US20080081062A1 - Medical apparatus and method for producing same - Google Patents
Medical apparatus and method for producing same Download PDFInfo
- Publication number
- US20080081062A1 US20080081062A1 US11/906,195 US90619507A US2008081062A1 US 20080081062 A1 US20080081062 A1 US 20080081062A1 US 90619507 A US90619507 A US 90619507A US 2008081062 A1 US2008081062 A1 US 2008081062A1
- Authority
- US
- United States
- Prior art keywords
- medical device
- antibiotic
- solvent
- antibiotics
- macromolecular substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000002904 solvent Substances 0.000 claims abstract description 57
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 51
- 230000003115 biocidal effect Effects 0.000 claims abstract description 44
- 229920002521 macromolecule Polymers 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229920003002 synthetic resin Polymers 0.000 claims description 11
- 239000000057 synthetic resin Substances 0.000 claims description 11
- UDIIBEDMEYAVNG-ZKFPOVNWSA-N isepamicin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)O)[C@@H](N)C[C@H]1NC(=O)[C@@H](O)CN UDIIBEDMEYAVNG-ZKFPOVNWSA-N 0.000 claims description 10
- 239000002798 polar solvent Substances 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 5
- 229960001760 dimethyl sulfoxide Drugs 0.000 claims description 5
- 230000000717 retained effect Effects 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- IEMDOFXTVAPVLX-YWQHLDGFSA-N Leucomycin A1 Chemical compound CO[C@H]1[C@H](O)CC(=O)O[C@H](C)C\C=C\C=C\[C@H](O)[C@H](C)C[C@H](CC=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](N(C)C)[C@H](O[C@@H]2O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@](C)(O)C2)[C@@H](C)O1 IEMDOFXTVAPVLX-YWQHLDGFSA-N 0.000 claims description 4
- FXKSEJFHKVNEFI-GCZBSULCSA-N amikacin disulfate Chemical compound [H+].[H+].[H+].[H+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O FXKSEJFHKVNEFI-GCZBSULCSA-N 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229960000707 tobramycin Drugs 0.000 claims description 4
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- -1 acetinitrile Chemical compound 0.000 claims 1
- 229940088710 antibiotic agent Drugs 0.000 description 46
- 238000012360 testing method Methods 0.000 description 23
- 230000008961 swelling Effects 0.000 description 18
- 241000894006 Bacteria Species 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- 239000004599 antimicrobial Substances 0.000 description 11
- 229920001817 Agar Polymers 0.000 description 10
- 239000008272 agar Substances 0.000 description 10
- 230000000845 anti-microbial effect Effects 0.000 description 9
- 238000007654 immersion Methods 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013065 commercial product Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WTJXVDPDEQKTCV-UHFFFAOYSA-N 4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide;hydron;chloride Chemical compound Cl.C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2C1CC1C(N(C)C)C(=O)C(C(N)=O)=C(O)C1(O)C2=O WTJXVDPDEQKTCV-UHFFFAOYSA-N 0.000 description 1
- 229940122930 Alkalising agent Drugs 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229960002421 minocycline hydrochloride Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
Definitions
- the present disclosure is related to a production method for a medical apparatus, a method for applying antibiotics to the surface of a medical apparatus, and the medical apparatus to which antibiotics are applied.
- An intravascular catheter is used for providing central venous nutrition and performing dialysis treatment. It may be desirable for medical devices that have a portion thereof placed inside the body to have an antimicrobial layer formed thereon. Antimicrobial layers may be formed with an antimicrobial agent such as antibiotics coated on the surface. In embodiments, the antimicrobial agent may be continually released from the surface while inside the body.
- JP Patent H11-504241 produces an antimicrobial composition by dissolving an antimicrobial agent in an organic solvent and adding an alkalising agent. This composition may be used to form a coating on the surface of a catheter and the like.
- the above method is only feasible with only a few antibiotics having low polarity, and can not be applied to most antibiotics.
- the present disclosure includes methods of manufacturing medical devices, including manufacturing medical devices with the application of most antibiotics on the surface regardless of whether polarity is high or low, as well as methods of applying antibiotics on the surface of medical devices regardless of the polarity of the antibiotic, and medical devices on which antibiotics have been applied.
- the present disclosure provides methods for manufacturing medical devices and/or medical equipment with at least a portion of the surface having antibiotics applied thereto.
- the methods include forming a swollen area on at least a portion of the surface of the medical device by causing a medical device formed using a macromolecular material that can swell to come into contact with a solvent, causing the swollen area to come into contact with antibiotics, and removing the solvent from the swollen area that has come into contact with the antibiotics.
- the present disclosure provides methods for applying antibiotics to the surface of medical devices.
- This method may include forming a swollen area on a portion of the surface of the medical device by causing the medical device, formed using a macromolecular material that can swell, to come into contact with a solvent, causing the swollen area to come into contact with antibiotics, and removing the solvent from the swollen area that came into contact with the antibiotics.
- a method of the present disclosure for preparing an antibiotic-containing medical device may include providing a medical device having at least a portion of the surface formed from a swellable macromolecular substance, contacting the medical device with a solvent that swells the macromolecular substance, contacting the swollen macromolecular substance with at least one antibiotic, and removing the solvent from the swollen macromolecular substrate.
- the present disclosure provides medical devices with antibiotics applied to at least a portion of their surface.
- the medical device surface may be contacted with a solvent so that at least a portion of the surface forms a swollen area, and the swollen area is caused to contact the antibiotics, and afterwards, the solvent is removed from the swollen area.
- a medical device of the present disclosure may include a synthetic resin including a macromolecular substance that swells upon contact with a solvent, and at least one antibiotic in the macromolecular substance.
- the antibiotic may be a water soluble antibiotic and the solvent may be an aprotic polar solvent.
- water soluble antibiotics include, but are not limited to, isepamicin sulphate, amikacin sulphate, tobramycin, kitasamycin tartrate, and combinations thereof.
- aprotic polar solvents may include, but are not limited to, dimethylformamide, dimethyl sulphoxide, dimethylacetamide, and combinations thereof.
- the solvent may penetrate into the contact area of the medical device and the aforementioned contact area of the medical device swells. Afterwards, by causing the swollen area to come into contact with antibiotics, the antibiotics may enter into the swollen area.
- the swollen area of the medical device may be formed from a macromolecular material such as a synthetic resin that can swell due to the solvent; in embodiments, the intervals between macromolecules of the synthetic resin expand upon exposure to the solvent. Furthermore, if the swollen area is formed using a macromolecular material that has cross-linking, the three dimensional meshwork formed by the macromolecules may be expanded due to the swelling that occurs upon application of the solvent. Therefore, antibiotics may enter in between the macromolecules that have been expanded in this manner.
- a macromolecular material such as a synthetic resin that can swell due to the solvent
- the intervals between macromolecules of the synthetic resin expand upon exposure to the solvent.
- antibiotics may enter in between the macromolecules that have been expanded in this manner.
- the solvent may be removed from the swollen area and the area that had swollen thus shrinks and returns to its previous state.
- This shrinkage causes the antibiotics that entered in between the macromolecules that form the area that was swollen to be captured in this area.
- the captured antibiotics may bond structurally and physically with the medical device and provide a sustained release from the surface of the medical device when the medical device is actually used, functioning as an antimicrobial agent.
- the intervals between the macromolecules that form the swollen area of medical devices may be expanded through swelling, antibiotics may enter in between the expanded macromolecules, and afterwards the swelling may be reversed, capturing the antibiotics that entered in between the expanded macromolecule, thereby bonding the antibiotics structurally and physically in the medical device. Therefore, the methods of the present disclosure differ from the conventional method of bonding the antibiotic to medical devices using chemical bonding, thereby enabling the application of antibiotics to the surface of the medical device regardless of polarity of the antibiotic.
- At least a portion of the surface of the medical device may include a meshwork structure where the macromolecules form a meshwork structure through entanglement, cross-links of the macromolecular chain, or both.
- Antibiotics may be retained in this meshwork structure and thus may be structurally and/or physically captured in the medical device.
- the present disclosure provides methods for manufacturing medical devices and methods for applying antibiotics to at least a portion of the surface of the medical device.
- Medical devices that may be produced in accordance with the present disclosure include those that may be introduced into the body transdermally or transluminally and remain in the body for a prescribed period usually require application of antibiotics on the surface to prevent bacterial infection. Specific examples of these types of medical devices include catheters and tubes.
- the methods of the present disclosure may include a swelling step, an antibiotics contacting step, and a solvent removal step.
- a swelling step a medical device that is formed with a macromolecular material that can swell, is caused to come into contact with a solvent thereby forming a swollen area on at least a portion of the surface of the medical device.
- the medical device used in this step is not restricted to those requiring application of antibiotics to the surface thereof.
- the material utilized to form the medical device can be any material where at least a portion of the surface swells through contact with a solvent.
- the solvent may penetrate inside the macromolecules forming the medical device and form a swollen area in the medical device. If at least a portion of the surface of the medical device is formed out of a material that can swell, the other areas can be formed out of a material that does not swell. Of course, the entire device can be formed out of a material that can swell and partial swelling can be obtained by causing only the portion that needs to swell to come into contact with the solvent.
- a macromolecular material that can be swollen using a solvent, where antibiotics are to be applied may be made of synthetic resin.
- at least a portion of the surface of the medical device may be the swollen portion, or the entire surface can become the swollen portion, i.e., the entire medical device can be caused to swell.
- the material utilized to form the medical device may be selected based on lubrication and elastic characteristic.
- medical devices may be formed of synthetic resins, including polyurethane synthetic resins, polyamide synthetic resins, combinations thereof, and the like. These types of materials include macromolecular compounds and can swell depending on the solvent. In order to more effectively produce swelling, a solvent with an SP (Solubility Parameter) that is close to these materials can be selected.
- SP Solubility Parameter
- the medical device may be contacted with the solvent by immersion, coating, combinations thereof, or the like.
- Immersion may be desirable for effective swelling of the medical device. Furthermore, if shaking is performed during immersion, swelling can occur more quickly.
- an antibiotic contact step may be performed after the swelling step.
- the swollen area from the swelling step is contacted with antibiotics.
- the space between macromolecules in the structure of the swollen area is expanded by the solvent in the swell step.
- the antibiotics may enter in between the macromolecules that are the structure for the swollen area. The antibiotics thus penetrate into the swollen area.
- the antibiotic may be mixed into the three dimensional meshwork structure formed by this cross-linking.
- the solvent in the swelling step expands the interval between the macromolecules that form the structure of the swollen area. Because the solvent molecules enter between the macromolecules in the swollen area, unless the affinity of the solvent and antibiotic is high, the molecules that make up the structure of the antibiotic may be blocked by the solvent molecules and the antibiotic may not be able to enter into the spaces between the macromolecules. Therefore, antibiotics and solvents that have high affinity may be selected so that this does not occur.
- water soluble isepamicin sulphate is used as the antibiotic
- a solvent that also has a high polarity may be selected.
- an aprotic solvent may be selected to prevent this type of reaction.
- use of an aprotic polar solvent as the solvent may be desirable. In other words, if an aprotic polar solvent is used as the solvent, soluble antibiotics can be applied to the surface of medical devices.
- Suitable water soluble antibiotics include isepamicin sulphate, amikacin sulphate, tobramycin, kitasamycin tartrate, combinations thereof, and the like.
- aprotic polar solvents which may be utilized include dimethylformamide (DMF), dimethyl sulphoxide (DMSO), dimethylacetamide (DMAC), 2-butanone, acetone, acetinitrile. N-methylpyrrolidone, combinations thereof, and the like.
- DMF, DMSO, and DMAC have a slow evaporation speed compared to the other solvents, so that when the antibiotic contacts the swollen area in the antibiotic contact step, it is less likely that the solvent that has contacted the swollen area will be prematurely evaporated or the swelling will be prematurely reversed. Therefore, these solvents may be advantageous in some embodiments.
- a solvent removal step may be performed after the antibiotic contact step.
- the solvent may be removed from the swollen area.
- the swelling is reversed through removal of the solvent and the swollen area shrinks to return to its previous state. This shrinking narrows the space between macromolecules in the swollen area, and in the end the antibiotic is captured, i.e. retained, in the swollen area. Therefore, the antibiotic structurally and physically bonds with the swollen area of the medical device.
- This bond is a physical bond and, as it is not a chemical bond, the antibiotic bonds with the medical device regardless of polarity.
- Any suitable method can be used for the solvent removal method.
- solvent removal can be performed by drying, washing, combinations thereof, and the like.
- the catheter tube was lifted out of the dimethylformamide.
- the catheter tube was immersed in a water solution containing about 100 mg/ml isepamicin sulphate as an antibiotic and was agitated for about 30 seconds at room temperature (antibiotic contact step). This agitated immersion caused the isepamicin sulphate to be captured in the swollen area of the surface of the catheter tube.
- the catheter tube was lifted out of the aforementioned water solution. Next, the catheter tube was dried for about 3 hours at about 50° C. thereby removing the dimethylformamide from the swollen area (solvent removal step). A catheter tube with isepamicin sulphate applied to the surface was thus manufactured through the aforementioned steps.
- Example 2 Manufacture of a Sample.
- the catheter tube manufactured above in Example 1 was cut to a length of about 1 cm and used as test piece 1.
- the above swelling step was omitted and a catheter tube was manufactured using only the above antibiotic contact step and above solvent removal step.
- This comparative tube was cut to about 1 cm and used as test piece 2.
- commercially available catheter tubes A, B, and C, having antimicrobial properties were prepared by cutting to the same length as aforementioned test piece 1 and designated as test pieces 3, 4, and 5, respectively.
- the commercially available products A, B, C are described below:
- the antimicrobial agents applied to commercially available product A are chlorhexidine and sulphadiazine silver; the antibiotics applied to commercially available product B are minocycline hydrochloride and rifampicin; and the antimicrobial agent applied to commercially available product C is silver.
- Antimicrobial test (inhibition circle test). First, the following bacteria were prepared as bacterium for testing:
- Bacteria 1 Staphylococcus aureus
- Bacteria 2 Pseudomonaus aeruginosa ;
- Bacteria 3 Escherichia coli.
- Each bacteria was cultured for about 24 hours at about 37° C. on an SCD (soybean, casein, digest) agar plate. Afterwards, each of the cultured bacteria were suspended in approximately 10 7 CFU/ml equivalent using normal saline solution (that had been sterilised) and a suspension of bacteria (bacteria suspension) was prepared.
- SCD serum, casein, digest
- the SCD agar plate (as the culture medium for forming an inhibition circle) was steam sterilised in an Erlenmeyer flask and afterwards cooled to about 50° C. in a bath. After cooling, about 1/10 of the volume of each bacteria suspension was placed on separate SCD agar plates, and agar plates containing bacteria strains (agar plate containing indicator-strains) were prepared for each bacteria.
- Agar plates containing indicator-strains were put in 8 cm diameter sterilised Petri dishes and the agar plate was solidified inside this Petri dish. After solidification, a hole roughly the size of the outer diameter of the test pieces was formed in the center of the agar plates and the test pieces were inserted in these holes. In addition, the agar dishes containing the indicator-strains were placed on top and this was solidified.
- agar dishes with indicator strains for each type of test piece 1 to 5 were prepared for all three types of bacteria (thus a total of 15) and these were cultured for about 24 hours at a temperature of about 37° C. After culturing, the diameter of the inhibition circle formed by the antimicrobial agent was measured. The measurement results are shown in Table 1.
- test piece 1 created in accordance with the present disclosure, formed an inhibition ring for each of the bacteria, showing sufficient antimicrobial effect similar to commercially available product A (test piece 3), commercially available product B (test piece 4), and commercially available product C (test piece 5).
- test piece 2 did not form an inhibition ring for any of the bacteria and did not exhibit any antimicrobial effect.
- test piece 1 clearly had antibiotic reliably applied to the surface of the tube and exhibited antimicrobial effects. Furthermore, as can be seen from the aforementioned results of test piece 2, unless the catheter tube was caused to swell, the antibiotics did not adhere to the surface of the catheter tube. It follows, with investigation of these results as well, that antibiotics penetrated the surface of the tube through swelling of the catheter tube for test piece 1 and, by reversing the swelling, the antibiotics were captured on the surface of the tube. The captured antibiotics were thus under a controlled release profile and an antimicrobial effect was exhibited.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- External Artificial Organs (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
- This application claims the benefit of and priority to Japanese Patent Application No. 2006-272020 filed on Oct. 3, 2006, the entire disclosure of which is hereby incorporated by reference herein.
- The present disclosure is related to a production method for a medical apparatus, a method for applying antibiotics to the surface of a medical apparatus, and the medical apparatus to which antibiotics are applied.
- An intravascular catheter is used for providing central venous nutrition and performing dialysis treatment. It may be desirable for medical devices that have a portion thereof placed inside the body to have an antimicrobial layer formed thereon. Antimicrobial layers may be formed with an antimicrobial agent such as antibiotics coated on the surface. In embodiments, the antimicrobial agent may be continually released from the surface while inside the body.
- Therefore, there are proposals for various technologies for coating the surface of a medical apparatus with an antimicrobial agent. For example, JP Patent H11-504241 produces an antimicrobial composition by dissolving an antimicrobial agent in an organic solvent and adding an alkalising agent. This composition may be used to form a coating on the surface of a catheter and the like. However, as most antibiotics that include antimicrobial agents have high polarity and do not dissolve in an organic solvent, the above method is only feasible with only a few antibiotics having low polarity, and can not be applied to most antibiotics.
- The present disclosure includes methods of manufacturing medical devices, including manufacturing medical devices with the application of most antibiotics on the surface regardless of whether polarity is high or low, as well as methods of applying antibiotics on the surface of medical devices regardless of the polarity of the antibiotic, and medical devices on which antibiotics have been applied.
- As noted above, the present disclosure provides methods for manufacturing medical devices and/or medical equipment with at least a portion of the surface having antibiotics applied thereto. In embodiments, the methods include forming a swollen area on at least a portion of the surface of the medical device by causing a medical device formed using a macromolecular material that can swell to come into contact with a solvent, causing the swollen area to come into contact with antibiotics, and removing the solvent from the swollen area that has come into contact with the antibiotics.
- In addition, the present disclosure provides methods for applying antibiotics to the surface of medical devices. This method may include forming a swollen area on a portion of the surface of the medical device by causing the medical device, formed using a macromolecular material that can swell, to come into contact with a solvent, causing the swollen area to come into contact with antibiotics, and removing the solvent from the swollen area that came into contact with the antibiotics.
- In embodiments, a method of the present disclosure for preparing an antibiotic-containing medical device may include providing a medical device having at least a portion of the surface formed from a swellable macromolecular substance, contacting the medical device with a solvent that swells the macromolecular substance, contacting the swollen macromolecular substance with at least one antibiotic, and removing the solvent from the swollen macromolecular substrate.
- In addition, the present disclosure provides medical devices with antibiotics applied to at least a portion of their surface. The medical device surface may be contacted with a solvent so that at least a portion of the surface forms a swollen area, and the swollen area is caused to contact the antibiotics, and afterwards, the solvent is removed from the swollen area.
- In embodiments, a medical device of the present disclosure may include a synthetic resin including a macromolecular substance that swells upon contact with a solvent, and at least one antibiotic in the macromolecular substance.
- In embodiments, the antibiotic may be a water soluble antibiotic and the solvent may be an aprotic polar solvent. Examples of water soluble antibiotics include, but are not limited to, isepamicin sulphate, amikacin sulphate, tobramycin, kitasamycin tartrate, and combinations thereof. Furthermore, aprotic polar solvents may include, but are not limited to, dimethylformamide, dimethyl sulphoxide, dimethylacetamide, and combinations thereof.
- By causing medical devices to come into contact with a solvent, the solvent may penetrate into the contact area of the medical device and the aforementioned contact area of the medical device swells. Afterwards, by causing the swollen area to come into contact with antibiotics, the antibiotics may enter into the swollen area.
- In embodiments, the swollen area of the medical device may be formed from a macromolecular material such as a synthetic resin that can swell due to the solvent; in embodiments, the intervals between macromolecules of the synthetic resin expand upon exposure to the solvent. Furthermore, if the swollen area is formed using a macromolecular material that has cross-linking, the three dimensional meshwork formed by the macromolecules may be expanded due to the swelling that occurs upon application of the solvent. Therefore, antibiotics may enter in between the macromolecules that have been expanded in this manner.
- Afterwards, the solvent may be removed from the swollen area and the area that had swollen thus shrinks and returns to its previous state. This shrinkage causes the antibiotics that entered in between the macromolecules that form the area that was swollen to be captured in this area. The captured antibiotics may bond structurally and physically with the medical device and provide a sustained release from the surface of the medical device when the medical device is actually used, functioning as an antimicrobial agent.
- Thus, in accordance with the present disclosure, the intervals between the macromolecules that form the swollen area of medical devices may be expanded through swelling, antibiotics may enter in between the expanded macromolecules, and afterwards the swelling may be reversed, capturing the antibiotics that entered in between the expanded macromolecule, thereby bonding the antibiotics structurally and physically in the medical device. Therefore, the methods of the present disclosure differ from the conventional method of bonding the antibiotic to medical devices using chemical bonding, thereby enabling the application of antibiotics to the surface of the medical device regardless of polarity of the antibiotic.
- In accordance with the present disclosure, at least a portion of the surface of the medical device may include a meshwork structure where the macromolecules form a meshwork structure through entanglement, cross-links of the macromolecular chain, or both. Antibiotics may be retained in this meshwork structure and thus may be structurally and/or physically captured in the medical device.
- The present disclosure provides methods for manufacturing medical devices and methods for applying antibiotics to at least a portion of the surface of the medical device. Medical devices that may be produced in accordance with the present disclosure include those that may be introduced into the body transdermally or transluminally and remain in the body for a prescribed period usually require application of antibiotics on the surface to prevent bacterial infection. Specific examples of these types of medical devices include catheters and tubes.
- The methods of the present disclosure may include a swelling step, an antibiotics contacting step, and a solvent removal step. In the swelling step, a medical device that is formed with a macromolecular material that can swell, is caused to come into contact with a solvent thereby forming a swollen area on at least a portion of the surface of the medical device. The medical device used in this step is not restricted to those requiring application of antibiotics to the surface thereof.
- The material utilized to form the medical device can be any material where at least a portion of the surface swells through contact with a solvent. The solvent may penetrate inside the macromolecules forming the medical device and form a swollen area in the medical device. If at least a portion of the surface of the medical device is formed out of a material that can swell, the other areas can be formed out of a material that does not swell. Of course, the entire device can be formed out of a material that can swell and partial swelling can be obtained by causing only the portion that needs to swell to come into contact with the solvent. In embodiments, a macromolecular material that can be swollen using a solvent, where antibiotics are to be applied, may be made of synthetic resin. In embodiments, at least a portion of the surface of the medical device may be the swollen portion, or the entire surface can become the swollen portion, i.e., the entire medical device can be caused to swell.
- The material utilized to form the medical device may be selected based on lubrication and elastic characteristic. In embodiments, medical devices may be formed of synthetic resins, including polyurethane synthetic resins, polyamide synthetic resins, combinations thereof, and the like. These types of materials include macromolecular compounds and can swell depending on the solvent. In order to more effectively produce swelling, a solvent with an SP (Solubility Parameter) that is close to these materials can be selected.
- Furthermore, in the swelling process, the medical device may be contacted with the solvent by immersion, coating, combinations thereof, or the like. Immersion may be desirable for effective swelling of the medical device. Furthermore, if shaking is performed during immersion, swelling can occur more quickly.
- In accordance with the present disclosure, an antibiotic contact step may be performed after the swelling step. In this antibiotic contact step, the swollen area from the swelling step is contacted with antibiotics. There are no restrictions on the method of causing this contact, but immersion of the aforementioned swollen area in a solution that contains the antibiotic may be desirable in some embodiments. As noted above, the space between macromolecules in the structure of the swollen area is expanded by the solvent in the swell step. By causing contact with antibiotics in this state, the antibiotics may enter in between the macromolecules that are the structure for the swollen area. The antibiotics thus penetrate into the swollen area. Here, in the case that the macromolecular compound that makes up the structure for the swollen area is cross-linked, the antibiotic may be mixed into the three dimensional meshwork structure formed by this cross-linking.
- As noted above, the solvent in the swelling step expands the interval between the macromolecules that form the structure of the swollen area. Because the solvent molecules enter between the macromolecules in the swollen area, unless the affinity of the solvent and antibiotic is high, the molecules that make up the structure of the antibiotic may be blocked by the solvent molecules and the antibiotic may not be able to enter into the spaces between the macromolecules. Therefore, antibiotics and solvents that have high affinity may be selected so that this does not occur.
- For example, where water soluble isepamicin sulphate is used as the antibiotic, as isepamicin sulphate has a high polarity and is water soluble, a solvent that also has a high polarity may be selected. Furthermore, as isepamicin sulphate has a plurality of hydroxyl groups, if the solvent also has hydroxyl groups, there is the possibility that that the two sets of hydroxyl groups will generate a dehydration reaction. Therefore, an aprotic solvent may be selected to prevent this type of reaction. As has been described, in the case that a water soluble antibiotic is used, use of an aprotic polar solvent as the solvent may be desirable. In other words, if an aprotic polar solvent is used as the solvent, soluble antibiotics can be applied to the surface of medical devices.
- Examples of suitable water soluble antibiotics include isepamicin sulphate, amikacin sulphate, tobramycin, kitasamycin tartrate, combinations thereof, and the like. Examples of aprotic polar solvents which may be utilized include dimethylformamide (DMF), dimethyl sulphoxide (DMSO), dimethylacetamide (DMAC), 2-butanone, acetone, acetinitrile. N-methylpyrrolidone, combinations thereof, and the like. Of these, DMF, DMSO, and DMAC have a slow evaporation speed compared to the other solvents, so that when the antibiotic contacts the swollen area in the antibiotic contact step, it is less likely that the solvent that has contacted the swollen area will be prematurely evaporated or the swelling will be prematurely reversed. Therefore, these solvents may be advantageous in some embodiments.
- Furthermore, a solvent removal step may be performed after the antibiotic contact step. In this solvent removal step, the solvent may be removed from the swollen area. The swelling is reversed through removal of the solvent and the swollen area shrinks to return to its previous state. This shrinking narrows the space between macromolecules in the swollen area, and in the end the antibiotic is captured, i.e. retained, in the swollen area. Therefore, the antibiotic structurally and physically bonds with the swollen area of the medical device. This bond is a physical bond and, as it is not a chemical bond, the antibiotic bonds with the medical device regardless of polarity. Any suitable method can be used for the solvent removal method. In embodiments, solvent removal can be performed by drying, washing, combinations thereof, and the like.
- The following Examples are being submitted to illustrate embodiments of the present disclosure. The Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure.
- Manufacture of a catheter tube to which antibiotics are applied. A catheter tube made of polyurethane with a diameter of 14 G (outer diameter approximately 2.1 mm) and a total length of about 20 cm was obtained. Next, this catheter tube was immersed in dimethylformamide as the solvent for about 30 minutes with agitation (swell step). A swollen area was formed on the surface of the catheter tube as a result of this agitated immersion.
- After performing agitated immersion for about 30 minutes, the catheter tube was lifted out of the dimethylformamide. Next, the catheter tube was immersed in a water solution containing about 100 mg/ml isepamicin sulphate as an antibiotic and was agitated for about 30 seconds at room temperature (antibiotic contact step). This agitated immersion caused the isepamicin sulphate to be captured in the swollen area of the surface of the catheter tube.
- After performing agitated immersion for about 30 seconds, the catheter tube was lifted out of the aforementioned water solution. Next, the catheter tube was dried for about 3 hours at about 50° C. thereby removing the dimethylformamide from the swollen area (solvent removal step). A catheter tube with isepamicin sulphate applied to the surface was thus manufactured through the aforementioned steps.
- Manufacture of a Sample. The catheter tube manufactured above in Example 1 was cut to a length of about 1 cm and used as test piece 1. Furthermore, as a comparative example product, the above swelling step was omitted and a catheter tube was manufactured using only the above antibiotic contact step and above solvent removal step. This comparative tube was cut to about 1 cm and used as test piece 2. Furthermore, commercially available catheter tubes A, B, and C, having antimicrobial properties, were prepared by cutting to the same length as aforementioned test piece 1 and designated as test pieces 3, 4, and 5, respectively. The commercially available products A, B, C are described below:
-
- Commercially available product A—product name ARROWgard® Blue manufactured by Arrow International;
- Commercially available product B—product name COOK SPECTRUM® manufactured by COOK CRITICAL CARE; and
- Commercially available produce C—product name Edwards Vantex manufactured by Edwards Lifescience.
- The antimicrobial agents applied to commercially available product A are chlorhexidine and sulphadiazine silver; the antibiotics applied to commercially available product B are minocycline hydrochloride and rifampicin; and the antimicrobial agent applied to commercially available product C is silver.
- Antimicrobial test (inhibition circle test). First, the following bacteria were prepared as bacterium for testing:
- Bacteria 1: Staphylococcus aureus;
- Bacteria 2: Pseudomonaus aeruginosa; and
- Bacteria 3: Escherichia coli.
- Each bacteria was cultured for about 24 hours at about 37° C. on an SCD (soybean, casein, digest) agar plate. Afterwards, each of the cultured bacteria were suspended in approximately 107 CFU/ml equivalent using normal saline solution (that had been sterilised) and a suspension of bacteria (bacteria suspension) was prepared.
- Next, the SCD agar plate (as the culture medium for forming an inhibition circle) was steam sterilised in an Erlenmeyer flask and afterwards cooled to about 50° C. in a bath. After cooling, about 1/10 of the volume of each bacteria suspension was placed on separate SCD agar plates, and agar plates containing bacteria strains (agar plate containing indicator-strains) were prepared for each bacteria.
- Agar plates containing indicator-strains were put in 8 cm diameter sterilised Petri dishes and the agar plate was solidified inside this Petri dish. After solidification, a hole roughly the size of the outer diameter of the test pieces was formed in the center of the agar plates and the test pieces were inserted in these holes. In addition, the agar dishes containing the indicator-strains were placed on top and this was solidified.
- In the manner described above, agar dishes with indicator strains for each type of test piece 1 to 5 were prepared for all three types of bacteria (thus a total of 15) and these were cultured for about 24 hours at a temperature of about 37° C. After culturing, the diameter of the inhibition circle formed by the antimicrobial agent was measured. The measurement results are shown in Table 1.
-
TABLE 1 Measurement Results (diameter of zone of inhibition) (Unit: mm) Organism Sample S. aureus P. aeruginosa E. coli Test piece 1 46 16 20 (Example 1) Test piece 2 0 0 0 (Comparative tube) Test piece 3 29 20 23 (Commercial Product A) Test piece 4 40 12 15 (Commercial Product B) Test piece 5 22 6 6 (Commercial Product C) - As can be seen from Table 1, test piece 1, created in accordance with the present disclosure, formed an inhibition ring for each of the bacteria, showing sufficient antimicrobial effect similar to commercially available product A (test piece 3), commercially available product B (test piece 4), and commercially available product C (test piece 5). On the other hand, the comparison example (test piece 2) did not form an inhibition ring for any of the bacteria and did not exhibit any antimicrobial effect.
- From the above results, the catheter tube created in accordance with the present disclosure (test piece 1) clearly had antibiotic reliably applied to the surface of the tube and exhibited antimicrobial effects. Furthermore, as can be seen from the aforementioned results of test piece 2, unless the catheter tube was caused to swell, the antibiotics did not adhere to the surface of the catheter tube. It follows, with investigation of these results as well, that antibiotics penetrated the surface of the tube through swelling of the catheter tube for test piece 1 and, by reversing the swelling, the antibiotics were captured on the surface of the tube. The captured antibiotics were thus under a controlled release profile and an antimicrobial effect was exhibited.
- It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently may by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/238,459 US8475828B2 (en) | 2006-10-03 | 2011-09-21 | Medical apparatus and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006272020A JP5161452B2 (en) | 2006-10-03 | 2006-10-03 | Method for manufacturing medical device, method for applying antibiotic to surface of medical device, and medical device |
JP2006-272020 | 2006-10-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/238,459 Division US8475828B2 (en) | 2006-10-03 | 2011-09-21 | Medical apparatus and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080081062A1 true US20080081062A1 (en) | 2008-04-03 |
Family
ID=38935865
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/906,195 Abandoned US20080081062A1 (en) | 2006-10-03 | 2007-10-01 | Medical apparatus and method for producing same |
US13/238,459 Active 2027-12-22 US8475828B2 (en) | 2006-10-03 | 2011-09-21 | Medical apparatus and method for producing same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/238,459 Active 2027-12-22 US8475828B2 (en) | 2006-10-03 | 2011-09-21 | Medical apparatus and method for producing same |
Country Status (4)
Country | Link |
---|---|
US (2) | US20080081062A1 (en) |
EP (1) | EP1908485B1 (en) |
JP (1) | JP5161452B2 (en) |
CA (1) | CA2605203C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3145560A4 (en) * | 2014-05-21 | 2018-01-17 | Attwill Medical Solutions Steriflow L.P. | Insert for catheter system |
CA2989110A1 (en) | 2015-06-11 | 2016-12-15 | Attwill Medical Solutions Inc. | Medical devices, systems, and methods utilizing antithrombin-heparin compositions |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642104A (en) * | 1981-05-27 | 1987-02-10 | Unitika Ltd. | Urethral catheter capable of preventing urinary tract infection and process for producing the same |
US4917686A (en) * | 1985-12-16 | 1990-04-17 | Colorado Biomedical, Inc. | Antimicrobial device and method |
US5360397A (en) * | 1993-07-02 | 1994-11-01 | Corvita Corporation | Hemodiaylsis catheter and catheter assembly |
US5516480A (en) * | 1992-08-13 | 1996-05-14 | Peter Guggenbichler | Bactericidal and/or fungicidal plastic parts for use in the medical field |
US5624704A (en) * | 1995-04-24 | 1997-04-29 | Baylor College Of Medicine | Antimicrobial impregnated catheters and other medical implants and method for impregnating catheters and other medical implants with an antimicrobial agent |
US5905583A (en) * | 1993-01-19 | 1999-05-18 | Canon Kabushiki Kaisha | Light guide illuminating device having the light guide, and image reading device and information processing apparatus having the illuminating device |
US6214370B1 (en) * | 1995-02-10 | 2001-04-10 | Medtronic, Inc. | Method and device for administering analgesics |
US20050079199A1 (en) * | 2003-02-18 | 2005-04-14 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
US20050244459A1 (en) * | 2004-04-06 | 2005-11-03 | Dewitt David M | Coating compositions for bioactive agents |
US20070026043A1 (en) * | 2003-11-20 | 2007-02-01 | Angiotech International Ag | Medical devices combined with diblock copolymer compositions |
US20070265565A1 (en) * | 2006-05-15 | 2007-11-15 | Medtronic Vascular, Inc. | Mesh-Reinforced Catheter Balloons and Methods for Making the Same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE65669B1 (en) | 1989-06-21 | 1995-11-15 | Becton Dickinson Co | Expandable obturator and catheter assembly including same |
JPH10211272A (en) | 1997-01-30 | 1998-08-11 | Unitika Ltd | Catheter having infection resistance |
JPH10328294A (en) | 1997-06-04 | 1998-12-15 | Unitika Ltd | Medical instrument and manufacture therefor |
JPH1199200A (en) | 1997-09-26 | 1999-04-13 | Toray Ind Inc | Dialyzing catheter and its manufacture |
JP4252123B2 (en) | 1998-04-23 | 2009-04-08 | ユニチカ株式会社 | Stabilization method of immobilized fibrinolytic active enzyme |
US7329412B2 (en) * | 2000-12-22 | 2008-02-12 | The Trustees Of Columbia University In The City Of New York | Antimicrobial medical devices containing chlorhexidine free base and salt |
IS6390A (en) | 2001-08-31 | 2003-03-03 | Heraeus Kulzer Gmbh & Co. Kg | Experiences of antibiotic coating of carcasses containing microspheres, thus coated carcasses and also of their use |
IS6389A (en) | 2001-08-31 | 2003-03-03 | Heraeus Kulzer Gmbh & Co. Kg | Experiences of antibiotic coating of carcasses containing microspheres, and also of such coated carcasses and their use |
GB0127786D0 (en) * | 2001-11-20 | 2002-01-09 | Univ Nottingham | Impregnation of antimicrobial substances |
US20070281073A1 (en) * | 2006-06-01 | 2007-12-06 | Gale David C | Enhanced adhesion of drug delivery coatings on stents |
-
2006
- 2006-10-03 JP JP2006272020A patent/JP5161452B2/en not_active Expired - Fee Related
-
2007
- 2007-10-01 US US11/906,195 patent/US20080081062A1/en not_active Abandoned
- 2007-10-02 CA CA2605203A patent/CA2605203C/en not_active Expired - Fee Related
- 2007-10-02 EP EP07117729A patent/EP1908485B1/en active Active
-
2011
- 2011-09-21 US US13/238,459 patent/US8475828B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642104A (en) * | 1981-05-27 | 1987-02-10 | Unitika Ltd. | Urethral catheter capable of preventing urinary tract infection and process for producing the same |
US4917686A (en) * | 1985-12-16 | 1990-04-17 | Colorado Biomedical, Inc. | Antimicrobial device and method |
US5516480A (en) * | 1992-08-13 | 1996-05-14 | Peter Guggenbichler | Bactericidal and/or fungicidal plastic parts for use in the medical field |
US5905583A (en) * | 1993-01-19 | 1999-05-18 | Canon Kabushiki Kaisha | Light guide illuminating device having the light guide, and image reading device and information processing apparatus having the illuminating device |
US5360397A (en) * | 1993-07-02 | 1994-11-01 | Corvita Corporation | Hemodiaylsis catheter and catheter assembly |
US6214370B1 (en) * | 1995-02-10 | 2001-04-10 | Medtronic, Inc. | Method and device for administering analgesics |
US5624704A (en) * | 1995-04-24 | 1997-04-29 | Baylor College Of Medicine | Antimicrobial impregnated catheters and other medical implants and method for impregnating catheters and other medical implants with an antimicrobial agent |
US20050079199A1 (en) * | 2003-02-18 | 2005-04-14 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
US20070026043A1 (en) * | 2003-11-20 | 2007-02-01 | Angiotech International Ag | Medical devices combined with diblock copolymer compositions |
US20050244459A1 (en) * | 2004-04-06 | 2005-11-03 | Dewitt David M | Coating compositions for bioactive agents |
US20070265565A1 (en) * | 2006-05-15 | 2007-11-15 | Medtronic Vascular, Inc. | Mesh-Reinforced Catheter Balloons and Methods for Making the Same |
Also Published As
Publication number | Publication date |
---|---|
CA2605203C (en) | 2016-05-24 |
US8475828B2 (en) | 2013-07-02 |
US20120009262A1 (en) | 2012-01-12 |
JP5161452B2 (en) | 2013-03-13 |
CA2605203A1 (en) | 2008-04-03 |
EP1908485B1 (en) | 2013-02-27 |
EP1908485A1 (en) | 2008-04-09 |
JP2008086604A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4331796B2 (en) | Medical tools | |
CN109134812B (en) | Composite antibacterial polyurethane block polymer and preparation and application thereof | |
Xu et al. | Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles | |
CA1074230A (en) | Antimicrobial sutures | |
Li et al. | Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers | |
CN106178136A (en) | A kind of medical hydrophilic antimicrobial coatings and preparation method thereof | |
JP2004523267A5 (en) | ||
CN112717207A (en) | Long-acting antibacterial multifunctional coating based on bionic dopamine and preparation method and application thereof | |
CN108976768B (en) | Antibacterial modifier and preparation method thereof, antibacterial modified thermoplastic elastomer and preparation method thereof | |
JP2002541310A (en) | Lubricious coatings for medical devices | |
CN110144124A (en) | A composite material of quaternized chitin and silk fibroin and its preparation and application | |
CN111471202B (en) | A kind of antibacterial silicone rubber material and preparation method and application thereof | |
US8475828B2 (en) | Medical apparatus and method for producing same | |
US20080193497A1 (en) | Hydrophilic Coating of a Water-Swellable Hydrophilic Matrix and an Anti-Microbial Polymer | |
US20160022882A1 (en) | Medical implements and medical implement production methods | |
CN102209561A (en) | Elastomeric article having a broad spectrum antimicrobial agent and method of making | |
WO2023102436A1 (en) | Ionic polymers for medical device applications | |
CN103170256A (en) | Long-acting antibacterial ultra-filtration membrane and preparation method thereof | |
CN108939172B (en) | Degradable material for disposable uterine probe | |
RU2457001C2 (en) | Polyurethane catheter with antimicrobial coating, method for preparing antimicrobial coating on polyurethane products and method for producing polyurethane catheters with antimicrobial coating | |
IE922079A1 (en) | Process for antimicrobial treatment of polyurethane | |
CN104888285B (en) | A kind of antibiotic property shape memory polyvinyl alcohol and preparation method thereof | |
CA2258077C (en) | Hydrophilic interpenetrating polymer network coating for medical devices | |
Zhou | Anti-bacterial, anti-inflammatory and anti-adhesive coatings for urinary catherers | |
JPH09308676A (en) | Implement for medical treatment and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON SHERWOOD MEDICAL INDUSTRIES LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMANO, KENICHI;AKAIKE, YOSHIMI;REEL/FRAME:019968/0225 Effective date: 20070927 |
|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIPPON SHERWOOD MEDICAL INDUSTRIES LTD.;REEL/FRAME:020005/0267 Effective date: 20070928 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:030509/0667 Effective date: 20120928 |