US20080047204A1 - Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc - Google Patents
Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc Download PDFInfo
- Publication number
- US20080047204A1 US20080047204A1 US11/774,915 US77491507A US2008047204A1 US 20080047204 A1 US20080047204 A1 US 20080047204A1 US 77491507 A US77491507 A US 77491507A US 2008047204 A1 US2008047204 A1 US 2008047204A1
- Authority
- US
- United States
- Prior art keywords
- backing
- abrasive disc
- upper side
- abrasive
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000004049 embossing Methods 0.000 claims abstract description 59
- 239000011248 coating agent Substances 0.000 claims abstract description 42
- 238000000576 coating method Methods 0.000 claims abstract description 42
- 239000003082 abrasive agent Substances 0.000 claims abstract description 41
- 239000002344 surface layer Substances 0.000 claims abstract description 23
- 238000003825 pressing Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 11
- 238000005452 bending Methods 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims 2
- 238000005299 abrasion Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003578 releasing effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001227 electron beam curing Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
Definitions
- the present invention relates to a method for manufacturing a flexible abrasive disc according to the preamble of claim 1 .
- the invention also relates to a flexible abrasive disc manufactured with this method according to the preamble of claim 16 .
- Manufacturing abrasive discs is further burdened by a large amount of waste generated in die cutting. This waste partly constitutes an unused raw material, and partly it has to be removed from the production line and destroyed or stored. Both of these factors naturally affect the costs of the abrasive disc in a negative manner.
- the invention thus provides a method for manufacturing a flexible abrasive disc as well as a flexible abrasive disc manufactured with this method, resulting in reliable manufacture and an abrasive disc with uniform properties.
- abrasive discs piece by piece enables production of inexpensive molds because the abrasive disc has small dimensions.
- the manufacturing technique allows the use of disposable molds that have been cast against a positive original. Such disposable molds facilitate considerably the handling of the abrasive disc after it has been finished.
- it is simpler and thus also cheaper to manufacture a positive original mold and to cast the required negative molds from that, as opposed to manufacturing immediately the negative originals that would usually be required in the manufacture of abrasive discs according to conventional technology.
- one single original mold can be used for producing a plurality of above-mentioned disposable molds, it is also economically possible to make the mold very complicated. This allows the surface structure of the abrasive disc to be affected more than what is usual.
- the abrasive disc is advantageously pressed in a press with upper and lower embossing pistons positioned opposite each other.
- one embossing piston is advantageously provided with an embossing mold.
- each abrasive disc is handled in a separate press chamber formed between the upper and lower embossing pistons and having a small volume, it is simple to utilize a vacuum casting technique known as such. This technique allows particularly accurate castings to be made and improves thus the operating characteristics of the abrasive disc significantly.
- Protecting the abrasive agent coating of the abrasive disc with a disposable mold makes it realistic to use not only UV curing but also for instance electron beam curing. Electron beam curing is, for example, economically feasible because it needs only a small radiation source for beam curing.
- An abrasive disc which has been manufactured according to the present method and has also obtained the spherical cross-section according to the invention has better clogging properties in the use.
- the spherical shape reduces what is called “caking”, i.e. dust build-up between the surface of the abrasive disc and the surface to be abraded.
- the abrasive disc has a longer service life because the whole abrasive surface of the abrasive disc can be used, and not only the peripheral areas of the disc used for the most part normally. This is because the disc does not adhere to planar surfaces but air gets under the somewhat bent product. Hereby, the amount of the out-sucking air current increases, resulting in better dust removal. Positive results can be achieved even with abrasive discs having a large bending radius.
- the bending of the cross-section of the abrasive disc may be, for example, only a couple of millimeters in a 150-mm abrasive disc in order for the increased dust removal effect to be noticed.
- Abrasion work carried out with the present abrasive disc is also facilitated because the spherical abrasive disc does not adhere in the same way as conventional planar abrasive discs or draw in different directions. Further, there is no need to hold the machine as hard as before or direct it at the object but it is possible to simply abrade with even the mid-area of the abrasive disc, for which only the hand's and arm's own weight is needed.
- a spherical abrasive disc also makes it possible to reduce the abrasion area and to obtain discrete transition between the abraded and unabraded surfaces.
- This effect can be further intensified by providing the fastening surface in the fastening plate of the abrasive machine with a substantially spherical shape. In this way, a small inclination of the abrasive machine will not change the mutual geometry of the contact surfaces positioned opposite each other.
- an abrasive machine with spherical oscillation it is possible, to an essential extent, to avoid an oblique position of the abrasive product arranged on the fastening surface of the machine.
- the abrasive machine does not require as exact positioning in the abrasion area as in known solutions and will be remarkably simpler to work with.
- the shaping allows more exact abrasion or polishing of only the particular defect present in the current abrasion area. Thanks to the present invention, the abrasion area is thus reduced and the edge area in the periphery of the abrasion area is less visible.
- FIG. 1 shows a top view of an abrasive disc
- FIG. 2 shows a side view of an abrasive disc
- FIG. 3 shows a partial cross-section of an abrasive disc according to FIG. 2 ;
- FIG. 4 shows an alternative embodiment of the abrasive disc seen from one side
- FIG. 5 shows a partial cross-section of an abrasive disc according to FIG. 4 ;
- FIG. 6 shows a cross-section of a second alternative embodiment of the abrasive disc seen from one side
- FIG. 7 shows a partial cross-section of a press for manufacturing the present abrasive disc, whereby the press is open for feeding;
- FIG. 8 shows a press according to claim 7 , whereby the embossing pistons of the press are locked together;
- FIG. 9 shows a press according to claim 7 , whereby the pressing together has been started.
- FIG. 10 shows a press according to claim 7 , whereby the pressing together has been completed.
- the present flexible abrasive disc 1 comprises according to FIGS. 1 to 6 a backing 2 with an upper side 3 and a lower side 4 .
- the backing has in its periphery a side edge 5 , which binds the upper side of the backing to its lower side.
- the upper side of the backing is provided with an abrasive agent coating 6 for forming a surface layer and thus the final abrasive disc.
- the backing 2 is arranged separately on an embossing piston 7 according to FIG. 7 , the backing of each abrasive disc being also coated separately.
- Each backing can thus be placed by itself in a press chamber formed of two embossing pistons 7 and 8 positioned opposite each other. It is, however, feasible to place the backing in one of several adjacent press chambers formed of two embossing pistons positioned substantially opposite each other. It is also feasible to place one or more backings adjacent to each other in one single press chamber without, however, any mutual contact, in which case they can also be coated separately.
- the embossing piston 7 which is in this embodiment referred to as the upper embossing piston, is provided with a replaceable press head 9 for supporting the backing against the surface of the embossing piston. If the lower surface 4 of the backing is for instance concave, the embossing piston is thus provided with a convex press head. Naturally, it is also feasible to provide a planar embossing piston with a lower mold of a suitable polymer material to support the backing against the surface of the embossing piston.
- an abrasive agent coating 6 is applied to the upper side of the backing.
- the structure of the surface layer of the abrasive agent coating is formed advantageously by bringing an embossing mold 10 , which is arranged on the lower embossing piston 8 opposite the backing, against the abrasive agent coating.
- the surface layer of the abrasive disc is thus embossed with a desired pattern by pressing together the embossing pistons positioned opposite each other.
- the abrasive agent coating 6 can thus be applied directly to the upper side 3 of the backing 2 , or alternatively it can be applied to the embossing mold 10 to be transferred to the backing in the pressing together of the pistons described above and illustrated in FIGS. 7 and 8 .
- the embossing mold can be provided with a particularly fine-grained structure that can be filled during the embossing, and no empty pockets are generated in the pattern.
- the embossing mold 10 can be shaped advantageously according to FIGS. 7 to 10 with a surrounding collecting pocket 12 in its periphery.
- a surrounding collecting pocket 12 in its periphery.
- the abrasive agent coating 6 is cured, after which the molds that at least partly surround the finished abrasive disc 1 can be removed.
- Applying the abrasive agent coating 6 can take place stepwise with alternating application of at least glue and sand to the upper side of the backing.
- the abrasive agent coating can be dripped, sprayed, injection-molded or injected to the upper side 3 of the backing 2 , whereby for instance a slurry containing at least abrasive agent and binding agent is used.
- a screen print coating of the slurry is also possible, whereby the upper surface obtains small dots, i.e. glue spots, of the abrasive agent coating.
- the outer layer is shaped substantially spherical by coating a spherical upper surface 3 on the backing 2 .
- the spherical shape can naturally manifest itself as both convex and concave surfaces. If a concave spherical surface is used, it is the inside of the hollowed concave surface that is coated.
- the spherical shape of the abrasive disc 1 can be, broadly speaking, adapted to the rounding of any particular surface, irrespective of whether it is a concave or a convex surface. Further, extra bending up 14 of the edge of the abrasive disc can be implemented to obtain discrete positioning.
- Distribution of the abrasive agent coating 6 can be of different forms depending on the shaping of the embossing mold 10 brought to the lower embossing piston 8 to emboss the surface layer by the pistons being pressed together.
- the shaping of the surface structure of this embossing mold can be advantageously provided by manufacturing a special positive original embossing mold and subsequently casting it in simple polymer molds, for example. After this, an embossing mold thus shaped with a negative embossing mold of releasing polymer is brought to the lower embossing piston to carry out the embossing of the abrasive agent coating.
- the releasing polymer may be an ordinary polyolefin, for example polypropylene or polyethylene, but can also be grafted with a polymer with even better releasing properties.
- the original embossing mold does not come into contact with the abrasive agent coating 6 , it is subjected to minimal wearing.
- the wearing, which is almost non-existent, and the small dimensions of the mold mean that its structure can be made very detailed.
- a micro replica mold is obtained.
- this allows the pattern to be made non-linear and non-interferential.
- the composite formations of the abrasive agent coating are prevented from forming straight paths that can generate traces on the surface to be abraded if the abrasive disc has one-dimensional movement.
- the surface layer is structured.
- the two embossing pistons 7 and 8 are brought together, in other words the upper embossing piston 7 with the backing 2 on it and the opposite lower embossing piston 8 with an embossing mold 10 arranged in it and having an embossing pattern.
- neither of the embossing pistons comes into direct contact with the abrasive agent coating, which is applied to the upper side 3 of the backing or the embossing mold, because the pistons are protected partly by the embossing mold and partly by the backing.
- the lower embossing piston 8 having the embossing mold 10 with an embossing pattern can advantageously be formed of an elastic material and with a convex end surface.
- the embossing piston starts the pressing from the middle of the embossing mold according to FIG. 9 .
- the pressing pressure proceeds gradually like a ring wave out towards the periphery of the embossing mold as the embossing piston is being deformed at the increasing pressure according to FIG. 10 .
- the surface of the upper embossing piston 7 , or the press head 8 arranged in it, is rigid and corresponds advantageously to the backing.
- the backing 2 and the embossing mold 10 arranged against the upper surface 3 are kept together, after the above-mentioned pressing together, by the surrounding atmospheric pressure and the abrasive agent coating 6 applied between them before the pressing. Therefore, it is simple to subject the abrasive agent coating to curing of some type known as such before the pressing.
- the present invention allows also electron beam cured resins to be used because the radiation source may be relatively small when only one abrasive disc 1 may be exposed to radiation at a time.
- the backing 2 of the abrasive disc 1 has been described.
- the backing may be manufactured in compression molding in a separate mold, in which case its upper side 3 can be coated when the backing is still in the mold.
- the backing may also be manufactured in stretch molding to be subsequently arranged in a separate mold in which its upper side is then coated.
- the stretch-molded backing can be either cut off a stretch-molded material strip, or a planar backing material can be subjected to stretch molding when it is being cut off a material strip.
- the backing 2 of the abrasive disc 1 has, in one of its embodiments, a structure with substantially even thickness, whereby its lower side 4 and the upper side 3 are substantially parallel and have substantially equal bending radii.
- the backing can, however, have a shape where the lower side and the upper side have different bending radii, whereby its lower side may be substantially planar, for example, while the upper side is spherically convex or concave.
- the upper side of the backing can be provided with a surface layer in the form of an abrasive agent coating 6 which is substantially of the shape of a spherical segment.
- the backing 2 of the present abrasive disc of a polymer material.
- the side edge 5 of the backing may be provided with fastening elements. These fastening elements are arranged to keep, like a lid, the finished abrasive disc fastened when the abrasive disc is, in use, arranged on a fastening plate of an abrasive head.
- the fastening elements may comprise an edge 14 drawn upwards according to FIG. 5 , or hooks drawn upwards.
- the abrasive disc 1 may also be provided with holes for extraction of dust or for supply of water. Further, it may also be provided with follower pins that cooperate with guide holes in the fastening plate. These follower pins make the fastening simpler and may, in some cases and particularly in combination with above-mentioned integrated fastening elements, eliminate conventional fastening elements, such as self-adhesive glue and Velcro fastening.
- the abrasive disc 1 may be provided with fastening elements known as such, such as self-adhesive glue and Velcro fastening on the lower side 4 of the backing 2 , to fasten the abrasive disc to the fastening plate in the abrasive head of an abrasive tool.
- fastening elements known as such, such as self-adhesive glue and Velcro fastening on the lower side 4 of the backing 2 , to fasten the abrasive disc to the fastening plate in the abrasive head of an abrasive tool.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
The present invention relates to a method for manufacturing a flexible abrasive disc, and to such an abrasive disc. The abrasive disc comprises a backing with an upper side and a lower side. The upper side has an abrasive agent coating for forming a surface layer. In order to form a surface layer as specifically patterned as possible, the backing of each abrasive disc is coated separately. In this manufacturing method, the abrasive agent coating on the upper side of the backing is embossed with an embossing mold specially structured and to be pressed against the backing.
Description
- The present invention relates to a method for manufacturing a flexible abrasive disc according to the preamble of
claim 1. - The invention also relates to a flexible abrasive disc manufactured with this method according to the preamble of claim 16.
- It is known from the prior art to manufacture flexible abrasive means by coating an extensive material strip with composite formations precisely shaped, usually with a pyramid shape. This method has been described for example in U.S. Pat. No. 5,152,917. To manufacture an abrasive disc with the above method, the disc must be cut out of the material strip. This, however, requires accurate die-cutting tools. Since the material strip also has an abrasive agent coating, the blades of the die-cutting tool are also subjected to significant wearing, due to which they have to be changed often. This is expensive both because of interrupted production and because of acquisition and installation of the new blades.
- Manufacturing abrasive discs is further burdened by a large amount of waste generated in die cutting. This waste partly constitutes an unused raw material, and partly it has to be removed from the production line and destroyed or stored. Both of these factors naturally affect the costs of the abrasive disc in a negative manner.
- In producing abrasive material out of an extensive material strip, it is also next to impossible to utilize production methods that would be technically advantageous. Such a method is, for example, the use of vacuum treatment of the surface layer of the abrasive disc. The costs of creating a vacuum over a material strip of a known type are far too high for this technique to be used.
- It is also known from the prior art to coat an individual abrasive disc with a slurry of binding agent and sand according to, for example, U.S. Pat. No. 2,292,261. Here, a method is described according to which a disc is coated with a layer of abrasive agent slurry having correct viscosity. This layer is subjected to embossing with a structured plate before curing. The embossing creates a desired pattern in the abrasive agent slurry, which is subsequently cured. Since the desired pattern is, in this method, pressed in only momentarily, the result is not an exact replica but the pattern tends to spread to some extent, for instance, before the curing.
- With the present invention, the problems of known solutions can be substantially avoided. The invention thus provides a method for manufacturing a flexible abrasive disc as well as a flexible abrasive disc manufactured with this method, resulting in reliable manufacture and an abrasive disc with uniform properties.
- The problems mentioned are solved in accordance with the invention by giving the manufacturing method and the flexible abrasive disc the characterizing features of
claim 1 and claim 16, respectively. The following dependent claims present suitable further embodiments and variations of the invention that further improve its functioning. - In the following description, the terms “upper”, “lower”, “upper side”, “lower side” etc. refer to directions in relation to the abrasive disc or its structural details as shown in the attached figures.
- With the method described in the present invention, several significant advantages over the prior art are obtained. Therefore, manufacturing abrasive discs piece by piece enables production of inexpensive molds because the abrasive disc has small dimensions. The manufacturing technique allows the use of disposable molds that have been cast against a positive original. Such disposable molds facilitate considerably the handling of the abrasive disc after it has been finished. In addition, it is simpler and thus also cheaper to manufacture a positive original mold and to cast the required negative molds from that, as opposed to manufacturing immediately the negative originals that would usually be required in the manufacture of abrasive discs according to conventional technology.
- Since one single original mold can be used for producing a plurality of above-mentioned disposable molds, it is also economically possible to make the mold very complicated. This allows the surface structure of the abrasive disc to be affected more than what is usual.
- In the manufacture of an abrasive disc according to the present invention, the abrasive disc is advantageously pressed in a press with upper and lower embossing pistons positioned opposite each other. Hereby, one embossing piston is advantageously provided with an embossing mold. By using inexpensive disposable molds that can remain with the final product in the curing process, the pressing together needs to take place only momentarily in the present method. The abrasive agent coating applied to the backing of the abrasive disc will keep the backing and the embossing mold together after the initial pressing.
- Since each abrasive disc is handled in a separate press chamber formed between the upper and lower embossing pistons and having a small volume, it is simple to utilize a vacuum casting technique known as such. This technique allows particularly accurate castings to be made and improves thus the operating characteristics of the abrasive disc significantly.
- Protecting the abrasive agent coating of the abrasive disc with a disposable mold makes it realistic to use not only UV curing but also for instance electron beam curing. Electron beam curing is, for example, economically feasible because it needs only a small radiation source for beam curing.
- An abrasive disc which has been manufactured according to the present method and has also obtained the spherical cross-section according to the invention has better clogging properties in the use. The spherical shape reduces what is called “caking”, i.e. dust build-up between the surface of the abrasive disc and the surface to be abraded.
- Further, thanks to the spherical shape, the abrasive disc has a longer service life because the whole abrasive surface of the abrasive disc can be used, and not only the peripheral areas of the disc used for the most part normally. This is because the disc does not adhere to planar surfaces but air gets under the somewhat bent product. Hereby, the amount of the out-sucking air current increases, resulting in better dust removal. Positive results can be achieved even with abrasive discs having a large bending radius. The bending of the cross-section of the abrasive disc may be, for example, only a couple of millimeters in a 150-mm abrasive disc in order for the increased dust removal effect to be noticed.
- Abrasion work carried out with the present abrasive disc is also facilitated because the spherical abrasive disc does not adhere in the same way as conventional planar abrasive discs or draw in different directions. Further, there is no need to hold the machine as hard as before or direct it at the object but it is possible to simply abrade with even the mid-area of the abrasive disc, for which only the hand's and arm's own weight is needed.
- A spherical abrasive disc also makes it possible to reduce the abrasion area and to obtain discrete transition between the abraded and unabraded surfaces. This effect can be further intensified by providing the fastening surface in the fastening plate of the abrasive machine with a substantially spherical shape. In this way, a small inclination of the abrasive machine will not change the mutual geometry of the contact surfaces positioned opposite each other. Thus, with an abrasive machine with spherical oscillation it is possible, to an essential extent, to avoid an oblique position of the abrasive product arranged on the fastening surface of the machine. Hence, the abrasive machine does not require as exact positioning in the abrasion area as in known solutions and will be remarkably simpler to work with.
- With the spherical abrasive surface, it will be possible to apply a more distinctive and higher abrasion pressure in the middle of the contact surface of the abrasive disc. Thus, the shaping allows more exact abrasion or polishing of only the particular defect present in the current abrasion area. Thanks to the present invention, the abrasion area is thus reduced and the edge area in the periphery of the abrasion area is less visible.
- Further advantages and details of the invention become apparent from the description below.
- In the following, the invention will be explained in more detail with reference to the drawing, where
-
FIG. 1 shows a top view of an abrasive disc; -
FIG. 2 shows a side view of an abrasive disc; -
FIG. 3 shows a partial cross-section of an abrasive disc according toFIG. 2 ; -
FIG. 4 shows an alternative embodiment of the abrasive disc seen from one side; -
FIG. 5 shows a partial cross-section of an abrasive disc according toFIG. 4 ; -
FIG. 6 shows a cross-section of a second alternative embodiment of the abrasive disc seen from one side; -
FIG. 7 shows a partial cross-section of a press for manufacturing the present abrasive disc, whereby the press is open for feeding; -
FIG. 8 shows a press according toclaim 7, whereby the embossing pistons of the press are locked together; -
FIG. 9 shows a press according toclaim 7, whereby the pressing together has been started; and -
FIG. 10 shows a press according toclaim 7, whereby the pressing together has been completed. - Preferred embodiments of the method for manufacturing a flexible abrasive disc as well as such abrasive discs are described in the following with reference to the above-mentioned figures. The solutions thus comprise the structural parts shown in the figures, each of which is denoted with a corresponding reference numeral. These reference numerals correspond to the reference numerals given in the following description.
- The present flexible
abrasive disc 1 comprises according toFIGS. 1 to 6 abacking 2 with anupper side 3 and alower side 4. The backing has in its periphery aside edge 5, which binds the upper side of the backing to its lower side. Further, the upper side of the backing is provided with anabrasive agent coating 6 for forming a surface layer and thus the final abrasive disc. - In the manufacture of the present
abrasive disc 1, thebacking 2 is arranged separately on anembossing piston 7 according toFIG. 7 , the backing of each abrasive disc being also coated separately. Each backing can thus be placed by itself in a press chamber formed of twoembossing pistons - Depending on the shaping of the
backing 2, theembossing piston 7, which is in this embodiment referred to as the upper embossing piston, is provided with areplaceable press head 9 for supporting the backing against the surface of the embossing piston. If thelower surface 4 of the backing is for instance concave, the embossing piston is thus provided with a convex press head. Naturally, it is also feasible to provide a planar embossing piston with a lower mold of a suitable polymer material to support the backing against the surface of the embossing piston. - The
backing 2 having been properly arranged on theupper embossing piston 7, anabrasive agent coating 6 is applied to the upper side of the backing. Hereby, the structure of the surface layer of the abrasive agent coating is formed advantageously by bringing anembossing mold 10, which is arranged on thelower embossing piston 8 opposite the backing, against the abrasive agent coating. The surface layer of the abrasive disc is thus embossed with a desired pattern by pressing together the embossing pistons positioned opposite each other. - The
abrasive agent coating 6 can thus be applied directly to theupper side 3 of thebacking 2, or alternatively it can be applied to theembossing mold 10 to be transferred to the backing in the pressing together of the pistons described above and illustrated inFIGS. 7 and 8 . - By carrying out the work with a press having a press chamber with a small volume, it is simple to utilize a vacuum casting technique known as such. A vacuum pump (not shown) is connected to the press via a
mouthpiece 11, after which the atmospheric pressure in the press chamber can be significantly decreased. Thanks to this press and embossing technique, the embossing mold can be provided with a particularly fine-grained structure that can be filled during the embossing, and no empty pockets are generated in the pattern. - The embossing
mold 10 can be shaped advantageously according toFIGS. 7 to 10 with a surrounding collectingpocket 12 in its periphery. When the pistons are pressed together, part of the abrasive agent coating usually flows out. By allowing the collecting pocket to surround the embossing mold, thissurplus material 13 can be recovered according toFIG. 10 , and the press and its peripheral equipment are prevented from getting dirty. - After the pressing together has been completed, the
abrasive agent coating 6 is cured, after which the molds that at least partly surround the finishedabrasive disc 1 can be removed. - Applying the
abrasive agent coating 6 can take place stepwise with alternating application of at least glue and sand to the upper side of the backing. Alternatively, the abrasive agent coating can be dripped, sprayed, injection-molded or injected to theupper side 3 of thebacking 2, whereby for instance a slurry containing at least abrasive agent and binding agent is used. A screen print coating of the slurry is also possible, whereby the upper surface obtains small dots, i.e. glue spots, of the abrasive agent coating. - The outer layer is shaped substantially spherical by coating a spherical
upper surface 3 on thebacking 2. In this context, it can be noted that the spherical shape can naturally manifest itself as both convex and concave surfaces. If a concave spherical surface is used, it is the inside of the hollowed concave surface that is coated. - In the manufacture the spherical shape of the
abrasive disc 1 can be, broadly speaking, adapted to the rounding of any particular surface, irrespective of whether it is a concave or a convex surface. Further, extra bending up 14 of the edge of the abrasive disc can be implemented to obtain discrete positioning. - Distribution of the
abrasive agent coating 6, forming the structure of the surface layer, can be of different forms depending on the shaping of theembossing mold 10 brought to thelower embossing piston 8 to emboss the surface layer by the pistons being pressed together. The shaping of the surface structure of this embossing mold can be advantageously provided by manufacturing a special positive original embossing mold and subsequently casting it in simple polymer molds, for example. After this, an embossing mold thus shaped with a negative embossing mold of releasing polymer is brought to the lower embossing piston to carry out the embossing of the abrasive agent coating. Since such an embossing mold is simple and inexpensive to manufacture, it can advantageously be used only once. The releasing polymer may be an ordinary polyolefin, for example polypropylene or polyethylene, but can also be grafted with a polymer with even better releasing properties. - Since the original embossing mold does not come into contact with the
abrasive agent coating 6, it is subjected to minimal wearing. The wearing, which is almost non-existent, and the small dimensions of the mold mean that its structure can be made very detailed. Hereby, what is called a micro replica mold is obtained. At the same time, this allows the pattern to be made non-linear and non-interferential. Thus, the composite formations of the abrasive agent coating are prevented from forming straight paths that can generate traces on the surface to be abraded if the abrasive disc has one-dimensional movement. - In a screen print coating, even distribution of the abrasive agent coating is obtained over the upper surface, meaning that before the pressing together of the pistons small dots are dosed over the surface, which then in the compression molding with the micro replica mold easily brings about the desired distribution.
- At the same time as the
abrasive agent coating 6 is spread onto thebacking 2, according toFIGS. 8 to 10 , also the surface layer is structured. Hereby, the twoembossing pistons upper embossing piston 7 with thebacking 2 on it and the oppositelower embossing piston 8 with anembossing mold 10 arranged in it and having an embossing pattern. Thus, in the present method neither of the embossing pistons comes into direct contact with the abrasive agent coating, which is applied to theupper side 3 of the backing or the embossing mold, because the pistons are protected partly by the embossing mold and partly by the backing. - The
lower embossing piston 8 having the embossingmold 10 with an embossing pattern can advantageously be formed of an elastic material and with a convex end surface. In this way, the embossing piston starts the pressing from the middle of the embossing mold according toFIG. 9 . After this, the pressing pressure proceeds gradually like a ring wave out towards the periphery of the embossing mold as the embossing piston is being deformed at the increasing pressure according toFIG. 10 . The surface of theupper embossing piston 7, or thepress head 8 arranged in it, is rigid and corresponds advantageously to the backing. - The
backing 2 and theembossing mold 10 arranged against theupper surface 3 are kept together, after the above-mentioned pressing together, by the surrounding atmospheric pressure and theabrasive agent coating 6 applied between them before the pressing. Therefore, it is simple to subject the abrasive agent coating to curing of some type known as such before the pressing. - By using a UV-cured resin as the binding agent of the abrasive agent coating and forming both the possible support mold of the backing and the
embossing mold 10 of a transparent polymer letting UV rays pass, simple and advantageous curing of theabrasive disc 1 is obtained when it is transported through a cone of rays. - The present invention allows also electron beam cured resins to be used because the radiation source may be relatively small when only one
abrasive disc 1 may be exposed to radiation at a time. - Above, the coating of the
backing 2 of theabrasive disc 1 has been described. In this context, it can also be mentioned that the backing may be manufactured in compression molding in a separate mold, in which case itsupper side 3 can be coated when the backing is still in the mold. The backing may also be manufactured in stretch molding to be subsequently arranged in a separate mold in which its upper side is then coated. The stretch-molded backing can be either cut off a stretch-molded material strip, or a planar backing material can be subjected to stretch molding when it is being cut off a material strip. - The
backing 2 of theabrasive disc 1 has, in one of its embodiments, a structure with substantially even thickness, whereby itslower side 4 and theupper side 3 are substantially parallel and have substantially equal bending radii. The backing can, however, have a shape where the lower side and the upper side have different bending radii, whereby its lower side may be substantially planar, for example, while the upper side is spherically convex or concave. According to the present method, the upper side of the backing can be provided with a surface layer in the form of anabrasive agent coating 6 which is substantially of the shape of a spherical segment. - Deviating from today's paper-based abrasive discs, it is advantageous to manufacture the
backing 2 of the present abrasive disc of a polymer material. - To simplify the use of the
abrasive disc 1, theside edge 5 of the backing may be provided with fastening elements. These fastening elements are arranged to keep, like a lid, the finished abrasive disc fastened when the abrasive disc is, in use, arranged on a fastening plate of an abrasive head. The fastening elements may comprise anedge 14 drawn upwards according toFIG. 5 , or hooks drawn upwards. - The
abrasive disc 1 may also be provided with holes for extraction of dust or for supply of water. Further, it may also be provided with follower pins that cooperate with guide holes in the fastening plate. These follower pins make the fastening simpler and may, in some cases and particularly in combination with above-mentioned integrated fastening elements, eliminate conventional fastening elements, such as self-adhesive glue and Velcro fastening. - Naturally, the
abrasive disc 1 may be provided with fastening elements known as such, such as self-adhesive glue and Velcro fastening on thelower side 4 of thebacking 2, to fasten the abrasive disc to the fastening plate in the abrasive head of an abrasive tool. - The above description and the related figures are only intended to illustrate the present solution for the structure of an abrasive disc. Thus, the solution is not restricted to the embodiment described above or in the attached claims, but a plurality of variations and alternative embodiments are feasible within the idea described in the attached claims.
Claims (26)
1. A method for manufacturing a flexible abrasive disc, which abrasive disc comprises a backing with an upper side and a lower side, whereby the backing has in its periphery a side edge binding together the upper side and the lower side, the upper side being provided with an abrasive agent coating for forming a surface layer, wherein
the coating of the backing of each abrasive disc is done separately, whereby
the backing is arranged in a separate position on a press piston, where
the abrasive agent coating is applied to the upper side of the backing and formed as a patterned surface layer by
bringing a press piston, which is positioned opposite the backing and has a structured embossing mold oriented towards the upper side of the backing, towards the backing to
emboss the surface layer with reciprocal pressing together of the press pistons, after which
the abrasive agent coating is cured for final forming of the surface layer, and
the molds of the finished abrasive disc are removed.
2. A method according to claim 1 , whereby the backing is arranged on a separate press piston.
3. A method according to claim 1 , whereby the backing is arranged in a separate press chamber in a press piston.
4. A method according to claim 1 , whereby the backing is shaped to have a substantially spherical upper side.
5. A method according to claim 4 , whereby the backing is shaped to be substantially of even thickness with a substantially spherical upper side and lower side, and the surface of the press piston is shaped to correspond to the bending radius of the lower side of the backing.
6. A method according to claim 1 , whereby the abrasive agent coating is applied stepwise with alternating application of at least glue and sand onto the upper side of the backing to form the surface layer.
7. A method according to claim 1 , whereby the abrasive agent coating is sprayed to the upper side of the backing in the form of a slurry which comprises at least abrasive agent and binding agent to form the surface layer.
8. A method according to claim 1 , whereby the backing and the embossing mold brought against the surface layer are kept together after the pressing together by the abrasive agent coating applied to the upper surface in the pressing together, and the abrasive agent coating is cured after the backing with the abrasive agent coating applied to the upper side has been removed from a press chamber formed by the press pistons.
9. A method according to claim 1 , whereby the backing is manufactured by injection-molding in a separate mold.
10. A method according to claim 9 , whereby the backing is manufactured by injection-molding in a separate mold in which the upper side of the backing is subsequently coated.
11. A method according to claim 1 , whereby the backing is manufactured by stretch molding to be subsequently arranged on a press piston on which its upper side is then coated.
12. A method according to claim 11 , whereby the backing is cut off a stretch-molded material strip.
13. A method according to claim 11 , whereby the backing is subjected to stretch molding when cut off a material strip.
14. A method according to claim 1 , whereby the upper and lower press pistons are pressed together under vacuum.
15. A method according to claim 1 , whereby the embossing mold is formed of a polymer material to comprise a disposable element.
16. A flexible abrasive disc comprising a backing with an upper side and a lower side, whereby the backing has in its periphery a side edge to bind together the upper side and the lower side, as well as an abrasive agent coating arranged on the upper side of the backing for forming a surface layer, whereby
the surface layer has a substantially spherical surface with an embossed structure.
17. A flexible abrasive disc according to claim 16 , whereby the surface layer is of a substantially convex shape.
18. A flexible abrasive disc according to claim 16 , whereby the surface layer is of a substantially concave shape.
19. A flexible abrasive disc according to claim 16 , whereby the backing has a structure of substantially even thickness, and its lower side and upper side are substantially parallel and the upper side is provided with an abrasive agent coating to form a surface layer which is substantially of the shape of a spherical segment.
20. A flexible abrasive disc according to claim 19 , whereby the upper side and the lower side of the backing have different bending radii.
21. A flexible abrasive disc according to claim 20 , whereby the lower side of the backing is substantially planar.
22. A flexible abrasive disc according to claim 16 , whereby the backing comprises a polymer material.
23. A flexible abrasive disc according to claim 16 , whereby the side edge of the backing has fastening elements that are arranged to keep, like a lid, the finished abrasive disc fastened when the abrasive disc is, in use, arranged on the fastening plate of an abrasive head.
24. A flexible abrasive disc according to claim 23 , whereby the fastening elements comprise an edge drawn upwards.
25. A flexible abrasive disc according to claim 23 , whereby the fastening elements comprise hooks drawn upwards.
26. A flexible abrasive disc according to claim 16 , whereby the embossed structure of the surface layer comprises a non-linear and non-interferential pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/301,045 US8795036B2 (en) | 2006-07-10 | 2011-11-21 | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20065490 | 2006-07-10 | ||
FI20065490A FI121654B (en) | 2006-07-10 | 2006-07-10 | Process for manufacturing a flexible grinding wheel and a flexible grinding wheel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/301,045 Continuation US8795036B2 (en) | 2006-07-10 | 2011-11-21 | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080047204A1 true US20080047204A1 (en) | 2008-02-28 |
Family
ID=36758337
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/774,915 Abandoned US20080047204A1 (en) | 2006-07-10 | 2007-07-09 | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc |
US13/301,045 Expired - Fee Related US8795036B2 (en) | 2006-07-10 | 2011-11-21 | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/301,045 Expired - Fee Related US8795036B2 (en) | 2006-07-10 | 2011-11-21 | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc |
Country Status (7)
Country | Link |
---|---|
US (2) | US20080047204A1 (en) |
EP (1) | EP1878538A1 (en) |
JP (1) | JP5371213B2 (en) |
KR (1) | KR20080005874A (en) |
CN (1) | CN101104253B (en) |
FI (1) | FI121654B (en) |
RU (1) | RU2431559C2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102107397B (en) * | 2009-12-25 | 2015-02-04 | 3M新设资产公司 | Grinding wheel and method for manufacturing grinding wheel |
USD785339S1 (en) * | 2014-10-23 | 2017-05-02 | Griot's Garage, Inc. | Hand applicator buffing pad |
JP6858773B2 (en) * | 2015-11-23 | 2021-04-14 | ハートフロー, インコーポレイテッド | Systems and Methods for Evaluating Organ Transplants and / or Tissue Transplants by Simulating One or More Transplant Properties |
US11850695B2 (en) * | 2019-11-27 | 2023-12-26 | 3M Innovative Properties Company | Robotic paint repair |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2292261A (en) * | 1940-02-19 | 1942-08-04 | Albertson & Co Inc | Abrasive disk and method of making the same |
US2612736A (en) * | 1952-02-08 | 1952-10-07 | Du Pont | Lapping method and apparatus |
US2970929A (en) * | 1958-03-12 | 1961-02-07 | Norton Co | Manufacture of coated abrasives |
US3377264A (en) * | 1964-11-03 | 1968-04-09 | Norton Co | Coated abrasives for electrolytic grinding |
USRE29592E (en) * | 1972-10-04 | 1978-03-28 | Norton Company | Blow molding process for manufacturing grinding wheels |
US4380471A (en) * | 1981-01-05 | 1983-04-19 | General Electric Company | Polycrystalline diamond and cemented carbide substrate and synthesizing process therefor |
US4539017A (en) * | 1982-05-25 | 1985-09-03 | Sea Schleifmittel Entwicklung Anwendung Gmbh | Elastic grinding element and method for producing it |
US4930266A (en) * | 1988-02-26 | 1990-06-05 | Minnesota Mining And Manufacturing Company | Abrasive sheeting having individually positioned abrasive granules |
US5273558A (en) * | 1991-08-30 | 1993-12-28 | Minnesota Mining And Manufacturing Company | Abrasive composition and articles incorporating same |
US5482496A (en) * | 1992-04-13 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Automated random orbital abrading system and method |
US5685935A (en) * | 1992-08-24 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Method of preparing melt bonded nonwoven articles |
US20030119437A1 (en) * | 2001-03-19 | 2003-06-26 | 3M Innovative Properties Company | Sanding disc |
US20050032469A1 (en) * | 2003-04-16 | 2005-02-10 | Duescher Wayne O. | Raised island abrasive, lapping apparatus and method of use |
US20070017161A1 (en) * | 2005-07-19 | 2007-01-25 | Abrasive Technology, Inc. | Apparatus and method for manufacturing abrasive tools |
US20080118718A1 (en) * | 2004-11-18 | 2008-05-22 | Yupo Corporation | Labeled In-Mold Shaped Article, and In-Mold Label |
US7396501B2 (en) * | 1994-08-12 | 2008-07-08 | Diamicron, Inc. | Use of gradient layers and stress modifiers to fabricate composite constructs |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB539436A (en) * | 1940-03-07 | 1941-09-10 | Arpad Nagy | Improvements in or relating to grinding tools |
GB1005448A (en) | 1962-04-19 | 1965-09-22 | Rexall Drug Chemical | Abrasive articles and methods of making the same |
DE3346916A1 (en) | 1983-12-24 | 1985-07-04 | Elbel-Raberain, Anne-Marie, 7530 Pforzheim | METHOD FOR PRODUCING ELASTIC GRINDING BODIES |
JP2707264B2 (en) * | 1987-12-28 | 1998-01-28 | ハイ・コントロール・リミテッド | Polishing sheet and method for producing the same |
US5000761A (en) * | 1988-10-26 | 1991-03-19 | Ferro Corporation | Gel producing pad and improved method for surfacing and polishing lenses |
US5014468A (en) | 1989-05-05 | 1991-05-14 | Norton Company | Patterned coated abrasive for fine surface finishing |
US5085918A (en) * | 1990-05-15 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Printed retroreflective sheet |
US5175965A (en) | 1990-12-24 | 1993-01-05 | Sandra L. Miller | Method for forming sandpaper disks |
US5152917B1 (en) | 1991-02-06 | 1998-01-13 | Minnesota Mining & Mfg | Structured abrasive article |
US5183479A (en) * | 1991-11-01 | 1993-02-02 | Gemtex Company Limited | Abrasive disks and method of making |
US5435816A (en) | 1993-01-14 | 1995-07-25 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article |
DE4300722A1 (en) * | 1993-01-14 | 1994-07-21 | Mecano Vorrichtungsbau Gmbh | Method of making grinding tools and tool made thereafter |
ATE182502T1 (en) | 1993-09-13 | 1999-08-15 | Minnesota Mining & Mfg | ABRASIVE ARTICLE, METHOD FOR MANUFACTURING THE SAME, METHOD FOR USING THE SAME FOR FINISHING, AND MANUFACTURING TOOL |
CA2133259A1 (en) | 1993-10-29 | 1995-04-30 | Gene O. Lindholm | Method for the polishing and finishing of optical lenses |
US5785784A (en) | 1994-01-13 | 1998-07-28 | Minnesota Mining And Manufacturing Company | Abrasive articles method of making same and abrading apparatus |
WO1995022436A1 (en) | 1994-02-22 | 1995-08-24 | Minnesota Mining And Manufacturing Company | Abrasive article, a method of making same, and a method of using same for finishing |
US5958794A (en) | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
US5946991A (en) | 1997-09-03 | 1999-09-07 | 3M Innovative Properties Company | Method for knurling a workpiece |
US5928394A (en) | 1997-10-30 | 1999-07-27 | Minnesota Mining And Manufacturing Company | Durable abrasive articles with thick abrasive coatings |
US6139402A (en) | 1997-12-30 | 2000-10-31 | Micron Technology, Inc. | Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates |
JPH11239979A (en) * | 1998-02-23 | 1999-09-07 | Noritake Diamond Ind Co Ltd | Rotary grinding wheel |
FR2777113B1 (en) * | 1998-04-03 | 2000-05-05 | Commissariat Energie Atomique | "ELECTRON TORCH" TYPE ELECTRON CANON |
US6120569A (en) * | 1998-09-23 | 2000-09-19 | Kuo; Ching-An | Method for production and structure of stone pattern processing mills |
EP1384553B1 (en) * | 1998-12-01 | 2009-03-11 | University College London | A polishing machine with driving means to move the grinding tool along a precession path and method to use it |
DE19917366A1 (en) * | 1999-04-16 | 2000-10-19 | Inst Neue Mat Gemein Gmbh | Substrate surface, useful for the production of easy clean systems, comprises a hydrolyzable compound condensate having a microstructure such that the contact angle with water or oil is increased. |
WO2001002772A1 (en) | 1999-07-01 | 2001-01-11 | 3M Innovative Properties Company | Display assembly having a front light guide |
US6319108B1 (en) | 1999-07-09 | 2001-11-20 | 3M Innovative Properties Company | Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece |
CN2395848Y (en) * | 1999-11-15 | 2000-09-13 | 金元一 | Rubber disc for grinding metal surface paint |
US6773475B2 (en) | 1999-12-21 | 2004-08-10 | 3M Innovative Properties Company | Abrasive material having abrasive layer of three-dimensional structure |
US20020090901A1 (en) * | 2000-11-03 | 2002-07-11 | 3M Innovative Properties Company | Flexible abrasive product and method of making and using the same |
JP3947355B2 (en) | 2000-12-15 | 2007-07-18 | 旭ダイヤモンド工業株式会社 | Abrasive tool and manufacturing method thereof |
EP1225530B1 (en) | 2001-01-18 | 2005-10-26 | Nippon Telegraph and Telephone Corporation | Method, apparatus and program for quantitative competition and recording medium having recorded thereon the program |
US6645263B2 (en) * | 2001-05-22 | 2003-11-11 | 3M Innovative Properties Company | Cellular abrasive article |
US6949128B2 (en) * | 2001-12-28 | 2005-09-27 | 3M Innovative Properties Company | Method of making an abrasive product |
US7044989B2 (en) | 2002-07-26 | 2006-05-16 | 3M Innovative Properties Company | Abrasive product, method of making and using the same, and apparatus for making the same |
US7544113B1 (en) | 2003-05-29 | 2009-06-09 | Tbw Industries, Inc. | Apparatus for controlling the forces applied to a vacuum-assisted pad conditioning system |
US20050076577A1 (en) | 2003-10-10 | 2005-04-14 | Hall Richard W.J. | Abrasive tools made with a self-avoiding abrasive grain array |
JP4229887B2 (en) | 2004-08-27 | 2009-02-25 | オートリブ ディベロップメント エービー | Side airbag device |
-
2006
- 2006-07-10 FI FI20065490A patent/FI121654B/en not_active IP Right Cessation
-
2007
- 2007-07-09 RU RU2007125993/02A patent/RU2431559C2/en not_active IP Right Cessation
- 2007-07-09 EP EP07112012A patent/EP1878538A1/en not_active Withdrawn
- 2007-07-09 KR KR1020070068787A patent/KR20080005874A/en not_active Withdrawn
- 2007-07-09 US US11/774,915 patent/US20080047204A1/en not_active Abandoned
- 2007-07-09 JP JP2007179186A patent/JP5371213B2/en not_active Expired - Fee Related
- 2007-07-10 CN CN2007101362156A patent/CN101104253B/en not_active Expired - Fee Related
-
2011
- 2011-11-21 US US13/301,045 patent/US8795036B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2292261A (en) * | 1940-02-19 | 1942-08-04 | Albertson & Co Inc | Abrasive disk and method of making the same |
US2612736A (en) * | 1952-02-08 | 1952-10-07 | Du Pont | Lapping method and apparatus |
US2970929A (en) * | 1958-03-12 | 1961-02-07 | Norton Co | Manufacture of coated abrasives |
US3377264A (en) * | 1964-11-03 | 1968-04-09 | Norton Co | Coated abrasives for electrolytic grinding |
USRE29592E (en) * | 1972-10-04 | 1978-03-28 | Norton Company | Blow molding process for manufacturing grinding wheels |
US4380471A (en) * | 1981-01-05 | 1983-04-19 | General Electric Company | Polycrystalline diamond and cemented carbide substrate and synthesizing process therefor |
US4539017A (en) * | 1982-05-25 | 1985-09-03 | Sea Schleifmittel Entwicklung Anwendung Gmbh | Elastic grinding element and method for producing it |
US4930266A (en) * | 1988-02-26 | 1990-06-05 | Minnesota Mining And Manufacturing Company | Abrasive sheeting having individually positioned abrasive granules |
US5273558A (en) * | 1991-08-30 | 1993-12-28 | Minnesota Mining And Manufacturing Company | Abrasive composition and articles incorporating same |
US5482496A (en) * | 1992-04-13 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Automated random orbital abrading system and method |
US5685935A (en) * | 1992-08-24 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Method of preparing melt bonded nonwoven articles |
US7396501B2 (en) * | 1994-08-12 | 2008-07-08 | Diamicron, Inc. | Use of gradient layers and stress modifiers to fabricate composite constructs |
US20030119437A1 (en) * | 2001-03-19 | 2003-06-26 | 3M Innovative Properties Company | Sanding disc |
US20050032469A1 (en) * | 2003-04-16 | 2005-02-10 | Duescher Wayne O. | Raised island abrasive, lapping apparatus and method of use |
US20080118718A1 (en) * | 2004-11-18 | 2008-05-22 | Yupo Corporation | Labeled In-Mold Shaped Article, and In-Mold Label |
US20070017161A1 (en) * | 2005-07-19 | 2007-01-25 | Abrasive Technology, Inc. | Apparatus and method for manufacturing abrasive tools |
Also Published As
Publication number | Publication date |
---|---|
KR20080005874A (en) | 2008-01-15 |
EP1878538A1 (en) | 2008-01-16 |
RU2007125993A (en) | 2009-01-20 |
RU2431559C2 (en) | 2011-10-20 |
US8795036B2 (en) | 2014-08-05 |
JP2008018526A (en) | 2008-01-31 |
CN101104253A (en) | 2008-01-16 |
US20120122382A1 (en) | 2012-05-17 |
CN101104253B (en) | 2013-06-12 |
JP5371213B2 (en) | 2013-12-18 |
FI20065490A0 (en) | 2006-07-10 |
FI121654B (en) | 2011-02-28 |
FI20065490L (en) | 2008-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8795036B2 (en) | Method for manufacturing a flexible abrasive disc, and a flexible abrasive disc | |
JP3332382B2 (en) | Method and spray mold assembly for producing an elastomeric skin of at least two elastomeric materials and the elastomeric skin | |
JPH0970903A (en) | Precure tread for regenerated tire and manufacture thereof | |
US20070155290A1 (en) | Method of manufacturing laminated mold and laminated mold | |
US11858089B2 (en) | Polishing layer and polishing method | |
WO2007063739A1 (en) | Product with concave-convex pattern on its surface and method of forming the concave-convex pattern | |
JPH10510769A (en) | Scraping ink cup | |
US3522680A (en) | Expanded metal facing for a lens abrading tool | |
US2310642A (en) | Vulcanizing apparatus | |
CN1124190C (en) | The Manufacturing Method and Structure of the Abrasive Tools for Stone Special-shaped Processing | |
JPH09132900A (en) | Forming mold for pulp mold, forming of pulp mold and pulp mold | |
JP4016278B2 (en) | Mold and mold manufacturing method | |
JPS59107861A (en) | Manufacture of cutting grindstone | |
JP3742255B2 (en) | Mask for painting plastic products | |
JPS6222749B2 (en) | ||
KR19990007720A (en) | Mold for manufacturing shoe soles and its manufacturing method | |
JPH02250775A (en) | Grinding/polishing grindstone, manufacture thereof and manufacturing device thereof | |
US6773511B2 (en) | Molded product, parting surface covering masks and producing methods of the same | |
CN211709071U (en) | Coated abrasive tool for multiple sand planting | |
CN202411572U (en) | Small-modulus diamond worm rod rolling wheel | |
BRPI0804767A2 (en) | method for manufacturing a flexibly abrasive disk, and a flexibly abrasive disk | |
CN108638398A (en) | A kind of manufacture craft of shaped piece mold | |
JPS5863495A (en) | Production of rubber stamp | |
KR102138127B1 (en) | Method of manufacturing stone cutter and stone cutter manufactured thereof | |
EP0919345A1 (en) | A process for preparing a mould with replaceable stamping surface for clay manufactured articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OY KWH MIRKA AB, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOGLUND, GORAN;REEL/FRAME:019870/0640 Effective date: 20070809 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |