount of epoxy group in the epoxy-group-containing resin to the total amount of acid group in the carboxylic-acid-group-containing polyester resin is appropriately determined according to the minimum melt viscosity. In general, the molar ratio is preferably 1/1 to 1/0.5, and more preferably 1/0.8 to 1/0.6.
- The “epoxy-based resin” refers to an epoxy-group-containing resin crosslinked with an amine curing agent or an acid curing agent. The same epoxy-group-containing resins as those described as a component of the above epoxy-polyester-based resin can be used for this epoxy-group-containing resin.
- Examples of the amine curing agent include chain aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, and hexamethylenediamine; cyclic aliphatic amines such as menthanediamine, isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, diaminocyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, and 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5.5]undecane; and aromatic amines such as m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and diaminodiethyldiphenylmethane.
- Examples of the acid curing agent include aliphatic acid anhydrides such as dodecenylsuccinic anhydride, polyadipic anhydride, polyazelaic anhydride, polysebacic anhydride, poly(ethyloctadecanedioic) anhydride, and poly(phenylhexadecanedioic) anhydride; alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl himic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, a trialkyltetrahydrophthalic anhydride, and methylcyclohexenedicarboxylic anhydride; aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bistrimellitate, and glycerol tristrimellitate; and halogen-containing acid anhydrides such as chlorendic anhydride and tetrabromophthalic anhydride.
- The “acrylic-based resin” refers to an acrylic resin having a glycidyl group in the side chain, the acrylic resin being crosslinked with a dibasic acid serving as a curing agent.
- Examples of a monomer constituting the “acrylic resin having a glycidyl group in the side chain” include glycidyl acrylate, glycidyl methacrylate, β-methylglycidyl acrylate, and β-methylglycidyl methacrylate. These monomers may be used in combinations of two or more monomers. Alternatively, these monomers may be copolymerized with another monomer to prepare the acrylic resin. Examples of the other monomer include alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether; esters of an alkyl carboxylic acid and vinyl alcohol such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, and vinyl cyclohexanecarboxylate; alkyl allyl ethers such as ethyl allyl ether, propyl allyl ether, butyl allyl ether, isobutyl allyl ether, and cyclohexyl allyl ether; alkyl allyl esters such as ethyl allyl ester, propyl allyl ester, butyl allyl ester, isobutyl allyl ester, and cyclohexyl allyl ester; alkenes such as ethylene, propylene, butylene, and isobutylene; acrylics; esters of acrylic acid or methacrylic acid such as ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, and 2-ethylhexyl methacrylate; styrene and derivatives thereof such as styrene and α-methylstyrene; acrylamides such as acrylamide and methacrylamide; acrylonitriles such as acrylonitrile and methacrylonitrile; halogen-containing vinyl monomers; and silicon-containing vinyl monomers. These monomers may be used in combinations of two or more monomers.
- The above-described monomers are polymerized and are then crosslinked with a dibasic acid to prepare the acrylic-based resin used in the present invention. The same acid curing agents as those used in the epoxy-based resin can be used as this dibasic acid.
- In addition to the above resins, another resin may be added. Examples of the other resin include polyurethane-based resins prepared by curing a hydroxyl-group-containing polyester resin with an isocyanate curing agent, polyester-based resins prepared by curing a carboxyl-group-containing polyester resin with triglycidyl isocyanate or the like, resins prepared by curing a hydroxyl-group-containing polyester resin with an acrylic resin having an isocyanate group in the side chain, and resins prepared by curing a carboxyl-group-containing polyester resin with an acrylic resin having a glycidyl group in the side chain.
- The average particle diameter of thermosetting resin powder is 100 μm or less. When a thermosetting resin powder having an average particle diameter of exceeding 100 μm is used, it is difficult to coat entire base iron particles or the like with the resin melted by a heat treatment. In such a case, the strength of a compact may not be satisfactorily improved. The average particle diameter of thermosetting resin powder is more preferably 80 μm or less, particularly 60 μm or less. Although the lower limit is not particularly limited, the lower limit is generally about 30 μm. With respect to the “average particle diameter” in the present invention, when a commercially available resin powder is used, the value described in a catalog or the like should be referred to as the average particle diameter. When the average particle diameter is not known, the particle size distribution is measured by a normal particle size distribution analyzer. Subsequently, the particle diameter at the cumulative value of 50% (D50) from the smallest particle diameter is determined from the result and defined as the average particle diameter.
- The content of resin powder is 0.05% to 1.0% relative to the total amount of an iron powder and/or an iron alloy powder. At a resin powder content of less than 0.05%, the strength of a green compact cannot be satisfactorily improved and cutting operation prior to the sintering process cannot be performed. On the other hand, at a resin powder content exceeding 1.0%, the fluidity of a mixed powder is decreased, thus reducing the productivity. In such a case, the density of a green compact is also decreased.
- Some of the commercially available resin powders include a pigment for the purpose of coloring. A commercially available resin powder including a pigment may be used for the resin powder in the present invention. However, since the pigment may have an adverse effect on the strength of a green compact, a pigment-free resin powder is preferably used.
- A lubricant may be added to the mixed powder for powder metallurgy of the present invention. The lubricant decreases the coefficient of friction between the green compact and a die, thereby suppressing the generation of die galling and damage of the die. Preferable examples of the lubricant usable in the present invention include ethylenebisstearamide, stearamide, zinc stearate, lithium stearate, and mixtures of at least two of these. These lubricants should be selected according to the intended purpose of the compact when used.
- The content of the lubricant is 0.05% to 1.0% relative to the total amount of a base iron powder or the like. At a content of less than 0.05%, the lubricity may be insufficient. At a content exceeding 1.0%, the curing of a resin powder may not be satisfactorily performed and the fluidity of mixed powder may be insufficient.
- The above-described mixed powder for powder metallurgy of the present invention is molded by a normal method to produce a green compact. For example, a die is filled with the mixed powder and a pressure of 5 to 7 t/cm2 (490 to 686 MPa) is applied. Subsequently, a heat treatment is performed in order that the thermosetting resin powder is cured to increase the strength of the green compact. Although the conditions for the heat treatment mainly depend on the type of thermosetting resin powder added, in general, the heat treatment is simply performed at about 150° C. to about 200° C. for 10 to 30 minutes (more preferably 15 to 20 minutes).
- In general, a green compact cannot be subjected to a cutting operation prior to sintering because the green compact is brittle. However, for example, when the mixed powder for powder metallurgy of the present invention is molded at a pressure of 5 t/cm2 (490.3 MPa), the resultant green compact has a strength of at least 30 MPa measured in accordance with Japan Powder Metallurgy Association (JPMA) Standard M09-1992. Thus, the use of the mixed powder for powder metallurgy of the present invention as a feedstock can provide a green compact capable of being subjected to a cutting operation. In other words, since the green compact of the present invention has an adequate density and strength even prior to the sintering process, the green compact can be subjected to a cutting operation, and in addition, the lifetime of a cutting tool used can be extended.
- The present invention will now be described in more detail by way of examples, but the scope of the present invention is not limited to these examples.
- A pure iron powder (trade name: “Atomel 300M”, from Kobe Steel, Ltd.) was used as a base metal powder. A commercially available copper powder (2.0 mass percent of the amount of the pure iron powder) (hereinafter, the “mass percent” is simply referred to as “%”), a graphite powder (0.8%), ethylenebisstearamide (0.75%), and a clear powder coating (0.3%) composed of an epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., a resin produced by reacting an epoxy resin with a dibasic acid polyester, average particle diameter: 40 μm) were added to the pure iron powder. The mixture was agitated at a high speed with a mixer with blades. The apparent density of the resultant mixed powder was measured in accordance with Japanese Industrial Standard (JIS) Z2504. The flow rate was also measured in accordance with JIS Z2502.
- A green compact having a diameter of 11.3 mm and a height of 10 mm was produced at a pressure of 5 t/cm2 (490.3 MPa) in accordance with Japan Society of Powder and Powder Metallurgy (JSPM) Standard 1-64 (a metal powder compressibility testing method) using the above mixed powder as a feedstock. The green compact was heated at 170° C. for 15 minutes. The density of the green compact was then measured. Also, the strength of the green compact was measured in accordance with JPMA M09-1992.
- Furthermore, a green compact having a diameter of 25 mm and a height of 15 mm was produced at a surface pressure of 490 MPa using the above mixed powder as a feedstock to measure a ejection force, which is an indicator of lubricity. Specifically, the draw-out pressure was calculated by dividing a load required for drawing out the green compact from the die during molding by the area of contact between the die and the green compact. These samples are referred to as No. 1 and the results are shown in Table 1.
- A mixed powder was produced as in Example 1 except that a clear powder coating composed of an acrylic-based resin (Konac No. 4600 from BASF NOF Coatings Co., Ltd., a resin produced by crosslinking an acrylic resin having a glycidyl group in the side chain with a dibasic acid, average particle diameter: 40 μm) was used instead of the clear powder coating composed of the epoxy-polyester-based resin used in Example 1. Furthermore, a green compact was produced as in Example 1 except that the green compact was heated at 180° C. for 15 minutes. These samples are referred to as No. 2. The apparent density of the mixed powder, the density of the green compact, and the like were measured as in Example 1. Table 1 shows the results.
- A mixed powder and a green compact made of the mixed powder were produced as in Example 1 except that a clear powder coating composed of an epoxy-based resin (Konac No. 3700 from BASF NOF Coatings Co., Ltd., a resin produced by curing an uncured epoxy resin with an amine curing agent, average particle diameter: 40 μm) was used as a thermosetting resin powder, and the green compact was heated at 160° C. for 15 minutes. These samples are referred to as No. 3. The apparent density of the mixed powder and the like were measured by the same methods. Table 1 shows the results.
- Mixed powders and green compacts made of the mixed powders were produced as in Example 1 except that the content of the clear powder coating composed of the epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., average particle diameter: 40 μm) was 1.0% (No. 4) or 0.1% (No. 5). The apparent density of the mixed powders and the like were measured as in Example 1. Table 1 shows the results.
- Mixed powders and green compacts made of the mixed powders were produced as in Example 1 except that the clear powder coating composed of the epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., average particle diameter: 40 μm) was not contained (No. 6), or the content of the clear powder coating composed of the epoxy-polyester-based resin (Konac No. 2700 from BASF NOF Coatings Co., Ltd., average particle diameter: 40 μm) was 0.03% (No. 7) or 1.2% (No. 8).
- Furthermore, mixed powders and green compacts made of the mixed powders were produced as in Example 1 except that the average particle diameter of the clear powder coating composed of the epoxy-polyester-based resin was 150 μm (No. 9) or 250 μm (No. 10) instead of 40 μm.
- The apparent density of these mixed powders and the like were measured as in Example 1. Table 1 shows the results.
TABLE 1 Density Strength Apparent of green of green Ejection density Flow rate compact compact force (g/cm3) (sec/50 g) (g/cm3) (MPa) (MPa) No. 1 3.14 27.8 6.87 52 12.0 No. 2 3.15 29.1 6.87 50 11.8 No. 3 3.16 28.3 6.86 48 12.1 No. 4 3.08 32.5 6.80 105 12.3 No. 5 3.16 28.2 6.92 35 11.7 No. 6 3.17 27.8 6.94 25 11.5 No. 7 3.16 28.1 6.93 26 11.8 No. 8 3.01 35.3 6.75 108 12.2 No. 9 3.13 29.7 6.85 29 11.9 No. 10 3.14 30.1 6.82 27 12.2 - The results showed that the green compacts composed of a mixed powder for powder metallurgy that did not contain a resin powder or a mixed powder for powder metallurgy in which the content of a resin powder was less than the amount specified in the present invention had an insufficient strength and could not be subjected to a cutting operation (Nos. 6 and 7). The green compacts composed of a mixed powder in which the average particle diameter of the resin powder exceeded the range in the present invention also showed the same results (Nos. 9 and 10). In addition, when the content of the resin powder exceeded the range specified in the present invention, the green compact had a satisfactory strength, but had a low density. This green compact was also not suited for a cutting operation, and in addition, the mixed powder itself had a low fluidity (No. 8).
- In contrast, the mixed powders for powder metallurgy containing a resin powder within the content range specified in the present invention had excellent fluidity, and green compacts made of these mixed powders had an adequate density and strength and thus were suited for a cutting operation. These examples demonstrates that, according to the present invention, since the green compact has an adequate density and strength even prior to the sintering process, the green compact can be subjected to a cutting operation, and in addition, the lifetime of a cutting tool used can be extended.
Claims (10)
1-5. (canceled)
6. A method for producing a sintered compact, the method comprising:
making a mixed powder by mixing
an iron powder and/or an iron alloy powder,
a component for improving mechanical properties, and
a thermosetting resin powder;
forming the mixed powder into a green compact;
performing a heat treatment and then a cutting operation on the green compact; and
sintering the green compact after the cutting operation, wherein
the component for improving mechanical properties is at least one selected from the group consisting of copper, nickel, chromium, molybdenum, graphite, and manganese sulfide;
the thermosetting resin powder comprises at least one resin selected from the group consisting of an epoxy-polyester-based resin, an epoxy-based resin, and an acrylic-based resin;
the average particle diameter of the thermosetting resin powder is 100 μm or less; and
the content of the thermosetting resin powder relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
7. The method according to claim 6 , further comprising mixing a lubricant into the mixed powder.
8. The method according to claim 7 , wherein the lubricant is at least one compound selected from the group consisting of ethylenebisstearamide, stearamide, zinc stearate, and lithium stearate.
9. The method according to claim 6 , wherein the component for improving mechanical properties is at least one selected from the group consisting of copper, chromium, molybdenum and graphite.
10. The method according to claim 6 , wherein
the component for improving mechanical properties is at least one selected from the group consisting of copper, chromium and molybdenum; and
the content of the component for improving mechanical properties relative to the total amount of the iron powder and/or the iron alloy powder is 0.1 to 4 mass percent.
11. The method for producing a sintered compact according to claim 6 , wherein
the component for improving mechanical properties is graphite; and
the content of the component for improving mechanical properties relative to the total amount of the iron powder and/or the iron alloy powder is 0.1 to 1 mass percent.
12. The method for producing a sintered compact according to claim 7 , wherein the component of the lubricant relative to the total amount of the iron powder and/or the iron alloy powder is 0.05 to 1.0 mass percent.
13. The method for producing a sintered compact according to claim 6 , wherein the average particle diameter of the thermosetting resin powder is in a range of 30 to 60 μm.
14. A sintered compact produced by the method of claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/015,180 US20080118766A1 (en) | 2004-10-28 | 2008-01-16 | Mixed powder for powder metallurgy and green compact using the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-314381 | 2004-10-28 | ||
JP2004314381A JP2006124777A (en) | 2004-10-28 | 2004-10-28 | Powder mixture for powder metallurgy and green compact molding |
US11/222,862 US20060090594A1 (en) | 2004-10-28 | 2005-09-12 | Mixed powder for powder metallurgy and green compact using the same |
US12/015,180 US20080118766A1 (en) | 2004-10-28 | 2008-01-16 | Mixed powder for powder metallurgy and green compact using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/222,862 Division US20060090594A1 (en) | 2004-10-28 | 2005-09-12 | Mixed powder for powder metallurgy and green compact using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080118766A1 true US20080118766A1 (en) | 2008-05-22 |
Family
ID=35453310
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/222,862 Abandoned US20060090594A1 (en) | 2004-10-28 | 2005-09-12 | Mixed powder for powder metallurgy and green compact using the same |
US12/015,180 Abandoned US20080118766A1 (en) | 2004-10-28 | 2008-01-16 | Mixed powder for powder metallurgy and green compact using the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/222,862 Abandoned US20060090594A1 (en) | 2004-10-28 | 2005-09-12 | Mixed powder for powder metallurgy and green compact using the same |
Country Status (7)
Country | Link |
---|---|
US (2) | US20060090594A1 (en) |
EP (1) | EP1652948B1 (en) |
JP (1) | JP2006124777A (en) |
CN (1) | CN1765547A (en) |
AT (1) | ATE360102T1 (en) |
CA (1) | CA2519413A1 (en) |
DE (1) | DE602005000921T2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110233811A1 (en) * | 2010-03-23 | 2011-09-29 | Basf Se | Composition for producing magnetic or magnetizable moldings, and process for producing the same |
US9149869B2 (en) | 2010-11-22 | 2015-10-06 | Kobe Steel, Ltd. | Mixed powder for powder metallurgy and process for producing same |
CN110312809A (en) * | 2016-12-23 | 2019-10-08 | 佛兰芒技术研究所有限公司 | Rich metalliferous fine powder and powdery paints waste material are recycled in composite briquettes |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7460133B2 (en) * | 2006-04-04 | 2008-12-02 | Sharp Laboratories Of America, Inc. | Optimal hiding for defective subpixels |
US8926869B2 (en) * | 2007-10-28 | 2015-01-06 | Clover Technologies Group, Llc | Method and composition for recoating toner cartridge developing member |
JP2010285633A (en) * | 2009-06-09 | 2010-12-24 | Kobe Steel Ltd | Method of producing powder mixture for powder metallurgy, and method of producing sintered body |
JP5663974B2 (en) * | 2009-06-26 | 2015-02-04 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
CN102906827A (en) * | 2010-03-23 | 2013-01-30 | 巴斯夫欧洲公司 | Composition for producing magnetic or magnetizable moldings, and process for producing the same |
CN102062149B (en) * | 2010-10-18 | 2012-04-18 | 浙江长盛滑动轴承股份有限公司 | High-performance iron-based powder metallurgy oil-containing self-lubricating bearing and production process thereof |
CN103551574B (en) * | 2013-10-28 | 2015-05-27 | 中南大学 | Powder metallurgy preparation method for nitrogenous titanium-based alloy |
CN104328344A (en) * | 2014-10-23 | 2015-02-04 | 苏州莱特复合材料有限公司 | Iron-based rust-proof powder metallurgy material and preparation method thereof |
CN104325131B (en) * | 2014-10-23 | 2016-06-29 | 苏州莱特复合材料有限公司 | A kind of iron-base powder metallurgy material and preparation method thereof |
CN104451335A (en) * | 2014-11-17 | 2015-03-25 | 柳州市俊杰汽配制造有限公司 | Separation shaft for automobile |
JP6380289B2 (en) * | 2015-08-12 | 2018-08-29 | Jfeスチール株式会社 | Iron-base powder mixture for powder metallurgy and method for producing molded body using iron-base powder mixture for powder metallurgy |
JP6489094B2 (en) * | 2015-10-09 | 2019-03-27 | Jfeスチール株式会社 | Mixed powder for powder metallurgy |
JP6477650B2 (en) * | 2015-10-09 | 2019-03-06 | Jfeスチール株式会社 | Mixed powder for powder metallurgy |
JP6655994B2 (en) * | 2016-01-13 | 2020-03-04 | 株式会社神戸製鋼所 | Mixed powder for powder metallurgy |
CN107893194A (en) * | 2017-10-27 | 2018-04-10 | 宁波市鄞州永佳电机工具有限公司 | A kind of high-performance spanner |
JP2021188072A (en) * | 2020-05-27 | 2021-12-13 | 株式会社神戸製鋼所 | Iron-based mixture for powder metallurgy, molded body, and sintered body |
CN113275564B (en) * | 2021-05-24 | 2022-12-06 | 宁波日港粉末冶金有限公司 | Preparation device and preparation method of powder metallurgy part |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3794707A (en) * | 1968-04-03 | 1974-02-26 | Atomic Energy Authority Uk | Production of refractory artefacts |
US3923946A (en) * | 1973-05-17 | 1975-12-02 | Ugine Carbone | Composite materials |
US4508567A (en) * | 1981-07-02 | 1985-04-02 | Brother Kogyo Kabushiki Kaisha | Press-molding process for preparing a powder compact |
US5118341A (en) * | 1991-03-28 | 1992-06-02 | Alcan Aluminum Corporation | Machinable powder metallurgical parts and method |
US5976215A (en) * | 1997-08-29 | 1999-11-02 | Kawasaki Steel Corporation | Iron-based powder mixture for powder metallurgy and process for preparing the same |
US5980603A (en) * | 1998-05-18 | 1999-11-09 | National Research Council Of Canada | Ferrous powder compositions containing a polymeric binder-lubricant blend |
US6602315B2 (en) * | 1997-10-21 | 2003-08-05 | Hoeganaes Corporation | Metallurgical compositions containing binding agent/lubricant and process for preparing same |
US6755885B2 (en) * | 2001-04-17 | 2004-06-29 | Hëganäs AB | Iron powder composition |
US20040168547A1 (en) * | 2003-02-27 | 2004-09-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Binder for powder metallurgy, mixed powder for powder metallurgy and method for producing same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63206401A (en) * | 1987-02-24 | 1988-08-25 | Kawasaki Steel Corp | Production of mixed powder for powder metallurgy |
JPH07197104A (en) * | 1994-01-10 | 1995-08-01 | Janome Sewing Mach Co Ltd | Production of precision powder sintered parts |
JPH08134504A (en) * | 1994-11-02 | 1996-05-28 | Janome Sewing Mach Co Ltd | Production of precision parts by powder curing |
-
2004
- 2004-10-28 JP JP2004314381A patent/JP2006124777A/en active Pending
-
2005
- 2005-09-12 US US11/222,862 patent/US20060090594A1/en not_active Abandoned
- 2005-09-15 CA CA002519413A patent/CA2519413A1/en not_active Abandoned
- 2005-09-21 AT AT05020609T patent/ATE360102T1/en not_active IP Right Cessation
- 2005-09-21 DE DE602005000921T patent/DE602005000921T2/en active Active
- 2005-09-21 EP EP05020609A patent/EP1652948B1/en active Active
- 2005-10-25 CN CNA2005101160526A patent/CN1765547A/en active Pending
-
2008
- 2008-01-16 US US12/015,180 patent/US20080118766A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3794707A (en) * | 1968-04-03 | 1974-02-26 | Atomic Energy Authority Uk | Production of refractory artefacts |
US3923946A (en) * | 1973-05-17 | 1975-12-02 | Ugine Carbone | Composite materials |
US4508567A (en) * | 1981-07-02 | 1985-04-02 | Brother Kogyo Kabushiki Kaisha | Press-molding process for preparing a powder compact |
US5118341A (en) * | 1991-03-28 | 1992-06-02 | Alcan Aluminum Corporation | Machinable powder metallurgical parts and method |
US5976215A (en) * | 1997-08-29 | 1999-11-02 | Kawasaki Steel Corporation | Iron-based powder mixture for powder metallurgy and process for preparing the same |
US6602315B2 (en) * | 1997-10-21 | 2003-08-05 | Hoeganaes Corporation | Metallurgical compositions containing binding agent/lubricant and process for preparing same |
US5980603A (en) * | 1998-05-18 | 1999-11-09 | National Research Council Of Canada | Ferrous powder compositions containing a polymeric binder-lubricant blend |
US6755885B2 (en) * | 2001-04-17 | 2004-06-29 | Hëganäs AB | Iron powder composition |
US20040168547A1 (en) * | 2003-02-27 | 2004-09-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Binder for powder metallurgy, mixed powder for powder metallurgy and method for producing same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110233811A1 (en) * | 2010-03-23 | 2011-09-29 | Basf Se | Composition for producing magnetic or magnetizable moldings, and process for producing the same |
US8496725B2 (en) | 2010-03-23 | 2013-07-30 | Basf Se | Composition for producing magnetic or magnetizable moldings, and process for producing the same |
US9149869B2 (en) | 2010-11-22 | 2015-10-06 | Kobe Steel, Ltd. | Mixed powder for powder metallurgy and process for producing same |
CN110312809A (en) * | 2016-12-23 | 2019-10-08 | 佛兰芒技术研究所有限公司 | Rich metalliferous fine powder and powdery paints waste material are recycled in composite briquettes |
Also Published As
Publication number | Publication date |
---|---|
ATE360102T1 (en) | 2007-05-15 |
DE602005000921D1 (en) | 2007-05-31 |
DE602005000921T2 (en) | 2007-09-06 |
EP1652948B1 (en) | 2007-04-18 |
EP1652948A1 (en) | 2006-05-03 |
CA2519413A1 (en) | 2006-04-28 |
CN1765547A (en) | 2006-05-03 |
JP2006124777A (en) | 2006-05-18 |
US20060090594A1 (en) | 2006-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080118766A1 (en) | Mixed powder for powder metallurgy and green compact using the same | |
EP2210691A1 (en) | Iron-based powder for powder metallurgy | |
US8747516B2 (en) | Iron-based powder for powder metallurgy | |
JP5884820B2 (en) | Rare earth bonded magnet manufacturing method | |
JP5972588B2 (en) | Manufacturing method of sintered bearing | |
JP2016124960A (en) | Lubricant, mixed powder for powder metallurgy, and method for manufacturing sintered body | |
JP6038459B2 (en) | Sintered bearing | |
EP1861215B1 (en) | Metal powder composition comprising a drying oil binder | |
JP5085035B2 (en) | Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor | |
JP6489094B2 (en) | Mixed powder for powder metallurgy | |
CN1950161A (en) | Powder metallurgical compositions and methods for making the same | |
KR102102584B1 (en) | Mixed powder for iron powder metallurgy and manufacturing method therefor, and sintered body produced therefrom and manufacturing method thereof | |
JP2016025311A (en) | Composition for bond magnet and bond magnet, and integrally molded part | |
CN104968770B (en) | Metal powder metallurgy with lubricator, the manufacture method of its manufacture method, metal-powder compositions and metal powder metallurgy product | |
JP6038460B2 (en) | Manufacturing method of sintered bearing | |
WO2013042664A1 (en) | Sintered bearing and method for manufacturing same | |
US20160151838A1 (en) | Powder metallurgical method | |
US12023732B2 (en) | Iron-based mixed powder and method for manufacturing the same | |
JP5214555B2 (en) | Sintered oil-impregnated bearing | |
US20190321884A1 (en) | Fluid composition for three-dimensional shaping, manufacturing method for three-dimensionally shaped object, and three-dimensionally shaped object | |
JP5439926B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP6436127B2 (en) | Mixed powder for powder metallurgy | |
JP2022146468A (en) | Granulated powder and method for manufacturing bonded magnet | |
JP7310898B2 (en) | Powder for transfer molding, tablet, and method for producing the same | |
TW202412024A (en) | Resin composition for bonded magnet and molded article containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |