US20080057124A1 - Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties - Google Patents
Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties Download PDFInfo
- Publication number
- US20080057124A1 US20080057124A1 US11/894,729 US89472907A US2008057124A1 US 20080057124 A1 US20080057124 A1 US 20080057124A1 US 89472907 A US89472907 A US 89472907A US 2008057124 A1 US2008057124 A1 US 2008057124A1
- Authority
- US
- United States
- Prior art keywords
- group
- indole
- glyoxylamide
- radical
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 N-substituted indole-3-glyoxylamides Chemical class 0.000 claims abstract description 35
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 27
- SOLIIYNRSAWTSQ-UHFFFAOYSA-N 2-[1-[(4-chlorophenyl)methyl]indol-3-yl]-2-oxo-n-pyridin-4-ylacetamide Chemical compound C1=CC(Cl)=CC=C1CN1C2=CC=CC=C2C(C(=O)C(=O)NC=2C=CN=CC=2)=C1 SOLIIYNRSAWTSQ-UHFFFAOYSA-N 0.000 claims description 25
- 206010028980 Neoplasm Diseases 0.000 claims description 23
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 22
- 229910052736 halogen Inorganic materials 0.000 claims description 21
- 150000002367 halogens Chemical group 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 16
- 239000004037 angiogenesis inhibitor Substances 0.000 claims description 14
- 229940121369 angiogenesis inhibitor Drugs 0.000 claims description 14
- 239000002246 antineoplastic agent Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 14
- 206010029350 Neurotoxicity Diseases 0.000 claims description 13
- 206010044221 Toxic encephalopathy Diseases 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 13
- 231100000228 neurotoxicity Toxicity 0.000 claims description 13
- 230000007135 neurotoxicity Effects 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 12
- 201000009030 Carcinoma Diseases 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 150000001204 N-oxides Chemical class 0.000 claims description 8
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 8
- 125000003277 amino group Chemical group 0.000 claims description 8
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical class CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 6
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 6
- 125000006624 (C1-C6) alkoxycarbonylamino group Chemical group 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 5
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 claims description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical class OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Chemical class OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 4
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 238000001802 infusion Methods 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 2
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 2
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 claims description 2
- FQUYSHZXSKYCSY-UHFFFAOYSA-N 1,4-diazepane Chemical group C1CNCCNC1 FQUYSHZXSKYCSY-UHFFFAOYSA-N 0.000 claims description 2
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 claims description 2
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical class OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 2
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Chemical class O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 claims description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical class O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 125000006294 amino alkylene group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims description 2
- 239000006071 cream Substances 0.000 claims description 2
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 239000001530 fumaric acid Chemical class 0.000 claims description 2
- 239000000174 gluconic acid Chemical class 0.000 claims description 2
- 235000012208 gluconic acid Nutrition 0.000 claims description 2
- 229940097043 glucuronic acid Drugs 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000004310 lactic acid Chemical class 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical class OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Chemical class 0.000 claims description 2
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 239000002674 ointment Substances 0.000 claims description 2
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical class C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 claims description 2
- 125000004193 piperazinyl group Chemical group 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 125000006239 protecting group Chemical group 0.000 claims description 2
- 125000005493 quinolyl group Chemical group 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 239000001384 succinic acid Chemical class 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- PXZNKAFWRZAUAS-UHFFFAOYSA-N 2-[1-[(4-fluorophenyl)methyl]indol-3-yl]-2-oxo-n-pyridin-4-ylacetamide Chemical compound C1=CC(F)=CC=C1CN1C2=CC=CC=C2C(C(=O)C(=O)NC=2C=CN=CC=2)=C1 PXZNKAFWRZAUAS-UHFFFAOYSA-N 0.000 claims 9
- 239000013543 active substance Substances 0.000 claims 9
- KZLQSDSMMFVEEX-UHFFFAOYSA-N 2-(1-benzylindol-3-yl)-2-oxo-n-pyridin-4-ylacetamide Chemical compound C=1N(CC=2C=CC=CC=2)C2=CC=CC=C2C=1C(=O)C(=O)NC1=CC=NC=C1 KZLQSDSMMFVEEX-UHFFFAOYSA-N 0.000 claims 5
- FUEPBJHYDRQTMG-UHFFFAOYSA-N n-(4-fluorophenyl)-2-oxo-2-[1-(pyridin-3-ylmethyl)indol-3-yl]acetamide Chemical compound C1=CC(F)=CC=C1NC(=O)C(=O)C(C1=CC=CC=C11)=CN1CC1=CC=CN=C1 FUEPBJHYDRQTMG-UHFFFAOYSA-N 0.000 claims 5
- 125000006529 (C3-C6) alkyl group Chemical group 0.000 claims 1
- 125000006281 4-bromobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Br)C([H])([H])* 0.000 claims 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 claims 1
- 125000004176 4-fluorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1F)C([H])([H])* 0.000 claims 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 230000000259 anti-tumor effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 23
- 230000005012 migration Effects 0.000 description 10
- 238000013508 migration Methods 0.000 description 10
- 0 *N([1*])C(=C)C(=C)/C1=C/N([2*])C2=CC=CC=C21.[3*]C.[4*]C Chemical compound *N([1*])C(=C)C(=C)/C1=C/N([2*])C2=CC=CC=C21.[3*]C.[4*]C 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 9
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 9
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 9
- 230000033115 angiogenesis Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000009545 invasion Effects 0.000 description 6
- 229960004528 vincristine Drugs 0.000 description 6
- 229930012538 Paclitaxel Natural products 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 230000009401 metastasis Effects 0.000 description 5
- 229960001592 paclitaxel Drugs 0.000 description 5
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000001394 metastastic effect Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 230000000247 oncostatic effect Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 108700041567 MDR Genes Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000003527 anti-angiogenesis Effects 0.000 description 2
- 230000002001 anti-metastasis Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 1
- AWMLDBKLOPNOAR-UHFFFAOYSA-N 2-(1h-indol-3-yl)-2-oxoacetamide Chemical class C1=CC=C2C(C(=O)C(=O)N)=CNC2=C1 AWMLDBKLOPNOAR-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- LTYDTBHSPIJPEG-UHFFFAOYSA-N 3-methyl-5,5-diphenylimidazolidine-2,4-dione Chemical compound O=C1N(C)C(=O)NC1(C=1C=CC=CC=1)C1=CC=CC=C1 LTYDTBHSPIJPEG-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 230000001740 anti-invasion Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004219 arterial function Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052740 iodine Chemical group 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 231100000501 nonneurotoxic Toxicity 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 229940026778 other chemotherapeutics in atc Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
Definitions
- the invention relates to the further advantageous embodiment of the German Patent Application indole-3-glyoxylamides having the reference 19814 838.0.
- the metastatic spread of a tumor is usually accompanied by poor prognoses in tumor treatment.
- the prerequisite for metastatic spread is the detachment of cells from the primary tumor, the migration of cells to the blood vessels, invasion into the blood vessels and invasion of the cells from the blood vessels into other tissue.
- Oncostatic agents such as vincristine and Taxol furthermore have a not inconsiderable neurotoxicity, which proves disadvantageous in chemotherapy.
- the object of the invention is then to widen the field of use of N-substituted indole-3-glyoxylamides and thus to enrich the available pharmaceutical wealth.
- the possibility of a lower, longer-lasting and better-tolerable medication for the class of substances having antitumor action described in German Patent Application 19814 838.0 should thus be opened up.
- the disadvantageous development of resistance, as is known of many antitumor agents, should be circumvented.
- angiogenesis is obviously responsible for tumor growth and the development of metastases
- the property of angiogenesis inhibition represents a further advantageous pharmaceutical potential, for example, in cancer therapy.
- the increase in action achieved with the N-substituted indole-3-glyoxylamides should more effectively shape pharmaceutical consumption in tumor therapy. Moreover, it should be possible to shorten the period of treatment and to extend it in therapy-resistant cases. In addition, relapses and metastases should be restricted or prevented and thus the survival period of the patients additionally increased. The aim is to develop medicaments which can intervene in the process of metastatic spread.
- the invention relates to the use of N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a for tumor treatment in particular in the case of pharmaceutical resistance and metastasizing carcinoma and for the suppression of metastasis formation, and also as angiogenesis inhibitors, where the radicals R, R 1 , R 2 , R 3 , R 4 and Z have the following meaning:
- alkyl, alkanol, alkoxy or alkylamino group for the radicals R, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 is normally understood as meaning both “straight-chain” and “branched” alkyl groups, where “straight-chain” alkyl groups can be, for example, radicals such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and “branched alkyl groups” designate, for example, radicals such as isopropyl or tert-butyl.
- “Cycloalkyl” is understood as meaning radicals such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
- halogen represents fluorine, chlorine, bromine or iodine.
- alkoxy group represents radicals such as, for example, methoxy, ethoxy, propoxy, butoxy, isopropoxy, isobutoxy or pentoxy.
- the compounds can also be employed as acid addition salts, for example as salts of mineral acids, such as, for example, hydrochloric acid, sulfuric acid, phosphoric acid, salts of organic acids, such as, for example, acetic acid, lactic acid, malonic acid, maleic acid, fumaric acid, gluconic acid, glucuronic acid, citric acid, embonic acid, methanesulfonic acid, trifluoroacetic acid, succinic acid and 2-hydroxyethanesulfonic acid.
- mineral acids such as, for example, hydrochloric acid, sulfuric acid, phosphoric acid
- salts of organic acids such as, for example, acetic acid, lactic acid, malonic acid, maleic acid, fumaric acid, gluconic acid, glucuronic acid, citric acid, embonic acid, methanesulfonic acid, trifluoroacetic acid, succinic acid and 2-hydroxyethanesulfonic acid.
- the compounds of the formula 1 can be administered in free form or as salts with physiologically tolerable acids.
- Administration can be performed orally, parenterally, intravenously, transdermally or by inhalation.
- the invention furthermore relates to pharmaceutical preparations which contain at least one of the compounds of the formula 1 or their salts with physiologically tolerable inorganic or organic acids and, if appropriate, pharmaceutically utilizable excipients and/or diluents or auxiliaries.
- Suitable administration forms are, for example, tablets, coated tablets, capsules, solutions for infusion or ampoules, suppositories, patches, powder preparations which can be employed by inhalation, suspensions, creams and ointments.
- the cytotoxic activity of D-24851 (see claim 4 ) on the MDR (multidrug-resistant) leukemia cell line of the mouse L 1210/VCR is not influenced in vivo and in vitro. See FIGS. 1, 2 and 3 .
- D-24851 (see claim 4 ) has an unchanged cytotoxic activity against the multidrug-resistant mouse leukemia cell subline L1210/VCR in contrast to Taxol, doxirubicin, vincristine or epotholone B [sic].
- the mouse leukemia cell lines [sic] L 120 was adapted to vincristine.
- the unadapted (L 1210) and the adapted (L 1210/VCR) cells were exposed to cytostatic agents and the cell growth, which was determined by the metabolic activity, was determined (XTT test).
- D-24 851 (see claim 4 ) inhibits the migration of MO4 cells in a dose-dependent manner. From this, an antiinvasive and an antimetastatic action can be derived for D-24851.
- MO4 cells can be measured in vitro by inoculating cells into the center of a cell culture dish and determining the migration by means of radius or the covered area of the cells after various days with and without D-24851.
- FIG. 4 shows that the migration of the cells decreases with increasing D-24851 concentration.
- D-24851 In order to test whether D-24851 also acts antiinvasively, the invasion of MO4 fibrosarcoma cells into chickens' hearts was investigated. It is also seen here that at a concentration of 260 and 1000 nM the invasion is completely inhibited, whereas at lower concentrations the invasiveness of the MO4 cells increases. On the basis of these findings, it is seen that D-24851 inhibits both the migration and the invasion of tumor cells and thereby has a strong antimetastatic potential.
- D-24851 has no negative influence on the nerve conduction velocity see FIG. 7 .
- angiogenesis inhibitors are simultaneously also agents for the inhibition of tumor growth, in that the formation of new blood vessels, which are intended to feed the tumor, is inhibited.
- D-24851 In vitro in an antiangiogenesis model on endothelial cells, D-24851 causes a complete inhibition of vascularization, which is not based on a cytotoxic effect.
- D-24851 almost completely breaks up existing cell-cell contacts due to 0.1 ⁇ Mol/l of D 24851 [sic] (see vital staining). Normally, the cells maintain at least partial contact. Cell migration is markedly reduced, many cells are rounded.
- the cells originated from human umbilical vein (arterial function). They were employed for the investigation in the third and fourth passage.
- Angiogenesis is triggered by a natural stimulus.
- the primary trigger of endothelial migration is a protein which is expressed to an increased extent in vascularizing tissue. The substances are added to the culture medium shortly before induction of angiogenesis.
- the concentration for the antiangiogenetic action of D-24851 is markedly below the concentration for the cytotoxic activity. As a result, it is possible to separate the two action qualities (cytotoxic activity and antiangiogenetic action) from one another.
- doses from about 20 mg up to 500 mg daily are possible orally.
- intravenous administration as an injection or as an infusion, up to 250 mg/day or more can be administered depending on the body weight of the patient and individual tolerability.
- the antiangiogenesis effect is suitable for additionally suppressing the spread of the tumor.
- the invention also comprises the use of the N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a in further disorders in which an angiogenesis inhibitory effect is functionally desired. (e.g. wound healing)
- the invention also relates to the fixed or free combination of the N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a with antitumor agents known per se, and also the replacement of antitumor agents which have become ineffective as a result of resistance development by N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The invention relates to the further advantageous embodiment of the German Patent Application indole-3-glyoxylamides having the reference 19814 838.0.
- In connection with chemotherapy in the case of oncoses, the greatest problems result due to the occurrence of pharmaceutical resistance on the one hand and due to the serious side effects of these agents on the other hand.
- In addition, it is known that after reaching a certain size many primary tumors prematurely tend to metastasis formation via the blood stream and lymphatic tracts. The progressive process of tumor invasion and the formation of metastases is the most frequent cause of death of the cancer patients.
- There are various approaches for explaining this spread, inter alia enhanced angiogenesis, increased extracellular matrix degradation, tumor cell migration and modulation of cell adhesion. These factors can also interact but to date are only partially resolved.
- The metastatic spread of a tumor is usually accompanied by poor prognoses in tumor treatment. The prerequisite for metastatic spread is the detachment of cells from the primary tumor, the migration of cells to the blood vessels, invasion into the blood vessels and invasion of the cells from the blood vessels into other tissue.
- An inhibitory action of certain oncostatic agents such as tamoxifen [sic] on the migration and invasion of cancer cells is known [J Clin Endocrinol Metab 1995 January; 80(1): 308-13]
- The inhibition of tumor cell invasion by verapamil has been reported [Pigment Cell Res 1991 December; 4(5-6): 225-33.]
- The influence of melantonin [sic] on invasive and metastatic properties of MCF-7 human breast cancer cells has been reported [Cancer res 1998 Oct. 1; 58(19): 4383-90]
- In the published PCT Application WO 96/23506, the overcoming of pharmaceutical resistance in certain tumor pharmaceuticals was demonstrated as a result of the gene amplification of the multi-drug resistance gene (MDR gene) brought about by such oncostatic agents.
- Oncostatic agents such as vincristine and Taxol furthermore have a not inconsiderable neurotoxicity, which proves disadvantageous in chemotherapy.
- The object of the invention is then to widen the field of use of N-substituted indole-3-glyoxylamides and thus to enrich the available pharmaceutical wealth. The possibility of a lower, longer-lasting and better-tolerable medication for the class of substances having antitumor action described in German Patent Application 19814 838.0 should thus be opened up. In particular, the disadvantageous development of resistance, as is known of many antitumor agents, should be circumvented.
- Moreover, development and spread of the tumor due to metastases should be counteracted.
- According to more recent knowledge, as angiogenesis is obviously responsible for tumor growth and the development of metastases, the property of angiogenesis inhibition represents a further advantageous pharmaceutical potential, for example, in cancer therapy.
- The increase in action achieved with the N-substituted indole-3-glyoxylamides should more effectively shape pharmaceutical consumption in tumor therapy. Moreover, it should be possible to shorten the period of treatment and to extend it in therapy-resistant cases. In addition, relapses and metastases should be restricted or prevented and thus the survival period of the patients additionally increased. The aim is to develop medicaments which can intervene in the process of metastatic spread.
- It has surprisingly been found that the N-substituted indole-3-gloxylamides [sic] described in German Patent Application 19814 838.0, of the
general formula 1 described below, which are suitable for the treatment of oncoses, further have those advantageous properties for tumor treatment which can extend their area of use. - The invention relates to the use of N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a for tumor treatment in particular in the case of pharmaceutical resistance and metastasizing carcinoma and for the suppression of metastasis formation, and also as angiogenesis inhibitors,
where the radicals R, R1, R2, R3, R4 and Z have the following meaning: - R=hydrogen, (C1-C6)-alkyl, where the alkyl group can be mono- or polysubstituted by the phenyl ring and this phenyl ring for its part can be mono- or polysubstituted by halogen, (C1-C6)-alkyl, (C3-C7)-cycloalkyl, by carboxyl groups, carboxyl groups esterified with C1-C6-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups, benzyloxy groups and by a benzyl group which is mono- or polysubstituted in the phenyl moiety by (C1-C6)-alkyl groups, halogen atoms or trifluoromethyl groups,
- R is further the benzyloxycarbonyl group (Z group) and the tertiary-butoxycarbonyl radical (BOC radical), furthermore the acetyl group.
- R1 can be the phenyl ring, which is mono- or polysubstituted by (C1-C6)-alkyl, (C1-C6)-alkoxy, cyano, halogen, trifluoromethyl, hydroxyl, benzyloxy, nitro, amino, (C1-C6)-alkylamino, (C1-C6)-alkoxycarbonylamino and by the carboxyl group or by the carboxyl group esterified with C1-C6-alkanols, or can be a pyridine structure of the
formula 2 and its N-oxide [sic] - and its N-oxide, where the pyridine structure is alternatively bonded to the
ring carbon atoms - R1 can further be a 2- or 4-pyrimidinyl heterocycle, where the 2-pyrimidinyl ring can be mono- or polysubstituted by the methyl group, furthermore are [sic] the 2-, 3-, and 4- and 8-quinolyl structure substituted by (C1-C6)-alkyl, halogen, the nitro group, the amino group and the (C1-C6)-alkylamino radical, are [sic] a 2-, 3- and [sic]-4-quinolylmethyl group, where the ring carbons of the pyridylmethyl radical of the quinolyl group and of the quinolylmethyl radical can be substituted by (C1-C6)-alkyl, (C1-C6)-alkoxy, nitro, amino and (C1-C6)-alkoxycarbonylamino.
- R1, in the case in which R=hydrogen, the methyl or benzyl group and the benzyloxycarbonyl radical (Z radical), the tert-butoxycarbonyl radical (BOC radical) and the acetyl group, can furthermore be the following radicals:
—CH2COOH; —CH(CH3)—COOH; —(CH3)2—CH—(CH2)2—CH—COO—; H3C—H2C—CH(CH3)—CH(COOH)-[sic]; HO—H2C—CH(COOH)—; phenyl-CH2—CH(COOH)—; (4-imidazolyl)-CH2—CH—(COOH)—; HN═C(NH2)—NH—(CH2)3—CH(COOH)—; H2N—(CH2)4—CH(COOH)—; H2N—CO—CH2—CH—(COOH)—; HOOC— (CH2)2—CH(COOH)—; - R1, in the case in which R is hydrogen, the Z group, the BOC radical, the acetyl or the benzyl group, can furthermore be the acid radical of a natural or unnatural amino acid, e.g. the α-glycyl, the α-sarcosyl, the α-alanyl, the α-leucyl, the α-isoleucyl, the α-seryl, the α-phenylalanyl, the α-histidyl, the α-prolyl, the α-arginyl, the α-lysyl, the α-asparagyl and the α-glutamyl radical, where the amino groups of the respective amino acids can be present unprotected or can be protected. A possible protective group of the amino function is the carbobenzoxy radical (Z radical) and the tert-butoxycarbonyl radical (BOC radical) as well as the acetyl group. In the case of the asparagyl and glutamyl radical claimed for R1, the second, unbonded carboxyl group is present as a free carboxyl group or in the form of an ester with C1-C6-alkanols, e.g. as a methyl, ethyl or as a tert-butyl ester.
- Furthermore, R1 can be the allylaminocarbonyl-2-methylprop-1-yl group.
- R and R1 can further form, together with the nitrogen atom to which they are bonded, a piperazine ring of the formula III or a homopiperazine ring, provided R1 is an aminoalkylene group, in which
- R7 is an alkyl radical, is a phenyl ring which can be mono- or polysubstituted by (C1-C6)-alkyl, (C1-C6)-alkoxy, halogen, the nitro group, the amino function and by the (C1-C6)-alkylamino group. R7 is furthermore the benzhydryl group and the bis-p-fluorobenzylhydryl [sic] group.
- R2 can be hydrogen and the (C1-C6)-alkyl group, where the alkyl group is mono- or polysubstituted by halogen and phenyl, which for its part can be mono- or polysubstituted by halogen, (C1-C6)-alkyl, (C3-C7)-cycloalkyl, carboxyl groups, carboxyl groups esterified with C1-C6-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups or benzyloxy groups. The (C1-C6)-alkyl group counting as R2 can further be substituted by the 2-quinolyl group and the 2-, 3- and 4-pyridyl structure, which can both in each case be mono- or polysubstituted by halogen, (C1-C4)-alkyl groups or (C1-C4)-alkoxy groups. R2 is further the aroyl radical, where the aryl moiety on which this radical is based is the phenyl ring, which can be mono- or polysubstituted by halogen, (C1-C6)-alkyl, (C3-C7)-cycloalkyl, carboxyl groups, carboxyl groups esterified with C1-C6-alkanols, trifluoromethyl groups, hydroxyl groups, methoxy groups, ethoxy groups or benzyloxy groups.
- R3 and R4 can be identical or different and are hydrogen, (C1-C6)-alkyl, (C3-C7)-cycloalkyl, (C1-C6)-alkanoyl, (C1-C6)-alkoxy, halogen and benzyloxy. R3 and R4 can furthermore be the nitro group, the amino group, the (C1-C4)-mono or dialkyl-substituted amino group, and the (C1-C6)-alkoxycarbonylamino function or (C1-C6)-alkoxycarbonylamino-(C1-C6)-alkyl function.
- Z is O and S.
- The designation alkyl, alkanol, alkoxy or alkylamino group for the radicals R, R1, R2, R3, R4, R5, R6, R7 is normally understood as meaning both “straight-chain” and “branched” alkyl groups, where “straight-chain” alkyl groups can be, for example, radicals such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and “branched alkyl groups” designate, for example, radicals such as isopropyl or tert-butyl. “Cycloalkyl” is understood as meaning radicals such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
- The designation “halogen” represents fluorine, chlorine, bromine or iodine. The designation “alkoxy group” represents radicals such as, for example, methoxy, ethoxy, propoxy, butoxy, isopropoxy, isobutoxy or pentoxy.
- The compounds can also be employed as acid addition salts, for example as salts of mineral acids, such as, for example, hydrochloric acid, sulfuric acid, phosphoric acid, salts of organic acids, such as, for example, acetic acid, lactic acid, malonic acid, maleic acid, fumaric acid, gluconic acid, glucuronic acid, citric acid, embonic acid, methanesulfonic acid, trifluoroacetic acid, succinic acid and 2-hydroxyethanesulfonic acid.
- Both the compounds of the
formula 1 and their salts are biologically active. - The compounds of the
formula 1 can be administered in free form or as salts with physiologically tolerable acids. - Administration can be performed orally, parenterally, intravenously, transdermally or by inhalation.
- The invention furthermore relates to pharmaceutical preparations which contain at least one of the compounds of the
formula 1 or their salts with physiologically tolerable inorganic or organic acids and, if appropriate, pharmaceutically utilizable excipients and/or diluents or auxiliaries. - Suitable administration forms are, for example, tablets, coated tablets, capsules, solutions for infusion or ampoules, suppositories, patches, powder preparations which can be employed by inhalation, suspensions, creams and ointments.
- The preparation processes for the substances can be taken from the examples of German Patent DE 196 36 150 A1.
- The therapeutically valuable properties found relate specifically to the following advantages:
-
- no development of resistance was detected parameters were detected which are characteristic of the inhibition of metastasis formation (migration)
- parameters were found which confirm the inhibition of neovascularization (angiogenesis)
- in various models, it was not possible to find any neurotoxicity with the N-substituted indole-3-gloxylamides [sic] according to claim 1 general formula 1a in contrast to most antitumor preparations
- The development of resistance which is not present is confirmed in the following pharmacological models and cell cultures:
- 1. The cytotoxic activity of D-24851 (see claim 4) on the MDR (multidrug-resistant) leukemia cell line of the mouse L 1210/VCR is not influenced in vivo and in vitro. See
FIGS. 1, 2 and 3. - D-24851 (see claim 4) has an unchanged cytotoxic activity against the multidrug-resistant mouse leukemia cell subline L1210/VCR in contrast to Taxol, doxirubicin, vincristine or epotholone B [sic].
- The mouse leukemia cell lines [sic]
L 120 was adapted to vincristine. The unadapted (L 1210) and the adapted (L 1210/VCR) cells were exposed to cytostatic agents and the cell growth, which was determined by the metabolic activity, was determined (XTT test). - The curves which connect the XTT datapoints were calculated using a nonlinear regression program.
- These experimental results were also confirmed in vitro on the human resistant LT 12/MDR cell line see
FIG. 4 . - 2. The detection of lacking metastasis formation was afforded by means of inhibition of migration of MO4 cells. See
FIG. 5 . - D-24 851 (see claim 4) inhibits the migration of MO4 cells in a dose-dependent manner. From this, an antiinvasive and an antimetastatic action can be derived for D-24851.
- The migration ability of MO4 cells can be measured in vitro by inoculating cells into the center of a cell culture dish and determining the migration by means of radius or the covered area of the cells after various days with and without D-24851.
FIG. 4 shows that the migration of the cells decreases with increasing D-24851 concentration. - In order to test whether D-24851 also acts antiinvasively, the invasion of MO4 fibrosarcoma cells into chickens' hearts was investigated. It is also seen here that at a concentration of 260 and 1000 nM the invasion is completely inhibited, whereas at lower concentrations the invasiveness of the MO4 cells increases. On the basis of these findings, it is seen that D-24851 inhibits both the migration and the invasion of tumor cells and thereby has a strong antimetastatic potential.
- 3. From comparison experiments of the compound according to the invention D-24851 (see claim 4) with vincristine and Taxol on rats, where ataxia, traction and reaction were assessed (see
FIG. 6 ), it is evident that this compound shows no neurotoxic effect, in contrast to Taxol and vincristine. - Furthermore, in comparison to Taxol and vincristine, D-24851 has no negative influence on the nerve conduction velocity see
FIG. 7 . - This confirms that D-24851, on account of the absent neurotoxicity, has clearly lower side effects than other chemotherapeutics.
- 4. From further investigations as shown in
FIGS. 8 and 9 , it is evident that the compound D-25851 (see claim 4) has a potential as an angiogenesis inhibitor. As a result of the physiological relationship with tumor growth, angiogenesis inhibitors are simultaneously also agents for the inhibition of tumor growth, in that the formation of new blood vessels, which are intended to feed the tumor, is inhibited. - In vitro in an antiangiogenesis model on endothelial cells, D-24851 causes a complete inhibition of vascularization, which is not based on a cytotoxic effect.
- It can be seen in
FIG. 8 that D-24851 almost completely breaks up existing cell-cell contacts due to 0.1 μMol/l of D 24851 [sic] (see vital staining). Normally, the cells maintain at least partial contact. Cell migration is markedly reduced, many cells are rounded. - Lethal staining in a monolayer before angiogenesis induction did not show any increased cell mortality with D-24851. Even in the first 22 hours after induction, no increased cell mortality was yet discernible in comparison with the control.
- (See Lethal Staining in
FIG. 9 , White Points) - The cells originated from human umbilical vein (arterial function). They were employed for the investigation in the third and fourth passage. Angiogenesis is triggered by a natural stimulus. The primary trigger of endothelial migration is a protein which is expressed to an increased extent in vascularizing tissue. The substances are added to the culture medium shortly before induction of angiogenesis.
- The concentration for the antiangiogenetic action of D-24851 is markedly below the concentration for the cytotoxic activity. As a result, it is possible to separate the two action qualities (cytotoxic activity and antiangiogenetic action) from one another.
- Without wanting to restrict the scope of the invention by the following statements, it can be said that doses from about 20 mg up to 500 mg daily are possible orally.
- On intravenous administration as an injection or as an infusion, up to 250 mg/day or more can be administered depending on the body weight of the patient and individual tolerability.
- As a result of the lacking development of resistance and suppression of metastasis, a high effectiveness and wide use of the agents for [sic] even in tumor-refractory patients can be expected.
- The antiangiogenesis effect is suitable for additionally suppressing the spread of the tumor.
- However, the invention also comprises the use of the N-substituted indole-3-gloxylamides [sic] according to
claim 1 general formula 1a in further disorders in which an angiogenesis inhibitory effect is functionally desired. (e.g. wound healing) - In addition, the invention also relates to the fixed or free combination of the N-substituted indole-3-gloxylamides [sic] according to
claim 1 general formula 1a with antitumor agents known per se, and also the replacement of antitumor agents which have become ineffective as a result of resistance development by N-substituted indole-3-gloxylamides [sic] according toclaim 1 general formula 1a.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/894,729 US20080057124A1 (en) | 1998-04-02 | 2007-08-20 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19814838A DE19814838C2 (en) | 1998-04-02 | 1998-04-02 | Indolyl-3-glyoxylic acid derivatives with anti-tumor effects |
DEDE19814838.0 | 1998-04-02 | ||
US09/285,058 US6232327B1 (en) | 1998-04-02 | 1999-04-02 | Indolyl-3-glyoxylic acid derivatives having antitumor action |
DEDE19946301.8 | 1999-09-28 | ||
DE19946301A DE19946301A1 (en) | 1998-04-02 | 1999-09-28 | Antitumor agents and angiogenesis inhibitors having low neurotoxicity, comprise indole-3-glyoxylamide derivatives, are effective against resistant and metastasis-forming carcinomas |
US09/492,531 US6693119B2 (en) | 1998-04-02 | 2000-01-27 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US10/686,809 US7452910B2 (en) | 1998-04-02 | 2003-10-17 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US11/894,729 US20080057124A1 (en) | 1998-04-02 | 2007-08-20 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/686,809 Continuation US7452910B2 (en) | 1998-04-02 | 2003-10-17 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080057124A1 true US20080057124A1 (en) | 2008-03-06 |
Family
ID=26045230
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/492,531 Expired - Fee Related US6693119B2 (en) | 1998-04-02 | 2000-01-27 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US10/686,809 Expired - Fee Related US7452910B2 (en) | 1998-04-02 | 2003-10-17 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US11/894,729 Abandoned US20080057124A1 (en) | 1998-04-02 | 2007-08-20 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/492,531 Expired - Fee Related US6693119B2 (en) | 1998-04-02 | 2000-01-27 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US10/686,809 Expired - Fee Related US7452910B2 (en) | 1998-04-02 | 2003-10-17 | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
Country Status (2)
Country | Link |
---|---|
US (3) | US6693119B2 (en) |
DE (1) | DE19946301A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030195360A1 (en) * | 1998-04-02 | 2003-10-16 | Asta Medica Aktiengesellschaft | Indolyl-3-glyoxylic acid derivatives having antitumor action |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19636150A1 (en) * | 1996-09-06 | 1998-03-12 | Asta Medica Ag | N-substituted indole-3-glyoxylamides with antiasthmatic, antiallergic and immunosuppressive / immunomodulating effects |
DE19946301A1 (en) * | 1998-04-02 | 2001-04-19 | Asta Medica Ag | Antitumor agents and angiogenesis inhibitors having low neurotoxicity, comprise indole-3-glyoxylamide derivatives, are effective against resistant and metastasis-forming carcinomas |
IL146309A (en) * | 1999-05-21 | 2008-03-20 | Scios Inc | INDOLE-TYPE DERIVATIVES AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEM AS INHIBITORS OF p38 KINASE |
CA2383988A1 (en) * | 1999-09-17 | 2001-03-22 | Baylor University | Indole-containing and combretastatin-related anti-mitotic and anti-tubulin polymerization agents |
IT1318641B1 (en) * | 2000-07-25 | 2003-08-27 | Novuspharma Spa | AMID ACIDS 2- (1H-INDOL-3-IL) -2-OXO-ACETICS WITH ANTI-TUMOR ACTIVITY. |
DE10037310A1 (en) * | 2000-07-28 | 2002-02-07 | Asta Medica Ag | New indole derivatives and their use as medicines |
US7205299B2 (en) * | 2003-06-05 | 2007-04-17 | Zentaris Gmbh | Indole derivatives having an apoptosis-inducing effect |
US7211588B2 (en) * | 2003-07-25 | 2007-05-01 | Zentaris Gmbh | N-substituted indolyl-3-glyoxylamides, their use as medicaments and process for their preparation |
DE102004031538A1 (en) * | 2004-06-29 | 2006-02-09 | Baxter International Inc., Deerfield | Presentation form (obtainable by dissolving indibulin in or with a highly concentrated organic acid), useful to orally administer poorly soluble active compound indibulin, comprises a poorly soluble active compound indibulin |
MX2007005434A (en) * | 2004-11-08 | 2007-07-10 | Baxter Int | Nanoparticulate compositions of tubulin inhibitor. |
US20060280787A1 (en) * | 2005-06-14 | 2006-12-14 | Baxter International Inc. | Pharmaceutical formulation of the tubulin inhibitor indibulin for oral administration with improved pharmacokinetic properties, and process for the manufacture thereof |
NZ596024A (en) | 2006-08-07 | 2013-07-26 | Ironwood Pharmaceuticals Inc | Indole compounds |
AU2007325797B2 (en) * | 2006-11-28 | 2014-03-13 | Ziopharm Oncology, Inc. | Use of indolyl-3-glyoxylic acid derivatives including indibulin, alone or in combination with further agents for treating cancer |
US20080275416A1 (en) * | 2007-05-03 | 2008-11-06 | Raymond Albert Sargent | Array of tampons having a visual indicator |
GB0812192D0 (en) * | 2008-07-03 | 2008-08-13 | Lectus Therapeutics Ltd | Calcium ion channel modulators & uses thereof |
AR084433A1 (en) | 2010-12-22 | 2013-05-15 | Ironwood Pharmaceuticals Inc | FAAH INHIBITORS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405864A (en) * | 1993-10-15 | 1995-04-11 | Syntex (U.S.A.) Inc. | Chemotherapeutic maleimides |
US6008231A (en) * | 1996-09-06 | 1999-12-28 | Asta Medica Aktiengesellschgt | N-substituted indole-3 glyoxylamides having anti-asthmatic antiallergic and immunosuppressant/immuno-modulating action |
US6225329B1 (en) * | 1998-03-12 | 2001-05-01 | Novo Nordisk A/S | Modulators of protein tyrosine phosphatases (PTPases) |
US6232327B1 (en) * | 1998-04-02 | 2001-05-15 | Asta Medica Aktiengesellschaft | Indolyl-3-glyoxylic acid derivatives having antitumor action |
US6251923B1 (en) * | 1998-04-28 | 2001-06-26 | Arzneimittelwerk Dresden Gmbh | Hydroxyindoles, their use as inhibitors of phosphodiesterase 4 and process for their preparation |
US6262044B1 (en) * | 1998-03-12 | 2001-07-17 | Novo Nordisk A/S | Modulators of protein tyrosine phosphatases (PTPASES) |
US6432987B2 (en) * | 1999-12-23 | 2002-08-13 | Zentaris Ag | Substituted N-benzylindol-3-ylglyoxylic acid derivatives having antitumor action |
US6693119B2 (en) * | 1998-04-02 | 2004-02-17 | Baxter Healthcare Sa | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US20040266762A1 (en) * | 2003-06-05 | 2004-12-30 | Matthias Gerlach | Indole derivatives having an apoptosis-inducing effect |
US20060040991A1 (en) * | 2004-06-29 | 2006-02-23 | Baxter International Inc. | Pharmaceutical presentation form for oral administration of a poorly soluble active compound, process for its preparation and kit |
US20060280787A1 (en) * | 2005-06-14 | 2006-12-14 | Baxter International Inc. | Pharmaceutical formulation of the tubulin inhibitor indibulin for oral administration with improved pharmacokinetic properties, and process for the manufacture thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2182915A1 (en) | 1972-03-30 | 1973-12-14 | Nelson Res & Dev | Substd indoles, benzimidazoles - as anti-immune agents , antitumour agents, serotonin inhibitors, hypnotics |
DE3019098C2 (en) * | 1980-05-19 | 1983-02-10 | Siemens AG, 1000 Berlin und 8000 München | Ceramic PTC thermistor material and process for its manufacture |
CA2079936C (en) * | 1991-10-08 | 1998-05-19 | Akihito Kurosaka | Process for preparing barium titanate single crystals |
EP0618597B1 (en) * | 1993-03-31 | 1997-07-16 | Texas Instruments Incorporated | Lightly donor doped electrodes for high-dielectric-constant materials |
KR20010041811A (en) | 1998-03-12 | 2001-05-25 | 온토젠 코포레이션 | Modulators of protein tyrosine phosphatases |
JP2000239252A (en) | 1999-02-16 | 2000-09-05 | Mitsubishi Chemicals Corp | Indole derivatives |
WO2000067802A1 (en) | 1999-05-10 | 2000-11-16 | Protarga, Inc. | Fatty acid-n-substituted indol-3-glyoxyl-amide compositions and uses thereof |
-
1999
- 1999-09-28 DE DE19946301A patent/DE19946301A1/en not_active Ceased
-
2000
- 2000-01-27 US US09/492,531 patent/US6693119B2/en not_active Expired - Fee Related
-
2003
- 2003-10-17 US US10/686,809 patent/US7452910B2/en not_active Expired - Fee Related
-
2007
- 2007-08-20 US US11/894,729 patent/US20080057124A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405864A (en) * | 1993-10-15 | 1995-04-11 | Syntex (U.S.A.) Inc. | Chemotherapeutic maleimides |
US6008231A (en) * | 1996-09-06 | 1999-12-28 | Asta Medica Aktiengesellschgt | N-substituted indole-3 glyoxylamides having anti-asthmatic antiallergic and immunosuppressant/immuno-modulating action |
US6344467B1 (en) * | 1996-09-06 | 2002-02-05 | Asta Medica Ag | N-substituted indole-3-glyoxylamides having anti-asthmatic, antiallergic and immunosuppressant/immuno-modulating action |
US6262044B1 (en) * | 1998-03-12 | 2001-07-17 | Novo Nordisk A/S | Modulators of protein tyrosine phosphatases (PTPASES) |
US6225329B1 (en) * | 1998-03-12 | 2001-05-01 | Novo Nordisk A/S | Modulators of protein tyrosine phosphatases (PTPases) |
US6232327B1 (en) * | 1998-04-02 | 2001-05-15 | Asta Medica Aktiengesellschaft | Indolyl-3-glyoxylic acid derivatives having antitumor action |
US6693119B2 (en) * | 1998-04-02 | 2004-02-17 | Baxter Healthcare Sa | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US20040171668A1 (en) * | 1998-04-02 | 2004-09-02 | Baxter Healthcare Sa | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties |
US6251923B1 (en) * | 1998-04-28 | 2001-06-26 | Arzneimittelwerk Dresden Gmbh | Hydroxyindoles, their use as inhibitors of phosphodiesterase 4 and process for their preparation |
US6432987B2 (en) * | 1999-12-23 | 2002-08-13 | Zentaris Ag | Substituted N-benzylindol-3-ylglyoxylic acid derivatives having antitumor action |
US20040266762A1 (en) * | 2003-06-05 | 2004-12-30 | Matthias Gerlach | Indole derivatives having an apoptosis-inducing effect |
US20060040991A1 (en) * | 2004-06-29 | 2006-02-23 | Baxter International Inc. | Pharmaceutical presentation form for oral administration of a poorly soluble active compound, process for its preparation and kit |
US20060280787A1 (en) * | 2005-06-14 | 2006-12-14 | Baxter International Inc. | Pharmaceutical formulation of the tubulin inhibitor indibulin for oral administration with improved pharmacokinetic properties, and process for the manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030195360A1 (en) * | 1998-04-02 | 2003-10-16 | Asta Medica Aktiengesellschaft | Indolyl-3-glyoxylic acid derivatives having antitumor action |
US7579365B2 (en) * | 1998-04-02 | 2009-08-25 | Ziophram Oncology, Inc. | Indolyl-3-glyoxylic acid derivatives having antitumor action |
Also Published As
Publication number | Publication date |
---|---|
US20040171668A1 (en) | 2004-09-02 |
DE19946301A1 (en) | 2001-04-19 |
US7452910B2 (en) | 2008-11-18 |
US20030114511A1 (en) | 2003-06-19 |
US6693119B2 (en) | 2004-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080057124A1 (en) | Indolyl-3-glyoxylic acid derivatives having therapeutically valuable properties | |
CA2386069C (en) | Indolyl-3-glyoxylic acid derivatives as antitumor agents | |
US7579365B2 (en) | Indolyl-3-glyoxylic acid derivatives having antitumor action | |
RU2000128035A (en) | INDOL-3-GLYOXYL ACID DERIVATIVES - COMPOUNDS WITH ANTI-TUMOR ACTIVITY, PHARMACEUTICAL COMPOSITION, ANTI-TUMOR MEDICINE (OPTIONS) | |
RU2002111866A (en) | Derivatives of N-substituted indole-3-glyoxylamide - an antitumor drug and an agent that suppresses angiogenesis (options), a pharmaceutical composition and an antitumor drug (options) | |
JP2010535508A5 (en) | ||
WO2003074045A1 (en) | Antitumor agent comprising combination of sulfonamide-containing heterocyclic compound with angiogenesis inhibitor | |
RU2002120462A (en) | Substituted derivatives of N-benzylindol-3-yl-glyoxylic acid with antitumor activity (options), their acid additive salts and their use (options), pharmaceutical preparation, dosage form | |
US20080214595A1 (en) | Use Of Rapamycin Derivatives For The Treatment And/Or Prevention Of Cardiovas Cular Disorders | |
US20050288298A1 (en) | Methods for the treatment of synucleinopathies | |
JP2022548162A (en) | How to treat Pompe disease | |
WO2024112397A1 (en) | Combination therapies comprising kras inhibitors and sph2 inhibitors | |
KR20070018039A (en) | Antitumor agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTA MEDICA AKTIENGESELLSCHAFT;REEL/FRAME:020116/0234 Effective date: 20011105 Owner name: BAXTER INTERNATIONAL INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTA MEDICA AKTIENGESELLSCHAFT;REEL/FRAME:020116/0234 Effective date: 20011105 Owner name: ZIOPHARM ONCOLOGY, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAXTER HEALTHCARE S.A.;BAXTER INTERNATIONAL, INC.;REEL/FRAME:020115/0953 Effective date: 20070725 |
|
AS | Assignment |
Owner name: ASIA MEDICA AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NICKEL, BERND;BACHER,GERALD;KLENNER,THOMAS;AND OTHERS;REEL/FRAME:020241/0986 Effective date: 20000216 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |