US20080112906A1 - Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications - Google Patents
Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications Download PDFInfo
- Publication number
- US20080112906A1 US20080112906A1 US11/982,511 US98251107A US2008112906A1 US 20080112906 A1 US20080112906 A1 US 20080112906A1 US 98251107 A US98251107 A US 98251107A US 2008112906 A1 US2008112906 A1 US 2008112906A1
- Authority
- US
- United States
- Prior art keywords
- metal salt
- composition
- chelate
- polygalactomannan
- borate metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 title claims abstract description 31
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229920000642 polymer Polymers 0.000 title claims description 46
- 239000013522 chelant Substances 0.000 title claims description 27
- 239000000203 mixture Substances 0.000 claims abstract description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000005406 washing Methods 0.000 claims abstract description 9
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims abstract 8
- 125000002091 cationic group Chemical group 0.000 claims description 49
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000004615 ingredient Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000002304 perfume Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 6
- 229920000926 Galactomannan Polymers 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 claims description 4
- 239000002562 thickening agent Substances 0.000 claims description 4
- 229920001002 functional polymer Polymers 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- 239000002280 amphoteric surfactant Substances 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims description 2
- 239000003093 cationic surfactant Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 239000011782 vitamin Substances 0.000 claims description 2
- 229940088594 vitamin Drugs 0.000 claims description 2
- 229930003231 vitamin Natural products 0.000 claims description 2
- 235000013343 vitamin Nutrition 0.000 claims description 2
- 239000002888 zwitterionic surfactant Substances 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims 1
- 239000003002 pH adjusting agent Substances 0.000 claims 1
- 239000004034 viscosity adjusting agent Substances 0.000 claims 1
- 150000003722 vitamin derivatives Chemical class 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 9
- 229920002907 Guar gum Polymers 0.000 abstract description 2
- 239000002738 chelating agent Substances 0.000 abstract description 2
- 239000000665 guar gum Substances 0.000 abstract description 2
- 235000010417 guar gum Nutrition 0.000 abstract description 2
- 229960002154 guar gum Drugs 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 description 33
- 239000000047 product Substances 0.000 description 29
- 239000002453 shampoo Substances 0.000 description 26
- 230000003750 conditioning effect Effects 0.000 description 19
- -1 i.e. Chemical group 0.000 description 16
- 239000004744 fabric Substances 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 9
- 125000000129 anionic group Chemical group 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 244000052616 bacterial pathogen Species 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000003431 cross linking reagent Substances 0.000 description 7
- 239000003205 fragrance Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000004971 Cross linker Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000003599 detergent Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000002781 deodorant agent Substances 0.000 description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 4
- 239000004519 grease Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000475 sunscreen effect Effects 0.000 description 4
- 239000000516 sunscreening agent Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 150000001642 boronic acid derivatives Chemical class 0.000 description 3
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003020 moisturizing effect Effects 0.000 description 3
- 239000013503 personal care ingredient Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- LTVDFSLWFKLJDQ-UHFFFAOYSA-N α-tocopherolquinone Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)(O)CCC1=C(C)C(=O)C(C)=C(C)C1=O LTVDFSLWFKLJDQ-UHFFFAOYSA-N 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- XHXUANMFYXWVNG-ADEWGFFLSA-N (-)-Menthyl acetate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(C)=O XHXUANMFYXWVNG-ADEWGFFLSA-N 0.000 description 2
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000011782 Keratins Human genes 0.000 description 2
- 108010076876 Keratins Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 230000003766 combability Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000002979 fabric softener Substances 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007863 gel particle Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 229940015043 glyoxal Drugs 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- NJGPOMYDBKROBX-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-ethyl-dimethylazanium;chloride Chemical compound [Cl-].CC[N+](C)(C)CC(O)CCl NJGPOMYDBKROBX-UHFFFAOYSA-M 0.000 description 1
- HPLFXTUAVXJDPJ-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-triethylazanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC(O)CCl HPLFXTUAVXJDPJ-UHFFFAOYSA-M 0.000 description 1
- UJGASLPMQXIPEY-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-tripropylazanium;chloride Chemical compound [Cl-].CCC[N+](CCC)(CCC)CC(O)CCl UJGASLPMQXIPEY-UHFFFAOYSA-M 0.000 description 1
- 239000001605 (5-methyl-2-propan-2-ylcyclohexyl) acetate Substances 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QEYMMOKECZBKAC-UHFFFAOYSA-N 3-chloropropanoic acid Chemical compound OC(=O)CCCl QEYMMOKECZBKAC-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical class OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 240000006304 Brachychiton acerifolius Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- XHXUANMFYXWVNG-UHFFFAOYSA-N D-menthyl acetate Natural products CC(C)C1CCC(C)CC1OC(C)=O XHXUANMFYXWVNG-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 208000001840 Dandruff Diseases 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- 244000230012 Gleditsia triacanthos Species 0.000 description 1
- 235000013813 Gleditsia triacanthos Nutrition 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 206010019049 Hair texture abnormal Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- KNVPMEZIMFVWMD-UHFFFAOYSA-N Menthyl pyrrolidone carboxylate Chemical compound CC(C)C1CCC(C)CC1OC(=O)N1C(=O)CCC1 KNVPMEZIMFVWMD-UHFFFAOYSA-N 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- KFVREYFOFOLMIE-UHFFFAOYSA-N O.O.O.O.[Na+].[Na+].[Na+].[O-]B([O-])[O-] Chemical compound O.O.O.O.[Na+].[Na+].[Na+].[O-]B([O-])[O-] KFVREYFOFOLMIE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- VXSIXFKKSNGRRO-MXOVTSAMSA-N [(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate;[(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-3-[(e)-3-methoxy-2-methyl-3-oxoprop-1-enyl Chemical class CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1.CC1(C)[C@H](/C=C(\C)C(=O)OC)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1 VXSIXFKKSNGRRO-MXOVTSAMSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000001166 anti-perspirative effect Effects 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003213 antiperspirant Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 150000001277 beta hydroxy acids Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000035597 cooling sensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000000551 dentifrice Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- NDTCWHJPYLGPSK-UHFFFAOYSA-M diethyl-methyl-(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].CC[N+](C)(CC)CC1CO1 NDTCWHJPYLGPSK-UHFFFAOYSA-M 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- PWVLGIFYUUHJQA-UHFFFAOYSA-N dimethyl-[3-(oxiran-2-yl)propyl]azanium;chloride Chemical compound [Cl-].C[NH+](C)CCCC1CO1 PWVLGIFYUUHJQA-UHFFFAOYSA-N 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 229920000591 gum Polymers 0.000 description 1
- 239000003051 hair bleaching agent Substances 0.000 description 1
- 239000000118 hair dye Substances 0.000 description 1
- 230000003779 hair growth Effects 0.000 description 1
- 230000003699 hair surface Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 230000003752 improving hair Effects 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 239000008375 oral care agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HYJYGLGUBUDSLJ-UHFFFAOYSA-N pyrethrin Natural products CCC(=O)OC1CC(=C)C2CC3OC3(C)C2C2OC(=O)C(=C)C12 HYJYGLGUBUDSLJ-UHFFFAOYSA-N 0.000 description 1
- 229940070846 pyrethrins Drugs 0.000 description 1
- 239000002728 pyrethroid Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000037394 skin elasticity Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- QVOJVKONBAJKMA-UHFFFAOYSA-M triethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1CO1 QVOJVKONBAJKMA-UHFFFAOYSA-M 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- KMIOJWCYOHBUJS-HAKPAVFJSA-N vorolanib Chemical compound C1N(C(=O)N(C)C)CC[C@@H]1NC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C KMIOJWCYOHBUJS-HAKPAVFJSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/737—Galactomannans, e.g. guar; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0087—Glucomannans or galactomannans; Tara or tara gum, i.e. D-mannose and D-galactose units, e.g. from Cesalpinia spinosa; Tamarind gum, i.e. D-galactose, D-glucose and D-xylose units, e.g. from Tamarindus indica; Gum Arabic, i.e. L-arabinose, L-rhamnose, D-galactose and D-glucuronic acid units, e.g. from Acacia Senegal or Acacia Seyal; Derivatives thereof
- C08B37/0096—Guar, guar gum, guar flour, guaran, i.e. (beta-1,4) linked D-mannose units in the main chain branched with D-galactose units in (alpha-1,6), e.g. from Cyamopsis Tetragonolobus; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/227—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/48—Thickener, Thickening system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/54—Polymers characterized by specific structures/properties
- A61K2800/542—Polymers characterized by specific structures/properties characterized by the charge
- A61K2800/5426—Polymers characterized by specific structures/properties characterized by the charge cationic
Definitions
- the present invention relates to polygalactomannan compositions and more particularly guar gum compositions which, when crosslinked with titanate organic chelating agents, form discrete guar particles which are capable of being easily dispersed in water which permits subsequent processing of the guar such as washing.
- the guar and its derivative are desirable for use in applications such as personal care or household care products, and the like.
- Polygalactomannans and their derivatives are used in various applications such as oil recovery, personal care products, textile applications, paper applications, coating applications, food applications, etc. Polygalactomannans and their derivatives are difficult to disperse in aqueous solutions, as they tend to form sticky particles which clump and agglomerate, making dissolution difficult.
- crosslinking agents such as borax, are used to allow for water-washing of the polygalactomannan after reaction and for improved dispersibility of the polygalactomannan in water.
- crosslinking agents based on borate salts, aluminum salts, copper, iron, lead, calcium, and sodium salts have been described.
- Other crosslinking agents such as metal salts based on titanium and zirconium have been mentioned, without clear definition of the method or procedure for their use.
- a boron free coating onto the substrate, that reduces the energy needed to move a comb through hair in the wet or dry state or delivers a silky, soft feel to skin or to fabric.
- This coating can also act to improve the luster and moisture retention of hair and skin, as well as their manageability and feel.
- the present invention relates to a process for producing a polygalactomannan.
- the polygalactomannan is produced in a process comprising the steps of obtaining a polygalactomannan and then contacting the polygalactomannan with an effective amount of a non-borate metal salt or chelate to produce a crosslinked polygalactomannan particle.
- the preferred non-borate metal salt or chelate comprises a metal salt based on titanium or zirconium.
- the crosslinked polygalactomannan particle is then dispersed in water having a pH in the range of from below about 12 to about 7 and washed in the water to remove impurities from the crosslinked polygalactomannan particle.
- the present invention is directed to a personal care or household care composition
- a personal care or household care composition comprising a non-borate metal salt or chelate crosslinked polygalactomannan polymer and derivatives, especially titanium and zirconium crosslinked polygalactomannan containing cationic substituents.
- This low impurity content polygalactomannan is of utility in various applications such as personal care and household care products.
- the low impurity content polygalactomannan is of particular utility in applications where the use of boron containing compounds is to be reduced or eliminated.
- Polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm of leguminous seeds such as guar, locust bean, honey locust, flame tree, and the like.
- the polygalactomannans may be used in either their natural form or may be substituted with one or more functional groups (e.g., carboxymethyl group).
- the most commonly used polygalactomannan is guar.
- the guar may be underivatized guar as well as derivatized guars such as cationic guar, anionic guar, hydrophobic guar, and hydroxyalkyl guar.
- An advantage of the use of titanate chelates over borate salts is that borate salts disassociate in water at a higher pH than titanate chelates. This results in the formation of swelled gel particles or a gel mass at a higher pH.
- washing of the polygalactomannan over a greater pH range may be performed and thereby permitting removal of impurities that would not be removed at the higher pH ranges, such as alkaline species. These impurities may reduce the clarity of aqueous solutions of the polygalactomannan or be harmful if permitted to remain with the galactomannan in certain end use applications, such as personal care.
- metal chelate, or especially titanium chelate treated cationic polygalactomannans function well as conditioning agents and thickening agents in personal care compositions.
- the cationic, anionic, hydroxalkyl, or hydrophobic polygalactomannan or derivative thereof generally has a substituent degree of substitution (DS) lower limit of about 0.001 and an upper limit of about 3.0.
- the lower limit of the cationic, anionic, hydroxyalkyl, or hydrophobic DS is 0.01, and more preferably 0.05.
- the upper limit of the cationic DS is 3.0, more preferably 1.0, and even more preferably 0.25.
- the cationic polygalactomannan or derivative thereof of the present invention generally has a weight average molecular weight (Mw) with a lower limit of about 50,000 and an upper limit of about 5,000,000 preferably, the lower limit of the molecular weight is 300,000, and more preferably 400,000.
- the upper limit of the molecular weight is 1,500,000, more preferably 1,000,000.
- the cationic functionality of the polygalactomannan or derivatized polygalactomannan can be added to the backbone by known methods.
- the polygalactomannan material can be reacted for a sufficient time and at a sufficient temperature with tertiary amino or quaternary ammonium alkylating reagents, such 2-dialkylaminoethyl chloride and quaternary ammonium compounds such as 3-chloro-2-hydroxypropyltrimethylammonium chloride, and 2,3-epoxy-propyltrimethylammonium chloride.
- Preferred examples include glycidyltrialkylammonium salts and 3-halo-2-hydroxypropyltrialkylammonium salts such as glycidyltrimethylammonium chloride, glycidyltriethylammonium chloride, gylcidyltripropylammonium chloride, glycidylethyldimethylammonium chloride, glycidyldiethylmethylammonium chloride, and their corresponding bromides and iodides; 3-chloro-2-hydroxypropyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltriethylammonium chloride, 3-chloro-2-hydroxypropyltripropylammonium chloride, 3-chloro-2-hydroxypropylethyldimethylammonium chloride, and their corresponding bromides and iodides; and quaternary ammonium compounds such as halides of imidazoline ring
- the cationic polygalactomannan may also contain other substituent groups such as nonionic substituents, i.e., hydroxyalkyl wherein the alkyl represents a straight or branched hydrocarbon moiety having 1 to 30 carbon atoms (e.g., hydroxyethyl, hydroxypropyl, hydroxybutyl) or anionic substituents, such as carboxymethyl groups are optional.
- substituent groups such as nonionic substituents, i.e., hydroxyalkyl wherein the alkyl represents a straight or branched hydrocarbon moiety having 1 to 30 carbon atoms (e.g., hydroxyethyl, hydroxypropyl, hydroxybutyl) or anionic substituents, such as carboxymethyl groups are optional.
- substituents are linked to the polygalactomannan polymer by the reaction with reagents such as (1) alkylene oxides (e.g., ethylene oxide, propylene oxide, butylene oxide) to obtain hydroxyethyl groups, hydroxypropyl groups, or hydroxybutyl groups, or with (2) chloromethyl acetic acid to obtain a carboxymethyl group.
- alkylene oxides e.g., ethylene oxide, propylene oxide, butylene oxide
- chloromethyl acetic acid to obtain a carboxymethyl group.
- the process for preparing derivatized polygalactomannan is well known in the art.
- the cationic polygalactomannan may also contain mixture of one or more other substituent groups such as nonionic, anionic and cationic substituents.
- Cationic polygalactomannan polymers or their derivatives, useful in the invention can be treated with several known reagents, such as (1) caustic, (2) acids, (3) by biochemical oxidants, such as galactose oxidase, (4) chemical oxidants, such as hydrogen peroxide, (5) a physical method using high speed agitation and shearing machines, (6) thermal methods, (7) enzymatic reagents, and (8) mixtures of these reagents and methods.
- Reagents such as sodium metabisulfite or inorganic salts of bisulfite may also be optionally included.
- the preferred end-use of the organic metal chelate treated cationic polygalactomannan polymers of the invention is as a component in personal care compositions and household care compositions, where the personal care composition comprises a organic titanium chelate treated cationic polygalactomannan and a personal care ingredient.
- the personal care ingredient includes, but is not limited to, active ingredients, such as for example analgesics, anesthetics, antibiotic agents, antifungal agents, antiseptic agents, antidandruff agents, antibacterial agents, vitamins, hormones, antidiarrhea agents, corticosteroids, anti-inflammatory agents, vasodilators, kerolytic agents, dry-eye compositions, wound-healing agents, anti-infection agents, as well as solvents, diluents, adjuvants and other ingredients such as water, ethyl alcohol, isopropyl alcohol, propylene glycol, higher alcohols, glycerine, sorbitol, mineral oil, preservatives, surfactants, propellants, fragrances, essential oils, and viscosifying agents.
- active ingredients such as for example analgesics, anesthetics, antibiotic agents, antifungal agents, antiseptic agents, antidandruff agents, antibacterial agents, vitamins, hormones, antidiar
- the personal care ingredient must provide some benefit to the user's body.
- Personal care compositions include hair care, skincare, sun care, and oral care compositions. Examples of substances that may suitably be included, but not limited to, in the personal care products according to the present invention are as follows:
- Skin coolants such as menthol, menthyl acetate, menthyl pyrrolidone carboxylate N-ethyl-p-menthane-3-carboxamide and other derivatives of menthol, which give rise to a tactile response in the form of a cooling sensation on the skin;
- Emollients such as isopropylmyristate, silicone materials, mineral oils and vegetable oils which give rise to a tactile response in the form of an increase in skin lubricity;
- Deodorants other than perfumes whose function is to reduce the level of or eliminate micro flora at the skin surface, especially those responsible for the development of body malodor.
- Precursors of deodorants other than perfume can also be used;
- Antiperspirant actives whose function is to reduce or eliminate the appearance of perspiration at the skin surface
- Moisturizing agents that keep the skin moist by either adding moisture or preventing from evaporating from the skin;
- Sunscreen active ingredients which protect the skin and hair from UV and other harmful light rays from the sun.
- a therapeutically effective amount will normally be from 0.01 to 10% by weight, preferable 0.1 to 5% by weight of the composition;
- Hair treatment agents that condition the hair, cleanse the hair, detangles hair, acts as styling agent, volumizing and gloss agents, color retention agent, anti-dandruff agent, hair growth promoters, hair dyes and pigments, hair perfumes, hair relaxer, hair bleaching agent, hair moisturizer, hair oil treatment agent, and antifrizzing agent;
- Oral care agents such as dentifrices and mouth washes, that clean, whiten, deodorize and protect the teeth and gum;
- Shaving products such as creams, gels and lotions and razor blade lubricating strips
- Tissue paper products such as moisturizing or cleansing tissues
- Beauty aids such as foundation powders, lipsticks, and eye care
- Textile products such as moisturizing or cleansing wipes.
- the household care ingredient must provide some benefit to the user.
- substances that may suitably be included, but not limited to, according to the present invention are as follows:
- Insect repellent agent whose function is to keep insects from a particular area or attacking skin
- Bubble generating agent such as surfactant that generates foam or lather
- Pet deodorizer or insecticides such as pyrethrins that reduces pet odor
- Pet shampoo agents and actives whose function is to remove dirt, foreign material and germs from the skin and hair surfaces;
- a laundry softener active which reduces static and makes fabric feel softer
- Toilet bowl cleaning agents which remove stains, kills germs, and deodorizes
- Vehicle cleaning actives which removes dirt, grease, etc. from vehicles and equipment;
- composition according to the present invention can optionally also include, but is not limited to, ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.e., NaCl, NH 4 Cl & KCl, water-soluble polymers, i.e., hydroxyethylcellulose, hydroxypropylmethylcellulose, and fatty alcohols, i.e., cetyl alcohol), alcohols having 1-6 carbons, fats or fatty compounds, antimicrobial compound, zinc pyrithione, silicone material, hydrocarbon polymer, emollients, oils, surfactants, medicaments, flavors, fragrances, suspending agents, and mixtures thereof
- ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.
- examples of functional polymers that can be used in blends with the metal organic chelate treated polygalactomannan or derivatives thereof of this invention include water-soluble polymers such as acrylic acid homopolymers such as Carbopol® product and anionic and amphoteric acrylic acid copolymers, vinylpyrrolidone homopolymers and cationic vinylpyrrolidone copolymers; nonionic, cationic, anionic, and amphoteric cellulosic polymers such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, cationic hydroxyethylcellulose, cationic carboxymethylhydroxyethylcellulose, and cationic hydroxypropylcellulose; acrylamide homopolymers and cationic, amphoteric, and hydrophobic acrylamide copolymers, polyethylene glycol polymers and copolymers, hydrophobic polyethers, hydrophobic polyetheracetals, hydrophobically-modified
- the silicone materials which can be used are polyorganosiloxanes that can be in the form of polymers, oligomers, oils, waxes, resins, or gums or polyorganosiloxane polyether copolyols, amodimethicones, cationic polydimethylsiloxane materials and any other silicone material that is used in personal care or household care compositions.
- the hair care or skin care composition of the present invention is an aqueous system comprising water and the polymer of the invention.
- the hair care or skin care composition of the present invention contains one or more surfactant compounds, including amphoteric surfactants, cationic surfactants, anionic surfactants, nonionic surfactants, zwitterionic surfactants, and combinations thereof.
- titanium organic chelate treated cationic polygalactomannans can deposit with high efficacy on hair/skin and can impart great conditioning benefits to the discussed keratin substrates.
- Such polymers impart other benefits in hair styling, body lotions and sunscreens due to hydrophobic film formation on keratin substrates that would act as barrier between the these surfaces and the surrounding atmosphere.
- the polymers of this invention can be useful as conditioning agents in 2-in-1 shampoos, body lotions, sunscreens, antifrizz and hair styling.
- the polymers of this invention can also be used to improve hair volume, manageability, hair repair, or color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and improve fabric abrasion resistance and colorfastness in household care applications.
- wet and dry hair combability measurements are typical test methods used to measure conditioning performance in shampoo and conditioner applications.
- skin lubricity or reduced friction or softer feel of the skin, reduced water vapor transmission and improved skin elasticity are test methods used to measure skin conditioning.
- conditioning refers to imparting a softer feel to fabric and eliminating static effects, eliminating fabric fiber breakage or deformation known as pilling. Imparting color retention properties to fabrics is also important and can be measured.
- Cationic guar was prepared by known procedures, without the use of a crosslinking agent.
- the unpurified cationic guar reaction product was placed in a container and the specified quantity of Tyzor® LA organic titanates, diluted with water in Examples 3, 4, 5, 6 is added to the splits while mixing with a hand held mixer over two minutes. The reaction was conducted at ambient temperature. For Examples 4 and 6, a diluted solution of glacial acetic acid was added to the splits using the same mixing procedure, prior to addition of the Tyzor® LA organic titanates, solution.
- the cationic guar reaction product was placed in an ABBE blender, with the rotational speed set at 2 (85 rpm). The system was evacuated to 10 in HG and pressurized with nitrogen to 10 psi, followed by a 2 minute hold. This procedure was repeated 5 times. After venting, 31.9 grams Tyzor LA (50% active, E.I Du Pont de Nemours, Wilmington, Del.) in 369 grams water was added to the cationic guar solids (pH11.5) over 30 minutes, evacuating and pressurizing with nitrogen after each 50 ml addition. The temperature was maintained at 18-22 C. After the final Tyzor addition, the mixture was held at 22° C. and mixed for 30 minutes, under 10 psi nitrogen pressure. The stirring was stopped and the product recovered.
- Tyzor LA 50% active, E.I Du Pont de Nemours, Wilmington, Del.
- a measured weight of the crosslinked or non-crosslinked polymer was placed in an 8 ounce jar and distilled water was added as specified for wash 1 in Table 1. After 30-40 minutes, the top water layer was decanted from the splits and measured. A second wash was performed using the specified quantity of water in Table 1, and the slurry remained at room temperature for 24 hrs.
- Example 3 If a top layer of water was present, it was decanted and measured as Wash 3 recovered. Note that there was a significant amount of water decanted from the second wash of Examples 2 (borate crosslink control), Example 5 and 6 (titanate crosslinking).
- the form of the polymer in Examples 2, 5, and 6 was as discrete particulates after Wash 2, indicating sufficient crosslinking had occurred to prevent polymer swelling during the wash step.
- the polymer in Example 1 (no crosslinker control) formed a continuous gel plug after Wash 2, as no crosslinker was present, and the polymer was dissolving in the wash water. In Examples 3 and 4, the polymer was present as swollen, but discrete gel particles after wash 2, indicating some crosslinking had occurred, but an insufficient amount to prevent polymer swelling during the wash step.
- Resuspension of the polymer phases in Examples 1-6 in a third wash step demonstrates that crosslinking occurred in Examples 2-6, with recovery of a decanted water phase and isolation of particulate polymer phase.
- Example 1 no crosslinker control yielded a swollen gel which continued to swell with further addition of water.
- Example 7 the product (660 parts by weight) was mixed with 3300 pbw water for 30-40 minutes using a mechanical stirrer. The product then settled to the bottom of the beaker, and the liquid phase was decanted. The solid product was dried 72 hrs in a hood, with air draft, to a solids content of 87%. The product was chilled with dry ice, then ground through a 0.5 mm then a 0.2 mm screen in a fluidized bed drier. This product was then used to prepare the conditioning shampoo of Example 8 and bodywash of Example 10, in Tables 2 and 3, respectively.
- Example 8 The use of the cationic polygalactomannan materials of the invention of Example 7 in a conditioning shampoo formulation is demonstrated in Example 8, Table 2, and contrasted with a comparative control shampoo containing a borate crosslinked cationic guar of (Example 9) and a shampoo containing no cationic guar (Example 10).
- the conditioning shampoo formulations in Table 2 were prepared by combining 77 parts by weight (pbw) of the surfactant premix composition shown in Table 3 with 19 pbw deionized water, and 0.3 pbw of the polymer of the invention using a Caframo overhead mechanical stirrer with a dispersion blade, stirring at 600 rpm, and allowing the composition to mix for 45 minutes at ambient temperature. At this time, 3 pbw of a silicone emulsion (Dow Corning 1784) was added to the formulation, and mixing was continued for an additional 15 minutes. The shampoo compositions were maintained at ambient temperature overnight, and the viscosity of each shampoo was measured using a Brookfield LVT viscometer with a small sample adapter, spindle 31, at the specified rotation speed.
- a Brookfield LVT viscometer with a small sample adapter, spindle 31, at the specified rotation speed.
- Example 8 Comparison of the shampoo viscosity for Example 8, which contains the glyoxal crosslinked cationic guar of the invention, with comparative Example 10, which contains no polymer, demonstrates the viscosifying performance of the products of the invention.
- the viscosity of the shampoo in Examples 8 is similar to the viscosity of the shampoo containing borate crosslinked cationic guar in Example 9.
- Cationic polysaccharides and other polymers have been used widely in personal care, household care, industrial, and institutional products to perform a function in the final product, ranging from the use of the polymer as gellants, binders, thickeners, stabilizers, emulsifiers, spreading and deposition aids and carriers for enhancing the rheology, efficacy, deposition, aesthetic and delivery of chemically and physiologically active ingredients in personal care, household care, institutional and industrial compositions.
- the substrate to which the product is applied can be skin, hair, or textile substrates.
- Cationic polysaccharides are used in hair care products to provide conditioning to the hair.
- these same polymers can provide conditioning effects to the skin.
- these same polymers can provide conditioning, softening, anti-abrasion and antistatic characteristics to fabrics.
- Combing performance was measured by applying the shampoo formulation to a tress wet with water, at a ratio of 0.5 pbw shampoo/1 pbw hair tress.
- the tress was kneaded for 60 seconds, then rinsed with 40° C. water for 30 seconds. This process was repeated, then the tress was rinsed with deionized water and excess water squeezed from the tress.
- the tress was placed on the double comb apparatus and wet combing force measured 8 times on an Instron 5542 at a cross head speed of 12.5 cm/min using the double comb method, with Ace hard rubber fine pocket combs, at 23° C. and 50% relative humidity. Hair tresses were then allowed to dry overnight at 23° C. and 50% relative humidity, and the dry comb performance was measured using the same double comb method.
- the normalized comb energies in Table 2 represent the total comb energy/weight of tress.
- Example 8 The conditioning performance of the products of the invention is demonstrated by the significantly reduced wet and dry combing energy results for Example 8 compared to the higher combing energies for the no polymer control shampoo in Example 10.
- the combing energies for Examples 8 compare well with the comb energy for the shampoo containing borate crosslinked cationic guar in Example 9.
- Bodywash formulations were prepared by addition of 0.3 pbw of the polymers of the invention in Example 7 to 76 pbw of the bodywash premix formulation in Table 5, and water (added to bring the volume to 100). Mixing was performed using an overhead mechanical stirrer with a dispersion blade, for 1 hr. The pH of the bodywash was 5.6.
- the bodywash example 11 contains the polymer of the invention of Example 7. Addition of the polymer of the invention to the bodywash formulation leads to increased viscosity of the bodywash relative to the comparative control bodywash, containing no cationic guar, in Example 12. TABLE 4 Performance of Products of the Invention in Bodywash Formulation Example 11 12 Polymer Ex. 7 None Viscosity/cps 1 3080(6 rpm) 1864 1 Brookfield LVT, spindle3, 12 rpm
- agents which form a water-swellable or water-dispersible complex with the polygalactomannan polymers can also act to improve the water-dispersibility of the polygalactomannan.
- agents include oligomers or polymers containing phosphate, sulfate, sulfonate, carboxylate, or carbonate groups, including sodium hexametaphosphate polystyrene sulfonate, and proteins such as casein or whey which can form a water-dispersible complex with cationic polygalactomannan polymers.
- agents also include anionic, cationic, and amphoteric surface-active agents such as ammonium lauryl sulfate, sodium lauryl sulfate, cetyltrimethylammonium chloride or bromide, and cocamidopropyl betaine.
- anionic, cationic, and amphoteric surface-active agents such as ammonium lauryl sulfate, sodium lauryl sulfate, cetyltrimethylammonium chloride or bromide, and cocamidopropyl betaine.
- crosslinkers such as chloroformate, siloxane based crosslinking reagents, such as triethoxysilane, glyoxal and other dialdehyde materials can be used to crosslink the polygalactomannan, rendering it water-dispersible.
- the water-dispersible crosslinked products described above can then be used in applications such as personal care or household care products, where they can be dispersed and dissolved in aqueous phases by appropriate adjustment of the solution pH or by addition of salts.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Cosmetics (AREA)
- Detergent Compositions (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 60/856,486, filed on Nov. 3, 2006, which is incorporated herein by reference in its entirety.
- The present invention relates to polygalactomannan compositions and more particularly guar gum compositions which, when crosslinked with titanate organic chelating agents, form discrete guar particles which are capable of being easily dispersed in water which permits subsequent processing of the guar such as washing. The guar and its derivative are desirable for use in applications such as personal care or household care products, and the like.
- Polygalactomannans and their derivatives are used in various applications such as oil recovery, personal care products, textile applications, paper applications, coating applications, food applications, etc. Polygalactomannans and their derivatives are difficult to disperse in aqueous solutions, as they tend to form sticky particles which clump and agglomerate, making dissolution difficult. To improve dissolution of the polymers, crosslinking agents, such as borax, are used to allow for water-washing of the polygalactomannan after reaction and for improved dispersibility of the polygalactomannan in water.
- Crosslinking agents based on borate salts, aluminum salts, copper, iron, lead, calcium, and sodium salts have been described. Other crosslinking agents such as metal salts based on titanium and zirconium have been mentioned, without clear definition of the method or procedure for their use.
- There exists a concern over the hazards of boron in some consumer products, and a need exists for alternative crosslinking agents for use in the purification and handling of polygalactomannan polymers and their derivatives.
- In personal care applications, such as in hair care and skincare, and in household applications, such as fabric care applications, there is a desire to deposit a boron free coating onto the substrate, that reduces the energy needed to move a comb through hair in the wet or dry state or delivers a silky, soft feel to skin or to fabric. This coating can also act to improve the luster and moisture retention of hair and skin, as well as their manageability and feel.
- In a first aspect, the present invention relates to a process for producing a polygalactomannan. The polygalactomannan is produced in a process comprising the steps of obtaining a polygalactomannan and then contacting the polygalactomannan with an effective amount of a non-borate metal salt or chelate to produce a crosslinked polygalactomannan particle. The preferred non-borate metal salt or chelate comprises a metal salt based on titanium or zirconium. The crosslinked polygalactomannan particle is then dispersed in water having a pH in the range of from below about 12 to about 7 and washed in the water to remove impurities from the crosslinked polygalactomannan particle.
- In a second aspect, the present invention is directed to a personal care or household care composition comprising a non-borate metal salt or chelate crosslinked polygalactomannan polymer and derivatives, especially titanium and zirconium crosslinked polygalactomannan containing cationic substituents. This low impurity content polygalactomannan is of utility in various applications such as personal care and household care products. The low impurity content polygalactomannan is of particular utility in applications where the use of boron containing compounds is to be reduced or eliminated.
- In the present invention, it has been found that treatment of cationic polygalactomannan reaction mixture with titanium salts at a ratio of between about 0.001-0.025 wt titanium/wt galactomannan polymer leads to a water-dispersible polygalactomannan that remains as a discrete particulate that does not agglomerate into a gel. Other chelates, such as zirconium salts are expected to give a similar result as the titanium salts. The resulting crosslinked polygalactomannan particle is easily washed in water and readily dispersible in water.
- This application is of utility as a processing aid for galactomannans Polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm of leguminous seeds such as guar, locust bean, honey locust, flame tree, and the like. The polygalactomannans may be used in either their natural form or may be substituted with one or more functional groups (e.g., carboxymethyl group). The most commonly used polygalactomannan is guar. The guar may be underivatized guar as well as derivatized guars such as cationic guar, anionic guar, hydrophobic guar, and hydroxyalkyl guar.
- An advantage of the use of titanate chelates over borate salts is that borate salts disassociate in water at a higher pH than titanate chelates. This results in the formation of swelled gel particles or a gel mass at a higher pH. By permitting the polygalactomannan to remain as a discrete particle at lower pH values, washing of the polygalactomannan over a greater pH range may be performed and thereby permitting removal of impurities that would not be removed at the higher pH ranges, such as alkaline species. These impurities may reduce the clarity of aqueous solutions of the polygalactomannan or be harmful if permitted to remain with the galactomannan in certain end use applications, such as personal care.
- In addition, it has been found that metal chelate, or especially titanium chelate treated cationic polygalactomannans function well as conditioning agents and thickening agents in personal care compositions.
- In accordance with the present invention, the cationic, anionic, hydroxalkyl, or hydrophobic polygalactomannan or derivative thereof generally has a substituent degree of substitution (DS) lower limit of about 0.001 and an upper limit of about 3.0. Preferably, the lower limit of the cationic, anionic, hydroxyalkyl, or hydrophobic DS is 0.01, and more preferably 0.05. Preferably, the upper limit of the cationic DS is 3.0, more preferably 1.0, and even more preferably 0.25. The cationic polygalactomannan or derivative thereof of the present invention generally has a weight average molecular weight (Mw) with a lower limit of about 50,000 and an upper limit of about 5,000,000 preferably, the lower limit of the molecular weight is 300,000, and more preferably 400,000. Preferably, the upper limit of the molecular weight is 1,500,000, more preferably 1,000,000.
- The cationic functionality of the polygalactomannan or derivatized polygalactomannan can be added to the backbone by known methods. For example, the polygalactomannan material can be reacted for a sufficient time and at a sufficient temperature with tertiary amino or quaternary ammonium alkylating reagents, such 2-dialkylaminoethyl chloride and quaternary ammonium compounds such as 3-chloro-2-hydroxypropyltrimethylammonium chloride, and 2,3-epoxy-propyltrimethylammonium chloride. Preferred examples include glycidyltrialkylammonium salts and 3-halo-2-hydroxypropyltrialkylammonium salts such as glycidyltrimethylammonium chloride, glycidyltriethylammonium chloride, gylcidyltripropylammonium chloride, glycidylethyldimethylammonium chloride, glycidyldiethylmethylammonium chloride, and their corresponding bromides and iodides; 3-chloro-2-hydroxypropyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltriethylammonium chloride, 3-chloro-2-hydroxypropyltripropylammonium chloride, 3-chloro-2-hydroxypropylethyldimethylammonium chloride, and their corresponding bromides and iodides; and quaternary ammonium compounds such as halides of imidazoline ring containing compounds.
- The cationic polygalactomannan may also contain other substituent groups such as nonionic substituents, i.e., hydroxyalkyl wherein the alkyl represents a straight or branched hydrocarbon moiety having 1 to 30 carbon atoms (e.g., hydroxyethyl, hydroxypropyl, hydroxybutyl) or anionic substituents, such as carboxymethyl groups are optional. These optional substituents are linked to the polygalactomannan polymer by the reaction with reagents such as (1) alkylene oxides (e.g., ethylene oxide, propylene oxide, butylene oxide) to obtain hydroxyethyl groups, hydroxypropyl groups, or hydroxybutyl groups, or with (2) chloromethyl acetic acid to obtain a carboxymethyl group. The process for preparing derivatized polygalactomannan is well known in the art. The cationic polygalactomannan may also contain mixture of one or more other substituent groups such as nonionic, anionic and cationic substituents.
- Cationic polygalactomannan polymers or their derivatives, useful in the invention can be treated with several known reagents, such as (1) caustic, (2) acids, (3) by biochemical oxidants, such as galactose oxidase, (4) chemical oxidants, such as hydrogen peroxide, (5) a physical method using high speed agitation and shearing machines, (6) thermal methods, (7) enzymatic reagents, and (8) mixtures of these reagents and methods. Reagents such as sodium metabisulfite or inorganic salts of bisulfite may also be optionally included.
- The preferred end-use of the organic metal chelate treated cationic polygalactomannan polymers of the invention is as a component in personal care compositions and household care compositions, where the personal care composition comprises a organic titanium chelate treated cationic polygalactomannan and a personal care ingredient. The personal care ingredient includes, but is not limited to, active ingredients, such as for example analgesics, anesthetics, antibiotic agents, antifungal agents, antiseptic agents, antidandruff agents, antibacterial agents, vitamins, hormones, antidiarrhea agents, corticosteroids, anti-inflammatory agents, vasodilators, kerolytic agents, dry-eye compositions, wound-healing agents, anti-infection agents, as well as solvents, diluents, adjuvants and other ingredients such as water, ethyl alcohol, isopropyl alcohol, propylene glycol, higher alcohols, glycerine, sorbitol, mineral oil, preservatives, surfactants, propellants, fragrances, essential oils, and viscosifying agents.
- In accordance with the present invention, the personal care ingredient must provide some benefit to the user's body. Personal care compositions include hair care, skincare, sun care, and oral care compositions. Examples of substances that may suitably be included, but not limited to, in the personal care products according to the present invention are as follows:
- 1) Perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce body malodor;
- 2) Skin coolants, such as menthol, menthyl acetate, menthyl pyrrolidone carboxylate N-ethyl-p-menthane-3-carboxamide and other derivatives of menthol, which give rise to a tactile response in the form of a cooling sensation on the skin;
- 3) Emollients, such as isopropylmyristate, silicone materials, mineral oils and vegetable oils which give rise to a tactile response in the form of an increase in skin lubricity;
- 4) Deodorants other than perfumes, whose function is to reduce the level of or eliminate micro flora at the skin surface, especially those responsible for the development of body malodor. Precursors of deodorants other than perfume can also be used;
- 5) Antiperspirant actives, whose function is to reduce or eliminate the appearance of perspiration at the skin surface;
- 6) Moisturizing agents, that keep the skin moist by either adding moisture or preventing from evaporating from the skin;
- 7) Cleansing agents, that remove dirt and oil from the skin;
- 8) Sunscreen active ingredients, which protect the skin and hair from UV and other harmful light rays from the sun. In accordance with this invention a therapeutically effective amount will normally be from 0.01 to 10% by weight, preferable 0.1 to 5% by weight of the composition;
- 9) Hair treatment agents, that condition the hair, cleanse the hair, detangles hair, acts as styling agent, volumizing and gloss agents, color retention agent, anti-dandruff agent, hair growth promoters, hair dyes and pigments, hair perfumes, hair relaxer, hair bleaching agent, hair moisturizer, hair oil treatment agent, and antifrizzing agent;
- 10) Oral care agents, such as dentifrices and mouth washes, that clean, whiten, deodorize and protect the teeth and gum;
- 11) Denture adhesives that provide adhesion properties to dentures;
- 12) Shaving products, such as creams, gels and lotions and razor blade lubricating strips;
- 13) Tissue paper products, such as moisturizing or cleansing tissues;
- 14) Beauty aids, such as foundation powders, lipsticks, and eye care;
- 15) Textile products, such as moisturizing or cleansing wipes; and
- 16) Pigments or dyes that impart color to the hair, skin, or textile substrate.
- In accordance with the present invention, the household care ingredient must provide some benefit to the user. Examples of substances that may suitably be included, but not limited to, according to the present invention are as follows:
- 1) Perfumes, which give rise to an olfactory response in the form of a fragrance and deodorant perfumes which in addition to providing a fragrance response can also reduce odor;
- 2) Insect repellent agent whose function is to keep insects from a particular area or attacking skin;
- 3) Bubble generating agent, such as surfactant that generates foam or lather;
- 4) Pet deodorizer or insecticides such as pyrethrins that reduces pet odor;
- 5) Pet shampoo agents and actives, whose function is to remove dirt, foreign material and germs from the skin and hair surfaces;
- 6) Industrial grade bar, shower gel, and liquid soap actives that remove germs, dirt, grease and oil from skin, sanitizes skin, and conditions the skin;
- 7) All purpose cleaning agents, that remove dirt, oil, and grease, germs from the surface in areas such as kitchens, bathroom, and public facilities;
- 8) Disinfecting ingredients that kill or prevent growth of germs in a house or public facility;
- 9) Rug and Upholstery cleaning actives which lift and remove dirt and foreign particles from the surfaces and also deliver softening and perfumes;
- 10) A laundry softener active, which reduces static and makes fabric feel softer;
- 11) Laundry detergent ingredients which remove dirt, oil, grease, stains and kills germs;
- 12) Laundry or detergent or fabric softener ingredients that reduce color loss during the wash, rinse, and drying cycle of fabric care;
- 13) Dishwashing detergents which remove stains, food, germs;
- 14) Toilet bowl cleaning agents, which remove stains, kills germs, and deodorizes;
- 15) Laundry prespotter actives which helps in removing stains from clothes;
- 16) Fabric sizing agent which enhances appearance of the fabric;
- 17) Vehicle cleaning actives which removes dirt, grease, etc. from vehicles and equipment;
- 18) Lubricating agent which reduces friction between parts; and
- 19) Textile products, such as dusting or disinfecting wipes.
- The above list of personal care and household care active ingredients are only examples and are not a complete list of active ingredients that can be used. Other ingredients that are used in these types of products are well known in the industry. In addition to the above ingredients conventionally used, the composition according to the present invention can optionally also include, but is not limited to, ingredients such as a colorant, preservative, antioxidant, nutritional supplements, alpha or beta hydroxy acid, activity enhancer, emulsifiers, functional polymers, viscosifying agents (such as salts, i.e., NaCl, NH4Cl & KCl, water-soluble polymers, i.e., hydroxyethylcellulose, hydroxypropylmethylcellulose, and fatty alcohols, i.e., cetyl alcohol), alcohols having 1-6 carbons, fats or fatty compounds, antimicrobial compound, zinc pyrithione, silicone material, hydrocarbon polymer, emollients, oils, surfactants, medicaments, flavors, fragrances, suspending agents, and mixtures thereof.
- In accordance with the present invention, examples of functional polymers that can be used in blends with the metal organic chelate treated polygalactomannan or derivatives thereof of this invention include water-soluble polymers such as acrylic acid homopolymers such as Carbopol® product and anionic and amphoteric acrylic acid copolymers, vinylpyrrolidone homopolymers and cationic vinylpyrrolidone copolymers; nonionic, cationic, anionic, and amphoteric cellulosic polymers such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, cationic hydroxyethylcellulose, cationic carboxymethylhydroxyethylcellulose, and cationic hydroxypropylcellulose; acrylamide homopolymers and cationic, amphoteric, and hydrophobic acrylamide copolymers, polyethylene glycol polymers and copolymers, hydrophobic polyethers, hydrophobic polyetheracetals, hydrophobically-modified polyetherurethanes and other polymers referred to as associative polymers, hydrophobic cellulosic polymers, polyethyleneoxide-propylene oxide copolymers, and nonionic, anionic, hydrophobic, amphoteric, and cationic polysaccharides such as xanthan, chitosan, alginates and gum arabic.
- In accordance with the invention, the silicone materials which can be used are polyorganosiloxanes that can be in the form of polymers, oligomers, oils, waxes, resins, or gums or polyorganosiloxane polyether copolyols, amodimethicones, cationic polydimethylsiloxane materials and any other silicone material that is used in personal care or household care compositions.
- In one embodiment, the hair care or skin care composition of the present invention is an aqueous system comprising water and the polymer of the invention. In one embodiment, the hair care or skin care composition of the present invention contains one or more surfactant compounds, including amphoteric surfactants, cationic surfactants, anionic surfactants, nonionic surfactants, zwitterionic surfactants, and combinations thereof.
- It has been found that titanium organic chelate treated cationic polygalactomannans can deposit with high efficacy on hair/skin and can impart great conditioning benefits to the discussed keratin substrates.
- Such polymers impart other benefits in hair styling, body lotions and sunscreens due to hydrophobic film formation on keratin substrates that would act as barrier between the these surfaces and the surrounding atmosphere.
- The polymers of this invention can be useful as conditioning agents in 2-in-1 shampoos, body lotions, sunscreens, antifrizz and hair styling. The polymers of this invention can also be used to improve hair volume, manageability, hair repair, or color retention, skin moisturization and moisture retention, fragrance retention, sunscreen longevity on hair, skin, and fabrics, flavor enhancement and antimicrobial performance in oral care applications, and improve fabric abrasion resistance and colorfastness in household care applications.
- Wet and dry hair combability measurements are typical test methods used to measure conditioning performance in shampoo and conditioner applications. In skincare applications, skin lubricity or reduced friction or softer feel of the skin, reduced water vapor transmission and improved skin elasticity are test methods used to measure skin conditioning. In surfactant-based household cleansing product formulations where conditioning performance is desired, such as dish detergents, fabric softeners, and antistatic products, conditioning refers to imparting a softer feel to fabric and eliminating static effects, eliminating fabric fiber breakage or deformation known as pilling. Imparting color retention properties to fabrics is also important and can be measured.
- The following examples demonstrate the crosslinking of cationic guar with organic titanium chelates (Tyzor®LA organic titanates, supplied by E.I. du Pont de Nemours and Company) and their use in personal care compositions. In addition, it has been found that titanium organic chelate treated cationic polygalactomannans function well as conditioning agents and thickening agents in personal care compositions.
- The examples are merely set forth for illustrative purposes all parts and percentages being by weight, unless otherwise indicated. It is to be understood that other modifications of the present invention can be made by skilled artisans in the related industry without departing from the spirit and scope of the invention.
- Cationic guar was prepared by known procedures, without the use of a crosslinking agent.
- Guar splits (750 g), and water (450 g) were mixed in a stirred reactor under nitrogen. The reactor was pressurized with nitrogen and vented to remove oxygen. The reaction was conducted at a temperature between 30-50° C., after addition of 3-chloro-2hydroxypropyltrimethylammonium chloride (288 g), followed by 250 grams 25% sodium hydroxide. The reaction was cooled to room temperature. The reaction product is shown in Example 1, and it used for crosslinking experiments in Examples 3-7 in Table 1.
- A similar reaction was conducted with addition of sodium borate tetrahydrate to crosslink the cationic guar. This reaction product is shown in Example 2.
- Titanium Crosslinking
- The unpurified cationic guar reaction product was placed in a container and the specified quantity of Tyzor® LA organic titanates, diluted with water in Examples 3, 4, 5, 6 is added to the splits while mixing with a hand held mixer over two minutes. The reaction was conducted at ambient temperature. For Examples 4 and 6, a diluted solution of glacial acetic acid was added to the splits using the same mixing procedure, prior to addition of the Tyzor® LA organic titanates, solution.
- For example 7, the cationic guar reaction product was placed in an ABBE blender, with the rotational speed set at 2 (85 rpm). The system was evacuated to 10 in HG and pressurized with nitrogen to 10 psi, followed by a 2 minute hold. This procedure was repeated 5 times. After venting, 31.9 grams Tyzor LA (50% active, E.I Du Pont de Nemours, Wilmington, Del.) in 369 grams water was added to the cationic guar solids (pH11.5) over 30 minutes, evacuating and pressurizing with nitrogen after each 50 ml addition. The temperature was maintained at 18-22 C. After the final Tyzor addition, the mixture was held at 22° C. and mixed for 30 minutes, under 10 psi nitrogen pressure. The stirring was stopped and the product recovered.
- Wash Procedure
- A measured weight of the crosslinked or non-crosslinked polymer was placed in an 8 ounce jar and distilled water was added as specified for wash 1 in Table 1. After 30-40 minutes, the top water layer was decanted from the splits and measured. A second wash was performed using the specified quantity of water in Table 1, and the slurry remained at room temperature for 24 hrs.
- If a top layer of water was present, it was decanted and measured as Wash 3 recovered. Note that there was a significant amount of water decanted from the second wash of Examples 2 (borate crosslink control), Example 5 and 6 (titanate crosslinking). The form of the polymer in Examples 2, 5, and 6 was as discrete particulates after Wash 2, indicating sufficient crosslinking had occurred to prevent polymer swelling during the wash step. The polymer in Example 1 (no crosslinker control) formed a continuous gel plug after Wash 2, as no crosslinker was present, and the polymer was dissolving in the wash water. In Examples 3 and 4, the polymer was present as swollen, but discrete gel particles after wash 2, indicating some crosslinking had occurred, but an insufficient amount to prevent polymer swelling during the wash step.
- Resuspension of the polymer phases in Examples 1-6 in a third wash step demonstrates that crosslinking occurred in Examples 2-6, with recovery of a decanted water phase and isolation of particulate polymer phase. Example 1 (no crosslinker control) yielded a swollen gel which continued to swell with further addition of water.
- For Example 7, the product (660 parts by weight) was mixed with 3300 pbw water for 30-40 minutes using a mechanical stirrer. The product then settled to the bottom of the beaker, and the liquid phase was decanted. The solid product was dried 72 hrs in a hood, with air draft, to a solids content of 87%. The product was chilled with dry ice, then ground through a 0.5 mm then a 0.2 mm screen in a fluidized bed drier. This product was then used to prepare the conditioning shampoo of Example 8 and bodywash of Example 10, in Tables 2 and 3, respectively.
- These examples demonstrate the preparation of a water-dispersible polygalactomannan on treatment with sufficient amounts of titanium crosslinkers.
TABLE 1 Crosslinking of Cationic Guar EXAMPLE 1 No 2 crosslinker Borate control Control 3 4 5 6 7 Cat guar(DS0.13; XA1232-62) 47.08 25 25 25 399.08 Cationic guar(DS0.13; 56% water) 107 56.8181818 56.81818182 56.81818182 907 Tyzor LA(50%) active 0.4708 0.25 3.75 3.75 15.9632 wt boron/guar 0 0.003 wt Titanium/wt guar 0 0 0.001598639 0.00159864 0.023979592 0.023979592 0.006394558 grams 50% Tyzor solution 0.9416 0.5 7.5 7.5 31.9264 grams water to dilute Tyzor 50 27 400 grams glacial acetic acid 0.87 0.87 31.9264 grams water to dilute acid 23 23 368.0736 rxn temp/C. 34 C. 20 C. 20 C. 20 C. 20 C. 20 C. pH 11.9 10.1 11.9 9.5 11.5 moles Tyzor/moles guar pH after rxn 11.2 9.57 Wash Step grams polymer 17.2 9.3 12.3 9 13.4 14.4 wash 1 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml recovered wash 1(30 minutes) 50 ml 50 ml 50 ml 50 ml 50 ml 50 ml wash 2(24 hr) 70 70 60 70 90 ml 90 ml recovered wash 2(24 hr) 0 (swollen 70 ml 0 (swollen 1 (swollen 70 ml(compact 70 ml(compact gel) (compact particulates) particulates) particulates) particulates) particulates) wash 3(1 hr) 70 ml 70 ml 70 ml 70 ml 70 ml 70 ml recovered wash 3(1 hr) 0 70 ml 50 ml 50 ml 70 ml 70 ml pH wash 2 11.9 12 11.9 9.6 - The use of the cationic polygalactomannan materials of the invention of Example 7 in a conditioning shampoo formulation is demonstrated in Example 8, Table 2, and contrasted with a comparative control shampoo containing a borate crosslinked cationic guar of (Example 9) and a shampoo containing no cationic guar (Example 10).
- Shampoo Preparation
- The conditioning shampoo formulations in Table 2 were prepared by combining 77 parts by weight (pbw) of the surfactant premix composition shown in Table 3 with 19 pbw deionized water, and 0.3 pbw of the polymer of the invention using a Caframo overhead mechanical stirrer with a dispersion blade, stirring at 600 rpm, and allowing the composition to mix for 45 minutes at ambient temperature. At this time, 3 pbw of a silicone emulsion (Dow Corning 1784) was added to the formulation, and mixing was continued for an additional 15 minutes. The shampoo compositions were maintained at ambient temperature overnight, and the viscosity of each shampoo was measured using a Brookfield LVT viscometer with a small sample adapter, spindle 31, at the specified rotation speed.
- Shampoo Viscosity Measurements
- Comparison of the shampoo viscosity for Example 8, which contains the glyoxal crosslinked cationic guar of the invention, with comparative Example 10, which contains no polymer, demonstrates the viscosifying performance of the products of the invention. The viscosity of the shampoo in Examples 8 is similar to the viscosity of the shampoo containing borate crosslinked cationic guar in Example 9.
- Cationic polysaccharides and other polymers have been used widely in personal care, household care, industrial, and institutional products to perform a function in the final product, ranging from the use of the polymer as gellants, binders, thickeners, stabilizers, emulsifiers, spreading and deposition aids and carriers for enhancing the rheology, efficacy, deposition, aesthetic and delivery of chemically and physiologically active ingredients in personal care, household care, institutional and industrial compositions. Depending on the application, the substrate to which the product is applied can be skin, hair, or textile substrates.
- Cationic polysaccharides are used in hair care products to provide conditioning to the hair. In skin care products, these same polymers can provide conditioning effects to the skin. When incorporated into detergent and fabric softening formulations, these same polymers can provide conditioning, softening, anti-abrasion and antistatic characteristics to fabrics.
- Wet and dry combability measurements are typical test methods used to measure conditioning performance in shampoo and conditioner applications. The combing performance of each shampoo formulation was measured within 24 hours of shampoo preparation, on two medium brown virgin European hair tresses (National Hair Importers, New Jersey) that had been previously treated with a solution of sodium lauryl sulfate (SLS), rinsed, and dried overnight at 23° C. and 50% relative humidity.
- Combing Performance Measurements
- Combing performance was measured by applying the shampoo formulation to a tress wet with water, at a ratio of 0.5 pbw shampoo/1 pbw hair tress. The tress was kneaded for 60 seconds, then rinsed with 40° C. water for 30 seconds. This process was repeated, then the tress was rinsed with deionized water and excess water squeezed from the tress. The tress was placed on the double comb apparatus and wet combing force measured 8 times on an Instron 5542 at a cross head speed of 12.5 cm/min using the double comb method, with Ace hard rubber fine pocket combs, at 23° C. and 50% relative humidity. Hair tresses were then allowed to dry overnight at 23° C. and 50% relative humidity, and the dry comb performance was measured using the same double comb method. The normalized comb energies in Table 2 represent the total comb energy/weight of tress.
- The conditioning performance of the products of the invention is demonstrated by the significantly reduced wet and dry combing energy results for Example 8 compared to the higher combing energies for the no polymer control shampoo in Example 10. The combing energies for Examples 8 compare well with the comb energy for the shampoo containing borate crosslinked cationic guar in Example 9.
TABLE 2 Titanium Lactate Crosslinked Cationic Galactomannan Polymers Performance in Conditioning Shampoo Example 7 Treatment Titanium Lactate Cationic DS 0.14 % Moisture 7.8 Aqueous Viscosity @ 1% as received 2650 Silicone Shampoo Examples with Comb Energy on Virgin Medium Brown European Hair Example 10(Comparative 9(comparative Example- 8 example)1 No Polymer) Conditioning Shampoo 3285 6010 1421(12 rpm) viscosity (Brookfield (3 rpm; pH 5.8) LVT sp. #31, small sample adapter, 6 rpm, pH 5.1) Normalized Wet Comb 1273 963 2340 Energy (gf-mm/g) Normalized Dry Comb 329 242 670 Energy (gf-mm/g)
1N-Hance ® 3196 cationic guar, borate crosslinked (Aqualon Division of Hercules Incorporated)
-
TABLE 3 Shampoo Premix Composition Parts by Ingredient manufacturer weight(pbw) Deionized water 896 Stepanol AM Stepan Company, 1027 Northfield, IL Steol CA-330 Stepan Company 310 Amphosol CA Stepan Company 186 Glydant Lonza Group LTD, 16.25 Basel Switzerland 25 wt % Ammonium 65 Chloride(aq) - The thickening performance of the products of the invention in a bodywash formulation are demonstrated in Table 4. Bodywash formulations were prepared by addition of 0.3 pbw of the polymers of the invention in Example 7 to 76 pbw of the bodywash premix formulation in Table 5, and water (added to bring the volume to 100). Mixing was performed using an overhead mechanical stirrer with a dispersion blade, for 1 hr. The pH of the bodywash was 5.6.
- The bodywash example 11 contains the polymer of the invention of Example 7. Addition of the polymer of the invention to the bodywash formulation leads to increased viscosity of the bodywash relative to the comparative control bodywash, containing no cationic guar, in Example 12.
TABLE 4 Performance of Products of the Invention in Bodywash Formulation Example 11 12 Polymer Ex. 7 None Viscosity/cps1 3080(6 rpm) 1864
1Brookfield LVT, spindle3, 12 rpm
-
TABLE 5 Bodywash Premix Formulation Parts by Ingredient Manufacturer weight Stepanol AM Stepan Company, Northfield, IL 697 Steol CA 330 Stepan Company 2500 Amphosol CA Stepan Company 500 Deionized Water 279 Glydant Lonza Group LTD, Basel Switzerland 24.5 - In addition to the use of non-borate metal salts as crosslinking agents for polygalactomannan polymers and their derivatives, other agents which form a water-swellable or water-dispersible complex with the polygalactomannan polymers, can also act to improve the water-dispersibility of the polygalactomannan. These agents include oligomers or polymers containing phosphate, sulfate, sulfonate, carboxylate, or carbonate groups, including sodium hexametaphosphate polystyrene sulfonate, and proteins such as casein or whey which can form a water-dispersible complex with cationic polygalactomannan polymers. These agents also include anionic, cationic, and amphoteric surface-active agents such as ammonium lauryl sulfate, sodium lauryl sulfate, cetyltrimethylammonium chloride or bromide, and cocamidopropyl betaine.
- In addition, other crosslinkers, such as chloroformate, siloxane based crosslinking reagents, such as triethoxysilane, glyoxal and other dialdehyde materials can be used to crosslink the polygalactomannan, rendering it water-dispersible.
- The water-dispersible crosslinked products described above can then be used in applications such as personal care or household care products, where they can be dispersed and dissolved in aqueous phases by appropriate adjustment of the solution pH or by addition of salts.
- Although the invention has been described with referenced to preferred embodiments, it is to be understood that variations and modifications in form and detail thereof may be made without departing from the spirit and scope of the claimed invention. Such variations and modifications are to be considered within the purview and scope of the claims appended hereto.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/982,511 US20080112906A1 (en) | 2006-11-03 | 2007-11-02 | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85648606P | 2006-11-03 | 2006-11-03 | |
US11/982,511 US20080112906A1 (en) | 2006-11-03 | 2007-11-02 | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080112906A1 true US20080112906A1 (en) | 2008-05-15 |
Family
ID=39093246
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/982,511 Abandoned US20080112906A1 (en) | 2006-11-03 | 2007-11-02 | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications |
US11/982,591 Active 2031-08-29 US9643031B2 (en) | 2006-11-03 | 2007-11-02 | Dispersible cationic polygalactomannan polymers for use in personal care and household care applications |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/982,591 Active 2031-08-29 US9643031B2 (en) | 2006-11-03 | 2007-11-02 | Dispersible cationic polygalactomannan polymers for use in personal care and household care applications |
Country Status (11)
Country | Link |
---|---|
US (2) | US20080112906A1 (en) |
EP (2) | EP2088994B2 (en) |
JP (4) | JP5878281B2 (en) |
KR (2) | KR101452006B1 (en) |
CN (2) | CN101547682B (en) |
AT (1) | ATE539734T1 (en) |
BR (2) | BRPI0718308A2 (en) |
ES (2) | ES2385263T3 (en) |
MX (2) | MX2009004735A (en) |
RU (2) | RU2458679C2 (en) |
WO (2) | WO2008076178A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090197829A1 (en) * | 2008-01-31 | 2009-08-06 | Rhodia Inc. | Crosslinked polysaccharides and methods of production thereof |
US20090253599A1 (en) * | 2008-04-07 | 2009-10-08 | Rhodia Inc. | Crosslinking method and crosslinked polysaccharide made thereby |
US20110002868A1 (en) * | 2009-07-02 | 2011-01-06 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in surfactant-based systems and use in personal care and household applications |
EP2307470A4 (en) * | 2008-07-30 | 2013-04-03 | Rhodia Operations | Methods of producing cross-linked polysaccharide particles |
US8568701B2 (en) | 2009-07-02 | 2013-10-29 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in phosphate surfactant-based systems and use in personal care and household applications |
CN103981039A (en) * | 2014-05-15 | 2014-08-13 | 深圳市绿色欧标科技有限公司 | Detergent and preparation method thereof |
EP3233030B1 (en) | 2014-12-16 | 2019-06-19 | L'oreal | Composition in the form of o/w emulsion |
US20230348796A1 (en) * | 2022-04-28 | 2023-11-02 | Saudi Arabian Oil Company | Polymer-metal salt composite for the dehydration of water from sweet gas and liquid condensate streams |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008076178A1 (en) * | 2006-11-03 | 2008-06-26 | Hercules Incorporated | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications |
ITVA20060068A1 (en) * | 2006-11-17 | 2008-05-18 | Lamberti Spa | PROCEDURE FOR THE PREPARATION OF GULI CATIONICO GLIOSSALATO |
EP2153808A1 (en) * | 2008-08-08 | 2010-02-17 | The Procter and Gamble Company | Absorbent product comprising a cationic modified guar gum |
CN102176896B (en) | 2008-10-09 | 2014-10-15 | 赫尔克里士公司 | Cleansing formulations comprising non-cellulosic polysaccharides with mixed cationic substituents |
CN101735332B (en) * | 2010-01-14 | 2012-12-26 | 淮南华俊新材料科技有限公司 | Cation guar gum and production method thereof |
US8796196B2 (en) * | 2010-02-26 | 2014-08-05 | Hercules Incorporated | Polysaccharide products with improved performance and clarity in surfactant-based aqueous formulations and process for preparation |
EP2394669A1 (en) | 2010-06-11 | 2011-12-14 | The Procter & Gamble Company | Absorbent product comprising a cationic polysaccharide in a hydrophilic carrier matrix |
CH705657A1 (en) * | 2011-10-19 | 2013-04-30 | Joker Ag | Interdental toothbrush cleanser. |
JP6529489B2 (en) * | 2013-10-07 | 2019-06-12 | ハーキュリーズ エルエルシー | Dihydroxyalkyl substituted polygalactomannan and method for producing the same |
US9695253B2 (en) | 2014-03-11 | 2017-07-04 | E I Du Pont De Nemours And Company | Oxidized poly alpha-1,3-glucan |
US10806769B2 (en) | 2016-03-31 | 2020-10-20 | Gojo Industries, Inc. | Antimicrobial peptide stimulating cleansing composition |
AU2017240069B2 (en) | 2016-03-31 | 2024-03-07 | Gojo Industries, Inc. | Sanitizer composition with probiotic/prebiotic active ingredient |
JP2020500860A (en) | 2016-11-23 | 2020-01-16 | ゴジョ・インダストリーズ・インコーポレイテッド | Disinfectant compositions containing probiotic / prebiotic active ingredients |
AU2018221352B2 (en) | 2017-02-16 | 2022-02-17 | Nutrition & Biosciences USA 4, Inc. | Crosslinked dextran and crosslinked dextran-poly alpha-1,3-glucan graft copolymers |
WO2018206425A1 (en) * | 2017-05-10 | 2018-11-15 | Rhodia Operations | Hair repair composition |
JP2020533498A (en) | 2017-09-13 | 2020-11-19 | デュポン・インダストリアル・バイオサイエンシーズ・ユーエスエイ・エルエルシー | Non-woven web containing polysaccharides |
EP3773424A4 (en) * | 2018-03-30 | 2022-04-20 | ISP Investments LLC | Hair styling compositions comprising polygalactomanans, and method for using the same |
CN108752493A (en) * | 2018-05-24 | 2018-11-06 | 重庆美杉蓝科技发展有限公司 | A kind of cation guar gum production technology |
PL3886583T3 (en) | 2018-11-29 | 2023-05-02 | Rhodia Operations | Use of cationic hydroxyalkyl guars for microorganism growth |
CN113163757B (en) | 2018-11-29 | 2024-02-13 | 罗地亚经营管理公司 | Use of guar derivatives in biofungicide compositions |
WO2021069956A1 (en) | 2019-10-09 | 2021-04-15 | Rhodia Brasil S.A. | Agrochemical composition |
EP4055063A1 (en) | 2019-11-06 | 2022-09-14 | Nutrition & Biosciences USA 4, Inc. | Highly crystalline alpha-1,3-glucan |
US20230235097A1 (en) | 2020-06-04 | 2023-07-27 | Nutrition & Biosciences USA 4, Inc. | Dextran-alpha-glucan graft copolymers and derivatives thereof |
CN112159574B (en) * | 2020-09-23 | 2022-04-15 | 漯河市罗弗文具制造有限公司 | Titanate chelating agent, environment-friendly boron-free high-molecular polyvinyl alcohol-based ultralight clay and preparation method thereof |
EP4334363A1 (en) | 2021-05-04 | 2024-03-13 | Nutrition & Biosciences USA 4, Inc. | Compositions comprising insoluble alpha-glucan |
US20240239921A1 (en) | 2021-05-04 | 2024-07-18 | Nutrition & Biosciences USA 4, Inc. | Compositions comprising oxidized insoluble alpha-glucan |
EP4370560A1 (en) | 2021-07-13 | 2024-05-22 | Nutrition & Biosciences USA 4, Inc. | Cationic glucan ester derivatives |
CN114213554A (en) * | 2021-12-31 | 2022-03-22 | 昆山京昆油田化学科技有限公司 | Purification method of cationic guar gum |
EP4496845A1 (en) | 2022-03-21 | 2025-01-29 | Nutrition & Biosciences USA 4, Inc. | Compositions comprising insoluble alpha-glucan |
WO2024015769A1 (en) | 2022-07-11 | 2024-01-18 | Nutrition & Biosciences USA 4, Inc. | Amphiphilic glucan ester derivatives |
WO2025006691A2 (en) | 2023-06-30 | 2025-01-02 | Nutrition & Biosciences USA 4, Inc. | Porous alpha-1,3-glucan compositions |
WO2025072416A1 (en) | 2023-09-29 | 2025-04-03 | Nutrition & Biosciences USA 4, Inc. | Polysaccharide derivatives |
WO2025072417A1 (en) | 2023-09-29 | 2025-04-03 | Nutrition & Biosciences USA 4, Inc. | Polysaccharide derivatives |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3808195A (en) * | 1972-04-14 | 1974-04-30 | Gen Mills Chem Inc | Process for preparing dispersible polygalactomannan gum and derivatives |
US4363669A (en) * | 1979-12-05 | 1982-12-14 | Merck & Co., Inc. | Dispersible xanthan gum blends |
US4645833A (en) * | 1981-09-22 | 1987-02-24 | Sherex Chemical Co., Inc. | Method for the preparation of borate-containing, dispersible, water-soluble polygalactomannans |
US4654158A (en) * | 1985-09-23 | 1987-03-31 | Shepherd Jr Walter B | Visco-elastic detergent preparation |
US4659811A (en) * | 1984-05-29 | 1987-04-21 | Henkel Corporation | Alkaline refined gum and use thereof in improved well-treating compositions |
US4667201A (en) * | 1983-11-29 | 1987-05-19 | Nec Corporation | Electronic scanning antenna |
US4959464A (en) * | 1988-11-07 | 1990-09-25 | Hi-Tek Polymers, Inc. | Process for derivatizing polygalactomannan using water soluble aluminum salts in the process |
US5100658A (en) * | 1989-08-07 | 1992-03-31 | The Procter & Gamble Company | Vehicle systems for use in cosmetic compositions |
US5104436A (en) * | 1988-11-09 | 1992-04-14 | Colloids, Inc. | Method of producing glyoxylated hydroxypropyl guar and liquid plant treatment composition containing same |
US5536825A (en) * | 1994-06-09 | 1996-07-16 | Rhone-Poulenc Inc. | Derivatized guar gum composition and process for making it |
US5670141A (en) * | 1992-09-29 | 1997-09-23 | Agri-Film, Inc. | Aqueous nitrocellulose compositions |
US7067499B2 (en) * | 2002-05-06 | 2006-06-27 | Hercules Incorporated | Cationic polymer composition and its use in conditioning applications |
US7589051B2 (en) * | 2004-04-08 | 2009-09-15 | Hercules Incorporated | Cationic, oxidized polysaccharides in conditioning applications |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL302923A (en) † | 1963-04-06 | 1900-01-01 | ||
DE3234132A1 (en) | 1981-09-22 | 1983-04-28 | Diamalt AG, 8000 München | Process for the preparation of borate-containing, dispersible, water-soluble polygalactomannanes and polygalactomannane derivatives |
US4677201A (en) * | 1986-02-19 | 1987-06-30 | Hitek Polymers, Inc. | Titanium-glycol useful as crosslinking agents for polygalactomannans |
US5186928A (en) * | 1989-02-20 | 1993-02-16 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Shampoo composition |
GB8903777D0 (en) * | 1989-02-20 | 1989-04-05 | Unilever Plc | Shampoo composition |
CA2063365A1 (en) * | 1991-10-28 | 1993-04-29 | Rhodia Inc. | Process for derivatizing polygalactomannans using glyoxal in the process |
US5439780A (en) | 1992-04-29 | 1995-08-08 | At&T Corp. | Energy sensitive materials and methods for their use |
GB9218779D0 (en) * | 1992-09-04 | 1992-10-21 | Unilever Plc | Antiperspirant actives and compositions |
CA2140979A1 (en) * | 1994-02-15 | 1995-08-16 | Ian William Cottrell | Crosslinked polysaccharides useful as absorbent materials |
CN1173127A (en) * | 1994-12-06 | 1998-02-11 | 普罗克特和甘保尔公司 | Shelf stable skin cleansing liquid with gel forming polymer and lipid |
ITVA20020024A1 (en) | 2002-03-18 | 2003-09-18 | Lamberti Spa | BUILDING PRODUCTS BASED ON HYDROXIALKILGUARO HYDROPHOBIC PURIFIED |
CN1646085A (en) * | 2002-04-22 | 2005-07-27 | 宝洁公司 | Shampoo containing a cationic guar derivative |
CN1970680B (en) * | 2002-06-25 | 2015-08-26 | 罗狄亚公司 | Oil well fracturing agent |
JP2004217590A (en) * | 2003-01-16 | 2004-08-05 | Unitika Ltd | Cosmetic composition |
ITVA20030004A1 (en) | 2003-01-24 | 2004-07-25 | Lamberti Spa | WATER EMULSIONS OF POLYVINYL ESTERS CONTAINING HYDROXYPROPILGUAR. |
ES2276326T3 (en) * | 2003-06-19 | 2007-06-16 | Noveon, Inc. | DERIVATIVES OF CASSIA CATIONICO AND USES OF THE SAME. |
KR20130093179A (en) * | 2004-09-24 | 2013-08-21 | 허큘레스 인코포레이티드 | High ds cationic polygalactomannan for skincare products |
WO2006106366A1 (en) * | 2005-04-06 | 2006-10-12 | The Boots Company Plc | Improved oxidative hair dyes and related topical compositions |
WO2008076178A1 (en) * | 2006-11-03 | 2008-06-26 | Hercules Incorporated | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications |
ITVA20060068A1 (en) † | 2006-11-17 | 2008-05-18 | Lamberti Spa | PROCEDURE FOR THE PREPARATION OF GULI CATIONICO GLIOSSALATO |
-
2007
- 2007-11-02 WO PCT/US2007/023157 patent/WO2008076178A1/en active Application Filing
- 2007-11-02 ES ES07839917T patent/ES2385263T3/en active Active
- 2007-11-02 EP EP07839916.9A patent/EP2088994B2/en active Active
- 2007-11-02 AT AT07839916T patent/ATE539734T1/en active
- 2007-11-02 JP JP2009535331A patent/JP5878281B2/en active Active
- 2007-11-02 MX MX2009004735A patent/MX2009004735A/en active IP Right Grant
- 2007-11-02 JP JP2009535332A patent/JP2010509219A/en active Pending
- 2007-11-02 RU RU2009120885/15A patent/RU2458679C2/en active
- 2007-11-02 BR BRPI0718308-9A patent/BRPI0718308A2/en not_active IP Right Cessation
- 2007-11-02 CN CN2007800447314A patent/CN101547682B/en active Active
- 2007-11-02 KR KR1020097011372A patent/KR101452006B1/en not_active Expired - Fee Related
- 2007-11-02 WO PCT/US2007/023156 patent/WO2008057425A1/en active Application Filing
- 2007-11-02 ES ES07839916T patent/ES2376918T3/en active Active
- 2007-11-02 BR BRPI0718674-6A patent/BRPI0718674A2/en not_active Application Discontinuation
- 2007-11-02 EP EP07839917A patent/EP2088987B1/en not_active Not-in-force
- 2007-11-02 US US11/982,511 patent/US20080112906A1/en not_active Abandoned
- 2007-11-02 CN CNA2007800447210A patent/CN101547678A/en active Pending
- 2007-11-02 US US11/982,591 patent/US9643031B2/en active Active
- 2007-11-02 RU RU2009120880/15A patent/RU2009120880A/en not_active Application Discontinuation
- 2007-11-02 MX MX2009004677A patent/MX2009004677A/en active IP Right Grant
- 2007-11-02 KR KR1020097011371A patent/KR101464390B1/en active Active
-
2013
- 2013-11-18 JP JP2013237838A patent/JP2014055168A/en active Pending
-
2015
- 2015-07-27 JP JP2015147611A patent/JP2015232011A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3808195A (en) * | 1972-04-14 | 1974-04-30 | Gen Mills Chem Inc | Process for preparing dispersible polygalactomannan gum and derivatives |
US4363669A (en) * | 1979-12-05 | 1982-12-14 | Merck & Co., Inc. | Dispersible xanthan gum blends |
US4645833A (en) * | 1981-09-22 | 1987-02-24 | Sherex Chemical Co., Inc. | Method for the preparation of borate-containing, dispersible, water-soluble polygalactomannans |
US4667201A (en) * | 1983-11-29 | 1987-05-19 | Nec Corporation | Electronic scanning antenna |
US4659811A (en) * | 1984-05-29 | 1987-04-21 | Henkel Corporation | Alkaline refined gum and use thereof in improved well-treating compositions |
US4654158A (en) * | 1985-09-23 | 1987-03-31 | Shepherd Jr Walter B | Visco-elastic detergent preparation |
US4959464A (en) * | 1988-11-07 | 1990-09-25 | Hi-Tek Polymers, Inc. | Process for derivatizing polygalactomannan using water soluble aluminum salts in the process |
US5104436A (en) * | 1988-11-09 | 1992-04-14 | Colloids, Inc. | Method of producing glyoxylated hydroxypropyl guar and liquid plant treatment composition containing same |
US5100658A (en) * | 1989-08-07 | 1992-03-31 | The Procter & Gamble Company | Vehicle systems for use in cosmetic compositions |
US5670141A (en) * | 1992-09-29 | 1997-09-23 | Agri-Film, Inc. | Aqueous nitrocellulose compositions |
US5536825A (en) * | 1994-06-09 | 1996-07-16 | Rhone-Poulenc Inc. | Derivatized guar gum composition and process for making it |
US7067499B2 (en) * | 2002-05-06 | 2006-06-27 | Hercules Incorporated | Cationic polymer composition and its use in conditioning applications |
US7589051B2 (en) * | 2004-04-08 | 2009-09-15 | Hercules Incorporated | Cationic, oxidized polysaccharides in conditioning applications |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8785622B2 (en) | 2008-01-31 | 2014-07-22 | Rhodia Operations | Crosslinked polysaccharides and methods of production thereof |
WO2009099567A3 (en) * | 2008-01-31 | 2009-12-30 | Rhodia Inc. | Crosslinked polysaccharides and methods of production thereof |
WO2009099567A2 (en) | 2008-01-31 | 2009-08-13 | Rhodia Inc. | Crosslinked polysaccharides and methods of production thereof |
US20090197829A1 (en) * | 2008-01-31 | 2009-08-06 | Rhodia Inc. | Crosslinked polysaccharides and methods of production thereof |
US20090253599A1 (en) * | 2008-04-07 | 2009-10-08 | Rhodia Inc. | Crosslinking method and crosslinked polysaccharide made thereby |
EP2307470A4 (en) * | 2008-07-30 | 2013-04-03 | Rhodia Operations | Methods of producing cross-linked polysaccharide particles |
US8343469B2 (en) | 2009-07-02 | 2013-01-01 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in surfactant-based systems and use in personal care and household applications |
US20110002868A1 (en) * | 2009-07-02 | 2011-01-06 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in surfactant-based systems and use in personal care and household applications |
WO2011003068A1 (en) | 2009-07-02 | 2011-01-06 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in surfactant-based systems and use in personal care and household applications |
US8568701B2 (en) | 2009-07-02 | 2013-10-29 | Hercules Incorporated | Cationic synthetic polymers with improved solubility and performance in phosphate surfactant-based systems and use in personal care and household applications |
CN103981039A (en) * | 2014-05-15 | 2014-08-13 | 深圳市绿色欧标科技有限公司 | Detergent and preparation method thereof |
EP3233030B1 (en) | 2014-12-16 | 2019-06-19 | L'oreal | Composition in the form of o/w emulsion |
US20230348796A1 (en) * | 2022-04-28 | 2023-11-02 | Saudi Arabian Oil Company | Polymer-metal salt composite for the dehydration of water from sweet gas and liquid condensate streams |
US12054678B2 (en) * | 2022-04-28 | 2024-08-06 | Saudi Arabian Oil Company | Polymer-metal salt composite for the dehydration of water from sweet gas and liquid condensate streams |
Also Published As
Publication number | Publication date |
---|---|
WO2008057425A1 (en) | 2008-05-15 |
KR20090082454A (en) | 2009-07-30 |
US9643031B2 (en) | 2017-05-09 |
RU2009120880A (en) | 2010-12-10 |
KR20090080539A (en) | 2009-07-24 |
EP2088994B1 (en) | 2012-01-04 |
EP2088987B1 (en) | 2012-05-30 |
CN101547682A (en) | 2009-09-30 |
US20080112907A1 (en) | 2008-05-15 |
EP2088987A1 (en) | 2009-08-19 |
KR101452006B1 (en) | 2014-10-22 |
JP5878281B2 (en) | 2016-03-08 |
RU2458679C2 (en) | 2012-08-20 |
EP2088994B2 (en) | 2019-10-30 |
JP2010509219A (en) | 2010-03-25 |
EP2088994A1 (en) | 2009-08-19 |
JP2014055168A (en) | 2014-03-27 |
KR101464390B1 (en) | 2014-11-21 |
ES2376918T3 (en) | 2012-03-20 |
BRPI0718308A2 (en) | 2013-11-19 |
ATE539734T1 (en) | 2012-01-15 |
MX2009004735A (en) | 2009-05-25 |
WO2008076178A1 (en) | 2008-06-26 |
BRPI0718674A2 (en) | 2013-11-26 |
CN101547682B (en) | 2012-09-05 |
RU2009120885A (en) | 2010-12-10 |
ES2385263T3 (en) | 2012-07-20 |
JP2010509218A (en) | 2010-03-25 |
JP2015232011A (en) | 2015-12-24 |
CN101547678A (en) | 2009-09-30 |
MX2009004677A (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2088987B1 (en) | Dispersible non-borate metal salt or chelate treated polygalactomannan polymers for use in personal care and household care applications | |
EP2341893B1 (en) | Cleansing formulations comprising non-cellulosic polysaccharides with mixed cationic substituents | |
KR101726015B1 (en) | Polysaccharide products with improved performance and clarity in surfactant-based aqueous formulations and process for preparation | |
JP5363733B2 (en) | Hydrophobically modified polysaccharide personal care and household compositions | |
JP4933251B2 (en) | Cationic oxidized polysaccharides for conditioning applications | |
US20060046943A1 (en) | Functional systems with reduced odor cationic polygalactomannan | |
JP6284616B2 (en) | Compositions and methods for producing personal care compositions with improved deposition characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HERCULES INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERAZO-MAJEWICZ, PAQUITA;KROON, GIJSBERT;MAJEWICZ, THOMAS;REEL/FRAME:020444/0441;SIGNING DATES FROM 20080110 TO 20080128 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT, CAL Free format text: SECURITY AGREEMENT;ASSIGNORS:ASHLAND LICENSING AND INTELLECTUAL PROPERTY...;AQUALON COMPANY;HERCULES INCORPORATED;REEL/FRAME:021924/0001 Effective date: 20081113 Owner name: BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT,CALI Free format text: SECURITY AGREEMENT;ASSIGNORS:ASHLAND LICENSING AND INTELLECTUAL PROPERTY...;AQUALON COMPANY;HERCULES INCORPORATED;REEL/FRAME:021924/0001 Effective date: 20081113 |
|
AS | Assignment |
Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC,OH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 Owner name: AQUALON COMPANY,DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 Owner name: HERCULES INCORPORATED,DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 Owner name: AQUALON COMPANY, DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 Owner name: HERCULES INCORPORATED, DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:024218/0928 Effective date: 20100331 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,CAL Free format text: SECURITY AGREEMENT;ASSIGNORS:ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC;AQUALON COMPANY;HERCULES INCORPORATED;REEL/FRAME:024225/0289 Effective date: 20100331 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA Free format text: SECURITY AGREEMENT;ASSIGNORS:ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC;AQUALON COMPANY;HERCULES INCORPORATED;REEL/FRAME:024225/0289 Effective date: 20100331 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: AQUALON COMPANY, DELAWARE Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:026927/0247 Effective date: 20110823 Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:026927/0247 Effective date: 20110823 Owner name: HERCULES INCORPORATED, DELAWARE Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:026927/0247 Effective date: 20110823 Owner name: ASHLAND, INC., KENTUCKY Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:026927/0247 Effective date: 20110823 |