US20080090946A1 - Halogen-free flame retarder composition and flame retardant polyamide composition - Google Patents
Halogen-free flame retarder composition and flame retardant polyamide composition Download PDFInfo
- Publication number
- US20080090946A1 US20080090946A1 US11/999,124 US99912407A US2008090946A1 US 20080090946 A1 US20080090946 A1 US 20080090946A1 US 99912407 A US99912407 A US 99912407A US 2008090946 A1 US2008090946 A1 US 2008090946A1
- Authority
- US
- United States
- Prior art keywords
- mass
- composition
- flame
- flame retardant
- polyamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]P(=O)(O)[3*]P([2*])(=O)O.[1*]P([2*])(=O)O Chemical compound [1*]P(=O)(O)[3*]P([2*])(=O)O.[1*]P([2*])(=O)O 0.000 description 3
- ITMPOWGDKOKITL-UHFFFAOYSA-N C.CO.CO(=O)([O-])P.[HH] Chemical compound C.CO.CO(=O)([O-])P.[HH] ITMPOWGDKOKITL-UHFFFAOYSA-N 0.000 description 2
- NHRHRINNPKRWBU-KNIJDJAESA-N CO.CO(=O)([O-])P.[HH+][3H].[HH] Chemical compound CO.CO(=O)([O-])P.[HH+][3H].[HH] NHRHRINNPKRWBU-KNIJDJAESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5317—Phosphonic compounds, e.g. R—P(:O)(OR')2
- C08K5/5333—Esters of phosphonic acids
- C08K5/5373—Esters of phosphonic acids containing heterocyclic rings not representing cyclic esters of phosphonic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34928—Salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5313—Phosphinic compounds, e.g. R2=P(:O)OR'
Definitions
- the invention relates to a halogen-free, flame retarder composition.
- the invention also relates to the use of this flame retarder composition as a flame retarder in a thermoplastic composition, in particular a glassfibre-reinforced polyamide composition, and a flame retardant polyamide composition that contains the flame retarder composition.
- the invention also relates to a moulded article containing the flame retardant polyamide composition, and the use thereof in the field of electrical and electronic applications.
- Such a flame retarder composition is known inter alia from patent application WO 9739053 A1.
- Said publication describes a flame retarder composition for a thermoplastic, in particular for a polyester, which composition contains a metal phosphinate and a nitrogen compound.
- non-reinforced flame retardant polyamide compositions are described that contain the aluminium salt of methyl ethyl phosphinic acid and melamine cyanurate or melamine phosphate.
- a disadvantage of the known flame retarder composition is that when used in glassfibre-reinforced polyamide compositions they do not yield the desired combination of flame retardancy according to the UL 94 or UL 756A tests of Underwriters Laboratories and good mechanical properties.
- the aim of the invention is therefore to meet the need for a halogen-free, flame retarder composition for a polyamide composition, in particular a glassfibre-reinforced polyamide composition, which does not have the said disadvantages, or at least has them to a strongly reduced extent.
- the component c) is an optional synergistic component, as described hereinafter.
- the halogen-free flame retarder composition When used as a flame retarder in glassfibre-reinforced polyamide compositions, the halogen-free flame retarder composition makes it possible to obtain the desired combination of a V-0 rating according to the UL 94 test of Underwriters Laboratories and good mechanical properties.
- a polyphosphate of a 1,3,5-triazine compound is hereinafter also referred to as melamine polyphosphate.
- a flame retardant polyester composition that contains a metal phosphinate and a nitrogen compound, including melamine polyphosphate is known from WO 9957187 A1.
- the use of melamine polyphosphate as a component in a flame retardant for polymer compositions is also described in WO 0002869 A1, but this publication teaches nothing about a combination with a phosphinate compound.
- WO 0009606 A1 use of melamine phosphates is disclosed in combination with an alkaline earth metal salt in polyester and polyamide compositions, this publication is silent on using said phosphinate compounds.
- melamine polyphosphate When n is high, melamine polyphosphate can be represented also by the formula (THPO 3 ) n .
- the structure is linear if the T/P (triazine/phosphorus) ratio is equal to around 1. If T/P is smaller than 1 the product is cross-linked. At T/P ⁇ 0.4 a network structure is formed.
- a melamine polyphosphate for which the number average degree of condensation n is higher than 20, n more preferably being higher than 40. The advantage of this is that a moulded article made from a polyamide composition containing the flame retarder composition shows less blooming.
- the 1,3,5-triazine content is preferably higher than 1.1 mole, and more preferably higher than 1.2 moles, of 1,3,5-triazine per mole of phosphorus atom.
- the number average degree of condensation n will generally be lower than 200, n in particular being lower than 150.
- the 1,3,5-triazine content is generally less than 2 moles of triazine per mole of phosphorus atom and preferably less than 1.8.
- the advantage of such a melamine polyphosphate is for example that it can be applied in polymer compositions that are processed at a high temperature. Such polymer compositions have an excellent thermal stability. Such a melamine polyphosphate and its preparation are described in WO 0002869 A1.
- 1,3,5-triazine compounds in the polyphosphate of a 1,3,5-triazine compound are 2,4,6-triamine-1,3,5-triazine (melamine), melam, melem, melon, ammeline, ammelide, 2-ureidomelamine, acetoguanamine, benzoguanamine, diamine phenyltriazine or mixtures thereof.
- melamine 2,4,6-triamine-1,3,5-triazine
- melam melam
- melem melon
- ammeline ammelide
- 2-ureidomelamine acetoguanamine
- benzoguanamine diamine phenyltriazine or mixtures thereof.
- Melamine, melam, melem, melon or mixtures thereof are preferred and more in particular melamine is preferred.
- Phosphinate compounds are here understood to be compounds according to formulas (I) and (II) as well as polymers thereof.
- the flame retarder composition according to the invention preferably contains a phosphinate compound in which R 1 and R 2 are a linear or branched C1-C6 alkyl radical or phenyl. The advantage of this is a better stability of the compound.
- the flame retarder composition according to the invention preferably contains a phosphinate compound of Ca, Al or Zn.
- a phosphinate compound of Ca, Al or Zn is preferably contained in the polyamide composition during preparation and processing of the flame retardant polyamide composition.
- the flame retarder composition contains a zinc phosphinate compound, because glassfibre-reinforced polyamide compositions containing this flame retarder show a better toughness, e.g. higher elongation at break, combined with flame retardancy.
- the good result obtained with a zinc phosphinate compound is surprising, because publication EP 0792912 A teaches that particularly in a polyamide composition a zinc phosphinate compound does not have a good flame retardant activity.
- 1,3,5-triazine compounds in the phosphinate compound in the flame retarder composition according to the invention are 2,4,6-triamine-1,3,5-triazine (melamine), melam, melem, melon, ammeline, ammelide, 2-ureidomelamine, acetoguanamine, benzoguanamine, diamine phenyltriazine or mixtures thereof.
- melamine, melam, melem, melon or mixtures thereof are preferred and more in particular melamine and/or melam is preferred.
- the phosphinate compounds can be prepared using known processes, for example by reaction in an aqueous solution of a metal salt with a phosphinic acid, as described inter alia in EP-A-0699708. Preparation of triazine phosphinate is described in WO 0157051 A.
- suitable phosphinic acids are dimethyl phosphinic acid, ethyl-methyl phosphinic acid, diethyl phosphinic acid, methyl-n-propylphosphinic acid, methane-di(methylphosphinic acid), benzene-1,4-(dimethyl phosphinic acid), methyl-phenylphosphinic acid, diphenylphosphinic acid.
- the flame retarder composition according to the invention preferably contains 25-75 mass % phosphinate compound and 75-25 mass % polyphosphate salt of a 1,3,5-triazine compound. More preferably the flame retarder composition according to the invention contains the phosphinate compound and the polyphosphate salt of a 1,3,5-triazine compound in a mass ratio of smaller than 1.0, more preferably smaller than 0.9, even more preferably smaller than 0.8.
- Said mass ratio is preferably larger than 0.33, more preferably larger than 0.5, in order to retain good fire behaviour.
- a ratio of about 2/3 is chosen, because a glassfibre-reinforced polyamide composition containing this flame retarder shows an excellent balance of fire behaviour and mechanical properties, with even the highest PLC rating in a Hot Wire Ignition test.
- the flame retarder composition according to the invention also contains 1-30 mass % olefin copolymer.
- An olefin copolymer is here understood to be a polymeric compound on the basis of at least one olefin with 2-12 carbon atoms and 0.1-30 weight % (calculated on the weight of the polymeric compound) of at least one compound containing acid, acid anhydride or epoxy groups. This has the advantage that when the flame retarder composition is used in a thermoplastic composition, this results not only in a better toughness, for example a higher elongation at break, but also, surprisingly, in better flame retardancy.
- the better flame retardancy is for example manifested in the form of shorter flaming combustion times in the UL 94 test, so that a better rating is obtained at the same concentration of phosphinate compound and melamine polyphosphate, or use can be made of lower concentrations of the flame retarder composition.
- This effect of an olefin copolymer is surprising, because in itself such a polymeric compound is not known to be a flame retardant.
- Copolymers of ethylene, propylene or ethylene-propylene with 0.1-30 mass % (calculated on the mass of the copolymer) of a comonomer containing acid, acid anhydride or epoxy groups can be considered as suitable olefin copolymers.
- the said copolymers may also contain comonomers that do not contain said groups, for example acryl esters or vinyl acetate.
- the copolymer contains 0.5-12 mass % (calculated on the mass of the copolymer) of a compound containing acid, acid anhydride or epoxy groups. Examples of such compounds are acrylic acid, methacrylic acid, maleic anhydride, glycidyl acrylate and glycidyl methacrylate.
- the copolymer contains an acid or acid anhydride group. This has the advantage that these groups can react with for example terminal amine groups of a polyamide in a polyamide composition.
- olefin copolymers examples include propylene/maleic anhydride (Himont), propylene/acrylic acid (Polybond®, BP Chemical) and maleic anhydride-modified ethylene/alpha-olefin copolymer (Tafmer®, Mitsui). Good results were obtained with an ethylene-propylene copolymer modified with 0.5 wt. % maleic anhydride (Tafmer®, Mitsui).
- the invention also relates to the use of the flame retarder composition according to the invention as a flame retarder in a thermoplastic composition.
- thermoplastic polymer a wide variety of polymers can be used.
- the flame retarder composition according to the invention is especially of advantage for polymers that require heat-resistant flame retarders, such as for example polyamides, polyesters, polyimides, polyurethanes, and blends thereof. More preferably, the flame retarder composition according to the invention is used in a glassfibre-reinforced polyamide composition.
- the invention more specifically relates to a flame retardant polyamide composition that contains the following components:
- the flame retardant polyamide composition contains 10-40 mass % glass fibre.
- the advantage of this composition over known polyamide compositions is that the composition according to the invention, besides e.g. a V-0 rating according to UL 94, also shows good mechanical properties, particularly a high breaking strength and a high elongation at break, as measured for example in a tensile test according to ISO 527-1.
- a flame retardant polyamide composition according to the invention that contains 10-35 mass % flame retarder composition.
- the polyamide composition contains 15-30 mass % flame retarder composition.
- the most suitable concentration will depend amongst other things on the nature and concentrations of the other components in the polyamide composition and can in principle be determined experimentally by one skilled in the art.
- the polyamide composition contains such an amount of the flame retarder composition that the content of melamine polyphosphate is more than 10 mass %, more preferably more than 12 mass % based on total composition.
- suitable polyamides are polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from amino carboxylic acids or the corresponding lactams, including aliphatic polyamides such as polyamide 4 (PA 4), PA 6, PA 66, PA 6.10, PA 6.9, PA 6.12, PA 46, PA 66/6, PA 6/66, PA 11, PA 12, and semi-aromatic polyamides such as PA 6/6T, PA 66/6T, PA 6/66/6T, PA 66/6I/6T, and mixtures thereof.
- PA 4 polyamide 4
- PA 6 PA 66
- PA 6.10 PA 6.9, PA 6.12, PA 46
- PA 66/6 PA 6/66
- PA 11 PA 12
- semi-aromatic polyamides such as PA 6/6T, PA 66/6T, PA 6/66/6T, PA 66/6I/6T, and mixtures thereof.
- PA 6/6T PA 66/6T
- PA 6/66/6T PA 66/6I/6T
- Suitable polyamides have a relative solution viscosity of 1.9-3.0, preferably of 2.0-2.7, and most preferably of 2.0-2.4 (as measured on a 1% solution in 90% formic acid at 25° C.).
- the polyamide in the flame retardant polyamide composition according to the invention is in particular polyamide 6.
- polyamide 6 Until now it had not been possible to use known halogen-free flame retardants to make a glassfibre-reinforced polyamide composition on the basis of polyamide 6 which polyamide composition has such good mechanical properties besides a V-0 rating according to UL 94 or a PLC 0 rating in a HWI test.
- the polyamide composition according to the invention generally contains 5-50 mass % of glass fibres, preferably 10-40, and more preferably 20-35 mass %.
- Suitable glass fibres are commercially available and generally have a diameter of 5-20 ⁇ m, a cutting length of 3-10 mm, and are provided with a coating that usually contains a silane compound.
- the polyamide composition according to the invention can also contain up to 30 mass % of other additives known to one skilled in the art, without this essentially detracting from the invention.
- additives are colorants, processing aids, for example release agents, nucleating agents, UV stabilizers and heat stabilizers, and other mineral reinforcing agents and fillers, such as wollastonite, (calcined) clay, talc, mica, glass spheres, etc.
- processing aids are calcium stearate, calcium montanate and bisethylene stearamide.
- suitable stabilizers are Irganox®1098, B1171, and Cul/Kl combinations.
- the polyamide composition also contains an auxiliary material that influences the dripping properties, for example a fluoropolymer, such as polytetrafluoroethylene.
- the flame retardant polyamide composition preferably contains a flame retarder composition according to the invention which also includes an olefin copolymer, in particular a maleic anhydride-modified ethylene/alpha-olefin copolymer. More preferably the flame retardant polyamide composition according to the invention contains 1-5 mass % olefin copolymer. This has the advantage that both the fire behaviour and mechanical properties are improved further.
- the polyamide composition according to the invention can be prepared in the ways known to one skilled in the art by means of mixing in the melt.
- an extruder in particular a twin-screw extruder, that is provided with means for metering all desired components to the extruder, either in the throat of the extruder or to the melt.
- the invention also relates to a moulded article containing the flame retardant polyamide composition according to the invention.
- Suitable processes for making a moulded article are injection moulding and extrusion.
- the invention also relates to the use of the moulded article thus obtained for example in the field of electrical and electronic applications.
- Examples of such applications are various housings, capacitors, switches, plugs, connectors and the like.
- the polyamide compositions were made by mixing the components at approximately 260° C. on a Haake kneader or a laboratory midi-extruder (self-built). Test specimens for UL 94 tests were cut from a sheet pressed at approximately 260° C. cut with a thickness of 2 mm, or obtained by injection moulding of the polyamide compositions at approximately 260° C.
- Table 1 gives the compositions and properties for Example I and the comparative experiments A-B. TABLE 1 Comparative Comparative Example experiment experiment I
- the polyamide compositions were prepared by mixing the components listed in Table 2 on a W&P ZSK30 twin screw extruder, with setting temperatures at 250° C., screw speed of 250 rpm at a throughput of about 12 kg/h. Glass fibres were fed via a side feeder, other components were dosed to the throat of the extruder. The observed melt temperatures were in the range of 300-310° C.
- the obtained materials were injection moulded into various test specimen using an Engel 80A machine with cylinder temperatures of 235-245° C. (from hopper to nozzle) and a mould temperature of 85° C.
- Fire behaviour was evaluated according to UL94 on moulded test specimen of 0.8 and 1.6 mm thickness. Test results given are classification (V-0, V-1 or V-2), number of specimen that gave a V-0 result (as %), and first and second after flame times (t 1 and t 2 ). Glow Wire Testing was performed according to IEC 695-1 on 1.0 and 1.6 mm specimen; presented are Glow Wire Ignition Temperature (GWIT) and Glow Wire Flammability Index (GWFI) at 1 mm. Hot Wire Ignition resistance (HWI) was measured on specimen of 0.8*125*12.5 mm according to UL 746A (ASTM D3874). Results are reported as Performance Level Category (PLC). PLC 0 means no ignition during 120 s contact time, PLC 1 indicates ignition after between 60 to 120 s contact time.
- PLC 0 means no ignition during 120 s contact time
- PLC 1 indicates ignition after between 60 to 120 s contact time.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fireproofing Substances (AREA)
Abstract
The invention relates to a halogen-free, flame retarder composition for use in a thermoplastic composition, in particular a glassfibre-reinforced polyamide composition, which flame retarder composition contains at least 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof and 90-10 mass % polyphosphate salt of a 1,3,5-triazine compound according to formula (III) and 0-30 mass % olefin copolymer. When used as a flame retarder in glassfibre-reinforced compositions the halogen-free flame retardant composition results in a combination of a V-0 rating according to the UL 94 test of Underwriters Laboratories and excellent mechanical properties. The invention therefore also relates to the use of this flame retarder composition as a flame retarder in a polyamide composition, and a flame retardant polyamide composition that contains the flame retarder composition. The invention also relates to a moulded article containing the flame retardant polyamide composition, and the use thereof in the field of electrical and electronic applications.
Description
- This application is a continuation of U.S. application Ser. No. 10/380,571, filed on Jul. 7, 2003 which is a national stage application of International Application No. PCT/NL01/00733, filed on Apr. 10, 2001.
- The invention relates to a halogen-free, flame retarder composition. The invention also relates to the use of this flame retarder composition as a flame retarder in a thermoplastic composition, in particular a glassfibre-reinforced polyamide composition, and a flame retardant polyamide composition that contains the flame retarder composition. The invention also relates to a moulded article containing the flame retardant polyamide composition, and the use thereof in the field of electrical and electronic applications.
- Such a flame retarder composition is known inter alia from patent application WO 9739053 A1. Said publication describes a flame retarder composition for a thermoplastic, in particular for a polyester, which composition contains a metal phosphinate and a nitrogen compound. Also, non-reinforced flame retardant polyamide compositions are described that contain the aluminium salt of methyl ethyl phosphinic acid and melamine cyanurate or melamine phosphate.
- A disadvantage of the known flame retarder composition is that when used in glassfibre-reinforced polyamide compositions they do not yield the desired combination of flame retardancy according to the UL 94 or UL 756A tests of Underwriters Laboratories and good mechanical properties.
- The aim of the invention is therefore to meet the need for a halogen-free, flame retarder composition for a polyamide composition, in particular a glassfibre-reinforced polyamide composition, which does not have the said disadvantages, or at least has them to a strongly reduced extent.
- The inventors have found now that a flame retarder composition, which contains at least
-
- a) 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof;
- in which
- R1, R2 is hydrogen, a linear or branched C1-C6 alkyl radical, or a phenyl radical;
- R3 is a linear or branched C1-C10 alkylene, arylene, alkylarylene, or arylalkylene radical;
- M is an alkaline earth metal or alkali metal, Al, Zn, Fe, or a 1,3,5-triazine compound;
- m is 1, 2 or 3;
- n is 1 or 3;
- x is 1 or 2; and
- b) 90-10 mass % polyphosphate salt of a 1,3,5-triazine compound according to formula (III),
- in which T represents a 1,3,5-triazine compound; and
- n is a measure of the number average degree of condensation and is larger than 3;
- c) 0-30 mass % olefin copolymer;
- with the sum of a)-c) being 100%
meets this need.
- with the sum of a)-c) being 100%
- a) 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof;
- The component c) is an optional synergistic component, as described hereinafter.
- When used as a flame retarder in glassfibre-reinforced polyamide compositions, the halogen-free flame retarder composition makes it possible to obtain the desired combination of a V-0 rating according to the UL 94 test of Underwriters Laboratories and good mechanical properties.
- A polyphosphate of a 1,3,5-triazine compound is hereinafter also referred to as melamine polyphosphate.
- A flame retardant polyester composition that contains a metal phosphinate and a nitrogen compound, including melamine polyphosphate, is known from WO 9957187 A1. The use of melamine polyphosphate as a component in a flame retardant for polymer compositions is also described in WO 0002869 A1, but this publication teaches nothing about a combination with a phosphinate compound. Although in WO 0009606 A1 use of melamine phosphates is disclosed in combination with an alkaline earth metal salt in polyester and polyamide compositions, this publication is silent on using said phosphinate compounds.
- When n is high, melamine polyphosphate can be represented also by the formula (THPO3)n. Theoretically, the structure is linear if the T/P (triazine/phosphorus) ratio is equal to around 1. If T/P is smaller than 1 the product is cross-linked. At T/P<0.4 a network structure is formed. Preferably use is made of a melamine polyphosphate for which the number average degree of condensation n is higher than 20, n more preferably being higher than 40. The advantage of this is that a moulded article made from a polyamide composition containing the flame retarder composition shows less blooming. The 1,3,5-triazine content is preferably higher than 1.1 mole, and more preferably higher than 1.2 moles, of 1,3,5-triazine per mole of phosphorus atom. The number average degree of condensation n will generally be lower than 200, n in particular being lower than 150. The 1,3,5-triazine content is generally less than 2 moles of triazine per mole of phosphorus atom and preferably less than 1.8. The advantage of such a melamine polyphosphate is for example that it can be applied in polymer compositions that are processed at a high temperature. Such polymer compositions have an excellent thermal stability. Such a melamine polyphosphate and its preparation are described in WO 0002869 A1.
- Examples of suitable 1,3,5-triazine compounds in the polyphosphate of a 1,3,5-triazine compound are 2,4,6-triamine-1,3,5-triazine (melamine), melam, melem, melon, ammeline, ammelide, 2-ureidomelamine, acetoguanamine, benzoguanamine, diamine phenyltriazine or mixtures thereof. Melamine, melam, melem, melon or mixtures thereof are preferred and more in particular melamine is preferred.
- Phosphinate compounds are here understood to be compounds according to formulas (I) and (II) as well as polymers thereof. The flame retarder composition according to the invention preferably contains a phosphinate compound in which R1 and R2 are a linear or branched C1-C6 alkyl radical or phenyl. The advantage of this is a better stability of the compound.
- The flame retarder composition according to the invention preferably contains a phosphinate compound of Ca, Al or Zn. An advantage of this is that less polymer degradation takes place in the polyamide composition during preparation and processing of the flame retardant polyamide composition. More preferably the flame retarder composition contains a zinc phosphinate compound, because glassfibre-reinforced polyamide compositions containing this flame retarder show a better toughness, e.g. higher elongation at break, combined with flame retardancy. The good result obtained with a zinc phosphinate compound is surprising, because publication EP 0792912 A teaches that particularly in a polyamide composition a zinc phosphinate compound does not have a good flame retardant activity. Examples of suitable 1,3,5-triazine compounds in the phosphinate compound in the flame retarder composition according to the invention are 2,4,6-triamine-1,3,5-triazine (melamine), melam, melem, melon, ammeline, ammelide, 2-ureidomelamine, acetoguanamine, benzoguanamine, diamine phenyltriazine or mixtures thereof. Melamine, melam, melem, melon or mixtures thereof are preferred and more in particular melamine and/or melam is preferred.
- The phosphinate compounds can be prepared using known processes, for example by reaction in an aqueous solution of a metal salt with a phosphinic acid, as described inter alia in EP-A-0699708. Preparation of triazine phosphinate is described in WO 0157051 A. Examples of suitable phosphinic acids are dimethyl phosphinic acid, ethyl-methyl phosphinic acid, diethyl phosphinic acid, methyl-n-propylphosphinic acid, methane-di(methylphosphinic acid), benzene-1,4-(dimethyl phosphinic acid), methyl-phenylphosphinic acid, diphenylphosphinic acid.
- The flame retarder composition according to the invention preferably contains 25-75 mass % phosphinate compound and 75-25 mass % polyphosphate salt of a 1,3,5-triazine compound. More preferably the flame retarder composition according to the invention contains the phosphinate compound and the polyphosphate salt of a 1,3,5-triazine compound in a mass ratio of smaller than 1.0, more preferably smaller than 0.9, even more preferably smaller than 0.8. The advantage of this is that a further improvement in the balance between flame retardancy and mechanical properties, esp. toughness is obtained, specifically in a polyamide composition. Said mass ratio is preferably larger than 0.33, more preferably larger than 0.5, in order to retain good fire behaviour. Most preferably, a ratio of about 2/3 is chosen, because a glassfibre-reinforced polyamide composition containing this flame retarder shows an excellent balance of fire behaviour and mechanical properties, with even the highest PLC rating in a Hot Wire Ignition test.
- Preferably the flame retarder composition according to the invention also contains 1-30 mass % olefin copolymer. An olefin copolymer is here understood to be a polymeric compound on the basis of at least one olefin with 2-12 carbon atoms and 0.1-30 weight % (calculated on the weight of the polymeric compound) of at least one compound containing acid, acid anhydride or epoxy groups. This has the advantage that when the flame retarder composition is used in a thermoplastic composition, this results not only in a better toughness, for example a higher elongation at break, but also, surprisingly, in better flame retardancy. The better flame retardancy is for example manifested in the form of shorter flaming combustion times in the UL 94 test, so that a better rating is obtained at the same concentration of phosphinate compound and melamine polyphosphate, or use can be made of lower concentrations of the flame retarder composition. This effect of an olefin copolymer is surprising, because in itself such a polymeric compound is not known to be a flame retardant. Copolymers of ethylene, propylene or ethylene-propylene with 0.1-30 mass % (calculated on the mass of the copolymer) of a comonomer containing acid, acid anhydride or epoxy groups can be considered as suitable olefin copolymers. The said copolymers may also contain comonomers that do not contain said groups, for example acryl esters or vinyl acetate. Preferably the copolymer contains 0.5-12 mass % (calculated on the mass of the copolymer) of a compound containing acid, acid anhydride or epoxy groups. Examples of such compounds are acrylic acid, methacrylic acid, maleic anhydride, glycidyl acrylate and glycidyl methacrylate. Preferably the copolymer contains an acid or acid anhydride group. This has the advantage that these groups can react with for example terminal amine groups of a polyamide in a polyamide composition. Examples of commercially available suitable olefin copolymers are propylene/maleic anhydride (Himont), propylene/acrylic acid (Polybond®, BP Chemical) and maleic anhydride-modified ethylene/alpha-olefin copolymer (Tafmer®, Mitsui). Good results were obtained with an ethylene-propylene copolymer modified with 0.5 wt. % maleic anhydride (Tafmer®, Mitsui).
- The invention also relates to the use of the flame retarder composition according to the invention as a flame retarder in a thermoplastic composition. As thermoplastic polymer a wide variety of polymers can be used. The flame retarder composition according to the invention is especially of advantage for polymers that require heat-resistant flame retarders, such as for example polyamides, polyesters, polyimides, polyurethanes, and blends thereof. More preferably, the flame retarder composition according to the invention is used in a glassfibre-reinforced polyamide composition.
- The invention more specifically relates to a flame retardant polyamide composition that contains the following components:
-
- a) 95-10 mass % polyamide;
- b) 0-50 mass % glass fibre;
- c) 5-40 mass % flame retarder composition according to the invention;
- d) 0-50 mass % other additives;
the sum of components a)-d) being 100 mass %.
- Preferably the flame retardant polyamide composition contains 10-40 mass % glass fibre. The advantage of this composition over known polyamide compositions is that the composition according to the invention, besides e.g. a V-0 rating according to UL 94, also shows good mechanical properties, particularly a high breaking strength and a high elongation at break, as measured for example in a tensile test according to ISO 527-1.
- Good results have been obtained in particular with a flame retardant polyamide composition according to the invention that contains 10-35 mass % flame retarder composition. Preferably the polyamide composition contains 15-30 mass % flame retarder composition. The most suitable concentration will depend amongst other things on the nature and concentrations of the other components in the polyamide composition and can in principle be determined experimentally by one skilled in the art. Preferably, the polyamide composition contains such an amount of the flame retarder composition that the content of melamine polyphosphate is more than 10 mass %, more preferably more than 12 mass % based on total composition.
- Examples of suitable polyamides are polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from amino carboxylic acids or the corresponding lactams, including aliphatic polyamides such as polyamide 4 (PA 4), PA 6, PA 66, PA 6.10, PA 6.9, PA 6.12, PA 46, PA 66/6, PA 6/66, PA 11, PA 12, and semi-aromatic polyamides such as PA 6/6T, PA 66/6T, PA 6/66/6T, PA 66/6I/6T, and mixtures thereof. Preferably polyamide 6, PA 66 or PA 46 are chosen. Suitable polyamides have a relative solution viscosity of 1.9-3.0, preferably of 2.0-2.7, and most preferably of 2.0-2.4 (as measured on a 1% solution in 90% formic acid at 25° C.). The polyamide in the flame retardant polyamide composition according to the invention is in particular polyamide 6. Until now it had not been possible to use known halogen-free flame retardants to make a glassfibre-reinforced polyamide composition on the basis of polyamide 6 which polyamide composition has such good mechanical properties besides a V-0 rating according to UL 94 or a PLC 0 rating in a HWI test.
- The polyamide composition according to the invention generally contains 5-50 mass % of glass fibres, preferably 10-40, and more preferably 20-35 mass %. Suitable glass fibres are commercially available and generally have a diameter of 5-20 μm, a cutting length of 3-10 mm, and are provided with a coating that usually contains a silane compound.
- The polyamide composition according to the invention can also contain up to 30 mass % of other additives known to one skilled in the art, without this essentially detracting from the invention. Examples of such additives are colorants, processing aids, for example release agents, nucleating agents, UV stabilizers and heat stabilizers, and other mineral reinforcing agents and fillers, such as wollastonite, (calcined) clay, talc, mica, glass spheres, etc. Examples of suitable processing aids are calcium stearate, calcium montanate and bisethylene stearamide. Examples of suitable stabilizers are Irganox®1098, B1171, and Cul/Kl combinations. If desired the polyamide composition also contains an auxiliary material that influences the dripping properties, for example a fluoropolymer, such as polytetrafluoroethylene.
- The flame retardant polyamide composition preferably contains a flame retarder composition according to the invention which also includes an olefin copolymer, in particular a maleic anhydride-modified ethylene/alpha-olefin copolymer. More preferably the flame retardant polyamide composition according to the invention contains 1-5 mass % olefin copolymer. This has the advantage that both the fire behaviour and mechanical properties are improved further.
- The polyamide composition according to the invention can be prepared in the ways known to one skilled in the art by means of mixing in the melt. For this, use is preferably made of an extruder, in particular a twin-screw extruder, that is provided with means for metering all desired components to the extruder, either in the throat of the extruder or to the melt.
- The invention also relates to a moulded article containing the flame retardant polyamide composition according to the invention. Suitable processes for making a moulded article are injection moulding and extrusion.
- The invention also relates to the use of the moulded article thus obtained for example in the field of electrical and electronic applications. Examples of such applications are various housings, capacitors, switches, plugs, connectors and the like.
- The invention is further elucidated hereinafter on the basis of the following examples and comparative experiments.
- Materials Used:
Polyamide 6 Akulon ® K122, relative solution viscosity 2.2, as measured at 25° C. on a 1% solution in 90% formic acid (DSM Engineering Plastics, NL) Zinc dimethyl Sample made from dimethyl phosphinic acid phosphinate and zinc acetate. Aluminium dimethyl Sample made from dimethyl phosphinic acid phosphinate and aluminium acetate. Melamine Melapur ® 200 (DSM Melapur, NL) polyphosphate Melamine cyanurate Melapur ® MC50 (DSM Melapur, NL) Glass fibres Standard glass fibre for polyamides, thickness 10 μm, cutting length 4.5 mm. - The polyamide compositions were made by mixing the components at approximately 260° C. on a Haake kneader or a laboratory midi-extruder (self-built). Test specimens for UL 94 tests were cut from a sheet pressed at approximately 260° C. cut with a thickness of 2 mm, or obtained by injection moulding of the polyamide compositions at approximately 260° C.
- The fire behaviour of these compositions was tested according to UL 94 on test specimens of 2 mm thickness. The rating according to UL 94 is indicated by V-0 and NC (not classified).
- Table 1 gives the compositions and properties for Example I and the comparative experiments A-B.
TABLE 1 Comparative Comparative Example experiment experiment I A B Composition (mass %) Polyamide 6 50 50 42.5 Zinc dimethyl phosphinate 15 12.5 Melamine polyphosphate 10 25 Melamine cyanurate 15 Glass fibres 25 25 30 Fire behaviour UL 94 rating (@ 2 mm) V-0 NC NC UL 94 1st combustion time (s) 1.0 4.4 18 UL 94 2nd combustion time (s) 1.9 — 19 - The polyamide compositions were prepared by mixing the components listed in Table 2 on a W&P ZSK30 twin screw extruder, with setting temperatures at 250° C., screw speed of 250 rpm at a throughput of about 12 kg/h. Glass fibres were fed via a side feeder, other components were dosed to the throat of the extruder. The observed melt temperatures were in the range of 300-310° C.
- The obtained materials were injection moulded into various test specimen using an Engel 80A machine with cylinder temperatures of 235-245° C. (from hopper to nozzle) and a mould temperature of 85° C.
- Tensile properties were measured in a tensile test according to ISO 527-1.
- Fire behaviour was evaluated according to UL94 on moulded test specimen of 0.8 and 1.6 mm thickness. Test results given are classification (V-0, V-1 or V-2), number of specimen that gave a V-0 result (as %), and first and second after flame times (t1 and t2). Glow Wire Testing was performed according to IEC 695-1 on 1.0 and 1.6 mm specimen; presented are Glow Wire Ignition Temperature (GWIT) and Glow Wire Flammability Index (GWFI) at 1 mm. Hot Wire Ignition resistance (HWI) was measured on specimen of 0.8*125*12.5 mm according to UL 746A (ASTM D3874). Results are reported as Performance Level Category (PLC). PLC 0 means no ignition during 120 s contact time, PLC 1 indicates ignition after between 60 to 120 s contact time.
- From the results that are presented in Table 2 it can be concluded that all samples show favourable fire behaviour and attractive tensile and impact properties, fulfilling demands of most applications. Examples IV and V, compositions with a ratio of phosphinate compound to melamine polyphosphate of 2/3, show even better fire behaviour than examples II and III with said ratio of 1 or higher, without deterioration of other relevant properties: note especially the PLC 0 rating found for the HWI test. In this respect it is noteworthy that the importance of GWIT and especially of HWI ratings is becomer more decisive in electrical and electronic industries than the classical UL 94 tests.
TABLE 2 Ex. II Ex. Ill Ex. IV Ex. V Composition Polyamide 6 mass % 60 60 55 50 Zinc dimethyl mass % 7.5 0 8 10 phosphinate Al dimethyl mass % 0 10 0 0 phosphinate Melamine mass % 7.5 5 12 15 polyphosphate Glass fibres mass % 25 25 25 25 Tensile properties Tensile modulus MPa 8175 9450 8525 8800 Tensile strength MPa 137 145 133 128 Elaongation at break % 4.2 3.6 4.0 3.7 UL 94 (after 48 hrs 23° C./50% RH) @ 0.8 mm class. V-2 V-2 V-2 V-2 Number of V-0 % 0 60 20 60 t1/t2 s 10/2 2.8/1.6 10/1.2 2.9/1.3 @ 1.8 mm class. V-2 V-0 V-1 V-0 Number of V-0 % 0 100 60 100 t1/t2 s 23/3 1/3.8 5.7/7 1/3.2 UL 94 (after 168 hrs 70° C.) @ 0.8 mm class. V-2 V-0 V-2 V-2 Number of V-0 % 0 90 20 20 t1/t2 s 7.6/3.7 4.5/1.4 9.7/3.1 2.6/2.2 @ 1.8 mm class. V-2 V-1 V-2 V-0 Number of V-0 % 0 0 60 100 t1/t2 s 22/1.1 15/2.1 7.5/3 1.9/2.2 Glow Wire Test (@1 mm) GWIT ° C. 775 750 775 800 GWFI ° C. 960 960 960 960 Hot Wire Ignition (@ 0.8 mm) HWI PLC 1 1 0 0
Claims (17)
1. Halogen-free, flame retarder composition for use in a thermoplastic composition, which flame retarder composition contains at least
a) 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof;
in which
R1, R2 is hydrogen, a linear or branched C1-C6 alkyl radical, or a phenyl radical;
R3 is a linear or branched C1-C10 alkylene, arylene, alkylarylene, or arylalkylene radical;
M is an alkaline earth metal or alkali metal, Al, Zn, Fe, or a 1,3,5-triazine compound;
m is 1, 2or 3;
n is 1 or 3;
x is 1 or 2; and
b) 90-10 mass % polyphosphate salt of a 1,3,5-triazine compound according to formula (III),
in which T represents a 1,3,5-triazine compound; and
n is a measure of the number average degree of condensation and is higher than 3; and
c) 0-30 mass % olefin copolymer;
the sum of components a)-c) being 100%.
2. Flame retarder composition according to claim 1 , wherein n in the polyphosphate salt of a 1,3,5-triazine compound is higher than 20.
3. Flame retarder composition according to claim 1 , wherein the 1,3,5-triazine compound in the polyphosphate salt of a 1,3,5-triazine compound is melamine.
4. Flame retarder composition according to claim 1 , wherein the composition contains 25-75 mass % phosphinate compound and 75-25 mass % polyphosphate salt of a 1,3,5-triazine compound.
5. Flame retarder composition according to claim 1 , wherein R1 and R2 in the phosphinate compound are a linear or branched C1-C6 alkyl radical.
6. Flame retarder composition according to claim 1 , wherein M in the phosphinate compound is Ca, Al or Zn.
7. Flame retarder composition according to claim 1 , wherein M in the phosphinate compound is Zn.
8. Flame retarder composition according to claims 1, wherein the composition contains 1-30 mass % olefin copolymer.
9. Flame retardant polyamide composition that contains the following components:
a) 95-10 mass % polyamide;
b) 0-50 mass % glass fibre;
c) 5-40 mass % flame retarder composition according to any one of claim 1;
d) 0-50 mass % other additives;
the sum of components a)-d) being 100 mass %.
10. Flame retardant polyamide composition according to claim 9 , wherein the polyamide composition contains 10-40 mass % glass fibre.
11. Flame retardant polyamide composition according to claim 9 , wherein the polyamide composition contains 10-35 mass % flame retardant composition.
12. Flame retardant polyamide composition according to claim 9 , wherein the polyamide is polyamide 6.
13. Flame retardant polyamide composition according to claim 9 , wherein the polyamide composition contains the flame retarder composition
a) 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof;
in which
R1, R2 is hydrogen, a linear or branched C1-C6 alkyl radical, or a phenyl radical;
R3 is a linear or branched C1-C10 alkylene, arylene, alkylarylene, or arylalkylene radical;
M is an alkaline earth metal or alkali metal, Al, Zn, Fe, or a 1,3,5-triazine compound;
m is 1, 2 or 3;
n is 1 or 3;
x is 1 or 2; and
b) 90-10 mass % polyphosphate salt of a 1,3,5-triazine compound according to formula (III),
in which T represents a 1,3,5-triazine compound; and
n is a measure of the number average degree of condensation and is higher than 3; and
c) 0-30 mass % olefin copolymer;
in which the olefin copolymer is a maleic anhydride-modified ethylene/alpha-olefin copolymer and the sum of components a)-c) being 100%.
14. Flame retardant polyamide composition according to claim 13 , wherein the polyamide composition contains 1-5 mass % olefin copolymer.
15. Moulded article containing the flame retardant polyamide composition according to claim 9 .
16. Halogen-free flame retardant composition for use in a thermoplastic composition, which flame retardant composition contains at least
a) 10-90 mass % phosphinate compound according to formula (I) and/or formula (II) and/or polymers thereof as defined in claim 1;
b) 90-10 mass % polyphosphate salt of a 1,3,5-triazine compound according to formula (III) according to claim 1 in which the 1,3,5-triazine content is higher than 1.1 mol per mol of phosphorus atom;
and
c) 0-30 mass % olefin copolymer;
the sum of components a)-c) being 100%.
17. Flame retardant polyamide compositions comprising:
a) 95-10 mass % polyamide;
b) 0-50 mass % glass fiber;
c) 5-40 mass % flame retardant composition according to claim 16;
and
d) 0-50 mass % other additives; the sum of components a)-d) being 100 mass %.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/999,124 US20080090946A1 (en) | 2000-10-05 | 2007-12-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US12/378,446 US20090156716A1 (en) | 2000-10-05 | 2009-02-13 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1016340 | 2000-10-05 | ||
NL1016340A NL1016340C2 (en) | 2000-10-05 | 2000-10-05 | Halogen-free flame-retardant composition and flame-retardant polyamide composition. |
PCT/NL2001/000733 WO2002028953A1 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US10/380,571 US7323504B2 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US11/999,124 US20080090946A1 (en) | 2000-10-05 | 2007-12-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL2001/000733 Continuation WO2002028953A1 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US10/380,571 Continuation US7323504B2 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/378,446 Continuation US20090156716A1 (en) | 2000-10-05 | 2009-02-13 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080090946A1 true US20080090946A1 (en) | 2008-04-17 |
Family
ID=19772198
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/380,571 Expired - Lifetime US7323504B2 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US11/999,124 Abandoned US20080090946A1 (en) | 2000-10-05 | 2007-12-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
US12/378,446 Abandoned US20090156716A1 (en) | 2000-10-05 | 2009-02-13 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/380,571 Expired - Lifetime US7323504B2 (en) | 2000-10-05 | 2001-10-04 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/378,446 Abandoned US20090156716A1 (en) | 2000-10-05 | 2009-02-13 | Halogen-free flame retarder composition and flame retardant polyamide composition |
Country Status (12)
Country | Link |
---|---|
US (3) | US7323504B2 (en) |
EP (1) | EP1322702B2 (en) |
JP (2) | JP4243754B2 (en) |
KR (1) | KR100820116B1 (en) |
AT (1) | ATE312139T1 (en) |
AU (1) | AU2002211088A1 (en) |
CA (1) | CA2424757C (en) |
DE (1) | DE60115673T3 (en) |
ES (1) | ES2253431T5 (en) |
MX (1) | MX240742B (en) |
NL (1) | NL1016340C2 (en) |
WO (1) | WO2002028953A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100025643A1 (en) * | 2008-07-31 | 2010-02-04 | Clariant International Ltd. | Flame-retardant mixture for thermoplastic polymers, and flame-retardant polymers |
US20100113657A1 (en) * | 2007-03-30 | 2010-05-06 | Mitsui Chemicals, Inc | Flame-retardant polyamide composition |
US20110103021A1 (en) * | 2008-03-20 | 2011-05-05 | Robert Hendrik Catharina Janssen | Heatsinks of thermally conductive plastic materials |
US8604105B2 (en) | 2010-09-03 | 2013-12-10 | Eastman Chemical Company | Flame retardant copolyester compositions |
WO2014008243A1 (en) * | 2012-07-03 | 2014-01-09 | E. I. Du Pont De Nemours And Company | Halogen free flame retardant polyamide composition |
US8765849B2 (en) | 2009-01-28 | 2014-07-01 | Arkema France | Reinforced flame-retardant polyamide composition |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1016340C2 (en) * | 2000-10-05 | 2002-04-08 | Dsm Nv | Halogen-free flame-retardant composition and flame-retardant polyamide composition. |
JP5255169B2 (en) * | 2000-11-24 | 2013-08-07 | 株式会社ダイセル | Flame retardant resin composition |
EP1386942A1 (en) * | 2002-07-25 | 2004-02-04 | Clariant GmbH | Flame retardant combination |
FR2843592B1 (en) * | 2002-08-13 | 2004-09-10 | Rhodia Eng Plastics Srl | FLAME RETARDANT POLYAMIDE COMPOSITION |
DE10241126A1 (en) * | 2002-09-03 | 2004-03-25 | Clariant Gmbh | Flame retardant-stabilizer combination for thermoplastic polymers |
DE10241374B3 (en) * | 2002-09-06 | 2004-02-19 | Clariant Gmbh | Flame retardant powder based on organophosphorous compound, used in thermoplastic or thermosetting polymer molding composition or intumescent coating, contains dust-reducing metal or ammonium dialkyl (di)phosphinate |
DE10241373A1 (en) * | 2002-09-06 | 2004-03-18 | Clariant Gmbh | Surface modified phosphinic acid salts |
WO2004046235A1 (en) * | 2002-11-21 | 2004-06-03 | Ciba Specialty Chemicals Holding Inc. | Flame retardant composition comprising a phosphonic acid metal salt and a nitrogen-containing compound |
DE10316873A1 (en) | 2003-04-11 | 2004-11-11 | Ems-Chemie Ag | Flame retardant polyamide molding compounds |
DE10320465A1 (en) * | 2003-05-08 | 2004-12-02 | Clariant Gmbh | Flame retardant nanocomposite combination for thermoplastic polymers |
DE10331169A1 (en) | 2003-07-09 | 2005-02-10 | Basf Ag | Housing shell for an electronic device |
DE10331887A1 (en) * | 2003-07-14 | 2005-02-17 | Clariant Gmbh | Flame retardant formulation |
DE10331889A1 (en) * | 2003-07-14 | 2005-02-17 | Clariant Gmbh | Flame retardant polyamides |
US7294661B2 (en) * | 2003-10-03 | 2007-11-13 | E.I. Du Pont De Nemours And Company | Flame resistant aromatic polyamide resin composition and articles therefrom |
US20050113496A1 (en) * | 2003-10-03 | 2005-05-26 | Yuji Saga | Flame resistant polyamide resin composition containing phenolic resin and articles made therefrom |
DE10346326A1 (en) * | 2003-10-06 | 2005-05-04 | Ems Chemie Ag | Flame-retardant polyamide molding compounds and their use |
DE10359816B4 (en) * | 2003-12-19 | 2006-11-16 | Clariant Produkte (Deutschland) Gmbh | Flame retardant stabilizer combination for polyesters and polyamides as well as plastic molding compounds produced therewith |
US8178607B2 (en) | 2004-01-07 | 2012-05-15 | Italmatch Chemicals S.P.A. | Polyamide compositions flame retarded with aluminium |
DE102004015356A1 (en) * | 2004-03-30 | 2005-10-20 | Clariant Gmbh | Phosphorus-containing flame retardant composition for cellulosic materials |
US20050250885A1 (en) * | 2004-05-04 | 2005-11-10 | General Electric Company | Halogen-free flame retardant polyamide composition with improved electrical properties |
US7803856B2 (en) | 2004-05-04 | 2010-09-28 | Sabic Innovative Plastics Ip B.V. | Halogen-free flame retardant polyamide composition with improved electrical and flammability properties |
DE602005015956D1 (en) * | 2004-05-13 | 2009-09-24 | Basf Se | FLAME RETARDANT |
DE102004026799B4 (en) * | 2004-06-02 | 2006-05-18 | Clariant Gmbh | Press granulated flame retardant composition, process for its preparation and its use |
JP2005350501A (en) * | 2004-06-08 | 2005-12-22 | Toyobo Co Ltd | Flame-retardant polyamide resin composition excellent in toughness |
DE102004039148A1 (en) * | 2004-08-12 | 2006-02-23 | Clariant Gmbh | Glow wire resistant flame retardant polymers |
DE102004039758A1 (en) * | 2004-08-17 | 2006-03-02 | Clariant Gmbh | Fire protection coating |
DE102004048876A1 (en) | 2004-09-13 | 2006-03-30 | Bayer Ag | Halogen-free flame-retardant thermoplastic molding compounds based on polyamide with increased glow wire resistance |
US7534822B2 (en) | 2004-11-22 | 2009-05-19 | Sabic Innovative Plastics Ip B.V. | Method of making a flame retardant poly(arylene ether)/polyamide composition |
US7449507B2 (en) | 2004-11-22 | 2008-11-11 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether)/polyamide composition and method of making |
KR20080072970A (en) | 2004-11-22 | 2008-08-07 | 제너럴 일렉트릭 캄파니 | Flame retardant poly (arylene ether) / polyamide composition and preparation method thereof |
US7592382B2 (en) | 2004-11-22 | 2009-09-22 | Sabic Innovative Plastics Ip B.V. | Flame retardant poly(arylene ether)/polyamide compositions, methods, and articles |
DE102005016195A1 (en) * | 2005-04-08 | 2006-10-12 | Clariant Produkte (Deutschland) Gmbh | Stabilized flame retardant |
JP4916139B2 (en) * | 2005-07-20 | 2012-04-11 | 旭化成ケミカルズ株式会社 | Flame retardant polyamide resin composition |
JP4993425B2 (en) * | 2005-07-20 | 2012-08-08 | 旭化成ケミカルズ株式会社 | Flame retardant polyamide resin composition |
DE102005041966A1 (en) * | 2005-09-03 | 2007-03-08 | Clariant Produkte (Deutschland) Gmbh | Polyamide moulding material, e.g. for production of electrical switches and plugs, contains thermoplastic polyamide, phosphinate salt, synergist or phosphorus-nitrogen fire retardant, reinforcing fibres and filler |
US7758964B2 (en) * | 2006-02-10 | 2010-07-20 | 3M Innovative Properties Company | Flame resistant covercoat for flexible circuit |
US7423080B2 (en) * | 2006-03-03 | 2008-09-09 | Sabic Innovative Plastics Ip B.V. | Radiation crosslinking of halogen-free flame retardant polymer |
DE102006013724B8 (en) * | 2006-03-24 | 2007-08-02 | Ems-Chemie Ag | Heat and flame retardant stabilizer and its use, polymer composition containing an additive and this polymer composition containing moldings, films, fibers or moldings |
TW200844281A (en) * | 2006-11-15 | 2008-11-16 | Shell Int Research | Polymer fiber containing flame retardant, process for producing the same, and material containing such fibers |
US8268956B2 (en) | 2006-12-08 | 2012-09-18 | Ems-Chemie Ag | Transparent mold made of a polyamide molding material |
DE102007037019A1 (en) * | 2007-08-06 | 2009-02-12 | Clariant International Limited | Flame retardant mixture for thermoplastic polymers and flame-retardant polymers |
CN101821336B (en) * | 2007-09-21 | 2013-11-13 | 三井化学株式会社 | Flame-retardant polyamide composition |
KR101159430B1 (en) * | 2007-09-21 | 2012-06-22 | 미쓰이 가가쿠 가부시키가이샤 | Flame-retardant polyamide composition |
EP2060607B2 (en) | 2007-11-16 | 2019-11-27 | Ems-Patent Ag | Filled polyamide moulding materials |
KR20090067663A (en) * | 2007-12-21 | 2009-06-25 | 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 | Non-halogen flame-retardant thermoplastic polyurethane composite resin composition |
WO2009109318A1 (en) * | 2008-03-03 | 2009-09-11 | Clariant International Ltd | Method for the production of a flame-retardant, non-corrosive, and easily flowable polyamide and polyester molding compounds |
EP2334731A4 (en) * | 2008-09-30 | 2013-05-22 | Polyone Corp | Flame retardant thermoplastic elastomers |
US20100130670A1 (en) * | 2008-11-21 | 2010-05-27 | Kraton Polymers Us Llc | End use applications prepared from certain block copolymers |
WO2010139369A1 (en) * | 2009-06-05 | 2010-12-09 | Ems-Patent Ag | Flame-protected, partially aromatic polyamide molding compounds |
US8871843B2 (en) * | 2009-12-15 | 2014-10-28 | Apple Inc. | Halogen-free flame retardant material |
PL2365033T3 (en) | 2010-03-12 | 2013-12-31 | Ems Patent Ag | Impact-resistant modified polyamide moulding material and container made of same |
EP2412757B1 (en) | 2010-07-30 | 2013-11-13 | Ems-Patent Ag | Polyamide moulding composition for producing moulded articles with a soft touch surface and corresponding articles |
CN102050994B (en) * | 2011-01-18 | 2012-10-03 | 广东聚石化学股份有限公司 | High-voltage breakdown resisting halogen-free precipitate-free antiflaming PP (Polypropylene) for electronic/electric apparatus components |
ES2435667T3 (en) | 2011-06-17 | 2013-12-20 | Ems-Patent Ag | Partially aromatic molding doughs and their uses |
TWI457353B (en) | 2012-05-08 | 2014-10-21 | Ind Tech Res Inst | Polymers, polymer blends, and flame retardant materials |
EP2666803B1 (en) | 2012-05-23 | 2018-09-05 | Ems-Patent Ag | Scratch-proof, transparent and ductile copolyamide moulding materials, moulded parts produced from same and use of same |
US8962717B2 (en) | 2012-08-20 | 2015-02-24 | Basf Se | Long-fiber-reinforced flame-retardant polyesters |
JP6129848B2 (en) * | 2012-09-03 | 2017-05-17 | 太平化学産業株式会社 | Condensed phosphate compound-based flame retardant, method for producing the same, and flame-retardant resin composition |
JP6423140B2 (en) * | 2012-09-04 | 2018-11-14 | Dic株式会社 | Non-halogen flame retardant resin composition and molded article |
EP2716716B1 (en) | 2012-10-02 | 2018-04-18 | Ems-Patent Ag | Polyamide moulding compositions and their use in the production of moulded articles |
ES2527403T3 (en) | 2012-12-18 | 2015-01-23 | Ems-Patent Ag | Polyamide molding dough and molded bodies produced from it |
DE102013004046A1 (en) | 2013-03-08 | 2014-09-11 | Clariant International Ltd. | Flame retardant polyamide composition |
EP2778190B1 (en) | 2013-03-15 | 2015-07-15 | Ems-Patent Ag | Polyamide moulding material and moulded body produced from the same |
SI2810983T1 (en) * | 2013-06-06 | 2016-07-29 | Ems-Patent Ag | Glass fiber reinforced flame retardant polyamide moulding materials |
US9804989B2 (en) * | 2014-07-25 | 2017-10-31 | Micron Technology, Inc. | Systems, devices, and methods for selective communication through an electrical connector |
WO2016105554A1 (en) | 2014-12-23 | 2016-06-30 | Jji Technologies, Llc | Novel fire-resistant compositions for the high temperature plastic materials |
DE102015003825A1 (en) | 2015-03-25 | 2016-09-29 | Clariant International Ltd. | The invention relates to flame retardant mixtures and their preparation |
DE102015004661A1 (en) | 2015-04-13 | 2016-10-13 | Clariant International Ltd. | Flame retardant polyamide composition |
EP3127937B1 (en) | 2015-08-06 | 2018-03-07 | Ems-Patent Ag | Flame resistant polyamide 12 substances for rail applications |
DE102016203221A1 (en) | 2016-02-29 | 2017-08-31 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide composition |
DE102017212098A1 (en) | 2017-07-14 | 2019-01-17 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions with high heat resistance and their use |
DE102017212097A1 (en) | 2017-07-14 | 2019-01-17 | Clariant Plastics & Coatings Ltd | Flame retardant gray polyamide compositions and their use |
DE102017212100A1 (en) | 2017-07-14 | 2019-01-17 | Clariant Plastics & Coatings Ltd | Additive mixtures for plastics, laser-markable polymer compositions containing them and their use |
DE102017212099A1 (en) | 2017-07-14 | 2019-01-17 | Clariant Plastics & Coatings Ltd | Additive mixtures for plastics, laser-markable polymer compositions containing them and their use |
DE102017212096A1 (en) | 2017-07-14 | 2019-01-17 | Clariant Plastics & Coatings Ltd | Flame retardant black polyamide compositions and their use |
DE102017214051B4 (en) | 2017-08-11 | 2020-07-23 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions with high heat resistance and their use |
DE102017214045A1 (en) | 2017-08-11 | 2019-02-14 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions and their use |
DE102017214046A1 (en) * | 2017-08-11 | 2019-02-14 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions and their use |
DE102017214048A1 (en) | 2017-08-11 | 2019-02-14 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions with high filament ignition temperature and their use |
DE102017215775A1 (en) | 2017-09-07 | 2019-03-07 | Clariant Plastics & Coatings Ltd | Flame retardant polyamide compositions with high heat resistance and their use |
DE102017215780A1 (en) | 2017-09-07 | 2019-03-07 | Clariant Plastics & Coatings Ltd | Synergistic flame retardant combinations for polymer compositions and their use |
DE102017215779B4 (en) | 2017-09-07 | 2021-03-18 | Clariant International Ltd | Flame retardant combinations for polymer compositions, as well as polymer compositions and their use |
DE102017215773A1 (en) | 2017-09-07 | 2019-03-07 | Clariant Plastics & Coatings Ltd | Flame retardant polyester compositions and their use |
DE102017215776A1 (en) | 2017-09-07 | 2019-03-07 | Clariant Plastics & Coatings Ltd | Flame retardant polyester compositions and their use |
DE102017215777A1 (en) | 2017-09-07 | 2019-03-07 | Clariant Plastics & Coatings Ltd | Flame retardant combinations for polymer compositions and their use |
WO2019065614A1 (en) * | 2017-09-26 | 2019-04-04 | 株式会社Adeka | Composition, flame retardant using composition and flame retardant resin composition |
US11401416B2 (en) | 2017-10-17 | 2022-08-02 | Celanese Sales Germany Gmbh | Flame retardant polyamide composition |
DE102018220696A1 (en) | 2018-11-30 | 2020-06-04 | Clariant Plastics & Coatings Ltd | Flame retardant mixtures, flame retardant polymer compositions, cables equipped with them and their use |
DE102019201727A1 (en) * | 2019-02-11 | 2020-08-13 | Clariant Plastics & Coatings Ltd | Flame retardant mixture for thermoplastic polymers |
DE102019201824A1 (en) | 2019-02-12 | 2020-08-13 | Clariant Plastics & Coatings Ltd | Flame retardant mixtures, flame retardant polymer compositions, cables equipped therewith and their use |
DE102019132294A1 (en) | 2019-11-28 | 2021-06-02 | Carl Freudenberg Kg | Flame retardant polymer composition |
WO2021111937A1 (en) | 2019-12-04 | 2021-06-10 | 宇部興産株式会社 | Polyamide resin composition |
KR20230127758A (en) * | 2022-02-25 | 2023-09-01 | 롯데케미칼 주식회사 | Thermoplastic resin composition and molded product manufactured from the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208321A (en) * | 1978-04-13 | 1980-06-17 | Pennwalt Corporation | Polyamide resins flame retarded by poly(metal phosphinate)s |
US4251644A (en) * | 1979-10-01 | 1981-02-17 | Copolymer Rubber & Chemical Corporation | Polar resins having improved characteristics by blending with EPM and EPDM polymers |
US6136973A (en) * | 1997-03-04 | 2000-10-24 | Nissan Chemical Industries, Ltd. | Melamine-melam-melem salt of a polyphosphoric acid and process for its production |
US6255371B1 (en) * | 1999-07-22 | 2001-07-03 | Clariant Gmbh | Flame-retardant combination |
US6503969B1 (en) * | 1998-05-07 | 2003-01-07 | Basf Aktiengesellschaft | Flame-retardant polyester molding compositions containing flame retardant nitrogen compounds and diphosphinates |
US20060106139A1 (en) * | 2004-04-01 | 2006-05-18 | Kazunari Kosaka | Flame retardant thermoplastic composition and articles comprising the same |
US7323504B2 (en) * | 2000-10-05 | 2008-01-29 | Ciba Specialty Chemicals Corporation | Halogen-free flame retarder composition and flame retardant polyamide composition |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4430932A1 (en) | 1994-08-31 | 1996-03-07 | Hoechst Ag | Flame retardant polyester molding compound |
DE19607635A1 (en) | 1996-02-29 | 1997-09-04 | Hoechst Ag | Flame retardant polyamide molding compounds |
CA2250995C (en) * | 1996-04-12 | 2006-10-31 | Clariant Gmbh | Synergistic flame retardant combination for thermoplastic polymers |
DE19614424A1 (en) * | 1996-04-12 | 1997-10-16 | Hoechst Ag | Synergistic combination of flame retardants for polymers |
US6025419A (en) * | 1997-04-07 | 2000-02-15 | E. I. Du Pont De Nemours And Company | Flame retardant resin compositions |
NL1006525C2 (en) † | 1997-07-10 | 1999-01-12 | Dsm Nv | Halogen-free flame-retardant thermoplastic polyester composition. |
KR100231789B1 (en) * | 1997-08-30 | 1999-12-01 | 성재갑 | Non-halogen flame retardant styrenics compositions |
NL1006936C2 (en) † | 1997-09-04 | 1999-03-05 | Dsm Nv | Flame-retardant polyester composition. |
BR9802508A (en) * | 1997-11-11 | 1999-09-08 | Servicios Condumex Sa | Formulation of heavy metal-free polyvinyl chloride compounds for thin-walled automotive primary cable insulation |
DE19827845A1 (en) † | 1998-06-23 | 1999-12-30 | Basf Ag | Fire-resistant polyester moulding material, useful for the production of fibres, film and moulded products, especially electrical components |
NL1009588C2 (en) † | 1998-07-08 | 2000-01-11 | Dsm Nv | Polyphosphate salt of a high condensation 1,3,5-triazine compound, a process for its preparation and use as a flame arrester in polymer compositions. |
US6166114A (en) * | 1998-08-13 | 2000-12-26 | E. I. Du Pont De Nemours And Company | Fire and electrical resistant compositions |
ATE313597T1 (en) * | 1999-01-30 | 2006-01-15 | Clariant Gmbh | FLAME RETARDANT COMBINATION FOR THERMOPLASTIC POLYMERS I |
NL1014232C2 (en) | 2000-01-31 | 2001-08-01 | Dsm Nv | Salt of a melamine condensation product and a phosphorus-containing acid. |
JP2001335699A (en) * | 2000-05-30 | 2001-12-04 | Daicel Chem Ind Ltd | Flame retardant resin composition |
-
2000
- 2000-10-05 NL NL1016340A patent/NL1016340C2/en not_active IP Right Cessation
-
2001
- 2001-10-04 WO PCT/NL2001/000733 patent/WO2002028953A1/en active IP Right Grant
- 2001-10-04 DE DE60115673.0T patent/DE60115673T3/en not_active Expired - Lifetime
- 2001-10-04 KR KR20037004721A patent/KR100820116B1/en active IP Right Grant
- 2001-10-04 CA CA2424757A patent/CA2424757C/en not_active Expired - Lifetime
- 2001-10-04 ES ES01979099.7T patent/ES2253431T5/en not_active Expired - Lifetime
- 2001-10-04 JP JP2002532530A patent/JP4243754B2/en not_active Expired - Lifetime
- 2001-10-04 MX MXPA03002880 patent/MX240742B/en active IP Right Grant
- 2001-10-04 US US10/380,571 patent/US7323504B2/en not_active Expired - Lifetime
- 2001-10-04 EP EP01979099.7A patent/EP1322702B2/en not_active Expired - Lifetime
- 2001-10-04 AU AU2002211088A patent/AU2002211088A1/en not_active Abandoned
- 2001-10-04 AT AT01979099T patent/ATE312139T1/en active
-
2007
- 2007-12-04 US US11/999,124 patent/US20080090946A1/en not_active Abandoned
-
2008
- 2008-09-16 JP JP2008237153A patent/JP5468760B2/en not_active Expired - Lifetime
-
2009
- 2009-02-13 US US12/378,446 patent/US20090156716A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208321A (en) * | 1978-04-13 | 1980-06-17 | Pennwalt Corporation | Polyamide resins flame retarded by poly(metal phosphinate)s |
US4251644A (en) * | 1979-10-01 | 1981-02-17 | Copolymer Rubber & Chemical Corporation | Polar resins having improved characteristics by blending with EPM and EPDM polymers |
US6136973A (en) * | 1997-03-04 | 2000-10-24 | Nissan Chemical Industries, Ltd. | Melamine-melam-melem salt of a polyphosphoric acid and process for its production |
US6503969B1 (en) * | 1998-05-07 | 2003-01-07 | Basf Aktiengesellschaft | Flame-retardant polyester molding compositions containing flame retardant nitrogen compounds and diphosphinates |
US6255371B1 (en) * | 1999-07-22 | 2001-07-03 | Clariant Gmbh | Flame-retardant combination |
US7323504B2 (en) * | 2000-10-05 | 2008-01-29 | Ciba Specialty Chemicals Corporation | Halogen-free flame retarder composition and flame retardant polyamide composition |
US20060106139A1 (en) * | 2004-04-01 | 2006-05-18 | Kazunari Kosaka | Flame retardant thermoplastic composition and articles comprising the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100113657A1 (en) * | 2007-03-30 | 2010-05-06 | Mitsui Chemicals, Inc | Flame-retardant polyamide composition |
US20110103021A1 (en) * | 2008-03-20 | 2011-05-05 | Robert Hendrik Catharina Janssen | Heatsinks of thermally conductive plastic materials |
US20100025643A1 (en) * | 2008-07-31 | 2010-02-04 | Clariant International Ltd. | Flame-retardant mixture for thermoplastic polymers, and flame-retardant polymers |
US8765849B2 (en) | 2009-01-28 | 2014-07-01 | Arkema France | Reinforced flame-retardant polyamide composition |
US8604105B2 (en) | 2010-09-03 | 2013-12-10 | Eastman Chemical Company | Flame retardant copolyester compositions |
US8969443B2 (en) | 2010-09-03 | 2015-03-03 | Eastman Chemical Company | Flame retardant copolyester compositions |
WO2014008243A1 (en) * | 2012-07-03 | 2014-01-09 | E. I. Du Pont De Nemours And Company | Halogen free flame retardant polyamide composition |
CN104619765A (en) * | 2012-07-03 | 2015-05-13 | 纳幕尔杜邦公司 | Halogen free flame retardant polyamide composition |
Also Published As
Publication number | Publication date |
---|---|
JP4243754B2 (en) | 2009-03-25 |
KR20030036878A (en) | 2003-05-09 |
KR100820116B1 (en) | 2008-04-08 |
MX240742B (en) | 2006-10-04 |
ES2253431T5 (en) | 2014-07-15 |
ATE312139T1 (en) | 2005-12-15 |
JP2009030067A (en) | 2009-02-12 |
JP2004510863A (en) | 2004-04-08 |
CA2424757C (en) | 2010-09-07 |
US20090156716A1 (en) | 2009-06-18 |
JP5468760B2 (en) | 2014-04-09 |
EP1322702B1 (en) | 2005-12-07 |
MXPA03002880A (en) | 2003-06-24 |
AU2002211088A1 (en) | 2002-04-15 |
NL1016340C2 (en) | 2002-04-08 |
EP1322702B2 (en) | 2014-04-02 |
DE60115673T2 (en) | 2006-06-14 |
EP1322702A1 (en) | 2003-07-02 |
US7323504B2 (en) | 2008-01-29 |
DE60115673T3 (en) | 2014-08-21 |
WO2002028953A1 (en) | 2002-04-11 |
ES2253431T3 (en) | 2006-06-01 |
CA2424757A1 (en) | 2002-04-11 |
US20040021135A1 (en) | 2004-02-05 |
DE60115673D1 (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1322702B1 (en) | Halogen-free flame retarder composition and flame retardant polyamide composition | |
US7723411B2 (en) | Flameproof polyamide moulding materials | |
KR100388505B1 (en) | Flame-proofed polyamide composition | |
US20070299171A1 (en) | Fireproof Composition Based on Thermoplastic Matrix | |
US20070072967A1 (en) | Polymeric molding compositions based on thermoplastic polyamides | |
JP7335962B2 (en) | Halogen-free flame-retardant polyamide composition | |
TWI833938B (en) | Non-halogenated flame retardant polyamide compositions | |
JP4993425B2 (en) | Flame retardant polyamide resin composition | |
CN102369241A (en) | Polymer composition containing polybutylene terephthalate and flame retardant additives | |
KR101118360B1 (en) | Flame retardant polyamide compound | |
US20100025643A1 (en) | Flame-retardant mixture for thermoplastic polymers, and flame-retardant polymers | |
EP3013895A1 (en) | Flame-retardant polymer compositions | |
JP4916139B2 (en) | Flame retardant polyamide resin composition | |
JP4278779B2 (en) | Flame retardant polyamide resin composition | |
JP5570892B2 (en) | Method for producing polyamide resin composition | |
US20240117157A1 (en) | Flame retardant polyamide compositions with improved glow wire performance | |
JPH1112462A (en) | Polyamide resin composition | |
WO2024197178A1 (en) | Flame retardants for elastic polyamide compositions | |
JPH06136263A (en) | Polyamide resin composition | |
JPH0753863A (en) | Polyamide resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |