US20080095845A1 - Immediate release tablet - Google Patents
Immediate release tablet Download PDFInfo
- Publication number
- US20080095845A1 US20080095845A1 US11/876,388 US87638807A US2008095845A1 US 20080095845 A1 US20080095845 A1 US 20080095845A1 US 87638807 A US87638807 A US 87638807A US 2008095845 A1 US2008095845 A1 US 2008095845A1
- Authority
- US
- United States
- Prior art keywords
- tablet
- immediate release
- wax
- swallowable
- acetaminophen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012729 immediate-release (IR) formulation Substances 0.000 title claims abstract description 20
- 239000004480 active ingredient Substances 0.000 claims abstract description 43
- 238000007907 direct compression Methods 0.000 claims abstract description 10
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 47
- 239000001993 wax Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 28
- 229960005489 paracetamol Drugs 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- -1 flow aids Substances 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 229920002472 Starch Polymers 0.000 claims description 6
- 239000012176 shellac wax Substances 0.000 claims description 6
- 239000008107 starch Substances 0.000 claims description 6
- 235000019698 starch Nutrition 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000004200 microcrystalline wax Substances 0.000 claims description 5
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 5
- 150000001720 carbohydrates Chemical class 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 claims description 3
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 claims description 3
- 108010010803 Gelatin Proteins 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229960001803 cetirizine Drugs 0.000 claims description 3
- 229960003291 chlorphenamine Drugs 0.000 claims description 3
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 claims description 3
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 claims description 3
- 229960000520 diphenhydramine Drugs 0.000 claims description 3
- 229960001596 famotidine Drugs 0.000 claims description 3
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 3
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 claims description 3
- 229960003592 fexofenadine Drugs 0.000 claims description 3
- 239000008273 gelatin Substances 0.000 claims description 3
- 229920000159 gelatin Polymers 0.000 claims description 3
- 235000019322 gelatine Nutrition 0.000 claims description 3
- 235000011852 gelatine desserts Nutrition 0.000 claims description 3
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 claims description 3
- 229960000991 ketoprofen Drugs 0.000 claims description 3
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 claims description 3
- 229960001571 loperamide Drugs 0.000 claims description 3
- 229960003088 loratadine Drugs 0.000 claims description 3
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 claims description 3
- 229960003908 pseudoephedrine Drugs 0.000 claims description 3
- 229960000371 rofecoxib Drugs 0.000 claims description 3
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 claims description 3
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 claims description 2
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 claims description 2
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 claims description 2
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 claims description 2
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 claims description 2
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 claims description 2
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 claims description 2
- UCHDWCPVSPXUMX-TZIWLTJVSA-N Montelukast Chemical compound CC(C)(O)C1=CC=CC=C1CC[C@H](C=1C=C(\C=C\C=2N=C3C=C(Cl)C=CC3=CC=2)C=CC=1)SCC1(CC(O)=O)CC1 UCHDWCPVSPXUMX-TZIWLTJVSA-N 0.000 claims description 2
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 claims description 2
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 claims description 2
- 229920001800 Shellac Polymers 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 229940062527 alendronate Drugs 0.000 claims description 2
- 229960005370 atorvastatin Drugs 0.000 claims description 2
- 229960000725 brompheniramine Drugs 0.000 claims description 2
- ZDIGNSYAACHWNL-UHFFFAOYSA-N brompheniramine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Br)C=C1 ZDIGNSYAACHWNL-UHFFFAOYSA-N 0.000 claims description 2
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 claims description 2
- 229960003572 cyclobenzaprine Drugs 0.000 claims description 2
- JJCFRYNCJDLXIK-UHFFFAOYSA-N cyproheptadine Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2C=CC2=CC=CC=C21 JJCFRYNCJDLXIK-UHFFFAOYSA-N 0.000 claims description 2
- 229960001140 cyproheptadine Drugs 0.000 claims description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 2
- 229960003957 dexamethasone Drugs 0.000 claims description 2
- 150000002016 disaccharides Chemical class 0.000 claims description 2
- 239000007884 disintegrant Substances 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 229960004039 finasteride Drugs 0.000 claims description 2
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 229960002003 hydrochlorothiazide Drugs 0.000 claims description 2
- 229960000890 hydrocortisone Drugs 0.000 claims description 2
- 229960000905 indomethacin Drugs 0.000 claims description 2
- 239000000905 isomalt Substances 0.000 claims description 2
- 235000010439 isomalt Nutrition 0.000 claims description 2
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 claims description 2
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 claims description 2
- 229960004844 lovastatin Drugs 0.000 claims description 2
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 claims description 2
- 229960001929 meloxicam Drugs 0.000 claims description 2
- 150000002772 monosaccharides Chemical class 0.000 claims description 2
- 229960005127 montelukast Drugs 0.000 claims description 2
- 229960002702 piroxicam Drugs 0.000 claims description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 229960002965 pravastatin Drugs 0.000 claims description 2
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 claims description 2
- 235000013874 shellac Nutrition 0.000 claims description 2
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 claims description 2
- 229960002855 simvastatin Drugs 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 abstract description 4
- 239000003826 tablet Substances 0.000 description 102
- 239000004615 ingredient Substances 0.000 description 14
- 238000004090 dissolution Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 208000029618 autoimmune pulmonary alveolar proteinosis Diseases 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 238000007906 compression Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 229920003109 sodium starch glycolate Polymers 0.000 description 5
- 239000008109 sodium starch glycolate Substances 0.000 description 5
- 229940079832 sodium starch glycolate Drugs 0.000 description 5
- 229940032147 starch Drugs 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000005550 wet granulation Methods 0.000 description 4
- 229940035676 analgesics Drugs 0.000 description 3
- 239000000730 antalgic agent Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004163 Spermaceti wax Substances 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- 239000004204 candelilla wax Substances 0.000 description 2
- 235000013868 candelilla wax Nutrition 0.000 description 2
- 229940073532 candelilla wax Drugs 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000007908 dry granulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 2
- 229960001680 ibuprofen Drugs 0.000 description 2
- 235000010449 maltitol Nutrition 0.000 description 2
- 239000000845 maltitol Substances 0.000 description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 2
- 229940035436 maltitol Drugs 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 229960001855 mannitol Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- BALXUFOVQVENIU-KXNXZCPBSA-N pseudoephedrine hydrochloride Chemical compound [H+].[Cl-].CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 BALXUFOVQVENIU-KXNXZCPBSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 235000019385 spermaceti wax Nutrition 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- KHOITXIGCFIULA-UHFFFAOYSA-N Alophen Chemical compound C1=CC(OC(=O)C)=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OC(C)=O)C=C1 KHOITXIGCFIULA-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OCJYIGYOJCODJL-UHFFFAOYSA-N Meclizine Chemical compound CC1=CC=CC(CN2CCN(CC2)C(C=2C=CC=CC=2)C=2C=CC(Cl)=CC=2)=C1 OCJYIGYOJCODJL-UHFFFAOYSA-N 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- GXDALQBWZGODGZ-UHFFFAOYSA-N astemizole Chemical compound C1=CC(OC)=CC=C1CCN1CCC(NC=2N(C3=CC=CC=C3N=2)CC=2C=CC(F)=CC=2)CC1 GXDALQBWZGODGZ-UHFFFAOYSA-N 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 229960000503 bisacodyl Drugs 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 229960001271 desloratadine Drugs 0.000 description 1
- 229960001985 dextromethorphan Drugs 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960004993 dimenhydrinate Drugs 0.000 description 1
- MZDOIJOUFRQXHC-UHFFFAOYSA-N dimenhydrinate Chemical compound O=C1N(C)C(=O)N(C)C2=NC(Cl)=N[C]21.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 MZDOIJOUFRQXHC-UHFFFAOYSA-N 0.000 description 1
- 239000007919 dispersible tablet Substances 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000002706 dry binder Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003172 expectorant agent Substances 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229940125695 gastrointestinal agent Drugs 0.000 description 1
- 239000004083 gastrointestinal agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229960001474 meclozine Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229960000395 phenylpropanolamine Drugs 0.000 description 1
- DLNKOYKMWOXYQA-APPZFPTMSA-N phenylpropanolamine Chemical compound C[C@@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-APPZFPTMSA-N 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000009492 tablet coating Methods 0.000 description 1
- 239000002700 tablet coating Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2059—Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
Definitions
- the present invention relates to an immediate release tablet comprising an active ingredient and powdered wax.
- Certain pharmaceutically active ingredients such as analgesics, must be employed in relatively high doses to be therapeutically effective.
- Acetaminophen for example, is commonly used at 1000 mg per dose, divided into two tablets containing 500 mg each.
- Formulating high levels of an active ingredient into a tablet that remains small enough for a consumer to swallow comfortably is a challenge. This is complicated by the fact that most active ingredients will not by themselves readily compress into a tablet. Accordingly, they are mixed with inactive excipients that form bonds under compression to hold the tablet together.
- One common method of accomplishing this is by wet granulation, in which the active ingredient and an aqueous solution of a binder (such as starch paste) are mixed and granulated. The resulting material is suitable for compression into tablets.
- a binder such as starch paste
- Direct compression of dry blends has gained favor in the pharmaceutical industry due to the economics of eliminating wet granulation and its accompanying drying operations.
- Direct compression is useful for active ingredients that are highly potent.
- the relatively high amount of low potency active ingredients required in a dosage form makes them poor candidates for direct compression into tablets.
- U.S. Pat. Nos. 4,661,521 and 4,757,090 to Salpekar et al. relate to an N-acetyl-p-aminophenol (acetaminophen) composition capable of being directly formed into a tablet, comprising acetaminophen, a pharmaceutically acceptable pregelatinized starch, a pharmaceutically acceptable lubricant, water and optionally an auxiliary binder such as polyvinylpyrrolidone.
- These compositions are prepared by wet granulation using an aqueous starch slurry.
- U.S. Pat. No. 4,882,167 to Jang describes a controlled and continuous release matrix for tablets or implants of biologically active agents.
- the matrix comprises a hydrophobic carbohydrate polymer such as ethyl cellulose, and optionally at least one digestive-difficulty soluble component such as wax, fatty acid material or a neutral lipid.
- U.S. Pat. No. 5,169,645 to Shukla et al. relates to directly compressible, wax-containing granules useful as a particulate drug diluent.
- the granules are made by admixing in the melted state one or more pharmaceutically acceptable waxes with one or more flow improving additives, cooling the mixture and then granulating.
- the resulting wax-containing granules can be compressed into matrices containing an active ingredient.
- PCT Application WO 99/32092 discloses a method for the manufacture of tablets that disperse easily and quickly in the oral cavity.
- the method comprises preparing a dry granulation of one or more medicaments blended with suitable excipients, flavors and a combination of a waxy material and phospholipid or an intense sweetener for taste-masking and compressing into tablets.
- the resulting tablets comprise 1 to 60 parts of the medicament.
- U.S. Pat. No. 5,456,920 to Matoba et al. describes a compression-moldable composition comprising an active ingredient, an excipient, and an oily or fatty substance having a lower melting point of about 20° to 90° C.
- an immediate release tablet can be made from a mixture comprising at least 60 weight % active ingredient(s) and a powdered wax having a melting point of greater than about 90° C.
- the powdered wax is hydrophobic, the tablets have excellent disintegration, and meet the USP dissolution specifications for immediate release tablets containing the active ingredient. Rapid onset of therapeutic action is a desirable feature, especially for analgesics.
- the invention provides an immediate release tablet comprising at least 60 weight % of an active ingredient and a powdered wax having a melting point greater than about 90° C., said tablet meeting the USP dissolution specifications for immediate release tablets containing said active ingredient.
- the tablet comprises at least one active ingredient.
- active ingredients broadly include pharmaceutically active ingredients, dietary supplements, nutritionals, nutriceuticals, and the like. More specifically these include analgesics, anti-inflammatory agents, decongestants, expectorants, antitussives, antihistamines, gastrointestinal agents, diuretics, bronchodilators, sleep-inducing agents, vitamins (such as vitamin D and vitamin K), minerals (such as calcium and magnesium), anti-infectives, nutrients, and mixtures thereof
- the active ingredient may be selected for example from acetaminophen, ibuprofen, ketoprofen, flurbiprofen, naproxen, diclofenac, rofecoxib, celecoxib, aspirin, pseudoephedrine, phenylpropanolamine, chlorpheniramine, dextromethorphan, diphenhydramine, dimenhydrinate, meclizine, famotidine, loperamide, ranitidine, c
- the active ingredient comprises at least 60 weight percent of the uncoated, compressed tablet. Preferably, the active ingredient comprises at least about 75 weight percent of the tablet. More preferably, the active ingredient comprises at least about 85 weight percent of the tablet.
- the tablet may comprise more than one active ingredient, in which case the sum of the weights of the active ingredients is at least 60, preferably at least about 75, more preferably at least about 85, weight percent of the tablet. (Optionally, the tablet may be coated with one or more outer coatings as discussed below. However, the amount of active ingredient is expressed as a weight percent of the uncoated tablet.)
- the particle size of the active ingredient may vary over a wide range. Specifically, the particle size may range from about 50 to about 150 microns, or from about 150 to about 500 microns, or from about 500 to about 650 microns.
- the tablet may be designed for swallowing, chewing, or dissolving in the mouth.
- the active ingredient may typically be coated with a taste masking coating, as known in the art. Examples of suitable taste masking coatings are described in U.S. Pat. No. 4,851,226, U.S. Pat. No. 5,075,114, and U.S. Pat. No. 5,489,436.
- Commercially available taste masked active ingredients may also be employed.
- acetaminophen particles which are encapsulated with ethylcellulose or other polymers by a coaccervation process may be used in the present invention. Coaccervation-encapsulated acetaminophen may be purchased commercially from Eurand America, Inc. Vandalia, Ohio, or from Circa Inc., Dayton, Ohio.
- suitable powdered waxes include linear hydrocarbons such as polyalkalene waxes; other waxes such as shellac wax, microcrystalline wax, paraffin-type waxes, polyalkalene glycols, Carnauba wax, spermaceti wax, beeswax, candelilla wax, polyethylene oxides, hydrogenated vegetable oils, synthetic polyethylene waxes, and derivatives and mixtures thereof.
- the powdered wax is selected from polyethylene wax, microcrystalline wax, and mixtures thereof.
- the powdered wax is selected from shellac wax, paraffin-type waxes, polyethylene glycol, and mixtures thereof.
- the powdered wax is polyethylene wax.
- the wax preferably comprises up to about 20 weight percent of the tablet. More preferably, the wax comprises about 1 to about 10 weight percent of the tablet. Most preferably, the wax comprises about 2 to about 8 weight percent of the tablet.
- the wax is present in solid, powdered form.
- the average particle size of the wax is in the range of about 5 to about 100 microns, more preferably about 10 to about 40 microns.
- long chain hydrocarbons having a chain length of 40 carbons or greater i.e. a chain length of 60 carbons or greater, are most suitable for use in this invention.
- the waxes useful in this invention typically have a melting point greater than about 90° C., i.e. at least about 95° C., or from about 100° C. to 125° C.
- Linear, or straight chain, hydrocarbons are preferred in this invention due to their higher melting temperature compared to non-linear, or branched, hydrocarbons of a similar carbon number. Synthetically produced hydrocarbons are preferred due to their purity of linearity and chain length, which results in a sharp and reproducible melting point from lot to lot.
- the tablet may contain other conventional ingredients such as fillers, including water soluble compressible carbohydrates such as sucrose, mannitol, sorbitol, maltitol, xylitol, erythritol, lactose, and mixtures thereof, conventional dry binders including cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and mixtures thereof, and in particular microcrystalline cellulose; sweeteners including aspartame, acesulfame potassium, sucralose and saccharin; disintegrants such as microcrystalline cellulose, starch, sodium starch glycolate, crosslinked polyvinylpyrrolidone, crosslinked carboxymethylcellulose; and lubricants, such as magnesium stearate, stearic acid, talc, and waxes.
- fillers including water soluble compressible carbohydrates such as sucrose, mannitol, sorbitol, maltitol, xylitol, erythri
- the tablet may also incorporate pharmaceutically acceptable adjuvants, including for example preservatives, flavors, acidulants, antioxidants, glidants, surfactants, and coloring agents.
- pharmaceutically acceptable adjuvants including for example preservatives, flavors, acidulants, antioxidants, glidants, surfactants, and coloring agents.
- the total amount of these other conventional ingredients will not exceed about 25 percent of the tablet weight, i.e. not more than about 20 percent of the tablet weight, or not more than about 15 percent of the tablet weight.
- Tablets of the present invention may be made by any means known in the art.
- Conventional methods for tablet production include direct compression (“dry blending”), dry granulation followed by compression, and wet granulation followed by drying and compression.
- Other methods include the use of compacting roller technology such as a chilsonator or drop roller, or molding, casting, or extrusion technologies. All of these methods are known in the art, and are described in detail in, for example, Lachman, et al., “The Theory and Practice of Industrial Pharmacy,” Chapter 11, ( 3 d Ed. 1986), which is incorporated by reference herein.
- the tablets are formed by the direct compression method, which involves directly compacting a blend of the active ingredient, the powdered wax, and any other appropriate optional ingredients.
- a pre-determined volume of the powder blend is filled into a die cavity of a rotary tablet press, which continuously rotates as part of a “die table” from the filling position to a compaction position.
- the powder blend is compacted between an upper punch and a lower punch to an ejection position, at which the resulting tablet is pushed from the die cavity by the lower punch and guided to an ejection chute.
- the direct compression process enables the minimization or elimination of water-soluble, non-saccharide polymeric binders such as polyvinyl pyrrolidone, alginates, hydroxypropyl cellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, and the like, which can have an adverse effect on dissolution.
- water-soluble, non-saccharide polymeric binders such as polyvinyl pyrrolidone, alginates, hydroxypropyl cellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, and the like, which can have an adverse effect on dissolution.
- the degree of particle compaction is controlled so that the resulting tablets have a hardness of about 1 to 30 kiloponds per square centimeter (kp/cm 2 ).
- Hardness is a term used in the art to describe the diametrical breaking strength as measured by conventional pharmaceutical hardness testing equipment, such as a Schleuniger Hardness Tester. In order to compare values across different size tablets, the breaking strength is normalized for the area of the break (which may be approximated as the tablet diameter times the thickness). This normalized value, expressed in kp/cm 2 , is sometimes referred in the art as tablet tensile strength.
- the tablet has a hardness in the range of about 4 to 20 kp/cm 2 .
- the tablet of this embodiment may or may not comprise an outer coating as described below.
- the tablet preferably has a hardness in the range of about 10 to 20 kp/cm 2 .
- the tablet is relatively soft, having a hardness in the range of about 1 to 4 kp/cm 2 .
- the tablet is made using a novel compression process and apparatus, which is described in commonly assigned, copending U.S. application No.________(attorney docket number MCP 293).
- one or more outer coatings may be applied over the tablet to provide protection during packaging and handling.
- Such outer coatings comprise one or more tablet coating materials, such as gelatin, isomalt, monosaccharides, disaccharides, polysaccharides such as starch, cellulose derivatives, shellacs, polyhedric alcohols such as xylitol, mannitol, sorbitol, maltitol, erythritol, polyalkylene glycols, and the like.
- tablet coating materials such as gelatin, isomalt, monosaccharides, disaccharides, polysaccharides such as starch, cellulose derivatives, shellacs, polyhedric alcohols such as xylitol, mannitol, sorbitol, maltitol, erythritol, polyalkylene glycols, and the like.
- tablet coating materials such as gelatin, isomalt, monosaccharides, disaccharides, poly
- the present tablet advantageously has acceptable friability.
- friability levels are typically less than about 2%, preferably less than about 1%.
- the tablet of the invention is an immediate release dosage form. Specifically, the tablet meets the USP dissolution specifications for immediate release tablets containing the particular active ingredient in the tablet. This surprising in view of the teachings in the art, see for example U.S. Pat. No. 4,882,167 to Jang (discussed above). This is also surprising in view of the fact that the tablet contains wax, a hydrophobic material.
- the tablet comprises an insert embedded inside it.
- Such an insert may have any composition desired and preferably comprises additional active ingredient.
- additional active ingredient may be different from the active ingredient in the tablet proper.
- the additional active ingredient may be the same chemical entity as the active ingredient in the tablet, but have a different release profile, i.e., a controlled release or extended release profile.
- the active ingredient in the insert is a high potency active ingredient, for example loratadine, fexofenadine, cetirizine, chlorpheniramine, brompheniramine, diphenhydramine, pseudoephedrine, cyproheptadine, montelukast, loperamide, famotidine, dexamethasone, hydrocortisone, cyclobenzaprine, alendronate, hydrochlorthiazide, rofecoxib, indomethacin, ketoprofen, meloxicam, piroxicam, lovastatin, atorvastatin, pravastatin, simvastatin, finasteride, and pharmaceutically acceptable salts, esters, and mixtures thereof
- the insert is a solid material. It may be produced and embedded in the tablet by methods known in the art.
- the insert may be made by direct compression, followed by compression of the remaining tablet ingredients (as a powder) around the insert.
- the insert may be made using a thermal setting molding module as described in commonly assigned, copending U.S. application No. ______(attorney docket number MCP 296).
- a starting material in flowable form for example comprising a thermal setting polymer and an active ingredient, is introduced into a molding chamber within the thermal setting molding module. The starting material is cooled and solidified within the chamber. It is then transferred into a volume of powder comprising the remaining tablet ingredients, which are compressed around the insert.
- Suitable thermal setting polymers include any edible material that is flowable at a temperature between about 37° C. and about 120° C., and that is solid at a temperature between about 0° C. and about 35° C.
- Preferred thermal setting polymers include water-soluble polymers such as polyalkylene glycols, polyethylene oxides and derivatives, and sucrose esters; fats such as cocoa butter, hydrogenated vegetable oil such as palm kernel oil, cottonseed oil, sunflower oil, and soybean oil; mono- di- and triglycerides, phospholipids, linear hydrocarbons such as polyethylene wax, waxes such as Carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; sugar in the form on an amorphous glass such as that used to make hard candy forms, sugar in a supersaturated solution such as that used to make fondant forms; low-moisture polymer solutions such as mixtures
- Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 180.5 g acetaminophen USP (APAP, 500 mg/tablet) and 20.9 g of microcrystalline wax powder (60 mg/tablet). Next, 4.18 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.70 g of magnesium stearate NF (2 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- EXPLOTAB sodium starch glycolate
- the resulting tablets had approximate weights of 574 mg, thicknesses of 0.284 inches, and hardness of 3.6 kp.
- the dissolution data for the tablets is shown below.
- APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.57 101.77 4 wk 40/75 97.83 102.33 12 wk 40/75 80.77 102.63
- Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 174.5 g acetaminophen USP (APAP, 500 mg/tablet) and 20.9 g of hydrogenated vegetable oil powder (Sterotex) (60 mg/tablet). Next, 4.19 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.35 g of magnesium stearate NF (1 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- EXPLOTAB sodium starch glycolate
- the resulting tablets had approximate weights of 573 mg, thicknesses of 0.281 inches, and hardness of 2 kp.
- the dissolution data for the tablets is shown below.
- APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.70 101.93 1 wk 50 C. 100.30 101.33 2 wk 50 C. 99.33 101.03 2 wk 40/75 98.43 100.57 4 wk 40/75 97.00 101.17
- Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 130.9 g acetaminophen USP (APAP, 500 mg/tablet) and 15.7 g of glyceryl behenate powder(Compritol 888) (60 mg/tablet). Next, 3.14 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.26 g of magnesium stearate NF (1 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- EXPLOTAB sodium starch glycolate
- the resulting tablets had approximate weights of 573 mg, thicknesses of 0.281 inches, and hardness of 2.2 kp.
- the dissolution data for the tablets is shown below.
- APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.17 102.53 1 wk 50 C. 95.53 101.70 2 wk 50 C. 91.13 102.30 2 wk 40/75 93.43 102.43 4 wk 40/75 94.83 102.67
- Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 109.8 g acetaminophen USP (APAP, 500 mg/tablet) and 11.0 g of synthetic wax X-1133 T6 (50 mg/tablet). Next, 3.30 g of sodium starch glycolate (EXPLOTAB) (15 mg/tablet) and 0.22 g of silicon dioxide (1 mg/tablet) were added to the bag, and mixed well. Then 0.66 g of magnesium stearate NF (3 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- EXPLOTAB sodium starch glycolate
- silicon dioxide 1 mg/tablet
- the resulting tablets had approximate weights of 569 mg, thicknesses of 0.276 inches, and hardness of 3.9 kp.
- the dissolution data for the tablets is shown below.
- APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.33 102.33 1 wk 40/75 99.03 101.57 1 wk 50 C. 101.10 102.07 2 wk 40/75 98.87 101.00 2 wk 50 C. 94.90 100.77 12 wk 40/75 99.87 101.70
- a tablet is made according to Example 1, except the tablet contains an insert embedded in the center thereof.
- the insert comprises pseudoephedrine HCl and polyethylene glycol.
- the insert is made using a thermal setting molding module comprising a molding chamber as described in commonly assigned, copending U.S. application No. ______(attorney docket number MCP 296).
- Starting material comprising a mixture of pseudoephedrine HCl and molten polyethylene glycol is fed to the molding chamber.
- the starting material is cooled and solidified within the molding chamber. It is then transferred to the mixture of tablet ingredients prior to compression in the Betapress.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
Abstract
An immediate release tablet is provided. The tablet comprises at least 60 weight % of an active ingredient and powdered wax having a melting point greater than about 90° C. The tablet may advantageously be produced by direct compression. Although the wax is hydrophobic, the tablet has excellent disintegration.
Description
- The present invention relates to an immediate release tablet comprising an active ingredient and powdered wax.
- Certain pharmaceutically active ingredients, such as analgesics, must be employed in relatively high doses to be therapeutically effective. Acetaminophen, for example, is commonly used at 1000 mg per dose, divided into two tablets containing 500 mg each. Formulating high levels of an active ingredient into a tablet that remains small enough for a consumer to swallow comfortably is a challenge. This is complicated by the fact that most active ingredients will not by themselves readily compress into a tablet. Accordingly, they are mixed with inactive excipients that form bonds under compression to hold the tablet together. One common method of accomplishing this is by wet granulation, in which the active ingredient and an aqueous solution of a binder (such as starch paste) are mixed and granulated. The resulting material is suitable for compression into tablets.
- More recently, direct compression of dry blends has gained favor in the pharmaceutical industry due to the economics of eliminating wet granulation and its accompanying drying operations. Direct compression is useful for active ingredients that are highly potent. However, the relatively high amount of low potency active ingredients required in a dosage form makes them poor candidates for direct compression into tablets.
- Workers in the field have attempted to overcome this problem. For example, U.S. Pat. Nos. 4,661,521 and 4,757,090 to Salpekar et al. relate to an N-acetyl-p-aminophenol (acetaminophen) composition capable of being directly formed into a tablet, comprising acetaminophen, a pharmaceutically acceptable pregelatinized starch, a pharmaceutically acceptable lubricant, water and optionally an auxiliary binder such as polyvinylpyrrolidone. These compositions are prepared by wet granulation using an aqueous starch slurry.
- U.S. Pat. No. 4,882,167 to Jang describes a controlled and continuous release matrix for tablets or implants of biologically active agents. The matrix comprises a hydrophobic carbohydrate polymer such as ethyl cellulose, and optionally at least one digestive-difficulty soluble component such as wax, fatty acid material or a neutral lipid.
- U.S. Pat. No. 5,169,645 to Shukla et al. relates to directly compressible, wax-containing granules useful as a particulate drug diluent. The granules are made by admixing in the melted state one or more pharmaceutically acceptable waxes with one or more flow improving additives, cooling the mixture and then granulating. The resulting wax-containing granules can be compressed into matrices containing an active ingredient.
- PCT Application WO 99/32092 discloses a method for the manufacture of tablets that disperse easily and quickly in the oral cavity. The method comprises preparing a dry granulation of one or more medicaments blended with suitable excipients, flavors and a combination of a waxy material and phospholipid or an intense sweetener for taste-masking and compressing into tablets. The resulting tablets comprise 1 to 60 parts of the medicament.
- U.S. Pat. No. 5,456,920 to Matoba et al. describes a compression-moldable composition comprising an active ingredient, an excipient, and an oily or fatty substance having a lower melting point of about 20° to 90° C.
- It has now been discovered that an immediate release tablet can be made from a mixture comprising at least 60 weight % active ingredient(s) and a powdered wax having a melting point of greater than about 90° C. Although the powdered wax is hydrophobic, the tablets have excellent disintegration, and meet the USP dissolution specifications for immediate release tablets containing the active ingredient. Rapid onset of therapeutic action is a desirable feature, especially for analgesics.
- The invention provides an immediate release tablet comprising at least 60 weight % of an active ingredient and a powdered wax having a melting point greater than about 90° C., said tablet meeting the USP dissolution specifications for immediate release tablets containing said active ingredient.
- The tablet comprises at least one active ingredient. Suitable active ingredients broadly include pharmaceutically active ingredients, dietary supplements, nutritionals, nutriceuticals, and the like. More specifically these include analgesics, anti-inflammatory agents, decongestants, expectorants, antitussives, antihistamines, gastrointestinal agents, diuretics, bronchodilators, sleep-inducing agents, vitamins (such as vitamin D and vitamin K), minerals (such as calcium and magnesium), anti-infectives, nutrients, and mixtures thereof The active ingredient may be selected for example from acetaminophen, ibuprofen, ketoprofen, flurbiprofen, naproxen, diclofenac, rofecoxib, celecoxib, aspirin, pseudoephedrine, phenylpropanolamine, chlorpheniramine, dextromethorphan, diphenhydramine, dimenhydrinate, meclizine, famotidine, loperamide, ranitidine, cimetidine, bisacodyl, psyllium, astemizole, loratadine, desloratadine, fexofenadine, cetirizine, antacids, mixtures thereof and pharmaceutically acceptable salts or metabolites thereof. Most preferably, the active ingredient is selected from the group consisting of acetaminophen, ibuprofen, calcium carbonate, magnesium hydroxide, magnesium carbonate, magnesium oxide, aluminum hydroxide, mixtures thereof, and pharmaceutically acceptable salts thereof.
- The active ingredient comprises at least 60 weight percent of the uncoated, compressed tablet. Preferably, the active ingredient comprises at least about 75 weight percent of the tablet. More preferably, the active ingredient comprises at least about 85 weight percent of the tablet. The tablet may comprise more than one active ingredient, in which case the sum of the weights of the active ingredients is at least 60, preferably at least about 75, more preferably at least about 85, weight percent of the tablet. (Optionally, the tablet may be coated with one or more outer coatings as discussed below. However, the amount of active ingredient is expressed as a weight percent of the uncoated tablet.)
- The particle size of the active ingredient may vary over a wide range. Specifically, the particle size may range from about 50 to about 150 microns, or from about 150 to about 500 microns, or from about 500 to about 650 microns.
- The tablet may be designed for swallowing, chewing, or dissolving in the mouth. In the case of chewable or orally dispersible tablets, if the active ingredient has an objectionable taste, it may typically be coated with a taste masking coating, as known in the art. Examples of suitable taste masking coatings are described in U.S. Pat. No. 4,851,226, U.S. Pat. No. 5,075,114, and U.S. Pat. No. 5,489,436. Commercially available taste masked active ingredients may also be employed. For example, acetaminophen particles which are encapsulated with ethylcellulose or other polymers by a coaccervation process may be used in the present invention. Coaccervation-encapsulated acetaminophen may be purchased commercially from Eurand America, Inc. Vandalia, Ohio, or from Circa Inc., Dayton, Ohio.
- Examples of suitable powdered waxes include linear hydrocarbons such as polyalkalene waxes; other waxes such as shellac wax, microcrystalline wax, paraffin-type waxes, polyalkalene glycols, Carnauba wax, spermaceti wax, beeswax, candelilla wax, polyethylene oxides, hydrogenated vegetable oils, synthetic polyethylene waxes, and derivatives and mixtures thereof. In one embodiment, the powdered wax is selected from polyethylene wax, microcrystalline wax, and mixtures thereof. In another embodiment, the powdered wax is selected from shellac wax, paraffin-type waxes, polyethylene glycol, and mixtures thereof. In one embodiment the powdered wax is polyethylene wax.
- The wax preferably comprises up to about 20 weight percent of the tablet. More preferably, the wax comprises about 1 to about 10 weight percent of the tablet. Most preferably, the wax comprises about 2 to about 8 weight percent of the tablet.
- The wax is present in solid, powdered form. Preferably, the average particle size of the wax is in the range of about 5 to about 100 microns, more preferably about 10 to about 40 microns. We have discovered that long chain hydrocarbons having a chain length of 40 carbons or greater, i.e. a chain length of 60 carbons or greater, are most suitable for use in this invention. The waxes useful in this invention typically have a melting point greater than about 90° C., i.e. at least about 95° C., or from about 100° C. to 125° C. Linear, or straight chain, hydrocarbons are preferred in this invention due to their higher melting temperature compared to non-linear, or branched, hydrocarbons of a similar carbon number. Synthetically produced hydrocarbons are preferred due to their purity of linearity and chain length, which results in a sharp and reproducible melting point from lot to lot.
- The tablet may contain other conventional ingredients such as fillers, including water soluble compressible carbohydrates such as sucrose, mannitol, sorbitol, maltitol, xylitol, erythritol, lactose, and mixtures thereof, conventional dry binders including cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and mixtures thereof, and in particular microcrystalline cellulose; sweeteners including aspartame, acesulfame potassium, sucralose and saccharin; disintegrants such as microcrystalline cellulose, starch, sodium starch glycolate, crosslinked polyvinylpyrrolidone, crosslinked carboxymethylcellulose; and lubricants, such as magnesium stearate, stearic acid, talc, and waxes. The tablet may also incorporate pharmaceutically acceptable adjuvants, including for example preservatives, flavors, acidulants, antioxidants, glidants, surfactants, and coloring agents. Typically the total amount of these other conventional ingredients will not exceed about 25 percent of the tablet weight, i.e. not more than about 20 percent of the tablet weight, or not more than about 15 percent of the tablet weight.
- Tablets of the present invention may be made by any means known in the art. Conventional methods for tablet production include direct compression (“dry blending”), dry granulation followed by compression, and wet granulation followed by drying and compression. Other methods include the use of compacting roller technology such as a chilsonator or drop roller, or molding, casting, or extrusion technologies. All of these methods are known in the art, and are described in detail in, for example, Lachman, et al., “The Theory and Practice of Industrial Pharmacy,” Chapter 11, (3 d Ed. 1986), which is incorporated by reference herein.
- Preferably the tablets are formed by the direct compression method, which involves directly compacting a blend of the active ingredient, the powdered wax, and any other appropriate optional ingredients. After blending, a pre-determined volume of the powder blend is filled into a die cavity of a rotary tablet press, which continuously rotates as part of a “die table” from the filling position to a compaction position. The powder blend is compacted between an upper punch and a lower punch to an ejection position, at which the resulting tablet is pushed from the die cavity by the lower punch and guided to an ejection chute.
- The direct compression process enables the minimization or elimination of water-soluble, non-saccharide polymeric binders such as polyvinyl pyrrolidone, alginates, hydroxypropyl cellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, and the like, which can have an adverse effect on dissolution.
- In embodiments wherein a swallowable tablet is desired, the degree of particle compaction is controlled so that the resulting tablets have a hardness of about 1 to 30 kiloponds per square centimeter (kp/cm2). “Hardness” is a term used in the art to describe the diametrical breaking strength as measured by conventional pharmaceutical hardness testing equipment, such as a Schleuniger Hardness Tester. In order to compare values across different size tablets, the breaking strength is normalized for the area of the break (which may be approximated as the tablet diameter times the thickness). This normalized value, expressed in kp/cm2, is sometimes referred in the art as tablet tensile strength. A general discussion of tablet hardness testing is found in Leiberman et al., Pharmaceutical Dosage Forms—Tablets, Volume 2, 2nd ed., Marcel Dekker Inc., 1990, pp. 213-217, 327-329 (hereinafter “Lieberman”).
- In one embodiment of the invention, the tablet has a hardness in the range of about 4 to 20 kp/cm2. The tablet of this embodiment may or may not comprise an outer coating as described below. In another embodiment, the tablet preferably has a hardness in the range of about 10 to 20 kp/cm2.
- In a preferred embodiment of the invention, the tablet is relatively soft, having a hardness in the range of about 1 to 4 kp/cm2. In this embodiment, the tablet is made using a novel compression process and apparatus, which is described in commonly assigned, copending U.S. application No.______(attorney docket number MCP 293).
- Optionally, one or more outer coatings may be applied over the tablet to provide protection during packaging and handling. Such outer coatings comprise one or more tablet coating materials, such as gelatin, isomalt, monosaccharides, disaccharides, polysaccharides such as starch, cellulose derivatives, shellacs, polyhedric alcohols such as xylitol, mannitol, sorbitol, maltitol, erythritol, polyalkylene glycols, and the like. A variety of such outer coatings are known in the art, and any of these may be employed using techniques also known in the art.
- Even uncoated, however, the present tablet advantageously has acceptable friability. In the embodiment of the invention wherein the tablet hardness ranges from about 4 to 20 kp/cm2, friability levels are typically less than about 2%, preferably less than about 1%. A discussion of tablet friability is presented in USP 23 (1995) <1216>p. 1981.
- The tablet of the invention is an immediate release dosage form. Specifically, the tablet meets the USP dissolution specifications for immediate release tablets containing the particular active ingredient in the tablet. This surprising in view of the teachings in the art, see for example U.S. Pat. No. 4,882,167 to Jang (discussed above). This is also surprising in view of the fact that the tablet contains wax, a hydrophobic material.
- In an alternative embodiment of the invention, the tablet comprises an insert embedded inside it. Such an insert may have any composition desired and preferably comprises additional active ingredient. For example, such additional active ingredient may be different from the active ingredient in the tablet proper. Alternatively, the additional active ingredient may be the same chemical entity as the active ingredient in the tablet, but have a different release profile, i.e., a controlled release or extended release profile. In one embodiment, the active ingredient in the insert is a high potency active ingredient, for example loratadine, fexofenadine, cetirizine, chlorpheniramine, brompheniramine, diphenhydramine, pseudoephedrine, cyproheptadine, montelukast, loperamide, famotidine, dexamethasone, hydrocortisone, cyclobenzaprine, alendronate, hydrochlorthiazide, rofecoxib, indomethacin, ketoprofen, meloxicam, piroxicam, lovastatin, atorvastatin, pravastatin, simvastatin, finasteride, and pharmaceutically acceptable salts, esters, and mixtures thereof
- Preferably, the insert is a solid material. It may be produced and embedded in the tablet by methods known in the art. For example the insert may be made by direct compression, followed by compression of the remaining tablet ingredients (as a powder) around the insert. Alternatively, the insert may be made using a thermal setting molding module as described in commonly assigned, copending U.S. application No. ______(attorney docket number MCP 296). In particular, a starting material in flowable form, for example comprising a thermal setting polymer and an active ingredient, is introduced into a molding chamber within the thermal setting molding module. The starting material is cooled and solidified within the chamber. It is then transferred into a volume of powder comprising the remaining tablet ingredients, which are compressed around the insert.
- Suitable thermal setting polymers include any edible material that is flowable at a temperature between about 37° C. and about 120° C., and that is solid at a temperature between about 0° C. and about 35° C. Preferred thermal setting polymers include water-soluble polymers such as polyalkylene glycols, polyethylene oxides and derivatives, and sucrose esters; fats such as cocoa butter, hydrogenated vegetable oil such as palm kernel oil, cottonseed oil, sunflower oil, and soybean oil; mono- di- and triglycerides, phospholipids, linear hydrocarbons such as polyethylene wax, waxes such as Carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; sugar in the form on an amorphous glass such as that used to make hard candy forms, sugar in a supersaturated solution such as that used to make fondant forms; low-moisture polymer solutions such as mixtures of gelatin and other hydrocolloids at water contents up to about 30% such as those used to make “gummi” confection forms. In a particularly preferred embodiment, the thermal setting polymer is a water-soluble polymer such as polyethylene glycol.
- Specific embodiments of the present invention are illustrated by way of the following examples. This invention is not confined to the specific limitations set forth in these examples, but rather to the scope of the appended claims. Unless otherwise stated, the percentages and ratios given below are by weight.
- Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 180.5 g acetaminophen USP (APAP, 500 mg/tablet) and 20.9 g of microcrystalline wax powder (60 mg/tablet). Next, 4.18 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.70 g of magnesium stearate NF (2 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- The resulting tablets had approximate weights of 574 mg, thicknesses of 0.284 inches, and hardness of 3.6 kp. The dissolution data for the tablets is shown below.
APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.57 101.77 4 wk 40/75 97.83 102.33 12 wk 40/75 80.77 102.63 - Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 174.5 g acetaminophen USP (APAP, 500 mg/tablet) and 20.9 g of hydrogenated vegetable oil powder (Sterotex) (60 mg/tablet). Next, 4.19 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.35 g of magnesium stearate NF (1 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- The resulting tablets had approximate weights of 573 mg, thicknesses of 0.281 inches, and hardness of 2 kp. The dissolution data for the tablets is shown below.
APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.70 101.93 1 wk 50 C. 100.30 101.33 2 wk 50 C. 99.33 101.03 2 wk 40/75 98.43 100.57 4 wk 40/75 97.00 101.17 - Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 130.9 g acetaminophen USP (APAP, 500 mg/tablet) and 15.7 g of glyceryl behenate powder(Compritol 888) (60 mg/tablet). Next, 3.14 g of sodium starch glycolate (EXPLOTAB) (12 mg/tablet) were added to the bag, and mixed well. Then 0.26 g of magnesium stearate NF (1 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- The resulting tablets had approximate weights of 573 mg, thicknesses of 0.281 inches, and hardness of 2.2 kp. The dissolution data for the tablets is shown below.
APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.17 102.53 1 wk 50 C. 95.53 101.70 2 wk 50 C. 91.13 102.30 2 wk 40/75 93.43 102.43 4 wk 40/75 94.83 102.67 - Tablets according to the invention were prepared as follows. The following ingredients were mixed well in a plastic bag: 109.8 g acetaminophen USP (APAP, 500 mg/tablet) and 11.0 g of synthetic wax X-1133 T6 (50 mg/tablet). Next, 3.30 g of sodium starch glycolate (EXPLOTAB) (15 mg/tablet) and 0.22 g of silicon dioxide (1 mg/tablet) were added to the bag, and mixed well. Then 0.66 g of magnesium stearate NF (3 mg/tablet) were added to the bag, and the ingredients were again mixed. The resulting granulation was compressed into tablets on a Betapress with 7/16 inch extra deep concave tooling.
- The resulting tablets had approximate weights of 569 mg, thicknesses of 0.276 inches, and hardness of 3.9 kp. The dissolution data for the tablets is shown below.
APAP Dissolution in pH 5.8 buffer 15 min 30 min Initial 101.33 102.33 1 wk 40/75 99.03 101.57 1 wk 50 C. 101.10 102.07 2 wk 40/75 98.87 101.00 2 wk 50 C. 94.90 100.77 12 wk 40/75 99.87 101.70 - A tablet is made according to Example 1, except the tablet contains an insert embedded in the center thereof. The insert comprises pseudoephedrine HCl and polyethylene glycol.
- The insert is made using a thermal setting molding module comprising a molding chamber as described in commonly assigned, copending U.S. application No. ______(attorney docket number MCP 296). Starting material comprising a mixture of pseudoephedrine HCl and molten polyethylene glycol is fed to the molding chamber. The starting material is cooled and solidified within the molding chamber. It is then transferred to the mixture of tablet ingredients prior to compression in the Betapress.
Claims (19)
1. (canceled)
2.-20. (canceled)
21. A swallowable immediate release tablet comprising at least 60 weight % of acetaminophen and a powdered wax having a melting point greater than about 90° C. and a particle size in the range of about 5 to about 100 microns, wherein the acetaminophen is released from the swallowable immediate release tablet by 30 minutes in pH 5.8 buffer.
22. The tablet of claim 21 , wherein the wax is selected from the group consisting of linear hydrocarbons, microcrystalline wax, and mixtures thereof.
23. The tablet of claim 21 , prepared by direct compression.
24. The tablet of claim 21 , which is substantially free of water-soluble, non-saccharide polymeric binders.
25. The tablet of claim 21 , which is substantially free of hydrated polymers.
26. The tablet of claim 21 , further comprising at least one outer coating.
27. The tablet of claim 26 , wherein the outer coating comprises a material selected from the group consisting of gelatin, isomalt, monosaccharides, disaccharides, polysaccharides starch, cellulose derivatives, shellacs, polyhedric alcohols, and polyalkylene glycols.
28. The tablet of claim 21 , wherein the tablet comprises up to about 20 weight percent wax.
29. The tablet of claim 21 , further comprising an excipient selected from the group consisting of disintegrants, flow aids, and lubricants.
30. The tablet of claim 21 , further comprising an insert disposed within the tablet.
31. The tablet of claim 30 , wherein the insert comprises at least one additional active ingredient.
32. The tablet of claim 31 , wherein the additional active ingredient has a different release profile from the active ingredient in the tablet.
33. The tablet of claim 31 , wherein the amount of additional active ingredient is from about 0.1 to about 30 mg.
34. The tablet of claim 31 , wherein the additional active ingredient is selected from the group consisting of loratadine, fexofenadine, cetirizine, chlorpheniramine, brompheniramine, diphenhydramine, pseudoephedrine, cyproheptadine, montelukast, loperamide, famotidine, dexamethasone, hydrocortisone, cyclobenzaprine, alendronate, hydrochlorthiazide, rofecoxib, indomethacin, ketoprofen, meloxicam, piroxicam, lovastatin, atorvastatin, pravastatin, simvastatin, finasteride, and pharmaceutically acceptable salts, esters, and mixtures thereof.
35. A swallowable immediate release tablet comprising at least 60 weight percent of acetaminophen and a powdered wax having a particle size in the range of about 5 to about 100 microns that is selected from the group consisting of shellac wax, paraffin-type waxes, polyethylene glycol, and mixtures thereof, and wherein said swallowable immediate release tablet is prepared by direct compression, and the acetaminophen is released from the swallowable immediate release tablet by 30 minutes in pH 5.8 buffer.
36. A swallowable immediate release tablet comprising at least 60 weight percent of acetaminophen and a powdered wax having a particle size in the range of about 5 to about 100 microns that is selected from the group consisting of shellac wax, paraffin-type waxes, polyethylene glycol, and mixtures thereof, and wherein said swallowable immediate release tablet is substantially free of water-soluble, non-saccharide polymeric binders, and the acetaminophen is released from the swallowable immediate release tablet by 30 minutes in pH 5.8 buffer.
37. A swallowable immediate release tablet comprising at least 60 weight percent of acetaminophen and a powdered wax having a particle size in the range of about 5 to about 100 microns that is selected from the group consisting of shellac wax, paraffin-type waxes, polyethylene glycol, and mixtures thereof, and wherein said swallowable immediate release tablet is substantially free of hydrated polymers, and the acetaminophen is released from the swallowable immediate release tablet by 30 minutes in pH 5.8 buffer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/876,388 US20080095845A1 (en) | 2001-09-28 | 2007-10-22 | Immediate release tablet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/966,493 US7323192B2 (en) | 2001-09-28 | 2001-09-28 | Immediate release tablet |
US11/876,388 US20080095845A1 (en) | 2001-09-28 | 2007-10-22 | Immediate release tablet |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/966,493 Continuation US7323192B2 (en) | 2001-09-28 | 2001-09-28 | Immediate release tablet |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080095845A1 true US20080095845A1 (en) | 2008-04-24 |
Family
ID=25511492
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/966,493 Expired - Lifetime US7323192B2 (en) | 2001-09-28 | 2001-09-28 | Immediate release tablet |
US11/876,388 Abandoned US20080095845A1 (en) | 2001-09-28 | 2007-10-22 | Immediate release tablet |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/966,493 Expired - Lifetime US7323192B2 (en) | 2001-09-28 | 2001-09-28 | Immediate release tablet |
Country Status (6)
Country | Link |
---|---|
US (2) | US7323192B2 (en) |
EP (1) | EP1429809A2 (en) |
AU (1) | AU2002327068A1 (en) |
CA (1) | CA2461893C (en) |
MX (1) | MXPA04002890A (en) |
WO (1) | WO2003028703A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018064559A1 (en) * | 2016-09-30 | 2018-04-05 | Biotie Therapies, Inc. | Compositions and methods for treating alzheimer's disease and parkinson's disease |
US10537585B2 (en) | 2017-12-18 | 2020-01-21 | Dexcel Pharma Technologies Ltd. | Compositions comprising dexamethasone |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7838026B2 (en) | 2001-09-28 | 2010-11-23 | Mcneil-Ppc, Inc. | Burst-release polymer composition and dosage forms comprising the same |
WO2003026628A2 (en) * | 2001-09-28 | 2003-04-03 | Mcneil-Ppc, Inc. | Composite dosage forms having an inlaid portion |
US7122143B2 (en) * | 2001-09-28 | 2006-10-17 | Mcneil-Ppc, Inc. | Methods for manufacturing dosage forms |
US7323192B2 (en) * | 2001-09-28 | 2008-01-29 | Mcneil-Ppc, Inc. | Immediate release tablet |
US20040146559A1 (en) * | 2002-09-28 | 2004-07-29 | Sowden Harry S. | Dosage forms having an inner core and outer shell with different shapes |
US7807197B2 (en) * | 2002-09-28 | 2010-10-05 | Mcneil-Ppc, Inc. | Composite dosage forms having an inlaid portion |
US9561182B2 (en) * | 2003-08-22 | 2017-02-07 | Cure Pharmaceutical Corporation | Edible films for administration of medicaments to animals, methods for their manufacture and methods for their use for the treatment of animals |
US20040131662A1 (en) | 2003-11-12 | 2004-07-08 | Davidson Robert S. | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US20040191302A1 (en) | 2003-03-28 | 2004-09-30 | Davidson Robert S. | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US8999372B2 (en) * | 2002-11-14 | 2015-04-07 | Cure Pharmaceutical Corporation | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
ATE361742T1 (en) * | 2003-05-19 | 2007-06-15 | Euro Celtique Sa | USE OF SOAPS SUCH AS MAGNESIUM STEARATE TO ACCELERATE THE RELEASE OF ACTIVE INGREDIENTS |
US20050074514A1 (en) * | 2003-10-02 | 2005-04-07 | Anderson Oliver B. | Zero cycle molding systems, methods and apparatuses for manufacturing dosage forms |
GB0403628D0 (en) * | 2004-02-18 | 2004-03-24 | Arrow Group Ltd | Compression-coated tablets and the manufacture thereof |
US20050220865A1 (en) * | 2004-04-02 | 2005-10-06 | Koleng John J | Compressed composition comprising magnesium salt |
US8174037B2 (en) * | 2004-09-22 | 2012-05-08 | Cree, Inc. | High efficiency group III nitride LED with lenticular surface |
US8383159B2 (en) * | 2004-10-27 | 2013-02-26 | Mcneil-Ppc, Inc. | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060087051A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20070190133A1 (en) * | 2004-10-27 | 2007-08-16 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088593A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088586A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US20060088587A1 (en) * | 2004-10-27 | 2006-04-27 | Bunick Frank J | Dosage forms having a microreliefed surface and methods and apparatus for their production |
US8673352B2 (en) * | 2005-04-15 | 2014-03-18 | Mcneil-Ppc, Inc. | Modified release dosage form |
US20070048373A1 (en) * | 2005-08-30 | 2007-03-01 | Cima Labs Inc. | Dried milled granulate and methods |
US20070048247A1 (en) * | 2005-08-31 | 2007-03-01 | Kimberly-Clark Worldwide, Inc. | Deodorizing tablets |
JP5389656B2 (en) | 2006-10-20 | 2014-01-15 | マクニール−ピーピーシー・インコーポレーテツド | Acetaminophen / ibuprofen combinations and methods for their use |
BRPI0718428A2 (en) * | 2006-10-25 | 2013-11-12 | Mcneil Ppc Inc | IBUPROPHEN COMPOSITION |
US20090060983A1 (en) * | 2007-08-30 | 2009-03-05 | Bunick Frank J | Method And Composition For Making An Orally Disintegrating Dosage Form |
KR20100087287A (en) * | 2007-09-17 | 2010-08-04 | 맥네일-피피씨, 인코포레이티드 | Dip coated compositions containing copolymer of polyvinyl alcohol and polyethylene glycol and a gum |
MX2010004897A (en) * | 2007-10-31 | 2010-05-19 | Mcneil Ppc Inc | Orally disintegrated dosage form. |
EP2252271B1 (en) * | 2008-02-19 | 2012-05-23 | McNeil-PPC, Inc. | Dip coated compositions containing a starch having a high amylose content |
PL2379056T3 (en) * | 2008-11-28 | 2016-10-31 | Solid pharmaceutical composition comprising at least one stabilizing agent | |
US20110318411A1 (en) | 2010-06-24 | 2011-12-29 | Luber Joseph R | Multi-layered orally disintegrating tablet and the manufacture thereof |
US8343533B2 (en) * | 2009-09-24 | 2013-01-01 | Mcneil-Ppc, Inc. | Manufacture of lozenge product with radiofrequency |
US20110070286A1 (en) * | 2009-09-24 | 2011-03-24 | Andreas Hugerth | Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process |
US8313768B2 (en) | 2009-09-24 | 2012-11-20 | Mcneil-Ppc, Inc. | Manufacture of tablet having immediate release region and sustained release region |
FR2963889B1 (en) * | 2010-08-20 | 2013-04-12 | Debregeas Et Associes Pharma | NALBUPHINE-BASED FORMULATIONS AND USES THEREOF |
US9233491B2 (en) | 2012-05-01 | 2016-01-12 | Johnson & Johnson Consumer Inc. | Machine for production of solid dosage forms |
US9511028B2 (en) | 2012-05-01 | 2016-12-06 | Johnson & Johnson Consumer Inc. | Orally disintegrating tablet |
US9445971B2 (en) | 2012-05-01 | 2016-09-20 | Johnson & Johnson Consumer Inc. | Method of manufacturing solid dosage form |
MX368159B (en) | 2014-01-10 | 2019-09-20 | Johnson & Johnson Consumer Inc | Process for making tablet using radiofrequency and lossy coated particles. |
US10493026B2 (en) | 2017-03-20 | 2019-12-03 | Johnson & Johnson Consumer Inc. | Process for making tablet using radiofrequency and lossy coated particles |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108046A (en) * | 1960-11-25 | 1963-10-22 | Smith Kline French Lab | Method of preparing high dosage sustained release tablet and product of this method |
US4894234A (en) * | 1984-10-05 | 1990-01-16 | Sharma Shri C | Novel drug delivery system for antiarrhythmics |
US5030447A (en) * | 1988-03-31 | 1991-07-09 | E. R. Squibb & Sons, Inc. | Pharmaceutical compositions having good stability |
US5500227A (en) * | 1993-11-23 | 1996-03-19 | Euro-Celtique, S.A. | Immediate release tablet cores of insoluble drugs having sustained-release coating |
US5643984A (en) * | 1996-01-03 | 1997-07-01 | Flint Ink Corporation | New Wax composition for the printing ink industry and ink compositions and overprint varnishes containing same |
US6194000B1 (en) * | 1995-10-19 | 2001-02-27 | F.H. Faulding & Co., Limited | Analgesic immediate and controlled release pharmaceutical composition |
US7323192B2 (en) * | 2001-09-28 | 2008-01-29 | Mcneil-Ppc, Inc. | Immediate release tablet |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US582438A (en) * | 1897-05-11 | John scheidler | ||
US599865A (en) * | 1898-03-01 | Emanuel l | ||
US2307371A (en) * | 1941-08-13 | 1943-01-05 | Ray O Vac Co | Molding process |
US2996431A (en) * | 1953-12-16 | 1961-08-15 | Barry Richard Henry | Friable tablet and process for manufacturing same |
GB866681A (en) | 1958-05-22 | 1961-04-26 | May & Baker Ltd | N-substituted piperidines |
GB888038A (en) | 1959-12-16 | 1962-01-24 | William Warren Triggs C B E | Medicinal tablet |
GB936386A (en) | 1959-01-16 | 1963-09-11 | Wellcome Found | Pellets for supplying biologically active substances to ruminants |
GB972128A (en) * | 1960-01-21 | 1964-10-07 | Wellcome Found | Pellets for supplying biologically active substances to ruminants and the manufacture of such pellets |
GB994742A (en) | 1960-09-09 | 1965-06-10 | Wellcome Found | Pharmaceutical tablets containing anthelmintics, and the manufacture thereof |
US3085942A (en) * | 1960-12-28 | 1963-04-16 | Hoffmann La Roche | Antitussive compositions and preparation |
GB1144915A (en) | 1966-11-24 | 1969-03-12 | Armour Pharma | Improvements in or relating to pastille formulations |
US3627583A (en) * | 1969-04-29 | 1971-12-14 | Sucrest Corp | Direct compression vehicles |
US3832252A (en) * | 1970-09-29 | 1974-08-27 | T Higuchi | Method of making a drug-delivery device |
CH569482A5 (en) | 1970-12-23 | 1975-11-28 | Boehringer Sohn Ingelheim | |
US3726622A (en) * | 1971-08-20 | 1973-04-10 | Wolverine Pentronix | Compacting apparatus |
DE2157465C3 (en) * | 1971-11-19 | 1975-04-24 | Werner & Pfleiderer, 7000 Stuttgart | Filling device for a hydraulic block press |
DE2309202A1 (en) | 1973-02-21 | 1974-08-29 | Schering Ag | MEDICINAL FORMS WITH MICRO-ENCAPSULATED MEDICINAL ACTIVE |
US4139589A (en) * | 1975-02-26 | 1979-02-13 | Monique Beringer | Process for the manufacture of a multi-zone tablet and tablet manufactured by this process |
US4230693A (en) * | 1975-04-21 | 1980-10-28 | Armour-Dial, Inc. | Antacid tablets and processes for their preparation |
FR2312247A1 (en) * | 1975-05-30 | 1976-12-24 | Parcor | THIENO-PYRIDINE DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS |
US4097606A (en) * | 1975-10-08 | 1978-06-27 | Bristol-Myers Company | APAP Tablet containing an alkali metal carboxymethylated starch and processes for manufacturing same |
SE414386B (en) | 1976-03-10 | 1980-07-28 | Aco Laekemedel Ab | VIEW TO PREPARE AND AT THE SAME PACKAGE PHARMACEUTICAL DOSAGE UNITS |
GB2030042A (en) * | 1978-09-21 | 1980-04-02 | Beecham Group Ltd | Antacid fondant |
NL7906689A (en) | 1979-09-06 | 1981-03-10 | Dawsonville Corp Nv | TATTOO. |
US4273793A (en) * | 1979-10-26 | 1981-06-16 | General Foods Corporation | Apparatus and process for the preparation of gasified confectionaries by pressurized injection molding |
US4271206A (en) * | 1979-10-26 | 1981-06-02 | General Foods Corporation | Gasified candy having a predetermined shape |
US4473526A (en) * | 1980-01-23 | 1984-09-25 | Eugen Buhler | Method of manufacturing dry-pressed molded articles |
US4292017A (en) * | 1980-07-09 | 1981-09-29 | Doepel Wallace A | Apparatus for compressing tablets |
US4362757A (en) * | 1980-10-22 | 1982-12-07 | Amstar Corporation | Crystallized, readily water dispersible sugar product containing heat sensitive, acidic or high invert sugar substances |
US5002970A (en) * | 1981-07-31 | 1991-03-26 | Eby Iii George A | Flavor masked ionizable zinc compositions for oral absorption |
US4372942A (en) * | 1981-08-13 | 1983-02-08 | Beecham Inc. | Candy base and liquid center hard candy made therefrom |
DE3144678A1 (en) | 1981-11-10 | 1983-05-19 | Eugen Dipl.-Ing. 8871 Burtenbach Bühler | METHOD AND DEVICE FOR THE PRODUCTION OF MOLDINGS FROM A GIANT CAPABILITY |
JPS58152813A (en) | 1982-03-08 | 1983-09-10 | Sumitomo Chem Co Ltd | Tablets with clear markings and their manufacturing method |
US4882167A (en) * | 1983-05-31 | 1989-11-21 | Jang Choong Gook | Dry direct compression compositions for controlled release dosage forms |
US4533345A (en) | 1983-06-14 | 1985-08-06 | Fertility & Genetics Associates | Uterine catheter |
US4749575A (en) * | 1983-10-03 | 1988-06-07 | Bio-Dar Ltd. | Microencapsulated medicament in sweet matrix |
AU591171B2 (en) | 1983-11-02 | 1989-11-30 | Alza Corporation | Dispenser for delivering thermo-responsive composition |
NL194820C (en) | 1983-11-02 | 2003-04-03 | Alza Corp | Preparation for the release of a heat-reacting composition. |
US4781714A (en) * | 1983-11-02 | 1988-11-01 | Alza Corporation | Dispenser for delivering thermo-responsive composition |
DE3404108A1 (en) | 1984-02-07 | 1985-08-14 | Kilian & Co GmbH, 5000 Köln | TABLET PRESS |
US4518335A (en) | 1984-03-14 | 1985-05-21 | Allied Corporation | Dilatant mold and dilatant molding apparatus |
JPS60217106A (en) * | 1984-04-12 | 1985-10-30 | 高橋 信之 | Inorganic-powder freezing molding method |
US4661521A (en) * | 1984-04-30 | 1987-04-28 | Mallinckrodt, Inc. | Direct tableting acetaminophen compositions |
US4528335A (en) | 1984-05-18 | 1985-07-09 | Phillips Petroleum Company | Polymer blends |
DK8603837A (en) * | 1985-08-13 | 1987-02-14 | ||
US4665116A (en) * | 1985-08-28 | 1987-05-12 | Turtle Wax, Inc. | Clear cleaner/polish composition |
US5188840A (en) * | 1985-09-26 | 1993-02-23 | Chugai Seiyaku Kabushiki Kaisha | Slow-release pharmaceutical agent |
US5229164A (en) * | 1985-12-19 | 1993-07-20 | Capsoid Pharma Gmbh | Process for producing individually dosed administration forms |
DE3610878A1 (en) | 1986-04-01 | 1987-10-08 | Boehringer Ingelheim Kg | PELLET SHAPES |
US4757090A (en) * | 1986-07-14 | 1988-07-12 | Mallinckrodt, Inc. | Direct tableting acetaminophen compositions |
US4762719A (en) * | 1986-08-07 | 1988-08-09 | Mark Forester | Powder filled cough product |
CA1290526C (en) * | 1986-11-07 | 1991-10-15 | Marianne Wieser | Mold and die operation |
DE3640574A1 (en) | 1986-11-27 | 1988-06-09 | Katjes Fassin Gmbh & Co Kg | METHOD FOR PRODUCING AN EDIBLE PRALINE-SHAPED PRODUCT AND DEVICE FOR IMPLEMENTING THE METHOD |
US4820524A (en) * | 1987-02-20 | 1989-04-11 | Mcneilab, Inc. | Gelatin coated caplets and process for making same |
US4792448A (en) | 1987-06-11 | 1988-12-20 | Pfizer Inc. | Generic zero order controlled drug delivery system |
US4813818A (en) * | 1987-08-25 | 1989-03-21 | Michael Sanzone | Apparatus and method for feeding powdered materials |
US4851226A (en) * | 1987-11-16 | 1989-07-25 | Mcneil Consumer Products Company | Chewable medicament tablet containing means for taste masking |
US4894236A (en) * | 1988-01-12 | 1990-01-16 | Choong-Gook Jang | Direct compression tablet binders for acetaminophen |
US4929446A (en) * | 1988-04-19 | 1990-05-29 | American Cyanamid Company | Unit dosage form |
JPH0816051B2 (en) | 1988-12-07 | 1996-02-21 | エスエス製薬株式会社 | Sustained release suppositories |
US4956182A (en) | 1989-03-16 | 1990-09-11 | Bristol-Myers Company | Direct compression cholestyramine tablet and solvent-free coating therefor |
EP0419410A3 (en) * | 1989-09-19 | 1991-08-14 | Ciba-Geigy Ag | Alkanophenones |
US5146730A (en) * | 1989-09-20 | 1992-09-15 | Banner Gelatin Products Corp. | Film-enrobed unitary-core medicament and the like |
DK469989D0 (en) * | 1989-09-22 | 1989-09-22 | Bukh Meditec | PHARMACEUTICAL PREPARATION |
US5169645A (en) | 1989-10-31 | 1992-12-08 | Duquesne University Of The Holy Ghost | Directly compressible granules having improved flow properties |
US5223266A (en) * | 1990-01-24 | 1993-06-29 | Alza Corporation | Long-term delivery device with early startup |
US4980169A (en) * | 1990-05-03 | 1990-12-25 | Warner-Lambert Company | Flavor enhancing and increasing efficacy of cough drops |
US4983394A (en) | 1990-05-03 | 1991-01-08 | Warner-Lambert Company | Flavor enhancing and medicinal taste masking agent |
US5213738A (en) * | 1990-05-15 | 1993-05-25 | L. Perrigo Company | Method for making a capsule-shaped tablet |
US5089270A (en) * | 1990-05-15 | 1992-02-18 | L. Perrigo Company | Capsule-shaped tablet |
US5075114A (en) | 1990-05-23 | 1991-12-24 | Mcneil-Ppc, Inc. | Taste masking and sustained release coatings for pharmaceuticals |
US5464631A (en) * | 1990-06-27 | 1995-11-07 | Warner-Lambert Company | Encapsulated dosage forms |
US5133892A (en) | 1990-10-17 | 1992-07-28 | Lever Brothers Company, Division Of Conopco, Inc. | Machine dishwashing detergent tablets |
US5503673A (en) | 1990-11-05 | 1996-04-02 | Mcneil-Ppc, Inc | Apparatus for dip coating product |
US5228916A (en) * | 1990-11-05 | 1993-07-20 | Mcneil-Ppc, Inc. | Apparatus for creating a gelatin coating |
US5436026A (en) * | 1990-11-05 | 1995-07-25 | Mcneil-Ppc, Inc. | Discharge and transfer system for apparatus for gelatin coating tablets |
US5538125A (en) * | 1990-11-05 | 1996-07-23 | Mcneil-Ppc, Inc. | Indexing and feeding systems for apparatus for gelatin coating tablets |
US5098715A (en) * | 1990-12-20 | 1992-03-24 | Burroughs Wellcome Co. | Flavored film-coated tablet |
US5378475A (en) | 1991-02-21 | 1995-01-03 | University Of Kentucky Research Foundation | Sustained release drug delivery devices |
NZ241613A (en) * | 1991-02-27 | 1993-06-25 | Janssen Pharmaceutica Nv | Highlighting intagliations in tablets |
CA2068402C (en) * | 1991-06-14 | 1998-09-22 | Michael R. Hoy | Taste mask coatings for preparation of chewable pharmaceutical tablets |
US5200191A (en) * | 1991-09-11 | 1993-04-06 | Banner Gelatin Products Corp. | Softgel manufacturing process |
DK171536B1 (en) | 1991-12-06 | 1996-12-23 | Rasmussen Kann Ind As | Window with frame of extruded profile items |
US5200195A (en) * | 1991-12-06 | 1993-04-06 | Alza Corporation | Process for improving dosage form delivery kinetics |
GB2284760B (en) | 1993-11-23 | 1998-06-24 | Euro Celtique Sa | A method of preparing pharmaceutical compositions by melt pelletisation |
EP0572731A1 (en) | 1992-06-01 | 1993-12-08 | The Procter & Gamble Company | Chewable preparation containing a decongestant |
US5317849A (en) * | 1992-08-07 | 1994-06-07 | Sauter Manufacturing Corporation | Encapsulation equipment and method |
IT1255522B (en) | 1992-09-24 | 1995-11-09 | Ubaldo Conte | COMPRESSED FOR THERAPEUTIC USE SUITABLE FOR SELLING ONE OR MORE ACTIVE SUBSTANCES WITH DIFFERENT SPEEDS |
CA2142982A1 (en) | 1992-09-30 | 1994-04-14 | Julian Belknap Lo | Articles for sustained release of medications |
CA2150119C (en) * | 1992-11-30 | 2005-03-15 | Robert C. Cuca | Tastemasked pharmaceutical materials |
TW272942B (en) | 1993-02-10 | 1996-03-21 | Takeda Pharm Industry Co Ltd | |
US5391378A (en) * | 1993-02-22 | 1995-02-21 | Elizabeth-Hata International, Inc. | Two-part medicinal tablet and method of manufacture |
JP2524955B2 (en) * | 1993-04-22 | 1996-08-14 | トーワ株式会社 | Method and apparatus for resin sealing molding of electronic parts |
EP0621032B1 (en) * | 1993-04-23 | 2000-08-09 | Novartis AG | Controlled release drug delivery device |
US5415868A (en) * | 1993-06-09 | 1995-05-16 | L. Perrigo Company | Caplets with gelatin cover and process for making same |
IT1264696B1 (en) * | 1993-07-09 | 1996-10-04 | Applied Pharma Res | PHARMACEUTICAL FORMS INTENDED FOR ORAL ADMINISTRATION ABLE TO RELEASE ACTIVE SUBSTANCES AT A CONTROLLED AND DIFFERENTIATED SPEED |
ZA944949B (en) | 1993-07-12 | 1995-04-05 | Smithkline Beecham Corp | Matrix-entrapped beadlet preparation |
US5622719A (en) * | 1993-09-10 | 1997-04-22 | Fuisz Technologies Ltd. | Process and apparatus for making rapidly dissolving dosage units and product therefrom |
US5518551A (en) | 1993-09-10 | 1996-05-21 | Fuisz Technologies Ltd. | Spheroidal crystal sugar and method of making |
DE4341442C2 (en) | 1993-12-04 | 1998-11-05 | Lohmann Therapie Syst Lts | Device for the controlled release of active substances and their use |
US5452748A (en) * | 1994-01-07 | 1995-09-26 | Simmons; John M. | Synchronized dual thread connector |
IT1274034B (en) * | 1994-07-26 | 1997-07-14 | Applied Pharma Res | PHARMACEUTICAL COMPOSITIONS BASED ON RUBBER TO BE CHEWED AND PROCEDURE FOR THEIR PREPARATION |
US5614578A (en) * | 1994-10-28 | 1997-03-25 | Alza Corporation | Injection-molded dosage form |
US5827874A (en) | 1995-05-05 | 1998-10-27 | Meyer; Hans | Methods of treating pain and inflammation with proline |
AU5655196A (en) * | 1995-05-09 | 1996-11-29 | Colorcon Limited | Powder coating composition for electrostatic coating of pharmaceutical substrates |
US5578336A (en) * | 1995-06-07 | 1996-11-26 | Monte; Woodrow C. | Confection carrier for vitamins, enzymes, phytochemicals and ailmentary vegetable compositions and method of making |
US5614207A (en) * | 1995-06-30 | 1997-03-25 | Mcneil-Ppc, Inc. | Dry mouth lozenge |
GB9517031D0 (en) | 1995-08-19 | 1995-10-25 | Procter & Gamble | Confection compositions |
DE19539361A1 (en) * | 1995-10-23 | 1997-04-24 | Basf Ag | Process for the preparation of multilayer, solid pharmaceutical forms for oral or rectal administration |
US5733578A (en) * | 1995-11-15 | 1998-03-31 | Edward Mendell Co., Inc. | Directly compressible high load acetaminophen formulations |
US5807579A (en) * | 1995-11-16 | 1998-09-15 | F.H. Faulding & Co. Limited | Pseudoephedrine combination pharmaceutical compositions |
IT1282576B1 (en) | 1996-02-06 | 1998-03-31 | Jagotec Ag | PHARMACEUTICAL TABLET SUITABLE TO GIVE THE ACTIVE SUBSTANCE IN SUBSEQUENT AND PREDETERMINABLE TIMES |
US5824338A (en) * | 1996-08-19 | 1998-10-20 | L. Perrigo Company | Caplet and gelatin covering therefor |
US5916881A (en) | 1996-10-07 | 1999-06-29 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | High trehalose content syrup |
US6077539A (en) | 1996-11-12 | 2000-06-20 | Pozen, Inc. | Treatment of migraine headache |
DE19710213A1 (en) | 1997-03-12 | 1998-09-17 | Basf Ag | Process for the manufacture of solid combination dosage forms |
US5837301A (en) * | 1997-04-28 | 1998-11-17 | Husky Injection Molding Systems Ltd. | Injection molding machine having a high speed turret |
US6149939A (en) * | 1997-05-09 | 2000-11-21 | Strumor; Mathew A. | Healthful dissolvable oral tablets, and mini-bars |
WO1999000122A1 (en) | 1997-06-25 | 1999-01-07 | Ipr-Institute For Pharmaceutical Research Ag | Method for reducing body weight |
EP0998270B1 (en) | 1997-07-09 | 2005-01-12 | Swiss Caps Rechte und Lizenzen AG | Method and device for producing a multi-layer, physiologically tolerated presentation form |
US5942034A (en) * | 1997-07-24 | 1999-08-24 | Bayer Corporation | Apparatus for the gelatin coating of medicaments |
KR100775154B1 (en) | 1997-12-19 | 2007-11-12 | 스미스클라인 비참 코포레이션 | Process for the preparation of bite-dispersible tablets |
US5891476A (en) * | 1997-12-22 | 1999-04-06 | Reo; Joe P. | Tastemasked pharmaceutical system |
US6432442B1 (en) | 1998-02-23 | 2002-08-13 | Mcneil-Ppc, Inc. | Chewable product |
US6099859A (en) * | 1998-03-20 | 2000-08-08 | Andrx Pharmaceuticals, Inc. | Controlled release oral tablet having a unitary core |
US6365185B1 (en) * | 1998-03-26 | 2002-04-02 | University Of Cincinnati | Self-destructing, controlled release peroral drug delivery system |
US6372254B1 (en) * | 1998-04-02 | 2002-04-16 | Impax Pharmaceuticals Inc. | Press coated, pulsatile drug delivery system suitable for oral administration |
US6365183B1 (en) | 1998-05-07 | 2002-04-02 | Alza Corporation | Method of fabricating a banded prolonged release active agent dosage form |
ATE272395T1 (en) | 1998-05-15 | 2004-08-15 | Chugai Pharmaceutical Co Ltd | CONTROLLED RELEASE PREPARATIONS |
US6103257A (en) * | 1998-07-17 | 2000-08-15 | Num-Pop, Inc. | System for delivering pharmaceuticals to the buccal mucosa |
DE19834180A1 (en) * | 1998-07-29 | 2000-02-03 | Benckiser Nv | Composition for use in a dishwasher |
US6200590B1 (en) * | 1998-08-10 | 2001-03-13 | Naphcare, Inc. | Controlled, phased-release suppository and its method of production |
US6270790B1 (en) * | 1998-08-18 | 2001-08-07 | Mxneil-Ppc, Inc. | Soft, convex shaped chewable tablets having reduced friability |
DE19840256A1 (en) * | 1998-09-03 | 2000-03-09 | Basf Ag | Widely applicable, continuous method for preparing coated solid dosage forms, comprises extruding mixture of drug and thermoplastic binder then applying coating composition in liquid or vapor form |
US5997905A (en) | 1998-09-04 | 1999-12-07 | Mcneil-Ppc | Preparation of pharmaceutically active particles |
US6174547B1 (en) * | 1999-07-14 | 2001-01-16 | Alza Corporation | Dosage form comprising liquid formulation |
US6602521B1 (en) | 1998-09-29 | 2003-08-05 | Impax Pharmaceuticals, Inc. | Multiplex drug delivery system suitable for oral administration |
US6165512A (en) | 1998-10-30 | 2000-12-26 | Fuisz Technologies Ltd. | Dosage forms containing taste masked active agents |
ES2175863T3 (en) * | 1999-02-10 | 2002-11-16 | Suwelack Skin & Health Care Ag | LIOFILIZED PRODUCT CONTAINING BETA-1,3-GLUCANO FROM EUGLENA, ITS PREPARATION AND USE. |
US6248760B1 (en) * | 1999-04-14 | 2001-06-19 | Paul C Wilhelmsen | Tablet giving rapid release of nicotine for transmucosal administration |
GB9921933D0 (en) * | 1999-09-17 | 1999-11-17 | Univ Gent | Solid shaped articles comprising biologically active substances and a method for their production |
JP2001122769A (en) * | 1999-10-22 | 2001-05-08 | Lion Corp | Solid preparation and method for improving disintegration/dissolution of solid preparation |
DE19954420A1 (en) | 1999-11-12 | 2001-05-31 | Lohmann Therapie Syst Lts | Preparation consisting of a film, foil or wafer-like dosage form with a two-layer structure and integrated labeling |
DE19963569B4 (en) * | 1999-12-29 | 2006-11-16 | Reckitt Benckiser N.V. | Composition for use in a dishwasher |
US20020028240A1 (en) * | 2000-04-17 | 2002-03-07 | Toyohiro Sawada | Timed-release compression-coated solid composition for oral administration |
US20020064550A1 (en) | 2000-09-07 | 2002-05-30 | Akpharma, Inc. | Edible candy compositions and methods of using same |
RU2004123621A (en) * | 2002-02-01 | 2005-04-10 | Пфайзер Продактс Инк. (Us) | MEDICINAL FORMS WITH IMMEDIATE RELEASE CONTAINING SOLID DISPERSIONS OF MEDICINES |
-
2001
- 2001-09-28 US US09/966,493 patent/US7323192B2/en not_active Expired - Lifetime
-
2002
- 2002-09-26 AU AU2002327068A patent/AU2002327068A1/en not_active Abandoned
- 2002-09-26 EP EP02761834A patent/EP1429809A2/en not_active Withdrawn
- 2002-09-26 MX MXPA04002890A patent/MXPA04002890A/en active IP Right Grant
- 2002-09-26 CA CA2461893A patent/CA2461893C/en not_active Expired - Fee Related
- 2002-09-26 WO PCT/US2002/030613 patent/WO2003028703A2/en not_active Application Discontinuation
-
2007
- 2007-10-22 US US11/876,388 patent/US20080095845A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108046A (en) * | 1960-11-25 | 1963-10-22 | Smith Kline French Lab | Method of preparing high dosage sustained release tablet and product of this method |
US4894234A (en) * | 1984-10-05 | 1990-01-16 | Sharma Shri C | Novel drug delivery system for antiarrhythmics |
US5030447A (en) * | 1988-03-31 | 1991-07-09 | E. R. Squibb & Sons, Inc. | Pharmaceutical compositions having good stability |
US5500227A (en) * | 1993-11-23 | 1996-03-19 | Euro-Celtique, S.A. | Immediate release tablet cores of insoluble drugs having sustained-release coating |
US6194000B1 (en) * | 1995-10-19 | 2001-02-27 | F.H. Faulding & Co., Limited | Analgesic immediate and controlled release pharmaceutical composition |
US5643984A (en) * | 1996-01-03 | 1997-07-01 | Flint Ink Corporation | New Wax composition for the printing ink industry and ink compositions and overprint varnishes containing same |
US7323192B2 (en) * | 2001-09-28 | 2008-01-29 | Mcneil-Ppc, Inc. | Immediate release tablet |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018064559A1 (en) * | 2016-09-30 | 2018-04-05 | Biotie Therapies, Inc. | Compositions and methods for treating alzheimer's disease and parkinson's disease |
US10314798B2 (en) | 2016-09-30 | 2019-06-11 | Biotie Therapies, Inc. | Compositions and methods for treating Alzheimer's disease and Parkinson's disease |
US10973784B2 (en) | 2016-09-30 | 2021-04-13 | Biotie Therapies, Inc. | Compositions and methods for treating Alzheimer's disease and Parkinson's disease |
US10537585B2 (en) | 2017-12-18 | 2020-01-21 | Dexcel Pharma Technologies Ltd. | Compositions comprising dexamethasone |
US11304961B2 (en) | 2017-12-18 | 2022-04-19 | Dexcel Pharma Technologies Ltd. | Compositions comprising dexamethasone |
Also Published As
Publication number | Publication date |
---|---|
MXPA04002890A (en) | 2005-06-20 |
WO2003028703A3 (en) | 2003-07-10 |
AU2002327068A1 (en) | 2003-04-14 |
WO2003028703A2 (en) | 2003-04-10 |
US20030068373A1 (en) | 2003-04-10 |
CA2461893A1 (en) | 2003-04-10 |
US7323192B2 (en) | 2008-01-29 |
EP1429809A2 (en) | 2004-06-23 |
CA2461893C (en) | 2010-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7323192B2 (en) | Immediate release tablet | |
US6277409B1 (en) | Protective coating for tablet | |
EP1123699B1 (en) | Tablet and process for making the same | |
US6814978B2 (en) | Process for preparing a soft tablet | |
US20110142931A1 (en) | Soft tablet containing dextrose monohydrate | |
EP1058538B9 (en) | Fast disintegrating tablets | |
EP1737432B1 (en) | Orally disintegrating tablets and methods of manufacture | |
AU2002300238B2 (en) | Process for manufacturing bite-dispersion tablets | |
EP1940362B1 (en) | Oral composition containing a salivation inducing agent | |
US20040265375A1 (en) | Orally disintegrating tablets | |
US20130296337A1 (en) | Flashmelt oral dosage formulation | |
KR20030094272A (en) | Tablets quickly disintegrating in oral cavity | |
US20040081695A1 (en) | Dosage forms having an inner core and an outer shell | |
ZA200308664B (en) | Solid orally-dispersible pharmaceutical formulation. | |
JP2006265242A (en) | Pharmaceutical composition quickly disintegrable in oral cavity and method for producing the same | |
JP2005132788A (en) | Orally disintegrable tablet | |
EP0975337B1 (en) | Fast release compressed tablet of flurbiprofen | |
JP2005029557A (en) | Quickly disintegrating tablet in oral cavity and method for producing the same | |
JP7590950B2 (en) | Orally disintegrating tablets containing bilastine | |
EP2698151A1 (en) | Orally Disintegrating Formulation of Paliperidone | |
MXPA01001593A (en) | Tablet and process for making the same | |
JP2006052167A (en) | Tablet composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |