+

US20080066374A1 - Reaction system for production of diesel fuel from vegetable and animals oils - Google Patents

Reaction system for production of diesel fuel from vegetable and animals oils Download PDF

Info

Publication number
US20080066374A1
US20080066374A1 US11/892,797 US89279707A US2008066374A1 US 20080066374 A1 US20080066374 A1 US 20080066374A1 US 89279707 A US89279707 A US 89279707A US 2008066374 A1 US2008066374 A1 US 2008066374A1
Authority
US
United States
Prior art keywords
oil
reaction unit
zsm
tubular reaction
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/892,797
Other languages
English (en)
Inventor
Mordechay Herskowitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ben Gurion University of the Negev Research and Development Authority Ltd
Original Assignee
Ben Gurion University of the Negev Research and Development Authority Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ben Gurion University of the Negev Research and Development Authority Ltd filed Critical Ben Gurion University of the Negev Research and Development Authority Ltd
Priority to US11/892,797 priority Critical patent/US20080066374A1/en
Assigned to BEN-GURION UNIVERSITY OF THE NEGEV RESEARCH & DEVELOPMENT AUTHORITY reassignment BEN-GURION UNIVERSITY OF THE NEGEV RESEARCH & DEVELOPMENT AUTHORITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERSKOWITZ, MORDECHAY
Publication of US20080066374A1 publication Critical patent/US20080066374A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • liquid fuels particularly diesel, jet and naphtha fuels, from vegetable and/or animal oils.
  • crude oil is in limited supply, includes a high content of aromatics, and contains sulfur and nitrogen-containing compounds that can adversely affect the environment.
  • sulfur and nitrogen-containing compounds that can adversely affect the environment.
  • Vegetable and animal oils are an abundant and renewable source.
  • the use of vegetable oil in diesel engines requires significant engine modification, including changing of piping and injector construction materials, otherwise engine running times are decreased, maintenance costs are increased due to higher wear, and the danger of engine failure is increased.
  • the current conversion of vegetable and animal oils to combustible liquid fuels typically involves transesterification of the oils, which are triglycerides of C 14 to C 22 straight-chain carboxylic acids, with a lower alcohol such as methanol or ethanol, to form a mixture of methyl or ethyl esters called “biodiesel”. This process is relatively complex, typical of the chemical industry rather than the petrochemical industry.
  • biodiesel which is completely different from that of diesel produced from crude oil, may have adverse effects on engine performance.
  • Biodiesel exhibits poor low temperature performance characteristics and increased nitrogen oxide (NO x ) emissions compared to conventional fuels derived from crude oil.
  • NO x nitrogen oxide
  • United Kingdom Patent Specification 1 524 781 discloses converting ester-containing vegetable oils into one or more hydrocarbons by pyrolysis at 300 to 700° C. in the presence of a catalyst which comprises silica-alumina in admixture with an oxide of a transition metal of Groups IIA, IIIA, IVA, VA, VIA, VIIA or VIII of the periodic table, preferably in a fluidized bed, moving bed or fixed bed tubular reactor at atmospheric pressure.
  • a catalyst which comprises silica-alumina in admixture with an oxide of a transition metal of Groups IIA, IIIA, IVA, VA, VIA, VIIA or VIII of the periodic table, preferably in a fluidized bed, moving bed or fixed bed tubular reactor at atmospheric pressure.
  • U.S. Pat. No. 5,705,722 discloses a process for producing additives for diesel fuels having high cetane numbers and serving as fuel ignition improvers.
  • biomass feedstock selected from (a) tall oil containing less than 0.5 wt % ash, less than 25 wt % unsaponifiables, up to 50 wt % diterpenic acids and 30 to 60 wt % unsaturated fatty acids, (b) wood oils from the pulping of hardwood species, (c) animal fats and (d) blends of said tall oil with plant or vegetable oil containing substantial amounts of unsaturated fatty acids or animal fats, is subjected to hydroprocessing by contacting the feedstock with gaseous hydrogen under hydroprocessing conditions in the presence of a hydroprocessing catalyst to obtain a product mixture. This product mixture is then separated and fractionated to obtain a hydrocarbon product boiling in the diesel fuel boiling range, this product being the high cetane number additive.
  • U.S. Patent Publication No. 2004/0055209 discloses a fuel composition for diesel engines comprising 0.1-99% by weight of a component or a mixture of components produced from biological raw material originating from plants and/or animals and/or fish and 0-20% of components containing oxygen. Both components are mixed with diesel components based on crude oil and/or fractions from Fischer-Tropsch process.
  • U.S. Patent Publication No. 2004/0230085 discloses a process for producing a hydrocarbon component of biological origin comprising at least two steps, the first one of which is a hydrodeoxygenation step and the second one is an isomerization step operated using the counter-current flow principle.
  • a biological raw material containing fatty acids and/or fatty acid esters serves as the feed stock.
  • Fuel properties important for potential diesel applications include: (i) lubricity; (ii) cetane number; (iii) density; (iv) viscosity; (v) lower heating value; (vi) sulfur; (vii) flash point; (viii) cloud point; (ix) Distillation Curve; (x) carbon residue; (xi) ash; and (xii) Iodine Value.
  • Lubricity affects the wear of pumps and injection systems. Lubricity can be defined as the property of a lubricant that causes a difference in friction under conditions of boundary lubrication when all known factors except the lubricant itself are the same; thus, the lower the friction, the higher the lubricity. Cetane number rates the ignition quality of diesel fuels.
  • Density normally expressed as specific gravity, is defined as the ratio of the mass of a volume of the fuel to the mass of the same volume of water. Viscosity measures the fluid resistance to flow. Lower heating value is a measure of available energy in the fuel. Flash point is the lowest temperature at which a combustible mixture can be formed above the liquid fuel. Cloud point measures the first appearance of wax. Distillation Curve is characterized by the initial temperature at which the first drop of liquid leaves the condenser and subsequent temperatures at each 10 vol % of the liquid. Carbon residue correlates with the amount of carbonaceous deposits in a combustion chamber. Ash refers to extraneous solids that reside after combustion. Iodine Value measures the number of double bonds.
  • a process for producing a liquid fuel composition comprising providing oil selected from the group consisting of vegetable oil, animal oil, and mixtures thereof and hydrodeoxygenating and hydroisomerizing the oil.
  • the hydrodeoxygenating and hydroisomerizing comprises feeding the oil to a tubular reaction unit containing a catalyst comprising an acidic component and a metal component, feeding effluent from the tubular reaction unit to a vapor-liquid separator, and feeding a vapor phase separated from the effluent from the tubular reaction unit to an adiabatic reaction unit comprising the same catalyst as in the tubular reaction unit comprising an acidic component and a metal component. Liquid separated from the effluent from the tubular reaction unit can be recycled to the tubular reaction unit.
  • the tubular reaction unit is a multi-tubular reaction unit and/or operates in trickle-bed mode and the adiabatic reaction unit comprises a single tube.
  • a reaction system for producing a liquid fuel composition comprising a tubular reaction unit containing a catalyst comprising an acidic component and a metal component, an adiabatic reaction unit containing the same catalyst as in the tubular reaction unit comprising an acidic component and a metal component, and a vapor-liquid separator disposed between the tubular reaction unit and the adiabatic reaction unit.
  • the adiabatic reaction unit can be located downstream of the tubular reaction unit.
  • the tubular reaction unit is a multi-tubular reaction unit and/or operates in trickle-bed mode and the adiabatic reaction unit comprises a single tube.
  • High quality liquid fuels in particular diesel and naphtha fuels, can be obtained from vegetable and/or animal oils in high yield by a process comprising hydrodeoxygenation and hydroisomerization.
  • Triglycerides of fatty acids contained in the vegetable and/or animal oil are deoxygenated to form normal C 12 to C 18 or C 14 to C 18 paraffins, which are hydroisomerized in the same stage to form various isoparaffins. Minor cyclization and aromatization to alkyl cyclohexane and alkyl benzene may also occur.
  • the deoxygenation can comprise removal of oxygen in the form of water and carbon oxides from the triglycerides. Hydrocracking is inhibited, so as to maintain the range of carbon number of hydrocarbons formed in the range of C 12 to C 18 or C 14 to C 18 .
  • the presently disclosed process for producing a liquid fuel composition comprises providing oil selected from the group consisting of vegetable oil, animal oil, and mixtures thereof and hydrodeoxygenating and hydroisomerizing the oil.
  • the liquid fuel composition produced by the presently disclosed process may further comprise 2-10% lighter naphtha products boiling below 150° C. as well as heavier distillate products.
  • the hydrodeoxygenating and hydroisomerizing disclosed herein comprises feeding the oil to a tubular reaction unit containing a catalyst comprising an acidic component and a metal component, feeding effluent from the tubular reaction unit to a vapor-liquid separator, and feeding a vapor phase separated from the effluent from the tubular reaction unit to an adiabatic reaction unit comprising the same catalyst as in the tubular reaction unit comprising an acidic component and a metal component. While the effluent from the tubular reaction unit is primarily in a vapor phase, liquid separated from the effluent from the tubular reaction unit can be recycled to the tubular reaction unit.
  • the tubular reaction unit which is contained within a shell, is a multi-tubular reaction unit and/or operates in trickle-bed mode and the adiabatic reaction unit comprises a single tube.
  • the tubular reaction unit As exothermic hydrodeoxygenation and double-bond saturation reactions take place in the tubular reaction unit, a significant amount of heat of reaction is removed from the tube(s) (e.g., 1,000 or even 5,000 tubes) of the tubular reaction unit, for example, by coolant contained in a shell jacketing the tube(s) for optimal temperature control.
  • the vapor-liquid separator disposed downstream of the tubular reaction unit functions as a heat exchanger and sets the temperature of the vapor phase exiting the vapor-liquid separator, which is to be fed to the reaction unit following the vapor-liquid separator.
  • the vapor phase leaves the vapor-liquid separator at a temperature of about 330 to 400° C.
  • the reaction unit is adiabatic, and thus, in addition to setting the temperature of the vapor phase exiting the vapor-liquid separator, the vapor-liquid separator also sets the temperature of the reaction unit following the vapor-liquid separator and allows for optimization of the process.
  • Use of both tubular and adiabatic reaction units allows for optimization of the hydrodeoxygenating and hydroisomerizing and improved performance and stability of the catalyst.
  • the tubular reaction unit, vapor-liquid separator, and adiabatic reaction unit may be contained within one or more reaction vessels.
  • catalysts for the presently disclosed process are dual-functional catalysts comprising a metal component and an acidic component.
  • metal components are platinum or palladium.
  • the metal component is platinum.
  • the acidic component can comprise an acidic function in a porous solid support.
  • acidic components include, for example, amorphous silica aluminas, fluorided alumina, ZSM-12, ZSM-21, ZSM-22, ZSM-23, ZSM-35, ZSM-38, ZSM-48, ZSM-57, SSZ-32, ferrierite, SAPO-11, SAPO-31, SAPO-41, MAPO-11, MAPO-31, Y zeolite, L zeolite and Beta zeolite.
  • the catalyst is Pt/SAPO-11, specifically 0.5-1 wt % Pt/SAPO-11, more specifically 1 wt % Pt/SAPO-11.
  • the tubular reaction unit is operated at conditions comprising a liquid hourly space velocity (LHSV) in the range of 0.5-5 h ⁇ 1 , for example, 0.6-3 h ⁇ 1 , 0.7-1.2 h ⁇ 1 , or 1-2.5 h ⁇ 1 , at a temperature varying between 300 and 450° C., for example, between 320 and 400° C., at a pressure varying between 10 and 60 atm, for example, 20-40 atm, and a H 2 /oil ratio of about 300-1200 NL/L, for example, 500-1000 NL/L. More severe conditions result in liquid fuel compositions with poorer lubricity, while more moderate to mild conditions result in liquid fuel compositions with better lubricity.
  • LHSV liquid hourly space velocity
  • Lubricity is especially important with regard to modern diesel fuels, as modern engines have very high injection pressures in excess of 24,000 pounds per square inch. Good lubricity is necessary to prevent risk of catastrophic engine failure. In general, an acceptable lubricity refers to a lubricity that would allow modern engines to operate more efficiently.
  • the diesel fuel has a maximum high-frequency reciprocating rig (HRFF) lubricity of 400 ⁇ m (according to International Organization for Standardization (ISO) standard 12156/1), in accordance with the recommendation of the World Wide Fuel Charter, Category 4.
  • the lubricity is less than 300 ⁇ m according to ISO 12156/1, for example, the lubricity is less than 200 ⁇ m according to ISO 12156/1.
  • suitable vegetable oils include soybean oil, palm oil, corn oil, sunflower oil, oils from desertic plants such as, for example, jatropha oil and balanites oil, rapeseed oil, colza oil, canola oil, tall oil, safflower oil, hempseed oil, olive oil, linseed oil, mustard oil, peanut oil, castor oil, coconut oil, and mixtures thereof.
  • vegetable oils include soybean oil, palm oil, corn oil, sunflower oil, jatropha oil, balanites oil, for example, from Balanites aegyptiaca, and mixtures thereof.
  • the vegetable oil may be genetically modified oil, produced from transgenic crops.
  • the vegetable oil may be crude vegetable oil or refined or edible vegetable oil. If crude vegetable oil is used, the vegetable oil can be pretreated, for example, to separate or extract impurities from the crude vegetable oil.
  • Suitable animal oils include, for example, lard oil, tallow oil, train oil, fish oil, and mixtures thereof. Further, the vegetable and/or animal oil may be new oil, used oil, waste oil, or mixtures thereof.
  • compositions derived from vegetable and/or animal oil can be used in the presently disclosed process.
  • compositions derived from vegetable and/or animal oil refers to compositions which originate from or are the byproduct of processing vegetable and/or animal oil (e.g., vapor overhead stream from distilling vegetable and/or animal oil, residual non-vaporizable remaining portion, etc.).
  • palm oil distillate containing greater than 70 wt % fatty acids can be used in the presently disclosed process.
  • the diesel fuel composition produced by the presently disclosed methods comprises a mixture of C 12 to C 18 or C 14 to C 18 paraffins with a ratio of iso to normal paraffins from 0.5 to 8, for example, from 2 to 8, from 2 to 6, from 2 to 4, from 1 to 4, or from 4 to 7; less than 5 ppm sulfur, for example, less than 1 ppm sulfur; and acceptable lubricity.
  • the diesel fuel composition can have a lubricity of less than 400 ⁇ m, for example, less than 300 ⁇ m or less than 200 ⁇ m, according to ISO 12156/1.
  • the diesel fuel composition can comprise less than or equal to 0.6 wt %, for example, 0.1-0.6 wt %, of one or more oxygenated compounds, which, without wishing to be bound by any theory, are believed to contribute to the acceptable lubricity of the diesel fuel composition.
  • the one or more oxygenated compounds comprise acid, for example, one or more fatty acids.
  • the one or more oxygenated compounds e.g., acid
  • fatty acids refers to long chain saturated and/or unsaturated organic acids having at least 8 carbon atoms, for example, 12 to 18 or 14 to 18 carbon atoms.
  • the low content of one or more oxygenated compounds, for example, one or more fatty acids, in the diesel fuel composition may contribute to the acceptable lubricity of a diesel fuel composition; such oxygenated compounds, present in the vegetable and/or animal oil feedstock, may survive the non-severe hydrodeoxygenation/hydroisomerization conditions employed in the presently disclosed process.
  • the diesel fuel composition may comprise alkyl cyclohexane, for example, less than 10 wt %, and/or alkyl benzene, for example, less than 15 wt %.
  • the characteristics of the diesel fuel composition, and naphtha, produced by the presently disclosed methods may vary depending on the vegetable and/or animal oil starting product, process conditions, and catalyst used.
  • selection of vegetable and/or animal oil starting product, process conditions, and catalyst allows for high yield of high quality diesel fuel composition, with preferred properties, and minimized production of lighter components including, for example, naphtha, carbon oxides and C 1 to C 4 hydrocarbons.
  • the paraffinic diesel fuel compositions produced by the presently disclosed methods provide superior fuel properties, especially for low temperature performance (e.g., density, viscosity, cetane number, lower heating value, cloud point, and CFPP), to biodiesel, a mixture of methyl or ethyl esters.
  • diesel fuel compositions with acceptable lubricities produced from vegetable and/or animal oil are disclosed herein. More specifically, fuel properties, such as, for example, lubricity, may be controlled through variation of process conditions and/or catalyst(s).
  • the initial boiling point (IBP) is in the range of 160° C.-240° C. and the 90 vol % distillation temperature is in the range of 300° C.-360° C.
  • the produced naphtha is highly pure and particularly suitable for use as a solvent and/or chemical feedstock, e.g., a cracking stock.
  • Refined soybean oil was fed to a fixed-bed reactor packed with a granulated Ni—Mo catalyst operated at an LHSV of 1.0 h ⁇ 1 , 375° C., 40 atm, and an H 2 /oil ratio of 1200 NL/L (Stage 1).
  • the total liquid product was separated into two phases, water and an organic phase.
  • the organic phase was fed to a fixed-bed reactor packed with a granulated 1 wt % Pt/SAPO-11 catalyst operated at an LHSV of 3.0 h ⁇ 1 , 380° C., 50 atm, and an H 2 /oil ratio of 500 NL/L (Stage 2).
  • the organic phase from Stage 1 and the diesel product from Stage 2 were analyzed according to ASTM methods and their compositions were measured by GC-MS and confirmed by NMR. The results can be found in Table 3.
  • the diesel product from Stage 2 exhibited a poorer lubricity (502 ⁇ m) as compared to that of the organic phase from Stage 1 (352 ⁇ m). Without wishing to be bound by any theory, it is believed that the increase in ratio of branched to linear paraffins in the diesel product from Stage 2, as compared to the organic phase from Stage 1, resulted in a change of fuel properties.
  • Refined soybean oil was fed to a fixed-bed reactor packed with a granulated 1 wt % Pt/SAPO-11 catalyst operated at an LHSV of 1.0 h ⁇ 1 , 380° C., 20 atm, and an H 2 /oil ratio of 1200 NL/L (Stage 1).
  • the total liquid product was separated into two phases, water and diesel product.
  • the diesel product from Stage 1 was fed to a fixed-bed reactor packed with a granulated 1 wt % Pt/SAPO-11 catalyst operated at an LHSV of 4.5 h ⁇ 1 , 360° C., 30 atm, and an H 2 /oil ratio of 1200 NL/L (Stage 2).
  • the diesel product from Stage 1 and the diesel product from Stage 2 were analyzed according to ASTM methods and their compositions were measured by GC-MS and confirmed by NMR. The results can be found in Table 4.
  • the diesel product from Stage 1 exhibited acceptable properties, including a lubricity of 306 ⁇ m.
  • the properties of the diesel product from Stage 2 are similar to those of the diesel product from Stage 1.
  • the diesel product from Stage 2 exhibited a poorer lubricity (437 ⁇ m) as compared to that of the diesel product from Stage 1 (306 ⁇ m), similar to the diesel production from Stage 2 of Comparative Example 1.
  • water may act as an inhibitor to isomerization, which requires higher catalyst activity, and the removal of water between Stage 1 and Stage 2 in Comparative Example 1 and Comparative Example 2 may also remove acid, thereby affecting final product lubricity.
  • Adding 0.1 wt % of oleic acid to the diesel product of Stage 2 improved its lubricity from 437 ⁇ m to 270 ⁇ m.
  • the low content of one or more oxygenated compounds, such as one or more fatty acids, in the product of the process may contribute to the acceptable lubricity of the diesel product.
  • Example 3 The reactor setup and the operating conditions of Example 3 were based on the results of kinetic studies and reactor simulations using soybean oil.
  • concentrations of the soybean oil, acids, paraffins, olefins, cyclohexanes, aromatics and light compounds were measured as a function of residence time and temperature. Vapor-liquid equilibrium was provided by the reactor simulations. For a residence time of 15 to 25 minutes, the soybean oil was nearly completely converted. The acid content in the product(s) peaked at about 10 to 15 minutes, and then decreased with additional residence time.
  • diesel fuel compositions produced in accordance with the presently claimed methods can comprise less than or equal to 0.6 wt % of one or more oxygenated compounds (e.g., acids).
  • refined soybean oil was fed to a single (electrically heated) wall-cooled reactor tube, packed with a granulated 1 wt % Pt/SAPO-11 catalyst, and operated in trickle-bed mode at an LHSV of 3.5 h ⁇ 1 , 382° C., 30 atm, and an H 2 /oil ratio of 550 NL/L.
  • the effluent of the single wall-cooled reactor tube flowed through a gas-liquid separator maintained at 30 atm and 373° C., in which a very small amount of liquid (i.e., 0.2 wt % of the refined soybean oil fed to the single wall-cooled reactor tube) was separated from a vapor phase.
  • the vapor phase from the separator flowed upward to a single tube, adiabatic, fixed-bed reaction unit packed with a granulated 1 wt % Pt/SAPO-11 catalyst operated at an LHSV of 1.4 h ⁇ 1 , 373-375° C., 30 atm, and an H 2 /oil ratio of 550 NL/L.
  • the diesel product from the adiabatic reaction unit was analyzed according to ASTM methods and its composition was measured by GC-MS. The results can be found in Table 5.
  • the diesel product according to Example 3 exhibited acceptable properties, including a lubricity of 346 ⁇ m.
  • the temperature of the adiabatic reaction unit following the vapor-liquid separator is set by the temperature of the vapor-liquid separator. Heat loss can cause a temperature drop in the vapor phase products from the tubular reaction unit. Assuming that heat loss is avoided, if the temperature of the vapor-liquid separator is low (i.e., lower than the temperature of the vapor phase products from the tubular reaction unit), the vapor phase products may undesirably condense to liquid prior to hydroisomerization in the adiabatic reaction unit. Therefore, the temperature of the vapor-liquid separator can be set such that the temperature of the vapor-liquid separator is close to the temperature of the tubular reaction unit, and more specifically, the temperature of the vapor phase products from the tubular reaction unit.
  • the tubular reaction unit which can be a wall-cooled reactor. Accordingly, the reaction unit downstream of the vapor-liquid separator can be run adiabatically.
  • the vapor-liquid separator which can provide different conditions in the downstream adiabatic reaction unit than in the upstream tubular reaction unit, can also ensure that the downstream adiabatic reaction unit is run in vapor phase.
  • the temperature of the adiabatic reaction unit following the vapor-liquid separator can be set in the range of about 350 to 400° C. or about 360 to 385° C.
  • the temperature of the vapor-liquid separator in Example 3 was maintained at 373° C. and the temperature of the adiabatic reaction in Example 3 was operated at 373° C., to minimize condensation of vapor phase products to liquid prior to hydroisomerization in the adiabatic reaction unit.
  • the vapor-liquid separator can be used to set the temperature of the adiabatic reaction unit following the vapor-liquid separator.
  • the effluent from the single wall-cooled reactor tube is primarily in a vapor phase (e.g., vapor phase can comprise about 95 to 99.9 wt % of the effluent).
  • the liquid separated from the vapor phase in the vapor-liquid separator can contain as much as 40 wt % acids.
  • the catalyst contained in the reaction units is sensitive to coking and deactivation as a result of contact with heavy compounds (e.g., acids) in the liquid products. Thus, liquid products can negative affect selectivity of desired products and stability of the catalyst.
  • separation of liquid from the vapor phase in the vapor-liquid separator i.e., the vapor phase to be fed to the adiabatic reaction unit
  • tubular e.g., single wall-cooled reactor tube or multi-tubular
  • adiabatic reaction units e.g., single wall-cooled reactor tube or multi-tubular
  • a vapor-liquid separator disposed therebetween allows for improved performance and stability of the catalyst, especially the catalyst contained within the adiabatic reaction unit.
  • the life of the catalyst contained within the adiabatic reaction unit can be extended as a result of using a vapor-liquid separator disposed between the tubular and adiabatic reaction units.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
US11/892,797 2006-09-19 2007-08-27 Reaction system for production of diesel fuel from vegetable and animals oils Abandoned US20080066374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/892,797 US20080066374A1 (en) 2006-09-19 2007-08-27 Reaction system for production of diesel fuel from vegetable and animals oils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84550806P 2006-09-19 2006-09-19
US11/892,797 US20080066374A1 (en) 2006-09-19 2007-08-27 Reaction system for production of diesel fuel from vegetable and animals oils

Publications (1)

Publication Number Publication Date
US20080066374A1 true US20080066374A1 (en) 2008-03-20

Family

ID=39200883

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/892,797 Abandoned US20080066374A1 (en) 2006-09-19 2007-08-27 Reaction system for production of diesel fuel from vegetable and animals oils

Country Status (2)

Country Link
US (1) US20080066374A1 (fr)
WO (1) WO2008035155A2 (fr)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US20090077867A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Production of Diesel Fuel from Renewable Feedstocks with Reduced Hydrogen Consumption
US20090077865A1 (en) * 2007-09-20 2009-03-26 Kalnes Tom N Production of Diesel Fuel from Biorenewable Feedstocks with Heat Integration
US20090078611A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process for Oil Extraction and Production of Diesel Fuel from Biorenewable Feedstocks
US20090158637A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
US20090162264A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
US20090193709A1 (en) * 2007-09-20 2009-08-06 Marker Terry L Production of Diesel Fuel from Biorenewable Feedstocks with Lower Hydrogen Consumption
US20090229173A1 (en) * 2008-03-17 2009-09-17 Gosling Christopher D Production of Diesel Fuel and Aviation Fuel from Renewable Feedstocks
US20090229174A1 (en) * 2008-03-17 2009-09-17 John P Brady Production of Diesel Fuel from Renewable Feedstocks
US20090253948A1 (en) * 2008-04-06 2009-10-08 Mccall Michael J Fuel and Fuel Blending Components from Biomass Derived Pyrolysis Oil
US20090250376A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Gasoline and Blended Aviation Fuel from Renewable Feedstocks
US20090294324A1 (en) * 2008-04-06 2009-12-03 Brandvold Timothy A Production of Blended Gasoline Aviation and Diesel Fuels from Renewable Feedstocks
US20090301930A1 (en) * 2008-04-06 2009-12-10 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US20090318737A1 (en) * 2008-06-24 2009-12-24 Luebke Charles P Production of Paraffinic Fuel from Renewable Feedstocks
US20090321311A1 (en) * 2008-06-27 2009-12-31 Uop Llc Production of diesel fuel from renewable feedstocks containing phosphorus
US20100076238A1 (en) * 2008-12-16 2010-03-25 Uop Llc Production of Fuel from Co-Processing Multiple Renewable Feedstocks
US20100133144A1 (en) * 2008-12-17 2010-06-03 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US20100137662A1 (en) * 2008-12-12 2010-06-03 Sechrist Paul A Production of Diesel Fuel from Biorenewable Feedstocks Using Non-Flashing Quench Liquid
US20110105812A1 (en) * 2008-12-17 2011-05-05 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US20110219669A1 (en) * 2010-03-09 2011-09-15 Exxonmobil Research And Engineering Company Hydroprocessing of diesel range biomolecules
US20110219671A1 (en) * 2010-03-09 2011-09-15 Exxonmobil Research And Engineering Company Dewaxing of renewable diesel fuel
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
WO2012051130A3 (fr) * 2010-10-13 2012-07-19 Uop Llc Procédés pour produire des matériaux de fraction diesel ayant des propriétés de fluage à froid améliorées
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US8585901B1 (en) 2013-01-25 2013-11-19 Markus Johannes Lenger Method of continuous in-situ triglyceride stabilization and sulfur reduction of FOG (fats, oil and grease) to optimize fuel extraction
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US20140319024A1 (en) * 2010-10-13 2014-10-30 Uop Llc Methods for producing diesel range materials having improved cold flow properties
US8877669B2 (en) 2010-08-02 2014-11-04 Basf Corporation Hydroisomerization catalysts for biological feedstocks
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US9079814B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
US9079811B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
US9080134B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
WO2017020400A3 (fr) * 2015-05-20 2018-02-22 南开大学 Catalyseur utilisé pour l'huile de ricin dans la préparation de kérosène d'aviation biologique, procédé de préparation, et application
CN112048340A (zh) * 2020-07-17 2020-12-08 中科碧绿(湖州)能源科技有限公司 一种三步组合工艺生产第二代生物柴油和航空燃料的方法
WO2023154701A1 (fr) 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Production d'un carburéacteur renouvelable
WO2023154715A1 (fr) 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Composition d'hydrocarbures
WO2023235201A1 (fr) 2022-05-31 2023-12-07 ExxonMobil Technology and Engineering Company Composition de distillat lourd
WO2024006239A1 (fr) 2022-06-29 2024-01-04 ExxonMobil Technology and Engineering Company Procédé et système de production d'un carburéacteur renouvelable

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008363825B2 (en) * 2008-11-06 2016-03-03 Exxonmobil Research And Engineering Company Hydroprocessing of biodiesel fuels and blends
EP2368967A1 (fr) * 2010-03-22 2011-09-28 Neste Oil Oyj Lösungsmittelzusammensetzung
US9193926B2 (en) 2010-12-15 2015-11-24 Uop Llc Fuel compositions and methods based on biomass pyrolysis
US9039790B2 (en) 2010-12-15 2015-05-26 Uop Llc Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels
PL246187B1 (pl) * 2022-07-11 2024-12-16 Politechnika Wroclawska Sposób wytwarzania biokomponentu paliw płynnych

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950447A (en) * 1969-05-19 1976-04-13 Vladimir Mikhailovich Gryaznov Method for carrying out simultaneously the catalytic reactions involving hydrogen evolution and consumption
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US5082986A (en) * 1989-02-17 1992-01-21 Chevron Research Company Process for producing lube oil from olefins by isomerization over a silicoaluminophosphate catalyst
US5135638A (en) * 1989-02-17 1992-08-04 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5246566A (en) * 1989-02-17 1993-09-21 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5689031A (en) * 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
US5723716A (en) * 1994-11-22 1998-03-03 Exxon Research And Engineering Company Method for upgrading waxy feeds using a catalyst comprising mixed powdered dewaxing catalyst and powdered isomerization catalyst formed into a discrete particle (LAW082)
US6232277B1 (en) * 1998-05-22 2001-05-15 Exxon Chemical Patents Inc Lubricating oil compositions
US6399845B1 (en) * 1997-05-29 2002-06-04 Fortum Oil & Gas Oy Process for producing high grade diesel fuel
US6458265B1 (en) * 1999-12-29 2002-10-01 Chevrontexaco Corporation Diesel fuel having a very high iso-paraffin to normal paraffin mole ratio
US6702937B2 (en) * 2002-02-08 2004-03-09 Chevron U.S.A. Inc. Process for upgrading Fischer-Tropsch products using dewaxing and hydrofinishing
US20040055209A1 (en) * 2002-09-06 2004-03-25 Fortum Olyj Fuel composition for a diesel engine
US20040230085A1 (en) * 2002-09-06 2004-11-18 Juha Jakkula Process for producing a hydrocarbon component of biological origin
US20040250466A1 (en) * 2001-09-07 2004-12-16 Jaifu Fang Diesel fuel and method of making and using same
US20050011112A1 (en) * 2003-07-18 2005-01-20 Petroleo Brasileiro S.A.-Petrobras Process for producing biodiesel
US20050027148A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US20050023188A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US6962651B2 (en) * 2003-03-10 2005-11-08 Chevron U.S.A. Inc. Method for producing a plurality of lubricant base oils from paraffinic feedstock
US20060207166A1 (en) * 2005-03-21 2006-09-21 Ben-Gurion University Of The Negev Research & Development Authority Production of diesel fuel from vegetable and animal oils
US7150823B2 (en) * 2003-07-02 2006-12-19 Chevron U.S.A. Inc. Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream
US7160339B2 (en) * 2001-03-22 2007-01-09 Oryxe Energy International, Inc. Method and composition for using organic, plant-derived, oil-extracted materials in gasoline additives for reduced emissions
US20070010682A1 (en) * 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
US7179311B2 (en) * 2003-01-31 2007-02-20 Chevron U.S.A. Inc. Stable olefinic, low sulfur diesel fuels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
US7422904B2 (en) * 2005-02-04 2008-09-09 Exxonmobil Chemical Patents Inc. Method of operating a fixed bed reactor under predetermined hydraulic conditions

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950447A (en) * 1969-05-19 1976-04-13 Vladimir Mikhailovich Gryaznov Method for carrying out simultaneously the catalytic reactions involving hydrogen evolution and consumption
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US5082986A (en) * 1989-02-17 1992-01-21 Chevron Research Company Process for producing lube oil from olefins by isomerization over a silicoaluminophosphate catalyst
US5135638A (en) * 1989-02-17 1992-08-04 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5246566A (en) * 1989-02-17 1993-09-21 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
US5723716A (en) * 1994-11-22 1998-03-03 Exxon Research And Engineering Company Method for upgrading waxy feeds using a catalyst comprising mixed powdered dewaxing catalyst and powdered isomerization catalyst formed into a discrete particle (LAW082)
US5689031A (en) * 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US6399845B1 (en) * 1997-05-29 2002-06-04 Fortum Oil & Gas Oy Process for producing high grade diesel fuel
US6232277B1 (en) * 1998-05-22 2001-05-15 Exxon Chemical Patents Inc Lubricating oil compositions
US6458265B1 (en) * 1999-12-29 2002-10-01 Chevrontexaco Corporation Diesel fuel having a very high iso-paraffin to normal paraffin mole ratio
US7160339B2 (en) * 2001-03-22 2007-01-09 Oryxe Energy International, Inc. Method and composition for using organic, plant-derived, oil-extracted materials in gasoline additives for reduced emissions
US20040250466A1 (en) * 2001-09-07 2004-12-16 Jaifu Fang Diesel fuel and method of making and using same
US6702937B2 (en) * 2002-02-08 2004-03-09 Chevron U.S.A. Inc. Process for upgrading Fischer-Tropsch products using dewaxing and hydrofinishing
US20040230085A1 (en) * 2002-09-06 2004-11-18 Juha Jakkula Process for producing a hydrocarbon component of biological origin
US20040055209A1 (en) * 2002-09-06 2004-03-25 Fortum Olyj Fuel composition for a diesel engine
US7179311B2 (en) * 2003-01-31 2007-02-20 Chevron U.S.A. Inc. Stable olefinic, low sulfur diesel fuels
US6962651B2 (en) * 2003-03-10 2005-11-08 Chevron U.S.A. Inc. Method for producing a plurality of lubricant base oils from paraffinic feedstock
US7150823B2 (en) * 2003-07-02 2006-12-19 Chevron U.S.A. Inc. Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream
US20050011112A1 (en) * 2003-07-18 2005-01-20 Petroleo Brasileiro S.A.-Petrobras Process for producing biodiesel
US20050027148A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US20050023188A1 (en) * 2003-08-01 2005-02-03 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US20060207166A1 (en) * 2005-03-21 2006-09-21 Ben-Gurion University Of The Negev Research & Development Authority Production of diesel fuel from vegetable and animal oils
US20070010682A1 (en) * 2005-07-05 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US20090077865A1 (en) * 2007-09-20 2009-03-26 Kalnes Tom N Production of Diesel Fuel from Biorenewable Feedstocks with Heat Integration
US20090078611A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process for Oil Extraction and Production of Diesel Fuel from Biorenewable Feedstocks
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US20090077867A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Production of Diesel Fuel from Renewable Feedstocks with Reduced Hydrogen Consumption
US20090193709A1 (en) * 2007-09-20 2009-08-06 Marker Terry L Production of Diesel Fuel from Biorenewable Feedstocks with Lower Hydrogen Consumption
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US20090162264A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
US20090158637A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US20090229174A1 (en) * 2008-03-17 2009-09-17 John P Brady Production of Diesel Fuel from Renewable Feedstocks
US20090229173A1 (en) * 2008-03-17 2009-09-17 Gosling Christopher D Production of Diesel Fuel and Aviation Fuel from Renewable Feedstocks
US20090250376A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Gasoline and Blended Aviation Fuel from Renewable Feedstocks
US20090301930A1 (en) * 2008-04-06 2009-12-10 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US20090253948A1 (en) * 2008-04-06 2009-10-08 Mccall Michael J Fuel and Fuel Blending Components from Biomass Derived Pyrolysis Oil
US8329969B2 (en) 2008-04-06 2012-12-11 Uop Llc Fuel and fuel blending components from biomass derived pyrolysis oil
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US20090294324A1 (en) * 2008-04-06 2009-12-03 Brandvold Timothy A Production of Blended Gasoline Aviation and Diesel Fuels from Renewable Feedstocks
US20090318737A1 (en) * 2008-06-24 2009-12-24 Luebke Charles P Production of Paraffinic Fuel from Renewable Feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US20090321311A1 (en) * 2008-06-27 2009-12-31 Uop Llc Production of diesel fuel from renewable feedstocks containing phosphorus
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US20100137662A1 (en) * 2008-12-12 2010-06-03 Sechrist Paul A Production of Diesel Fuel from Biorenewable Feedstocks Using Non-Flashing Quench Liquid
US20100076238A1 (en) * 2008-12-16 2010-03-25 Uop Llc Production of Fuel from Co-Processing Multiple Renewable Feedstocks
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US20110105812A1 (en) * 2008-12-17 2011-05-05 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US20100133144A1 (en) * 2008-12-17 2010-06-03 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US20110219671A1 (en) * 2010-03-09 2011-09-15 Exxonmobil Research And Engineering Company Dewaxing of renewable diesel fuel
US8674160B2 (en) 2010-03-09 2014-03-18 Exxonmobil Research And Engineering Company Dewaxing of renewable diesel fuel
US8729330B2 (en) 2010-03-09 2014-05-20 Exxonmobil Research And Engineering Company Hydroprocessing of diesel range biomolecules
US20110219669A1 (en) * 2010-03-09 2011-09-15 Exxonmobil Research And Engineering Company Hydroprocessing of diesel range biomolecules
US8877669B2 (en) 2010-08-02 2014-11-04 Basf Corporation Hydroisomerization catalysts for biological feedstocks
US20140319024A1 (en) * 2010-10-13 2014-10-30 Uop Llc Methods for producing diesel range materials having improved cold flow properties
CN103140572A (zh) * 2010-10-13 2013-06-05 环球油品公司 生产具有改进冷流性能的柴油范围材料的方法
WO2012051130A3 (fr) * 2010-10-13 2012-07-19 Uop Llc Procédés pour produire des matériaux de fraction diesel ayant des propriétés de fluage à froid améliorées
US9353319B2 (en) * 2010-10-13 2016-05-31 Uop Llc Methods for producing diesel range materials having improved cold flow properties
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US8585901B1 (en) 2013-01-25 2013-11-19 Markus Johannes Lenger Method of continuous in-situ triglyceride stabilization and sulfur reduction of FOG (fats, oil and grease) to optimize fuel extraction
US9080134B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
US9079811B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
US9079814B2 (en) 2013-06-10 2015-07-14 Uop Llc Linear alkylbenzenes from natural oils and methods of producing
WO2017020400A3 (fr) * 2015-05-20 2018-02-22 南开大学 Catalyseur utilisé pour l'huile de ricin dans la préparation de kérosène d'aviation biologique, procédé de préparation, et application
CN112048340A (zh) * 2020-07-17 2020-12-08 中科碧绿(湖州)能源科技有限公司 一种三步组合工艺生产第二代生物柴油和航空燃料的方法
WO2023154701A1 (fr) 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Production d'un carburéacteur renouvelable
WO2023154715A1 (fr) 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Composition d'hydrocarbures
WO2023235201A1 (fr) 2022-05-31 2023-12-07 ExxonMobil Technology and Engineering Company Composition de distillat lourd
WO2024006239A1 (fr) 2022-06-29 2024-01-04 ExxonMobil Technology and Engineering Company Procédé et système de production d'un carburéacteur renouvelable

Also Published As

Publication number Publication date
WO2008035155A3 (fr) 2009-08-27
WO2008035155A2 (fr) 2008-03-27

Similar Documents

Publication Publication Date Title
US20080066374A1 (en) Reaction system for production of diesel fuel from vegetable and animals oils
US8142527B2 (en) Production of diesel fuel from vegetable and animal oils
US7459597B2 (en) Process for the manufacture of hydrocarbons
Maher et al. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals
EP1795576B1 (fr) Procédé de préparation d'hydrocarbures
AU2007347872B2 (en) Method for cold stable biojet fuel
US8329968B2 (en) Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US8329967B2 (en) Production of blended fuel from renewable feedstocks
US9039790B2 (en) Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels
US8324438B2 (en) Production of blended gasoline and blended aviation fuel from renewable feedstocks
JP7248866B2 (ja) 炭化水素組成物
US20100076238A1 (en) Production of Fuel from Co-Processing Multiple Renewable Feedstocks
US20110105812A1 (en) Controlling cold flow properties of transportation fuels from renewable feedstocks
JP2011526640A (ja) 生物由来の炭化水素の製造方法
US11674096B2 (en) Method of processing a bio-based material and apparatus for processing the same
El Khatib et al. Hydrocracking of jojoba oil for green fuel production
WO2010106536A1 (fr) Carburant diesel provenant d'huiles végétale et animale mélangées à des lévulinates d'alkyle

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEN-GURION UNIVERSITY OF THE NEGEV RESEARCH & DEVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HERSKOWITZ, MORDECHAY;REEL/FRAME:019801/0022

Effective date: 20070820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载