+

US20080038125A1 - Piezoelectric pump and piezoelectric vibrator - Google Patents

Piezoelectric pump and piezoelectric vibrator Download PDF

Info

Publication number
US20080038125A1
US20080038125A1 US11/880,737 US88073707A US2008038125A1 US 20080038125 A1 US20080038125 A1 US 20080038125A1 US 88073707 A US88073707 A US 88073707A US 2008038125 A1 US2008038125 A1 US 2008038125A1
Authority
US
United States
Prior art keywords
piezoelectric
piezoelectric vibrator
shim
pump
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/880,737
Inventor
Hitoshi Onishi
Eiichi Komai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Assigned to ALPS ELECTRIC CO., LTD. reassignment ALPS ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOMAI, ELICHI, ONISHI, HITOSHI
Publication of US20080038125A1 publication Critical patent/US20080038125A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/023Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms double acting plate-like flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the disclosure relates to a piezoelectric pump and a piezoelectric vibrator, using a piezoelectric vibrator.
  • a pump chamber is formed by the piezoelectric vibrator and a housing.
  • a pair of flow passages are connected with the pump chamber.
  • the pair of flow passages is provided with a pair of check valves which are different in the direction of flow (a check valve that allows the flow of fluid to the pump chamber, and a check valve that allows the flow of fluid from the pump chamber).
  • the piezoelectric vibrator has a piezoelectric body stacked on at least one of the front and rear surfaces of a shim (thin conductive metal plate).
  • the polarization characteristics are given in front and rear directions of the piezoelectric body.
  • positive and negative polarities are given in the same direction as or in a direction opposite to the polarization direction of the piezoelectric body, one surface expands and the area of the other surface reduces.
  • the positive and negative polarities to be given to the front and rear surfaces of the piezoelectric body are reversed alternately, a cycle that one of the front and rear surfaces expands and the other surface shrinks is repeated, and thereby the shim will vibrate.
  • a piezoelectric vibrator used for such a piezoelectric pump has a flat-plate shape (disk shape), and has a fluid-tight structure in which an O ring (liquid-tight seal member) made to abut on a peripheral edge of the vibrator is compressed between the peripheral edge and the housing.
  • the compressed O ring gives a force to between the piezoelectric vibrator and the housing in a direction in which they are separated from each other.
  • this force does not affect the fluid-tight structure in a short term, it is possible to affect the fluid-tight structure over a long term. It is desirable to make a perfect fluid-tight structure for applications like the above-mentioned cooling-water circulating pump for a water-cooled notebook computer.
  • the disclosed structure aims at obtaining a piezoelectric pump with a highly-reliable fluid-tight structure around a piezoelectric vibrator on the basis of awareness of the above problems.
  • the disclosed structure also aims at obtaining a piezoelectric vibrator capable of easily obtaining a highly-reliable fluid-tight structure.
  • the disclosed structure has been made on the basis of a perception that the reliability of a piezoelectric vibrator improves when the axial direction of the vibrator is adopted as the compression direction of the vibrator, on the basis of a recognition that a liquid-tight seal member in a conventional flat-plate-shaped (disk-shaped) piezoelectric vibrator cannot be compressed in a direction orthogonal to a planar direction of the vibrator, and this compression structure is a destabilizing factor of a fluid-tight structure over a prolonged period of time.
  • a piezoelectric pump including a piezoelectric vibrator formed by stacking a piezoelectric body on at least one of the front and rear surfaces of a shim made of a thin conductive metal.
  • a housing makes the peripheral edge of the piezoelectric vibrator liquid-tight to form a pump chamber.
  • An alternating current is applied to between the shim of the piezoelectric vibrator, and the piezoelectric body to vibrate the piezoelectric vibrator, thereby generating a pumping action.
  • a cylindrical bent part is formed at a peripheral edge of the shim of the piezoelectric vibrator, and a liquid-tight seal member is interposed between the cylindrical bent part and the housing.
  • the pump chamber As to the pump chamber, a type in which a pump chamber is formed on one of the front and rear surfaces of the piezoelectric vibrator, and a type in which pump chambers are respectively formed on both the front and rear surfaces can be adopted.
  • a liquid-tight seal member is located on either an inner peripheral surface or an outer peripheral surface of the cylindrical bent part of the shim of the piezoelectric vibrator.
  • liquid-tight seal members are respectively located on inner and outer peripheral surfaces of the cylindrical bent part of the shim of the piezoelectric vibrator.
  • the shim has an outwardly bent flange part formed at an end of the cylindrical bent part thereof.
  • a piezoelectric vibrator including a piezoelectric body stacked on at least one of the front and rear surfaces of a shim made of a conductive metal thin plate, and a cylindrical bent part formed at a peripheral edge of the shim.
  • FIG. 1 is a schematic exploded view showing one embodiment of a piezoelectric vibrator according to the disclosure
  • FIG. 2 is a half-section perspective view of chief parts, showing one embodiment of a piezoelectric pump using the piezoelectric vibrator of FIG. 1 ;
  • FIG. 3 is a sectional view of FIG. 2 ;
  • FIG. 4 is a sectional view showing another embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. 1 ;
  • FIG. 5 is a schematic exploded view showing another embodiment of the disclosed piezoelectric vibrator
  • FIG. 6 is a sectional view showing one embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. 5 ;
  • FIGS. 7A and 7B are schematic views showing an example of the conceptual configuration of a two-valve-type piezoelectric pump to which the invention is to be applied.
  • FIGS. 8A and 8B are schematic views showing an example of the conceptual configuration of a four-valve-type piezoelectric pump to which the invention is to be applied.
  • FIG. 7 schematically shows an example of the conceptual configuration of a two-valve-type piezoelectric pump.
  • the piezoelectric vibrator 10 is sandwiched and supported between an upper housing 20 U and a lower housing 20 L that constitute a housing 20 , and forms a pump chamber A with the upper housings 20 U.
  • the housing 20 (upper housing 20 U) is formed with an inlet port 21 and an outlet port 22 for cooling water (or other liquid), and check valves 11 and 12 are respectively provided between the inlet port 21 and the pump chamber A and between the pump chamber A and the outlet port 22 .
  • the check valve 11 is a suction-side check valve that allows flow of fluid from the inlet port 21 to the pump chamber A, and does not allow flow of the fluid reverse thereto
  • the check valve 12 is a discharge-side check valve that allows flow of the fluid from the pump chamber A to the outlet port 22 , and does not allow flow of the fluid reverse thereto.
  • FIGS. 1 to 3 show a first embodiment to which the disclosed structure is applied to, for example a piezoelectric pump having the basic configuration as described above.
  • the piezoelectric vibrator 10 is a unimorph vibrator having a central shim 101 , and a piezoelectric body 102 stacked on one surface (lower surface of the figure) of the front and rear surfaces of the shim 101 .
  • the shim 101 is integrally formed by a known method, such as press molding, from a conductive thin metal plate material, for example a stainless steel thin sheet having a thickness of about 0.2 mm, and has a cylindrical bent part 101 b that is upward bent at the peripheral edge of a central circular part 101 a .
  • a flange part 101 c that is further bent outward is formed at the top end of the cylindrical bent part 101 b .
  • the piezoelectric element 102 is made of, for example PZT (Pb(Zr, Ti)O 3 ) having a thickness of about 0.3 mm, and it is subjected to polarizing treatment in the front and rear directions thereof.
  • the piezoelectric body 102 has a circular shape corresponding to the central circular part 101 a of the shim 101 , is bonded to the rear surface of the central circular part 101 a with conductive adhesive, and the upper and lower surfaces of the piezoelectric body 102 are covered with electrodes.
  • the upper housing 20 U is formed with an annular groove 25 into which the cylindrical bent part 101 b and the flange part 101 c of the piezoelectric vibrator 10 (shim 101 ), and an O ring (liquid-tight seal member) 24 are inserted, and the lower housing 20 L is formed with a stepped recess 26 into which the flange part 101 c of the shim 101 is inserted.
  • the axial position of the piezoelectric vibrator 10 is determined by the stepped recess 26 .
  • the O ring 24 is compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 and is liquid-tightly held between the inner peripheral surface of the cylindrical bent part 101 b , and the annular groove 25 .
  • the basic configuration thereof is the same as that of FIG. 1 .
  • the flange part 101 c of the shim 101 can be omitted, the existence thereof can enhance the positional accuracy of the piezoelectric vibrator 10 .
  • the shim 101 includes the central circular part 101 a , the cylindrical bent part 101 b , and the flange part 101 c , which are integrally made of a thin stainless steel sheet, high liquid-tightness can be achieved.
  • the compression direction of the O ring 24 is the planar direction, the upper housing 20 U and the lower housing 20 L can achieve rigidity even if they are thin. Therefore, it is possible to easily cope with making a piezoelectric pump thin.
  • the piezoelectric vibrator 10 vibrates, and consequently the same pumping action as that described referring to FIG. 7 is obtained. Also, the O ring 24 is compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 , and does not receive a force orthogonal to the planar direction. That is, since the O ring 24 does not exert a force on the upper housing 20 U and the lower housing 20 L in a direction which both of them are separated from each other, liquid-tightness over a prolonged period of time can be guaranteed.
  • FIG. 4 shows another embodiment of the invention in which the O ring 24 is located at the outer periphery of the cylindrical bent part 101 b of the shim 101 .
  • the shim 101 pieoelectric vibrator 10
  • the annular groove 25 of the upper housing 20 U is supported only by the annular groove 25 of the upper housing 20 U.
  • FIG. 4 only the upper housing 20 U is shown, and illustration of the lower housing 20 L is omitted.
  • the unimorph piezoelectric vibrator 10 of the above embodiment has the piezoelectric body 102 stacked on a surface thereof opposite to the pump chamber A
  • the piezoelectric body 102 may be stacked on the side of the pump chamber A.
  • liquid such as a corrosive liquid or a water solution.
  • the piezoelectric body 102 is covered with a protective film, etc., ot prevent liquid from directly touching the piezoelectric body 102 .
  • liquid may permeate the protective film due to prolonged use. Even from this viewpoint, it is preferable to stack the piezoelectric body 102 on the side opposite to the pump chamber A.
  • FIG. 8 shows the principle of operation of a four-valve-type piezoelectric pump to which the disclosed structure is to be applied.
  • pump chambers A and B are respectively formed between a piezoelectric vibrator 10 and an upper housing 20 U and between the piezoelectric vibrator 10 and a lower housing 20 L.
  • a housing 20 is provided with a single inlet port 21 and a single outlet port 22 , first and second suction-side check valves 11 U and 11 L that allow flow of fluid to the pump chambers A and B from the inlet port 21 and do not allow flow of the fluid in a direction reverse thereto are respectively provided between the pair of pump chambers A and B and the inlet port 21 .
  • First and second discharge-side check valves 12 U and 12 L that allow flow of the fluid to the outlet port 22 from the pair of pump chambers A and B and do not allow flow of the fluid in a direction reverse thereto are respectively provided between the pair of pump chambers A and B and the outlet port 22 .
  • the suction-side check valve 11 L is opened, and thereby the fluid flow into the pump chamber B from the inlet port 21 , and the fluid within the pump chamber A opens the discharge-side check valve 12 U, and flows into the outlet port 22 ( FIG. 8A ). Accordingly, the cycle of the pulsation in the discharge port 22 can be shortened (reduced to half as compared with a case where a pump chamber is formed only in one of upper and lower parts of the piezoelectric vibrator 10 ).
  • FIGS. 5 and 6 show an embodiment to which the disclosed structure is applied to the four-valve-type piezoelectric pump according to the above principle of operation.
  • the piezoelectric vibrator 10 is a bimorph piezoelectric vibrator in which the piezoelectric bodies 102 are stacked on both surfaces of the central circular part 101 a , respectively, and an annular groove 27 into which the cylindrical bent part 101 b of the shim 101 and the O ring 24 are inserted is formed between the upper housing 20 U and the lower housing 20 . That is, the annular groove 27 is formed by a cylindrical protrusion 27 a of the upper housing 20 U, and a cylindrical recess 27 b of the lower housing 20 L.
  • FIGS. 5 and 6 show umbrellas as the check valves 11 U, 11 L, 12 U, and 12 L, the basic configuration of the piezoelectric pump is the same as that of FIG. 8 .
  • an alternating current is applied to between the shim 101 and the piezoelectric bodies 102 on the front and rear surfaces thereof, which are made to have the same potential, to vibrate the piezoelectric vibrator 10 , so that the pumping action can be obtained.
  • the amplitude of vibration can be made large, and the pump efficiency can be enhanced.
  • the O rings 24 that are respectively located at the inner peripheral surface and outer peripheral surface of the cylindrical bent part 101 b of the shim 101 are compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 , and are not compressed in a direction orthogonal to the planar direction. Consequently, a liquid-tight structure over a prolonged period of time can be guaranteed without applying a force to the upper housing 20 U and the lower housing 20 L in direction in which they are separated from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

There is provided a piezoelectric pump including a piezoelectric vibrator formed by stacking a piezoelectric body on at least one of the front and rear surfaces of a shim made of a conductive metal thin plate, and a housing that makes the peripheral edge of the piezoelectric vibrator liquid-tight to form a pump chamber. An alternating current is applied to between the shim of the piezoelectric vibrator, and the piezoelectric body to vibrate the piezoelectric vibrator, thereby generating a pumping action. A cylindrical bent part is formed at a peripheral edge of the shim of the piezoelectric vibrator, and a liquid-tight seal member is interposed between the cylindrical bent part and the housing. As a result, the piezoelectric pump with a highly-reliable fluid-tight structure around the piezoelectric vibrator is obtained.

Description

  • This application claims benefit of priority under 35 U.S.C. §119 to Japanese Patent Application No. 2006-216772 filed on Aug. 9, 2006, which is hereby incorporated by reference.
  • BACKGROUND OF THE DISCLOSURE
  • 1. Field of the Disclosure
  • The disclosure relates to a piezoelectric pump and a piezoelectric vibrator, using a piezoelectric vibrator.
  • 2. Description of the Related Art
  • In a piezoelectric pump that vibrates a sheet-like piezoelectric vibrator to obtain a pumping action, a pump chamber is formed by the piezoelectric vibrator and a housing. A pair of flow passages are connected with the pump chamber. The pair of flow passages is provided with a pair of check valves which are different in the direction of flow (a check valve that allows the flow of fluid to the pump chamber, and a check valve that allows the flow of fluid from the pump chamber). When the piezoelectric vibrator is vibrated, since the volume of the pump chamber changes, and operation of opening one of the pair of check valves closes with this volume change, and closing the other check valve is repeated, the pumping action is obtained. Such a piezoelectric pump is made thin, and is used as, for example, a cooling-water circulating pump for a water-cooled notebook computer.
  • The piezoelectric vibrator has a piezoelectric body stacked on at least one of the front and rear surfaces of a shim (thin conductive metal plate). The polarization characteristics are given in front and rear directions of the piezoelectric body. Thus, when positive and negative polarities are given in the same direction as or in a direction opposite to the polarization direction of the piezoelectric body, one surface expands and the area of the other surface reduces. For this reason, when the positive and negative polarities to be given to the front and rear surfaces of the piezoelectric body are reversed alternately, a cycle that one of the front and rear surfaces expands and the other surface shrinks is repeated, and thereby the shim will vibrate.
  • See, for example: 1] JP-UM-B-2510590; 2] JP-UM-A-3-8679; and 3] JP-A-2004-257337.
  • Conventionally, a piezoelectric vibrator used for such a piezoelectric pump has a flat-plate shape (disk shape), and has a fluid-tight structure in which an O ring (liquid-tight seal member) made to abut on a peripheral edge of the vibrator is compressed between the peripheral edge and the housing. The compressed O ring gives a force to between the piezoelectric vibrator and the housing in a direction in which they are separated from each other. Although this force does not affect the fluid-tight structure in a short term, it is possible to affect the fluid-tight structure over a long term. It is desirable to make a perfect fluid-tight structure for applications like the above-mentioned cooling-water circulating pump for a water-cooled notebook computer.
  • SUMMARY
  • The disclosed structure aims at obtaining a piezoelectric pump with a highly-reliable fluid-tight structure around a piezoelectric vibrator on the basis of awareness of the above problems.
  • The disclosed structure also aims at obtaining a piezoelectric vibrator capable of easily obtaining a highly-reliable fluid-tight structure.
  • The disclosed structure has been made on the basis of a perception that the reliability of a piezoelectric vibrator improves when the axial direction of the vibrator is adopted as the compression direction of the vibrator, on the basis of a recognition that a liquid-tight seal member in a conventional flat-plate-shaped (disk-shaped) piezoelectric vibrator cannot be compressed in a direction orthogonal to a planar direction of the vibrator, and this compression structure is a destabilizing factor of a fluid-tight structure over a prolonged period of time.
  • That is, according to one aspect, there is provided a piezoelectric pump including a piezoelectric vibrator formed by stacking a piezoelectric body on at least one of the front and rear surfaces of a shim made of a thin conductive metal. A housing makes the peripheral edge of the piezoelectric vibrator liquid-tight to form a pump chamber. An alternating current is applied to between the shim of the piezoelectric vibrator, and the piezoelectric body to vibrate the piezoelectric vibrator, thereby generating a pumping action. A cylindrical bent part is formed at a peripheral edge of the shim of the piezoelectric vibrator, and a liquid-tight seal member is interposed between the cylindrical bent part and the housing.
  • As to the pump chamber, a type in which a pump chamber is formed on one of the front and rear surfaces of the piezoelectric vibrator, and a type in which pump chambers are respectively formed on both the front and rear surfaces can be adopted. In the type in which a pump chamber is formed on one of the front and rear surfaces of the piezoelectric vibrator, it is desirable that a liquid-tight seal member is located on either an inner peripheral surface or an outer peripheral surface of the cylindrical bent part of the shim of the piezoelectric vibrator.
  • On the other hand, in the type in which pump chambers are formed on both the front and rear surfaces of the piezoelectric vibrator, it is desirable that liquid-tight seal members are respectively located on inner and outer peripheral surfaces of the cylindrical bent part of the shim of the piezoelectric vibrator.
  • Further, it is preferable that the shim has an outwardly bent flange part formed at an end of the cylindrical bent part thereof.
  • According to another aspect of the invention, there is provided a piezoelectric vibrator including a piezoelectric body stacked on at least one of the front and rear surfaces of a shim made of a conductive metal thin plate, and a cylindrical bent part formed at a peripheral edge of the shim.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic exploded view showing one embodiment of a piezoelectric vibrator according to the disclosure;
  • FIG. 2 is a half-section perspective view of chief parts, showing one embodiment of a piezoelectric pump using the piezoelectric vibrator of FIG. 1;
  • FIG. 3 is a sectional view of FIG. 2;
  • FIG. 4 is a sectional view showing another embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. 1;
  • FIG. 5 is a schematic exploded view showing another embodiment of the disclosed piezoelectric vibrator;
  • FIG. 6 is a sectional view showing one embodiment of the piezoelectric pump using the piezoelectric vibrator of FIG. 5;
  • FIGS. 7A and 7B are schematic views showing an example of the conceptual configuration of a two-valve-type piezoelectric pump to which the invention is to be applied; and
  • FIGS. 8A and 8B are schematic views showing an example of the conceptual configuration of a four-valve-type piezoelectric pump to which the invention is to be applied.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 7 schematically shows an example of the conceptual configuration of a two-valve-type piezoelectric pump. The piezoelectric vibrator 10 is sandwiched and supported between an upper housing 20U and a lower housing 20L that constitute a housing 20, and forms a pump chamber A with the upper housings 20U.
  • The housing 20 (upper housing 20U) is formed with an inlet port 21 and an outlet port 22 for cooling water (or other liquid), and check valves 11 and 12 are respectively provided between the inlet port 21 and the pump chamber A and between the pump chamber A and the outlet port 22. The check valve 11 is a suction-side check valve that allows flow of fluid from the inlet port 21 to the pump chamber A, and does not allow flow of the fluid reverse thereto, and the check valve 12 is a discharge-side check valve that allows flow of the fluid from the pump chamber A to the outlet port 22, and does not allow flow of the fluid reverse thereto.
  • In the above piezoelectric pump, if the piezoelectric vibrator 10 elastically deforms normally and reversely, the suction-side check valve 11 is opened and the discharge-side check valve 12 is closed, in a stroke where the volume of the pump chamber A is increased, so that liquid flows into the pump chamber A from the inlet port 21 (FIG. 7B). On the other hand, in a stroke where the volume of the pump chamber A is reduced, the discharge-side check valve 12 is opened and the suction-side check valve 11 is closed, so that the liquid flows out of the pump chamber A into the outlet port 22 (FIG. 7A). Accordingly, pumping action is obtained by causing the piezoelectric vibrator 10 to continuously elastically deform normally and reversely (causing the piezoelectric vibrator to vibrate).
  • FIGS. 1 to 3 show a first embodiment to which the disclosed structure is applied to, for example a piezoelectric pump having the basic configuration as described above. In the present embodiment, the piezoelectric vibrator 10 is a unimorph vibrator having a central shim 101, and a piezoelectric body 102 stacked on one surface (lower surface of the figure) of the front and rear surfaces of the shim 101. The shim 101 is integrally formed by a known method, such as press molding, from a conductive thin metal plate material, for example a stainless steel thin sheet having a thickness of about 0.2 mm, and has a cylindrical bent part 101 b that is upward bent at the peripheral edge of a central circular part 101 a. A flange part 101 c that is further bent outward is formed at the top end of the cylindrical bent part 101 b. The piezoelectric element 102 is made of, for example PZT (Pb(Zr, Ti)O3) having a thickness of about 0.3 mm, and it is subjected to polarizing treatment in the front and rear directions thereof. The piezoelectric body 102 has a circular shape corresponding to the central circular part 101 a of the shim 101, is bonded to the rear surface of the central circular part 101 a with conductive adhesive, and the upper and lower surfaces of the piezoelectric body 102 are covered with electrodes.
  • The upper housing 20U is formed with an annular groove 25 into which the cylindrical bent part 101 b and the flange part 101 c of the piezoelectric vibrator 10 (shim 101), and an O ring (liquid-tight seal member) 24 are inserted, and the lower housing 20L is formed with a stepped recess 26 into which the flange part 101 c of the shim 101 is inserted. The axial position of the piezoelectric vibrator 10 is determined by the stepped recess 26. The O ring 24 is compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 and is liquid-tightly held between the inner peripheral surface of the cylindrical bent part 101 b, and the annular groove 25. Although FIGS. 2 and 3 show umbrellas as the check valves 11 and 12, the basic configuration thereof is the same as that of FIG. 1. Although the flange part 101 c of the shim 101 can be omitted, the existence thereof can enhance the positional accuracy of the piezoelectric vibrator 10. Further, since the shim 101 includes the central circular part 101 a, the cylindrical bent part 101 b, and the flange part 101 c, which are integrally made of a thin stainless steel sheet, high liquid-tightness can be achieved. Moreover, since the compression direction of the O ring 24 is the planar direction, the upper housing 20U and the lower housing 20L can achieve rigidity even if they are thin. Therefore, it is possible to easily cope with making a piezoelectric pump thin.
  • In the piezoelectric pump having the above configuration, as an alternating current is applied between the shim 101 and the piezoelectric body 102, the piezoelectric vibrator 10 vibrates, and consequently the same pumping action as that described referring to FIG. 7 is obtained. Also, the O ring 24 is compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10, and does not receive a force orthogonal to the planar direction. That is, since the O ring 24 does not exert a force on the upper housing 20U and the lower housing 20L in a direction which both of them are separated from each other, liquid-tightness over a prolonged period of time can be guaranteed.
  • FIG. 4 shows another embodiment of the invention in which the O ring 24 is located at the outer periphery of the cylindrical bent part 101 b of the shim 101. In the present embodiment, the shim 101 (piezoelectric vibrator 10) is supported only by the annular groove 25 of the upper housing 20U. In FIG. 4, only the upper housing 20U is shown, and illustration of the lower housing 20L is omitted.
  • Although the unimorph piezoelectric vibrator 10 of the above embodiment has the piezoelectric body 102 stacked on a surface thereof opposite to the pump chamber A, the piezoelectric body 102 may be stacked on the side of the pump chamber A. However, since there is no possibility that liquid will touch the piezoelectric body 102 when the piezoelectric body 102 is stacked on the surface opposite to the pump chamber A, it is preferable to deliver, for example, liquid, such as a corrosive liquid or a water solution. Further, if the piezoelectric body 102 is stacked on the side of the pump chamber A, the piezoelectric body 102 is covered with a protective film, etc., ot prevent liquid from directly touching the piezoelectric body 102. However, liquid may permeate the protective film due to prolonged use. Even from this viewpoint, it is preferable to stack the piezoelectric body 102 on the side opposite to the pump chamber A.
  • FIG. 8 shows the principle of operation of a four-valve-type piezoelectric pump to which the disclosed structure is to be applied. In this four-valve piezoelectric pump, pump chambers A and B are respectively formed between a piezoelectric vibrator 10 and an upper housing 20U and between the piezoelectric vibrator 10 and a lower housing 20L. A housing 20 is provided with a single inlet port 21 and a single outlet port 22, first and second suction- side check valves 11U and 11L that allow flow of fluid to the pump chambers A and B from the inlet port 21 and do not allow flow of the fluid in a direction reverse thereto are respectively provided between the pair of pump chambers A and B and the inlet port 21. First and second discharge- side check valves 12U and 12L that allow flow of the fluid to the outlet port 22 from the pair of pump chambers A and B and do not allow flow of the fluid in a direction reverse thereto are respectively provided between the pair of pump chambers A and B and the outlet port 22.
  • In this four-valve-type piezoelectric pump, if the piezoelectric vibrator 10 is elastically deformed (vibrated) normally and reversely, a stroke in which the volume of one of the pump chambers A and B increases, and the volume of the other chamber decreases is repeated. In a stroke in which the volume of the pump chamber A increases (the volume of the pump chamber B decreases), the check valve 11U is opened and thereby fluid flow into the pump chamber A from the inlet port 21, and the fluid within the pump chamber B opens the check valve 12U, and flows into the outlet port 22 (FIG. 8B). Conversely, in a stroke in which the volume of the pump chamber A decreases (the volume of the pump chamber B increases), the suction-side check valve 11L is opened, and thereby the fluid flow into the pump chamber B from the inlet port 21, and the fluid within the pump chamber A opens the discharge-side check valve 12U, and flows into the outlet port 22 (FIG. 8A). Accordingly, the cycle of the pulsation in the discharge port 22 can be shortened (reduced to half as compared with a case where a pump chamber is formed only in one of upper and lower parts of the piezoelectric vibrator 10).
  • FIGS. 5 and 6 show an embodiment to which the disclosed structure is applied to the four-valve-type piezoelectric pump according to the above principle of operation. In the present embodiment, the piezoelectric vibrator 10 is a bimorph piezoelectric vibrator in which the piezoelectric bodies 102 are stacked on both surfaces of the central circular part 101 a, respectively, and an annular groove 27 into which the cylindrical bent part 101 b of the shim 101 and the O ring 24 are inserted is formed between the upper housing 20U and the lower housing 20. That is, the annular groove 27 is formed by a cylindrical protrusion 27 a of the upper housing 20U, and a cylindrical recess 27 b of the lower housing 20L. The O rings 24 that are respectively located at the inner peripheral surface and outer peripheral surface of the cylindrical bent part 101 b are inserted into the annular groove 27, and they are compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10 and are liquid-tightly held. Although FIGS. 5 and 6 show umbrellas as the check valves 11U, 11L, 12U, and 12L, the basic configuration of the piezoelectric pump is the same as that of FIG. 8.
  • Even in this four-valve-type embodiment, an alternating current is applied to between the shim 101 and the piezoelectric bodies 102 on the front and rear surfaces thereof, which are made to have the same potential, to vibrate the piezoelectric vibrator 10, so that the pumping action can be obtained. According to the bimorph piezoelectric vibrator 10, as compared with a unimorph vibrator, the amplitude of vibration can be made large, and the pump efficiency can be enhanced. Also, the O rings 24 that are respectively located at the inner peripheral surface and outer peripheral surface of the cylindrical bent part 101 b of the shim 101 are compressed in a direction parallel to the planar direction of the piezoelectric vibrator 10, and are not compressed in a direction orthogonal to the planar direction. Consequently, a liquid-tight structure over a prolonged period of time can be guaranteed without applying a force to the upper housing 20U and the lower housing 20L in direction in which they are separated from each other.

Claims (7)

1. A piezoelectric pump comprising:
a piezoelectric vibrator including a piezoelectric body stacked on at least one of the front and rear surfaces of a shim made of a thin conductive metal plate;
a housing that makes the peripheral edge of the piezoelectric vibrator liquid-tight to form a pump chamber, wherein an alternating current is applied between the shim of the piezoelectric vibrator and the piezoelectric body to vibrate the piezoelectric vibrator, thereby generating a pumping action;
a cylindrical bent part formed at a peripheral edge of the shim of the piezoelectric vibrator; and
a liquid-tight seal member interposed between the cylindrical bent part and the housing.
2. The piezoelectric pump according to claim 1,
wherein the pump chamber is formed on one side of the front and rear surfaces of the piezoelectric vibrator, and the liquid-tight seal member is disposed on an inner peripheral surface of the cylindrical bent part of the shim of the piezoelectric vibrator.
3. The piezoelectric pump according to claim 1,
wherein the pump chamber is formed on one side of the front and rear surfaces of the piezoelectric vibrator, and the liquid-tight seal member is disposed on an outer peripheral surface of the cylindrical bent part of the shim of the piezoelectric vibrator.
4. The piezoelectric pump according to claim 1,
wherein pump chambers are respectively formed on the front and rear surfaces of the piezoelectric vibrator, and liquid-tight seal members are respectively disposed on inner and outer peripheral surfaces of the cylindrical bent part of the shim of the piezoelectric vibrator.
5. The piezoelectric pump according to claim 1,
wherein the shim of the piezoelectric vibrator has an outwardly bent flange part at an end of the cylindrical bent part thereof.
6. A piezoelectric vibrator comprising a piezoelectric body stacked on at least one of the front and rear surfaces of a shim made of a conductive metal thin plate, and a cylindrical bent part formed at a peripheral edge of the shim.
7. The piezoelectric vibrator according to claim 6,
wherein the shim of the piezoelectric vibrator has an outwardly bent flange part at an end of the cylindrical bent part thereof.
US11/880,737 2006-08-09 2007-07-24 Piezoelectric pump and piezoelectric vibrator Abandoned US20080038125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-216772 2006-08-09
JP2006216772A JP2008038829A (en) 2006-08-09 2006-08-09 Piezoelectric pump and piezoelectric vibrator

Publications (1)

Publication Number Publication Date
US20080038125A1 true US20080038125A1 (en) 2008-02-14

Family

ID=39050983

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/880,737 Abandoned US20080038125A1 (en) 2006-08-09 2007-07-24 Piezoelectric pump and piezoelectric vibrator

Country Status (3)

Country Link
US (1) US20080038125A1 (en)
JP (1) JP2008038829A (en)
TW (1) TW200819631A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338072A (en) * 2011-08-31 2012-02-01 胡军 Piezoelectric ceramic drive type ultra-miniature air pump
CN102678527A (en) * 2012-05-23 2012-09-19 浙江师范大学 Piezoelectric vibrator bilateral fluid driven series connection pump
CN102678528A (en) * 2012-05-23 2012-09-19 浙江师范大学 Series-parallel hybrid-driven piezoelectric pump
CN102691693A (en) * 2012-05-23 2012-09-26 浙江师范大学 Precision stepping hydraulic cylinder driven by piezo-electricity wafer
CN102748272A (en) * 2011-04-18 2012-10-24 林淑媛 Piezoelectric pump and valve block thereof
CN102926979A (en) * 2012-07-30 2013-02-13 赛龙通信技术(深圳)有限公司 Vibrating diaphragm fan, mobile phone applying same and diaphragm vibrating and ventilating method
WO2013134056A1 (en) * 2012-03-07 2013-09-12 Kci Licensing, Inc. Disc pump with advanced actuator
US20150023821A1 (en) * 2012-02-10 2015-01-22 The Technology Partnership Plc Disc pump with advanced actuator
CN104806488A (en) * 2014-01-24 2015-07-29 胡军 Parallel piezoelectric micro-pump
US20150292497A1 (en) * 2014-04-10 2015-10-15 Stichting Nationaal Lucht-En Ruimtevaart Laboratorium Piezo pump and pressurized circuit provided therewith
CN105649961A (en) * 2016-01-15 2016-06-08 泰州职业技术学院 Piezoelectric pump with spiral-line-shaped valves
CN105872149A (en) * 2016-06-24 2016-08-17 陈银芳 Efficient heat radiation mobile phone
US20180188121A1 (en) * 2015-03-31 2018-07-05 Sony Corporation Force-sense presenting apparatus
CN111852829A (en) * 2020-08-26 2020-10-30 长春工程学院 A chip-type multi-vibrator piezoelectric hydraulic stepping driver for precise drip irrigation
US20230068420A1 (en) * 2021-08-17 2023-03-02 Facebook Technologies, Llc Fluid pump having a polyvinylidene fluoride membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686536B (en) * 2018-02-09 2020-03-01 研能科技股份有限公司 Micro fluid control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654324A (en) * 1949-09-05 1953-10-06 Ryba Anton Electromagnetic pumping device for pumping fluids
US4086036A (en) * 1976-05-17 1978-04-25 Cole-Parmer Instrument Company Diaphragm pump
US20040000843A1 (en) * 2000-09-18 2004-01-01 East W. Joe Piezoelectric actuator and pump using same
US20060056999A1 (en) * 2000-09-18 2006-03-16 Par Technologies Llc Piezoelectric actuator and pump using same
US7040869B2 (en) * 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654324A (en) * 1949-09-05 1953-10-06 Ryba Anton Electromagnetic pumping device for pumping fluids
US4086036A (en) * 1976-05-17 1978-04-25 Cole-Parmer Instrument Company Diaphragm pump
US7040869B2 (en) * 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media
US20040000843A1 (en) * 2000-09-18 2004-01-01 East W. Joe Piezoelectric actuator and pump using same
US20060056999A1 (en) * 2000-09-18 2006-03-16 Par Technologies Llc Piezoelectric actuator and pump using same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142922A1 (en) * 2011-04-18 2012-10-26 Lin Shuyuan Piezoelectric pump and valve plates thereof
CN102748272A (en) * 2011-04-18 2012-10-24 林淑媛 Piezoelectric pump and valve block thereof
CN102338072A (en) * 2011-08-31 2012-02-01 胡军 Piezoelectric ceramic drive type ultra-miniature air pump
US10087923B2 (en) * 2012-02-10 2018-10-02 The Technology Partnership Plc. Disc pump with advanced actuator
US20150023821A1 (en) * 2012-02-10 2015-01-22 The Technology Partnership Plc Disc pump with advanced actuator
US20130236338A1 (en) * 2012-03-07 2013-09-12 Kci Licensing, Inc. Disc pump with advanced actuator
WO2013134056A1 (en) * 2012-03-07 2013-09-12 Kci Licensing, Inc. Disc pump with advanced actuator
US20180058439A1 (en) * 2012-03-07 2018-03-01 Kci Licensing, Inc. Disc pump with advanced actuator
CN104066990A (en) * 2012-03-07 2014-09-24 凯希特许有限公司 Disc pump with advanced actuator
US10900480B2 (en) 2012-03-07 2021-01-26 Kci Licensing, Inc. Disc pump with advanced actuator
US9127665B2 (en) * 2012-03-07 2015-09-08 Kci Licensing, Inc. Disc pump with advanced actuator
EP3660308A1 (en) * 2012-03-07 2020-06-03 KCI Licensing, Inc. Two-cavity disc pump
US10428812B2 (en) * 2012-03-07 2019-10-01 Kci Licensing, Inc. Disc pump with advanced actuator
AU2013230494B2 (en) * 2012-03-07 2016-11-24 Solventum Intellectual Properties Company Disc pump with advanced actuator
CN102691693A (en) * 2012-05-23 2012-09-26 浙江师范大学 Precision stepping hydraulic cylinder driven by piezo-electricity wafer
CN102678528A (en) * 2012-05-23 2012-09-19 浙江师范大学 Series-parallel hybrid-driven piezoelectric pump
CN102678527A (en) * 2012-05-23 2012-09-19 浙江师范大学 Piezoelectric vibrator bilateral fluid driven series connection pump
CN102926979A (en) * 2012-07-30 2013-02-13 赛龙通信技术(深圳)有限公司 Vibrating diaphragm fan, mobile phone applying same and diaphragm vibrating and ventilating method
CN104806488A (en) * 2014-01-24 2015-07-29 胡军 Parallel piezoelectric micro-pump
US20150292497A1 (en) * 2014-04-10 2015-10-15 Stichting Nationaal Lucht-En Ruimtevaart Laboratorium Piezo pump and pressurized circuit provided therewith
US20180188121A1 (en) * 2015-03-31 2018-07-05 Sony Corporation Force-sense presenting apparatus
US10502644B2 (en) * 2015-03-31 2019-12-10 Sony Corporation Force-sense presenting apparatus
US11248970B2 (en) * 2015-03-31 2022-02-15 Sony Corporation Force-sense presenting apparatus
CN105649961A (en) * 2016-01-15 2016-06-08 泰州职业技术学院 Piezoelectric pump with spiral-line-shaped valves
CN105872149A (en) * 2016-06-24 2016-08-17 陈银芳 Efficient heat radiation mobile phone
CN111852829A (en) * 2020-08-26 2020-10-30 长春工程学院 A chip-type multi-vibrator piezoelectric hydraulic stepping driver for precise drip irrigation
US20230068420A1 (en) * 2021-08-17 2023-03-02 Facebook Technologies, Llc Fluid pump having a polyvinylidene fluoride membrane

Also Published As

Publication number Publication date
TW200819631A (en) 2008-05-01
JP2008038829A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US20080038125A1 (en) Piezoelectric pump and piezoelectric vibrator
KR101033077B1 (en) Piezoelectric pump
JP4405997B2 (en) Diaphragm pump and low-profile channel structure of diaphragm pump
JP4873014B2 (en) Piezoelectric micro blower
EP2107246B1 (en) Fluid transportation device having multiple double-chamber actuating structures
JP4957480B2 (en) Piezoelectric micro pump
JP4279662B2 (en) Small pump
US9217426B2 (en) Pump, pump arrangement and pump module
WO2007111049A1 (en) Micropump
US20070071615A1 (en) Diaphragm pump
JP4047803B2 (en) Diaphragm pump
JP2012107636A (en) Piezoelectric micropump
JP2010242501A (en) Piezoelectric pump
JP2007071070A (en) Diaphragm pump
CN108506195B (en) fluid delivery device
JP4976202B2 (en) Diaphragm pump
JP2009108715A (en) Piezoelectric pump
JP2007071099A (en) Diaphragm pump
JP2004308465A (en) Fixed quantity transfer pump
JP4966213B2 (en) Combined structure of diaphragm pump and channel plate
JP4966373B2 (en) Diaphragm pump
JP2009062947A (en) Liquid diaphragm pump
JP2006132476A (en) Piezoelectric gas pump
CN119755061A (en) Piezoelectric pump and preparation method thereof
JP2006132477A (en) Diaphragm gas pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALPS ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ONISHI, HITOSHI;KOMAI, ELICHI;REEL/FRAME:019625/0769

Effective date: 20070720

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载