US20080045952A1 - Annulus-reinforcing band - Google Patents
Annulus-reinforcing band Download PDFInfo
- Publication number
- US20080045952A1 US20080045952A1 US11/752,059 US75205907A US2008045952A1 US 20080045952 A1 US20080045952 A1 US 20080045952A1 US 75205907 A US75205907 A US 75205907A US 2008045952 A1 US2008045952 A1 US 2008045952A1
- Authority
- US
- United States
- Prior art keywords
- mesh member
- fill
- fill material
- band
- interior space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 CC(CCC*)CCC(C)=CN=O Chemical compound CC(CCC*)CCC(C)=CN=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/441—Joints for the spine, e.g. vertebrae, spinal discs made of inflatable pockets or chambers filled with fluid, e.g. with hydrogel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4601—Special tools for implanting artificial joints for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4611—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7094—Solid vertebral fillers; devices for inserting such fillers
- A61B17/7095—Solid vertebral fillers; devices for inserting such fillers the filler comprising unlinked macroscopic particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7097—Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
- A61B17/7098—Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants wherein the implant is permeable or has openings, e.g. fenestrated screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2817—Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2821—Bone stimulation by electromagnetic fields or electric current for enhancing ossification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2835—Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30092—Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/302—Three-dimensional shapes toroidal, e.g. rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30563—Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30677—Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30841—Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/4435—Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/444—Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2002/4495—Joints for the spine, e.g. vertebrae, spinal discs having a fabric structure, e.g. made from wires or fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2002/4625—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
- A61F2002/4627—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2002/4631—Special tools for implanting artificial joints the prosthesis being specially adapted for being cemented
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2002/4635—Special tools for implanting artificial joints using minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0065—Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00071—Nickel or Ni-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
Definitions
- This invention relates to devices that provide a means to support and/or reinforce and/or stabilize a diseased mammalian spinal intervertebral disc.
- the spinal disc consists of three parts: first, the nucleus, a central portion that is a compression-resisting cushion; second, the annulus, a peripheral rim portion that is a tension-resisting hoop; and third, the end plate, the superior and inferior borders of the disc, consisting of the up and down borders of the vertebral body bones.
- DDD Degenerative Disc Disease
- the BAK and many similarly structured rigid metallic implants suffer from several less than ideal features such as: the need to create fairly large surgical exposures, the need for fairly large entrance holes through the annulus of the disc, and the presence of fairly large volumes of metal that reduce bone graft surface contact at the end plate.
- Any device that would more easily, and/or more effectively, and/or more safely treat degenerative disc disease would be useful in the management of hundreds of thousands of suffering individuals.
- the first class includes rigid, three-dimensional geometric solid devices, either impervious or porous, that function as support struts. When placed in the area of the disc between adjacent vertebral bodies, they allow and/or encourage bone to grow through and/or around the device to cause a bony fusion between two adjacent vertebral bodies. Examples of such devices have been described in the following references:
- the second class involves the use of semi-rigid artificial joints that allow motion in one or more planes.
- Examples include U.S. Pat. No. 4,759,769 to Kostuik, U.S. Pat. No. 6,039,763 to Shelokov, and commercially available examples such as the Link device or Charite Intervertebral Disc Endoprosthesis.
- the third class is directed to non-rigid cushions designed to replace the nucleus of the disc. Examples of artificial discs are described in U.S. Pat. No. 4,904,260 to Ray, U.S. Pat. No. 4,772,287 to Ray and U.S. Pat. No. 5,192,326 to Boa.
- the fourth class is the relatively new area of initially flexible, expandable bags or balloons that become rigid when injected with materials that can support loads.
- Examples include U.S. Pat. Nos. 5,571,189 and 5,549,679 to Kuslich, each of which describe expandable, porous balloons or bags, useful in stabilizing a deteriorating spinal disc.
- a porous bag or balloon is used which is closed except for a mouth through which bone graft or other graft material is inserted. The bag is placed into a reamed out intervertebral space and is expanded by the introduction of graft material.
- the bands of this invention are softer, lighter, more pliable, and without hard sharp edges, thereby offering greater safety during passage next to delicate structures such as the great vessels or the spinal cord.
- the completely open structure at the Polar Regions adjacent to cancellous bone of the vertebral bodies would allow for a more intimate fit between inserted graft material and living bone. This intimacy of contact, without any intervening implant material, may reasonably lead to a faster and more complete biological ingrowth through the central portion of the implant.
- the attributes of the current invention would provide a new and potentially superior technology in two other categories of treatment for degenerative disc disease: one, soft tissue reinforcement of diseased discs, and two, disc replacement.
- the current invention does not require heat. Heat can be injurious to local spinal nerves and vessels, possibly leading to paralysis or even death by hemorrhage.
- the current invention immediately stabilizes the annulus, rather than having to wait until the heat-damaged tissue heals and shrinks.
- the current invention does not require the placement of pedicle screws.
- the placement of pedicle screws requires a significant surgical exposure with attendant bleeding and injury to local muscular, ligamentous, vascular and nervous tissues.
- the current invention can be installed through much smaller, microsurgical exposures that would have less likelihood of causing collateral damage.
- the current invention directly stabilizes the very tissue that is causing the discogenic pain, the annulus, rather than attempting to stabilize the annulus by an external, cantilevered system that has all of the risks and disadvantages of using polyester tension bands and pedicle screws.
- the current invention is a basic departure from the prior art at a very fundamental level.
- the core element of the invention is the simple but broad concept of applying a tension-resisting circumferential band at or near the mid or outer circumference of the annulus.
- a careful review of the patent and medical literature and prior art did not provide an instance of this fundamental concept having been previously described.
- the core idea of using a circumferential tension band to reinforce an injured disc annulus led to a number of alternative embodiments, spanning the treatment options all the way from simple reinforcement, to containment of graft material for interbody fusion, to radial containment of a centrally placed compressible or incompressible nuclear replacement material.
- the basic concept of the current invention could provide the critical element that would allow a developer and/or a surgeon a new means to structure a new and potentially better annular support for a less invasive early to mid-stage degenerative disc disease treatment method.
- the invention would also provide an improved means of graft support for a less invasive interbody fusion method.
- the invention would provide an improved means of support for nuclear material (biological or non-biological, bioactive or inert, hydrophilic or non-hydrophilic, granular or amorphous)—for nuclear replacement or so-called artificial disc replacement.
- the invention provides for an expandable tubular member or band which has side walls and may include a fill opening.
- the expandable band does not require either a bottom or a top as it has been found that a suitable enclosure is created by placing such a band within a reamed out intervertebral space. Pressure within the interior of the band is exerted primarily against the side walls and the adjacent vertebrae surfaces. The pressure exerted by the bone graft material at the top and bottom is exerted against the exposed bone of the adjacent vertebrae which encourages bone growth through the band interior.
- the bone graft material is contained within the tube by a combination of the natural bony top and bottom together with the sidewall of the band.
- the current invention provides a novel means to support the diseased and/or weakened annulus of the disc. This support would offer improved resistance to stresses placed on the spine and therefore would reasonably result in decreased pain and improved function to any individual suffering from the degenerated disc disease condition.
- the devices based on the invention herein described could also provide a means to retain and contain materials that might be inserted or injected into the disc in an attempt to heal the annulus, to replace the natural nucleus, or to create a bony fusion between the two adjacent vertebral bodies.
- the invention provides a flexible implant that may be inserted into a cavity formed in a degenerating disc.
- the flexibility of the band allows it to be inserted through a relatively small opening in a disc or vertebral space.
- the band is then positioned so its fill opening, if any, may receive biological fill material. This material is packed into the interior flexible band, causing the band to expand and conform to the cavity formed in the disc or vertebrae. Fill material is added until enough material is present to expand the disc to the desired position. At this time, the band fill opening is closed to prevent egress of the fill material.
- the invention provides for a pliable band or hoop that is flexible to normal handling, but cannot stretch circumferentially once it has reached the limits of its circumferential length.
- the band may have a structural portal to be used for filling, or it may simply be constructed of a fabric-like material that allows a fill tube to perforate its walls to allow for filling. In the latter case, the perforated wall tends to self-seal once the fill tube is withdrawn.
- the band may be flat or tubular in cross-section. However, unlike a balloon, the band does not require either a bottom or a top, as we found that a top and bottom are unnecessary when using a band or hoop to enclose material injected into a reamed out intervertebral space.
- the band serves well to contain particulate material inserted into the center of the disc cavity, without the need for a complete spherical enclosure, as would be provided by a balloon. Since in the case of the reamed out interdiscal cavity, the top opening and bottom opening of the band would be covered by dense vertebral bone, it is not necessary to enclose inserted particulate graft or other material in these regions.
- the invention consists of any continuous band or ring that would be placed around and near the outer margin of the intervertebral disc.
- Modern endoscopic surgical tools, combined with sophisticated surgical navigation systems make this option more practical and safer than would have been possible a few years ago.
- the band would be pre-formed to match the anatomy of the patient. It would also be available in a variety of circumferences, plies, thicknesses, widths (in the superior-inferior dimensions), weave patterns, materials and filament diameters.
- the band would be flexible enough to fit through a small hole made in the annulus, such as during a routine disc hernia removal operation. After removal of the disc hernia, the surgeon would introduce an expandable reamer and thereby remove the degenerated nucleus, the cartilage end plate, and the inner annulus, leaving the outer annulus intact. Examples of such a procedure and expandable reamers are described in U.S. Pat. No. 5,445,639 to Kuslich et al. and co-pending U.S. Pat. App. Ser. No. 60/182,610 to Kuslich et al., filed Feb. 15, 2000, the entire contents of both being incorporated herein by reference.
- the invention provides a pliable implant that may be inserted into a cavity formed in a degenerating disc.
- the flexibility of the band allows it to be inserted through a relatively small opening in a disc or vertebral space.
- the band is then positioned so its fill opening may receive fill material. This material is packed into the region interior to the band, causing the band to expand and conform to the cavity formed in the disc or vertebrae. Fill material is added until enough material is present to expand the disc to the desired position. At this time, the band fill opening is closed, or allowed to self-seal to prevent egress of the fill material.
- FIG. 1 is a perspective view of a first embodiment of the invention.
- FIG. 2 is a side view of the embodiment of FIG. 1 .
- FIG. 3 is a top view of the embodiment of FIG. 1 .
- FIG. 4 is a perspective view of an embodiment of the invention having an elongate fill opening.
- FIG. 5 is a perspective view of an embodiment of the invention as it may appear when used to replace a spinal disc.
- FIG. 6 is a perspective view of an embodiment of the invention wherein the band is a molded material.
- FIG. 7 is a side view of an embodiment of the invention shown in the reduced state within a storage/delivery tool.
- FIG. 8 is a side view of the embodiment shown in FIG. 7 wherein the inventive band is being removed from the storage/delivery tool.
- FIG. 9 is a perspective view of an embodiment of the invention wherein the inventive band has a woven, double walled configuration.
- FIG. 10 is a perspective cut away view of the embodiment shown in FIG. 9 .
- FIG. 11 is a perspective view of the embodiment of the invention shown in FIG. 9 wherein the inventive band further includes latitudinally oriented support bands.
- FIG. 12 is a perspective cut away view of the embodiment shown in FIG. 11 .
- FIG. 13 is a perspective view of the embodiment of the invention shown in FIG. 11 wherein the inventive band further includes longitudinally oriented support bands.
- FIG. 14 is a perspective cut away view of the embodiment shown in FIG. 13 .
- FIG. 15 is a side view of an embodiment of the invention wherein the inventive band has a single walled configuration.
- FIG. 16 is a perspective view of an embodiment of the invention.
- FIG. 17 is a top down view of an embodiment of the invention.
- FIG. 18 is a side view of the embodiment of the invention shown in FIG. 15 wherein the inventive band is shown is a partially reduced state.
- FIG. 19 is a perspective view of a graft insertion tool suitable for use with the inventive band.
- FIG. 20 is a side view of the tool shown in FIG. 19 .
- FIG. 21 is a top down view of the tool of FIG. 19 .
- FIG. 22 is a side view of the tool of FIG. 19 seen dislocating the fibers of an embodiment of the inventive band.
- FIG. 23 is a top down cut away view of a tool similar to the tool of FIG. 19 as may be seen during graft insertion.
- FIG. 24 is a perspective view of a portion of a spine wherein an embodiment of the invention is shown in place.
- FIG. 25 is a cross-sectional view of a spinal body which includes an embodiment of the invention therein.
- FIG. 26 is a close-up cut away view of a portion of the embodiment shown in FIG. 25 .
- FIG. 27 is a cross sectional view of a spinal segment which includes an embodiments of the invention being positioned thereabout.
- FIG. 28 is a perspective view of the spinal segment shown in FIG. 27 , wherein the embodiment of the invention is shown secured thereto.
- FIG. 29 is a frontal view of a spinal segment shown in cross-section.
- FIG. 30 is a frontal view of a spinal segment shown in cross-section, that includes an embodiment of the invention therewith.
- This invention may be characterized as an improvement of the inventor's inventions described in U.S. Pat. Nos. 5,571,189 and 5,549,679, the disclosures of which are incorporated herein by reference.
- FIGS. 1-3 illustrates an embodiment of the inventive implant 10 which consists of a sidewall band 12 , which may be characterized as being substantially tubular or ring like in shape.
- the band 12 is circular, however other elliptical shapes and other geometric shapes may also be used.
- the band 12 is pliable and malleable before its interior space 14 (not shown in FIG. 2 ) is filled with the contents to be described. While in this initial condition, the band 12 may be passed, in a collapsed state, through a relatively small tube or portal, such as recited in U.S. Pat. Nos. 5,571,189 and 5,549,679, the entire contents of both references being incorporated herein by reference. This feature is important because access to the intervertebral disc is limited by anatomy and therefore safety considerations direct us to use the smallest possible portal of entry.
- the band 12 may be constructed in a variety of ways.
- the band material 16 may be etched, woven or braided material such as a weave of NITINOL fibers, or a form-molded material such as shown in FIG. 6 .
- the material or fabric 16 may be fluid impermeable or may be provided with a density that will allow ingress and egress of fluids and solutions and will allow the ingrowth and through-growth of blood vessels and fibrous tissue and bony trabeculae. Where the material 16 is provided with such a porous construction, pores or weave gaps are preferably tight enough to retain small particles of enclosed fill material, such as ground up bone graft, other tissues or solid pieces of bone inducing material such as hydroxyapatite or other biocompatible materials known to promote bone formation.
- the pores or openings 18 of the fabric will have a diameter of about 0.25 mm to about 5.0 mm. The size is selected to allow tissue ingrowth while containing the material packed into the bag.
- the material 16 of the invention must be flexible enough to allow it to be collapsed and inserted into an opening smaller than the expanded band size.
- the band 12 is sufficiently flexible so that it may be positioned into a holding chamber 50 of a storage tube or delivery device 52 .
- the band may be compacted into a substantially smaller configuration than the band is capable of attaining when packed with graft material.
- the delivery device is sized such that the device 52 may be inserted into a surgical opening wherein the band 12 is drawn or pushed by plunger 56 out of the chamber 50 , as indicated by the direction of the arrow 54 as shown in FIG. 8 .
- the band 12 may be used to repair and/or replace a vertebral disc 23 as may be seen in FIG. 5 wherein the band is placed between adjacent vertebral bodies 24 .
- the band 12 may be inserted into a small opening in the annulus 21 of the disc 23 and filled from within the disc.
- the band 12 may be inserted within a hollowed region of a vertebra 24 to provide support thereto, or may be utilized to replace an entire vertebral body 24 .
- the fill material used in conjunction with the band 12 is preferably minimally elastic if at all.
- the fabric band 12 may be formed from a polymeric material to which a plurality of perforations are formed or added. It need not be woven and may be molded, such as the embodiment shown in FIG. 6 , or otherwise formed as is well known in the art. The preferred material may provide the ability to tailor bioabsorbance rates. Any suture-type material used medically may be used to form the band 12 .
- the band 12 may be formed of plastic or even metal.
- the band 12 could be formed from a solid material.
- the band 12 may be partially or totally absorbable, metal, plastic, woven, solid, film or an extruded balloon.
- the material 16 is light, biocompatible, flexible and easily handled, but is also very strong in terms of resisting tension, and thus unlikely to rip or tear during insertion and expansion.
- the band 12 expands to a predetermined shape, and in doing so, it fills a previously excavated space 20 between the vertebral bodies and/or within a vertebral body, such as may be seen in FIG. 5 . This filling results in the separation of the vertebral bodies 24 and results in the stabilization of the spinal motion segment, indicated generally at 22 .
- the band 12 may be characterized as having two ends 30 and 32 .
- One or both ends 30 and 32 may be open as defined by the band 12 .
- the openings 30 and 32 are characterized as being less than the diameter of the surrounding vertebral bone, thus assuring containment of the graft material within the confines of the interior 14 of the band 12 .
- the material 16 which covers one or more of the openings is porous to allow for bone growth therethrough such as has been described above.
- the band 12 may be equipped with a fill opening 26 .
- the fill opening 26 must be large enough to accommodate passage of fill material as well as the means of placing fill material into the interior space 14 of the band 12 .
- a device which may be suitable for passing through the fill opening 26 for insertion of fill material is described in co-pending U.S. patent application Ser. No. 09/608,079 as discussed above.
- the opening 26 includes a means of preventing passage of fill material out of the interior space 14 .
- the opening 26 includes an elongate passage 28 which may be tied off or otherwise sealed subsequent to insertion of the fill material.
- the fill material will push against the vertebral surfaces 40 which are adjacent to the top 30 and bottom 32 of the band 12 .
- the band 12 in combination with the vertebral surfaces 40 will contain the fill material within the interior space 14 .
- the fibers may be composed of a variety of materials as previously discussed.
- the band 12 may be constructed from one or more metal fibers such as, for example, NITINOL fibers 58 , which have been woven or braided together into the desired band shape.
- a shape-memory material such as NITINOL, or a material such as steel, titanium or other metal, provides the band with sufficient mechanical strength to resist stretching or expansion as a result of the build up of graft material in the interior 14 .
- shape-memory materials allow the band to be collapsed prior to insertion, such as may be seen in FIGS. 7 and 8 yet which will tend to reacquire its original shape once implanted.
- FIGS. 9-18 depict a wide variety of band configurations.
- the band 12 may be characterized as a double walled band or a loop of material folded back upon itself.
- Such a double walled configuration may be seen as having a inner wall 60 which is continuous with the outer wall 62 and defining a toroid shaped space 63 therebetween as seen in FIGS. 10 and 12 .
- the toroidal shaped space 63 may be filled, in whole or in part with pharmaceuticals for drug delivery to the implantation site.
- the toroid space 63 may also be filled, subsequent to implantation into a vertebral body with a biocompatible cement or other material for providing the band 12 with additional support.
- the double walled construction may provide the band 12 with increased strength to provide additional mechanical support for the graft material contained in the interior 14 .
- the double walled construction may be configured to allow the various openings 18 of the respective walls 60 and 62 to partially overlap.
- the fibers 58 of one wall for example inner wall 60
- the openings 18 of the other wall for example outer wall 62
- a band 12 having a double walled construction may not require any more fibers 58 than a single walled band such as may be seen in FIGS. 15-18 .
- a double walled band 12 may also include one or more latitudinally disposed support members such as members 64 and 66 shown.
- the individual support members 64 and 66 may be positioned in any manner around the circumference of the band 12 .
- the members 64 and 66 are respectively disposed the first or top opening 30 and the second or bottom opening 32 .
- the members 64 and 66 are located between the inner wall 60 and outer wall 62 .
- the members 64 and 66 may be used to support the material 16 of the band by weaving the fibers 58 about the members 64 and 66 , such as may best be seen in FIG. 12 .
- the members 64 and 66 may be constructed from the same or different material as fibers 58 .
- the members 64 and 66 may be one or more wires or fibers woven or braided together and oriented in the latitudinal orientation shown.
- one or more fibers may be equatorially oriented, or may be otherwise positioned anywhere around the circumference of the band 12 .
- the band may also include one or more longitudinally oriented members 68 such as may be seen in the embodiment shown in FIGS. 13 and 14 .
- the longitudinal members 68 vertically cross the band 12 to join the latitudinal members 64 and 66 .
- the longitudinal members 68 are oriented substantially perpendicular to the latitudinal members 64 and 66 .
- the longitudinal members 68 provide the band with compression support relative to the surrounding vertebra.
- the members 68 may be woven into the fibers 58 or may be independent of the band's woven configuration.
- the various members may act as a frame work which supports the woven fibers 58 of the band 12 .
- the longitudinal members 68 may be constructed out of any suitable material. Such material may be different from or the same as the fibers 58 . Additionally, the members 68 may be characterized as one or more fibers 58 oriented in the longitudinal direction shown.
- the band 12 may be provided with only a single wall construction as opposed to the double walled construction previously described.
- the single wall 70 is not a continuous overlapping loop of material such as may be seen in FIGS. 9 and 10
- the single walled band 12 shown in FIG. 15 may have openings 30 and 32 which have fairly jagged or non-uniform edges 72 .
- the material 16 of the band 12 may not necessarily be of sufficient hardness to penetrate the surrounding vertebral bone, the non-uniform nature of the edges 72 of the band 12 , provides band 12 with surfaces which may tend to more readily engage the surfaces of the surrounding vertebral bone, thereby preventing the band 12 from shifting or otherwise moving during the graft injection process or thereafter.
- the single walled band 12 may be configured to have an essentially cylindrical shape.
- the cylindrical shape may be compressed into an elongated band such as may be seen in FIGS. 7 an 8 prior to insertion into the body.
- the band 12 may be configured to include other shapes, notably the rounded configuration shown in FIG. 17 , after the band 12 is inserted into a vertebral body.
- FIG. 18 the malleability of a single walled band is illustrated.
- the band 12 may be significantly distorted, collapsed or otherwise manipulated in order to collapse the band into a reduced configuration such as may be seen in FIGS. 7 and 8 .
- the present invention may be distorted in either or both the radial and longitudinal directions while retaining its ability to expand subsequent to insertion into the spinal area.
- the band 12 is shown with a fill insertion tool 100 being inserted into the interior 14 of the band 12 by passing through one of the spaces or pores 18 .
- the shape of the tool 100 as may best be seen in FIGS. 19-21 is essentially an elongate shaft 104 having a tapered or pointed distal end 102 .
- FIGS. 19-21 an example of a fill insertion tool which is suitable for use in the various embodiments of the invention is illustrated.
- the tool 100 is further disclosed in a co-pending U.S. patent application Ser. No. 09/738,726 filed Dec. 15, 2000 and entitled Tool to Direct Bone Replacement Material, to Kuslich et al., and is a continuation in part application of U.S. patent application Ser. No. 09/608,079 the entire contents of both being incorporated herein by reference.
- the tapered distal end 102 of the tool 100 is sized to enlarge the opening 18 to allow passage of the tool 100 into the interior 14 by pushing aside the various fibers 58 as may best be seen in FIG. 22 .
- the fibers 58 are disposed to open the pore 18 from its nominal diameter of about 0.25 mm to about 5 mm to an enlarged opening sufficient to allow passage of a portion of the shaft 104 therethrough.
- the extent of tool penetration into the band interior 14 must be sufficient to allow the side opening 106 to be fully contained within the band interior 14 .
- the tool 100 may include more than 1 side opening 106 .
- the side opening 106 allows insertion of the bone graft or other types of fill material 108 into the band interior 12 .
- the tool 100 may include a piston plunger or other means (not shown) for pushing fill material 108 from within the shaft 104 , through the side opening 106 and into the band interior 14 .
- the internal diameter of the shaft 104 may be about 1.5 mm to 5 mm and is preferably approximately 2.5 mm in diameter.
- the length of the side opening 106 is preferably between about 11 ⁇ 2 to 3 times the internal diameter of the shaft 104 .
- the distal end 102 of the tool 100 is preferably angled to direct the flow and to break down any material that has packed back into more discrete pieces.
- each member 65 extends about the mid-portion 71 of the band 12 and includes ends 73 and 75 that extend outward from one of the pores 18 where they may be pulled together and secured or tied to one another in the manner shown.
- the ends 73 and 75 may be cinched together in order to constrict the mid-portion of the band 12 so that the band 12 takes on a concave shape, such as is shown.
- the concave shape may provide greater support and flexibility to the surrounding spinal bodies and to the spine itself.
- ends 73 and 75 are pulled together and secured, not only is the band provided with a concave shape, but any fill material positioned therein is pushed together for more effective engagement with surrounding tissue as well as with itself and the band 12 .
- the band 12 may include portions 81 and 83 , where electrical leads 91 and 93 may be readily attached, such as are shown in FIG. 25 .
- Leads 91 and 93 are in electrical communication with an electrical power source 95 which provides sufficient current to stimulate bone growth through and adjacent to the band 12 .
- the leads 91 and 93 may be inserted through pores 18 , as previously shown and described, to directly stimulate the fill material 108 .
- the portions 81 and 83 may be part of a electrically conductive member 85 which is disposed within the walls 60 and 62 of the band 12 , such as is shown in FIG. 26 .
- the entire band 12 is electrically conductive, In yet another embodiment at least a portion of one or both walls 60 and 62 are electrically conductive and/or electrically insulated.
- the implant 10 may be characterized as a linear member or members 200 which is disposed about a vertebral disc 23 in a manner such as is shown in FIG. 27 .
- the member 200 may be a one or more of a combination of strands, threads, fibers, cords or other substantially linear portions of material which include a first end 202 and a second end 204 that are capable of being tied or otherwise secured together.
- the member 200 has a height sufficient to cover the entire exposed surface of the disc 23 .
- member 200 Some examples of materials which are suitable for use as member 200 or in its construction include, but are not limited to: Secure Strand available from Smith & Nephew Inc., THE LOOP. ⁇ ., available from Spineology Inc., and Songer Cable from Medtronic Inc.
- the member 200 may be constructed of the same material 16 as the previously described embodiments of the invention shown in FIGS. 1-26 , and include a plurality of pores or openings 18 .
- the member 200 may be further cinched or otherwise tightened about the disc 23 as is shown in FIGS. 29 and 30 .
- the disc 23 is compressed in order to invaginate the annulus 21 toward its center thereby tightening the annulus fibers. Such tightening will stabilize the spinal motion segment 22 and thereby stiffen that portion of the spine.
- FIG. 29 the annulus 21 of a disk 23 is shown within a spinal motion segment 22 prior to the securement and tightening of member 200 thereabout. It is shown that the annulus 21 of the disk 23 has a predetermined height 206 and a predetermined circumference 208 .
- the circumference is reduced as indicated at reference numeral 208 ′ while the height of the disk is made greater as is indicated at reference numeral 206 ′.
- the member 200 By securing the ends 202 and 204 of the member 200 about the disc, the member 200 forms a substantially continuous band similar to that previously described.
- the member 200 When secured about a disc the member 200 preferably has a substantially concave appearance, relative to the surrounding spinal bodies, such as is shown in FIG. 28 .
- the disc 23 When secured about the disc 23 , the disc 23 may be further treated with additional therapeutic agents, including fill material via the pores or openings 18 , in the manner previously described in relation to the embodiments shown in FIGS. 1-26 .
- any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims).
- each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims.
- the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Neurology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Prostheses (AREA)
- Electrotherapy Devices (AREA)
- Materials For Medical Uses (AREA)
Abstract
A pliable band or hoop that is flexible to normal handling, but cannot stretch circumferentially once it has reached the limits of its circumferential length. The band may have a structural portal to be used for filling, or it may simply be constructed of a fabric-like material that allows a fill tube to perforate its walls to allow for filling. In the latter case, the perforated wall tends to self-seal once the fill tube is withdrawn. The band may be flat or tubular in cross-section. However, unlike a balloon, the band does not require either a bottom or a top, as we found that a top and bottom are unnecessary when using a band or hoop to enclose material injected into a reamed out intervertebral space.
Description
- This application is a continuation application of U.S. application Ser. No. 11/447,615 filed Jun. 6, 2006 which is a continuation application of U.S. application Ser. No. 10/812,345 filed Mar. 29, 2004 which is a continuation application of U.S. application Ser. No. 10/022,048 filed Dec. 17, 2001, and now U.S. Pat. No. 6,712,853, which claims priority from U.S. provisional application No. 60/256,014, filed Dec. 15, 2000, the entire contents of which are incorporated herein by reference.
- Not Applicable.
- 1. Field of the Invention
- This invention relates to devices that provide a means to support and/or reinforce and/or stabilize a diseased mammalian spinal intervertebral disc.
- 2. Description of the Related Art
- It is recognized that the spinal disc consists of three parts: first, the nucleus, a central portion that is a compression-resisting cushion; second, the annulus, a peripheral rim portion that is a tension-resisting hoop; and third, the end plate, the superior and inferior borders of the disc, consisting of the up and down borders of the vertebral body bones.
- Many studies have concluded that mechanical back pain is the most common and costly musculoskeletal condition affecting middle-aged humans in modern societies. Mechanical back pain may be caused by several factors, but overwhelming evidence suggests that degeneration of the spinal intervertebral disc, such as may be caused by Degenerative Disc Disease (DDD) is the most common condition causing back pain symptoms.
- The inventor, in a previously published work entitled the tissue origin of low back pain and sciatica: A report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. (Orthop. Clin. North Amer. 1991; 22(2):181-187.), demonstrated that the diseased disc rim or annulus is the principle pain generator responsible for mechanical back pain.
- Many devices have been invented for the purpose of stabilizing and/or replacing parts of the disc in an effort to ease the pain associated with disc disease. Indeed, one of the author's prior inventions, the BAK has been used in more than 80,000 humans, with generally good results (See generally: the Bagby and Kuslich Method of Lumbar Interbody Fusion. History, Techniques, and 2-year Follow-up Results of a United States Prospective, Multicenter Trial. Kuslich S. D., Ulstrom C. L., Griffith S. L., Ahem J. W., Dowdle J. D., Spine 1998; 23:1267-1279; Summary of Safety and Effectiveness Of the BAK Interbody Fusion System, Food and Drug Administration (FDA) (PMA 950002), PMA Document Mail Center (HFZ-401), Center for Disease and Radiological Health, Washington D.C., Sep. 20, 1996; and Lumbar Interbody Cage Fusion for Back Pain: an Update on The BAK (Bagby and Kuslich) System, Kuslich S. D., Spine: State of the Art Reviews 1999; 13(2):295-311). Unfortunately, the BAK and many similarly structured rigid metallic implants suffer from several less than ideal features such as: the need to create fairly large surgical exposures, the need for fairly large entrance holes through the annulus of the disc, and the presence of fairly large volumes of metal that reduce bone graft surface contact at the end plate.
- Any device that would more easily, and/or more effectively, and/or more safely treat degenerative disc disease would be useful in the management of hundreds of thousands of suffering individuals.
- Previous patents involving intervertebral devices designed to treat DDD fall generally into the following four classes:
- The first class includes rigid, three-dimensional geometric solid devices, either impervious or porous, that function as support struts. When placed in the area of the disc between adjacent vertebral bodies, they allow and/or encourage bone to grow through and/or around the device to cause a bony fusion between two adjacent vertebral bodies. Examples of such devices have been described in the following references:
- U.S. Pat. No. 6,015,436 to Schonhoffer
- U.S. Pat. No. 6,010,502 to Bagby
- U.S. Pat. No. 5,972,031 to Biedermam et al.
- U.S. Pat. No. 5,895,427 to Kuslich
- U.S. Pat. No. 5,735,899 to Schwartz et al.
- U.S. Pat. No. 5,720,748 to Kuslich
- U.S. Pat. No. 5,709,683 to Bagby
- U.S. Pat. No. 5,700,291 to Kuslich
- U.S. Pat. No. 5,669,909 to Zdeblick
- U.S. Pat. No. 5,514,180 to Heggeness et al.
- U.S. Pat. No. 5,591,235 to Kuslich
- U.S. Pat. No. 5,489,308 to Kuslich
- U.S. Pat. No. 5,489,307 to Kuslich
- U.S. Pat. No. 5,405,391 to Henderson et al.
- U.S. Pat. No. 5,263,953 to Bagby
- U.S. Pat. No. 5,059,193 to Kuslich
- U.S. Pat. No. 5,015,255 to Kuslich
- U.S. Pat. No. 5,015,247 to Michelson
- U.S. Pat. No. 4,946,458 to Harms et al.
- U.S. Pat. No. 4,936,848 to Bagby
- U.S. Pat. No. 4,834,757 to Bantigan
- U.S. Pat. No. 4,820,305 both to Harms et al.
- U.S. Pat. No. 4,501,269 to Bagby
- U.S. Pat. No. 4,401,112 to Rezaian
- The second class involves the use of semi-rigid artificial joints that allow motion in one or more planes. Examples include U.S. Pat. No. 4,759,769 to Kostuik, U.S. Pat. No. 6,039,763 to Shelokov, and commercially available examples such as the Link device or Charite Intervertebral Disc Endoprosthesis.
- The third class is directed to non-rigid cushions designed to replace the nucleus of the disc. Examples of artificial discs are described in U.S. Pat. No. 4,904,260 to Ray, U.S. Pat. No. 4,772,287 to Ray and U.S. Pat. No. 5,192,326 to Boa.
- Finally, the fourth class is the relatively new area of initially flexible, expandable bags or balloons that become rigid when injected with materials that can support loads. Examples include U.S. Pat. Nos. 5,571,189 and 5,549,679 to Kuslich, each of which describe expandable, porous balloons or bags, useful in stabilizing a deteriorating spinal disc. In this fourth class, a porous bag or balloon is used which is closed except for a mouth through which bone graft or other graft material is inserted. The bag is placed into a reamed out intervertebral space and is expanded by the introduction of graft material. Recent research and development in the inventor's laboratory established the fact that a thin walled band or hoop, either porous or non-porous, can be placed in the region of the annulus by means of several techniques. Such a band or bands as described in detail below effectively reinforce the annulus and thereby support spinal motion segment strain deflections resulting from stresses applied in all vector directions: rotation, flexion-extension, side bending, compression and distraction. Furthermore, the inventor's experiments show that these radially applied bands or hoops can effectively contain and retain inserted or injected materials that are placed in the central region of a reamed-out disc. The current invention teaches a technique for building and using a simple band to perform many of the functions of the prior art described above. For instance, if compared to metal cylindrical implants such as described in U.S. Pat. No. 5,015,247 to Michelson and metal-walled or plastic-walled rectangular shaped implants such as may be described in U.S. Pat. Nos. 4,878,915 and 4,743,256 both to Brantigan, the bands of this invention are softer, lighter, more pliable, and without hard sharp edges, thereby offering greater safety during passage next to delicate structures such as the great vessels or the spinal cord. Also, the completely open structure at the Polar Regions adjacent to cancellous bone of the vertebral bodies, would allow for a more intimate fit between inserted graft material and living bone. This intimacy of contact, without any intervening implant material, may reasonably lead to a faster and more complete biological ingrowth through the central portion of the implant.
- It is well known that greater surface area contact between graft and living bone is conducive to higher fusion rates and conversely, lower non-union rates. Thus, the current invention provides for several unique advantages over prior art in the field of interbody fusion devices.
- In addition to its uses and advantages in the form of improved interbody fusion devices, the attributes of the current invention would provide a new and potentially superior technology in two other categories of treatment for degenerative disc disease: one, soft tissue reinforcement of diseased discs, and two, disc replacement.
- In regard to soft tissue reinforcement of diseased discs, several new techniques have recently become available to treat early and mid-stage disc degeneration by methods less invasive and less drastic than fusion surgery. Examples include: annular tissue modulation by heat application (See generally: Saal J. et al. North American Spine Society presentations 1999, 2000); the use of a polyester tension band placed around and between pedicle screws above and below the involved disc such as, described in U.S. Pat. No. 5,092,266 to Graf; and combined tension and distraction devices placed between pedicle screws, such as may be seen in the commercially available DyneSyS.υ. device from Sulzer Orthopedics Ltd. While early results from the above technologies appear promising, the current invention would obviate some of the potential dangers and drawbacks of these systems. For example:
- In the case of annular tissue modulation by heat application, the current invention does not require heat. Heat can be injurious to local spinal nerves and vessels, possibly leading to paralysis or even death by hemorrhage. The current invention immediately stabilizes the annulus, rather than having to wait until the heat-damaged tissue heals and shrinks.
- In the case of a polymeric tension band placed between pedicle screws above and below the involved disc, the current invention does not require the placement of pedicle screws. The placement of pedicle screws requires a significant surgical exposure with attendant bleeding and injury to local muscular, ligamentous, vascular and nervous tissues. The current invention can be installed through much smaller, microsurgical exposures that would have less likelihood of causing collateral damage.
- In the case of combined tension and distraction devices placed between pedicle screws, the current invention directly stabilizes the very tissue that is causing the discogenic pain, the annulus, rather than attempting to stabilize the annulus by an external, cantilevered system that has all of the risks and disadvantages of using polyester tension bands and pedicle screws.
- The current invention is a basic departure from the prior art at a very fundamental level. The core element of the invention is the simple but broad concept of applying a tension-resisting circumferential band at or near the mid or outer circumference of the annulus. A careful review of the patent and medical literature and prior art did not provide an instance of this fundamental concept having been previously described. Once conceived, the core idea of using a circumferential tension band to reinforce an injured disc annulus led to a number of alternative embodiments, spanning the treatment options all the way from simple reinforcement, to containment of graft material for interbody fusion, to radial containment of a centrally placed compressible or incompressible nuclear replacement material. In other words, the basic concept of the current invention could provide the critical element that would allow a developer and/or a surgeon a new means to structure a new and potentially better annular support for a less invasive early to mid-stage degenerative disc disease treatment method. The invention would also provide an improved means of graft support for a less invasive interbody fusion method. Finally, the invention would provide an improved means of support for nuclear material (biological or non-biological, bioactive or inert, hydrophilic or non-hydrophilic, granular or amorphous)—for nuclear replacement or so-called artificial disc replacement.
- The entire content of each and all patents, patent applications, articles and additional references, mentioned herein, are respectively incorporated herein by reference.
- The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention, unless specifically designated as such. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. .sctn. 1.56(a) exists.
- The invention provides for an expandable tubular member or band which has side walls and may include a fill opening. However, the expandable band does not require either a bottom or a top as it has been found that a suitable enclosure is created by placing such a band within a reamed out intervertebral space. Pressure within the interior of the band is exerted primarily against the side walls and the adjacent vertebrae surfaces. The pressure exerted by the bone graft material at the top and bottom is exerted against the exposed bone of the adjacent vertebrae which encourages bone growth through the band interior. The bone graft material is contained within the tube by a combination of the natural bony top and bottom together with the sidewall of the band.
- The current invention provides a novel means to support the diseased and/or weakened annulus of the disc. This support would offer improved resistance to stresses placed on the spine and therefore would reasonably result in decreased pain and improved function to any individual suffering from the degenerated disc disease condition.
- In addition to simply reinforcing the diseased annulus of the disc, the devices based on the invention herein described could also provide a means to retain and contain materials that might be inserted or injected into the disc in an attempt to heal the annulus, to replace the natural nucleus, or to create a bony fusion between the two adjacent vertebral bodies.
- In at least one embodiment of the invention, the invention provides a flexible implant that may be inserted into a cavity formed in a degenerating disc. The flexibility of the band allows it to be inserted through a relatively small opening in a disc or vertebral space. The band is then positioned so its fill opening, if any, may receive biological fill material. This material is packed into the interior flexible band, causing the band to expand and conform to the cavity formed in the disc or vertebrae. Fill material is added until enough material is present to expand the disc to the desired position. At this time, the band fill opening is closed to prevent egress of the fill material.
- In at least one embodiment of the invention, the invention provides for a pliable band or hoop that is flexible to normal handling, but cannot stretch circumferentially once it has reached the limits of its circumferential length. The band may have a structural portal to be used for filling, or it may simply be constructed of a fabric-like material that allows a fill tube to perforate its walls to allow for filling. In the latter case, the perforated wall tends to self-seal once the fill tube is withdrawn. The band may be flat or tubular in cross-section. However, unlike a balloon, the band does not require either a bottom or a top, as we found that a top and bottom are unnecessary when using a band or hoop to enclose material injected into a reamed out intervertebral space.
- As long as the width of the band is approximately equal to the annulus height (or stated another way, the distance from one vertebral peripheral end-plate to its neighbor) the band serves well to contain particulate material inserted into the center of the disc cavity, without the need for a complete spherical enclosure, as would be provided by a balloon. Since in the case of the reamed out interdiscal cavity, the top opening and bottom opening of the band would be covered by dense vertebral bone, it is not necessary to enclose inserted particulate graft or other material in these regions.
- Pressure within the cavity, as would occur when a surgeon injects material into its central region interior to the band, is exerted radially against the band and the adjacent vertebral surfaces. As the internal cavity is filled with incompressible material, such as bone graft or bioceramic beads or granules, radial displacement beyond the circumference of the band is restricted. Therefore, any additional injected material would be directed north and south against the vertebral bodies. This action would increase the distance between the vertebral bodies, and produce a so-called disc distraction. This distraction is known to have three salutary results. First, it stabilizes the motion segment by tightening the ligamentous structures. Second, it opens the exiting holes for spinal nerves—the so-called neural foramina—and thus relieves certain types of nerve compression disorders. Third, this improved stability is necessary to allow for bony ingrowth and through-growth, to produce an interbody fusion. The pressure exerted by the bone graft material at the top and bottom is directed against the exposed bone of the adjacent vertebra. This produces an intimate contact that encourages bone growth through the interior of the cavity.
- In at least one embodiment, the invention consists of any continuous band or ring that would be placed around and near the outer margin of the intervertebral disc. A suture or preferably a flattened, braided or woven strand or cord, for instance, that was placed circumferentially about a disc and tied to make a tension-resisting ring, would qualify. Modern endoscopic surgical tools, combined with sophisticated surgical navigation systems make this option more practical and safer than would have been possible a few years ago.
- In yet another embodiment, the band would be pre-formed to match the anatomy of the patient. It would also be available in a variety of circumferences, plies, thicknesses, widths (in the superior-inferior dimensions), weave patterns, materials and filament diameters. The band would be flexible enough to fit through a small hole made in the annulus, such as during a routine disc hernia removal operation. After removal of the disc hernia, the surgeon would introduce an expandable reamer and thereby remove the degenerated nucleus, the cartilage end plate, and the inner annulus, leaving the outer annulus intact. Examples of such a procedure and expandable reamers are described in U.S. Pat. No. 5,445,639 to Kuslich et al. and co-pending U.S. Pat. App. Ser. No. 60/182,610 to Kuslich et al., filed Feb. 15, 2000, the entire contents of both being incorporated herein by reference.
- The properly sized band would be pushed through the disc portal, whereupon, owing to its inherent springiness, or as a result of material being injected in the interior of the disc, the hoop or band would expand radially against the outer annulus. Perforating the mesh fabric of the band, by means of a pointed fill tube, would allow the surgeon to fill the cavity with significant pressure using graft material; perhaps by the use of a graft injection system such as described in a co-pending U.S. patent application Ser. No. 09/738,726 filed Dec. 15, 2000 and entitled Tool to Direct Bone Replacement Material, to Kuslich et al., and is a continuation in part application of U.S. patent application Ser. No. 09/608,079 the entire contents of both being incorporated herein by reference. The resulting compressed graft, held from further expansion by the vertebral bone above and below, and the band or hoop radially, would change phase from liquid-like to solid-like, as is known to occur when granular materials are subjected to compression loading (See: Friction in Granular Flows, by H. M. Jaeger, Chu-heng Liu, S. R. Nagel and T. A. Witten, Europhysics Lett. 11, 619 (1990); Granular Solids, Liquids, and Gases, by H. M. Jaeger, S. R. Nagel and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996); and IUTAM Symposium on Segregation in Granular Flows (Solid Mechanics and its Applications), Vol. 81, October 2000). This phase change has been observed and scientifically characterized by our laboratory experiments and by the work described in U.S. Pat. No. 5,331,975 to Bonutti (see also Formation of Structural Grafts From Cancellous Bone Fragment, by P. M. Bonutti, M. J. Cremens, and B. J. Miller, Am. J. Ortop. Jul. 27, 1998: 499-502); each of the above references being incorporated in their entirety herein by reference. This phase change would result in a construct that is capable of both stabilizing the motion segment in the short run, and would foster the development of a solid bony fusion over the long run.
- To state the process in another way: the invention provides a pliable implant that may be inserted into a cavity formed in a degenerating disc. The flexibility of the band allows it to be inserted through a relatively small opening in a disc or vertebral space. The band is then positioned so its fill opening may receive fill material. This material is packed into the region interior to the band, causing the band to expand and conform to the cavity formed in the disc or vertebrae. Fill material is added until enough material is present to expand the disc to the desired position. At this time, the band fill opening is closed, or allowed to self-seal to prevent egress of the fill material.
- All US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
- The invention in various of its embodiment is summarized below. Additional details of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
- The abstract provided herewith is intended to comply with 37 CFR 1.72 and is not intended be used in determining the scope of the claimed invention.
- A detailed description of the invention is hereafter described with specific reference being made to the following drawings.
-
FIG. 1 is a perspective view of a first embodiment of the invention. -
FIG. 2 is a side view of the embodiment ofFIG. 1 . -
FIG. 3 is a top view of the embodiment ofFIG. 1 . -
FIG. 4 is a perspective view of an embodiment of the invention having an elongate fill opening. -
FIG. 5 is a perspective view of an embodiment of the invention as it may appear when used to replace a spinal disc. -
FIG. 6 is a perspective view of an embodiment of the invention wherein the band is a molded material. -
FIG. 7 is a side view of an embodiment of the invention shown in the reduced state within a storage/delivery tool. -
FIG. 8 is a side view of the embodiment shown inFIG. 7 wherein the inventive band is being removed from the storage/delivery tool. -
FIG. 9 is a perspective view of an embodiment of the invention wherein the inventive band has a woven, double walled configuration. -
FIG. 10 is a perspective cut away view of the embodiment shown inFIG. 9 . -
FIG. 11 is a perspective view of the embodiment of the invention shown inFIG. 9 wherein the inventive band further includes latitudinally oriented support bands. -
FIG. 12 is a perspective cut away view of the embodiment shown inFIG. 11 . -
FIG. 13 is a perspective view of the embodiment of the invention shown inFIG. 11 wherein the inventive band further includes longitudinally oriented support bands. -
FIG. 14 is a perspective cut away view of the embodiment shown inFIG. 13 . -
FIG. 15 is a side view of an embodiment of the invention wherein the inventive band has a single walled configuration. -
FIG. 16 is a perspective view of an embodiment of the invention. -
FIG. 17 is a top down view of an embodiment of the invention. -
FIG. 18 is a side view of the embodiment of the invention shown inFIG. 15 wherein the inventive band is shown is a partially reduced state. -
FIG. 19 is a perspective view of a graft insertion tool suitable for use with the inventive band. -
FIG. 20 is a side view of the tool shown inFIG. 19 . -
FIG. 21 is a top down view of the tool ofFIG. 19 . -
FIG. 22 is a side view of the tool ofFIG. 19 seen dislocating the fibers of an embodiment of the inventive band. -
FIG. 23 is a top down cut away view of a tool similar to the tool ofFIG. 19 as may be seen during graft insertion. -
FIG. 24 is a perspective view of a portion of a spine wherein an embodiment of the invention is shown in place. -
FIG. 25 is a cross-sectional view of a spinal body which includes an embodiment of the invention therein. -
FIG. 26 is a close-up cut away view of a portion of the embodiment shown inFIG. 25 . -
FIG. 27 is a cross sectional view of a spinal segment which includes an embodiments of the invention being positioned thereabout. -
FIG. 28 is a perspective view of the spinal segment shown inFIG. 27 , wherein the embodiment of the invention is shown secured thereto. -
FIG. 29 is a frontal view of a spinal segment shown in cross-section. -
FIG. 30 is a frontal view of a spinal segment shown in cross-section, that includes an embodiment of the invention therewith. - This invention may be characterized as an improvement of the inventor's inventions described in U.S. Pat. Nos. 5,571,189 and 5,549,679, the disclosures of which are incorporated herein by reference.
- With reference to the Figures,
FIGS. 1-3 illustrates an embodiment of theinventive implant 10 which consists of asidewall band 12, which may be characterized as being substantially tubular or ring like in shape. Preferably theband 12 is circular, however other elliptical shapes and other geometric shapes may also be used. - The
band 12 is pliable and malleable before its interior space 14 (not shown inFIG. 2 ) is filled with the contents to be described. While in this initial condition, theband 12 may be passed, in a collapsed state, through a relatively small tube or portal, such as recited in U.S. Pat. Nos. 5,571,189 and 5,549,679, the entire contents of both references being incorporated herein by reference. This feature is important because access to the intervertebral disc is limited by anatomy and therefore safety considerations direct us to use the smallest possible portal of entry. - The
band 12 may be constructed in a variety of ways. Theband material 16 may be etched, woven or braided material such as a weave of NITINOL fibers, or a form-molded material such as shown inFIG. 6 . The material orfabric 16 may be fluid impermeable or may be provided with a density that will allow ingress and egress of fluids and solutions and will allow the ingrowth and through-growth of blood vessels and fibrous tissue and bony trabeculae. Where thematerial 16 is provided with such a porous construction, pores or weave gaps are preferably tight enough to retain small particles of enclosed fill material, such as ground up bone graft, other tissues or solid pieces of bone inducing material such as hydroxyapatite or other biocompatible materials known to promote bone formation. - Where the
material 16 of theband 12 is porous, such as in the embodiment shown inFIGS. 1-4 , the pores oropenings 18 of the fabric will have a diameter of about 0.25 mm to about 5.0 mm. The size is selected to allow tissue ingrowth while containing the material packed into the bag. - The
material 16 of the invention must be flexible enough to allow it to be collapsed and inserted into an opening smaller than the expanded band size. As may be seen inFIGS. 7 and 8 , theband 12 is sufficiently flexible so that it may be positioned into a holdingchamber 50 of a storage tube ordelivery device 52. Depending on the exact construction of theband 12, the band may be compacted into a substantially smaller configuration than the band is capable of attaining when packed with graft material. The delivery device however, is sized such that thedevice 52 may be inserted into a surgical opening wherein theband 12 is drawn or pushed byplunger 56 out of thechamber 50, as indicated by the direction of thearrow 54 as shown inFIG. 8 . Theband 12 may be used to repair and/or replace avertebral disc 23 as may be seen inFIG. 5 wherein the band is placed between adjacentvertebral bodies 24. Theband 12 may be inserted into a small opening in theannulus 21 of thedisc 23 and filled from within the disc. Alternatively, theband 12 may be inserted within a hollowed region of avertebra 24 to provide support thereto, or may be utilized to replace an entirevertebral body 24. In order to ensure that the supportive quality of theband 12 is maintained, the fill material used in conjunction with theband 12 is preferably minimally elastic if at all. - Accordingly, the
fabric band 12 may be formed from a polymeric material to which a plurality of perforations are formed or added. It need not be woven and may be molded, such as the embodiment shown inFIG. 6 , or otherwise formed as is well known in the art. The preferred material may provide the ability to tailor bioabsorbance rates. Any suture-type material used medically may be used to form theband 12. Theband 12 may be formed of plastic or even metal. Theband 12 could be formed from a solid material. Theband 12 may be partially or totally absorbable, metal, plastic, woven, solid, film or an extruded balloon. - Preferably the
material 16 is light, biocompatible, flexible and easily handled, but is also very strong in terms of resisting tension, and thus unlikely to rip or tear during insertion and expansion. When the device is expanded through insertion of fill material, such as is depicted inFIG. 23 , theband 12 expands to a predetermined shape, and in doing so, it fills a previously excavated space 20 between the vertebral bodies and/or within a vertebral body, such as may be seen inFIG. 5 . This filling results in the separation of thevertebral bodies 24 and results in the stabilization of the spinal motion segment, indicated generally at 22. - As may be seen in
FIGS. 1-2 , and 4-5, theband 12 may be characterized as having two ends 30 and 32. One or both ends 30 and 32 may be open as defined by theband 12. As may be seen inFIG. 5 , where theband 12 is utilized to replace a disc, theopenings band 12. Where only asingle end material 16 which covers one or more of the openings is porous to allow for bone growth therethrough such as has been described above. - In addition, as may be seen in
FIGS. 1-2 and 4-5, theband 12 may be equipped with afill opening 26. Thefill opening 26 must be large enough to accommodate passage of fill material as well as the means of placing fill material into theinterior space 14 of theband 12. A device which may be suitable for passing through thefill opening 26 for insertion of fill material is described in co-pending U.S. patent application Ser. No. 09/608,079 as discussed above. - Preferably the
opening 26 includes a means of preventing passage of fill material out of theinterior space 14. In the embodiment shown inFIG. 4 , theopening 26 includes anelongate passage 28 which may be tied off or otherwise sealed subsequent to insertion of the fill material. - As may be further seen in
FIG. 5 when theband 12 is inserted between twovertebra 24 or within adisc 23 or other hollowed region of an intervertebral space and filled with fill material, the fill material will push against thevertebral surfaces 40 which are adjacent to the top 30 and bottom 32 of theband 12. Theband 12 in combination with thevertebral surfaces 40 will contain the fill material within theinterior space 14. - In the embodiment of the invention wherein the
band material 16 is woven from one or more fibers, the fibers may be composed of a variety of materials as previously discussed. In the various embodiments shown inFIGS. 9-18 , theband 12 may be constructed from one or more metal fibers such as, for example,NITINOL fibers 58, which have been woven or braided together into the desired band shape. The use of a shape-memory material such as NITINOL, or a material such as steel, titanium or other metal, provides the band with sufficient mechanical strength to resist stretching or expansion as a result of the build up of graft material in the interior 14. In addition, such shape-memory materials allow the band to be collapsed prior to insertion, such as may be seen inFIGS. 7 and 8 yet which will tend to reacquire its original shape once implanted. -
FIGS. 9-18 depict a wide variety of band configurations. As may be seen inFIGS. 9-14 theband 12 may be characterized as a double walled band or a loop of material folded back upon itself. Such a double walled configuration may be seen as having ainner wall 60 which is continuous with theouter wall 62 and defining a toroid shapedspace 63 therebetween as seen inFIGS. 10 and 12 . - As seen in
FIGS. 12 and 14 , the toroidal shapedspace 63 may be filled, in whole or in part with pharmaceuticals for drug delivery to the implantation site. Thetoroid space 63 may also be filled, subsequent to implantation into a vertebral body with a biocompatible cement or other material for providing theband 12 with additional support. - The double walled construction may provide the
band 12 with increased strength to provide additional mechanical support for the graft material contained in the interior 14. In addition, the double walled construction may be configured to allow thevarious openings 18 of therespective walls fibers 58 of one wall, for exampleinner wall 60, may overlap theopenings 18 of the other wall, for exampleouter wall 62, thereby effectively reducing the size of theopenings 18. As a result, aband 12 having a double walled construction may not require anymore fibers 58 than a single walled band such as may be seen inFIGS. 15-18 . However, it may be desirable to provide a doublewalled band 12 with a denser weave offibers 58 for the purpose of providing theband 12 with greater mechanical strength. - Turning to
FIGS. 11 and 12 , a doublewalled band 12 may also include one or more latitudinally disposed support members such asmembers individual support members band 12. In the embodiment shown, themembers top opening 30 and the second orbottom opening 32. In addition themembers inner wall 60 andouter wall 62. Themembers material 16 of the band by weaving thefibers 58 about themembers FIG. 12 . - The
members fibers 58. In addition, themembers band 12. - In addition to providing the
band 12 with one or more latitudinally oriented wires ormembers members 68 such as may be seen in the embodiment shown inFIGS. 13 and 14 . In the embodiment shown, thelongitudinal members 68 vertically cross theband 12 to join thelatitudinal members longitudinal members 68 are oriented substantially perpendicular to thelatitudinal members longitudinal members 68 provide the band with compression support relative to the surrounding vertebra. Themembers 68 may be woven into thefibers 58 or may be independent of the band's woven configuration. In one embodiment where the band is equipped withlongitudinal members 68 as well aslatitudinal members fibers 58 of theband 12. - As with the
latitudinal members longitudinal members 68 may be constructed out of any suitable material. Such material may be different from or the same as thefibers 58. Additionally, themembers 68 may be characterized as one ormore fibers 58 oriented in the longitudinal direction shown. - In the various embodiments shown in
FIGS. 15-18 it may be seen that theband 12, may be provided with only a single wall construction as opposed to the double walled construction previously described. As shown inFIG. 15 , because thesingle wall 70 is not a continuous overlapping loop of material such as may be seen inFIGS. 9 and 10 , the singlewalled band 12 shown inFIG. 15 may haveopenings non-uniform edges 72. While thematerial 16 of theband 12 may not necessarily be of sufficient hardness to penetrate the surrounding vertebral bone, the non-uniform nature of theedges 72 of theband 12, providesband 12 with surfaces which may tend to more readily engage the surfaces of the surrounding vertebral bone, thereby preventing theband 12 from shifting or otherwise moving during the graft injection process or thereafter. - As shown in
FIGS. 15 and 16 the singlewalled band 12 may be configured to have an essentially cylindrical shape. The cylindrical shape may be compressed into an elongated band such as may be seen in FIGS. 7 an 8 prior to insertion into the body. However, theband 12 may be configured to include other shapes, notably the rounded configuration shown inFIG. 17 , after theband 12 is inserted into a vertebral body. As may be seen inFIG. 18 , the malleability of a single walled band is illustrated. As with all embodiments of the present invention, theband 12 may be significantly distorted, collapsed or otherwise manipulated in order to collapse the band into a reduced configuration such as may be seen inFIGS. 7 and 8 . The present invention may be distorted in either or both the radial and longitudinal directions while retaining its ability to expand subsequent to insertion into the spinal area. - As shown in
FIGS. 22 and 23 , theband 12 is shown with afill insertion tool 100 being inserted into the interior 14 of theband 12 by passing through one of the spaces or pores 18. The shape of thetool 100 as may best be seen inFIGS. 19-21 is essentially anelongate shaft 104 having a tapered or pointeddistal end 102. - As is shown in
FIGS. 19-21 , an example of a fill insertion tool which is suitable for use in the various embodiments of the invention is illustrated. Thetool 100 is further disclosed in a co-pending U.S. patent application Ser. No. 09/738,726 filed Dec. 15, 2000 and entitled Tool to Direct Bone Replacement Material, to Kuslich et al., and is a continuation in part application of U.S. patent application Ser. No. 09/608,079 the entire contents of both being incorporated herein by reference. - The tapered
distal end 102 of thetool 100 is sized to enlarge theopening 18 to allow passage of thetool 100 into the interior 14 by pushing aside thevarious fibers 58 as may best be seen inFIG. 22 . Thefibers 58 are disposed to open thepore 18 from its nominal diameter of about 0.25 mm to about 5 mm to an enlarged opening sufficient to allow passage of a portion of theshaft 104 therethrough. - The extent of tool penetration into the
band interior 14 must be sufficient to allow theside opening 106 to be fully contained within theband interior 14. Thetool 100 may include more than 1side opening 106. - As shown in
FIG. 23 , theside opening 106 allows insertion of the bone graft or other types offill material 108 into theband interior 12. Thetool 100 may include a piston plunger or other means (not shown) for pushingfill material 108 from within theshaft 104, through theside opening 106 and into theband interior 14. - If the internal diameter of the
shaft 104 may be about 1.5 mm to 5 mm and is preferably approximately 2.5 mm in diameter. The length of theside opening 106 is preferably between about 1½ to 3 times the internal diameter of theshaft 104. - The
distal end 102 of thetool 100 is preferably angled to direct the flow and to break down any material that has packed back into more discrete pieces. - Turning to
FIG. 24 an embodiment of theband 12 is shown, wherein theband 12 includes at least one circumferentially disposed tightening or cinchingmember 65 shown. The cinchingmember 65 may be positioned in any manner around the circumference of theband 12 as previously described. In the embodiment shown, eachmember 65 extends about the mid-portion 71 of theband 12 and includes ends 73 and 75 that extend outward from one of thepores 18 where they may be pulled together and secured or tied to one another in the manner shown. When theband 12 is properly filled with fill material in any of the manners previously mentioned, the ends 73 and 75 may be cinched together in order to constrict the mid-portion of theband 12 so that theband 12 takes on a concave shape, such as is shown. The concave shape may provide greater support and flexibility to the surrounding spinal bodies and to the spine itself. When ends 73 and 75 are pulled together and secured, not only is the band provided with a concave shape, but any fill material positioned therein is pushed together for more effective engagement with surrounding tissue as well as with itself and theband 12. - In the various embodiments described herein, it may be desirable to stimulate growth of bone through the
band 12 or fillmaterial 108 contained therein, by direct or indirect application of electrical current. In the various embodiments described herein, theband 12 may includeportions FIG. 25 . Leads 91 and 93 are in electrical communication with anelectrical power source 95 which provides sufficient current to stimulate bone growth through and adjacent to theband 12. In at least one embodiment, theleads pores 18, as previously shown and described, to directly stimulate thefill material 108. - The
portions conductive member 85 which is disposed within thewalls band 12, such as is shown inFIG. 26 . Alternatively, theentire band 12 is electrically conductive, In yet another embodiment at least a portion of one or bothwalls - In an alternative embodiment of the invention shown in
FIGS. 27 and 28 , theimplant 10 may be characterized as a linear member ormembers 200 which is disposed about avertebral disc 23 in a manner such as is shown inFIG. 27 . Themember 200 may be a one or more of a combination of strands, threads, fibers, cords or other substantially linear portions of material which include afirst end 202 and asecond end 204 that are capable of being tied or otherwise secured together. Preferably, themember 200 has a height sufficient to cover the entire exposed surface of thedisc 23. Some examples of materials which are suitable for use asmember 200 or in its construction include, but are not limited to: Secure Strand available from Smith & Nephew Inc., THE LOOP.υ., available from Spineology Inc., and Songer Cable from Medtronic Inc. - In some embodiments of the invention, one of which is shown in
FIG. 28 , themember 200 may be constructed of thesame material 16 as the previously described embodiments of the invention shown inFIGS. 1-26 , and include a plurality of pores oropenings 18. Once secured about thedisc 23, themember 200 may be further cinched or otherwise tightened about thedisc 23 as is shown inFIGS. 29 and 30 . By tightening themember 200 about thedisc 23, thedisc 23 is compressed in order to invaginate theannulus 21 toward its center thereby tightening the annulus fibers. Such tightening will stabilize thespinal motion segment 22 and thereby stiffen that portion of the spine. - In
FIG. 29 theannulus 21 of adisk 23 is shown within aspinal motion segment 22 prior to the securement and tightening ofmember 200 thereabout. It is shown that theannulus 21 of thedisk 23 has apredetermined height 206 and apredetermined circumference 208. When themember 200 is disposed and subsequently tightened about theannulus 21, such as is shown inFIG. 30 , the circumference is reduced as indicated atreference numeral 208′ while the height of the disk is made greater as is indicated atreference numeral 206′. - By securing the
ends member 200 about the disc, themember 200 forms a substantially continuous band similar to that previously described. When secured about a disc themember 200 preferably has a substantially concave appearance, relative to the surrounding spinal bodies, such as is shown inFIG. 28 . When secured about thedisc 23, thedisc 23 may be further treated with additional therapeutic agents, including fill material via the pores oropenings 18, in the manner previously described in relation to the embodiments shown inFIGS. 1-26 . - In addition to being directed to the specific combinations of features claimed below, the invention is also directed to embodiments having other combinations of the dependent features claimed below and other combinations of the features described above.
- The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
- Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
Claims (7)
1. A method for repairing or replacing the nucleus of a spinal intervertebral disc, comprising:
providing nuclear replacement fill material;
providing a generally flexible mesh member sized to fit and expand transversely into a hollowed region of an intervertebral space, the mesh member defining an interior space, the mesh member constructed and arranged to expand from a reduced state to an expanded state by the introduction of the fill material into the interior space, the mesh member including at least one fill opening through which the fill material may be introduced into the interior space;
inserting the mesh member into the intervertebral space through a small portal in the annulus; and
inserting the fill material into the interior space of the mesh member through the at least one fill opening using a fill tube having a means for deflecting the fill material at an angle from a longitudinal axis of the fill tube such that the fill material applies a force within the mesh member sufficient to stabilize the intervertebral segment.
2. The method of claim 1 further including radially containing the fill material.
3. A method for repairing or replacing the nucleus of a spinal intervertebral disc, comprising:
providing a generally flexible mesh member sized to fit and expand transversely into a hollowed region of an intervertebral space, the mesh member defining an interior space, the mesh member including a plurality of pores, the plurality of pores being sized to allow ingress and egress of liquids, solutions or small particle suspensions and ingrowth of fibrous elements into and through the mesh when the mesh is positioned in the hollowed region of an intervertebral space, the plurality of pores being sized to retain the fill material within the interior space of the mesh member, the mesh member including at least one fill opening through which the fill material may be introduced into the interior space, the at least one fill opening comprising at least one of the plurality of pores
inserting the mesh member into the intervertebral space; and
inserting the fill material into the interior space of the mesh member through the at least one fill opening using a fill tube having a means for deflecting the fill material at an angle from a longitudinal axis of the fill tube such that the fill material applies a force within the mesh member sufficient to stabilize the intervertebral segment.
4. A method for repairing or replacing the nucleus of a spinal intervertebral disc, comprising:
providing a generally flexible double walled mesh member sized to fit and expand transversely into a hollowed region of an intervertebral space, the double walled mesh member defining an interior space and defining a toroidal space between the inner wall and outer wall, the mesh member including at least one fill opening through which the fill material may be introduced into the interior space, and at least one fill opening through which fill material may be introduced into the toroidal space, the mesh member constructed and arranged to expand from a reduced state to an expanded state by the introduction of fill material into the interior space;
inserting the mesh member into the intervertebral space;
inserting the fill material into the interior space of the mesh member through the at least one fill opening; and
inserting fill material into the toroidal space of the mesh member such that the filled toroidal space provides additional strength and radial support.
5. A method for repairing or replacing a weakened vertebral body, comprising:
providing a generally flexible mesh member sized to fit and expand transversely into a hollowed region of a vertebral body, the mesh member defining an interior space, the mesh member constructed and arranged to expand from a reduced state to an expanded state by the introduction of fill material into the interior space, the mesh member including at least one fill opening through which the fill material may be introduced into the interior space;
inserting the mesh member into the intravertebral space; and
inserting a minimally elastic fill material into the interior space of the mesh member through the at least one fill opening using a fill tube having a means for deflecting the fill material at an angle from a longitudinal axis of the fill tube such that the fill material applies a force within the mesh member sufficient to provide support to the weakened vertebral body.
6. A method for repairing or replacing a weakened vertebral body, comprising:
providing a generally flexible mesh member sized to fit and expand transversely into a hollowed region of a vertebral body, the mesh member defining an interior space, the mesh member including a plurality of pores, the plurality of pores being sized to allow ingress and egress of liquids, solutions or small particle suspensions and ingrowth of bony trabeculae or fibrous elements into and through the device when the device is positioned in the hollowed region of a vertebral body, the plurality of pores being sized to retain the fill material within the interior space of the mesh member, the mesh member including at least one fill opening through which the fill material may be introduced into the interior space, the at least one fill opening comprising at least one of the plurality of pores;
inserting the mesh member into the intravertebral space; and
inserting a minimally elastic fill material into the interior space of the mesh member through the at least one fill opening using a fill tube having a means for deflecting the fill material at an angle from a longitudinal axis of the fill tube such that the fill material applies a force within the mesh member sufficient to provide support to the weakened vertebral body.
7. A method for treating spinal disorders comprising:
creating a surgical portal;
removing tissue to create a hollowed region within a spinal segment;
providing a generally flexible mesh member compacted to fit into a small delivery device;
inserting the flexible member into the hollowed region by introducing the delivery device into the surgical portal;
deploying the flexible member into the hollowed region such that it expands to a larger dimension than the surgical portal and conforms to the hollowed region; and
inserting fill material into the interior space of the flexible member through the at least one fill opening using a fill tube having a means for deflecting the fill material at an angle from a longitudinal axis of the fill tube such that the fill material applies a force within the mesh member.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/752,059 US20080045952A1 (en) | 2000-12-15 | 2007-05-22 | Annulus-reinforcing band |
US12/894,106 US8747475B2 (en) | 2000-12-15 | 2010-09-29 | Annulus-reinforcing band |
US12/983,079 US20110245924A1 (en) | 2000-12-15 | 2010-12-31 | Annulus-Reinforcing Band |
US14/299,951 US20140288656A1 (en) | 2000-12-15 | 2014-06-09 | Annulus-reinforcing band |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25601400P | 2000-12-15 | 2000-12-15 | |
US10/022,048 US6712853B2 (en) | 2000-12-15 | 2001-12-17 | Annulus-reinforcing band |
US10/812,345 US7056345B2 (en) | 2000-12-15 | 2004-03-29 | Annulus-reinforcing band |
US11/447,615 US7220282B2 (en) | 2000-12-15 | 2006-06-06 | Annulus-reinforcing band |
US11/752,059 US20080045952A1 (en) | 2000-12-15 | 2007-05-22 | Annulus-reinforcing band |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/447,615 Continuation US7220282B2 (en) | 2000-12-15 | 2006-06-06 | Annulus-reinforcing band |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/894,106 Continuation US8747475B2 (en) | 2000-12-15 | 2010-09-29 | Annulus-reinforcing band |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080045952A1 true US20080045952A1 (en) | 2008-02-21 |
Family
ID=22970766
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/022,048 Expired - Lifetime US6712853B2 (en) | 2000-12-15 | 2001-12-17 | Annulus-reinforcing band |
US10/812,345 Expired - Lifetime US7056345B2 (en) | 2000-12-15 | 2004-03-29 | Annulus-reinforcing band |
US11/447,615 Expired - Lifetime US7220282B2 (en) | 2000-12-15 | 2006-06-06 | Annulus-reinforcing band |
US11/752,059 Abandoned US20080045952A1 (en) | 2000-12-15 | 2007-05-22 | Annulus-reinforcing band |
US12/894,106 Expired - Lifetime US8747475B2 (en) | 2000-12-15 | 2010-09-29 | Annulus-reinforcing band |
US12/983,079 Abandoned US20110245924A1 (en) | 2000-12-15 | 2010-12-31 | Annulus-Reinforcing Band |
US14/299,951 Abandoned US20140288656A1 (en) | 2000-12-15 | 2014-06-09 | Annulus-reinforcing band |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/022,048 Expired - Lifetime US6712853B2 (en) | 2000-12-15 | 2001-12-17 | Annulus-reinforcing band |
US10/812,345 Expired - Lifetime US7056345B2 (en) | 2000-12-15 | 2004-03-29 | Annulus-reinforcing band |
US11/447,615 Expired - Lifetime US7220282B2 (en) | 2000-12-15 | 2006-06-06 | Annulus-reinforcing band |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/894,106 Expired - Lifetime US8747475B2 (en) | 2000-12-15 | 2010-09-29 | Annulus-reinforcing band |
US12/983,079 Abandoned US20110245924A1 (en) | 2000-12-15 | 2010-12-31 | Annulus-Reinforcing Band |
US14/299,951 Abandoned US20140288656A1 (en) | 2000-12-15 | 2014-06-09 | Annulus-reinforcing band |
Country Status (12)
Country | Link |
---|---|
US (7) | US6712853B2 (en) |
EP (1) | EP1341489B1 (en) |
JP (2) | JP4202134B2 (en) |
KR (1) | KR100631787B1 (en) |
AT (1) | ATE387163T1 (en) |
AU (2) | AU2002246690B2 (en) |
CA (2) | CA2709878A1 (en) |
DE (1) | DE60133033T2 (en) |
HU (1) | HUP0302127A2 (en) |
MX (1) | MXPA03005362A (en) |
NZ (1) | NZ525999A (en) |
WO (1) | WO2002056802A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060235534A1 (en) * | 2005-04-15 | 2006-10-19 | Gertzman Arthur A | Vertebral disc repair |
US20080027546A1 (en) * | 2006-07-25 | 2008-01-31 | Semler Eric J | Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation |
US20110054532A1 (en) * | 2007-07-03 | 2011-03-03 | Alexandre De Moura | Interspinous mesh |
US8075620B1 (en) | 2009-03-18 | 2011-12-13 | Cardinalspine, LLC | Doughnut-like spinal implant |
US8167945B1 (en) | 2009-03-18 | 2012-05-01 | Cardinal Spine, Llc | Doughnut-like spinal implant |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
US9301826B2 (en) | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9393093B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9393002B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
Families Citing this family (395)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU7178698A (en) | 1996-11-15 | 1998-06-03 | Advanced Bio Surfaces, Inc. | Biomaterial system for in situ tissue repair |
CA2594492A1 (en) | 1999-03-07 | 2000-09-14 | Active Implants Corporation | Method and apparatus for computerized surgery |
US20060247665A1 (en) | 1999-05-28 | 2006-11-02 | Ferree Bret A | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
US6969404B2 (en) * | 1999-10-08 | 2005-11-29 | Ferree Bret A | Annulus fibrosis augmentation methods and apparatus |
US7273497B2 (en) | 1999-05-28 | 2007-09-25 | Anova Corp. | Methods for treating a defect in the annulus fibrosis |
US20070038231A1 (en) | 1999-05-28 | 2007-02-15 | Ferree Bret A | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
US6821276B2 (en) | 1999-08-18 | 2004-11-23 | Intrinsic Therapeutics, Inc. | Intervertebral diagnostic and manipulation device |
WO2004100841A1 (en) | 1999-08-18 | 2004-11-25 | Intrinsic Therapeutics, Inc. | Devices and method for augmenting a vertebral disc nucleus |
US7972337B2 (en) | 2005-12-28 | 2011-07-05 | Intrinsic Therapeutics, Inc. | Devices and methods for bone anchoring |
US7717961B2 (en) | 1999-08-18 | 2010-05-18 | Intrinsic Therapeutics, Inc. | Apparatus delivery in an intervertebral disc |
US8323341B2 (en) | 2007-09-07 | 2012-12-04 | Intrinsic Therapeutics, Inc. | Impaction grafting for vertebral fusion |
US7094258B2 (en) * | 1999-08-18 | 2006-08-22 | Intrinsic Therapeutics, Inc. | Methods of reinforcing an annulus fibrosis |
US7553329B2 (en) * | 1999-08-18 | 2009-06-30 | Intrinsic Therapeutics, Inc. | Stabilized intervertebral disc barrier |
US6936072B2 (en) * | 1999-08-18 | 2005-08-30 | Intrinsic Therapeutics, Inc. | Encapsulated intervertebral disc prosthesis and methods of manufacture |
US7998213B2 (en) | 1999-08-18 | 2011-08-16 | Intrinsic Therapeutics, Inc. | Intervertebral disc herniation repair |
US20040010317A1 (en) * | 1999-08-18 | 2004-01-15 | Gregory Lambrecht | Devices and method for augmenting a vertebral disc |
EP1328221B1 (en) * | 1999-08-18 | 2009-03-25 | Intrinsic Therapeutics, Inc. | Devices for nucleus pulposus augmentation and retention |
US6964674B1 (en) * | 1999-09-20 | 2005-11-15 | Nuvasive, Inc. | Annulotomy closure device |
US8679180B2 (en) * | 1999-10-08 | 2014-03-25 | Anova Corporation | Devices used to treat disc herniation and attachment mechanisms therefore |
US20040186573A1 (en) * | 1999-10-08 | 2004-09-23 | Ferree Bret A. | Annulus fibrosis augmentation methods and apparatus |
US20030040796A1 (en) * | 1999-10-08 | 2003-02-27 | Ferree Bret A. | Devices used to treat disc herniation and attachment mechanisms therefore |
US7201774B2 (en) * | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements incorporating reinforced wall sections |
US8128698B2 (en) | 1999-10-20 | 2012-03-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7004970B2 (en) | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7052516B2 (en) | 1999-10-20 | 2006-05-30 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US8632590B2 (en) | 1999-10-20 | 2014-01-21 | Anulex Technologies, Inc. | Apparatus and methods for the treatment of the intervertebral disc |
US7951201B2 (en) | 1999-10-20 | 2011-05-31 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6592625B2 (en) * | 1999-10-20 | 2003-07-15 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US7935147B2 (en) | 1999-10-20 | 2011-05-03 | Anulex Technologies, Inc. | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
US20030153976A1 (en) * | 1999-10-20 | 2003-08-14 | Cauthen Joseph C. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US7615076B2 (en) | 1999-10-20 | 2009-11-10 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6805695B2 (en) * | 2000-04-04 | 2004-10-19 | Spinalabs, Llc | Devices and methods for annular repair of intervertebral discs |
AU8535101A (en) | 2000-08-30 | 2002-03-13 | Sdgi Holdings Inc | Intervertebral disc nucleus implants and methods |
US7503936B2 (en) * | 2000-08-30 | 2009-03-17 | Warsaw Orthopedic, Inc. | Methods for forming and retaining intervertebral disc implants |
US7204851B2 (en) * | 2000-08-30 | 2007-04-17 | Sdgi Holdings, Inc. | Method and apparatus for delivering an intervertebral disc implant |
US20020026244A1 (en) * | 2000-08-30 | 2002-02-28 | Trieu Hai H. | Intervertebral disc nucleus implants and methods |
GB0024898D0 (en) * | 2000-10-11 | 2000-11-22 | Ellis Dev Ltd | A connector |
US6896692B2 (en) | 2000-12-14 | 2005-05-24 | Ensure Medical, Inc. | Plug with collet and apparatus and method for delivering such plugs |
US8083768B2 (en) | 2000-12-14 | 2011-12-27 | Ensure Medical, Inc. | Vascular plug having composite construction |
US6846319B2 (en) | 2000-12-14 | 2005-01-25 | Core Medical, Inc. | Devices for sealing openings through tissue and apparatus and methods for delivering them |
US6623509B2 (en) | 2000-12-14 | 2003-09-23 | Core Medical, Inc. | Apparatus and methods for sealing vascular punctures |
US6890343B2 (en) | 2000-12-14 | 2005-05-10 | Ensure Medical, Inc. | Plug with detachable guidewire element and methods for use |
US6632235B2 (en) | 2001-04-19 | 2003-10-14 | Synthes (U.S.A.) | Inflatable device and method for reducing fractures in bone and in treating the spine |
US20050209629A1 (en) * | 2001-04-19 | 2005-09-22 | Kerr Sean H | Resorbable containment device and process for making and using same |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US20090234457A1 (en) * | 2001-06-29 | 2009-09-17 | The Regents Of The University Of California | Systems, devices and methods for treatment of intervertebral disorders |
JP2003032089A (en) * | 2001-07-18 | 2003-01-31 | Matsushita Electric Ind Co Ltd | Microcomputer with built-in reset function |
US6736815B2 (en) | 2001-09-06 | 2004-05-18 | Core Medical, Inc. | Apparatus and methods for treating spinal discs |
US20030055316A1 (en) * | 2001-09-19 | 2003-03-20 | Brannon James Kevin | Endoscopic bone debridement |
AU2002334655B2 (en) | 2001-10-02 | 2008-06-05 | Rex Medical, L.P. | Spinal implant and method of use |
AU2002336694A1 (en) * | 2001-11-01 | 2003-05-12 | Lawrence M. Boyd | Devices and methods for the restoration of a spinal disc |
JP4125234B2 (en) * | 2001-11-01 | 2008-07-30 | スパイン・ウェイブ・インコーポレーテッド | Apparatus and method for pretreatment of endplates between discs |
GB2382028B (en) * | 2001-11-19 | 2006-11-01 | Aberdeen Orthopaedic Developme | Intervertebral disc prosthesis |
US20030195630A1 (en) * | 2002-04-10 | 2003-10-16 | Ferree Bret A. | Disc augmentation using materials that expand in situ |
US7223289B2 (en) * | 2002-04-16 | 2007-05-29 | Warsaw Orthopedic, Inc. | Annulus repair systems and techniques |
WO2003094746A1 (en) * | 2002-05-10 | 2003-11-20 | Tyco Healthcare Group, Lp | Surgical stapling apparatus having a wound closure material applicator assembly |
EP2228018B1 (en) | 2002-06-17 | 2012-05-09 | Tyco Healthcare Group LP | Annular support structures |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
CA2495373C (en) * | 2002-08-15 | 2012-07-24 | David Gerber | Controlled artificial intervertebral disc implant |
EP1531765B1 (en) * | 2002-08-15 | 2008-07-09 | Synthes GmbH | Intervertebral disc implant |
CA2496804A1 (en) * | 2002-08-27 | 2004-03-11 | Sdgi Holdings, Inc. | Systems and methods for intravertebral reduction |
US7744651B2 (en) * | 2002-09-18 | 2010-06-29 | Warsaw Orthopedic, Inc | Compositions and methods for treating intervertebral discs with collagen-based materials |
US20040054414A1 (en) | 2002-09-18 | 2004-03-18 | Trieu Hai H. | Collagen-based materials and methods for augmenting intervertebral discs |
CA2499035A1 (en) * | 2002-09-24 | 2004-04-08 | Bogomir Gorensek | Stabilizing device for intervertebral disc, and methods thereof |
AU2003252848B2 (en) * | 2002-10-09 | 2007-07-05 | Depuy Acromed, Inc. | Device for distracting vertebrae and delivering a flowable material into a disc space |
US7320686B2 (en) * | 2002-10-09 | 2008-01-22 | Depuy Acromed, Inc. | Device for distracting vertebrae and delivering a flowable material into a disc space |
AU2003290627B2 (en) | 2002-11-05 | 2009-03-19 | Spineology, Inc. | A semi-biological intervertebral disc replacement system |
CN100518672C (en) * | 2002-11-08 | 2009-07-29 | 维特林克股份有限公司 | Transpedicular intervertebral disk access method and device |
CN100394989C (en) * | 2002-11-15 | 2008-06-18 | 华沙整形外科股份有限公司 | Collagen-based materials and methods for augmenting intervertebral discs |
AU2009200502C1 (en) * | 2002-11-19 | 2011-09-15 | Zimmer Technology, Inc. | Artifical spinal disc |
US6733533B1 (en) * | 2002-11-19 | 2004-05-11 | Zimmer Technology, Inc. | Artificial spinal disc |
US20040186471A1 (en) * | 2002-12-07 | 2004-09-23 | Sdgi Holdings, Inc. | Method and apparatus for intervertebral disc expansion |
US7004971B2 (en) * | 2002-12-31 | 2006-02-28 | Depuy Acromed, Inc. | Annular nucleus pulposus replacement |
EP1594423B1 (en) * | 2003-02-14 | 2009-01-07 | DePuy Spine, Inc. | In-situ formed intervertebral fusion device |
WO2004080357A1 (en) * | 2003-03-14 | 2004-09-23 | Ferreyro Irigoyen Roque Humber | Hydraulic device for the injection of bone cement in percutaneous vertebroplasty |
US8066713B2 (en) | 2003-03-31 | 2011-11-29 | Depuy Spine, Inc. | Remotely-activated vertebroplasty injection device |
US20040199256A1 (en) * | 2003-04-04 | 2004-10-07 | Chao-Jan Wang | Support device for supporting between spinal vertebrae |
US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
US6986771B2 (en) | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
US8415407B2 (en) | 2004-03-21 | 2013-04-09 | Depuy Spine, Inc. | Methods, materials, and apparatus for treating bone and other tissue |
WO2006011152A2 (en) | 2004-06-17 | 2006-02-02 | Disc-O-Tech Medical Technologies, Ltd. | Methods for treating bone and other tissue |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
US7727241B2 (en) * | 2003-06-20 | 2010-06-01 | Intrinsic Therapeutics, Inc. | Device for delivering an implant through an annular defect in an intervertebral disc |
US20040260300A1 (en) * | 2003-06-20 | 2004-12-23 | Bogomir Gorensek | Method of delivering an implant through an annular defect in an intervertebral disc |
US7537612B2 (en) * | 2003-06-20 | 2009-05-26 | Warsaw Orthopedic, Inc. | Lumbar composite nucleus |
US20040267367A1 (en) | 2003-06-30 | 2004-12-30 | Depuy Acromed, Inc | Intervertebral implant with conformable endplate |
US20050015150A1 (en) * | 2003-07-17 | 2005-01-20 | Lee Casey K. | Intervertebral disk and nucleus prosthesis |
US7758647B2 (en) * | 2003-07-25 | 2010-07-20 | Impliant Ltd. | Elastomeric spinal disc nucleus replacement |
US7153325B2 (en) * | 2003-08-01 | 2006-12-26 | Ultra-Kinetics, Inc. | Prosthetic intervertebral disc and methods for using the same |
WO2005030034A2 (en) | 2003-09-26 | 2005-04-07 | Depuy Spine, Inc. | Device for delivering viscous material |
WO2005034781A1 (en) * | 2003-09-29 | 2005-04-21 | Promethean Surgical Devices Llc | Devices and methods for spine repair |
US8852229B2 (en) | 2003-10-17 | 2014-10-07 | Cordis Corporation | Locator and closure device and method of use |
EP1523963B1 (en) * | 2003-10-17 | 2007-12-12 | Co-Ligne AG | Fusion implant |
US7361183B2 (en) | 2003-10-17 | 2008-04-22 | Ensure Medical, Inc. | Locator and delivery device and method of use |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US20070231788A1 (en) * | 2003-12-31 | 2007-10-04 | Keyvan Behnam | Method for In Vitro Assay of Demineralized Bone Matrix |
WO2005065396A2 (en) | 2003-12-31 | 2005-07-21 | Osteotech, Inc. | Improved bone matrix compositions and methods |
FR2866227B1 (en) * | 2004-02-17 | 2007-07-13 | Frederic Fortin | PROSTHESIS OF ANULUS INTERVERTEBRAL |
EP1718251A1 (en) * | 2004-02-17 | 2006-11-08 | Fortin, Frédéric | Intervertebral annulus prosthesis |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
WO2005092218A1 (en) * | 2004-02-27 | 2005-10-06 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8066739B2 (en) | 2004-02-27 | 2011-11-29 | Jackson Roger P | Tool system for dynamic spinal implants |
US20050209602A1 (en) * | 2004-03-22 | 2005-09-22 | Disc Dynamics, Inc. | Multi-stage biomaterial injection system for spinal implants |
US20060135959A1 (en) * | 2004-03-22 | 2006-06-22 | Disc Dynamics, Inc. | Nuclectomy method and apparatus |
WO2005092248A1 (en) * | 2004-03-26 | 2005-10-06 | Nuvasive Inc. | Porous implant for spinal disc nucleus replacement |
JP4563449B2 (en) * | 2004-03-26 | 2010-10-13 | ヌヴァシヴ インコーポレイテッド | Artificial spinal disc |
US7909873B2 (en) | 2006-12-15 | 2011-03-22 | Soteira, Inc. | Delivery apparatus and methods for vertebrostenting |
US7465318B2 (en) * | 2004-04-15 | 2008-12-16 | Soteira, Inc. | Cement-directing orthopedic implants |
US20080269900A1 (en) * | 2004-05-20 | 2008-10-30 | Christopher Reah | Surgical Implants |
US7744635B2 (en) * | 2004-06-09 | 2010-06-29 | Spinal Generations, Llc | Spinal fixation system |
US20050278023A1 (en) * | 2004-06-10 | 2005-12-15 | Zwirkoski Paul A | Method and apparatus for filling a cavity |
US20090054994A1 (en) * | 2007-08-21 | 2009-02-26 | James Rogan | Methods and kits for prophylactically reinforcing degenerated spinal discs and facet joints near a surgically treated spinal section |
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US20060069436A1 (en) * | 2004-09-30 | 2006-03-30 | Depuy Spine, Inc. | Trial disk implant |
US8597360B2 (en) | 2004-11-03 | 2013-12-03 | Neuropro Technologies, Inc. | Bone fusion device |
US7799078B2 (en) * | 2004-11-12 | 2010-09-21 | Warsaw Orthopedic, Inc. | Implantable vertebral lift |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
WO2006057837A1 (en) | 2004-11-23 | 2006-06-01 | Jackson Roger P | Spinal fixation tool attachment structure |
US9393047B2 (en) | 2009-06-15 | 2016-07-19 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
US20060149380A1 (en) * | 2004-12-01 | 2006-07-06 | Lotz Jeffrey C | Systems, devices and methods for treatment of intervertebral disorders |
US20090264939A9 (en) * | 2004-12-16 | 2009-10-22 | Martz Erik O | Instrument set and method for performing spinal nuclectomy |
JP2008526459A (en) * | 2005-01-19 | 2008-07-24 | ネクスジェン スパイン、インク. | Elastomeric disc prosthesis |
ES2387194T3 (en) * | 2005-01-19 | 2012-09-17 | Nexgen Spine, Inc. | Fastening elastomer to rigid structures |
KR100675379B1 (en) * | 2005-01-25 | 2007-01-29 | 삼성전자주식회사 | Printing system and printing method |
US20060276800A1 (en) * | 2005-01-27 | 2006-12-07 | Nexgen Spine, Inc. | Intervertebral disc replacement and surgical instruments therefor |
US20070078477A1 (en) * | 2005-02-04 | 2007-04-05 | Heneveld Scott H Sr | Anatomical spacer and method to deploy |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US7942890B2 (en) * | 2005-03-15 | 2011-05-17 | Tyco Healthcare Group Lp | Anastomosis composite gasket |
US9364229B2 (en) | 2005-03-15 | 2016-06-14 | Covidien Lp | Circular anastomosis structures |
US20060247776A1 (en) * | 2005-05-02 | 2006-11-02 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for augmenting intervertebral discs |
US20060253199A1 (en) * | 2005-05-03 | 2006-11-09 | Disc Dynamics, Inc. | Lordosis creating nucleus replacement method and apparatus |
US20060253198A1 (en) * | 2005-05-03 | 2006-11-09 | Disc Dynamics, Inc. | Multi-lumen mold for intervertebral prosthesis and method of using same |
US8088144B2 (en) | 2005-05-04 | 2012-01-03 | Ensure Medical, Inc. | Locator and closure device and method of use |
US8926654B2 (en) | 2005-05-04 | 2015-01-06 | Cordis Corporation | Locator and closure device and method of use |
US20100016888A1 (en) * | 2005-05-05 | 2010-01-21 | Allison Calabrese | Surgical Gasket |
US20100012703A1 (en) * | 2005-05-05 | 2010-01-21 | Allison Calabrese | Surgical Gasket |
US20070049849A1 (en) * | 2005-05-24 | 2007-03-01 | Schwardt Jeffrey D | Bone probe apparatus and method of use |
US20070042326A1 (en) * | 2005-06-01 | 2007-02-22 | Osseous Technologies Of America | Collagen antral membrane expander |
GB0514891D0 (en) * | 2005-07-20 | 2005-08-24 | Pearsalls Ltd | Improvements in and relating to implants |
EP1895946A4 (en) * | 2005-06-03 | 2012-11-21 | Nuvasive Inc | Improvements relating in and to surgical implants |
US7442210B2 (en) | 2005-06-15 | 2008-10-28 | Jerome Segal | Mechanical apparatus and method for artificial disc replacement |
US7547319B2 (en) * | 2005-06-15 | 2009-06-16 | Ouroboros Medical | Mechanical apparatus and method for artificial disc replacement |
US7988735B2 (en) * | 2005-06-15 | 2011-08-02 | Matthew Yurek | Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement |
US8021426B2 (en) * | 2005-06-15 | 2011-09-20 | Ouroboros Medical, Inc. | Mechanical apparatus and method for artificial disc replacement |
US20070162135A1 (en) * | 2005-06-15 | 2007-07-12 | Jerome Segal | Mechanical apparatus and method for artificial disc replacement |
US7601172B2 (en) | 2005-06-15 | 2009-10-13 | Ouroboros Medical, Inc. | Mechanical apparatus and method for artificial disc replacement |
JP5081822B2 (en) | 2005-07-14 | 2012-11-28 | スタウト メディカル グループ,エル.ピー. | Expandable support device and system |
US9381024B2 (en) | 2005-07-31 | 2016-07-05 | DePuy Synthes Products, Inc. | Marked tools |
US9918767B2 (en) | 2005-08-01 | 2018-03-20 | DePuy Synthes Products, Inc. | Temperature control system |
US7731753B2 (en) * | 2005-09-01 | 2010-06-08 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs |
US20070050032A1 (en) * | 2005-09-01 | 2007-03-01 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs |
US20070083200A1 (en) * | 2005-09-23 | 2007-04-12 | Gittings Darin C | Spinal stabilization systems and methods |
US20070093899A1 (en) * | 2005-09-28 | 2007-04-26 | Christof Dutoit | Apparatus and methods for treating bone |
US20070088436A1 (en) * | 2005-09-29 | 2007-04-19 | Matthew Parsons | Methods and devices for stenting or tamping a fractured vertebral body |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
AU2006306229A1 (en) * | 2005-10-24 | 2007-05-03 | Nexgen Spine, Inc. | Intervertebral disc replacement and associated instrumentation |
US20070093906A1 (en) * | 2005-10-26 | 2007-04-26 | Zimmer Spine, Inc. | Nucleus implant and method |
US8911759B2 (en) * | 2005-11-01 | 2014-12-16 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
US8360629B2 (en) | 2005-11-22 | 2013-01-29 | Depuy Spine, Inc. | Mixing apparatus having central and planetary mixing elements |
US20070162132A1 (en) | 2005-12-23 | 2007-07-12 | Dominique Messerli | Flexible elongated chain implant and method of supporting body tissue with same |
US7645301B2 (en) * | 2006-01-13 | 2010-01-12 | Zimmer Spine, Inc. | Devices and methods for disc replacement |
US7799079B2 (en) | 2006-01-18 | 2010-09-21 | Zimmer Spine, Inc. | Vertebral fusion device and method |
US8603171B2 (en) * | 2006-01-25 | 2013-12-10 | Mimedx Group, Inc. | Spinal disc implants with flexible keels and methods of fabricating implants |
US8038920B2 (en) | 2006-01-25 | 2011-10-18 | Carticept Medical, Inc. | Methods of producing PVA hydrogel implants and related devices |
US20070179617A1 (en) * | 2006-01-25 | 2007-08-02 | Spinemedica Corporation | Prosthetic wide range motion facets and methods of fabricating same |
US20070191861A1 (en) * | 2006-01-30 | 2007-08-16 | Sdgi Holdings, Inc. | Instruments and methods for implanting nucleus replacement material in an intervertebral disc nucleus space |
US20070233252A1 (en) * | 2006-02-23 | 2007-10-04 | Kim Daniel H | Devices, systems and methods for treating intervertebral discs |
US20070213796A1 (en) * | 2006-03-10 | 2007-09-13 | Mcginnis William J | Ring electrode |
ATE538740T1 (en) * | 2006-04-20 | 2012-01-15 | Depuy Spine Inc | INSTRUMENT SET FOR DISPENSING A VISCOUS BONE FILLER MATERIAL |
US20070255286A1 (en) * | 2006-04-27 | 2007-11-01 | Sdgi Holdings, Inc. | Devices, apparatus, and methods for improved disc augmentation |
US20070255406A1 (en) * | 2006-04-27 | 2007-11-01 | Sdgi Holdings, Inc. | Devices, apparatus, and methods for bilateral approach to disc augmentation |
US8133279B2 (en) * | 2006-04-27 | 2012-03-13 | Warsaw Orthopedic, Inc. | Methods for treating an annulus defect of an intervertebral disc |
US8348978B2 (en) * | 2006-04-28 | 2013-01-08 | Warsaw Orthopedic, Inc. | Interosteotic implant |
WO2007131002A2 (en) | 2006-05-01 | 2007-11-15 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20070276496A1 (en) * | 2006-05-23 | 2007-11-29 | Sdgi Holdings, Inc. | Surgical spacer with shape control |
US8092536B2 (en) * | 2006-05-24 | 2012-01-10 | Disc Dynamics, Inc. | Retention structure for in situ formation of an intervertebral prosthesis |
US20070276491A1 (en) * | 2006-05-24 | 2007-11-29 | Disc Dynamics, Inc. | Mold assembly for intervertebral prosthesis |
US8226722B2 (en) * | 2006-06-08 | 2012-07-24 | Francis Pflum | Sac for use in spinal surgery |
US10143560B2 (en) | 2006-06-08 | 2018-12-04 | Francis Pflum | Sac for use in spinal surgery |
US20080004431A1 (en) * | 2006-06-30 | 2008-01-03 | Warsaw Orthopedic Inc | Method of manufacturing an injectable collagen material |
US20080004703A1 (en) * | 2006-06-30 | 2008-01-03 | Warsaw Orthopedic, Inc. | Method of treating a patient using a collagen material |
US8118779B2 (en) * | 2006-06-30 | 2012-02-21 | Warsaw Orthopedic, Inc. | Collagen delivery device |
US8399619B2 (en) * | 2006-06-30 | 2013-03-19 | Warsaw Orthopedic, Inc. | Injectable collagen material |
US8034110B2 (en) | 2006-07-31 | 2011-10-11 | Depuy Spine, Inc. | Spinal fusion implant |
US7758649B2 (en) * | 2006-08-04 | 2010-07-20 | Integrity Intellect Inc. | Reversibly deformable implant |
US8173551B2 (en) * | 2006-09-07 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Defect reduction using aspect ratio trapping |
US8506636B2 (en) | 2006-09-08 | 2013-08-13 | Theken Spine, Llc | Offset radius lordosis |
US20080065218A1 (en) * | 2006-09-13 | 2008-03-13 | O'neil Michael J | Annulus fibrosus repair devices and techniques |
US9642932B2 (en) | 2006-09-14 | 2017-05-09 | DePuy Synthes Products, Inc. | Bone cement and methods of use thereof |
US20080077150A1 (en) * | 2006-09-22 | 2008-03-27 | Linh Nguyen | Steerable rasp/trial member inserter and method of use |
US8074591B2 (en) * | 2006-09-25 | 2011-12-13 | Nuvasive, Inc. | Embroidery using soluble thread |
US9278007B2 (en) * | 2006-09-26 | 2016-03-08 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs having cast end plates and methods for making and using them |
ES2542691T3 (en) | 2006-09-26 | 2015-08-10 | Nexgen Spine, Inc. | End plate of intervertebral prosthesis featuring double dome |
US8900306B2 (en) * | 2006-09-26 | 2014-12-02 | DePuy Synthes Products, LLC | Nucleus anti-expulsion devices and methods |
US8403987B2 (en) | 2006-09-27 | 2013-03-26 | Spinal Kinetics Inc. | Prosthetic intervertebral discs having compressible core elements bounded by fiber-containing membranes |
US9381098B2 (en) * | 2006-09-28 | 2016-07-05 | Spinal Kinetics, Inc. | Tool systems for implanting prosthetic intervertebral discs |
US20080082172A1 (en) * | 2006-09-29 | 2008-04-03 | Jackson Roger P | Interspinous process spacer |
US20080172126A1 (en) * | 2006-10-03 | 2008-07-17 | Reynolds Martin A | Nucleus pulposus injection devices and methods |
US8066750B2 (en) | 2006-10-06 | 2011-11-29 | Warsaw Orthopedic, Inc | Port structures for non-rigid bone plates |
WO2008047371A2 (en) | 2006-10-19 | 2008-04-24 | Depuy Spine, Inc. | Fluid delivery system |
JP5115866B2 (en) | 2006-11-16 | 2013-01-09 | レックス メディカル リミテッド パートナーシップ | Spine implant and method of using the same |
US8105382B2 (en) | 2006-12-07 | 2012-01-31 | Interventional Spine, Inc. | Intervertebral implant |
US7875079B2 (en) * | 2006-12-14 | 2011-01-25 | Warsaw Orthopedic, Inc. | Vertebral implant containment device and methods of use |
US9192397B2 (en) | 2006-12-15 | 2015-11-24 | Gmedelaware 2 Llc | Devices and methods for fracture reduction |
US7905922B2 (en) | 2006-12-20 | 2011-03-15 | Zimmer Spine, Inc. | Surgical implant suitable for replacement of an intervertebral disc |
US20080161929A1 (en) * | 2006-12-29 | 2008-07-03 | Mccormack Bruce | Cervical distraction device |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US9451989B2 (en) | 2007-01-18 | 2016-09-27 | Roger P Jackson | Dynamic stabilization members with elastic and inelastic sections |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
WO2008088869A1 (en) * | 2007-01-19 | 2008-07-24 | Spinemedica Corporation | Methods and systems for forming implants with selectively exposed mesh for fixation |
US7942104B2 (en) | 2007-01-22 | 2011-05-17 | Nuvasive, Inc. | 3-dimensional embroidery structures via tension shaping |
US20080183292A1 (en) * | 2007-01-29 | 2008-07-31 | Warsaw Orthopedic, Inc. | Compliant intervertebral prosthetic devices employing composite elastic and textile structures |
US7946236B2 (en) | 2007-01-31 | 2011-05-24 | Nuvasive, Inc. | Using zigzags to create three-dimensional embroidered structures |
WO2008098125A2 (en) * | 2007-02-08 | 2008-08-14 | Nuvasive, Inc. | Medical implants with pre-settled cores and related methods |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
WO2008157492A2 (en) | 2007-06-15 | 2008-12-24 | Osteotech, Inc. | Osteoinductive demineralized cancellous bone |
CA2945295C (en) * | 2007-06-15 | 2020-01-14 | Warsaw Orthopedic, Inc. | Method of treating tissue |
AU2008265850B2 (en) | 2007-06-15 | 2014-06-26 | Warsaw Orthopedic, Inc. | Bone matrix compositions and methods |
US9554920B2 (en) | 2007-06-15 | 2017-01-31 | Warsaw Orthopedic, Inc. | Bone matrix compositions having nanoscale textured surfaces |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US9358113B2 (en) * | 2007-07-10 | 2016-06-07 | Warsaw Orthopedic, Inc. | Delivery system |
US20110054408A1 (en) * | 2007-07-10 | 2011-03-03 | Guobao Wei | Delivery systems, devices, tools, and methods of use |
US8282681B2 (en) * | 2007-08-13 | 2012-10-09 | Nuvasive, Inc. | Bioresorbable spinal implant and related methods |
US20110196492A1 (en) | 2007-09-07 | 2011-08-11 | Intrinsic Therapeutics, Inc. | Bone anchoring systems |
US20100236282A1 (en) * | 2007-09-10 | 2010-09-23 | Panasonic Corporation | Refrigerant compressor |
US8202539B2 (en) * | 2007-10-19 | 2012-06-19 | Warsaw Orthopedic, Inc. | Demineralized bone matrix compositions and methods |
US20090149958A1 (en) * | 2007-11-01 | 2009-06-11 | Ann Prewett | Structurally reinforced spinal nucleus implants |
US8591584B2 (en) * | 2007-11-19 | 2013-11-26 | Nuvasive, Inc. | Textile-based plate implant and related methods |
WO2009089367A2 (en) * | 2008-01-09 | 2009-07-16 | Providence Medical Technology, Inc. | Methods and apparatus for accessing and treating the facet joint |
CN103271761B (en) | 2008-01-14 | 2015-10-28 | 康文图斯整形外科公司 | For the apparatus and method of fracture repair |
BRPI0906516A2 (en) | 2008-01-17 | 2019-09-24 | Synthes Gmbh | expandable intervertebral implant and associated method for its manufacture. |
AU2009215269B2 (en) | 2008-02-18 | 2013-01-31 | Covidien Lp | A device and method for deploying and attaching a patch to a biological tissue |
US20090222096A1 (en) * | 2008-02-28 | 2009-09-03 | Warsaw Orthopedic, Inc. | Multi-compartment expandable devices and methods for intervertebral disc expansion and augmentation |
US20090242081A1 (en) * | 2008-03-26 | 2009-10-01 | Richard Bauer | Aluminum Treatment Composition |
WO2009120248A1 (en) | 2008-03-28 | 2009-10-01 | Osteotech, Inc. | Delivery system attachment |
US8377135B1 (en) * | 2008-03-31 | 2013-02-19 | Nuvasive, Inc. | Textile-based surgical implant and related methods |
JP5441997B2 (en) | 2008-04-05 | 2014-03-12 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Expandable intervertebral implant |
WO2009137518A1 (en) * | 2008-05-05 | 2009-11-12 | Nexgen Spine, Inc. | Endplate for an intervertebral prosthesis and prosthesis incorporating the same |
US8114156B2 (en) * | 2008-05-30 | 2012-02-14 | Edwin Burton Hatch | Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints |
US7976578B2 (en) * | 2008-06-04 | 2011-07-12 | James Marvel | Buffer for a human joint and method of arthroscopically inserting |
US9381049B2 (en) | 2008-06-06 | 2016-07-05 | Providence Medical Technology, Inc. | Composite spinal facet implant with textured surfaces |
US9333086B2 (en) | 2008-06-06 | 2016-05-10 | Providence Medical Technology, Inc. | Spinal facet cage implant |
US8267966B2 (en) | 2008-06-06 | 2012-09-18 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
CA2725811A1 (en) | 2008-06-06 | 2009-12-10 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
WO2010030994A2 (en) | 2008-06-06 | 2010-03-18 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
US8361152B2 (en) | 2008-06-06 | 2013-01-29 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
US11224521B2 (en) | 2008-06-06 | 2022-01-18 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
NL1035724C2 (en) * | 2008-07-18 | 2010-01-22 | Univ Eindhoven Tech | Prosthesis comprising a core of a gel material with a woven envelope and a method for the manufacture thereof and the application thereof. |
US9808345B2 (en) * | 2008-07-24 | 2017-11-07 | Iorthopedics, Inc. | Resilient arthroplasty device |
US8163022B2 (en) | 2008-10-14 | 2012-04-24 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US9408708B2 (en) | 2008-11-12 | 2016-08-09 | Stout Medical Group, L.P. | Fixation device and method |
US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
CA2748751C (en) * | 2008-12-31 | 2018-03-27 | Spineology, Inc. | System and method for performing percutaneous spinal interbody fusion |
US8349015B2 (en) * | 2009-02-11 | 2013-01-08 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
WO2010093959A2 (en) | 2009-02-12 | 2010-08-19 | Osteotech, Inc. | Delivery systems, tools, and methods of use |
WO2010111246A1 (en) | 2009-03-23 | 2010-09-30 | Soteira, Inc. | Devices and methods for vertebrostenting |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US7988027B2 (en) * | 2009-03-31 | 2011-08-02 | Tyco Healthcare Group Lp | Crimp and release of suture holding buttress material |
US8636803B2 (en) | 2009-04-07 | 2014-01-28 | Spinal Stabilization Technologies, Llc | Percutaneous implantable nuclear prosthesis |
US8123808B2 (en) * | 2009-04-16 | 2012-02-28 | Warsaw Orthopedic, Inc. | Vertebral endplate connection implant and method |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
CN102510742B (en) * | 2009-06-17 | 2015-03-25 | 三位一体整形有限责任公司 | Expanding intervertebral device and methods of use |
US9700434B2 (en) | 2009-08-10 | 2017-07-11 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
EP2485654B1 (en) | 2009-10-05 | 2021-05-05 | Jackson P. Roger | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
WO2011056845A1 (en) | 2009-11-03 | 2011-05-12 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
US9168138B2 (en) | 2009-12-09 | 2015-10-27 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US9480511B2 (en) | 2009-12-17 | 2016-11-01 | Engage Medical Holdings, Llc | Blade fixation for ankle fusion and arthroplasty |
US20110160772A1 (en) * | 2009-12-28 | 2011-06-30 | Arcenio Gregory B | Systems and methods for performing spinal fusion |
US8460319B2 (en) | 2010-01-11 | 2013-06-11 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and method |
WO2011088172A1 (en) | 2010-01-15 | 2011-07-21 | Brenzel Michael P | Rotary-rigid orthopaedic rod |
JP5926688B2 (en) | 2010-01-20 | 2016-05-25 | コンベンタス オーソピディックス, インコーポレイテッド | Apparatus and method for access to bone and cavity equipment |
US8771363B2 (en) | 2010-01-22 | 2014-07-08 | R. Thomas Grotz | Resilient knee implant and methods |
US10307257B2 (en) | 2010-01-22 | 2019-06-04 | Iorthopedics, Inc. | Resilient knee implant and methods |
US20110218585A1 (en) * | 2010-03-08 | 2011-09-08 | Krinke Todd A | Apparatus and methods for bone repair |
CN105361942B (en) | 2010-03-08 | 2018-01-09 | 康文图斯整形外科公司 | For fixing the device and method of bone implant |
WO2011116136A1 (en) | 2010-03-16 | 2011-09-22 | Pinnacle Spine Group, Llc | Intervertebral implants and graft delivery systems and methods |
US9039769B2 (en) * | 2010-03-17 | 2015-05-26 | Globus Medical, Inc. | Intervertebral nucleus and annulus implants and method of use thereof |
US8535380B2 (en) | 2010-05-13 | 2013-09-17 | Stout Medical Group, L.P. | Fixation device and method |
US9763678B2 (en) | 2010-06-24 | 2017-09-19 | DePuy Synthes Products, Inc. | Multi-segment lateral cage adapted to flex substantially in the coronal plane |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
AU2011271465B2 (en) | 2010-06-29 | 2015-03-19 | Synthes Gmbh | Distractible intervertebral implant |
KR20130133753A (en) * | 2010-07-15 | 2013-12-09 | 엔엘티 스파인 리미티드. | Surgical systems and methods for implanting deflectable implants |
WO2012027490A2 (en) | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US8353964B2 (en) | 2010-11-04 | 2013-01-15 | Carpenter Clyde T | Anatomic total disc replacement |
US9149286B1 (en) | 2010-11-12 | 2015-10-06 | Flexmedex, LLC | Guidance tool and method for use |
WO2012064963A1 (en) * | 2010-11-12 | 2012-05-18 | Tyrx, Inc. | Anchorage devices comprising an active pharmaceutical ingredient |
WO2012083205A1 (en) | 2010-12-16 | 2012-06-21 | Medicinelodge, Inc. Dba Imds Co-Innovation | Arthroplasty systems and methods |
USD833613S1 (en) | 2011-01-19 | 2018-11-13 | Iorthopedics, Inc. | Resilient knee implant |
US9757241B2 (en) | 2011-09-01 | 2017-09-12 | R. Thomas Grotz | Resilient interpositional arthroplasty device |
US8518087B2 (en) | 2011-03-10 | 2013-08-27 | Interventional Spine, Inc. | Method and apparatus for minimally invasive insertion of intervertebral implants |
US8394129B2 (en) | 2011-03-10 | 2013-03-12 | Interventional Spine, Inc. | Method and apparatus for minimally invasive insertion of intervertebral implants |
US10292830B2 (en) | 2011-08-09 | 2019-05-21 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
US9358123B2 (en) | 2011-08-09 | 2016-06-07 | Neuropro Spinal Jaxx, Inc. | Bone fusion device, apparatus and method |
JP2014529445A (en) | 2011-08-23 | 2014-11-13 | フレックスメデックス,エルエルシー | Tissue removal apparatus and method |
US9615856B2 (en) | 2011-11-01 | 2017-04-11 | Imds Llc | Sacroiliac fusion cage |
US9254130B2 (en) | 2011-11-01 | 2016-02-09 | Hyun Bae | Blade anchor systems for bone fusion |
US9380932B1 (en) | 2011-11-02 | 2016-07-05 | Pinnacle Spine Group, Llc | Retractor devices for minimally invasive access to the spine |
US9907657B2 (en) * | 2012-02-09 | 2018-03-06 | Arthrex, Inc. | Porous coating for orthopedic implant utilizing porous, shape memory materials |
US20130282121A1 (en) * | 2012-03-22 | 2013-10-24 | Ann Prewett | Spinal facet augmentation implant and method |
US10238382B2 (en) | 2012-03-26 | 2019-03-26 | Engage Medical Holdings, Llc | Blade anchor for foot and ankle |
EP2854715A1 (en) | 2012-05-29 | 2015-04-08 | NLT Spine Ltd. | Laterally deflectable implant |
US8915961B2 (en) | 2012-06-05 | 2014-12-23 | Depuy Mitek, Llc | Methods and devices for anchoring a graft to bone |
US20140031939A1 (en) | 2012-07-25 | 2014-01-30 | Steve Wolfe | Mesh spacer hybrid |
US9532881B2 (en) | 2012-08-12 | 2017-01-03 | Brian Albert Hauck | Memory material implant system and methods of use |
ITPI20120106A1 (en) * | 2012-10-19 | 2014-04-20 | Giancarlo Guizzardi | DEVICE AND SYSTEM FOR VERTEBRAL ARTHRODES |
USD732667S1 (en) | 2012-10-23 | 2015-06-23 | Providence Medical Technology, Inc. | Cage spinal implant |
USD745156S1 (en) | 2012-10-23 | 2015-12-08 | Providence Medical Technology, Inc. | Spinal implant |
US9907654B2 (en) * | 2012-12-11 | 2018-03-06 | Dr. H.C. Robert Mathys Stiftung | Bone substitute and method for producing the same |
DE202013012321U1 (en) | 2012-12-26 | 2016-04-25 | Scott A. Koss | Arrangement, kit and vertebral implant for percutaneous disc recovery |
US9138324B2 (en) * | 2013-01-24 | 2015-09-22 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
WO2014117107A1 (en) | 2013-01-28 | 2014-07-31 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US10838406B2 (en) | 2013-02-11 | 2020-11-17 | The Aerospace Corporation | Systems and methods for the patterning of material substrates |
US8679189B1 (en) * | 2013-02-11 | 2014-03-25 | Amendia Inc. | Bone growth enhancing implant |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US9277928B2 (en) | 2013-03-11 | 2016-03-08 | Interventional Spine, Inc. | Method and apparatus for minimally invasive insertion of intervertebral implants |
US9572676B2 (en) | 2013-03-14 | 2017-02-21 | DePuy Synthes Products, Inc. | Adjustable multi-volume balloon for spinal interventions |
US20140277467A1 (en) | 2013-03-14 | 2014-09-18 | Spinal Stabilization Technologies, Llc | Prosthetic Spinal Disk Nucleus |
WO2014159739A1 (en) | 2013-03-14 | 2014-10-02 | Pinnacle Spine Group, Llc | Interbody implants and graft delivery systems |
US9295479B2 (en) | 2013-03-14 | 2016-03-29 | Spinal Stabilization Technologies, Llc | Surgical device |
US9358120B2 (en) | 2013-03-14 | 2016-06-07 | DePuy Synthes Products, Inc. | Expandable coil spinal implant |
US9993353B2 (en) | 2013-03-14 | 2018-06-12 | DePuy Synthes Products, Inc. | Method and apparatus for minimally invasive insertion of intervertebral implants |
US9585761B2 (en) | 2013-03-14 | 2017-03-07 | DePuy Synthes Products, Inc. | Angulated rings and bonded foils for use with balloons for fusion and dynamic stabilization |
US9393057B2 (en) | 2013-10-08 | 2016-07-19 | Pioneer Surgical Technology, Inc. | Surgical system and method |
CA2969316A1 (en) | 2013-12-12 | 2015-06-18 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
US9980715B2 (en) | 2014-02-05 | 2018-05-29 | Trinity Orthopedics, Llc | Anchor devices and methods of use |
US20150342648A1 (en) | 2014-05-27 | 2015-12-03 | Bruce M. McCormack | Lateral mass fixation implant |
US10201375B2 (en) | 2014-05-28 | 2019-02-12 | Providence Medical Technology, Inc. | Lateral mass fixation system |
US11638640B2 (en) | 2014-06-11 | 2023-05-02 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
US11883275B2 (en) | 2014-06-11 | 2024-01-30 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
WO2016073587A1 (en) | 2014-11-04 | 2016-05-12 | Spinal Stabilization Technologies Llc | Percutaneous implantable nuclear prosthesis |
PL3215067T3 (en) | 2014-11-04 | 2020-11-02 | Spinal Stabilization Technologies Llc | Percutaneous implantable nuclear prosthesis |
WO2016105556A1 (en) | 2014-12-24 | 2016-06-30 | Chuter Timothy A M | Balloon catheters |
US9592132B2 (en) | 2015-01-09 | 2017-03-14 | Shape Memory Orthopedics | Shape-memory spinal fusion system |
CA2917503A1 (en) | 2015-01-14 | 2016-07-14 | Stryker European Holdings I, Llc | Spinal implant with fluid delivery capabilities |
AU2016200179B2 (en) | 2015-01-14 | 2020-09-17 | Stryker European Operations Holdings Llc | Spinal implant with porous and solid surfaces |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
CA2930123A1 (en) | 2015-05-18 | 2016-11-18 | Stryker European Holdings I, Llc | Partially resorbable implants and methods |
CA2997117A1 (en) | 2015-09-01 | 2017-03-09 | Spinal Stabilization Technologies Llc | Implantable nuclear prosthesis |
USD841165S1 (en) | 2015-10-13 | 2019-02-19 | Providence Medical Technology, Inc. | Cervical cage |
JP2018532492A (en) | 2015-10-13 | 2018-11-08 | プロビデンス メディカル テクノロジー インコーポレイテッド | Spinal joint implant delivery apparatus and system |
CN105496609B (en) * | 2015-12-17 | 2017-12-01 | 北京市春立正达医疗器械股份有限公司 | One kind overhauls titanium net |
EP3195833B1 (en) | 2016-01-19 | 2022-01-12 | K2M, Inc. | Surgical instrument |
US20170304076A1 (en) * | 2016-04-20 | 2017-10-26 | Arthrex, Inc. | Spacer fabrics for use in a spinal implant device |
AU2017286831B2 (en) | 2016-06-28 | 2022-06-09 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
TW201806562A (en) | 2016-06-28 | 2018-03-01 | 普羅維登斯醫療科技公司 | Spinal implant and methods of using the same |
EP4233801A3 (en) | 2016-06-28 | 2023-09-06 | Eit Emerging Implant Technologies GmbH | Expandable, angularly adjustable intervertebral cages |
USD887552S1 (en) | 2016-07-01 | 2020-06-16 | Providence Medical Technology, Inc. | Cervical cage |
US10390955B2 (en) | 2016-09-22 | 2019-08-27 | Engage Medical Holdings, Llc | Bone implants |
WO2018066921A2 (en) * | 2016-10-06 | 2018-04-12 | 아주대학교 산학협력단 | Device for supporting semilunar cartilage hoop stress |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US11213402B2 (en) | 2017-01-11 | 2022-01-04 | Loubert S. Suddaby | Endoscopically implantable inflatable interbody fusion device |
US10456272B2 (en) | 2017-03-03 | 2019-10-29 | Engage Uni Llc | Unicompartmental knee arthroplasty |
US11540928B2 (en) | 2017-03-03 | 2023-01-03 | Engage Uni Llc | Unicompartmental knee arthroplasty |
US10631881B2 (en) | 2017-03-09 | 2020-04-28 | Flower Orthopedics Corporation | Plating depth gauge and countersink instrument |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
CN110891501A (en) | 2017-05-19 | 2020-03-17 | 普罗维登斯医疗技术公司 | Spinal fixation access and delivery system |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US12102367B2 (en) | 2017-06-14 | 2024-10-01 | Osteoagra Llc | Method, composition, and apparatus for stabilization of vertebral bodies |
WO2018232100A1 (en) | 2017-06-14 | 2018-12-20 | Osteoagra Llc | Stabilization of vertebral bodies with bone particle slurry |
WO2019010252A2 (en) | 2017-07-04 | 2019-01-10 | Conventus Orthopaedics, Inc. | Apparatus and methods for treatment of a bone |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
EP3459502B1 (en) | 2017-09-20 | 2024-05-22 | Stryker European Operations Holdings LLC | Spinal implants |
US10912867B2 (en) * | 2017-11-15 | 2021-02-09 | De Novo Orthopedics Inc. | Bioinductive patch |
US11648128B2 (en) | 2018-01-04 | 2023-05-16 | Providence Medical Technology, Inc. | Facet screw and delivery device |
EP3737338B1 (en) * | 2018-01-12 | 2024-04-10 | Percheron Spine, LLC | Spinal disc implant and device and method for percutaneous delivery of the spinal disc implant |
US11883276B2 (en) | 2018-03-12 | 2024-01-30 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
US11051804B2 (en) * | 2018-07-02 | 2021-07-06 | DePuy Synthes Products, Inc. | Orthopedic fixation system and method of use thereof |
CA3111639A1 (en) | 2018-09-04 | 2020-05-28 | Spinal Stabilization Technologies, Llc | Implantable nuclear prosthesis, kits, and related methods |
WO2020061464A1 (en) | 2018-09-21 | 2020-03-26 | Providence Medical Technology, Inc. | Vertebral joint access and decortication devices and methods of using |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11185419B2 (en) | 2019-02-01 | 2021-11-30 | Central Michigan University | Artificial intervertebral discs |
US11129727B2 (en) * | 2019-03-29 | 2021-09-28 | Medos International Sari | Inflatable non-distracting intervertebral implants and related methods |
USD933230S1 (en) | 2019-04-15 | 2021-10-12 | Providence Medical Technology, Inc. | Cervical cage |
USD911525S1 (en) | 2019-06-21 | 2021-02-23 | Providence Medical Technology, Inc. | Spinal cage |
USD945621S1 (en) | 2020-02-27 | 2022-03-08 | Providence Medical Technology, Inc. | Spinal cage |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
BR122023021714A2 (en) * | 2020-03-23 | 2024-02-20 | Bard Shannon Limited | IMPLANTABLE PROSTHESIS COMPRISING BIOCOMPATIBLE MATERIAL STRUCTURE |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
WO2024063738A1 (en) * | 2022-09-22 | 2024-03-28 | Tobb Ekonomi Ve Teknoloji Universitesi | A disc prosthesis comprising biological material |
US20240180714A1 (en) * | 2022-12-01 | 2024-06-06 | Percheron Spine, Llc | Spinal implant and delivery system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5571189A (en) * | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
US6048346A (en) * | 1997-08-13 | 2000-04-11 | Kyphon Inc. | Systems and methods for injecting flowable materials into bones |
US6066154A (en) * | 1994-01-26 | 2000-05-23 | Kyphon Inc. | Inflatable device for use in surgical protocol relating to fixation of bone |
US6127597A (en) * | 1997-03-07 | 2000-10-03 | Discotech N.V. | Systems for percutaneous bone and spinal stabilization, fixation and repair |
US20020010472A1 (en) * | 2000-06-30 | 2002-01-24 | Kuslich Stephen D. | Tool to direct bone replacement material |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2083754B (en) | 1980-09-15 | 1984-04-26 | Rezaian Seyed Mahmoud | Spinal fixator |
US4501269A (en) | 1981-12-11 | 1985-02-26 | Washington State University Research Foundation, Inc. | Process for fusing bone joints |
US4743256A (en) | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
DE3614101C1 (en) | 1986-04-25 | 1987-10-22 | Juergen Prof Dr Med Harms | Pedicle screw |
DE3637314A1 (en) | 1986-11-03 | 1988-05-11 | Lutz Biedermann | SPACE HOLDER IMPLANT |
US4834757A (en) | 1987-01-22 | 1989-05-30 | Brantigan John W | Prosthetic implant |
US4772287A (en) | 1987-08-20 | 1988-09-20 | Cedar Surgical, Inc. | Prosthetic disc and method of implanting |
DE3741493A1 (en) * | 1987-12-08 | 1989-06-22 | Roland Man Druckmasch | Supporting element for holding two adjacent vertebrae |
US5015247A (en) | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US5015255A (en) | 1989-05-10 | 1991-05-14 | Spine-Tech, Inc. | Spinal stabilization method |
US5895427A (en) | 1989-07-06 | 1999-04-20 | Sulzer Spine-Tech Inc. | Method for spinal fixation |
US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
US4936848A (en) | 1989-09-22 | 1990-06-26 | Bagby George W | Implant for vertebrae |
US5059193A (en) | 1989-11-20 | 1991-10-22 | Spine-Tech, Inc. | Expandable spinal implant and surgical method |
US5331975A (en) | 1990-03-02 | 1994-07-26 | Bonutti Peter M | Fluid operated retractors |
EP0462301A1 (en) | 1990-06-25 | 1991-12-27 | Ming-Hong Kuo | A solder leveler |
US5192326A (en) | 1990-12-21 | 1993-03-09 | Pfizer Hospital Products Group, Inc. | Hydrogel bead intervertebral disc nucleus |
US5263953A (en) | 1991-12-31 | 1993-11-23 | Spine-Tech, Inc. | Apparatus and system for fusing bone joints |
CA2155422C (en) | 1993-02-10 | 2005-07-12 | Stephen D. Kuslich | Spinal stabilization surgical method |
US5405391A (en) | 1993-02-16 | 1995-04-11 | Hednerson; Fraser C. | Fusion stabilization chamber |
EP0621020A1 (en) * | 1993-04-21 | 1994-10-26 | SULZER Medizinaltechnik AG | Intervertebral prosthesis and method of implanting such a prosthesis |
US5514180A (en) | 1994-01-14 | 1996-05-07 | Heggeness; Michael H. | Prosthetic intervertebral devices |
WO1996018363A1 (en) | 1994-12-08 | 1996-06-20 | Vanderbilt University | Low profile intraosseous anterior spinal fusion system and method |
DE19504867C1 (en) | 1995-02-14 | 1996-02-29 | Harms Juergen | Position retainer for spine |
US5591235A (en) | 1995-03-15 | 1997-01-07 | Kuslich; Stephen D. | Spinal fixation device |
US5782919A (en) | 1995-03-27 | 1998-07-21 | Sdgi Holdings, Inc. | Interbody fusion device and method for restoration of normal spinal anatomy |
US6039762A (en) * | 1995-06-07 | 2000-03-21 | Sdgi Holdings, Inc. | Reinforced bone graft substitutes |
US5709683A (en) | 1995-12-19 | 1998-01-20 | Spine-Tech, Inc. | Interbody bone implant having conjoining stabilization features for bony fusion |
US5645597A (en) * | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
DE19622827B4 (en) | 1996-06-07 | 2009-04-23 | Ulrich, Heinrich | Implant for insertion between vertebrae as a placeholder |
GB9714580D0 (en) * | 1997-07-10 | 1997-09-17 | Wardlaw Douglas | Prosthetic intervertebral disc nucleus |
CA2373715C (en) * | 1999-05-07 | 2008-12-23 | University Of Virginia Patent Foundation | Method and system for fusing a spinal region |
US6447543B1 (en) * | 1999-09-28 | 2002-09-10 | Sulzer Orthopedics Ltd. | Basket-like container for implanting bone tissue |
US6332894B1 (en) | 2000-03-07 | 2001-12-25 | Zimmer, Inc. | Polymer filled spinal fusion cage |
-
2001
- 2001-12-17 CA CA2709878A patent/CA2709878A1/en not_active Abandoned
- 2001-12-17 AT AT01994275T patent/ATE387163T1/en not_active IP Right Cessation
- 2001-12-17 EP EP01994275A patent/EP1341489B1/en not_active Expired - Lifetime
- 2001-12-17 CA CA2429149A patent/CA2429149C/en not_active Expired - Lifetime
- 2001-12-17 AU AU2002246690A patent/AU2002246690B2/en not_active Ceased
- 2001-12-17 KR KR1020037007864A patent/KR100631787B1/en not_active Expired - Fee Related
- 2001-12-17 WO PCT/US2001/048890 patent/WO2002056802A1/en active IP Right Grant
- 2001-12-17 DE DE60133033T patent/DE60133033T2/en not_active Expired - Lifetime
- 2001-12-17 JP JP2002557313A patent/JP4202134B2/en not_active Expired - Fee Related
- 2001-12-17 NZ NZ525999A patent/NZ525999A/en unknown
- 2001-12-17 MX MXPA03005362A patent/MXPA03005362A/en active IP Right Grant
- 2001-12-17 US US10/022,048 patent/US6712853B2/en not_active Expired - Lifetime
- 2001-12-17 HU HU0302127A patent/HUP0302127A2/en unknown
-
2004
- 2004-03-29 US US10/812,345 patent/US7056345B2/en not_active Expired - Lifetime
-
2005
- 2005-12-15 AU AU2005244537A patent/AU2005244537B2/en not_active Ceased
-
2006
- 2006-06-06 US US11/447,615 patent/US7220282B2/en not_active Expired - Lifetime
-
2007
- 2007-05-22 US US11/752,059 patent/US20080045952A1/en not_active Abandoned
-
2008
- 2008-07-15 JP JP2008183832A patent/JP2008296031A/en active Pending
-
2010
- 2010-09-29 US US12/894,106 patent/US8747475B2/en not_active Expired - Lifetime
- 2010-12-31 US US12/983,079 patent/US20110245924A1/en not_active Abandoned
-
2014
- 2014-06-09 US US14/299,951 patent/US20140288656A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6066154A (en) * | 1994-01-26 | 2000-05-23 | Kyphon Inc. | Inflatable device for use in surgical protocol relating to fixation of bone |
US5571189A (en) * | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
US6127597A (en) * | 1997-03-07 | 2000-10-03 | Discotech N.V. | Systems for percutaneous bone and spinal stabilization, fixation and repair |
US6048346A (en) * | 1997-08-13 | 2000-04-11 | Kyphon Inc. | Systems and methods for injecting flowable materials into bones |
US20020010472A1 (en) * | 2000-06-30 | 2002-01-24 | Kuslich Stephen D. | Tool to direct bone replacement material |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7879103B2 (en) | 2005-04-15 | 2011-02-01 | Musculoskeletal Transplant Foundation | Vertebral disc repair |
US20060235534A1 (en) * | 2005-04-15 | 2006-10-19 | Gertzman Arthur A | Vertebral disc repair |
US7959683B2 (en) | 2006-07-25 | 2011-06-14 | Musculoskeletal Transplant Foundation | Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation |
US20080027546A1 (en) * | 2006-07-25 | 2008-01-31 | Semler Eric J | Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation |
US20110054532A1 (en) * | 2007-07-03 | 2011-03-03 | Alexandre De Moura | Interspinous mesh |
US8540752B2 (en) | 2007-07-03 | 2013-09-24 | Spine Tek, Inc. | Interspinous mesh |
US10159554B2 (en) | 2008-02-18 | 2018-12-25 | Covidien Lp | Clip for implant deployment device |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US10182898B2 (en) | 2008-02-18 | 2019-01-22 | Covidien Lp | Clip for implant deployment device |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US9393002B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
US9301826B2 (en) | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9393093B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US8734473B2 (en) | 2009-02-18 | 2014-05-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US8167945B1 (en) | 2009-03-18 | 2012-05-01 | Cardinal Spine, Llc | Doughnut-like spinal implant |
US8075620B1 (en) | 2009-03-18 | 2011-12-13 | Cardinalspine, LLC | Doughnut-like spinal implant |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
Also Published As
Publication number | Publication date |
---|---|
US20020077701A1 (en) | 2002-06-20 |
EP1341489A1 (en) | 2003-09-10 |
JP2004517672A (en) | 2004-06-17 |
JP4202134B2 (en) | 2008-12-24 |
WO2002056802A1 (en) | 2002-07-25 |
US7220282B2 (en) | 2007-05-22 |
KR20030072559A (en) | 2003-09-15 |
US20140288656A1 (en) | 2014-09-25 |
CA2709878A1 (en) | 2002-07-25 |
AU2002246690B2 (en) | 2006-02-02 |
ATE387163T1 (en) | 2008-03-15 |
AU2005244537A1 (en) | 2006-01-12 |
US20110245924A1 (en) | 2011-10-06 |
US20070016300A1 (en) | 2007-01-18 |
JP2008296031A (en) | 2008-12-11 |
MXPA03005362A (en) | 2004-12-03 |
CA2429149A1 (en) | 2002-07-25 |
US20110213463A1 (en) | 2011-09-01 |
EP1341489B1 (en) | 2008-02-27 |
US20040267368A1 (en) | 2004-12-30 |
DE60133033T2 (en) | 2008-06-12 |
NZ525999A (en) | 2006-05-26 |
US7056345B2 (en) | 2006-06-06 |
DE60133033D1 (en) | 2008-04-10 |
KR100631787B1 (en) | 2006-10-11 |
HUP0302127A2 (en) | 2005-12-28 |
CA2429149C (en) | 2010-08-24 |
AU2005244537B2 (en) | 2007-04-19 |
US8747475B2 (en) | 2014-06-10 |
US6712853B2 (en) | 2004-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8747475B2 (en) | Annulus-reinforcing band | |
AU2002246690A1 (en) | Annulus- reinforcing band | |
US7226481B2 (en) | Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone | |
EP0764008B1 (en) | Expandable fabric implant for stabilizing the spinal motion segment | |
US7931689B2 (en) | Method and apparatus for treating a vertebral body | |
WO2003007853A1 (en) | An expandable porous mesh bag device and its use for bone surgery | |
US20110054532A1 (en) | Interspinous mesh | |
EP2108323A2 (en) | An expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone abnormalities | |
AU2007203365A1 (en) | Annulus-reinforcing band and a method for stabilizing a spinal segment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |