US20080047837A1 - Method for anodizing aluminum-copper alloy - Google Patents
Method for anodizing aluminum-copper alloy Download PDFInfo
- Publication number
- US20080047837A1 US20080047837A1 US11/892,760 US89276007A US2008047837A1 US 20080047837 A1 US20080047837 A1 US 20080047837A1 US 89276007 A US89276007 A US 89276007A US 2008047837 A1 US2008047837 A1 US 2008047837A1
- Authority
- US
- United States
- Prior art keywords
- voltage
- providing
- anodization method
- bath
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
- C25D11/246—Chemical after-treatment for sealing layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/024—Anodisation under pulsed or modulated current or potential
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/026—Anodisation with spark discharge
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
- C25D11/08—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
Definitions
- the present invention is directed toward a method of anodizing an aluminum-copper alloy in a basic silicate solution and, more specifically, toward a method of anodizing an aluminum-copper alloy in a basic silicate solution in a manner that reduces fatigue strength deficits in the anodized object.
- Aluminum-copper alloys including 2000 Series aluminum-copper alloys such as AA2219, AA2024 and AA2014, are desirable in many industries due to their high strength-to-weight ratios. However, these alloys tend to corrode if not protected in some manner. To enhance corrosion resistance, it is known to anodize these alloys in a sulfuric acid solution using a direct current to generate a protective oxide layer. It is also known that such anodization reduces the fatigue strength of the anodized objects to varying degrees.
- a first aspect of which comprises an anodization method for anodizing an object formed of an aluminum-copper alloy in an anodizing bath containing a basic silicate solution.
- the method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply and placing the object to be coated in the bath.
- a voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/cm 2 to form an anodized coating on the object.
- the object is then removed from the bath, and the coating on the object is sealed with, for example, a polymer sealant.
- Another aspect of the present invention is an anodization method for anodizing a 2000 series aluminum-copper alloy plate in an anodizing bath containing a sodium silicate solution and potassium hydroxide, the bath having a pH of about 13.
- the method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply, and placing the object to be coated in the bath.
- a voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/cm 2 to form an anodized coating on the object.
- the object is then removed from the bath and the anodized coating on the object is sealed with Parylene HT.
- FIG. 1 is a graph of the anodization profile of AA2219 aluminum
- FIG. 2 is a graph of the anodizing profile of AA2219 with varying anodizing bath silicate concentrations
- FIG. 3 is a graph of anodizing voltage over time for different anodizing bath pH's.
- anodizing aluminum-copper alloys such as AA2219, AA2024 and AA2014 using a microarc oxidation process.
- the process employs a basic anodizing solution containing a metallic silicate and a combined AC/DC waveform and a relatively low current density.
- the anodization solution is cooled to about 4° C. at the beginning of the anodization process, and the current applied to the solution has a ratio of DC to AC components of about 5:1.
- the DC voltage is increased to maintain a current density of about 10 mA/cm 2 or less.
- the process is ended when the DC voltage reaches about 300 to 320 VDC.
- This process reduces the fatigue strength of the anodized object by a smaller amount than the above-described sulfuric acid anodization process. It is believed that this improvement is due to the fact that less copper is dissolved from aluminum alloy using the present process than is dissolved using prior anodization processes.
- the oxide coating formed in this manner provides relatively little corrosion resistance and is not suitable for many applications.
- the present inventors have also found that the porous oxide coating provides an excellent base for various polymer sealants that would not bond well to untreated metal.
- Para-p-xylylene sealants such as Parylene HT, have been found to bond particularly well to this coating and provide good levels of corrosion resistance.
- Parylene HT Parylene HT
- FIG. 1 illustrates an anodization profile for AA2219.
- This anodization profile has four distinct stages labeled I, II, III and IV in the Figure.
- Stage I is an initiation stage and stage II represents sparkles oxidation formation. Sparking begins during Stage III, and intense sparking begins during Stage IV which may also be referred to as the microarc stage.
- each bath included 10 g/L of KOH and had a pH as measured with a pH tester, of 13.
- Bath 1 contained 10 g/L of the silicate solution
- Bath 2 contained 25 g/L of the silicate solution
- Bath 3 contained 40 g/L of the silicate solution.
- the characteristic voltage vs. time plots for AA2219 samples are shown in FIG. 2 .
- the DC component is shown, although the AC component discussed above is present in this process with a DC:AC ratio of 5.
- the four distinct stages of AA2219 anodization can be seen in FIG. 2 .
- the first stage (I) is a period of very slow voltage rise from an initial voltage of about 2 VDC to 6 VDC.
- the second stage (II) involves the most rapid increase in voltage, ranging from 6 to 60 VDC. It is possible that this stage involves the formation of a barrier oxide layer on the sample surface.
- the beginning of Stage III is demarcated by a reduction in slope that occurs at around 60 VDC and continues to about 280 VDC. The rate of voltage increase is fairly steady in this region of the plot. As sparks are visible by around 180 VDC, it is through that the change from Stage II to Stage III indicates the onset of sparking.
- the final stage, Stage IV lasts from about 280 VDC until the selected ending voltage, and exhibits larger, longer lasting and less frequent sparks.
- the general shape of the V vs. t plots is independent of the anodizing bath composition and is comparable to the anodization profile of AA 2219 in FIG. 1 .
- the total anodization time is significantly reduced by increasing the bath silicate concentration to 40 g/L. At this concentration, Stage I is not evident. It is assumed that the processes that occur in Stage I at low silicate concentrations still occur when baths containing higher silicate concentrations are used. The faster anodization rate that occurs with the higher concentrations, however, makes this first stage less evident.
- FIG. 3 illustrates the effect of pH on anodizing profile. As illustrated in this Figure, final anodizing voltage decreased with increasing pH. It was believed that pH's higher than 13 would excessively corrode the alloy being treated and these higher pH's were not tested for their affect on anodization rate. It is also believed that the higher pH would cause less copper to dissolve from the alloy than lower pH's would cause.
- the starting temperature of the bath is about 4° C. While the bath temperature increases during the anodization process, it generally does not exceed about 30° C. Higher starting temperatures were found to result in a greater loss of copper from the alloy and consequently a greater reduction in fatigue strength.
- stage IV begins at approximately 280 VDC and continues until an equilibrium is reached and no further increases in VDC occur.
- Tests have been conducted up to a voltage of about 320 VDC.
- the fatigue strength deficit of AA2219 samples tested using Bath 10 and a pH of 13 was analyzed, it was found to be about 12 percent as compared to about 38 percent for samples anodized in a traditional acid anodization bath. Additional tests were conducted on specimens wherein the anodization process was stopped at a final voltage of about 300 VDC. This shorter anodization reduced the amount of copper dissolved and also produced a less durable protective oxidation layer. However, this method produced almost no fatigue strength deficit.
- the coating produced by stopping the process at 300 VDC was porous and readily accepted a parylene coating. Two examples of the above-described process are discussed below.
- An anodizing bath was formed of potassium hydroxide and a sodium silicate solution (Fisher-Scientific SS338) which contained 29.2% amorphous silica, 9.1% sodium oxide and 61.7% water.
- the bath contained 5 g/L KOH and 40 g/L of the silicate solution to produce a pH of about 13.
- the bath was contained in a 60 mL cylindrical cell with a stainless steel cathode fabricated such that it lined the sides and bottom of the cell. The cell was cooled in an ice-water bath to about 4° C.
- the objects to be coated comprised disc-shaped samples of AA2219 that were 600 grit polished and had a diameter of 1 cm and a height of 0.5 cm.
- the flat surfaces of the samples were cut in the long transverse/short transverse plane from AA2219-T851 plate.
- AC and DC power supplies were used in series to produce a combined DC/AC waveform with a ratio of about 5:1.
- the object to be coated or anode was connected to the power supply using a steel rod wrapped in PTFE tape and placed into the solution which in turn was chilled in an ice bath to about 4° C.
- the initial DC voltage was 0 and was raised gradually to 320 VDC as the spark anodization process proceeded to maintain a current density at the anode of 10 mA/cm 2 .
- the process was complete in about 30 minutes at which point the further increase in voltage with time was minimal.
- the pitting of Parylene coated samples was less severe. The pits were much smaller and fewer in number.
- the anode was thereafter removed from the electrical circuit and coated with Parylene HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples. Uncoated samples subjected to a 5% NaCl solution typically exhibited pitting after approximately 24 hours while coated samples resisted pitting for from 4 to 7 days.
- Fatigue strength of the above sample was also improved, being about 12 percent in the untreated sample as opposed to about 38 percent in samples anodized using a sulfuric acid bath.
- the anodizing bath and sample preparation in the second example was identical to the first example.
- AC and DC power supplies were used in series to produce a combined DC/AC waveform with a ratio of about 5:1, and a water bath was used to cool the anodization bath to 4° C.
- the initial DC voltage was 0 and was raised gradually to maintain a current density at the anode of 10 mA/cm 2 .
- the anodization process was halted when the applied voltage reached 300 VDC. This required less than the 30 minute process time of Example 1.
- the anode was thereafter removed from the electrical circuit and coated with Parylene HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples, similar to that exhibited by the samples of Example 1. However, in this case, almost no fatigue strength deficit was noted.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
An anodization method includes steps of providing an object formed of an aluminum-copper alloy, providing an anodizing bath comprising a basic silicate solution, providing an AC power supply including a first electrode and a second electrode, placing the first electrode in contact with the anodizing bath, connecting the second electrode to the object, placing the object in the anodizing bath, applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object, removing the object from the bath, and sealing the anodized coating on the object.
Description
- The present application claims the benefit of U.S. Provisional Patent Application No. 60/823,728, filed Aug. 28, 2006, the entire contents of which are hereby incorporated by reference.
- The present invention is directed toward a method of anodizing an aluminum-copper alloy in a basic silicate solution and, more specifically, toward a method of anodizing an aluminum-copper alloy in a basic silicate solution in a manner that reduces fatigue strength deficits in the anodized object.
- Aluminum-copper alloys, including 2000 Series aluminum-copper alloys such as AA2219, AA2024 and AA2014, are desirable in many industries due to their high strength-to-weight ratios. However, these alloys tend to corrode if not protected in some manner. To enhance corrosion resistance, it is known to anodize these alloys in a sulfuric acid solution using a direct current to generate a protective oxide layer. It is also known that such anodization reduces the fatigue strength of the anodized objects to varying degrees.
- One of the present inventors has found that the amount of fatigue strength deficit for a given alloy depends on the nature of the product being anodized. Highly worked products such as bar stock lose relatively little fatigue strength after anodization, while lightly worked plate and similar objects suffer more significant deficits. This difference has been attributed to the number and size of copper rich areas of the metal surface. Dissolution of these copper rich areas during anodization significantly reduces fatigue strength. Working the alloy reduces the size of the copper rich areas, and therefore, while worked objects also experience a fatigue strength deficit, it is not as severe as the deficit that occurs in objects formed from more lightly worked alloy plate or large diameter bar. These findings are detailed in Rateick, R. G. et. al. “Relationship of Microstructure to Fatigue Strength Loss in Anodized Aluminium-Copper Alloys,” Materials Science and Technology, vol. 21, no. 10, 2005 (1227-1235), the entire contents of which is hereby incorporated by reference. It would therefore be desirable to provide parts formed from such aluminum-copper alloys with acceptable corrosion resistance without adversely affecting their fatigue strength.
- These problems and others are addressed by embodiments of the present invention, a first aspect of which comprises an anodization method for anodizing an object formed of an aluminum-copper alloy in an anodizing bath containing a basic silicate solution. The method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply and placing the object to be coated in the bath. A voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/cm2 to form an anodized coating on the object. The object is then removed from the bath, and the coating on the object is sealed with, for example, a polymer sealant.
- Another aspect of the present invention is an anodization method for anodizing a 2000 series aluminum-copper alloy plate in an anodizing bath containing a sodium silicate solution and potassium hydroxide, the bath having a pH of about 13. The method involves placing a first electrode of an AC power supply in the anodizing bath, connecting the object to be coated to a second electrode of the AC power supply, and placing the object to be coated in the bath. A voltage is then applied to the first and second electrodes to maintain a current density of less than about 10 mA/cm2 to form an anodized coating on the object. The object is then removed from the bath and the anodized coating on the object is sealed with Parylene HT.
- These aspects and features of the invention and others will be better understood after a reading of the following detailed description together with the following drawings wherein:
-
FIG. 1 is a graph of the anodization profile of AA2219 aluminum; -
FIG. 2 is a graph of the anodizing profile of AA2219 with varying anodizing bath silicate concentrations; and -
FIG. 3 is a graph of anodizing voltage over time for different anodizing bath pH's. - These problems and others are addressed in the present invention by anodizing aluminum-copper alloys such as AA2219, AA2024 and AA2014 using a microarc oxidation process. The process employs a basic anodizing solution containing a metallic silicate and a combined AC/DC waveform and a relatively low current density. Beneficially, the anodization solution is cooled to about 4° C. at the beginning of the anodization process, and the current applied to the solution has a ratio of DC to AC components of about 5:1. As an oxide film begins to form on the object being anodized, the DC voltage is increased to maintain a current density of about 10 mA/cm2 or less. The process is ended when the DC voltage reaches about 300 to 320 VDC. This process reduces the fatigue strength of the anodized object by a smaller amount than the above-described sulfuric acid anodization process. It is believed that this improvement is due to the fact that less copper is dissolved from aluminum alloy using the present process than is dissolved using prior anodization processes.
- The oxide coating formed in this manner provides relatively little corrosion resistance and is not suitable for many applications. However, the present inventors have also found that the porous oxide coating provides an excellent base for various polymer sealants that would not bond well to untreated metal. Para-p-xylylene sealants, such as Parylene HT, have been found to bond particularly well to this coating and provide good levels of corrosion resistance. Thus the combination of a low current density oxidation process and a sealant provides an aluminum-copper alloy with greater corrosion resistance and greater fatigue strength than has heretofore been possible.
-
FIG. 1 illustrates an anodization profile for AA2219. This anodization profile has four distinct stages labeled I, II, III and IV in the Figure. Stage I is an initiation stage and stage II represents sparkles oxidation formation. Sparking begins during Stage III, and intense sparking begins during Stage IV which may also be referred to as the microarc stage. - As illustrated in
FIG. 2 , three baths, Bath 1, Bath 2 andBath 3 were tested to determine the effect of silicate concentration on anodizing time and final voltage. Each bath included 10 g/L of KOH and had a pH as measured with a pH tester, of 13. Bath 1 contained 10 g/L of the silicate solution, Bath 2 contained 25 g/L of the silicate solution, andBath 3 contained 40 g/L of the silicate solution. The characteristic voltage vs. time plots for AA2219 samples are shown inFIG. 2 . For ease of explanation, only the DC component is shown, although the AC component discussed above is present in this process with a DC:AC ratio of 5. The four distinct stages of AA2219 anodization can be seen inFIG. 2 . The first stage (I) is a period of very slow voltage rise from an initial voltage of about 2 VDC to 6 VDC. The second stage (II) involves the most rapid increase in voltage, ranging from 6 to 60 VDC. It is possible that this stage involves the formation of a barrier oxide layer on the sample surface. The beginning of Stage III is demarcated by a reduction in slope that occurs at around 60 VDC and continues to about 280 VDC. The rate of voltage increase is fairly steady in this region of the plot. As sparks are visible by around 180 VDC, it is through that the change from Stage II to Stage III indicates the onset of sparking. The final stage, Stage IV, lasts from about 280 VDC until the selected ending voltage, and exhibits larger, longer lasting and less frequent sparks. - The general shape of the V vs. t plots is independent of the anodizing bath composition and is comparable to the anodization profile of AA 2219 in
FIG. 1 . However, the total anodization time is significantly reduced by increasing the bath silicate concentration to 40 g/L. At this concentration, Stage I is not evident. It is assumed that the processes that occur in Stage I at low silicate concentrations still occur when baths containing higher silicate concentrations are used. The faster anodization rate that occurs with the higher concentrations, however, makes this first stage less evident. - As
Bath 3 offered the fastest anodization time, this bath was used in additional testing to determine optimal pH.FIG. 3 illustrates the effect of pH on anodizing profile. As illustrated in this Figure, final anodizing voltage decreased with increasing pH. It was believed that pH's higher than 13 would excessively corrode the alloy being treated and these higher pH's were not tested for their affect on anodization rate. It is also believed that the higher pH would cause less copper to dissolve from the alloy than lower pH's would cause. - To further reduce the dissolution of copper, it is beneficial to begin the anodization process in a chilled water bath so that the starting temperature of the bath is about 4° C. While the bath temperature increases during the anodization process, it generally does not exceed about 30° C. Higher starting temperatures were found to result in a greater loss of copper from the alloy and consequently a greater reduction in fatigue strength.
- As noted above, stage IV begins at approximately 280 VDC and continues until an equilibrium is reached and no further increases in VDC occur. Tests have been conducted up to a voltage of about 320 VDC. When the fatigue strength deficit of AA2219 samples tested using
Bath 10 and a pH of 13 was analyzed, it was found to be about 12 percent as compared to about 38 percent for samples anodized in a traditional acid anodization bath. Additional tests were conducted on specimens wherein the anodization process was stopped at a final voltage of about 300 VDC. This shorter anodization reduced the amount of copper dissolved and also produced a less durable protective oxidation layer. However, this method produced almost no fatigue strength deficit. Moreover, the coating produced by stopping the process at 300 VDC was porous and readily accepted a parylene coating. Two examples of the above-described process are discussed below. - An anodizing bath was formed of potassium hydroxide and a sodium silicate solution (Fisher-Scientific SS338) which contained 29.2% amorphous silica, 9.1% sodium oxide and 61.7% water. The bath contained 5 g/L KOH and 40 g/L of the silicate solution to produce a pH of about 13. The bath was contained in a 60 mL cylindrical cell with a stainless steel cathode fabricated such that it lined the sides and bottom of the cell. The cell was cooled in an ice-water bath to about 4° C.
- The objects to be coated comprised disc-shaped samples of AA2219 that were 600 grit polished and had a diameter of 1 cm and a height of 0.5 cm. The flat surfaces of the samples were cut in the long transverse/short transverse plane from AA2219-T851 plate.
- AC and DC power supplies were used in series to produce a combined DC/AC waveform with a ratio of about 5:1. The object to be coated or anode was connected to the power supply using a steel rod wrapped in PTFE tape and placed into the solution which in turn was chilled in an ice bath to about 4° C. The initial DC voltage was 0 and was raised gradually to 320 VDC as the spark anodization process proceeded to maintain a current density at the anode of 10 mA/cm2. The process was complete in about 30 minutes at which point the further increase in voltage with time was minimal. In addition, the pitting of Parylene coated samples was less severe. The pits were much smaller and fewer in number.
- The anode was thereafter removed from the electrical circuit and coated with Parylene HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples. Uncoated samples subjected to a 5% NaCl solution typically exhibited pitting after approximately 24 hours while coated samples resisted pitting for from 4 to 7 days.
- Fatigue strength of the above sample was also improved, being about 12 percent in the untreated sample as opposed to about 38 percent in samples anodized using a sulfuric acid bath.
- The anodizing bath and sample preparation in the second example was identical to the first example. AC and DC power supplies were used in series to produce a combined DC/AC waveform with a ratio of about 5:1, and a water bath was used to cool the anodization bath to 4° C. The initial DC voltage was 0 and was raised gradually to maintain a current density at the anode of 10 mA/cm2. However, in the second example, the anodization process was halted when the applied voltage reached 300 VDC. This required less than the 30 minute process time of Example 1.
- The anode was thereafter removed from the electrical circuit and coated with Parylene HT. Subsequent testing of the sample showed an improved corrosion resistance over uncoated samples, similar to that exhibited by the samples of Example 1. However, in this case, almost no fatigue strength deficit was noted.
- The present invention has been described herein in terms of a presently preferred embodiment. Obvious modifications and additions to this embodiment will become apparent to those skilled in the relevant arts upon a reading and understanding of this disclosure. It is intended that all such modifications and additions comprise a part of the present invention to the extent they fall within the scope of the several claims appended hereto.
Claims (15)
1. An anodization method comprising the steps of:
providing an object formed of an aluminum-copper alloy;
providing an anodizing bath comprising a basic silicate solution;
providing an AC power supply including a first electrode and a second electrode;
placing the first electrode in contact with the anodizing bath;
connecting the second electrode to the object;
placing the object in the anodizing bath;
applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object;
removing the object from the bath; and
sealing the anodized coating on the object.
2. The anodization method of claim 1 wherein said step of applying a voltage to the first and second electrodes comprises the step of applying a DC voltage having an AC component to the first and second electrodes.
3. The anodization method of claim 1 including the additional steps of:
providing a DC power supply; and
connecting the DC power supply in series with the AC power supply;
and wherein said step of applying a voltage comprises the step of applying a DC voltage having an AC component to the first and second electrodes.
4. The anodization method of claim 2 wherein said step of applying a voltage having an AC component comprises the step of applying a voltage having a ratio of DC:AC components of about 5:1.
5. The anodization method of claim 2 including the additional step of chilling the anodizing bath to about 4° C.
6. The anodization method of claim 2 wherein said step of providing an object formed of an aluminum-copper alloy comprises the step of providing an object formed of aluminum-copper alloy plate.
7. The anodization method of claim 6 wherein said object formed of aluminum-alloy copper plate is a plate of series 2000 aluminum alloy.
8. The anodization method of claim 6 wherein said step of providing a plate of series 2000 aluminum alloy comprises the step of providing a plate formed from an alloy selected from the group consisting of AA2219, AA 2024 and AA2014.
9. The anodization method of claim 1 wherein said step of applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object comprises the step of:
increasing the voltage to maintain given current density of less than about 10 mA/cm2 or less until the DC component of the voltage reaches about 320 V.
10. The anodization method of claim 1 wherein said applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object comprises the steps of:
increasing the voltage to maintain given current density of about 10 mA/cm2 or less until the DC component of the voltage reaches about 300 V.
11. The anodization method of claim 1 wherein said step of sealing the anodized coating on the object comprises the step of coating the anodized coating with a para-p-xylylene polymer.
12. The anodization method of claim 11 wherein said para-p-xylylene polymer comprises Parylene HT.
13. The anodization method of claim 1 wherein said basic silicate solution comprises sodium silicate and has a pH of about 13.
14. The anodization method of claim 2 wherein aluminum-alloy copper comprises a series 2000 aluminum alloy.
15. An anodization method comprising the steps of:
providing an object formed of a 2000 series aluminum-copper alloy plate;
providing an anodizing bath comprising a sodium silicate solution and a potassium hydroxide solution having a pH of about 13;
providing an AC power supply including a first electrode and a second electrode;
placing the first electrode in the anodizing bath;
connecting the second electrode to the object;
placing the object in the anodizing bath;
cooling the anodizing bath to about 4° C.;
applying a DC voltage having an AC component to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object;
removing the object from the bath; and
sealing the anodized coating on the object with a coating of Parylene HT.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/892,760 US20080047837A1 (en) | 2006-08-28 | 2007-08-27 | Method for anodizing aluminum-copper alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82372806P | 2006-08-28 | 2006-08-28 | |
US11/892,760 US20080047837A1 (en) | 2006-08-28 | 2007-08-27 | Method for anodizing aluminum-copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080047837A1 true US20080047837A1 (en) | 2008-02-28 |
Family
ID=38754485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/892,760 Abandoned US20080047837A1 (en) | 2006-08-28 | 2007-08-27 | Method for anodizing aluminum-copper alloy |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080047837A1 (en) |
WO (1) | WO2008027835A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100087914A1 (en) * | 2008-10-06 | 2010-04-08 | Biotronik Vi Patent Ag | Implant and Method for Manufacturing Same |
WO2014009905A3 (en) * | 2012-07-10 | 2014-03-06 | Pct Protective Coating Technologies Ltd. | Method of sealing pores of an oxidation layer |
CN105401200A (en) * | 2015-12-10 | 2016-03-16 | 河北省电力建设调整试验所 | Preparation method for super-hydrophobic aluminum surface |
CN112323115A (en) * | 2020-11-04 | 2021-02-05 | 西安赛福斯材料防护有限责任公司 | Method for preparing wear-resistant insulating film layer on surface of titanium alloy by adopting micro-arc oxidation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105586623A (en) * | 2014-10-21 | 2016-05-18 | 宁波江丰电子材料股份有限公司 | Aluminum-copper alloy surface film plating method |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3293158A (en) * | 1963-09-17 | 1966-12-20 | Mcneill William | Anodic spark reaction processes and articles |
US3824159A (en) * | 1971-05-18 | 1974-07-16 | Isovolta | Method of anodically coating aluminum |
US3956080A (en) * | 1973-03-01 | 1976-05-11 | D & M Technologies | Coated valve metal article formed by spark anodizing |
US4082626A (en) * | 1976-12-17 | 1978-04-04 | Rudolf Hradcovsky | Process for forming a silicate coating on metal |
US4133725A (en) * | 1978-05-18 | 1979-01-09 | Sanford Process Corporation | Low voltage hard anodizing process |
USRE31901E (en) * | 1974-04-23 | 1985-05-28 | Pilot Man-Nen-Hitsu Kabushiki Kaisha | Continuous electrolytical treatment of aluminum or its alloys |
US4976830A (en) * | 1988-03-15 | 1990-12-11 | Electro Chemical Engineering Gmbh | Method of preparing the surfaces of magnesium and magnesium alloys |
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
US5275713A (en) * | 1990-07-31 | 1994-01-04 | Rudolf Hradcovsky | Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor |
US5362569A (en) * | 1993-03-22 | 1994-11-08 | Bauman Albert J | Anodizing and duplex protection of aluminum copper alloys |
US5616229A (en) * | 1994-06-01 | 1997-04-01 | Almag Al | Process for coating metals |
US5720866A (en) * | 1996-06-14 | 1998-02-24 | Ara Coating, Inc. | Method for forming coatings by electrolyte discharge and coatings formed thereby |
US6197178B1 (en) * | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
US6264817B1 (en) * | 1997-12-30 | 2001-07-24 | R-Amtech International, Inc. | Method for microplasma oxidation of valve metals and their alloys |
US20010019778A1 (en) * | 1997-09-10 | 2001-09-06 | Seb S.A. | Multilayer non-stick coating of improved hardness for aluminum articles and articles and culinary utensils incorporating such coating |
US6365028B1 (en) * | 1997-12-17 | 2002-04-02 | Isle Coat Limited | Method for producing hard protection coatings on articles made of aluminum alloys |
US20020104761A1 (en) * | 1997-03-26 | 2002-08-08 | Birss Viola I. | Coated substrate and process for production thereof |
US6808613B2 (en) * | 2000-04-26 | 2004-10-26 | Jacques Beauvir | Oxidizing electrolytic method for obtaining a ceramic coating at the surface of a metal |
US6893551B2 (en) * | 2001-11-22 | 2005-05-17 | International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) | Process for forming coatings on metallic bodies and an apparatus for carrying out the process |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US6919012B1 (en) * | 2003-03-25 | 2005-07-19 | Olimex Group, Inc. | Method of making a composite article comprising a ceramic coating |
US20050178664A1 (en) * | 2004-02-18 | 2005-08-18 | Ilya Ostrovsky | Method of anodizing metallic surfaces and compositions therefore |
US20060016690A1 (en) * | 2004-07-23 | 2006-01-26 | Ilya Ostrovsky | Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU617493A1 (en) * | 1976-07-05 | 1978-07-30 | Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина | Electrolyte for anode-plating of aluminium alloys |
JPS5698495A (en) * | 1980-01-09 | 1981-08-07 | Hitachi Ltd | Surface treatment method of magnesium or its alloy |
JP2003080857A (en) * | 2001-09-12 | 2003-03-19 | Fuji Photo Film Co Ltd | Support for lithographic printing plate and original plate for lithographic printing plate |
-
2007
- 2007-08-27 WO PCT/US2007/076891 patent/WO2008027835A1/en active Application Filing
- 2007-08-27 US US11/892,760 patent/US20080047837A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3293158A (en) * | 1963-09-17 | 1966-12-20 | Mcneill William | Anodic spark reaction processes and articles |
US3824159A (en) * | 1971-05-18 | 1974-07-16 | Isovolta | Method of anodically coating aluminum |
US3956080A (en) * | 1973-03-01 | 1976-05-11 | D & M Technologies | Coated valve metal article formed by spark anodizing |
USRE31901E (en) * | 1974-04-23 | 1985-05-28 | Pilot Man-Nen-Hitsu Kabushiki Kaisha | Continuous electrolytical treatment of aluminum or its alloys |
US4082626A (en) * | 1976-12-17 | 1978-04-04 | Rudolf Hradcovsky | Process for forming a silicate coating on metal |
US4133725A (en) * | 1978-05-18 | 1979-01-09 | Sanford Process Corporation | Low voltage hard anodizing process |
US4976830A (en) * | 1988-03-15 | 1990-12-11 | Electro Chemical Engineering Gmbh | Method of preparing the surfaces of magnesium and magnesium alloys |
US5275713A (en) * | 1990-07-31 | 1994-01-04 | Rudolf Hradcovsky | Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor |
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
US5362569A (en) * | 1993-03-22 | 1994-11-08 | Bauman Albert J | Anodizing and duplex protection of aluminum copper alloys |
US5616229A (en) * | 1994-06-01 | 1997-04-01 | Almag Al | Process for coating metals |
US5720866A (en) * | 1996-06-14 | 1998-02-24 | Ara Coating, Inc. | Method for forming coatings by electrolyte discharge and coatings formed thereby |
US20020104761A1 (en) * | 1997-03-26 | 2002-08-08 | Birss Viola I. | Coated substrate and process for production thereof |
US20010019778A1 (en) * | 1997-09-10 | 2001-09-06 | Seb S.A. | Multilayer non-stick coating of improved hardness for aluminum articles and articles and culinary utensils incorporating such coating |
US6365028B1 (en) * | 1997-12-17 | 2002-04-02 | Isle Coat Limited | Method for producing hard protection coatings on articles made of aluminum alloys |
US6264817B1 (en) * | 1997-12-30 | 2001-07-24 | R-Amtech International, Inc. | Method for microplasma oxidation of valve metals and their alloys |
US6197178B1 (en) * | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
US6808613B2 (en) * | 2000-04-26 | 2004-10-26 | Jacques Beauvir | Oxidizing electrolytic method for obtaining a ceramic coating at the surface of a metal |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US6893551B2 (en) * | 2001-11-22 | 2005-05-17 | International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) | Process for forming coatings on metallic bodies and an apparatus for carrying out the process |
US6919012B1 (en) * | 2003-03-25 | 2005-07-19 | Olimex Group, Inc. | Method of making a composite article comprising a ceramic coating |
US20050178664A1 (en) * | 2004-02-18 | 2005-08-18 | Ilya Ostrovsky | Method of anodizing metallic surfaces and compositions therefore |
US20060016690A1 (en) * | 2004-07-23 | 2006-01-26 | Ilya Ostrovsky | Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100087914A1 (en) * | 2008-10-06 | 2010-04-08 | Biotronik Vi Patent Ag | Implant and Method for Manufacturing Same |
US8337936B2 (en) * | 2008-10-06 | 2012-12-25 | Biotronik Vi Patent Ag | Implant and method for manufacturing same |
WO2014009905A3 (en) * | 2012-07-10 | 2014-03-06 | Pct Protective Coating Technologies Ltd. | Method of sealing pores of an oxidation layer |
CN105401200A (en) * | 2015-12-10 | 2016-03-16 | 河北省电力建设调整试验所 | Preparation method for super-hydrophobic aluminum surface |
CN112323115A (en) * | 2020-11-04 | 2021-02-05 | 西安赛福斯材料防护有限责任公司 | Method for preparing wear-resistant insulating film layer on surface of titanium alloy by adopting micro-arc oxidation |
Also Published As
Publication number | Publication date |
---|---|
WO2008027835A1 (en) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101195458B1 (en) | Method for treating the surface of metal | |
US20080047837A1 (en) | Method for anodizing aluminum-copper alloy | |
Rahimi et al. | Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods | |
FR2587370A1 (en) | PROCESS FOR PRODUCING SLICED STEEL SLAB ETAMEE AND NICKELEE FOR SOLDERED PRESERVES | |
TWI424096B (en) | Method for forming anodic oxide film | |
Peng et al. | Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte | |
CN101698957A (en) | Micro-arc oxidation treatment method of heat-resistant cast rare earth magnesium alloy | |
US4133725A (en) | Low voltage hard anodizing process | |
CN102268710A (en) | Solution for preparing self-hole-sealing ceramic coating with high corrosion resistance on magnesium alloy surface and application thereof | |
CN110129801A (en) | A Treatment Process for Improving the Corrosion Resistance of Additively Manufactured Titanium Alloys | |
US20030196907A1 (en) | Method of anodizing a part made of aluminum alloy | |
RU2552203C2 (en) | Method of grinding parts made from titanium alloys | |
WO2004063405A3 (en) | Magnesium containing aluminum alloys and anodizing process | |
CN100425740C (en) | Anode oxidating electrolysing liquid under inhibiting arc state of magnesium alloy and process for anode oxidating | |
Jangde et al. | Role of glycerine on formation & corrosion characteristic of PEO layer formed over Mg alloy in a high-concentrated mixed silicate-phosphate-based electrolyte | |
EP3696299A1 (en) | Method for producing a corrosion-resistant aluminum-silicon alloy casting, corresponding corrosion-resistant aluminum-silicon alloy casting and its use | |
US3351540A (en) | Method of improving the corrosion resistance of oxidized metal surfaces | |
US2666023A (en) | Anodic coating of aluminum | |
Dayauc et al. | The mechanical, corrosion and tribological properties of Al2O3 films grown by anodisation and MAO | |
JP5777939B2 (en) | Anodized film generation method | |
CN110528059A (en) | 8 line aluminium alloy electrolytic polishing liquids of one kind and its preparation and polishing method | |
US3732152A (en) | Anodized magnesium and magnesium alloys | |
US3562121A (en) | Anodising of aluminium and its alloys | |
Knap et al. | Influence of electrolyte composition on corrosion properties of PEO coating prepared on EV31 magnesium alloy | |
TW201030189A (en) | Method of manufacturing a surface treated member for semiconductor liquid crystal manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |