US20080075724A1 - Molecules designated B7L-1 - Google Patents
Molecules designated B7L-1 Download PDFInfo
- Publication number
- US20080075724A1 US20080075724A1 US11/981,954 US98195407A US2008075724A1 US 20080075724 A1 US20080075724 A1 US 20080075724A1 US 98195407 A US98195407 A US 98195407A US 2008075724 A1 US2008075724 A1 US 2008075724A1
- Authority
- US
- United States
- Prior art keywords
- seq
- polypeptide
- amino acid
- dna
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 110
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 106
- 229920001184 polypeptide Polymers 0.000 claims abstract description 102
- 238000000034 method Methods 0.000 claims abstract description 57
- 108020004414 DNA Proteins 0.000 claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 9
- 210000004027 cell Anatomy 0.000 claims description 131
- 230000027455 binding Effects 0.000 claims description 93
- 150000001413 amino acids Chemical group 0.000 claims description 70
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 47
- 239000012634 fragment Substances 0.000 claims description 33
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 31
- 239000013604 expression vector Substances 0.000 claims description 25
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 108020001507 fusion proteins Proteins 0.000 claims description 18
- 210000004443 dendritic cell Anatomy 0.000 claims description 17
- 102000037865 fusion proteins Human genes 0.000 claims description 17
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 230000001404 mediated effect Effects 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 125000000539 amino acid group Chemical group 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 230000002068 genetic effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000003259 recombinant expression Methods 0.000 claims description 3
- 230000000779 depleting effect Effects 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 103
- 102000004169 proteins and genes Human genes 0.000 abstract description 89
- 108020004635 Complementary DNA Proteins 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 87
- 241001529936 Murinae Species 0.000 description 67
- 235000001014 amino acid Nutrition 0.000 description 49
- 229940024606 amino acid Drugs 0.000 description 48
- 210000001744 T-lymphocyte Anatomy 0.000 description 36
- 108091034117 Oligonucleotide Proteins 0.000 description 31
- 239000002299 complementary DNA Substances 0.000 description 24
- 125000003729 nucleotide group Chemical group 0.000 description 23
- 239000013598 vector Substances 0.000 description 23
- 239000002773 nucleotide Substances 0.000 description 22
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 21
- 210000003719 b-lymphocyte Anatomy 0.000 description 21
- 108091006020 Fc-tagged proteins Proteins 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 108091060211 Expressed sequence tag Proteins 0.000 description 17
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 102000023732 binding proteins Human genes 0.000 description 15
- 108091008324 binding proteins Proteins 0.000 description 15
- 210000000822 natural killer cell Anatomy 0.000 description 15
- 230000011664 signaling Effects 0.000 description 15
- 210000004556 brain Anatomy 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 230000000692 anti-sense effect Effects 0.000 description 12
- 230000000139 costimulatory effect Effects 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 10
- 230000004071 biological effect Effects 0.000 description 10
- 108010029697 CD40 Ligand Proteins 0.000 description 9
- 102100032937 CD40 ligand Human genes 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000013615 primer Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 8
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 230000003393 splenic effect Effects 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 7
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 7
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 102100037204 Sal-like protein 1 Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 210000005259 peripheral blood Anatomy 0.000 description 7
- 239000011886 peripheral blood Substances 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 239000007790 solid phase Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 239000003053 toxin Substances 0.000 description 7
- 231100000765 toxin Toxicity 0.000 description 7
- 108700012359 toxins Proteins 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 6
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 6
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 6
- 239000000074 antisense oligonucleotide Substances 0.000 description 6
- 238000012230 antisense oligonucleotides Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 210000001165 lymph node Anatomy 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- 101001007681 Candida albicans (strain WO-1) Kexin Proteins 0.000 description 5
- 108010001857 Cell Surface Receptors Proteins 0.000 description 5
- 102000000844 Cell Surface Receptors Human genes 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 230000004988 N-glycosylation Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 210000001185 bone marrow Anatomy 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 230000001086 cytosolic effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- -1 designated B7L-1 Proteins 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000004007 reversed phase HPLC Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 210000004989 spleen cell Anatomy 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 238000000636 Northern blotting Methods 0.000 description 4
- 238000011579 SCID mouse model Methods 0.000 description 4
- 101710120037 Toxin CcdB Proteins 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical group C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000012875 competitive assay Methods 0.000 description 4
- 239000012894 fetal calf serum Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 210000004408 hybridoma Anatomy 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 3
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 210000004544 dc2 Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000006152 selective media Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- JQFZHHSQMKZLRU-IUCAKERBSA-N Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N JQFZHHSQMKZLRU-IUCAKERBSA-N 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 108010062580 Concanavalin A Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102100023471 E-selectin Human genes 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000622123 Homo sapiens E-selectin Proteins 0.000 description 2
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 2
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 2
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 101150045458 KEX2 gene Proteins 0.000 description 2
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 2
- NVGBPTNZLWRQSY-UWVGGRQHSA-N Lys-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCCN NVGBPTNZLWRQSY-UWVGGRQHSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 108010062796 arginyllysine Proteins 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000012888 bovine serum Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- CTSPAMFJBXKSOY-UHFFFAOYSA-N ellipticine Chemical compound N1=CC=C2C(C)=C(NC=3C4=CC=CC=3)C4=C(C)C2=C1 CTSPAMFJBXKSOY-UHFFFAOYSA-N 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000138 intercalating agent Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 108020001756 ligand binding domains Proteins 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 108010054155 lysyllysine Proteins 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000002741 palatine tonsil Anatomy 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000163 radioactive labelling Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 101150095323 Adcy10 gene Proteins 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- OMLWNBVRVJYMBQ-YUMQZZPRSA-N Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OMLWNBVRVJYMBQ-YUMQZZPRSA-N 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108010072454 CTGCAG-specific type II deoxyribonucleases Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- ZIXGXMMUKPLXBB-UHFFFAOYSA-N Guatambuinine Natural products N1C2=CC=CC=C2C2=C1C(C)=C1C=CN=C(C)C1=C2 ZIXGXMMUKPLXBB-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 102100029740 Poliovirus receptor Human genes 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 208000009052 Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101900161471 Pseudomonas aeruginosa Exotoxin A Proteins 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- SUYXJDLXGFPMCQ-INIZCTEOSA-N SJ000287331 Natural products CC1=c2cnccc2=C(C)C2=Nc3ccccc3[C@H]12 SUYXJDLXGFPMCQ-INIZCTEOSA-N 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 230000020385 T cell costimulation Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- KEZJTQKEIZISEP-QRPNPIFTSA-N [N].OC(=O)[C@@H](N)CC1=CC=CC=C1 Chemical compound [N].OC(=O)[C@@H](N)CC1=CC=CC=C1 KEZJTQKEIZISEP-QRPNPIFTSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 201000011186 acute T cell leukemia Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000015861 cell surface binding Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000012504 chromatography matrix Substances 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000002449 erythroblastic effect Effects 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009123 feedback regulation Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 108010048507 poliovirus receptor Proteins 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010242 retro-orbital bleeding Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000007320 rich medium Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70532—B7 molecules, e.g. CD80, CD86
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
- C12N2799/027—Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus
Definitions
- the present invention relates to a novel polypeptide, designated B7L-1.
- B7L-1 has weak homology to a number of proteins including B7-1 (CD80) and is a binding protein for LDCAM.
- the invention includes B7L-1 molecules, DNA encoding B7L-1 molecules, processes for production of recombinant.
- B7L-1 polypeptides and pharmaceutical compositions containing such B7L-1 polypeptides.
- B7-1 (CD80) is a T cell costimulatory molecule that is found on the surface of antigen presenting cells (APCs). Originally described as a cell adhesion molecule, it is now known that B7-1 sends important costimulatory signals through its two T cell surface receptors, CD28 and CTLA4 (CD152). B7-1 interacts with CD28 to signal cytokine production, cell proliferation, and the generation of effector and memory T cells. If the signal through CD28 is blocked T cell, anergy or immune deviation can occur, resulting in severely depressed or altered immune response. For example, when B7-1 interaction with CD28 (and CTLA40) is blocked with a soluble CTLA4Ig, allograft tolerance and resistance to autoimmune diseases have been observed.
- APCs antigen presenting cells
- B7-1 also interacts with the T cell CTLA4 receptor. Its signaling is complex, but one component provides a negative feedback signal, causing the T cell to attenuate the CD28 signal. In the absence of this signal for a long period of time, rampant T cell proliferation and effector cell activation continues. However, shorter term intervention can be beneficial by leading to a more vigorous immune response. For example, when the interaction of B7-1 is blocked with antibodies to CTLA4, increased rejection of tumors has been found. When this feedback regulation malfunctions, autoimmune diseases and lymphoproliferation can result. For example, when the CTLA4 and B7-1 interaction is blocked with a soluble CTLA4Ig, allograft tolerance and resistance to autoimmune diseases have been observed.
- B7-2 (CD86), which is expressed on different cells and at different stages of APC activation from that of B7-1, also delivers its costimulatory signal to T cells through CD28 and CTLA4.
- the B7-2 signal can lead to immune responses that are identical to, or different from the immune responses resulting from B7-1 signaling.
- the nature of the B7-2 signaling depends upon the cellular context and the timing of the costimulation.
- B7-1 and B7-2 are only weakly related at the amino acid level. Both, however, are members of the extended immunoglobulin domain-containing superfamily and much of their shared sequence homology is due to the particular residues shared by their common Ig domains, which are characteristic of the Ig-domain subfamily.
- costimulatory signaling through T cell surface receptors plays an important role in maintaining balance in the immune system.
- Systems with a predominance of activatory signals such as the costimulatory signaling between CD28 and B7-1, can lead to autoimmunity and inflammation.
- Immune systems with a predominance of inhibitory signals such as the costimulatory signaling between CTLA4 and ??? are less able to challenge infected cells or cancer cells. Isolating new molecules involved in costimulatory signaling is highly desirable for studying the biological signal(s) transduced via the receptor. Additionally, identifying such molecules provides a means of regulating and treating diseased states associated with autoimmunity, inflammation and infection.
- engaging a molecule that stimulates inhibitory or negative signaling with an agonistic antibody or signaling partner can be used to downregulate a cell function in disease states in which the immune system is overactive and excessive inflammation or immunopathology is present.
- using an antagonistic antibody specific for a molecule that stimulates negative signaling, or using a soluble form of the molecule to block signaling can activate the specific immune function in disease states associated with suppressed immune function.
- engaging a molecule that stimulates positive signaling with an agonistic antibody can be used to upregulate the effect of that molecule's signaling.
- T cell costimulatory molecules exist and further in view of the continuing search for new therapeutics for treating infection, autoimmune diseases, and inflammation, it would be desirable to identify additional T-cell costimulatory molecules. In particular there is a need for additional molecules that alter T cell costimulation during an in vivo immune response.
- the present invention provides mammalian B7L-1 polypeptides as isolated or homogeneous proteins.
- the present invention further includes isolated DNAs encoding B7L-1 and expression vectors comprising DNA encoding mammalian B7L-1.
- host cells that have been transfected or transformed with expression vectors that comprise a DNA encoding B7L-1, and processes for producing B7L-1 by culturing such host cells under conditions conducive to expression of B7L-1.
- pharmaceutical composition comprising soluble forms B7L-1 molecules.
- Novel proteins designated B7L-1, and DNA encoding B7L-1 proteins are provided herein.
- the B7L-1 polypeptides of the present invention share a weak homology with B7-1 and is a binding protein for LDCAM, a novel polypeptide, described in copending application Ser. No. 60/095,672 filed Aug. 7, 1998.
- the human and murine LDCAM nucleotide sequence is disclosed in SEQ ID NO:19 and SEQ ID NO:21, respectively.
- the amino acid sequences encoded by SEQ ID NO:19 and SEQ ID NO:21 are shown in SEQ ID NO:20 and SEQ ID NO:22, respectively.
- Mammalian B7L-1 proteins exist as different splice forms, designated “long” extracellular and “short” extracellular forms.
- Example 1 describes identifying and isolating a full length human clone, designated herein as “long” extracellular B7L-1.
- the nucleotide sequence of human “long” extracellular B7L-1 DNA, isolated as described in Example 1, is presented in SEQ ID NO: 1, and the amino acid sequence encoded thereby is presented in SEQ ID NO: 2.
- the encoded “long” extracellular human B7L-1 amino acid sequence (SEQ ID NO: 2) has a predicted extracellular domain of 364 amino acids (1-364), including a leader sequence of 20 amino acids (1-20), a transmembrane domain of 21 amino acids (365-385), and a cytoplasmic domain of 47 amino acids (386-432).
- Example 3 describes isolating a murine B7L-1 DNA with a shorter extracellular region.
- This DNA is disclosed in SEQ ID NO: 3.
- the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 3 is disclosed in SEQ ID NO: 4.
- the encoded “short” extracellular murine B7L-1 amino acid sequence (SEQ ID NO: 4) has a predicted extracellular domain of 330 amino acids (1-330), including a leader sequence of 20 amino acids (1-20), a transmembrane domain of 21 amino acids (331-351), and a cytoplasmic domain of 47 amino acids (352-398).
- the leader sequence of SEQ ID NO: 4 includes the first 8 amino acids of the isolated human B7L-1 “long” molecule.
- Example 3 also describes a “short” extracellular form of human B7L-1 DNA that is thought to be an alternatively spliced B7L-1 variant.
- the nucleotide sequence for the “short” extracellular form is disclosed in SEQ ID NO: 5 and the amino acid sequence encoded by the sequence of SEQ ID NO: 5 is described in SEQ ID NO: 6.
- the encoded “short” extracellular human B7L-1 amino acid sequence (SEQ ID NO: 6) has a predicted extracellular domain of 330 amino acids, including a leader sequence of 20 amino acids, a transmembrane domain of 21 amino acids 331-351, and a cytoplasmic domain of 47 amino acids 352-398.
- sequences described in SEQ ID NO: 5 and SEQ ID NO: 6 were obtained by isolating a clone from human cDNA with primers designed to flank the potential alternative splice between “long” and “short” forms and then comparing a resulting cloned fragment of SEQ ID NO: 5 (nucleotides 193-358), the murine “short” extracellular form described in SEQ ID NO: 3 and SEQ ID NO: 4 and the human long extracellular form described in SEQ ID NO: 1 and SEQ ID NO: 2. The comparison confirmed the existence of a human “short” extracellular form and provided a basis for the sequences of SEQ ID NOS: 5 and 6.
- B7L-1 molecules described herein are Type I transmembrane proteins having limited homology to B7-1, poliovirus receptors, and thymocyte activation and development protein. For these and many other weakly homologous proteins, the homology lies in their Ig domains. As described below, B7L-1 proteins are expressed on brain tissue, dendritic cells, dendritic cell subsets and CD40 ligand-activated B cells.
- SEQ ID NOs: 1, 3 and 5 enable construction of expression vectors comprising DNAs encoding human and mouse B7L-1 proteins; host cells transfected or transformed with the expression vectors; biologically active B7L-1 as homogeneous proteins; and antibodies immunoreactive with B7L-1.
- B7L-1 is found in bone marrow-derived and peripheral blood-monocyte derived dendritic cells, these molecules may be used to regulate inflammation in a therapeutic setting.
- the binding study results described in Example 13 show B7L-1 binding on tumor cell lines.
- biological signaling mediated by B7L-1 could mediate functional anti tumor effects on these types of tumors.
- B7L-1 refers to a genus of polypeptides that are binding proteins for LDCAM, novel polypeptides described in copending application Ser. No. 60/095,672 filed Aug. 7, 1998, and complex structures found in variety of cell lines including, but not limited to, lung epithelial cells, B lymphoblastoid cells and B cells.
- the term B7L-1 encompasses polypeptides having the amino acid sequence 1-432 of SEQ ID NO: 2, the amino acid sequence 1-398 of SEQ ID NO: 4; and amino acids 1-398 of SEQ ID NO: 6.
- B7L-1 encompasses polypeptides that have a high degree of similarity or a high degree of identity with the amino acid sequence of SEQ ID NO: 2, the amino acid sequence of SEQ ID NO: 4, and amino acid sequence of SEQ ID NO: 6, and which polypeptides are biologically active and bind their counterstructure, LDCAM.
- murine B7L-1 refers to biologically active gene products of the DNA of SEQ ID NO: 3 and the term “human B7L-1” refers to biologically active gene products of the DNA of SEQ ID NO: 1 and SEQ ID NO: 5.
- B7L-1 further encompassed by the term “B7L-1” are soluble or truncated proteins that include the binding portion of the protein and retain biological activity. Specific examples of such soluble proteins are those comprising the sequence of amino acids 1-364 of SEQ ID NO: 2; those comprising the sequence of amino acids 1-330 of SEQ ID NO: 4; and 1-330 of SEQ ID NO: 6. Alternatively, such soluble proteins can exclude a leader sequence and thus encompass amino acids 21-364 of SEQ ID NO: 2; amino acids 21-330 of SEQ ID NO: 4; and amino acids 21-330 of SEQ ID NO: 6.
- biologically active as it refers to B7L-1, means that the B7L-1 is capable of binding to LDCAM, described in copending U.S. Patent Application Ser. No. 60/095,672 filed Aug. 7, 1998.
- LDCAM and B7L-1 are termed counterstructures because B7L-1 is a binding protein for LDCAM.
- isolated means that B7L-1 is free of association with other proteins or polypeptides, for example, as a purification product of recombinant host cell culture or as a purified extract.
- a “B7L-1 variant” as referred to herein, means a polypeptide substantially homologous to native B7L-1, but which has an amino acid sequence different from that of native B7L-1 (human, murine or other mammalian species) because of one or more deletions, insertions or substitutions.
- the variant amino acid sequence preferably is at least 80% identical to a native B7L-1 amino acid sequence, most preferably at least 90% identical. The percent identity may be determined, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. ( Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG).
- the preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745, 1986, as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure , National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
- Variants may comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physiochemical characteristics.
- B7L-1 variants or alleles are also encompassed by the invention.
- Such variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the B7L-1 protein, wherein the B7L-1 binding property is retained.
- Alternate splicing of mRNA may yield a truncated but biologically active B7L-1 protein, such as a naturally occurring soluble form of the protein, for example.
- Variations attributable to proteolysis include, for example, differences in the N- or C-termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the B7L-1 protein (generally from 1-5 terminal amino acids).
- Example 1 describes identifying and isolating the complete coding region of human long extracellular B7L-1 DNA. This process involved searching a nucleotide sequence databank using a human B7-1 nucleotide sequence as the query sequence.
- Two expressed sequence tag (EST) files GenBank accession numbers T08949 EST06841 and T32071 EST 43348, were identified has having homology with a portion of human B7-1.
- the GenBank record does not disclose a coding region for polypeptides encoded by these ESTs.
- Example 5 describes the construction of a novel human B7L-1/Fc fusion protein that may be utilized in screening cell lines for binding to B7L-1 and in studying biological characteristics of B7L-1.
- Other antibody Fc regions may be substituted for the human IgG1 Fc region described in the Example.
- Other suitable Fc regions are those that can bind with high affinity to protein A or protein G, and include fragments of the human or murine IgG1 Fc region, e.g., fragments comprising at least the hinge region so that interchain disulfide bonds will form.
- the Fc region may be altered or mutated to a form having lower Fc receptor binding characteristics.
- the B7L-1/Fc fusion protein offers the advantage of being easily purified. Another advantage is the formation of disulfide bonds between the Fc regions of two separate fusion protein chains, thus creating dimers.
- an aspect of the invention is soluble B7L-1 polypeptides.
- Soluble B7L-1 polypeptides comprise all or part of the extracellular domain of a native B7L-1 but lack the signal that would cause retention of the polypeptide on a cell membrane.
- Soluble B7L-1 polypeptides advantageously comprise the native (or a heterologous) signal peptide when initially synthesized to promote secretion, but the signal peptide is cleaved upon secretion of B7L-1 from the cell.
- Soluble B7L-1 polypeptides encompassed by the invention retain at least one functional characteristic and in one embodiment are capable of binding a counterstructure described in copending application 60/095,672 filed Aug. 7, 1998.
- soluble B7L-1 may also include part of the signal or part of the cytoplasmic domain or other sequences, provided that the soluble B7L-1 protein can be secreted.
- Soluble B7L-1 may be identified (and distinguished from its non-soluble membrane-bound counterparts) by separating intact cells which express the desired protein from the culture medium, e.g., by centrifugation, and assaying the medium or supernatant for the presence of the desired protein. The presence of B7L-1 in the medium indicates that the protein was secreted from the cells and thus is a soluble form of the desired protein.
- Soluble forms of B7L-1 possess many advantages over the native bound B7L-1 protein. Purification of the proteins from recombinant host cells is feasible, since the soluble proteins are secreted from the cells. Further, soluble proteins are generally more suitable for intravenous administration.
- soluble B7L-1 polypeptides include those comprising a substantial portion of the extracellular domain of a native B7L-1 protein.
- An example of a soluble B7L-1 protein comprises amino acids 1-364 of SEQ ID NO: 2 and amino acids 1-330 of SEQ ID NO: 4, and 1-330 of SEQ ID NO: 6.
- truncated soluble B7L-1 proteins comprising less than the entire extracellular domain are included in the invention.
- soluble B7L-1 may additionally comprise one of the heterologous signal peptides described below that is functional within the host cells employed.
- the protein may comprise the native signal peptide.
- soluble B7L-1 can be expressed as a fusion protein comprising (from N- to C-terminus) the yeast ⁇ -factor signal peptide, a FLAG® peptide described below and in U.S. Pat. No. 5,011,912, and soluble B7L-1 consisting of amino acids 21-364 of SEQ ID NO: 2 or 21-330 of SEQ ID NO: 4, or 21-330 of SEQ ID NO: 6. This recombinant fusion protein is expressed in and secreted from yeast cells.
- the FLAG® peptide facilitates purification of the protein, and subsequently may be cleaved from the soluble B7L-1 using bovine mucosal enterokinase. Isolated DNA sequences encoding soluble B7L-1 proteins are encompassed by the invention.
- Truncated B7L-1 including soluble polypeptides, may be prepared by any of a number of conventional techniques.
- a desired DNA sequence may be chemically synthesized using techniques known per se.
- DNA fragments also may be produced by restriction endonuclease digestion of a full length cloned DNA sequence, and isolated by electrophoresis on agarose gels.
- Linkers containing restriction endonuclease cleavage site(s) may be employed to insert the desired DNA fragment into an expression vector, or the fragment may be digested at cleavage sites naturally present therein.
- the well known polymerase chain reaction procedure also may be employed to amplify a DNA sequence encoding a desired protein fragment.
- known mutagenesis techniques may be employed to insert a stop codon at a desired point, e.g., immediately downstream of the codon for the last amino acid of the receptor-binding domain.
- the invention provides isolated or homogeneous B7L-1 polypeptides, both recombinant and non-recombinant.
- Variants and derivatives of native B7L-1 proteins that retain the desired biological activity may be obtained by mutations of nucleotide sequences coding for native B7L-1 polypeptides. Alterations of the native amino acid sequence may be accomplished by any of a number of conventional methods. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
- oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion or insertion.
- Exemplary methods of making the alterations set forth above are disclosed by Walder et al. ( Gene 42:133, 1986); Bauer et al. ( Gene 37:73, 1985); Craik ( BioTechniques , January 1985, 12-19); Smith et al. ( Genetic Engineering: Principles and Methods , Plenum Press, 1981); Kunkel ( Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. ( Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462 all of which are incorporated by reference.
- B7L-1 may be modified to create B7L-1 derivatives by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like.
- Covalent derivatives of B7L-1 may be prepared by linking the chemical moieties to functional groups on B7L-1 amino acid side chains or at the N-terminus or C-terminus of a B7L-1 polypeptide or the extracellular domain thereof.
- Other derivatives of B7L-1 within the scope of this invention include covalent or aggregative conjugates of B7L-1 or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions.
- the conjugate may comprise a signal or leader polypeptide sequence (e.g. the ⁇ -factor leader of Saccharomyces ) at the N-terminus of a B7L-1 polypeptide.
- the signal or leader peptide co-translationally or post-translationally directs transfer of the conjugate from its site of synthesis to a site inside or outside of the cell membrane or cell wall.
- B7L-1 polypeptide fusions can comprise peptides added to facilitate purification and identification of B7L-1.
- Such peptides include, for example, poly-His or the antigenic identification peptides described in U.S. Pat. No. 5,011,912 and in Hopp et al., Bio/Technology 6:1204, 1988.
- the invention further includes B7L-1 polypeptides with or without associated native-pattern glycosylation.
- B7L-1 expressed in yeast or mammalian expression systems e.g., COS-7 cells
- Expression of B7L-1 polypeptides in bacterial expression systems, such as E. coli provides non-glycosylated molecules.
- N-glycosylation sites in the B7L-1 extracellular domain can be modified to preclude glycosylation, allowing expression of a reduced carbohydrate analog in mammalian and yeast expression systems.
- N-glycosylation sites in eukaryotic polypeptides are characterized by an amino acid triplet Asn-X-Y, wherein X is any amino acid except Pro and Y is Ser or Thr.
- the murine B7L-1 and human B7L-1 proteins comprise two such triplets.
- glycosylation sites occur at amino acids 25-27 and at amino acids 324-326.
- glycosylation sites occur at amino acids 25-27 and at amino acids 290-292.
- Appropriate substitutions, additions or deletions to the nucleotide sequence encoding these triplets will result in prevention of attachment of carbohydrate residues at the Asn side chain.
- Known procedures for inactivating N-glycosylation sites in proteins include those described in U.S. Pat. No. 5,071,972 and EP 276,846, hereby incorporated by reference.
- sequences encoding Cys residues that are not essential for biological activity can be altered to cause the Cys residues to be deleted or replaced with other amino acids, preventing formation of incorrect intramolecular disulfide bridges upon renaturation.
- Other equivalents are prepared by modification of adjacent dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present.
- EP 212,914 discloses the use of site-specific mutagenesis to inactivate KEX2 protease processing sites in a protein. KEX2 protease processing sites are inactivated by deleting, adding or substituting residues to alter Arg-Arg, Arg-Lys, and Lys-Arg pairs to eliminate the occurrence of these adjacent basic residues.
- Lys-Lys pairings are considerably less susceptible to KEX2 cleavage, and conversion of Arg-Lys or Lys-Arg to Lys-Lys represents a conservative and preferred approach to inactivating KEX2 sites.
- the human B7L-1 and murine B7L-1 contain one KEX2 protease processing site at amino acids 109-110 and 200-201 of SEQ ID NO: 2 and amino acids 75-76 and 166-167 of SEQ ID NO: 4 and SEQ ID NO: 6.
- Nucleic acid sequences within the scope of the invention include isolated DNA and RNA sequences that hybridize to the B7L-1 nucleotide sequences disclosed herein under conditions of moderate or severe stringency, and that encode biologically active B7L-1.
- Conditions of moderate stringency as defined by Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 101-104, Cold Spring Harbor Laboratory Press, (1989), include use of a prewashing solution of 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) and hybridization conditions of about 55° C., 5 ⁇ SSC, overnight.
- Conditions of severe stringency include higher temperatures of hybridization and washing. The skilled artisan will recognize that the temperature and wash solution salt concentration may be adjusted as necessary according to factors such as the length of the nucleic acid molecule.
- a DNA sequence may vary from that shown in SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 and still encode a B7L-1 protein having the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6, respectively.
- Such variant DNA sequences may result from silent mutations (e.g., occurring during PCR amplification), or may be the product of deliberate mutagenesis of a native sequence.
- the invention provides equivalent isolated DNA sequences encoding biologically active B7L-1, selected from: (a) cDNA comprising the nucleotide sequence presented in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5; (b) DNA capable of hybridization to a DNA of (a) under moderately stringent conditions and that encodes biologically active B7L-1; and, (c) DNA that is degenerate as a result of the genetic code to a DNA defined in (a), or (b) and that encodes biologically active B7L-1.
- B7L-1 proteins encoded by such DNA equivalent sequences are encompassed by the invention.
- B7L-1 proteins encoded by such DNA include, but are not limited to, B7L-1 fragments (soluble or membrane bound) and B7L-1 proteins comprising inactivated N-glycosylation site(s), inactivated KEX2 protease processing site(s), or conservative amino acid substitution(s), as described above.
- B7L-1 proteins encoded by DNA derived from other mammalian species, wherein the DNA will hybridize to the cDNA of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5 are also encompassed by the present invention.
- Variants possessing the ability to bind B7L-1 counterstructures, or binding partners may be identified by any suitable assay.
- Biological activity of B7L-1 may be determined, for example, by competition for binding to the ligand binding domain of LDCAM (i.e. competitive binding assays).
- a competitive binding assay for a B7L-1 polypeptide uses a radiolabeled, soluble B7L-1 and intact cells expressing a B7L-1 counterstructure, or cells expressing LDCAM. Instead of intact cells, one could substitute soluble B7L-1 counterstructure Fc fusion proteins (such as a LDCAM/Fc fusion protein) bound to a solid phase through the interaction of a Protein A, Protein G or an antibody to the counterstructure or Fc portions of the molecule, with the Fc region of the fusion protein.
- Another type of competitive binding assay utilizes radiolabeled soluble B7L-1 binding proteins and intact cells expressing B7L-1.
- Radiolabeled B7L-1 can be used to compete with a putative B7L-1 homologue to assay for binding activity against a surface-bound B7L-1 binding protein or a binding counterstructure, e.g. LDCAM.
- Qualitative results can be obtained by competitive autoradiographic plate binding assays, or Scatchard plots may be utilized to generate quantitative results.
- Binding proteins for a B7L-1 counterstructure can be bound to a solid phase such as a column chromatography matrix or a similar substrate suitable for identifying, separating or purifying cells that express the B7L-1 binding protein on their surface. Binding of a B7L-1 counterstructure binding protein to a solid phase contacting surface can be accomplished by using a number of different techniques. For example, a B7L-1/Fc fusion protein can be constructed and then attached to the solid phase through the interaction of Protein A or Protein G. Various other means for fixing proteins to a solid phase are well known in the art and are suitable arrogant for use in the present invention.
- magnetic microspheres can be coated with B7L-1 and held in the incubation vessel through a magnetic field. Suspensions of cell mixtures containing a B7L-1 counterstructure-expressing cells are contacted with the solid phase that has B7L-1 polypeptides thereon. Cells having B7L-1 counterstructure on their surface bind to the fixed B7L-1 and unbound cells then are washed away.
- This affinity-binding method is useful for purifying, screening or separating such B7L-1 counterstructure-expressing cells from solution. In particular, this method is useful for separating cells expressing LDCAM from cells that do not express a B7L-1 binding protein or B7L-1 counter structure.
- Methods of releasing positively selected cells from the solid phase are known in the art and encompass, for example, the use of enzymes.
- Such enzymes are preferably non-toxic and non-injurious to the cells and are preferably directed to cleaving the cell-surface binding partner.
- the enzyme preferably would cleave the LDCAM thereby freeing the resulting cell suspension from the “foreign” B7L-1 material.
- mixtures of cells suspected of containing LDCAM + cells first can be incubated with biotinylated B7L-1. Incubation periods are typically at least one hour in duration to ensure sufficient binding to B7L-1
- the resulting mixture then is passed through a column packed with avidin-coated beads, whereby the high affinity of biotin for avidin provides the binding of the cell to the beads.
- avidin-coated beads is known in the art. See Berenson, et al. J. Cell. Biochem., 10D:239 (1986). Wash of unbound material and the release of the bound cells is performed using conventional methods.
- B7L-1 can be used to separate cells expressing a protein to which it binds.
- B7L-1 or an extracellular domain or a fragment thereof can be conjugated to a detectable moiety such as 125 I to detect cells expressing a B7L-1 binding protein.
- Radiolabeling with 125 I can be performed by any of several standard methodologies that yield a functional 125 I-B7L-1 molecule labeled to high specific activity. Or an iodinated or biotinylated antibody against B7L-1 region or the Fc region of the molecule could be used.
- Another detectable moiety such as an enzyme that can catalyze a colorimetric or fluorometric reaction, biotin or avidin may be used.
- cells to be tested for LDCAM expression can be contacted with labeled B7L-1. After incubation, unbound labeled B7L-1 is removed and binding is measured using the detectable moiety.
- B7L-1, B7L-1 fragments and B7L-1 variants may also be determined using the a labeled B7L-1 binding protein (for example, 125 I-LDCAM:Fc) in competition assays similar to those described above. In this case, however, intact cells expressing LDCAM bound to a solid substrate, are used to measure the extent to which a sample containing a putative B7L-1 variant competes for binding with a B7L-1 binding protein.
- a labeled B7L-1 binding protein for example, 125 I-LDCAM:Fc
- B7L-1 Other means of assaying for B7L-1 include the use of anti-B7L-1 antibodies, cell lines that proliferate in response to B7L-1, or recombinant cell lines that express LDCAM and proliferate in the presence of B7L-1.
- the B7L-1 proteins disclosed herein also may be employed to measure the biological activity of LDCAM proteins in terms of their binding affinity for B7L-1.
- B7L-1 may be used in determining whether biological activity is retained after modification of a LDCAM (e.g., chemical modification, truncation, mutation, etc.). The biological activity of a LDCAM protein thus can be ascertained before it is used in a research study, or possibly in the clinic, for example.
- B7L-1 proteins find use as reagents that may be employed by those conducting “quality assurance” studies, e.g., to monitor shelf life and stability of proteins to which B7L-1 binds under different conditions.
- B7L-1 may be employed in a binding affinity study to measure the biological activity of its binding protein that has been stored at different temperatures, or produced in different cell types. The binding affinity of the modified protein for B7L-1 is compared to that of an unmodified protein to detect any adverse impact of the modifications on biological activity of B7L-1 binding protein.
- B7L-1 polypeptides also find use as carriers for delivering agents attached thereto to cells bearing its counter structure, LDCAM or other cell surface receptor to which B7L-1 binds.
- soluble forms of B7L-1 can be conjugated to agents such as toxins, inhibitors, or antigens and the resulting conjugated agent can be delivered to cells carrying the B7L-1 counterstructure (LDCAM).
- LDCAM B7L-1 counterstructure
- Such cells include lymphoid dendritic cells that are known product IL-12 during an immune response and can inhibit T cell cytokine production.
- B7L-1 conjugates can be used to block, enhance or modify lymphoid dendritic cell activity.
- Diagnostic and therapeutic agents that may be attached to a B7L-1 polypeptide include, but are not limited to, drugs, toxins, radionuclides, chromophores, enzymes that catalyze a colorimetric or fluorometric reaction, and the like, with the particular agent being chosen according to the intended application.
- drugs include those used in treating various forms of cancer, e.g., nitrogen mustards such as L-phenylalanine nitrogen mustard or cyclophosphamide, intercalating agents such as cis-diaminodichloroplatinum, antimetabolites such as 5-fluorouracil, vinca alkaloids such as vincristine, and antibiotics such as bleomycin, doxorubicin, daunorubicin, and derivatives thereof.
- nitrogen mustards such as L-phenylalanine nitrogen mustard or cyclophosphamide
- intercalating agents such as cis-diaminodichloroplatinum
- antimetabolites such as 5-fluorouracil
- vinca alkaloids such as vincristine
- antibiotics such as bleomycin, doxorubicin, daunorubicin, and derivatives thereof.
- Radionuclides suitable for diagnostic use include, but are not limited to, 123 I, 131 I, 99m Tc, 111 In, and 76 Br.
- Radionuclides suitable for therapeutic use include, but are not limited to, 131 I, 211 At, 77 Br, 186 Re, 188 Re, 212 Pb, 212 Bi, 109 Pd, 64 Cu, and 67 Cu.
- B7L-1 being a protein
- B7L-1 comprises functional groups on amino acid side chains that can be reacted with functional groups on a desired agent to form covalent bonds, for example.
- the protein or agent may be derivatized to generate or attach a desired reactive functional group.
- the derivatization may involve attachment of one of the bifunctional coupling reagents available for attaching various molecules to proteins (Pierce Chemical Company, Rockford, Ill.). A number of techniques for radiolabeling proteins are known. Radionuclide metals may be attached to B7L-1 by using a suitable bifunctional chelating agent, for example.
- Conjugates comprising B7L-1 and a suitable diagnostic or therapeutic agent (preferably covalently linked) are thus prepared.
- the conjugates are administered or otherwise employed in an amount appropriate for the particular application.
- B7L-1 of the present invention is as a research tool for studying the role that B7L-1, in conjunction with LDCAM, may play in T cell signaling and proliferation.
- the B7L-1 polypeptides of the present invention also may be employed in in vitro assays for detection of LDCAM or B7L-1 or the interactions thereof.
- transcripts were detected in human bone marrow derived CD34+ derived dendritic cells and peripheral blood derived dendritic cells, B cells after stimulation with CD40L, brain and mouse splenic dendritic cells CD40L stimulated splenic B cells and brain.
- antibodies to B7L-1 can be used to identify, isolate, and purify potent antigen presenting cells, including dendritic cells and CD40 ligand activated B cells.
- the presence and level of mRNA for B7L-1 can be exploited to determine the purity of bone marrow derived and blood derived dendritic cell preparations.
- Other uses of antibodies to B7L-1 molecules include targeting antigens to myeloid dendritic cells or eliminating myeloid dendritic cells with anti-B7L-1 antibody mediated depletion or with an conjugate of a toxin and the antibody.
- Soluble fragments of B7L-1 including, but not restricted to the extracellular domains of SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6 can be used to enhance or inhibit the activity of lymphoid dendritic cells and/or B cells activated for presentation by CD40-L.
- B7L-1 polypeptides of the invention can be formulated according to known methods used to prepare pharmaceutically useful compositions.
- B7L-1 can be combined in admixture, either as the sole active material or with other known active materials, with pharmaceutically suitable diluents (e.g., Tris-HCl, acetate, phosphate), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), emulsifiers, solubilizers, adjuvants and/or carriers.
- pharmaceutically suitable diluents e.g., Tris-HCl, acetate, phosphate
- preservatives e.g., Thimerosal, benzyl alcohol, parabens
- emulsifiers e.g., solubilizers, adjuvants and/or carriers.
- compositions can contain B7L-1 complexed with polyethylene glycol (PEG), metal ions, or incorporated into polymeric compounds such as polyacetic acid, polyglycolic acid, hydrogels, etc., or incorporated into liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts or spheroblasts.
- PEG polyethylene glycol
- metal ions or incorporated into polymeric compounds such as polyacetic acid, polyglycolic acid, hydrogels, etc.
- liposomes such as polyacetic acid, polyglycolic acid, hydrogels, etc.
- Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance of B7L-1.
- B7L-1 can also be conjugated to antibodies against tissue-specific receptors, ligands or antigens, or coupled to ligands of tissue-specific receptors.
- B7L-1 may be conjugated to a toxin whereby B7L-1 is used to deliver the toxin to the specific cell site.
- B7L-1 can be administered topically, parenterally, or by inhalation.
- parenteral includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. These compositions will typically contain an effective amount of the B7L-1, alone or in combination with an effective amount of any other active material. Such dosages and desired drug concentrations contained in the compositions may vary depending upon many factors, including the intended use, patient's body weight and age, and route of administration. Preliminary doses can be determined according to animal tests, and the scaling of dosages for human administration can be performed according to art-accepted practices.
- B7L-1 polypeptides may exist as oligomers, such as covalently-linked or non-covalently-linked dimers or trimers. Oligomers may be linked by disulfide bonds formed between cysteine residues on different B7L-1 polypeptides.
- a B7L-1 dimer is created by fusing B7L-1 to the Fc region of an antibody (e.g., IgG1) in a manner that does not interfere with binding of B7L-1 to the B7L-1 ligand-binding domain.
- the Fc polypeptide preferably is fused to the C-terminus of a soluble B7L-1 (comprising only the receptor-binding).
- fusion proteins comprising heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al. ( PNAS USA 88:10535, 1991) and Byrn et al. ( Nature 344:677, 1990), hereby incorporated by reference.
- a gene fusion encoding the B7L-1:Fc fusion protein is inserted into an appropriate expression vector.
- B7L-1:Fc fusion proteins are allowed to assemble much like antibody molecules, whereupon interchain disulfide bonds form between Fc polypeptides, yielding divalent B7L-1.
- fusion proteins are made with both heavy and light chains of an antibody, it is possible to form a B7L-1 oligomer with as many as four B7L-1 extracellular regions. Alternatively, one can link two soluble B7L-1 domains with a peptide linker.
- Suitable host cells for expression of B7L-1 polypeptides include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al. Cloning Vectors: A Laboratory Manual , Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce B7L-1 polypeptides using RNAs derived from DNA constructs disclosed herein.
- Prokaryotes include gram negative or gram positive organisms, for example, E. coli or Bacilli .
- Suitable prokaryotic host cells for transformation include, for example, E. coli, Bacillus subtilis, Salmonella typhimurium , and various other species within the genera Pseudomonas, Streptomyces , and Staphylococcus .
- a B7L-1 polypeptide may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in the prokaryotic host cell. The N-terminal Met may be cleaved from the expressed recombinant B7L-1 polypeptide.
- B7L-1 polypeptides may be expressed in yeast host cells, preferably from the Saccharomyces genus (e.g., S. cerevisiae ). Other genera of yeast, such as Pichia, K. lactis or Kluyveromyces , may also be employed.
- yeast vectors will often contain an origin of replication sequence from a 2 ⁇ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene.
- Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem.
- glycolytic enzymes such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- enolase glyceraldehyde-3-phosphate dehydrogenase
- hexokinase hexokinase
- pyruvate decarboxylase phosphofructokinase
- glucose-6-phosphate isomerase 3-phosphoglycerate mutase
- pyruvate kinase triosephosphate isomerase
- phosphoglucose isomerase phosphoglucose isomerase
- yeast vectors and promoters for use in yeast expression are further described in Hitzeman, EPA-73,657 or in Fleer et. al., Gene, 107:285-195 (1991); and van den Berg et. al., Bio/Technology, 8:135-139 (1990).
- Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. ( J. Biol. Chem. 258:2674, 1982) and Beier et al. ( Nature 300:724, 1982).
- Shuttle vectors replicable in both yeast and E. coli may be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Amp r gene and origin of replication) into the above-described yeast vectors.
- the yeast ⁇ -factor leader sequence may be employed to direct secretion of the B7L-1 polypeptide.
- the ⁇ -factor leader sequence is often inserted between the promoter sequence and the structural gene sequence. See, e.g., Kurjan et al., Cell 30:933, 1982; Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984; U.S. Pat. No. 4,546,082; and EP 324,274.
- Other leader sequences suitable for facilitating secretion of recombinant polypeptides from yeast hosts are known to those of skill in the art.
- a leader sequence may be modified near its 3′ end to contain one or more restriction sites. This will facilitate fusion of the leader sequence to the structural gene.
- Yeast transformation protocols are known to those of skill in the art.
- One such protocol is described by Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929, 1978.
- the Hinnen et al. protocol selects for Trp + transformants in a selective medium, wherein the selective medium consists of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 ⁇ g/ml adenine and 20 ⁇ g/ml uracil.
- Yeast host cells transformed by vectors containing ADH2 promoter sequence may be grown for inducing expression in a “rich” medium.
- a rich medium is one consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 ⁇ g/ml adenine and 80 ⁇ g/ml uracil. Derepression of the ADH2 promoter occurs when glucose is exhausted from the medium.
- Mammalian or insect host cell culture systems could also be employed to express recombinant B7L-1 polypeptides.
- Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988). Established cell lines of mammalian origin also may be employed.
- suitable mammalian host cell lines include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., Cell 23:175, 1981), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, and BHK (ATCC CRL 10) cell lines, and the CV-1/EBNA-1 cell line derived from the African green monkey kidney cell line CV1 (ATCC CCL 70) as described by McMahan et al. ( EMBO J. 10:2821, 1991).
- Transcriptional and translational control sequences for mammalian host cell expression vectors may be excised from viral genomes.
- Commonly used promoter sequences and enhancer sequences are derived from Polyoma virus, Adenovirus 2, Simian Virus 40 (SV40), and human cytomegalovirus.
- DNA sequences derived from the SV40 viral genome for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell.
- Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment which may also contain a viral origin of replication (Fiers et al., Nature 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the SV40 viral origin of replication site is included.
- Exemplary expression vectors for use in mammalian host cells can be constructed as disclosed by Okayama and Berg ( Mol. Cell. Biol. 3:280, 1983).
- a useful system for stable high level expression of mammalian cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. ( Mol. Immunol. 23:935, 1986).
- a useful high expression vector, PMLSV N1/N4 described by Cosman et al., Nature 312:768, 1984 has been deposited as ATCC 39890. Additional useful mammalian expression vectors are described in EP-A-0367566, and in U.S. patent application Ser. No. 07/701,415, filed May 16, 1991, incorporated by reference herein.
- the vectors may be derived from retroviruses.
- a heterologous signal sequence may be added, such as the signal sequence for IL-7 described in U.S. Pat. No. 4,965,195; the signal sequence for IL-2 receptor described in Cosman et al., Nature 312:768 (1984); the IL-4 signal peptide described in EP 367,566; the type I IL-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; and the type II IL-1 receptor signal peptide described in EP 460,846.
- B7L-1 as an isolated, purified or homogeneous protein according to the invention may be produced by recombinant expression systems as described above or purified from naturally occurring cells.
- B7L-1 can be purified to substantial homogeneity, as indicated by a single protein band upon analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
- One process for producing B7L-1 comprises culturing a host cell transformed with an expression vector comprising a DNA sequence that encodes B7L-1 under conditions sufficient to promote expression of B7L-1.
- B7L-1 is then recovered from culture medium or cell extracts, depending upon the expression system employed.
- procedures for purifying a recombinant protein will vary according to such factors as the type of host cells employed and whether or not the recombinant protein is secreted into the culture medium.
- the culture medium first may be concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a purification matrix such as a gel filtration medium.
- an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups.
- the matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification.
- a cation exchange step can be employed.
- Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred.
- one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, (e.g., silica gel having pendant methyl or other aliphatic groups) can be employed to further purify B7L-1.
- RP-HPLC reversed-phase high performance liquid chromatography
- an affinity column comprising the B7L-1 binding domain of a protein to which B7L-1 binds, such as LDCAM, to affinity-purify expressed B7L-1 polypeptides.
- B7L-1 polypeptides can be removed from an affinity column using conventional techniques, e.g., in a high salt elution buffer and then dialyzed into a lower salt buffer for use or by changing pH or other components depending on the affinity matrix utilized.
- the affinity column may comprise an antibody that binds B7L-1.
- Example 5 describes a procedure for employing B7L-1 of the invention to generate monoclonal antibodies directed against B7L-1.
- Recombinant protein produced in bacterial culture can be isolated by initial disruption of the host cells, centrifugation, extraction from cell pellets if an insoluble polypeptide, or from the supernatant fluid if a soluble polypeptide, followed by one or more concentration, salting-out, ion exchange, affinity purification or size exclusion chromatography steps. Finally, RP-HPLC can be employed for final purification steps. Microbial cells can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.
- Transformed yeast host cells are preferably employed to express B7L-1 as a secreted polypeptide in order to simplify purification.
- Secreted recombinant polypeptide from a yeast host cell fermentation can be purified by methods analogous to those disclosed by Urdal et al. ( J. Chromatog. 296:171, 1984).
- Urdal et al. describe two sequential, reversed-phase HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column.
- Useful fragments of the B7L-1 nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target B7L-1 mRNA (sense) or B7L-1 DNA (antisense) sequences.
- Antisense or sense oligonucleotides comprise a fragment of the coding region of B7L-1 cDNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to about 30 nucleotides.
- binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means.
- the antisense oligonucleotides thus may be used to block expression of B7L-1 proteins.
- Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO91/06629) and wherein such sugar linkages are resistant to endogenous nucleases.
- Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences.
- Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine).
- intercalating agents such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.
- Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO 4 -mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus.
- Antisense or sense oligonucleotides are preferably introduced into a cell containing the target nucleic acid sequence by insertion of the antisense or sense oligonucleotide into a suitable retroviral vector, then contacting the cell with the retrovirus vector containing the inserted sequence, either in vivo or ex vivo.
- Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see PCT Application US 90/02656).
- Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753.
- Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors.
- conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.
- a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448.
- the sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.
- the two GENBANK EST sequences were used to design PCR primers for probing cDNA libraries in order to identify a cDNA source for the ESTs.
- the primer sequences were as follows: 5′ AGGGCGAGTACACCTG 3′ (SEQ ID NO:7) (sense bases 22-37 of EST T32071) 5′ GTGGATCTGTCAGCTCC 3′ (SEQ ID NO:8) (anti-sense bases 376-360 of EST T32071)
- Oligonucleotide primers identified in SEQ ID NO:7 and SEQ ID NO:8 were used to screen cDNA libraries by PCR. Of the 16 cDNA libraries examined, PCR product was obtained only from a human brain lambda library (purchased from Clonetech HL3002b). The product was cloned into bacteria and sequenced to verify that the product included an open reading frame.
- the cloned EST sequence was radioactively labeled and used to probe the brain lambda library using standard probing techniques, in order to isolate clones from the brain lambda library that included the EST derived sequence.
- a subsequent BLAST analysis of the GENBANK EST database using the extended EST sequence as the query sequence lead to the identification of an overlapping EST (H15268) derived from IMAGE Consortium clone #44904.
- SEQ ID NO:1 provides the complete cDNA of human B7L-1
- SEQ ID NO:2 provides the amino acid sequence encoded by the cDNA.
- the encoded full length protein has a predicted extracellular region of amino acid 364 amino acids (1-364), including a leader sequence of 20 amino acids (1-20); a transmembrane domain of 21 amino acids (365-385) and a cytoplasmic domain of 47 amino acids (386-432).
- the entire coding region of SEQ ID NO:1 was obtained from clone #49904.
- the B7L-1 insert was excised from the clone using the HindIII and Not1 sites on the clone.
- the oligonucleotides identified in SEQ ID NO:9 and SEQ ID NO:10 were used as adapters to change the HindIII cohesive end to a Sal1 cohesive end by annealing and ligating the oligonucleotides to the excised insert containing nucleotide residues 1-1820 of SEQ ID NO:1.
- the resulting construct was ligated into a pDC409 expression vector that had been cut with Sal1 and Not1.
- the expression vector construct was then transfected in CV1/EBNA cells and B7L-1 was expressed using techniques described in McMahan et al., EMBO J. 10:2821, 1991.
- B7L-1 protein was recovered using HPLC techniques.
- the transfected cells were harvested, fixed in 1% paraformaldehyde, washed and used in their intact form.
- PCR primers one of which is the oligonucleotides of SEQ ID NO:12; the second of which is disclosed in SEQ ID NO:13. These PCR primers were used to identify cDNA libraries that give PCR products when used as templates in PCR reactions. PCR product was identified in PCR reactions using mouse brain lambda cDNA library (Clonetech ML3000a).
- the mouse brain lambda cDNA library was screened and a clone was identified and sequenced using standard techniques.
- the sequenced clone lacked the 5′ end of the coding region as determined by comparing the clone with the human B7L-1.
- RT-PCR off of mouse brain RNA using the lambda gt10 vector entry oligonucleotide and the human B7L-1 specific oligonucleotide of SEQ ID NO:7 extended the sequence from the 3′ to the end of the sequence and 5′ to nearly full length.
- the clone encodes an open reading frame that begins at a position analogous to amino acid residue 9 of human B7L-1 (SEQ ID NO:2) and terminates at a position that is analogous to the terminal amino acid of the human B7L-1.
- the cloned murine B7L-1 cDNA having a composite murine/human leader is provided in SEQ ID NO:3 and its encoded polypeptide is provided in SEQ ID NO:4.
- the composite murine/human leader sequence includes 7 amino acids of the human sequence and 12 amino acids of the murine sequence.
- the murine B7L-1 clone is 95% identical to the human B7L-1 of SEQ ID NO:1 as determined by the GCG GAP program.
- the murine clone has a single gap and represents a shorter splice variant of B7L-1.
- oligonucleotide primers disclosed in SEQ ID NO:14 and SEQ ID NO:15 were used in RT-PCR reactions to probe human brain RNA. Using standard ethidium bromide agarose gel and Southern Blot analyses methodologies, a shorter splice form was shown to exist and predominate. The product of the RT-PCR reaction was cloned and subjected to standard dideoxynucleotide terminator sequence analysis.
- SEQ ID NO:5 provides the nucleotide sequence of the human short extracellular form of B7L-1 and SEQ ID NO:6 provides the encoded amino acid sequence.
- SEQ ID NO:3 To prepare a vector construct for expressing the full length membrane bound murine short extracellular form of B7L-1 the coding region of SEQ ID NO:3 was prepared using a PCR SOEing technique.
- the oligonucleotides used are described in SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
- the inner 5′ oligonucleotide (SEQ ID NO:16) included bases to code for the initiator Met and 5 additional amino acids that form the first 6 residues of the long extracellular human B7L-1 signal peptide.
- the outer 5′oligonucleotide (SEQ ID N017) was present in a 9 fold excess to the inner 5′ oligonucleotide and included a Sal1 restriction site.
- the PCR SOEing product was subjected to a restriction enzyme digest with Sal1 and Not1 and then ligated into a pDC412 expression vector.
- the expression vector was then transfected in DH10B E coli by electroporation.
- B7L-1 was expressed using techniques described in McMahan et al., EMBO J. 10:2821, 1991. To recover forms of B7L-1 that are membrane bound, the transfected cells were harvested, fixed in 1% paraformaldehyde, washed and used in their intact form.
- the extracellular coding region of SEQ ID NO:3 was prepared using a PCR SOEing technique.
- the oligonucleotides used were identical to those used to prepare the vector construct for the murine full length membrane bound polypeptide except that the oligonucleotide of SEQ ID NO:12 was the 3′ oligonucleotide, thus replacing SEQ ID NO:18.
- the PCR SOEing product was subjected to a restriction enzyme digest with the Sal1 and BglII sites and then ligated into a Bluescript SK vector. This clone fusion was excised with a SalI/BglII double digestion and ligated into a SalI/BglII digested pDC412 expression vector. The expression vector was then transfected in DH10B E coli by electroporation and the soluble murine B7L-1 polypeptide was expressed as described above for the full length murine B7L-1 protein.
- the following describes generating a human B7L-1/Fc protein which was used to study binding characteristics of B7L-1.
- the fusion protein includes the predicted extracellular region of human B7L-1 and the mutein human Fc region.
- oligonucleotides that flank the extracellular region of B7L-1 (SEQ ID NO:11 and SEQ ID NO:12) were used as primers in a PCR reaction to obtain a PCR product from clone #44904 which was the template in the reaction.
- the resulting PCR product was digested with Sal1 and BglII restriction enzymes at the Sal1 and BglII sites incorporated by the primers.
- the resulting fragment was ligated into an expression vector (pDC409) containing the human IgG1 Fc region mutated to lower Fc receptor binding.
- the resulting DNA construct was transfected into the monkey kidney cell lines CV-1/EBNA (with co-transfection of psv3neo). After 7 days of culture in medium containing 0.5% low immunoglobulin bovine serum, a solution of 0.2% azide was added to the supernatant and the supernatant was filtered through a 0.22 ⁇ m filter. Then approximately 1 L of culture supernatant was passed through a BioCad Protein A HPLC protein purification system using a 4.6 ⁇ 100 mm Protein A column (POROS 20A from PerSeptive Biosystems) at 10 mL/min.
- POROS 20A from PerSeptive Biosystems
- the Protein A column binds the Fc Portion of the fusion protein in the supernatant, immobilizing the fusion protein and allowing other components of the supernatant to pass through the column.
- the column was washed with 30 mL of PBS solution and bound fusion protein was eluted from the HPLC column with citric acid adjusted to pH 3.0. Eluted purified fusion protein was neutralized as it eluted using 1M HEPES solution at pH 7.4.
- the following describes preparing a murine Fc fusion protein that included the soluble extracellular portion of the murine short extracellular B7L-1 and the mutein Fc peptide described above in Example 5.
- the extracellular domain coding region of the murine extracellular short B7L-1 was excised from the vector described in Example 4 using SalI and BglII restriction enzymes.
- the excised fragment was ligated into a pDC412 expression vector that included the human IgG1Fc region.
- the resulting DNA construct was transfected into the monkey kidney cell lines CV-1/EBNA.
- the cells were cultured and the fusion protein collected and purified as described in Example 5.
- the process included preparing a DNA construct that encodes the fusion protein, transfecting a cell line with the DNA construct, and harvesting supernatants from the transfected cells.
- the oligonucleotide primers described in SEQ ID NO:12 and SEQ ID NO:13, containing a SpeI restriction site, were used to isolate the nucleotides encoding amino acids 1-364 of SEQ ID NO:2 from the IMAGE Consortium clone (H15268, clone #49904).
- the PCR product was digested with SpeI and PstI restriction enzymes, the PstI enzyme cutting the PCR product at a site within the B7L-1 coding region.
- the excised product was ligated into a SpeI/PstI digested Bluescript based vector containing a CMV viral leader upstream and in-frame with the SpeI site.
- the viral leader and the B7L-1 encoding cDNA construct was excised from the vector using SalI and PstI restriction enzyme digestions and the excised construct was then ligated in a three way ligation with a PstI/NotI fragment containing the remainder of the human B7L-1 cDNA and a pDC409 expression vector (McMahon et al., EMBO J. 10:2821, 1991).
- the polyHis fusion construct was prepared using an oligonucleotide primer that primes upstream in the vector prepared as described above (?) and a primer which includes 1) nucleotides complementary to those present in human B7L-1 cDNA that are positioned just before the transmembrane domain; 2) nucleotides complementary to the polyHis nucleotides; and, a Not1 site.
- the polyHis containing fragment was digested with SalI and NotI and then ligated into a similarly digested pDC409 vector.
- the resulting DNA fusion construct was transiently transfected into the monkey cell line COS-1 (ATCC CRL-1650). Following a 7 day culture in medium containing 0.5% low immunoglobulin bovine serum, cell supernatants were harvested and a solution of 0.2% sodium azide was added to the supernatants. The supernatants were filtered through a 0.22 ⁇ m filter, concentrated 10 fold with a prep scale concentrator (Millipore; Bedford, Mass.) and purified on a BioCad HPLC protein purification equipped with a Nickel NTA Superflow self pack resin column (Qiagen, Santa Clarita, Calif.).
- the B7L-1/Fc fusion protein prepared as described in Example 5 was used to screen cell lines for binding using quantitative binding studies according to standard flow cytometry methodologies. For each cell line screened, the procedure involved incubating approximately 250,000 to 1,000,000 of the cells blocked with 2% FCS (fetal calf serum), 5% normal goat serum and 5% rabbit serum in PBS for 1 hour. Then the blocked cells were incubated with 5 ⁇ g/mL of B7L-1/Fc fusion protein in 2% FCS, 5% goat serum and 5% rabbit serum in PBS.
- FCS fetal calf serum
- rabbit serum fetal calf serum
- human B7L-1 binds well to human lung epithelial line (WI-26), human B lymphoblastoid lines (Daudi and PAE8LBM1, human fresh tonsillar B cells, murine CD8 + dendritic cells from spleens/lymph nodes of flt3-L treated animals and murine T cell lymphoma (S49.1).
- This example illustrates a method for preparing monoclonal antibodies to B7L-1.
- Purified B7L-1, a fragment thereof such as the extracellular domain, synthetic peptides or cells that express B7L-1 can be used to generate monoclonal antibodies against B7L-1 using conventional techniques, for example, those techniques described in U.S. Pat. No. 4,411,993. Briefly, rodents are immunized with B7L-1 as an immunogen emulsified in complete Freund's adjuvant, and injected in amounts ranging from 10-100 ⁇ g subcutaneously or intraperitoneally. Ten to twelve days later, the immunized animals are boosted with additional B7L-1 emulsified in incomplete Freund's adjuvant.
- Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision to test for B7L-1 antibodies by dot blot assay, ELISA (Enzyme-Linked Immunosorbent Assay), immunoprecipitation, or other suitable assays, including FACS analysis.
- ELISA Enzyme-Linked Immunosorbent Assay
- spleen cells are fused to a murine myeloma cell line, e.g., NS1 or preferably P3x63Ag8.653 (ATCC CRL 1580). Fusions generate hybridoma cells, which are plated in multiple microtiter plates in a HAT (hypoxanthine, aminopterin and thymidine) selective medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.
- HAT hypoxanthine, aminopterin and thymidine
- hybridoma cells are screened by ELISA for reactivity against purified B7L-1 by adaptations of the techniques disclosed in Engvall et al., Immunochem. 8:871, 1971 and in U.S. Pat. No. 4,703,004.
- a preferred screening technique is the antibody capture technique described in Beckmann et al., ( J. Immunol. 144:4212, 1990)
- Positive hybridoma cells can be injected intraperitoneally into syngeneic BALB/c mice to produce ascites containing high concentrations of anti-B7L-1-L monoclonal antibodies.
- hybridoma cells can be grown in vitro in flasks or roller bottles by various techniques.
- Monoclonal antibodies produced in mouse ascites can be purified by ammonium sulfate precipitation, followed by gel exclusion chromatography.
- affinity chromatography based upon binding of antibody to protein A or protein G can also be used, as can affinity chromatography based upon binding to B7L-1.
- the RT-PCR process involved the reverse transcription of about 1 ⁇ g of total RNA from various human tissue and cell sources to make a first strand cDNA using the Pharmacia, First Strand cDNA Synthesis Kit following the manufacturer's instructions.
- Cell lines from which total RNA was transcribed included dendritic cells derived from human bone marrow; CD34+ cells and CD34 ⁇ cells; human peripheral blood B cells cultured in IL-4, SAC or CD40L; human monocyte derived dendritic cells; human monocytes cultured in IFN gamma; human and mouse brain; mouse splenic B cells cultured +/ ⁇ CD40L; mouse splenic T cells +/ ⁇ ConA stimulation.
- Northern Blot analysis was performed by fractionating 5 ⁇ g or 10 ⁇ g total RNA on 1.2% agarose gels containing formaldehyde. The RNA was then blotted onto Hybond Nylon membranes using standard blotting techniques. Poly A+ multiple tissue blots containing 1 ⁇ g of mouse mRNA from a number of different sources were purchased from Clonetech. The purchased blots were prehybridized according to manufacturer's instructions for at least 6 hours at 68° C. Riboprobes, containing the coding region of murine B7L-1, were generated using Promega's Riboprobe Combination Kit and T7 RNA Polymerase according to the manufacturer's instructions. Standard Northern Blot generating procedures as described in Maniatis, ( Molecular Cloning: a Laboratory Manual , Cold Spring Harbor Lab. Press, 1989) were used.
- spleens were removed from IL-15 treated CB-17/SCID mice and used as a source for highly enriched and activated murine NK cells.
- Spleen cells isolated from IL-15 treated SCID mice are 60-80% DX-5 positive.
- DX-5 is a pan NK marker than is expressed on NK cells from many different strains of mice.
- Flow cytometric analysis was performed to detect B7L-1 and LDCAM binding to DX-5+ in vivo IL-15 activated murine NK cells.
- Table I gives the results of a murine NK cell binding study. TABLE I Fc molecule DX-5+ NK cell %+/MFI control Fc 8%/88 B7L-1Fc 19%/265 LDCAM Fc 38%/432
- LDCAM and B7L-1 binding can be detected on in vivo activated murine NK cells.
- cDNA pools from a WI-26 cell line expression library were screened for binding to the purified B7L-1/Fc fusion protein prepared as described in Example 5.
- the expression library was prepared using standard methodologies.
- the cDNA pools were transfected into CV1/EBNA cells and then incubated for 2 days with 1 ⁇ g/mL of B7L-1/Fc fusion protein.
- LDCAM clone
- BALB/c murine lymph node (LN) cells were cultured in culture medium alone and in the presence of different stimuli for 18-20 hours. The cultured cells were harvested and prepared for binding studies using B7L-1/Fc fusion protein, LDCAM/Fc fusion protein and a control Fc protein. Following an overnight culture BALB/c murine LN cells are typically >90% CD3+. Bound protein was detected using flow cytometric analysis. The results shown in Table I indicate observed binding expressed as mean fluorescence intensity units (MFI) on unstimulated T cells (medium) and on stimulated T cells (by stimuli). TABLE I Fc medium Con A TCR mAb PHA control Fc 12.7 10.4 14.5 14.2 B7L-1Fc 11.7 14.3 24.0 12.6 LDCAM Fc 18.7 51.7 230.0 91.4
- MFI mean fluorescence intensity units
- LN CD4+ murine T cells When analyzed by T cell subsets, 75-80% of LN CD4+ murine T cells displayed detectable LDCAM binding after anti-TCR stimulation in vitro. About 50% of LN CD8+ murine T cells display detectable binding. In addition, CD4+ T cells exhibit higher levels of LDCAM binding than do CD8+ murine T cells. The results demonstrate that LDCAM/Fc binds at low levels to na ⁇ ve T cells. However, after an overnight activation with polyclonal stimuli binding increased 5-20 fold depending on the stimuli. Of the stimuli studied PMA induces the least LDCAM binding to murine T cells, and anti-TCR induces the highest binding.
- B7L-1, human peripheral blood (PB) T cells were cultured in culture medium only or in the presence of different stimuli for 18-20 hours.
- the cultured cells were harvested and prepared for binding studies using either B7L/1Fc fusion protein, LDCAM/Fc fusion protein and a control Fc protein.
- Bound protein on the human PB T cells was determined by flow cytometric analysis. Table II details results observed, expressed as MFI, on unstimulated T cells (medium) and on stimulated T cells (by stimuli).
- Fc medium Con A PMA PHA control Fc 4.7 4.8 3.5 4.3 B7L-1Fc 6.3 7.5 4.5 5.7 LDCAM Fc 22.3 42.8 61.9 38.8
- spleens were removed from IL-15 treated CB-17/SCID mice and used as a source for highly enriched and activated murine NK cells.
- Spleen cells isolated from IL-15 treated SCID mice are 60-80% DX-5 positive.
- DX-5 is a pan NK marker than is expressed on NK cells from many different strains of mice.
- Flow cytometric analysis was performed as described above to detect B7L-1 and LDCAM binding to DX-5+ in vivo IL-15 activated murine NK cells.
- Table II gives the results of a binding murine NK cell binding study. TABLE III Fc molecule DX-5+ NK cell %+/MFI control Fc 8%/88 B7L-1Fc 19%/265 LDCAM Fc 38%/432
- LDCAM and B7L-1 binding can be detected on in vivo activated murine NK cells.
- B7L-1Fc Cell line Cell type LDCAMFc (%+)** (%+)** U937 monocytic leukemia 10 7 K562 erythroblastic 7 5 leukemia Jurkat acute T cell leukemia 10 7 MP-1 B-cell LCL 46 10 DAUDI-hi B-cell Burkitt's 8 6 RPMI 8866 B-cell lymphoma 0 0 #88EBV B-cell LCL 4 3 #33EBV B-cell LCL 0 0 Tonsil G EBV B-cell LCL 25 13 MDA231 breast 8 9 adenocarcinoma OVCAR-3 ovarian carcinoma 48 30 H2126M1 lung adenocarcinoma 0 0 **binding of control Fc has been subtracted out so this is net %+ cells binding over background
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
The invention is directed to B7L-1 as a purified and isolated protein, the DNA encoding the B7L-1, host cells transfected with cDNAs encoding B7L-1 and processes for preparing B7L-1 polypeptides.
Description
- This application is a continuation of pending U.S. application Ser. No. 10/302,041, filed Nov. 21, 2002 which is a continuation of U.S. application Ser. No. 09/778,510, filed Feb. 6, 2001 and issued as U.S. Pat. No. 6,512,095 on Jan. 28, 2003 which is a continuation of U.S. International Application No. PCT/US99/17906, filed 5 Aug. 1999, which was published under PCT Article 21(2) on 17 Feb. 2000, in English, as WO 00/08057, and which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/095,663, filed 7 Aug. 1998, now abandoned. International Application No. PCT/US99/17906 and U.S. Provisional Patent Application Ser. No. 60/095,663, all of which are hereby incorporated by reference.
- The present invention relates to a novel polypeptide, designated B7L-1. B7L-1 has weak homology to a number of proteins including B7-1 (CD80) and is a binding protein for LDCAM. The invention includes B7L-1 molecules, DNA encoding B7L-1 molecules, processes for production of recombinant. B7L-1 polypeptides, and pharmaceutical compositions containing such B7L-1 polypeptides.
- B7-1 (CD80) is a T cell costimulatory molecule that is found on the surface of antigen presenting cells (APCs). Originally described as a cell adhesion molecule, it is now known that B7-1 sends important costimulatory signals through its two T cell surface receptors, CD28 and CTLA4 (CD152). B7-1 interacts with CD28 to signal cytokine production, cell proliferation, and the generation of effector and memory T cells. If the signal through CD28 is blocked T cell, anergy or immune deviation can occur, resulting in severely depressed or altered immune response. For example, when B7-1 interaction with CD28 (and CTLA40) is blocked with a soluble CTLA4Ig, allograft tolerance and resistance to autoimmune diseases have been observed.
- B7-1 also interacts with the T cell CTLA4 receptor. Its signaling is complex, but one component provides a negative feedback signal, causing the T cell to attenuate the CD28 signal. In the absence of this signal for a long period of time, rampant T cell proliferation and effector cell activation continues. However, shorter term intervention can be beneficial by leading to a more vigorous immune response. For example, when the interaction of B7-1 is blocked with antibodies to CTLA4, increased rejection of tumors has been found. When this feedback regulation malfunctions, autoimmune diseases and lymphoproliferation can result. For example, when the CTLA4 and B7-1 interaction is blocked with a soluble CTLA4Ig, allograft tolerance and resistance to autoimmune diseases have been observed.
- In addition to B7-1, other molecules are known to send costimulatory signals to T cells. For example, B7-2 (CD86), which is expressed on different cells and at different stages of APC activation from that of B7-1, also delivers its costimulatory signal to T cells through CD28 and CTLA4. The B7-2 signal can lead to immune responses that are identical to, or different from the immune responses resulting from B7-1 signaling. The nature of the B7-2 signaling depends upon the cellular context and the timing of the costimulation.
- Some evidence suggests that additional molecules bind CTLA4. Evidence also exists that other molecules are involved in sending important CD28-independent costimulatory signals to T cells.
- Even though they bind to the same cellular receptors, B7-1 and B7-2 are only weakly related at the amino acid level. Both, however, are members of the extended immunoglobulin domain-containing superfamily and much of their shared sequence homology is due to the particular residues shared by their common Ig domains, which are characteristic of the Ig-domain subfamily.
- Clearly, costimulatory signaling through T cell surface receptors plays an important role in maintaining balance in the immune system. Systems with a predominance of activatory signals, such as the costimulatory signaling between CD28 and B7-1, can lead to autoimmunity and inflammation. Immune systems with a predominance of inhibitory signals, such as the costimulatory signaling between CTLA4 and ??? are less able to challenge infected cells or cancer cells. Isolating new molecules involved in costimulatory signaling is highly desirable for studying the biological signal(s) transduced via the receptor. Additionally, identifying such molecules provides a means of regulating and treating diseased states associated with autoimmunity, inflammation and infection. For example, engaging a molecule that stimulates inhibitory or negative signaling with an agonistic antibody or signaling partner can be used to downregulate a cell function in disease states in which the immune system is overactive and excessive inflammation or immunopathology is present. On the other hand, using an antagonistic antibody specific for a molecule that stimulates negative signaling, or using a soluble form of the molecule to block signaling, can activate the specific immune function in disease states associated with suppressed immune function. Conversely, engaging a molecule that stimulates positive signaling with an agonistic antibody can be used to upregulate the effect of that molecule's signaling.
- In view of the evidence that undefined T cell costimulatory molecules exist and further in view of the continuing search for new therapeutics for treating infection, autoimmune diseases, and inflammation, it would be desirable to identify additional T-cell costimulatory molecules. In particular there is a need for additional molecules that alter T cell costimulation during an in vivo immune response.
- The present invention provides mammalian B7L-1 polypeptides as isolated or homogeneous proteins. The present invention further includes isolated DNAs encoding B7L-1 and expression vectors comprising DNA encoding mammalian B7L-1. Within the scope of this invention are host cells that have been transfected or transformed with expression vectors that comprise a DNA encoding B7L-1, and processes for producing B7L-1 by culturing such host cells under conditions conducive to expression of B7L-1. Further within the present invention are pharmaceutical composition comprising soluble forms B7L-1 molecules.
- Novel proteins, designated B7L-1, and DNA encoding B7L-1 proteins are provided herein. The B7L-1 polypeptides of the present invention share a weak homology with B7-1 and is a binding protein for LDCAM, a novel polypeptide, described in copending application Ser. No. 60/095,672 filed Aug. 7, 1998. The human and murine LDCAM nucleotide sequence is disclosed in SEQ ID NO:19 and SEQ ID NO:21, respectively. The amino acid sequences encoded by SEQ ID NO:19 and SEQ ID NO:21 are shown in SEQ ID NO:20 and SEQ ID NO:22, respectively. Mammalian B7L-1 proteins exist as different splice forms, designated “long” extracellular and “short” extracellular forms.
- Example 1 describes identifying and isolating a full length human clone, designated herein as “long” extracellular B7L-1. The nucleotide sequence of human “long” extracellular B7L-1 DNA, isolated as described in Example 1, is presented in SEQ ID NO: 1, and the amino acid sequence encoded thereby is presented in SEQ ID NO: 2. The encoded “long” extracellular human B7L-1 amino acid sequence (SEQ ID NO: 2) has a predicted extracellular domain of 364 amino acids (1-364), including a leader sequence of 20 amino acids (1-20), a transmembrane domain of 21 amino acids (365-385), and a cytoplasmic domain of 47 amino acids (386-432).
- Example 3 describes isolating a murine B7L-1 DNA with a shorter extracellular region. This DNA is disclosed in SEQ ID NO: 3. The amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 3 is disclosed in SEQ ID NO: 4. The encoded “short” extracellular murine B7L-1 amino acid sequence (SEQ ID NO: 4) has a predicted extracellular domain of 330 amino acids (1-330), including a leader sequence of 20 amino acids (1-20), a transmembrane domain of 21 amino acids (331-351), and a cytoplasmic domain of 47 amino acids (352-398). The leader sequence of SEQ ID NO: 4 includes the first 8 amino acids of the isolated human B7L-1 “long” molecule.
- Example 3 also describes a “short” extracellular form of human B7L-1 DNA that is thought to be an alternatively spliced B7L-1 variant. The nucleotide sequence for the “short” extracellular form is disclosed in SEQ ID NO: 5 and the amino acid sequence encoded by the sequence of SEQ ID NO: 5 is described in SEQ ID NO: 6. The encoded “short” extracellular human B7L-1 amino acid sequence (SEQ ID NO: 6) has a predicted extracellular domain of 330 amino acids, including a leader sequence of 20 amino acids, a transmembrane domain of 21 amino acids 331-351, and a cytoplasmic domain of 47 amino acids 352-398. The sequences described in SEQ ID NO: 5 and SEQ ID NO: 6 were obtained by isolating a clone from human cDNA with primers designed to flank the potential alternative splice between “long” and “short” forms and then comparing a resulting cloned fragment of SEQ ID NO: 5 (nucleotides 193-358), the murine “short” extracellular form described in SEQ ID NO: 3 and SEQ ID NO: 4 and the human long extracellular form described in SEQ ID NO: 1 and SEQ ID NO: 2. The comparison confirmed the existence of a human “short” extracellular form and provided a basis for the sequences of SEQ ID NOS: 5 and 6.
- The purified mammalian B7L-1 molecules described herein are Type I transmembrane proteins having limited homology to B7-1, poliovirus receptors, and thymocyte activation and development protein. For these and many other weakly homologous proteins, the homology lies in their Ig domains. As described below, B7L-1 proteins are expressed on brain tissue, dendritic cells, dendritic cell subsets and CD40 ligand-activated B cells.
- The discovery of the DNA sequences disclosed in SEQ ID NOs: 1, 3 and 5 enables construction of expression vectors comprising DNAs encoding human and mouse B7L-1 proteins; host cells transfected or transformed with the expression vectors; biologically active B7L-1 as homogeneous proteins; and antibodies immunoreactive with B7L-1.
- Since B7L-1 is found in bone marrow-derived and peripheral blood-monocyte derived dendritic cells, these molecules may be used to regulate inflammation in a therapeutic setting. The binding study results described in Example 13 show B7L-1 binding on tumor cell lines. Thus, biological signaling mediated by B7L-1 could mediate functional anti tumor effects on these types of tumors.
- As used herein, the term “B7L-1” refers to a genus of polypeptides that are binding proteins for LDCAM, novel polypeptides described in copending application Ser. No. 60/095,672 filed Aug. 7, 1998, and complex structures found in variety of cell lines including, but not limited to, lung epithelial cells, B lymphoblastoid cells and B cells. The term B7L-1 encompasses polypeptides having the amino acid sequence 1-432 of SEQ ID NO: 2, the amino acid sequence 1-398 of SEQ ID NO: 4; and amino acids 1-398 of SEQ ID NO: 6. In addition, B7L-1 encompasses polypeptides that have a high degree of similarity or a high degree of identity with the amino acid sequence of SEQ ID NO: 2, the amino acid sequence of SEQ ID NO: 4, and amino acid sequence of SEQ ID NO: 6, and which polypeptides are biologically active and bind their counterstructure, LDCAM.
- The term “murine B7L-1” refers to biologically active gene products of the DNA of SEQ ID NO: 3 and the term “human B7L-1” refers to biologically active gene products of the DNA of SEQ ID NO: 1 and SEQ ID NO: 5. Further encompassed by the term “B7L-1” are soluble or truncated proteins that include the binding portion of the protein and retain biological activity. Specific examples of such soluble proteins are those comprising the sequence of amino acids 1-364 of SEQ ID NO: 2; those comprising the sequence of amino acids 1-330 of SEQ ID NO: 4; and 1-330 of SEQ ID NO: 6. Alternatively, such soluble proteins can exclude a leader sequence and thus encompass amino acids 21-364 of SEQ ID NO: 2; amino acids 21-330 of SEQ ID NO: 4; and amino acids 21-330 of SEQ ID NO: 6.
- The term “biologically active” as it refers to B7L-1, means that the B7L-1 is capable of binding to LDCAM, described in copending U.S. Patent Application Ser. No. 60/095,672 filed Aug. 7, 1998. LDCAM and B7L-1 are termed counterstructures because B7L-1 is a binding protein for LDCAM.
- “Isolated” means that B7L-1 is free of association with other proteins or polypeptides, for example, as a purification product of recombinant host cell culture or as a purified extract.
- A “B7L-1 variant” as referred to herein, means a polypeptide substantially homologous to native B7L-1, but which has an amino acid sequence different from that of native B7L-1 (human, murine or other mammalian species) because of one or more deletions, insertions or substitutions. The variant amino acid sequence preferably is at least 80% identical to a native B7L-1 amino acid sequence, most preferably at least 90% identical. The percent identity may be determined, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745, 1986, as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps. Variants may comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physiochemical characteristics. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known. Naturally occurring B7L-1 variants or alleles are also encompassed by the invention. Examples of such variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the B7L-1 protein, wherein the B7L-1 binding property is retained. Alternate splicing of mRNA may yield a truncated but biologically active B7L-1 protein, such as a naturally occurring soluble form of the protein, for example. Variations attributable to proteolysis include, for example, differences in the N- or C-termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the B7L-1 protein (generally from 1-5 terminal amino acids).
- As mentioned above, Example 1 describes identifying and isolating the complete coding region of human long extracellular B7L-1 DNA. This process involved searching a nucleotide sequence databank using a human B7-1 nucleotide sequence as the query sequence. Two expressed sequence tag (EST) files, GenBank accession numbers T08949 EST06841 and T32071 EST 43348, were identified has having homology with a portion of human B7-1. The GenBank record does not disclose a coding region for polypeptides encoded by these ESTs.
- Example 5 describes the construction of a novel human B7L-1/Fc fusion protein that may be utilized in screening cell lines for binding to B7L-1 and in studying biological characteristics of B7L-1. Other antibody Fc regions may be substituted for the human IgG1 Fc region described in the Example. Other suitable Fc regions, are those that can bind with high affinity to protein A or protein G, and include fragments of the human or murine IgG1 Fc region, e.g., fragments comprising at least the hinge region so that interchain disulfide bonds will form. In addition, the Fc region may be altered or mutated to a form having lower Fc receptor binding characteristics. The B7L-1/Fc fusion protein offers the advantage of being easily purified. Another advantage is the formation of disulfide bonds between the Fc regions of two separate fusion protein chains, thus creating dimers.
- As described supra, an aspect of the invention is soluble B7L-1 polypeptides. Soluble B7L-1 polypeptides comprise all or part of the extracellular domain of a native B7L-1 but lack the signal that would cause retention of the polypeptide on a cell membrane. Soluble B7L-1 polypeptides advantageously comprise the native (or a heterologous) signal peptide when initially synthesized to promote secretion, but the signal peptide is cleaved upon secretion of B7L-1 from the cell. Soluble B7L-1 polypeptides encompassed by the invention retain at least one functional characteristic and in one embodiment are capable of binding a counterstructure described in copending application 60/095,672 filed Aug. 7, 1998. Indeed, soluble B7L-1 may also include part of the signal or part of the cytoplasmic domain or other sequences, provided that the soluble B7L-1 protein can be secreted.
- Soluble B7L-1 may be identified (and distinguished from its non-soluble membrane-bound counterparts) by separating intact cells which express the desired protein from the culture medium, e.g., by centrifugation, and assaying the medium or supernatant for the presence of the desired protein. The presence of B7L-1 in the medium indicates that the protein was secreted from the cells and thus is a soluble form of the desired protein.
- Soluble forms of B7L-1 possess many advantages over the native bound B7L-1 protein. Purification of the proteins from recombinant host cells is feasible, since the soluble proteins are secreted from the cells. Further, soluble proteins are generally more suitable for intravenous administration.
- Examples of soluble B7L-1 polypeptides include those comprising a substantial portion of the extracellular domain of a native B7L-1 protein. An example of a soluble B7L-1 protein comprises amino acids 1-364 of SEQ ID NO: 2 and amino acids 1-330 of SEQ ID NO: 4, and 1-330 of SEQ ID NO: 6. In addition, truncated soluble B7L-1 proteins comprising less than the entire extracellular domain are included in the invention. When initially expressed within a host cell, soluble B7L-1 may additionally comprise one of the heterologous signal peptides described below that is functional within the host cells employed. Alternatively, the protein may comprise the native signal peptide. In one embodiment of the invention, soluble B7L-1 can be expressed as a fusion protein comprising (from N- to C-terminus) the yeast α-factor signal peptide, a FLAG® peptide described below and in U.S. Pat. No. 5,011,912, and soluble B7L-1 consisting of amino acids 21-364 of SEQ ID NO: 2 or 21-330 of SEQ ID NO: 4, or 21-330 of SEQ ID NO: 6. This recombinant fusion protein is expressed in and secreted from yeast cells.
- The FLAG® peptide facilitates purification of the protein, and subsequently may be cleaved from the soluble B7L-1 using bovine mucosal enterokinase. Isolated DNA sequences encoding soluble B7L-1 proteins are encompassed by the invention.
- Truncated B7L-1, including soluble polypeptides, may be prepared by any of a number of conventional techniques. A desired DNA sequence may be chemically synthesized using techniques known per se. DNA fragments also may be produced by restriction endonuclease digestion of a full length cloned DNA sequence, and isolated by electrophoresis on agarose gels. Linkers containing restriction endonuclease cleavage site(s) may be employed to insert the desired DNA fragment into an expression vector, or the fragment may be digested at cleavage sites naturally present therein. The well known polymerase chain reaction procedure also may be employed to amplify a DNA sequence encoding a desired protein fragment. As a further alternative, known mutagenesis techniques may be employed to insert a stop codon at a desired point, e.g., immediately downstream of the codon for the last amino acid of the receptor-binding domain.
- As stated above, the invention provides isolated or homogeneous B7L-1 polypeptides, both recombinant and non-recombinant. Variants and derivatives of native B7L-1 proteins that retain the desired biological activity (e.g., the ability to bind LDCAM) may be obtained by mutations of nucleotide sequences coding for native B7L-1 polypeptides. Alterations of the native amino acid sequence may be accomplished by any of a number of conventional methods. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
- Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion or insertion. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); Kunkel (Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. (Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462 all of which are incorporated by reference.
- B7L-1 may be modified to create B7L-1 derivatives by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like. Covalent derivatives of B7L-1 may be prepared by linking the chemical moieties to functional groups on B7L-1 amino acid side chains or at the N-terminus or C-terminus of a B7L-1 polypeptide or the extracellular domain thereof. Other derivatives of B7L-1 within the scope of this invention include covalent or aggregative conjugates of B7L-1 or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugate may comprise a signal or leader polypeptide sequence (e.g. the α-factor leader of Saccharomyces) at the N-terminus of a B7L-1 polypeptide. The signal or leader peptide co-translationally or post-translationally directs transfer of the conjugate from its site of synthesis to a site inside or outside of the cell membrane or cell wall.
- B7L-1 polypeptide fusions can comprise peptides added to facilitate purification and identification of B7L-1. Such peptides include, for example, poly-His or the antigenic identification peptides described in U.S. Pat. No. 5,011,912 and in Hopp et al., Bio/Technology 6:1204, 1988.
- The invention further includes B7L-1 polypeptides with or without associated native-pattern glycosylation. B7L-1 expressed in yeast or mammalian expression systems (e.g., COS-7 cells) may be similar to or significantly different from a native B7L-1 polypeptide in molecular weight and glycosylation pattern, depending upon the choice of expression system. Expression of B7L-1 polypeptides in bacterial expression systems, such as E. coli, provides non-glycosylated molecules.
- Equivalent DNA constructs that encode various additions or substitutions of amino acid residues or sequences, or deletions of terminal or internal residues or sequences not needed for biological activity or binding are encompassed by the invention. For example, N-glycosylation sites in the B7L-1 extracellular domain can be modified to preclude glycosylation, allowing expression of a reduced carbohydrate analog in mammalian and yeast expression systems. N-glycosylation sites in eukaryotic polypeptides are characterized by an amino acid triplet Asn-X-Y, wherein X is any amino acid except Pro and Y is Ser or Thr. The murine B7L-1 and human B7L-1 proteins comprise two such triplets. In the human long extracellular B7L-1, glycosylation sites occur at amino acids 25-27 and at amino acids 324-326. In the murine short extracellular B7L-1 and the human short extracellular as shown in SEQ ID NO: 6, glycosylation sites occur at amino acids 25-27 and at amino acids 290-292. Appropriate substitutions, additions or deletions to the nucleotide sequence encoding these triplets will result in prevention of attachment of carbohydrate residues at the Asn side chain. Alteration of a single nucleotide, chosen so that Asn is replaced by a different amino acid, for example, is sufficient to inactivate an N-glycosylation site. Known procedures for inactivating N-glycosylation sites in proteins include those described in U.S. Pat. No. 5,071,972 and EP 276,846, hereby incorporated by reference.
- In another example, sequences encoding Cys residues that are not essential for biological activity can be altered to cause the Cys residues to be deleted or replaced with other amino acids, preventing formation of incorrect intramolecular disulfide bridges upon renaturation. Other equivalents are prepared by modification of adjacent dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present. EP 212,914 discloses the use of site-specific mutagenesis to inactivate KEX2 protease processing sites in a protein. KEX2 protease processing sites are inactivated by deleting, adding or substituting residues to alter Arg-Arg, Arg-Lys, and Lys-Arg pairs to eliminate the occurrence of these adjacent basic residues. Lys-Lys pairings are considerably less susceptible to KEX2 cleavage, and conversion of Arg-Lys or Lys-Arg to Lys-Lys represents a conservative and preferred approach to inactivating KEX2 sites. The human B7L-1 and murine B7L-1 contain one KEX2 protease processing site at amino acids 109-110 and 200-201 of SEQ ID NO: 2 and amino acids 75-76 and 166-167 of SEQ ID NO: 4 and SEQ ID NO: 6.
- Nucleic acid sequences within the scope of the invention include isolated DNA and RNA sequences that hybridize to the B7L-1 nucleotide sequences disclosed herein under conditions of moderate or severe stringency, and that encode biologically active B7L-1. Conditions of moderate stringency, as defined by Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 101-104, Cold Spring Harbor Laboratory Press, (1989), include use of a prewashing solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) and hybridization conditions of about 55° C., 5×SSC, overnight. Conditions of severe stringency include higher temperatures of hybridization and washing. The skilled artisan will recognize that the temperature and wash solution salt concentration may be adjusted as necessary according to factors such as the length of the nucleic acid molecule.
- Due to the known degeneracy of the genetic code wherein more than one codon can encode the same amino acid, a DNA sequence may vary from that shown in SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 and still encode a B7L-1 protein having the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6, respectively. Such variant DNA sequences may result from silent mutations (e.g., occurring during PCR amplification), or may be the product of deliberate mutagenesis of a native sequence.
- The invention provides equivalent isolated DNA sequences encoding biologically active B7L-1, selected from: (a) cDNA comprising the nucleotide sequence presented in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5; (b) DNA capable of hybridization to a DNA of (a) under moderately stringent conditions and that encodes biologically active B7L-1; and, (c) DNA that is degenerate as a result of the genetic code to a DNA defined in (a), or (b) and that encodes biologically active B7L-1. B7L-1 proteins encoded by such DNA equivalent sequences are encompassed by the invention.
- DNAs that are equivalents to the DNA sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5 will hybridize under moderately and severely stringent conditions to DNA sequences that encode polypeptides comprising SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 or fragments and variants of SEQ ID NO:2, 4, and 6. Examples of B7L-1 proteins encoded by such DNA, include, but are not limited to, B7L-1 fragments (soluble or membrane bound) and B7L-1 proteins comprising inactivated N-glycosylation site(s), inactivated KEX2 protease processing site(s), or conservative amino acid substitution(s), as described above. B7L-1 proteins encoded by DNA derived from other mammalian species, wherein the DNA will hybridize to the cDNA of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:5 are also encompassed by the present invention.
- Variants possessing the ability to bind B7L-1 counterstructures, or binding partners, e.g. LDCAM may be identified by any suitable assay. Biological activity of B7L-1 may be determined, for example, by competition for binding to the ligand binding domain of LDCAM (i.e. competitive binding assays).
- One type of a competitive binding assay for a B7L-1 polypeptide uses a radiolabeled, soluble B7L-1 and intact cells expressing a B7L-1 counterstructure, or cells expressing LDCAM. Instead of intact cells, one could substitute soluble B7L-1 counterstructure Fc fusion proteins (such as a LDCAM/Fc fusion protein) bound to a solid phase through the interaction of a Protein A, Protein G or an antibody to the counterstructure or Fc portions of the molecule, with the Fc region of the fusion protein. Another type of competitive binding assay utilizes radiolabeled soluble B7L-1 binding proteins and intact cells expressing B7L-1.
- Competitive binding assays can be performed following conventional methodology. For example, radiolabeled B7L-1 can be used to compete with a putative B7L-1 homologue to assay for binding activity against a surface-bound B7L-1 binding protein or a binding counterstructure, e.g. LDCAM. Qualitative results can be obtained by competitive autoradiographic plate binding assays, or Scatchard plots may be utilized to generate quantitative results.
- Binding proteins for a B7L-1 counterstructure, such as B7L-1 itself and anti-B7L-1 ligand antibodies, can be bound to a solid phase such as a column chromatography matrix or a similar substrate suitable for identifying, separating or purifying cells that express the B7L-1 binding protein on their surface. Binding of a B7L-1 counterstructure binding protein to a solid phase contacting surface can be accomplished by using a number of different techniques. For example, a B7L-1/Fc fusion protein can be constructed and then attached to the solid phase through the interaction of Protein A or Protein G. Various other means for fixing proteins to a solid phase are well known in the art and are suitable arrogant for use in the present invention. For example, magnetic microspheres can be coated with B7L-1 and held in the incubation vessel through a magnetic field. Suspensions of cell mixtures containing a B7L-1 counterstructure-expressing cells are contacted with the solid phase that has B7L-1 polypeptides thereon. Cells having B7L-1 counterstructure on their surface bind to the fixed B7L-1 and unbound cells then are washed away. This affinity-binding method is useful for purifying, screening or separating such B7L-1 counterstructure-expressing cells from solution. In particular, this method is useful for separating cells expressing LDCAM from cells that do not express a B7L-1 binding protein or B7L-1 counter structure.
- Methods of releasing positively selected cells from the solid phase are known in the art and encompass, for example, the use of enzymes. Such enzymes are preferably non-toxic and non-injurious to the cells and are preferably directed to cleaving the cell-surface binding partner. In the case of LDCAM-B7L-1 interactions, the enzyme preferably would cleave the LDCAM thereby freeing the resulting cell suspension from the “foreign” B7L-1 material.
- Alternatively, mixtures of cells suspected of containing LDCAM+ cells first can be incubated with biotinylated B7L-1. Incubation periods are typically at least one hour in duration to ensure sufficient binding to B7L-1 The resulting mixture then is passed through a column packed with avidin-coated beads, whereby the high affinity of biotin for avidin provides the binding of the cell to the beads. Use of avidin-coated beads is known in the art. See Berenson, et al. J. Cell. Biochem., 10D:239 (1986). Wash of unbound material and the release of the bound cells is performed using conventional methods.
- As described above, B7L-1 can be used to separate cells expressing a protein to which it binds. In an alternative method, B7L-1 or an extracellular domain or a fragment thereof can be conjugated to a detectable moiety such as 125I to detect cells expressing a B7L-1 binding protein. Radiolabeling with 125I can be performed by any of several standard methodologies that yield a functional 125I-B7L-1 molecule labeled to high specific activity. Or an iodinated or biotinylated antibody against B7L-1 region or the Fc region of the molecule could be used. Another detectable moiety such as an enzyme that can catalyze a colorimetric or fluorometric reaction, biotin or avidin may be used. For example, cells to be tested for LDCAM expression can be contacted with labeled B7L-1. After incubation, unbound labeled B7L-1 is removed and binding is measured using the detectable moiety.
- The binding characteristics of B7L-1, B7L-1 fragments and B7L-1 variants may also be determined using the a labeled B7L-1 binding protein (for example, 125I-LDCAM:Fc) in competition assays similar to those described above. In this case, however, intact cells expressing LDCAM bound to a solid substrate, are used to measure the extent to which a sample containing a putative B7L-1 variant competes for binding with a B7L-1 binding protein.
- Other means of assaying for B7L-1 include the use of anti-B7L-1 antibodies, cell lines that proliferate in response to B7L-1, or recombinant cell lines that express LDCAM and proliferate in the presence of B7L-1.
- The B7L-1 proteins disclosed herein also may be employed to measure the biological activity of LDCAM proteins in terms of their binding affinity for B7L-1. As one example, B7L-1 may be used in determining whether biological activity is retained after modification of a LDCAM (e.g., chemical modification, truncation, mutation, etc.). The biological activity of a LDCAM protein thus can be ascertained before it is used in a research study, or possibly in the clinic, for example.
- B7L-1 proteins find use as reagents that may be employed by those conducting “quality assurance” studies, e.g., to monitor shelf life and stability of proteins to which B7L-1 binds under different conditions. To illustrate, B7L-1 may be employed in a binding affinity study to measure the biological activity of its binding protein that has been stored at different temperatures, or produced in different cell types. The binding affinity of the modified protein for B7L-1 is compared to that of an unmodified protein to detect any adverse impact of the modifications on biological activity of B7L-1 binding protein.
- B7L-1 polypeptides also find use as carriers for delivering agents attached thereto to cells bearing its counter structure, LDCAM or other cell surface receptor to which B7L-1 binds. For example, soluble forms of B7L-1 can be conjugated to agents such as toxins, inhibitors, or antigens and the resulting conjugated agent can be delivered to cells carrying the B7L-1 counterstructure (LDCAM). Such cells include lymphoid dendritic cells that are known product IL-12 during an immune response and can inhibit T cell cytokine production. Thus, these cells are a target for induction of antigen tolerance and B7L-1 conjugates can be used to block, enhance or modify lymphoid dendritic cell activity.
- Diagnostic and therapeutic agents that may be attached to a B7L-1 polypeptide include, but are not limited to, drugs, toxins, radionuclides, chromophores, enzymes that catalyze a colorimetric or fluorometric reaction, and the like, with the particular agent being chosen according to the intended application. Examples of drugs include those used in treating various forms of cancer, e.g., nitrogen mustards such as L-phenylalanine nitrogen mustard or cyclophosphamide, intercalating agents such as cis-diaminodichloroplatinum, antimetabolites such as 5-fluorouracil, vinca alkaloids such as vincristine, and antibiotics such as bleomycin, doxorubicin, daunorubicin, and derivatives thereof. Among the toxins are ricin, abrin, diptheria toxin, Pseudomonas aeruginosa exotoxin A, ribosomal inactivating proteins, mycotoxins such as trichothecenes, and derivatives and fragments (e.g., single chains) thereof. Radionuclides suitable for diagnostic use include, but are not limited to, 123I, 131I, 99mTc, 111In, and 76Br. Radionuclides suitable for therapeutic use include, but are not limited to, 131I, 211At, 77Br, 186Re, 188Re, 212Pb, 212Bi, 109Pd, 64Cu, and 67Cu.
- Such agents may be attached to the B7L-1 by any suitable conventional procedure. B7L-1, being a protein, comprises functional groups on amino acid side chains that can be reacted with functional groups on a desired agent to form covalent bonds, for example. Alternatively, the protein or agent may be derivatized to generate or attach a desired reactive functional group. The derivatization may involve attachment of one of the bifunctional coupling reagents available for attaching various molecules to proteins (Pierce Chemical Company, Rockford, Ill.). A number of techniques for radiolabeling proteins are known. Radionuclide metals may be attached to B7L-1 by using a suitable bifunctional chelating agent, for example.
- Conjugates comprising B7L-1 and a suitable diagnostic or therapeutic agent (preferably covalently linked) are thus prepared. The conjugates are administered or otherwise employed in an amount appropriate for the particular application.
- Another use of the B7L-1 of the present invention is as a research tool for studying the role that B7L-1, in conjunction with LDCAM, may play in T cell signaling and proliferation. The B7L-1 polypeptides of the present invention also may be employed in in vitro assays for detection of LDCAM or B7L-1 or the interactions thereof.
- As discussed above, when various tissues were analyzed for mRNA for B7L-1, transcripts were detected in human bone marrow derived CD34+ derived dendritic cells and peripheral blood derived dendritic cells, B cells after stimulation with CD40L, brain and mouse splenic dendritic cells CD40L stimulated splenic B cells and brain. Because of the restricted expression pattern of B7L-1, antibodies to B7L-1 can be used to identify, isolate, and purify potent antigen presenting cells, including dendritic cells and CD40 ligand activated B cells. Additionally, the presence and level of mRNA for B7L-1 can be exploited to determine the purity of bone marrow derived and blood derived dendritic cell preparations. Other uses of antibodies to B7L-1 molecules include targeting antigens to myeloid dendritic cells or eliminating myeloid dendritic cells with anti-B7L-1 antibody mediated depletion or with an conjugate of a toxin and the antibody.
- Soluble fragments of B7L-1, including, but not restricted to the extracellular domains of SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6 can be used to enhance or inhibit the activity of lymphoid dendritic cells and/or B cells activated for presentation by CD40-L.
- One embodiment of the present invention is directed to a method of treating disorders mediated by the interaction of B7L-1 and a binding partner and involves administering B7L-1 to a mammal having the disorder. B7L-1 polypeptides of the invention can be formulated according to known methods used to prepare pharmaceutically useful compositions. B7L-1 can be combined in admixture, either as the sole active material or with other known active materials, with pharmaceutically suitable diluents (e.g., Tris-HCl, acetate, phosphate), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), emulsifiers, solubilizers, adjuvants and/or carriers. Suitable carriers and their formulations are described in Remington's Pharmaceutical Sciences, 16th ed. 1980, Mack Publishing Co. In addition, such compositions can contain B7L-1 complexed with polyethylene glycol (PEG), metal ions, or incorporated into polymeric compounds such as polyacetic acid, polyglycolic acid, hydrogels, etc., or incorporated into liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts or spheroblasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance of B7L-1. B7L-1 can also be conjugated to antibodies against tissue-specific receptors, ligands or antigens, or coupled to ligands of tissue-specific receptors. For tumor cells on which LDCAM is found, B7L-1 may be conjugated to a toxin whereby B7L-1 is used to deliver the toxin to the specific cell site.
- B7L-1 can be administered topically, parenterally, or by inhalation. The term “parenteral” includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. These compositions will typically contain an effective amount of the B7L-1, alone or in combination with an effective amount of any other active material. Such dosages and desired drug concentrations contained in the compositions may vary depending upon many factors, including the intended use, patient's body weight and age, and route of administration. Preliminary doses can be determined according to animal tests, and the scaling of dosages for human administration can be performed according to art-accepted practices.
- B7L-1 polypeptides may exist as oligomers, such as covalently-linked or non-covalently-linked dimers or trimers. Oligomers may be linked by disulfide bonds formed between cysteine residues on different B7L-1 polypeptides. In one embodiment of the invention, a B7L-1 dimer is created by fusing B7L-1 to the Fc region of an antibody (e.g., IgG1) in a manner that does not interfere with binding of B7L-1 to the B7L-1 ligand-binding domain. The Fc polypeptide preferably is fused to the C-terminus of a soluble B7L-1 (comprising only the receptor-binding). General preparation of fusion proteins comprising heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al. (PNAS USA 88:10535, 1991) and Byrn et al. (Nature 344:677, 1990), hereby incorporated by reference. A gene fusion encoding the B7L-1:Fc fusion protein is inserted into an appropriate expression vector. B7L-1:Fc fusion proteins are allowed to assemble much like antibody molecules, whereupon interchain disulfide bonds form between Fc polypeptides, yielding divalent B7L-1. If fusion proteins are made with both heavy and light chains of an antibody, it is possible to form a B7L-1 oligomer with as many as four B7L-1 extracellular regions. Alternatively, one can link two soluble B7L-1 domains with a peptide linker.
- Suitable host cells for expression of B7L-1 polypeptides include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al. Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce B7L-1 polypeptides using RNAs derived from DNA constructs disclosed herein.
- Prokaryotes include gram negative or gram positive organisms, for example, E. coli or Bacilli. Suitable prokaryotic host cells for transformation include, for example, E. coli, Bacillus subtilis, Salmonella typhimurium, and various other species within the genera Pseudomonas, Streptomyces, and Staphylococcus. In a prokaryotic host cell, such as E. coli, a B7L-1 polypeptide may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in the prokaryotic host cell. The N-terminal Met may be cleaved from the expressed recombinant B7L-1 polypeptide.
- B7L-1 polypeptides may be expressed in yeast host cells, preferably from the Saccharomyces genus (e.g., S. cerevisiae). Other genera of yeast, such as Pichia, K. lactis or Kluyveromyces, may also be employed. Yeast vectors will often contain an origin of replication sequence from a 2μ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are further described in Hitzeman, EPA-73,657 or in Fleer et. al., Gene, 107:285-195 (1991); and van den Berg et. al., Bio/Technology, 8:135-139 (1990). Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. (J. Biol. Chem. 258:2674, 1982) and Beier et al. (Nature 300:724, 1982). Shuttle vectors replicable in both yeast and E. coli may be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Ampr gene and origin of replication) into the above-described yeast vectors.
- The yeast α-factor leader sequence may be employed to direct secretion of the B7L-1 polypeptide. The α-factor leader sequence is often inserted between the promoter sequence and the structural gene sequence. See, e.g., Kurjan et al., Cell 30:933, 1982; Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984; U.S. Pat. No. 4,546,082; and EP 324,274. Other leader sequences suitable for facilitating secretion of recombinant polypeptides from yeast hosts are known to those of skill in the art. A leader sequence may be modified near its 3′ end to contain one or more restriction sites. This will facilitate fusion of the leader sequence to the structural gene.
- Yeast transformation protocols are known to those of skill in the art. One such protocol is described by Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929, 1978. The Hinnen et al. protocol selects for Trp+ transformants in a selective medium, wherein the selective medium consists of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 μg/ml adenine and 20 μg/ml uracil.
- Yeast host cells transformed by vectors containing ADH2 promoter sequence may be grown for inducing expression in a “rich” medium. An example of a rich medium is one consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 μg/ml adenine and 80 μg/ml uracil. Derepression of the ADH2 promoter occurs when glucose is exhausted from the medium.
- Mammalian or insect host cell culture systems could also be employed to express recombinant B7L-1 polypeptides. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988). Established cell lines of mammalian origin also may be employed. Examples of suitable mammalian host cell lines include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., Cell 23:175, 1981), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, and BHK (ATCC CRL 10) cell lines, and the CV-1/EBNA-1 cell line derived from the African green monkey kidney cell line CV1 (ATCC CCL 70) as described by McMahan et al. (EMBO J. 10:2821, 1991).
- Transcriptional and translational control sequences for mammalian host cell expression vectors may be excised from viral genomes. Commonly used promoter sequences and enhancer sequences are derived from Polyoma virus, Adenovirus 2, Simian Virus 40 (SV40), and human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment which may also contain a viral origin of replication (Fiers et al., Nature 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the SV40 viral origin of replication site is included.
- Exemplary expression vectors for use in mammalian host cells can be constructed as disclosed by Okayama and Berg (Mol. Cell. Biol. 3:280, 1983). A useful system for stable high level expression of mammalian cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986). A useful high expression vector, PMLSV N1/N4, described by Cosman et al., Nature 312:768, 1984 has been deposited as ATCC 39890. Additional useful mammalian expression vectors are described in EP-A-0367566, and in U.S. patent application Ser. No. 07/701,415, filed May 16, 1991, incorporated by reference herein. The vectors may be derived from retroviruses. In place of the native signal sequence, and in addition to an initiator methionine, a heterologous signal sequence may be added, such as the signal sequence for IL-7 described in U.S. Pat. No. 4,965,195; the signal sequence for IL-2 receptor described in Cosman et al., Nature 312:768 (1984); the IL-4 signal peptide described in EP 367,566; the type I IL-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; and the type II IL-1 receptor signal peptide described in EP 460,846.
- B7L-1 as an isolated, purified or homogeneous protein according to the invention may be produced by recombinant expression systems as described above or purified from naturally occurring cells. B7L-1 can be purified to substantial homogeneity, as indicated by a single protein band upon analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
- One process for producing B7L-1 comprises culturing a host cell transformed with an expression vector comprising a DNA sequence that encodes B7L-1 under conditions sufficient to promote expression of B7L-1. B7L-1 is then recovered from culture medium or cell extracts, depending upon the expression system employed. As is known to the skilled artisan, procedures for purifying a recombinant protein will vary according to such factors as the type of host cells employed and whether or not the recombinant protein is secreted into the culture medium.
- For example, when expression systems that secrete the recombinant protein are employed, the culture medium first may be concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a purification matrix such as a gel filtration medium. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred. Finally, one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, (e.g., silica gel having pendant methyl or other aliphatic groups) can be employed to further purify B7L-1. Some or all of the foregoing purification steps, in various combinations, are well known and can be employed to provide a substantially homogeneous recombinant protein.
- It is possible to utilize an affinity column comprising the B7L-1 binding domain of a protein to which B7L-1 binds, such as LDCAM, to affinity-purify expressed B7L-1 polypeptides. B7L-1 polypeptides can be removed from an affinity column using conventional techniques, e.g., in a high salt elution buffer and then dialyzed into a lower salt buffer for use or by changing pH or other components depending on the affinity matrix utilized. Alternatively, the affinity column may comprise an antibody that binds B7L-1. Example 5 describes a procedure for employing B7L-1 of the invention to generate monoclonal antibodies directed against B7L-1.
- Recombinant protein produced in bacterial culture can be isolated by initial disruption of the host cells, centrifugation, extraction from cell pellets if an insoluble polypeptide, or from the supernatant fluid if a soluble polypeptide, followed by one or more concentration, salting-out, ion exchange, affinity purification or size exclusion chromatography steps. Finally, RP-HPLC can be employed for final purification steps. Microbial cells can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.
- Transformed yeast host cells are preferably employed to express B7L-1 as a secreted polypeptide in order to simplify purification. Secreted recombinant polypeptide from a yeast host cell fermentation can be purified by methods analogous to those disclosed by Urdal et al. (J. Chromatog. 296:171, 1984). Urdal et al. describe two sequential, reversed-phase HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column.
- Useful fragments of the B7L-1 nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target B7L-1 mRNA (sense) or B7L-1 DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of B7L-1 cDNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to about 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).
- Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. The antisense oligonucleotides thus may be used to block expression of B7L-1 proteins. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.
- Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. Antisense or sense oligonucleotides are preferably introduced into a cell containing the target nucleic acid sequence by insertion of the antisense or sense oligonucleotide into a suitable retroviral vector, then contacting the cell with the retrovirus vector containing the inserted sequence, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see PCT Application US 90/02656).
- Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.
- Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.
- In addition to the above, the following examples are provided to illustrate particular embodiments and not to limit the scope of the invention.
- The DNA encoding human B7-1, a T cell costimulatory molecule and a SMARTLIST protein, was used in a BLAST sequence analysis to identify ESTs having homology to B7-1. This BLAST analysis resulted in the identification of two GENBANK ESTs, File No. T08949 (EST06841) and File No. T32071 (EST 43348), TIGR (?) having low but significant homology to a portion of the B7-1 molecule.
- The two GENBANK EST sequences were used to design PCR primers for probing cDNA libraries in order to identify a cDNA source for the ESTs. The primer sequences were as follows:
5′ AGGGCGAGTACACCTG 3′ (SEQ ID NO:7) (sense bases 22-37 of EST T32071) 5′ GTGGATCTGTCAGCTCC 3′ (SEQ ID NO:8) (anti-sense bases 376-360 of EST T32071) - Oligonucleotide primers identified in SEQ ID NO:7 and SEQ ID NO:8 were used to screen cDNA libraries by PCR. Of the 16 cDNA libraries examined, PCR product was obtained only from a human brain lambda library (purchased from Clonetech HL3002b). The product was cloned into bacteria and sequenced to verify that the product included an open reading frame.
- The cloned EST sequence was radioactively labeled and used to probe the brain lambda library using standard probing techniques, in order to isolate clones from the brain lambda library that included the EST derived sequence. One clone, designated 32071-2, extended the EST sequence to the 5′ end by 140 bases. A subsequent BLAST analysis of the GENBANK EST database using the extended EST sequence as the query sequence lead to the identification of an overlapping EST (H15268) derived from IMAGE Consortium clone #44904.
- The IMAGE Consortium clone was obtained (Research Genetics, 07002) and fully sequenced to reveal an open reading frame and a new full length human cDNA sequence encoding B7L-1. SEQ ID NO:1 provides the complete cDNA of human B7L-1 and SEQ ID NO:2 provides the amino acid sequence encoded by the cDNA. The encoded full length protein has a predicted extracellular region of amino acid 364 amino acids (1-364), including a leader sequence of 20 amino acids (1-20); a transmembrane domain of 21 amino acids (365-385) and a cytoplasmic domain of 47 amino acids (386-432).
- To prepare a vector construct for expressing human long extracellular B7L-1, the entire coding region of SEQ ID NO:1 was obtained from clone #49904. First, the B7L-1 insert was excised from the clone using the HindIII and Not1 sites on the clone. Then the oligonucleotides identified in SEQ ID NO:9 and SEQ ID NO:10 were used as adapters to change the HindIII cohesive end to a Sal1 cohesive end by annealing and ligating the oligonucleotides to the excised insert containing nucleotide residues 1-1820 of SEQ ID NO:1. The resulting construct was ligated into a pDC409 expression vector that had been cut with Sal1 and Not1.
- The expression vector construct was then transfected in CV1/EBNA cells and B7L-1 was expressed using techniques described in McMahan et al., EMBO J. 10:2821, 1991.
- After the cells were shocked and incubated for several days, cell supernatants containing any soluble form of the protein were collected and the B7L-1 protein was recovered using HPLC techniques. To recover forms of B7L-1 that are membrane bound, the transfected cells were harvested, fixed in 1% paraformaldehyde, washed and used in their intact form.
- To identify a cDNA source of murine B7L-1, sequence information obtained from the human B7L-1 identified in EXAMPLE 1 above was used to design PCR primers, one of which is the oligonucleotides of SEQ ID NO:12; the second of which is disclosed in SEQ ID NO:13. These PCR primers were used to identify cDNA libraries that give PCR products when used as templates in PCR reactions. PCR product was identified in PCR reactions using mouse brain lambda cDNA library (Clonetech ML3000a).
- The mouse brain lambda cDNA library was screened and a clone was identified and sequenced using standard techniques. The sequenced clone lacked the 5′ end of the coding region as determined by comparing the clone with the human B7L-1. RT-PCR off of mouse brain RNA using the lambda gt10 vector entry oligonucleotide and the human B7L-1 specific oligonucleotide of SEQ ID NO:7 extended the sequence from the 3′ to the end of the sequence and 5′ to nearly full length. The clone encodes an open reading frame that begins at a position analogous to amino acid residue 9 of human B7L-1 (SEQ ID NO:2) and terminates at a position that is analogous to the terminal amino acid of the human B7L-1. The cloned murine B7L-1 cDNA having a composite murine/human leader is provided in SEQ ID NO:3 and its encoded polypeptide is provided in SEQ ID NO:4. The composite murine/human leader sequence includes 7 amino acids of the human sequence and 12 amino acids of the murine sequence. The murine B7L-1 clone is 95% identical to the human B7L-1 of SEQ ID NO:1 as determined by the GCG GAP program. The murine clone has a single gap and represents a shorter splice variant of B7L-1.
- To investigate the existence of a human shorter splice variant of B7L-1, the oligonucleotide primers disclosed in SEQ ID NO:14 and SEQ ID NO:15 were used in RT-PCR reactions to probe human brain RNA. Using standard ethidium bromide agarose gel and Southern Blot analyses methodologies, a shorter splice form was shown to exist and predominate. The product of the RT-PCR reaction was cloned and subjected to standard dideoxynucleotide terminator sequence analysis. SEQ ID NO:5 provides the nucleotide sequence of the human short extracellular form of B7L-1 and SEQ ID NO:6 provides the encoded amino acid sequence.
- The results of this work indicate that there are at least 2 different splice forms of B7L-1 and the predominant form is the short form which was first identified while cloning the murine B7L-1 homologue.
- The following describes methods for expressing a soluble fragment and the full length membrane bound murine short extracellular form of B7L-1.
- To prepare a vector construct for expressing the full length membrane bound murine short extracellular form of B7L-1 the coding region of SEQ ID NO:3 was prepared using a PCR SOEing technique. The oligonucleotides used are described in SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18. The inner 5′ oligonucleotide (SEQ ID NO:16) included bases to code for the initiator Met and 5 additional amino acids that form the first 6 residues of the long extracellular human B7L-1 signal peptide. The outer 5′oligonucleotide (SEQ ID N017) was present in a 9 fold excess to the inner 5′ oligonucleotide and included a Sal1 restriction site. The 3′ oligonucleotide, described in SEQ ID NO:18, included a Not1 restriction site.
- The PCR SOEing product was subjected to a restriction enzyme digest with Sal1 and Not1 and then ligated into a pDC412 expression vector. The expression vector was then transfected in DH10B E coli by electroporation.
- B7L-1 was expressed using techniques described in McMahan et al., EMBO J. 10:2821, 1991. To recover forms of B7L-1 that are membrane bound, the transfected cells were harvested, fixed in 1% paraformaldehyde, washed and used in their intact form.
- To prepare a vector construct for expressing a soluble murine short extracellular B7L-1 polypeptide, the extracellular coding region of SEQ ID NO:3 was prepared using a PCR SOEing technique. The oligonucleotides used were identical to those used to prepare the vector construct for the murine full length membrane bound polypeptide except that the oligonucleotide of SEQ ID NO:12 was the 3′ oligonucleotide, thus replacing SEQ ID NO:18.
- The PCR SOEing product was subjected to a restriction enzyme digest with the Sal1 and BglII sites and then ligated into a Bluescript SK vector. This clone fusion was excised with a SalI/BglII double digestion and ligated into a SalI/BglII digested pDC412 expression vector. The expression vector was then transfected in DH10B E coli by electroporation and the soluble murine B7L-1 polypeptide was expressed as described above for the full length murine B7L-1 protein.
- The following describes generating a human B7L-1/Fc protein which was used to study binding characteristics of B7L-1. The fusion protein includes the predicted extracellular region of human B7L-1 and the mutein human Fc region.
- To isolate the nucleotides that encode the extracellular domain of SEQ ID NO:2 (nucleotides 108-1249 of SEQ ID NO:1), oligonucleotides that flank the extracellular region of B7L-1 (SEQ ID NO:11 and SEQ ID NO:12) were used as primers in a PCR reaction to obtain a PCR product from clone #44904 which was the template in the reaction. The resulting PCR product was digested with Sal1 and BglII restriction enzymes at the Sal1 and BglII sites incorporated by the primers. The resulting fragment was ligated into an expression vector (pDC409) containing the human IgG1 Fc region mutated to lower Fc receptor binding.
- The resulting DNA construct was transfected into the monkey kidney cell lines CV-1/EBNA (with co-transfection of psv3neo). After 7 days of culture in medium containing 0.5% low immunoglobulin bovine serum, a solution of 0.2% azide was added to the supernatant and the supernatant was filtered through a 0.22 μm filter. Then approximately 1 L of culture supernatant was passed through a BioCad Protein A HPLC protein purification system using a 4.6×100 mm Protein A column (POROS 20A from PerSeptive Biosystems) at 10 mL/min. The Protein A column binds the Fc Portion of the fusion protein in the supernatant, immobilizing the fusion protein and allowing other components of the supernatant to pass through the column. The column was washed with 30 mL of PBS solution and bound fusion protein was eluted from the HPLC column with citric acid adjusted to pH 3.0. Eluted purified fusion protein was neutralized as it eluted using 1M HEPES solution at pH 7.4.
- The following describes preparing a murine Fc fusion protein that included the soluble extracellular portion of the murine short extracellular B7L-1 and the mutein Fc peptide described above in Example 5. The extracellular domain coding region of the murine extracellular short B7L-1 was excised from the vector described in Example 4 using SalI and BglII restriction enzymes. The excised fragment was ligated into a pDC412 expression vector that included the human IgG1Fc region.
- The resulting DNA construct was transfected into the monkey kidney cell lines CV-1/EBNA. The cells were cultured and the fusion protein collected and purified as described in Example 5.
- The following describes preparing a human B7L-1/polyHis fusion protein (B7L-1/polyHis). The process included preparing a DNA construct that encodes the fusion protein, transfecting a cell line with the DNA construct, and harvesting supernatants from the transfected cells.
- The oligonucleotide primers described in SEQ ID NO:12 and SEQ ID NO:13, containing a SpeI restriction site, were used to isolate the nucleotides encoding amino acids 1-364 of SEQ ID NO:2 from the IMAGE Consortium clone (H15268, clone #49904). The PCR product was digested with SpeI and PstI restriction enzymes, the PstI enzyme cutting the PCR product at a site within the B7L-1 coding region. The excised product was ligated into a SpeI/PstI digested Bluescript based vector containing a CMV viral leader upstream and in-frame with the SpeI site. The viral leader and the B7L-1 encoding cDNA construct was excised from the vector using SalI and PstI restriction enzyme digestions and the excised construct was then ligated in a three way ligation with a PstI/NotI fragment containing the remainder of the human B7L-1 cDNA and a pDC409 expression vector (McMahon et al., EMBO J. 10:2821, 1991).
- The polyHis fusion construct was prepared using an oligonucleotide primer that primes upstream in the vector prepared as described above (?) and a primer which includes 1) nucleotides complementary to those present in human B7L-1 cDNA that are positioned just before the transmembrane domain; 2) nucleotides complementary to the polyHis nucleotides; and, a Not1 site. The polyHis containing fragment was digested with SalI and NotI and then ligated into a similarly digested pDC409 vector.
- The resulting DNA fusion construct was transiently transfected into the monkey cell line COS-1 (ATCC CRL-1650). Following a 7 day culture in medium containing 0.5% low immunoglobulin bovine serum, cell supernatants were harvested and a solution of 0.2% sodium azide was added to the supernatants. The supernatants were filtered through a 0.22 μm filter, concentrated 10 fold with a prep scale concentrator (Millipore; Bedford, Mass.) and purified on a BioCad HPLC protein purification equipped with a Nickel NTA Superflow self pack resin column (Qiagen, Santa Clarita, Calif.). After the supernatant passed through the column, the column was washed with Buffer A (20 mM NaPO4, pH7.4; 300 mM NaCl; 50 mM Imidazole). Bound protein was then eluted from the column using a gradient elution techniques. Fractions containing protein were collected and analyzed on a 4-20% SDS-PAGE reducing gel. Fractions containing soluble B7L-1/polyHis fusion protein were pooled, concentrated 2 fold, and then dialyzed in PBS. The resulting soluble B7L-1/polyHis fusion protein was then filtered through a 0.22 μm sterile filter.
- The B7L-1/Fc fusion protein prepared as described in Example 5 was used to screen cell lines for binding using quantitative binding studies according to standard flow cytometry methodologies. For each cell line screened, the procedure involved incubating approximately 250,000 to 1,000,000 of the cells blocked with 2% FCS (fetal calf serum), 5% normal goat serum and 5% rabbit serum in PBS for 1 hour. Then the blocked cells were incubated with 5 μg/mL of B7L-1/Fc fusion protein in 2% FCS, 5% goat serum and 5% rabbit serum in PBS. Following the incubation the sample was washed 2 times with FACS buffer (2% FCS in PBS) and then treated with mouse anti human Fc/biotin (purchased from Jackson Research) and SAPE (streptavidin-phycoerythrin purchased from Molecular Probes). This treatment causes the antihuman Fc/biotin to bind to any bound B7L-1/Fc and the SAPE to bind to the anti-human Fc/biotin resulting in a fluorescent identifying label on B7L-1/Fc which is bound to cells. The cells were analyzed for any bound protein using fluorescent detection flow cytometry. The results indicated that human B7L-1 binds well to human lung epithelial line (WI-26), human B lymphoblastoid lines (Daudi and PAE8LBM1, human fresh tonsillar B cells, murine CD8+ dendritic cells from spleens/lymph nodes of flt3-L treated animals and murine T cell lymphoma (S49.1).
- This example illustrates a method for preparing monoclonal antibodies to B7L-1. Purified B7L-1, a fragment thereof such as the extracellular domain, synthetic peptides or cells that express B7L-1 can be used to generate monoclonal antibodies against B7L-1 using conventional techniques, for example, those techniques described in U.S. Pat. No. 4,411,993. Briefly, rodents are immunized with B7L-1 as an immunogen emulsified in complete Freund's adjuvant, and injected in amounts ranging from 10-100 μg subcutaneously or intraperitoneally. Ten to twelve days later, the immunized animals are boosted with additional B7L-1 emulsified in incomplete Freund's adjuvant. The animals are periodically boosted thereafter on a weekly to bi-weekly immunization schedule. Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision to test for B7L-1 antibodies by dot blot assay, ELISA (Enzyme-Linked Immunosorbent Assay), immunoprecipitation, or other suitable assays, including FACS analysis.
- Following detection of an appropriate antibody titer, positive animals are provided one last intravenous injection of B7L-1 in saline. Three to four days later, the animals are sacrificed, spleen cells harvested, and spleen cells are fused to a murine myeloma cell line, e.g., NS1 or preferably P3x63Ag8.653 (ATCC CRL 1580). Fusions generate hybridoma cells, which are plated in multiple microtiter plates in a HAT (hypoxanthine, aminopterin and thymidine) selective medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.
- The hybridoma cells are screened by ELISA for reactivity against purified B7L-1 by adaptations of the techniques disclosed in Engvall et al., Immunochem. 8:871, 1971 and in U.S. Pat. No. 4,703,004. A preferred screening technique is the antibody capture technique described in Beckmann et al., (J. Immunol. 144:4212, 1990) Positive hybridoma cells can be injected intraperitoneally into syngeneic BALB/c mice to produce ascites containing high concentrations of anti-B7L-1-L monoclonal antibodies. Alternatively, hybridoma cells can be grown in vitro in flasks or roller bottles by various techniques. Monoclonal antibodies produced in mouse ascites can be purified by ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can also be used, as can affinity chromatography based upon binding to B7L-1.
- The following describes RT-PCR and Northern Blot experiments that were carried out to identify tissue and cell types that express human and murine B7L-1 polypeptides of the present invention.
- The RT-PCR process involved the reverse transcription of about 1 μg of total RNA from various human tissue and cell sources to make a first strand cDNA using the Pharmacia, First Strand cDNA Synthesis Kit following the manufacturer's instructions. Cell lines from which total RNA was transcribed included dendritic cells derived from human bone marrow; CD34+ cells and CD34− cells; human peripheral blood B cells cultured in IL-4, SAC or CD40L; human monocyte derived dendritic cells; human monocytes cultured in IFN gamma; human and mouse brain; mouse splenic B cells cultured +/− CD40L; mouse splenic T cells +/− ConA stimulation.
- The RT-PCR results indicated that B7L-1 is expressed by human bone marrow CD34+ derived and peripheral blood derived dendritic cells and human peripheral blood B cells after stimulation with CD40L. Additionally mRNA was found in brain and a weak PCR signal was found in CD34− bone marrow cells. The results showed that murine B7L-1 is expressed in murine splenic dendritic cells, CD40L stimulated splenic B cells, and in murine brain.
- Northern Blot analysis was performed by fractionating 5 μg or 10 μg total RNA on 1.2% agarose gels containing formaldehyde. The RNA was then blotted onto Hybond Nylon membranes using standard blotting techniques. Poly A+ multiple tissue blots containing 1 μg of mouse mRNA from a number of different sources were purchased from Clonetech. The purchased blots were prehybridized according to manufacturer's instructions for at least 6 hours at 68° C. Riboprobes, containing the coding region of murine B7L-1, were generated using Promega's Riboprobe Combination Kit and T7 RNA Polymerase according to the manufacturer's instructions. Standard Northern Blot generating procedures as described in Maniatis, (Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Lab. Press, 1989) were used.
- The results of probing the Northern blots with the riboprobes and visualizing the resulting x-ray film for positively binding probes show that hybridizing RNA was detected in brain, liver, skeletal muscle and heart. In the brain, two band sizes were observed. One RNA was approximately 4.0 kB and the other approximately 2.7 kB. In the liver the predominate band indicated hybridizing RNA of mostly 2.7 kB and in the skeletal muscle and heart only the 2.7 kB RNA band was observed.
- In order to study binding to murine NK cells, spleens were removed from IL-15 treated CB-17/SCID mice and used as a source for highly enriched and activated murine NK cells. Spleen cells isolated from IL-15 treated SCID mice are 60-80% DX-5 positive. DX-5 is a pan NK marker than is expressed on NK cells from many different strains of mice. Flow cytometric analysis was performed to detect B7L-1 and LDCAM binding to DX-5+ in vivo IL-15 activated murine NK cells. Table I gives the results of a murine NK cell binding study.
TABLE I Fc molecule DX-5+ NK cell %+/MFI control Fc 8%/88 B7L-1Fc 19%/265 LDCAM Fc 38%/432 - LDCAM and B7L-1 binding can be detected on in vivo activated murine NK cells.
- Results of experiments directed at studying B7L-1 and LDCAM binding to human endothelial cells demonstrated no binding on human umbilical vein endothelial cells (HUVEC) from different donors. However, for a HUVEC from one donor, B7L-1 did induce low levels of CD62E and CD106 compared to control Fc.
- Based upon the results of the binding experiments described in Example 8, cDNA pools from a WI-26 cell line expression library were screened for binding to the purified B7L-1/Fc fusion protein prepared as described in Example 5. The expression library was prepared using standard methodologies. The cDNA pools were transfected into CV1/EBNA cells and then incubated for 2 days with 1 μg/mL of B7L-1/Fc fusion protein.
- Following the B7L-1/Fc incubation period the cells were incubated with 125I-labeled anti-human F(AB)2. Autoradiographs were obtained and examined visually for positive cDNA pools having bound B7L-1/Fc. The positively identified pools were subdivided and rescreened. A single clone was identified that when retransfected into CV1/EBNA cells specifically bound the B7L-1/Fc fusion protein.
- The clone, designated LDCAM, is described more fully in copending patent application Ser. No. 60/095,672 filed Aug. 7, 1998, which is incorporated herein by reference.
- The following describes FACS cell binding experiments that demonstrate binding characteristics of B7L-1 and a protein for which it is a binding partner, LDCAM. Cells studied included murine T cells, human T cells, murine B cells, murine NK cells, human endothelial cells, and human tumor cell lines.
- To study murine T cell binding, BALB/c murine lymph node (LN) cells were cultured in culture medium alone and in the presence of different stimuli for 18-20 hours. The cultured cells were harvested and prepared for binding studies using B7L-1/Fc fusion protein, LDCAM/Fc fusion protein and a control Fc protein. Following an overnight culture BALB/c murine LN cells are typically >90% CD3+. Bound protein was detected using flow cytometric analysis. The results shown in Table I indicate observed binding expressed as mean fluorescence intensity units (MFI) on unstimulated T cells (medium) and on stimulated T cells (by stimuli).
TABLE I Fc medium Con A TCR mAb PHA control Fc 12.7 10.4 14.5 14.2 B7L-1Fc 11.7 14.3 24.0 12.6 LDCAM Fc 18.7 51.7 230.0 91.4 - When analyzed by T cell subsets, 75-80% of LN CD4+ murine T cells displayed detectable LDCAM binding after anti-TCR stimulation in vitro. About 50% of LN CD8+ murine T cells display detectable binding. In addition, CD4+ T cells exhibit higher levels of LDCAM binding than do CD8+ murine T cells. The results demonstrate that LDCAM/Fc binds at low levels to naïve T cells. However, after an overnight activation with polyclonal stimuli binding increased 5-20 fold depending on the stimuli. Of the stimuli studied PMA induces the least LDCAM binding to murine T cells, and anti-TCR induces the highest binding.
- To study human T cells binding to LDCAM and its counterstructure, B7L-1, human peripheral blood (PB) T cells were cultured in culture medium only or in the presence of different stimuli for 18-20 hours. The cultured cells were harvested and prepared for binding studies using either B7L/1Fc fusion protein, LDCAM/Fc fusion protein and a control Fc protein. Bound protein on the human PB T cells was determined by flow cytometric analysis. Table II details results observed, expressed as MFI, on unstimulated T cells (medium) and on stimulated T cells (by stimuli).
TABLE II Fc medium Con A PMA PHA control Fc 4.7 4.8 3.5 4.3 B7L-1Fc 6.3 7.5 4.5 5.7 LDCAM Fc 22.3 42.8 61.9 38.8 - The results show that, PMA induces greater LDCAM binding on human T cells than it does on murine T cells. The presence of specific binding of LDCAM to both murine and human T cells in the absence of B7L-1 binding suggests that LDCAM is binding to B7L-1, or a different molecule and not to itself. Because studies indicate that T cells express little or no B7L-1, LDCAM may have another binding partner.
- Studies similar to those described above were performed to evaluate LDCAM and B7L-1 binding to murine splenic B cells. Neither B7L-1 nor LDCAM binding was detected on unstimulated murine B cells. Culturing murine splenic B cells with muCD40L or LPS induced low levels of LDCAM binding but no appreciable level of B7L-1 binding was detected.
- In order to study binding to murine NK cells, spleens were removed from IL-15 treated CB-17/SCID mice and used as a source for highly enriched and activated murine NK cells. Spleen cells isolated from IL-15 treated SCID mice are 60-80% DX-5 positive. DX-5 is a pan NK marker than is expressed on NK cells from many different strains of mice. Flow cytometric analysis was performed as described above to detect B7L-1 and LDCAM binding to DX-5+ in vivo IL-15 activated murine NK cells. Table II gives the results of a binding murine NK cell binding study.
TABLE III Fc molecule DX-5+ NK cell %+/MFI control Fc 8%/88 B7L-1Fc 19%/265 LDCAM Fc 38%/432 - In contrast to that which was observed on murine and human T cells, LDCAM and B7L-1 binding can be detected on in vivo activated murine NK cells.
- Results of experiments directed at studying B7L-1 and LDCAM binding to human endothelial cells demonstrated no binding on human umbilical vein endothelial cells (HUVEC) from different donors. However, one HUVEC from one donor B7L-1 did induce low levels of CD62E and CD106 compared to control Fc.
- Table IV details the results of experiments directed at evaluating B7L-1 and LDCAM binding to human tumor cell lines. The results are expressed as percentage of cells binding LDCAM or B7L-1.
TABLE IV B7L-1Fc Cell line Cell type LDCAMFc (%+)** (%+)** U937 monocytic leukemia 10 7 K562 erythroblastic 7 5 leukemia Jurkat acute T cell leukemia 10 7 MP-1 B-cell LCL 46 10 DAUDI-hi B-cell Burkitt's 8 6 RPMI 8866 B-cell lymphoma 0 0 #88EBV B-cell LCL 4 3 #33EBV B-cell LCL 0 0 Tonsil G EBV B-cell LCL 25 13 MDA231 breast 8 9 adenocarcinoma OVCAR-3 ovarian carcinoma 48 30 H2126M1 lung adenocarcinoma 0 0
**binding of control Fc has been subtracted out so this is net %+ cells binding over background
- The results show significant LDCAM binding on ovarian carcinoma cell line and 2 of the human B-cell tumor lines (MP-1 and Tonsil G). B7L-1 also binds to these three tumor cell lines but a much lower levels. These results demonstrate that LDCAM is a marker for certain types of B cell lymphomas or different types of carcinomas. In addition, biological signaling mediated by LDCAM or B7L-1 could mediate functional anti tumor effects on these types of tumors.
Claims (21)
1. An isolated DNA sequence encoding a polypeptide that is at least 80% identical to the sequence of amino acid residues selected from the group consisting of amino acids I-432 of SEQ ID NO:2, amino acids 1-398 of SEQ ID NO:4, and amino acids 1-398 of SEQ ID NO:6, the polypeptide being capable of binding to a LDCAM polypeptide.
2. An isolated DNA sequence encoding a polypeptide having an amino acid sequence selected from the group SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6.
3. An isolated DNA encoding a soluble polypeptide wherein said soluble polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence selected from the group consisting of:
a) amino acids x1 to 364 of SEQ ID NO:2, wherein x1 is amino acid 1 or 21;
b) amino acids x1′ to 330 of SEQ ID NO:4, where x1′ is amino acid 1 or 21;
c) amino acids y1 to 330 of SEQ ID NO:6, wherein y1 is amino acid 1 or 21; and
d) a fragment of the sequences of a) b) or c),
wherein the soluble polypeptide is capable of binding to a LDCAM polypeptide.
4. An isolated DNA encoding a soluble polypeptide wherein said soluble polypeptide comprises an amino acid sequence selected from the group consisting of:
a) amino acids x1 to 364 of SEQ ID NO:2, wherein x1 is amino acid 1 or 21;
b) amino acids x1′ to 330 of SEQ ID NO:4, where x1′ is amino acid 1 or 21;
c) amino acids y1 to 330 of SEQ ID NO:6, wherein y1 is amino acid 1 or 21; and
d) a fragment of the sequences of a) b) or c),
5. DNA selected from the group consisting of:
a) nucleic acids x1 to 1452 of SEQ ID NO:1, wherein x1 is nucleic acid 157 or 217;
b) nucleic acids x1′ to 1206 of SEQ ID NO:3, wherein x1′ is nucleic acid 13 or 73;
c) nucleic acids y1 to 1350 of SEQ ID NO:5, wherein y1 is nucleic acid 157 or 217;
d) DNA sequences that hybridize under moderately stringent conditions to the DNA of a) b) or c); and which DNA sequences encode a polypeptide that binds itself; and
e) DNA complementary to the DNA of a), b) c) and d).
f) DNA sequences that, due to the degeneracy of the genetic code, encode B7L-1 polypeptide having the amino acid sequence of the polypeptide encoded by the DNA sequences of a), b), c) d) or e).
6. A polypeptide encoded by DNA selected from the group consisting of:
a) nucleic acids x1 to 1452 of SEQ ID NO:1, wherein x1 is nucleic acid 157 or 217;
b) nucleic acids x1′ to 1206 of SEQ ID NO:3, wherein x1′ is nucleic acid 13 or 73;
c) nucleic acids y1 to 1350 of SEQ ID NO:5, wherein y1 is nucleic acid 157 or 217;
d) DNA sequences that hybridize under moderately stringent conditions to the DNA of a) b) or c); and which DNA sequences encode a polypeptide that binds itself; and
e) DNA complementary to the DNA of a), b) c) and d).
f) DNA sequences that, due to the degeneracy of the genetic code, encode B7L-1 polypeptide having the amino acid sequence of the polypeptide encoded by the DNA sequences of a), b), c) d) or e).
7. A polypeptide comprising an amino acid sequence that is at least 80% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6, the polypeptide being capable of binding to a LDCAM polypeptide.
8. A soluble polypeptide comprising an amino acid sequence selected from the group consisting of:
a) amino acids x1 to 364 of SEQ ID NO:2, wherein x1 is amino acid 1 or 21;
b) amino acids x1′ to 330 of SEQ ID NO:4, where x1′ is amino acid 1 or 21;
c) amino acids y1 to 330 of SEQ ID NO:6, wherein y1 is amino acid 1 or 21; and
d) a fragment of the sequences of a) b) or c),
wherein the fragment is capable of binding to a LDCAM polypeptide.
9. A soluble polypeptide comprising an amino acid sequence that is at least 90% identical to an amino acids sequence selected from the group consisting of:
a) amino acids x1 to 364 of SEQ ID NO:2, wherein x1 is amino acid 1 or 21;
b) amino acids x1′ to 330 of SEQ ID NO:4, where x1′ is amino acid 1 or 21;
c) amino acids y1 to 330 of SEQ ID NO:6, wherein y1 is amino acid 1 or 21; and
d) a fragment of the sequences of a) b) or c)
wherein the soluble polypeptide is capable of binding to a LDCAM polypeptide.
10. A fusion protein comprising an amino acid selected from the group consisting of:
a) amino acids x1 to 364 of SEQ ID NO:2, wherein x1 is amino acid 1 or 21;
b) amino acids x1′ to 330 of SEQ ID NO:4, where x1′ is amino acid 1 or 21;
c) amino acids y1 to 330 of SEQ ID NO:6, wherein y1 is amino acid 1 or 21; and
d) a fragment of the sequences of a) b) or c),
wherein the fragment is capable of binding to a LDCAM polypeptide
11. A recombinant expression vector comprising DNA of claim 1 .
12. A process for preparing a polypeptide, the process comprising culturing a host cell transformed with an expression vector of claim 11 under conditions that promote expression of the polypeptide, and recovering the polypeptide.
13. A composition comprising a suitable carrier and a polypeptide of claim 7 .
14. A recombinant expression vector comprising DNA of claim 3 .
15. A process for preparing a polypeptide, the process comprising culturing a host cell transformed with an expression vector of claim 14 under conditions that promote expression of the polypeptide, and recovering the polypeptide.
16. An isolated antibody that binds B7L-1.
17. The antibody of claim 16 , wherein said B7L-1 is soluble.
18. An isolated antibody that binds a polypeptide having an amino acid sequence consisting of SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO:6.
19. A method of treating a subject having a disease mediated by B7L-1 comprising administering to said subject an antibody that binds B7L-1.
20. A method of treating a subject having a disease mediated by B7L-1 comprising administering to said subject a polypeptide comprising an extracellular domain of B7L-1.
21. A method of depleting or eliminating myeloid dendritic cells comprising contacting said myeloid dendritic cells with an antibody that binds B7L-1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/981,954 US20080075724A1 (en) | 1998-08-07 | 2007-10-31 | Molecules designated B7L-1 |
US12/714,246 US7939640B2 (en) | 1998-08-07 | 2010-02-26 | Antibodies that bind B7L-1 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9566398P | 1998-08-07 | 1998-08-07 | |
PCT/US1999/017906 WO2000008057A2 (en) | 1998-08-07 | 1999-08-05 | Molecules designated b7l-1 |
US09/778,510 US6512095B2 (en) | 1998-08-07 | 2001-02-06 | Molecules designated B7L-1 |
US10/302,041 US20030144478A1 (en) | 2001-02-06 | 2002-11-21 | Molecules designated B7L-1 |
US11/981,954 US20080075724A1 (en) | 1998-08-07 | 2007-10-31 | Molecules designated B7L-1 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/302,041 Continuation US20030144478A1 (en) | 1998-08-07 | 2002-11-21 | Molecules designated B7L-1 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/714,246 Continuation US7939640B2 (en) | 1998-08-07 | 2010-02-26 | Antibodies that bind B7L-1 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080075724A1 true US20080075724A1 (en) | 2008-03-27 |
Family
ID=22253041
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/778,510 Expired - Fee Related US6512095B2 (en) | 1998-08-07 | 2001-02-06 | Molecules designated B7L-1 |
US11/981,954 Abandoned US20080075724A1 (en) | 1998-08-07 | 2007-10-31 | Molecules designated B7L-1 |
US12/714,246 Expired - Fee Related US7939640B2 (en) | 1998-08-07 | 2010-02-26 | Antibodies that bind B7L-1 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/778,510 Expired - Fee Related US6512095B2 (en) | 1998-08-07 | 2001-02-06 | Molecules designated B7L-1 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/714,246 Expired - Fee Related US7939640B2 (en) | 1998-08-07 | 2010-02-26 | Antibodies that bind B7L-1 |
Country Status (10)
Country | Link |
---|---|
US (3) | US6512095B2 (en) |
EP (1) | EP1108042B1 (en) |
AT (1) | ATE415480T1 (en) |
AU (1) | AU771640B2 (en) |
CA (1) | CA2337712A1 (en) |
DE (1) | DE69939982D1 (en) |
ES (1) | ES2315016T3 (en) |
IL (3) | IL140938A0 (en) |
NZ (1) | NZ510357A (en) |
WO (1) | WO2000008057A2 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030144478A1 (en) * | 2001-02-06 | 2003-07-31 | Immunex Corporation | Molecules designated B7L-1 |
JP4426724B2 (en) * | 1998-08-07 | 2010-03-03 | イミュネックス・コーポレーション | Molecule called LDCAM |
ES2315016T3 (en) * | 1998-08-07 | 2009-03-16 | Immunex Corporation | CALLED MOLECULES B7L-1. |
AU2588000A (en) * | 1998-12-02 | 2000-06-19 | Icos Corporation | Novel adhesion molecule and methods of use |
US7129338B1 (en) * | 1999-07-08 | 2006-10-31 | Research Association For Biotechnology | Secretory protein or membrane protein |
EP1067182A3 (en) * | 1999-07-08 | 2001-11-21 | Helix Research Institute | Secretory protein or membrane protein |
WO2001029083A1 (en) * | 1999-10-18 | 2001-04-26 | Texas Biotechnology Corporation | POLYNUCLEOTIDES ENCODING HUMAN AND MURINE ADHESION PROTEINS (BIgR) |
DE60132699T2 (en) | 2000-06-06 | 2009-01-29 | Bristol-Myers Squibb Co. | NUCLEIC ACIDS AND POLYPEPTIDES RELATING TO B7 AND THEIR USES FOR IMMUNOMODULATION |
MXPA02012718A (en) * | 2000-06-28 | 2003-10-06 | Amgen Inc | B7-like molecules and uses thereof. |
WO2003006607A2 (en) * | 2001-07-10 | 2003-01-23 | Idec Pharmaceutical Corporation | Inhibition of apoptosis process and improvement of cell performance |
JP2003116561A (en) * | 2001-10-11 | 2003-04-22 | National Cancer Center-Japan | TSLL1 gene |
AU2003238251B2 (en) * | 2002-06-17 | 2009-05-21 | Wyeth | Inhibition of T cell activation by butyrophilin 4 or B7-L1 |
AU2004261941B2 (en) * | 2003-07-25 | 2008-04-10 | Amgen Inc. | Antagonists and agonists of LDCAM and methods of use |
ATE485517T1 (en) | 2006-03-22 | 2010-11-15 | Viral Logic Systems Technology | METHOD FOR IDENTIFYING POLYPEPTIDE TARGET |
ES2625259T3 (en) | 2006-08-29 | 2017-07-19 | Oxford Biotherapeutics Ltd | Identification of protein associated with hepatocellular carcinoma, glioblastoma and lung cancer |
PL2403878T3 (en) | 2009-03-05 | 2017-12-29 | E. R. Squibb & Sons, L.L.C. | Fully human antibodies specific to cadm1 |
UY35148A (en) | 2012-11-21 | 2014-05-30 | Amgen Inc | HETERODIMERIC IMMUNOGLOBULINS |
WO2014144817A2 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Inhibitory polypeptides specific to wnt inhibitors |
MX389325B (en) * | 2013-07-30 | 2025-03-20 | Fuller H B Co | Polyurethane adhesive film |
AU2014318017B2 (en) | 2013-09-05 | 2020-02-06 | Amgen Inc. | Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles |
WO2015175861A1 (en) | 2014-05-16 | 2015-11-19 | Amgen Inc. | Assay for detecting th1 and th2 cell populations |
US20200131518A1 (en) | 2017-03-14 | 2020-04-30 | Amgen Inc. | Control of total afucosylated glycoforms of antibodies produced in cell culture |
EA202092286A1 (en) | 2018-03-26 | 2021-03-18 | Эмджен Инк. | GENERAL AFUCOSYLATED ANTIBODY GLYCOFORM OBTAINED IN CELL CULTURE |
KR20220069982A (en) | 2019-09-26 | 2022-05-27 | 암젠 인크 | Methods for producing antibody compositions |
EP4162257A1 (en) | 2020-06-04 | 2023-04-12 | Amgen Inc. | Assessment of cleaning procedures of a biotherapeutic manufacturing process |
US20240043501A1 (en) | 2020-10-15 | 2024-02-08 | Amgen Inc. | Relative unpaired glycans in antibody production methods |
CA3222409A1 (en) | 2021-06-07 | 2022-12-15 | Amgen Inc. | Using fucosidase to control afucosylation level of glycosylated proteins |
MX2024003852A (en) | 2021-10-05 | 2024-05-24 | Amgen Inc | Fc-gamma receptor ii binding and glycan content. |
WO2023215725A1 (en) | 2022-05-02 | 2023-11-09 | Fred Hutchinson Cancer Center | Compositions and methods for cellular immunotherapy |
WO2024220916A1 (en) | 2023-04-20 | 2024-10-24 | Amgen Inc. | Methods of determining relative unpaired glycan content |
WO2025038600A1 (en) | 2023-08-14 | 2025-02-20 | Amgen Inc. | Methods for reducing yellow color |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218510B1 (en) * | 1994-03-02 | 2001-04-17 | Brigham & Woman's Hospital | B7-1 and B7-2 polypeptides |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6590898A (en) * | 1997-03-28 | 1998-10-22 | Genetics Institute Inc. | Secreted proteins and polynucleotides encoding them |
CA2285447A1 (en) | 1997-03-28 | 1998-10-08 | Genetics Institute, Inc. | Secreted proteins and polynucleotides encoding them |
EP1039801A4 (en) | 1997-06-06 | 2003-03-26 | Human Genome Sciences Inc | 207 human secreted proteins |
JP2001516580A (en) | 1997-09-17 | 2001-10-02 | ジェネンテック・インコーポレーテッド | Secretory and transmembrane polypeptides and nucleic acids encoding them |
EP0939124A3 (en) | 1998-02-24 | 2001-03-21 | Smithkline Beecham Plc | MGBP1 sequences |
ES2315016T3 (en) * | 1998-08-07 | 2009-03-16 | Immunex Corporation | CALLED MOLECULES B7L-1. |
AU2588000A (en) | 1998-12-02 | 2000-06-19 | Icos Corporation | Novel adhesion molecule and methods of use |
AU2600800A (en) | 1999-03-08 | 2000-09-28 | Genentech Inc. | Promotion or inhibition of angiogenesis and cardiovascularization |
CN1242376A (en) | 1999-07-27 | 2000-01-26 | 中国医学科学院基础医学研究所 | Human nervous specific expression gene |
-
1999
- 1999-08-05 ES ES99942040T patent/ES2315016T3/en not_active Expired - Lifetime
- 1999-08-05 CA CA002337712A patent/CA2337712A1/en not_active Abandoned
- 1999-08-05 WO PCT/US1999/017906 patent/WO2000008057A2/en active IP Right Grant
- 1999-08-05 NZ NZ510357A patent/NZ510357A/en not_active IP Right Cessation
- 1999-08-05 DE DE69939982T patent/DE69939982D1/en not_active Expired - Lifetime
- 1999-08-05 AU AU55504/99A patent/AU771640B2/en not_active Ceased
- 1999-08-05 IL IL14093899A patent/IL140938A0/en unknown
- 1999-08-05 EP EP99942040A patent/EP1108042B1/en not_active Expired - Lifetime
- 1999-08-05 AT AT99942040T patent/ATE415480T1/en not_active IP Right Cessation
-
2001
- 2001-01-17 IL IL140938A patent/IL140938A/en not_active IP Right Cessation
- 2001-02-06 US US09/778,510 patent/US6512095B2/en not_active Expired - Fee Related
-
2007
- 2007-10-31 US US11/981,954 patent/US20080075724A1/en not_active Abandoned
-
2009
- 2009-01-14 IL IL196509A patent/IL196509A/en not_active IP Right Cessation
-
2010
- 2010-02-26 US US12/714,246 patent/US7939640B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218510B1 (en) * | 1994-03-02 | 2001-04-17 | Brigham & Woman's Hospital | B7-1 and B7-2 polypeptides |
Also Published As
Publication number | Publication date |
---|---|
ES2315016T3 (en) | 2009-03-16 |
US20020164686A1 (en) | 2002-11-07 |
EP1108042A2 (en) | 2001-06-20 |
US20100168399A1 (en) | 2010-07-01 |
DE69939982D1 (en) | 2009-01-08 |
EP1108042B1 (en) | 2008-11-26 |
IL196509A0 (en) | 2009-09-22 |
WO2000008057A3 (en) | 2000-05-18 |
WO2000008057A2 (en) | 2000-02-17 |
IL140938A (en) | 2010-12-30 |
US6512095B2 (en) | 2003-01-28 |
IL140938A0 (en) | 2002-02-10 |
CA2337712A1 (en) | 2000-02-17 |
ATE415480T1 (en) | 2008-12-15 |
AU5550499A (en) | 2000-02-28 |
IL196509A (en) | 2011-04-28 |
AU771640B2 (en) | 2004-04-01 |
US7939640B2 (en) | 2011-05-10 |
NZ510357A (en) | 2004-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7939640B2 (en) | Antibodies that bind B7L-1 | |
US7659385B2 (en) | Polynucleotides encoding molecules designated LDCAM | |
US6232447B1 (en) | Antibody immunoreactive with a human cytokine designated LERK-6 | |
EP0739350B1 (en) | Ligand that binds fas antigen | |
US6268482B1 (en) | Recombinant cytokine designated LERK-6 | |
US6670135B1 (en) | Semaphorin polypeptides | |
US20130084603A1 (en) | B7l-1 polynucleotides | |
USRE37582E1 (en) | Cytokine designated LERK-6 | |
AU3197099A (en) | Nk cell activation inducing ligand (nail) dna and polypeptides, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |