US20080106975A1 - Method for characterizing shear wave formation anisotropy - Google Patents
Method for characterizing shear wave formation anisotropy Download PDFInfo
- Publication number
- US20080106975A1 US20080106975A1 US11/940,236 US94023607A US2008106975A1 US 20080106975 A1 US20080106975 A1 US 20080106975A1 US 94023607 A US94023607 A US 94023607A US 2008106975 A1 US2008106975 A1 US 2008106975A1
- Authority
- US
- United States
- Prior art keywords
- slowness
- shear direction
- dipole
- fast
- shear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title abstract description 28
- 230000000149 penetrating effect Effects 0.000 claims abstract description 10
- 239000006185 dispersion Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 15
- 239000000523 sample Substances 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 3
- 238000005755 formation reaction Methods 0.000 description 44
- 230000008901 benefit Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 238000003462 Bender reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005520 electrodynamics Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/44—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
- G01V1/48—Processing data
- G01V1/50—Analysing data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/284—Application of the shear wave component and/or several components of the seismic signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/626—Physical property of subsurface with anisotropy
Definitions
- the invention relates generally to formation evaluation using borehole sonic logging. More specifically, the invention relates to a method for distinguishing between intrinsic and stress-induced anisotropy in an anisotropic formation.
- a formation is said to be anisotropic if the value of a property of the formation varies with direction of measurement.
- a formation has shear wave anisotropy if shear wave velocity in the formation varies with azimuth.
- Shear wave anisotropy can be detected in a formation using a crossed-dipole sonic log obtained from a borehole penetrating the formation. The crossed-dipole sonic log is generated by measuring velocities of two orthogonal dipole modes in the formation. Two forms of shear wave anisotropy are considered herein: intrinsic and stress-induced.
- Intrinsic shear wave anisotropy may arise from intrinsic structural effects, such as layering of shale in a deviated borehole or aligned fractures, and tectonic stresses. Stress-induced shear wave anisotropy arises from the redistribution of the far-field horizontal stresses around the borehole. Existing crossed-dipole sonic log indicates anisotropic zones of the formation but does not indicate the dominant underlying cause of the anisotropy. However, distinguishing between intrinsic and stress-induced anisotropy is important. Intrinsic anisotropy, specifically fracture anisotropy, plays an important role in drilling, production, and completion strategies.
- boreholes are placed in the formation such that they intersect as many fractures as possible.
- Stress-induced anisotropy plays an important role in completion strategies.
- perforations oriented perpendicular to minimum stress direction can be used to optimize hydraulic fracture design.
- Plona et al. describe a method for distinguishing between intrinsic and stress-induced anisotropy in a formation using a crossed-dipole sonic log.
- the method exploits the fact that stress-induced dipole anisotropy in slow formations exhibits flexural mode dispersion crossover whereas intrinsic dipole anisotropy does not.
- Stress-Induced Dipole Anisotropy Theory, Experiment and Field Data,” paper RR, presented at 40 th SPWLA Symposium '99.
- the method includes obtaining crossed-dipole waveforms from a borehole. Alford Rotation is applied to the crossed-dipole waveforms to identify the fast-shear direction, Flexural dispersion curves, i.e., slowness versus frequency curves, are obtained by processing the rotated waveforms for dipole polarizations parallel and normal to the fast-shear and slow-shear directions using a modified matrix pencil algorithm.
- the slow-shear direction is orthogonal to the fast-shear direction.
- Slowness measured in microseconds per foot, is the amount of time for a wave to travel a certain distance.
- FIGS. 1A and 1B show dispersion curves for an intrinsic anisotropic formation and a stress-induced anisotropic formation, respectively.
- the dispersion curves are generally parallel for an intrinsic anisotropic formation and cross for a stress-induced anisotropic formation. Although not shown in the figures, dispersion curves coincide for an isotropic formation.
- the Plona et al. method of distinguishing between intrinsic and stress-induced anisotropy requires interpretation of individual dispersion curves, which may not be efficient or practical for large data sets.
- a continuous method of distinguishing between intrinsic and stress-induced anisotropy would be useful to efficiently diagnose the cause of anisotropy.
- the invention relates to a method of characterizing shear wave anisotropy in a formation which comprises obtaining crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies, determining far-field slowness in a fast-shear and slow-shear direction using a low frequency portion of the crossed-dipole waveforms, determining near-wellbore slowness in the fast-shear and slow-shear directions using a high-frequency portion of the crossed-dipole waveforms, marking a selected depth of the formation as having intrinsic anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction, and marking a selected depth of the formation as having stress-induced anisotropy if at the selected depth
- FIGS. 1A and 1B illustrate dispersion curves for different media.
- FIGS. 2A and 2B are flowcharts illustrating a method of characterizing shear wave formation anisotropy according to one embodiment of the invention.
- FIGS. 3A and 3B illustrate a setup for acquiring crossed-dipole waveforms from a borehole.
- FIG. 4 illustrates near-wellbore and far-field regions for a borehole.
- FIG. 5 shows a log obtained from Alford Rotation processing of crossed-dipole waveforms.
- FIG. 6A shows crossed-dipole waveforms obtained at a selected depth in a borehole penetrating a slow formation.
- FIG. 6B shows a contour plot of slowness vs. time for the crossed-dipole waveforms of FIG. 6A .
- FIG. 6C shows a log obtained from STC processing of crossed-dipole waveforms.
- FIG. 2A is a flowchart illustrating a method of characterizing shear wave formation anisotropy according to one embodiment of the invention.
- the method includes acquiring crossed-dipole waveforms from a borehole penetrating a formation as a function of frequency and depth in the borehole ( 200 ).
- the method further includes determining the fast-shear direction or azimuth ( 202 ).
- Methods for determining the fast-shear direction include, but are not limited to, Alford Rotation and parametric inversion of the crossed-dipole waveforms.
- the slow-shear direction is orthogonal to the fast-shear direction.
- the method further includes determining far-field slowness in the fast-shear and slow-shear directions ( 204 ).
- the method further includes determining near-wellbore slowness in the fast-shear and slow-shear directions ( 206 ). For a selected interval of the formation, the method includes distinguishing between intrinsic and stress-induced anisotropy by comparing the far-field and near-wellbore slownesses in the fast-shear and slow-shear directions ( 208 ). If the interval of the formation has intrinsic anisotropy, the shear slownesses in the fast-shear and slow-shear directions will be consistent from the near-wellbore to the far-field (i.e., parallel dispersion curves).
- the shear slownesses in the fast-shear and slow-shear directions will not be consistent from the near-wellbore to the far-field (i.e., crossing dispersion curves).
- the method of the invention avoids advanced dispersion analysis by simply comparing the far-field and near-wellbore slownesses for the fast-shear and slow-shear directions in the time domain.
- FIG. 3A illustrates a setup for acquiring crossed-dipole waveforms from a borehole 300 penetrating a subterranean formation 302 .
- the crossed-dipole waveforms are acquired as a function of frequency and depth in the borehole 300 .
- the borehole 300 may be a vertical hole or a deviated hole and is filled with fluid or drilling mud.
- a logging tool 304 is disposed in the borehole 300 .
- the logging tool 304 may be conveyed to a desired depth in the borehole 300 in a number of ways, including, but not limited to, on the end of a wireline, coiled tubing, or drill pipe.
- the logging tool 304 is shown at the end of a wireline 306 .
- the length of the wireline 306 may provide an estimate of the depth of the logging tool 304 in the borehole 300 .
- the wireline 306 may also be used to provide communication between the logging tool 304 and a surface system 307 .
- the surface system 307 may include a processor which executes an algorithm for characterizing shear wave formation anisotropy, as outlined in FIGS. 2A and 2B .
- the logging tool 304 can be any tool that can provide borehole shear slowness along two orthogonal directions, such as one available under the trade name Dipole Shear Imager (DSI) tool from Schlumberger.
- the logging tool 304 includes dipole sources 308 , 310 .
- the dipole sources 308 , 310 are in orthogonal relation to each other and may or may not be on the same plane.
- the logging tool 304 may include an isolation joint 312 to prevent signals from the dipole sources 308 , 310 from traveling up the tool.
- the dipole sources 308 , 310 may be any source suitable for shear/flexural logging, such as piezoelectric ceramics made in benders or cylindrical sections, magnetostrictive transducers, and electrodynamic vibrators.
- the dipole source 308 generates flexural waves at a relatively low frequency
- the dipole source 310 generates flexural waves at a relatively high frequency.
- the low and high frequencies are preferably chosen such that if a dispersion crossover occurs it would be detectable. However, this does not mean that a dispersion analysis is required for practice of the invention.
- existing dispersion curves can provide general information on radial gradient of shear slowness, which can assist in selecting operating frequencies of the dipole sources 308 , 310 . In general, long wavelength/low frequency probes deep and short wavelength/high frequency probes shallow.
- the relatively low frequency of the dipole source 308 is chosen such that the far-field region of the borehole 300 is probed.
- the relatively high frequency of the dipole source 310 is chosen such that the near-wellbore region of the borehole 300 is probed.
- FIG. 4 illustrates a near-wellbore region 400 and a far-field region 402 for a borehole 404 .
- the near-wellbore region 400 is about 1 ⁇ 2 borehole diameter, measured radially from the surface 404 a of the borehole 404 . If the borehole diameter is 12 in., for example, then the near-wellbore region 400 would be about 6 in. measured radially from the surface 404 a of the borehole 404 . For many formations, approximately 4-7 kHz would probe the near-wellbore region.
- the far-field region 402 is about 2-3 borehole diameters, measured radially from the surface 404 a of the borehole 404 . If the borehole diameter is 12 in., for example, then the far-field region 402 would be about 24 in. to 36 in.
- approximately 1-3 kHz would probe the far-field region.
- the invention is not limited to these frequency ranges. For example, approximately 4-12 kHz could be used to probe the near-wellbore region, and approximately 1-3.5 kHz could be used to probe the far-field region.
- the logging tool 304 includes a plurality of spaced-apart receiver stations 314 .
- each receiver station 314 includes four dipole receivers 314 a , 314 b , 314 c , and 314 d .
- the dipole receivers 314 a , 314 c form a pair and are oriented inline with the dipole source 308 and orthogonal to the dipole source 310
- the dipole receivers 314 b , 314 d form a pair and are oriented inline with the dipole source 310 and orthogonal to the dipole source 308 .
- the dipole receivers 314 a , 314 b , 314 c , and 314 d may be any type of dipole transducer that detects pressure gradients or particle vibrations, such as hydrophones, benders, and electrodynamic transducers, and is sensitive in the frequency range of the dipole sources ( 308 , 310 in FIG. 3A ).
- this figure shows just four receivers, the receiver station could consist of any number of receivers, for example eight receivers arranged azimuthally with 45 degree separation, thus including the detection of flexural wave signals from modal decomposition.
- the logging tool 304 also includes an electronics cartridge 316 which includes circuitry to power the dipole sources 308 , 310 and receiver stations 314 and to process signals received at the receiver stations 314 . Such processing may include digitizing the separate waveforms received at the receiver stations 314 and stacking the waveforms from multiple firings of the dipole sources 308 , 310 .
- the electronics cartridge 316 may further transmit the processed signals to the surface system 307 or store the processed signals in a downhole memory tool (not shown), in which case the data can be retrieved when the logging tool 304 is pulled to the surface.
- the dipole sources 308 , 310 emit dipole acoustic signals which excite flexural wave frequencies in the formation 302 .
- the dipole receivers 314 detect dipole acoustic signals from the formation 302 .
- the logging tool 304 rotates in the borehole 300 so that the dipole sources 308 , 310 can be fired at different azimuthal positions around the borehole 300 .
- the crossed-dipole waveforms recorded by the dipole receivers 314 generally have a multitude of arrivals, often including a compressional arrival, a shear arrival, and a flexural mode arrival.
- the flexural mode arrival dominates the borehole response and is dispersive and is most suitable for processing. However, other modes could be processed as well.
- Excitation of the borehole 300 at an arbitrary azimuthal orientation results in two shear waves if anisotropy is present, one propagating as a fast-shear wave and another propagating as a slow-shear wave.
- Each crossed-dipole waveform received at one of the receiver stations 314 has four components produced from inline and orthogonal orientation of each receiver pair ( 314 a , 314 c and 314 b , 314 d in FIG. 3B ) with each of the dipole sources 308 , 310 .
- the method according to one embodiment of the invention includes determining the fast-shear direction or azimuth from these four-component crossed-dipole waveforms ( 202 in FIG. 2A ). Methods for determining the fast-shear direction include, but are not limited to, Alford Rotation and parametric inversion of the crossed-dipole waveforms.
- the slow-shear direction is simply orthogonal to the fast-shear direction.
- Alford rotation is described in, for example, Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy. 56 th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 476-479, and U.S. Pat. Nos. 4,803,666, 4,817,061, 5,025,332, 4,903,244, and 5,029,146, the contents of which are incorporated herein by reference.
- Alford rotation involves choosing a number of rotation angles, applying these rotation angles to the four-component crossed-dipole waveform data, and finding an angle that minimizes the energy in the mismatched components (or cross-line/off-line components).
- FIG. 5 shows an example of a log produced from Alford Rotation processing of crossed-dipole waveforms.
- the raw waveforms are shown at 500 .
- the difference between minimum and maximum cross-line energy resulting from the mismatched components, which is the end result of the Alford Rotation processing for determining the fast-shear direction, is shown at 502 .
- the fast-shear direction which is determined based on the minimization of the cross-line components, is shown at 504 .
- Track 506 represents the raw waveforms 500 rotated into the fast-shear and slow-shear directions.
- the slow-shear direction is orthogonal to the fast-shear direction.
- Track 508 shows the difference between fast-shear and slow-shear slowness of rotated waveforms.
- Track 510 shows the difference between fast and slow arrival times of rotated waveforms. It should be noted that the slownesses are presented only at low frequencies (1-3 kHz), but the invention involves Alford Rotation of low- and high-frequency portions of the crossed-dipole waveforms.
- the method according to one embodiment of the invention includes determining far-field slowness in the fast-shear and slow-shear directions ( 204 in FIG. 2A ).
- Far-field slowness in the fast-shear and slow-shear directions can be determined from the low-frequency portion of the rotated crossed-dipole waveforms using, for example, Slowness-Time-Coherence (STC) analysis, also known as semblance processing.
- STC involves identifying and measuring the slowness and time arrival of coherent energy propagating across an array of receivers. The technique includes passing a narrow window across the waveforms received at the receiver stations and measuring the coherence within the window for a wide range of slowness and times of arrivals.
- STC is described in, for example, Kimball, C.
- FIG. 6A depicts crossed-dipole waveforms at a depth X 50 in a borehole penetrating a slow formation, taken with an eight-receiver array, with 0.5 ft (0.152 m) spacing between the receivers.
- FIG. 6A depicts crossed-dipole waveforms at a depth X 50 in a borehole penetrating a slow formation, taken with an eight-receiver array, with 0.5 ft (0.152 m) spacing between the receivers.
- FIG. 6B shows a contour plot of slowness versus time for the crossed-dipole waveforms shown in FIG. 6A .
- the slowness versus time is obtained from STC processing of the crossed-dipole waveforms.
- FIG. 6C shows a log produced by STC processing of crossed-dipole waveform data for the borehole of FIG. 6A for depths X 30 to X 90 .
- the track 600 represents slowness as a function of depth.
- the process for distinguishing between intrinsic and stress-induced anisotropy is quite simple. As previously mentioned, this involves comparing the far-field and near-wellbore slownesses in the fast-shear and slow-shear directions ( 208 in FIG. 2A ). The test is illustrated in FIG. 2B . A depth of the formation is selected ( 208 a ).
- the formation at the selected depth is marked as having intrinsic anisotropy.
- the formation at the selected depth is marked as having stress-induced anisotropy. It follows from the above that the selected interval of the formation is isotropic if the fast-shear slowness and slow-shear slowness in the far-field are the same and if the fast-shear slowness and slow-shear slowness in the near-wellbore are the same.
- the method may also include marking a selected depth of the formation as having isotropic anisotropy.
- the invention typically provides the following advantages.
- the method allows continuous processing of crossed-dipole waveform data to characterize shear wave formation anisotropy.
- Shear wave formation anisotropy can be characterized without advanced dispersion analysis.
- the fast-shear and slow-shear slownesses in a stressed-induced anisotropic zone are proportional to the minimum and maximum horizontal stress, which allows for quantification of these stresses. This allows for three-dimensional stress inversion modeling for reservoir stimulation, drilling optimization, and hydraulic fracture stimulation.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
A method of characterizing shear wave anisotropy in a formation includes obtaining crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies, determining far-field slowness in a fast-shear and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms, and determining near-wellbore slowness in the fast-shear and slow-shear directions using a high-frequency portion of the crossed-dipole waveforms. The method also includes marking a selected depth of the formation as having intrinsic anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction. The selected depth is marked as having stress-induced anisotropy if the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is greater than the near-wellbore slowness in the slow-shear direction.
Description
- The invention relates generally to formation evaluation using borehole sonic logging. More specifically, the invention relates to a method for distinguishing between intrinsic and stress-induced anisotropy in an anisotropic formation.
- A formation is said to be anisotropic if the value of a property of the formation varies with direction of measurement. A formation has shear wave anisotropy if shear wave velocity in the formation varies with azimuth. Shear wave anisotropy can be detected in a formation using a crossed-dipole sonic log obtained from a borehole penetrating the formation. The crossed-dipole sonic log is generated by measuring velocities of two orthogonal dipole modes in the formation. Two forms of shear wave anisotropy are considered herein: intrinsic and stress-induced. Intrinsic shear wave anisotropy may arise from intrinsic structural effects, such as layering of shale in a deviated borehole or aligned fractures, and tectonic stresses. Stress-induced shear wave anisotropy arises from the redistribution of the far-field horizontal stresses around the borehole. Existing crossed-dipole sonic log indicates anisotropic zones of the formation but does not indicate the dominant underlying cause of the anisotropy. However, distinguishing between intrinsic and stress-induced anisotropy is important. Intrinsic anisotropy, specifically fracture anisotropy, plays an important role in drilling, production, and completion strategies. For example, it is desirable that boreholes are placed in the formation such that they intersect as many fractures as possible. Stress-induced anisotropy plays an important role in completion strategies. For example, perforations oriented perpendicular to minimum stress direction can be used to optimize hydraulic fracture design.
- Plona et al. describe a method for distinguishing between intrinsic and stress-induced anisotropy in a formation using a crossed-dipole sonic log. (Plona T. J., et al., “Using Acoustic Anisotropy,” paper presented at 41st SPWLA Symposium: June 2000). The method exploits the fact that stress-induced dipole anisotropy in slow formations exhibits flexural mode dispersion crossover whereas intrinsic dipole anisotropy does not. (Plona T. J., et al., “Stress-Induced Dipole Anisotropy: Theory, Experiment and Field Data,” paper RR, presented at 40th SPWLA Symposium '99). The method includes obtaining crossed-dipole waveforms from a borehole. Alford Rotation is applied to the crossed-dipole waveforms to identify the fast-shear direction, Flexural dispersion curves, i.e., slowness versus frequency curves, are obtained by processing the rotated waveforms for dipole polarizations parallel and normal to the fast-shear and slow-shear directions using a modified matrix pencil algorithm. The slow-shear direction is orthogonal to the fast-shear direction. Slowness, measured in microseconds per foot, is the amount of time for a wave to travel a certain distance.
FIGS. 1A and 1B show dispersion curves for an intrinsic anisotropic formation and a stress-induced anisotropic formation, respectively. The dispersion curves are generally parallel for an intrinsic anisotropic formation and cross for a stress-induced anisotropic formation. Although not shown in the figures, dispersion curves coincide for an isotropic formation. - The Plona et al. method of distinguishing between intrinsic and stress-induced anisotropy requires interpretation of individual dispersion curves, which may not be efficient or practical for large data sets. A continuous method of distinguishing between intrinsic and stress-induced anisotropy would be useful to efficiently diagnose the cause of anisotropy.
- In one aspect, the invention relates to a method of characterizing shear wave anisotropy in a formation which comprises obtaining crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies, determining far-field slowness in a fast-shear and slow-shear direction using a low frequency portion of the crossed-dipole waveforms, determining near-wellbore slowness in the fast-shear and slow-shear directions using a high-frequency portion of the crossed-dipole waveforms, marking a selected depth of the formation as having intrinsic anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction, and marking a selected depth of the formation as having stress-induced anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is greater than the near-wellbore slowness in the slow-shear direction.
- Other features and advantages of the invention will be apparent from the following description and the appended claims.
-
FIGS. 1A and 1B illustrate dispersion curves for different media. -
FIGS. 2A and 2B are flowcharts illustrating a method of characterizing shear wave formation anisotropy according to one embodiment of the invention. -
FIGS. 3A and 3B illustrate a setup for acquiring crossed-dipole waveforms from a borehole. -
FIG. 4 illustrates near-wellbore and far-field regions for a borehole. -
FIG. 5 shows a log obtained from Alford Rotation processing of crossed-dipole waveforms. -
FIG. 6A shows crossed-dipole waveforms obtained at a selected depth in a borehole penetrating a slow formation. -
FIG. 6B shows a contour plot of slowness vs. time for the crossed-dipole waveforms ofFIG. 6A . -
FIG. 6C shows a log obtained from STC processing of crossed-dipole waveforms. - The invention will now be described in detail with reference to a few preferred embodiments, as illustrated in accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the invention may be practiced without some or all of these specific details. In other instances, well-known features and/or process steps have not been described in detail in order to not unnecessarily obscure the invention. The features and advantages of the invention may be better understood with reference to the drawings and discussions that follow.
-
FIG. 2A is a flowchart illustrating a method of characterizing shear wave formation anisotropy according to one embodiment of the invention. The method includes acquiring crossed-dipole waveforms from a borehole penetrating a formation as a function of frequency and depth in the borehole (200). The method further includes determining the fast-shear direction or azimuth (202). Methods for determining the fast-shear direction include, but are not limited to, Alford Rotation and parametric inversion of the crossed-dipole waveforms. The slow-shear direction is orthogonal to the fast-shear direction. The method further includes determining far-field slowness in the fast-shear and slow-shear directions (204). The method further includes determining near-wellbore slowness in the fast-shear and slow-shear directions (206). For a selected interval of the formation, the method includes distinguishing between intrinsic and stress-induced anisotropy by comparing the far-field and near-wellbore slownesses in the fast-shear and slow-shear directions (208). If the interval of the formation has intrinsic anisotropy, the shear slownesses in the fast-shear and slow-shear directions will be consistent from the near-wellbore to the far-field (i.e., parallel dispersion curves). If the interval of the formation has stress-induced anisotropy, the shear slownesses in the fast-shear and slow-shear directions will not be consistent from the near-wellbore to the far-field (i.e., crossing dispersion curves). The method of the invention avoids advanced dispersion analysis by simply comparing the far-field and near-wellbore slownesses for the fast-shear and slow-shear directions in the time domain. -
FIG. 3A illustrates a setup for acquiring crossed-dipole waveforms from a borehole 300 penetrating asubterranean formation 302. The crossed-dipole waveforms are acquired as a function of frequency and depth in theborehole 300. It should be noted that only the parts of the setup relevant to the understanding of the invention are shown and described. The borehole 300 may be a vertical hole or a deviated hole and is filled with fluid or drilling mud. Alogging tool 304 is disposed in theborehole 300. For measurement purposes, thelogging tool 304 may be conveyed to a desired depth in the borehole 300 in a number of ways, including, but not limited to, on the end of a wireline, coiled tubing, or drill pipe. For illustration purposes, thelogging tool 304 is shown at the end of awireline 306. The length of thewireline 306 may provide an estimate of the depth of thelogging tool 304 in theborehole 300. Thewireline 306 may also be used to provide communication between thelogging tool 304 and asurface system 307. Thesurface system 307 may include a processor which executes an algorithm for characterizing shear wave formation anisotropy, as outlined inFIGS. 2A and 2B . - The
logging tool 304 can be any tool that can provide borehole shear slowness along two orthogonal directions, such as one available under the trade name Dipole Shear Imager (DSI) tool from Schlumberger. For illustration purposes, thelogging tool 304 includesdipole sources logging tool 304 may include an isolation joint 312 to prevent signals from thedipole sources dipole source 308 generates flexural waves at a relatively low frequency, and thedipole source 310 generates flexural waves at a relatively high frequency. The low and high frequencies are preferably chosen such that if a dispersion crossover occurs it would be detectable. However, this does not mean that a dispersion analysis is required for practice of the invention. On the other hand, existing dispersion curves can provide general information on radial gradient of shear slowness, which can assist in selecting operating frequencies of thedipole sources - Preferably, the relatively low frequency of the
dipole source 308 is chosen such that the far-field region of theborehole 300 is probed. Preferably, the relatively high frequency of thedipole source 310 is chosen such that the near-wellbore region of theborehole 300 is probed. The depth of investigation is proportional to the wavelength, which is a function of velocity and frequency, i.e., λ=v/f, where λ is wavelength; V is velocity, and f is frequency. Velocity and frequency depend on the formation characteristics and borehole diameter.FIG. 4 illustrates a near-wellbore region 400 and a far-field region 402 for aborehole 404. Generally, the near-wellbore region 400 is about ½ borehole diameter, measured radially from thesurface 404 a of theborehole 404. If the borehole diameter is 12 in., for example, then the near-wellbore region 400 would be about 6 in. measured radially from thesurface 404 a of theborehole 404. For many formations, approximately 4-7 kHz would probe the near-wellbore region. Generally, the far-field region 402 is about 2-3 borehole diameters, measured radially from thesurface 404 a of theborehole 404. If the borehole diameter is 12 in., for example, then the far-field region 402 would be about 24 in. to 36 in. measured radially from thesurface 404 a of theborehole 404. For many formations, approximately 1-3 kHz would probe the far-field region. However, the invention is not limited to these frequency ranges. For example, approximately 4-12 kHz could be used to probe the near-wellbore region, and approximately 1-3.5 kHz could be used to probe the far-field region. - Returning to
FIG. 3A , thelogging tool 304 includes a plurality of spaced-apartreceiver stations 314. As shown inFIG. 3B , eachreceiver station 314 includes fourdipole receivers dipole receivers dipole source 308 and orthogonal to thedipole source 310, and thedipole receivers dipole source 310 and orthogonal to thedipole source 308. This arrangement allows detection of flexural wave signals in the fast-shear and slow-shear directions. Thedipole receivers FIG. 3A ). Although this figure shows just four receivers, the receiver station could consist of any number of receivers, for example eight receivers arranged azimuthally with 45 degree separation, thus including the detection of flexural wave signals from modal decomposition. - Returning to
FIG. 3A , thelogging tool 304 also includes anelectronics cartridge 316 which includes circuitry to power thedipole sources receiver stations 314 and to process signals received at thereceiver stations 314. Such processing may include digitizing the separate waveforms received at thereceiver stations 314 and stacking the waveforms from multiple firings of thedipole sources electronics cartridge 316 may further transmit the processed signals to thesurface system 307 or store the processed signals in a downhole memory tool (not shown), in which case the data can be retrieved when thelogging tool 304 is pulled to the surface. - In operation, the
dipole sources formation 302. Thedipole receivers 314 detect dipole acoustic signals from theformation 302. Thelogging tool 304 rotates in the borehole 300 so that thedipole sources borehole 300. The crossed-dipole waveforms recorded by thedipole receivers 314 generally have a multitude of arrivals, often including a compressional arrival, a shear arrival, and a flexural mode arrival. The flexural mode arrival dominates the borehole response and is dispersive and is most suitable for processing. However, other modes could be processed as well. Excitation of the borehole 300 at an arbitrary azimuthal orientation results in two shear waves if anisotropy is present, one propagating as a fast-shear wave and another propagating as a slow-shear wave. - Each crossed-dipole waveform received at one of the
receiver stations 314 has four components produced from inline and orthogonal orientation of each receiver pair (314 a, 314 c and 314 b, 314 d inFIG. 3B ) with each of thedipole sources FIG. 2A ). Methods for determining the fast-shear direction include, but are not limited to, Alford Rotation and parametric inversion of the crossed-dipole waveforms. The slow-shear direction is simply orthogonal to the fast-shear direction. - Alford rotation is described in, for example, Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy. 56th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 476-479, and U.S. Pat. Nos. 4,803,666, 4,817,061, 5,025,332, 4,903,244, and 5,029,146, the contents of which are incorporated herein by reference. Generally speaking, Alford rotation involves choosing a number of rotation angles, applying these rotation angles to the four-component crossed-dipole waveform data, and finding an angle that minimizes the energy in the mismatched components (or cross-line/off-line components).
-
FIG. 5 shows an example of a log produced from Alford Rotation processing of crossed-dipole waveforms. The raw waveforms are shown at 500. The difference between minimum and maximum cross-line energy resulting from the mismatched components, which is the end result of the Alford Rotation processing for determining the fast-shear direction, is shown at 502. The fast-shear direction, which is determined based on the minimization of the cross-line components, is shown at 504.Track 506 represents theraw waveforms 500 rotated into the fast-shear and slow-shear directions. The slow-shear direction is orthogonal to the fast-shear direction.Track 508 shows the difference between fast-shear and slow-shear slowness of rotated waveforms.Track 510 shows the difference between fast and slow arrival times of rotated waveforms. It should be noted that the slownesses are presented only at low frequencies (1-3 kHz), but the invention involves Alford Rotation of low- and high-frequency portions of the crossed-dipole waveforms. - The method according to one embodiment of the invention includes determining far-field slowness in the fast-shear and slow-shear directions (204 in
FIG. 2A ). Far-field slowness in the fast-shear and slow-shear directions can be determined from the low-frequency portion of the rotated crossed-dipole waveforms using, for example, Slowness-Time-Coherence (STC) analysis, also known as semblance processing. STC involves identifying and measuring the slowness and time arrival of coherent energy propagating across an array of receivers. The technique includes passing a narrow window across the waveforms received at the receiver stations and measuring the coherence within the window for a wide range of slowness and times of arrivals. STC is described in, for example, Kimball, C. V., Shear slowness measurement by dispersive processing of the borehole flexural mode: Geophysics, Vol. 63, No. 2, p. 337-344. The same process can be used to determine near-wellbore slowness in the fast-shear and slow-shear directions (206 inFIG. 2A ), except in this case STC is applied to the high-frequency portion of the rotated crossed-dipole waveforms.FIG. 6A depicts crossed-dipole waveforms at a depth X50 in a borehole penetrating a slow formation, taken with an eight-receiver array, with 0.5 ft (0.152 m) spacing between the receivers.FIG. 6B shows a contour plot of slowness versus time for the crossed-dipole waveforms shown inFIG. 6A . The slowness versus time is obtained from STC processing of the crossed-dipole waveforms.FIG. 6C shows a log produced by STC processing of crossed-dipole waveform data for the borehole ofFIG. 6A for depths X30 to X90. Thetrack 600 represents slowness as a function of depth. - Once the far-field and near-wellbore slownesses are determined, the process for distinguishing between intrinsic and stress-induced anisotropy is quite simple. As previously mentioned, this involves comparing the far-field and near-wellbore slownesses in the fast-shear and slow-shear directions (208 in
FIG. 2A ). The test is illustrated inFIG. 2B . A depth of the formation is selected (208 a). For the selected depth, if the fast-shear slowness in the far-field (low frequency) is less than the slow-shear slowness in the far-field (208 b) and if the fast-shear slowness in the near-wellbore (high frequency) is less than the slow-shear slowness in the near-wellbore (208 c), then the formation at the selected depth is marked as having intrinsic anisotropy. For the selected depth, if the fast-shear slowness in the far-field (low frequency) is less than the slow-shear slowness in the far-field (208 b) and if the fast-shear slowness in the near-wellbore (high frequency) is greater than the slow-shear slowness in the near-wellbore (208 d), then the formation at the selected depth is marked as having stress-induced anisotropy. It follows from the above that the selected interval of the formation is isotropic if the fast-shear slowness and slow-shear slowness in the far-field are the same and if the fast-shear slowness and slow-shear slowness in the near-wellbore are the same. The method may also include marking a selected depth of the formation as having isotropic anisotropy. - The invention typically provides the following advantages. The method allows continuous processing of crossed-dipole waveform data to characterize shear wave formation anisotropy. Shear wave formation anisotropy can be characterized without advanced dispersion analysis. The fast-shear and slow-shear slownesses in a stressed-induced anisotropic zone are proportional to the minimum and maximum horizontal stress, which allows for quantification of these stresses. This allows for three-dimensional stress inversion modeling for reservoir stimulation, drilling optimization, and hydraulic fracture stimulation.
- While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Claims (20)
1.-17. (canceled)
18. A system configured to characterize shear wave anisotropy in a formation, comprising:
a logging tool configured to:
obtain crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies; and
a surface unit operatively connected to the logging tool and configured to:
determine far-field slowness in a fast-shear direction and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms;
determine near-wellbore slowness in the fast-shear direction and slow-shear direction using a high-frequency portion of the crossed-dipole waveforms;
select a depth in the formation;
characterize the depth of the formation as having intrinsic anisotropy when at the depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction; and
characterize the depth of the formation as having stress-induced anisotropy when at the depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is greater than the near-wellbore slowness in the slow-shear direction.
19. The system of claim 18 , wherein the surface unit is further configured to:
determine the fast-shear direction prior to determining the far-field slowness and the near-wellbore slowness, wherein the slow-shear direction is orthogonal to the fast-shear direction.
20. The system of claim 19 , wherein determining the fast-shear direction comprises Alford Rotation processing of the crossed-dipole waveforms.
21. The system of claim 19 , wherein determining the fast-shear direction comprises parametric inversion of the crossed-dipole waveforms.
22. The system of claim 18 , wherein obtaining crossed-dipole waveforms comprises firing a plurality of dipole sources located on the logging tool to generate dipole acoustic signals which are transmitted into the formation.
23. The system of claim 22 , wherein obtaining crossed-dipole waveforms further comprises firing the plurality of dipole sources at different azimuthal positions in the borehole.
24. The system of claim 22 , wherein obtaining crossed-dipole waveforms further comprises detecting dipole acoustic signals from the formation using a plurality of dipole receivers located on the logging tool.
25. The system of claim 24 , wherein a first set of the dipole receivers selected from the plurality of dipole receivers are inline with a first one of the plurality of dipole sources and a second set of the dipole receivers selected from the plurality of dipole receivers are inline with a second one of the plurality of dipole sources.
26. The system of claim 22 , wherein a first one of the plurality of dipole sources fires at a low frequency and a second one of the plurality of dipole sources fires at a high frequency.
27. The system of claim 26 , wherein the low frequency is in a range from approximately 1 to 3 kHz.
28. The system of claim 26 , wherein the high frequency is in a range from approximately 4 to 7 kHz.
29. The system of claim 26 , wherein the low frequency and the high frequency are selected such that dispersion crossover would be detectable if dispersion curves were generated from the crossed-dipole waveforms.
30. The system of claim 26 , wherein the high frequency is selected to probe into the formation a radial distance of approximately one-half the borehole diameter.
31. The system of claim 26 , wherein the low frequency is selected to probe into the formation a radial distance of approximately two to three times the borehole diameter.
32. The system of claim 18 , wherein determining far-field slowness involves processing the crossed-dipole waveforms using slowness-time-coherence.
33. The system of claim 18 , wherein determining near-wellbore slowness involves processing the crossed-dipole waveforms using slowness-time coherence.
34. A system configured to characterize shear wave anisotropy in a formation, comprising:
a logging tool configured to:
obtain crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies; and
a surface unit operatively connected to the logging tool and configured to:
determine far-field slowness in a fast-shear direction and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms;
determine near-wellbore slowness in the fast-shear direction and slow-shear direction using a high-frequency portion of the crossed-dipole waveforms;
select a depth in the formation; and
characterize the depth as having isotropic anisotropy when at the depth the far-field slowness in the fast-shear direction is substantially the same as the far-field slowness in the slow-shear direction.
35. The system of claim 34 , wherein the surface unit is further configured to:
characterize the depth as having isotropic anisotropy when at the depth the near-wellbore slowness in the fast-shear direction is substantially the same as the near-wellbore slowness in the slow-shear direction.
36. A system configured to characterize shear wave anisotropy in a formation, comprising:
a logging tool configured to:
obtain crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies; and
a surface unit operatively connected to the logging tool and configured to:
determine far-field slowness in a fast-shear direction and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms;
determine near-wellbore slowness in the fast-shear direction and slow-shear direction using a high-frequency portion of the crossed-dipole waveforms;
select a depth in the formation; and
characterize the depth as having isotropic anisotropy when at the depth the far-field slowness in the fast-shear direction is substantially the same as the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is substantially the same as the near-wellbore slowness in the slow-shear direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/940,236 US20080273422A2 (en) | 2005-08-04 | 2007-11-14 | Method for characterizing shear wave formation anisotropy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/196,907 US7310285B2 (en) | 2005-08-04 | 2005-08-04 | Method for characterizing shear wave formation anisotropy |
US11/940,236 US20080273422A2 (en) | 2005-08-04 | 2007-11-14 | Method for characterizing shear wave formation anisotropy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/196,907 Continuation US7310285B2 (en) | 2005-08-04 | 2005-08-04 | Method for characterizing shear wave formation anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080106975A1 true US20080106975A1 (en) | 2008-05-08 |
US20080273422A2 US20080273422A2 (en) | 2008-11-06 |
Family
ID=37631462
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/196,907 Active 2025-11-10 US7310285B2 (en) | 2005-08-04 | 2005-08-04 | Method for characterizing shear wave formation anisotropy |
US11/940,236 Abandoned US20080273422A2 (en) | 2005-08-04 | 2007-11-14 | Method for characterizing shear wave formation anisotropy |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/196,907 Active 2025-11-10 US7310285B2 (en) | 2005-08-04 | 2005-08-04 | Method for characterizing shear wave formation anisotropy |
Country Status (5)
Country | Link |
---|---|
US (2) | US7310285B2 (en) |
CA (1) | CA2617550C (en) |
MX (1) | MX2008001681A (en) |
NO (1) | NO20081117L (en) |
WO (1) | WO2007019400A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777238A (en) * | 2012-10-17 | 2014-05-07 | 中国石油化工股份有限公司 | Pure P-wave anisotropic wave field simulation method |
CN104594869A (en) * | 2014-08-13 | 2015-05-06 | 中国石油天然气股份有限公司 | reservoir reconstruction method |
US11015443B2 (en) * | 2016-06-01 | 2021-05-25 | Schlumberger Technology Corporation | Estimation of horizontal stresses and nonlinear constants in anisotropic formations such as interbedded carbonate layers in organic-shale reservoirs |
CN112904425A (en) * | 2021-01-21 | 2021-06-04 | 中国海洋大学 | Sediment shear wave velocity measuring method and device based on submarine noise |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8004932B2 (en) * | 2008-01-18 | 2011-08-23 | Baker Hughes Incorporated | Identification of stress in formations using angles of fast and slow dipole waves in borehole acoustic logging |
US8379483B2 (en) * | 2009-06-04 | 2013-02-19 | Baker Hughes Incorporated | Method and apparatus for determining radial shear velocity variation from dipole acoustic logging |
US8902701B2 (en) * | 2009-12-09 | 2014-12-02 | Schlumberger Technology Corporation | Methods, apparatus and articles of manufacture to determine anisotropy indicators for subterranean formations |
US8797825B2 (en) | 2010-08-02 | 2014-08-05 | Precision Energy Services, Inc. | Method and apparatus for measuring formation anisotropy while drilling |
US9063251B2 (en) * | 2010-12-27 | 2015-06-23 | Baker Hughes Incorporated | Stress in formations from azimuthal variation in acoustic and other properties |
US10073185B2 (en) | 2010-12-27 | 2018-09-11 | Baker Hughes, A Ge Company, Llc | Predicting hydraulic fracture propagation |
CA2846626A1 (en) | 2011-09-12 | 2013-03-21 | Halliburton Energy Services, Inc. | Analytic estimation apparatus, methods, and systems |
US9772420B2 (en) | 2011-09-12 | 2017-09-26 | Halliburton Energy Services, Inc. | Estimation of fast shear azimuth, methods and apparatus |
US20130322210A1 (en) * | 2012-06-05 | 2013-12-05 | Jefferrson Y. Alford | Methods and Apparatus for Modeling Formations |
US9927543B2 (en) | 2013-08-05 | 2018-03-27 | Schlumberger Technology Corporation | Apparatus for mode extraction using multiple frequencies |
CN106321060A (en) * | 2015-07-02 | 2017-01-11 | 中石化石油工程技术服务有限公司 | Double-frequency adjustable-spacing dipole acoustic remote exploration sound source transmitting device |
US10495771B2 (en) * | 2015-10-27 | 2019-12-03 | Schlumberger Technology Corporation | Method and system for processing dipole anisotropy |
US10393904B2 (en) * | 2015-11-06 | 2019-08-27 | Weatherford Technology Holdings, Llc | Predicting stress-induced anisotropy effect on acoustic tool response |
US10429532B2 (en) * | 2016-03-31 | 2019-10-01 | Schlumberger Technology Corporation | System and methodology for estimating formation elastic properties using decomposed and undecomposed signal |
WO2020106287A1 (en) | 2018-11-21 | 2020-05-28 | Halliburton Energy Services, Inc. | Enhanced anisotropy analysis with multi-component dipole sonic data |
CN111736218B (en) * | 2020-05-29 | 2023-10-27 | 中国石油天然气集团有限公司 | Quantitative analysis method, equipment and readable storage medium for formation anisotropy cause |
US11579321B2 (en) * | 2020-10-30 | 2023-02-14 | Saudi Arabian Oil Company | Method for characterizing azimuthal anisotropy using cross-dipole sonic data |
CN114718555B (en) * | 2021-01-04 | 2024-11-12 | 中国石油化工股份有限公司 | Anisotropic formation acoustic time difference correction method and device for highly deviated horizontal wells |
CN117348086B (en) * | 2023-11-22 | 2025-04-29 | 西南石油大学 | A shear wave time difference correction method and system for eliminating the influence of shale lamination angle anisotropy |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803666A (en) * | 1984-07-20 | 1989-02-07 | Standard Oil Company (Indiana), Now Amoco Corp. | Multisource multireceiver method and system for geophysical exploration |
US4817061A (en) * | 1984-07-20 | 1989-03-28 | Amoco Corporation | Seismic surveying technique for the detection of azimuthal variations in the earth's subsurface |
US4903244A (en) * | 1984-07-20 | 1990-02-20 | Standard Oil Company (Now Amoco Corporation) | Multisource multireceiver method and system for geophysical exploration |
US5025332A (en) * | 1988-08-30 | 1991-06-18 | Sanyo Electric Co., Ltd. | Recording-reproducing system having movable reel chassis |
US5027332A (en) * | 1987-10-14 | 1991-06-25 | Amoco Corporation | Method for geophysical exploration |
US5029146A (en) * | 1984-07-20 | 1991-07-02 | Amoco Corporation | Multisource multireceiver method and system for geophysical exploration |
US5047992A (en) * | 1990-06-29 | 1991-09-10 | Texaco Inc. | Electromagnetically induced acoustic well logging |
US5398215A (en) * | 1993-11-19 | 1995-03-14 | Schlumberger Technology Corporation | Identification of stress induced anisotropy in formations |
US5737220A (en) * | 1993-06-07 | 1998-04-07 | Schlumberger Technology Corporation | Method of determining earth elastic parameters in anisotropic media |
US5838633A (en) * | 1997-01-27 | 1998-11-17 | Schlumberger Technology Corporation | Method for estimating formation in-situ stress magnitudes using a sonic borehole tool |
US6351991B1 (en) * | 2000-06-05 | 2002-03-05 | Schlumberger Technology Corporation | Determining stress parameters of formations from multi-mode velocity data |
US6510104B1 (en) * | 2000-06-07 | 2003-01-21 | Schlumberger Technology Corporation | Acoustic frequency selection in acoustic logging tools |
US6526354B2 (en) * | 2001-02-01 | 2003-02-25 | Schlumberger Technology Corporation | Sonic well logging for alteration detection |
US6611761B2 (en) * | 2000-12-19 | 2003-08-26 | Schlumberger Technology Corporation | Sonic well logging for radial profiling |
US6614716B2 (en) * | 2000-12-19 | 2003-09-02 | Schlumberger Technology Corporation | Sonic well logging for characterizing earth formations |
US7035165B2 (en) * | 2003-01-29 | 2006-04-25 | Baker Hughes Incorporated | Imaging near-borehole structure using directional acoustic-wave measurement |
US7042802B2 (en) * | 2003-09-18 | 2006-05-09 | Schlumberger Technology Corporation | Determination of stress characteristics of earth formations |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3651991A (en) * | 1970-09-18 | 1972-03-28 | Kenco Products Corp | Dispenser having valves actuated by yoke shaped lever |
-
2005
- 2005-08-04 US US11/196,907 patent/US7310285B2/en active Active
-
2006
- 2006-08-04 CA CA2617550A patent/CA2617550C/en not_active Expired - Fee Related
- 2006-08-04 WO PCT/US2006/030634 patent/WO2007019400A2/en active Application Filing
- 2006-08-04 MX MX2008001681A patent/MX2008001681A/en active IP Right Grant
-
2007
- 2007-11-14 US US11/940,236 patent/US20080273422A2/en not_active Abandoned
-
2008
- 2008-03-03 NO NO20081117A patent/NO20081117L/en not_active Application Discontinuation
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803666A (en) * | 1984-07-20 | 1989-02-07 | Standard Oil Company (Indiana), Now Amoco Corp. | Multisource multireceiver method and system for geophysical exploration |
US4817061A (en) * | 1984-07-20 | 1989-03-28 | Amoco Corporation | Seismic surveying technique for the detection of azimuthal variations in the earth's subsurface |
US4903244A (en) * | 1984-07-20 | 1990-02-20 | Standard Oil Company (Now Amoco Corporation) | Multisource multireceiver method and system for geophysical exploration |
US5029146A (en) * | 1984-07-20 | 1991-07-02 | Amoco Corporation | Multisource multireceiver method and system for geophysical exploration |
US5027332A (en) * | 1987-10-14 | 1991-06-25 | Amoco Corporation | Method for geophysical exploration |
US5025332A (en) * | 1988-08-30 | 1991-06-18 | Sanyo Electric Co., Ltd. | Recording-reproducing system having movable reel chassis |
US5047992A (en) * | 1990-06-29 | 1991-09-10 | Texaco Inc. | Electromagnetically induced acoustic well logging |
US5737220A (en) * | 1993-06-07 | 1998-04-07 | Schlumberger Technology Corporation | Method of determining earth elastic parameters in anisotropic media |
US5398215A (en) * | 1993-11-19 | 1995-03-14 | Schlumberger Technology Corporation | Identification of stress induced anisotropy in formations |
US5838633A (en) * | 1997-01-27 | 1998-11-17 | Schlumberger Technology Corporation | Method for estimating formation in-situ stress magnitudes using a sonic borehole tool |
US6351991B1 (en) * | 2000-06-05 | 2002-03-05 | Schlumberger Technology Corporation | Determining stress parameters of formations from multi-mode velocity data |
US6510104B1 (en) * | 2000-06-07 | 2003-01-21 | Schlumberger Technology Corporation | Acoustic frequency selection in acoustic logging tools |
US6611761B2 (en) * | 2000-12-19 | 2003-08-26 | Schlumberger Technology Corporation | Sonic well logging for radial profiling |
US6614716B2 (en) * | 2000-12-19 | 2003-09-02 | Schlumberger Technology Corporation | Sonic well logging for characterizing earth formations |
US6526354B2 (en) * | 2001-02-01 | 2003-02-25 | Schlumberger Technology Corporation | Sonic well logging for alteration detection |
US7035165B2 (en) * | 2003-01-29 | 2006-04-25 | Baker Hughes Incorporated | Imaging near-borehole structure using directional acoustic-wave measurement |
US7042802B2 (en) * | 2003-09-18 | 2006-05-09 | Schlumberger Technology Corporation | Determination of stress characteristics of earth formations |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777238A (en) * | 2012-10-17 | 2014-05-07 | 中国石油化工股份有限公司 | Pure P-wave anisotropic wave field simulation method |
CN104594869A (en) * | 2014-08-13 | 2015-05-06 | 中国石油天然气股份有限公司 | reservoir reconstruction method |
US11015443B2 (en) * | 2016-06-01 | 2021-05-25 | Schlumberger Technology Corporation | Estimation of horizontal stresses and nonlinear constants in anisotropic formations such as interbedded carbonate layers in organic-shale reservoirs |
CN112904425A (en) * | 2021-01-21 | 2021-06-04 | 中国海洋大学 | Sediment shear wave velocity measuring method and device based on submarine noise |
Also Published As
Publication number | Publication date |
---|---|
US20080273422A2 (en) | 2008-11-06 |
WO2007019400A2 (en) | 2007-02-15 |
MX2008001681A (en) | 2008-10-01 |
NO20081117L (en) | 2008-05-05 |
CA2617550A1 (en) | 2007-02-15 |
CA2617550C (en) | 2011-09-20 |
US20070030761A1 (en) | 2007-02-08 |
WO2007019400A3 (en) | 2007-06-07 |
US7310285B2 (en) | 2007-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2617550C (en) | Method for characterizing shear wave formation anisotropy | |
US6098021A (en) | Estimating formation stress using borehole monopole and cross-dipole acoustic measurements: theory and method | |
US7457194B2 (en) | Discriminating natural fracture- and stress-induced sonic anisotropy using a combination of image and sonic logs | |
CN109563736B (en) | System and method for characterizing a subterranean formation | |
US7623412B2 (en) | Anisotropy measurement while drilling | |
Haldorsen et al. | Borehole acoustic waves | |
US6611761B2 (en) | Sonic well logging for radial profiling | |
US6510389B1 (en) | Acoustic detection of stress-induced mechanical damage in a borehole wall | |
US9477002B2 (en) | Microhydraulic fracturing with downhole acoustic measurement | |
Esmersoy et al. | Fracture and stress evaluation using dipole-shear anisotropy logs | |
Franco et al. | Sonic investigations in and around the borehole | |
US6510104B1 (en) | Acoustic frequency selection in acoustic logging tools | |
JPH08254578A (en) | Stratum-velocity measuring instrument and method thereof | |
EP2416180A2 (en) | Method and apparatus for measuring formation anisotropy while drilling | |
Plona et al. | Using acoustic anisotropy | |
Plona et al. | Mechanical damage detection and anisotropy evaluation using dipole sonic dispersion analysis | |
Pistre et al. | A new modular sonic tool provides complete acoustic formation characterization | |
Sinha et al. | Hydraulic fracture characterization using cased-hole sonic data | |
Plona et al. | Reliable small-percentage azimuthal anisotropy evaluation from a new wireline cross-dipole sonic tool: Field Examples from US, Mexico and Ukraine | |
AU2003254730B2 (en) | Estimating formation stress using borehole monopole and cross-dipole acoustic measurements: theory and method | |
Ellis et al. | Acoustic logging methods | |
Wielemaker et al. | Shear Wave Anisotropy Evaluation in Mexico? s Cuitlahuac field Using a New Modular Sonic Tool | |
Hinds et al. | Fracture Identification using Dipole Shear Wireline Logging Techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |