US20080033237A1 - High-frequency tool for endoscope - Google Patents
High-frequency tool for endoscope Download PDFInfo
- Publication number
- US20080033237A1 US20080033237A1 US11/832,300 US83230007A US2008033237A1 US 20080033237 A1 US20080033237 A1 US 20080033237A1 US 83230007 A US83230007 A US 83230007A US 2008033237 A1 US2008033237 A1 US 2008033237A1
- Authority
- US
- United States
- Prior art keywords
- frequency
- hood
- endoscope
- electrodes
- tip end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00089—Hoods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00101—Insertion part of the endoscope body characterised by distal tip features the distal tip features being detachable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/144—Wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1495—Electrodes being detachable from a support structure
Definitions
- the present invention relates to a high-frequency tool for an endoscope.
- the high-frequency tool for the endoscope is typically attached to a tip of an inserting section of the endoscope for a treatment such as incision or coagulation of the mucous of human tissues.
- a high-frequency electrical current flows through the high-frequency tool it is generally configured such that a high-frequency electrode is attached at the tip of a flexible electrically-insulating tube, which is inserted through a treatment tool channel of the endoscope.
- a high-frequency tool configured such that a high-frequency electrode is provided to a hood that is detachably attached onto the tip of the inserting section of the endoscope has been suggested.
- An example of such a tool is disclosed in Japanese Patent Provisional Publication No. HEI 09-0187415.
- channel(s) formed in the endoscope body besides channel(s) formed in the endoscope body, another channel is provided outside the endoscope and the hood, and the high-frequency snare is inserted therethrough.
- lead lines for supplying electrical current to the electrodes of the high-frequency tool mounted on the hood may be run outside the inserting section of the endoscope.
- the high-frequency electrode is provided to the detachable hood coupled to the tip of the endoscope, a lead line supplying the electrical current to the electrode is hung around the inserting section and swings around the inserting section of the endoscope,
- the lead lines are troublesome for an operator since they may twine his/her hand and obstruct the operation of the endoscope.
- other tools such as a suction tool and the like cannot be used simultaneously.
- the present invention is advantageous in that an improved high-frequency tool for an endoscope is provided.
- the endoscope has a detachably coupled tip hood that functions as a base for the high-frequency tools, and can be used without imposing burden to both the patient and the operator.
- a high-frequency treatment tool for an endoscope which is provided with a transparent hood to be detachably coupled to a distal end of an endoscope provided with at least one electrode, at least one high-frequency electrode provided at a tip end of the transparent hood, at least one contact which is to electrically contact the at least one electrode of the endoscope, and at least one conductive member that electrically connects the at least one high-frequency electrode and the at least one contact, the at least one conductive member being arranged to be located at an inner position with respect to an outer surface of the transparent hood.
- the at least one high-frequency electrode may include a linear electrode connecting two positions spaced from each other when viewed from a front of the tip end of the transparent hood.
- the two positions may be opposite positions with respect a center of the high-frequency tool when viewed from the front of the tip end of the transparent hood.
- the linear electrode may be formed of an electrically conductive wire.
- the at least one contact includes a single contact
- the at least one conductive member may include two conductive members. Ends of the two conductive members may be connected with the linear electrode at the two positions, respectively. The other ends of the two conductive members may be connected with the single contact.
- the at least one contact may include two contacts, the at least one conductive member includes two conductive members, ends of the two conductive members being connected with the linear electrode at the two positions, respectively, the other ends of the two conductive members being connected with the two contacts, respectively, only one of the two contacts being supplied with a high-frequency electrical current.
- the at least one high-frequency electrode may include two electrodes, at least one contact may include two contacts, and the at least one conductive member may include two conductive members, the two contacts connecting the two electrodes with the two contacts, respectively,
- the two electrodes may be arrange to be spaced from each other when viewed from the tip end side of the transparent hood.
- the two electrodes may be located at opposite positions with respect a center of the high-frequency tool when viewed from the tip end side of the transparent hood.
- At least a part of the at least one conductive member may be arranged to extend along an inner wall of the transparent hood.
- At least a part of the at least one conductive member may be buried in a body of the transparent hood.
- FIG. 1 shows a cross-sectional view of a high-frequency tool according to a first embodiment of the invention and a tip portion of the inserting section of an endoscope to which the high-frequency tool is coupled;
- FIG. 2A is a front view of the high-frequency tool according to the first embodiment
- FIG. 2B is a partially cross-sectional bottom view of the high-frequency tool according to the first embodiment
- FIG. 3 is a perspective view of the high-frequency tool according to the first embodiment
- FIG. 4 is a cross-sectional view of the high-frequency tool according to the first embodiment coupled to the tip portion of the inserting section of the endoscope;
- FIG. 5 schematically shows an arrangement of the endoscope coupled with the high-frequency tool according to the first embodiment when incision of mucous of human tissues is carried out;
- FIG. 6A is a cross-sectional side view of a high-frequency tool according to a second embodiment
- FIG. 6B is a front view of the high-frequency tool according to the second embodiment.
- FIG. 7 is a perspective view of the high-frequency tool according to the second embodiment.
- FIG. 8A is a cross-sectional side view of a high-frequency tool according to a third embodiment
- FIG. 8B is a front view of the high-frequency tool according to the third embodiment.
- FIG. 9 is a perspective view of the high-frequency tool according to the third embodiment.
- FIG. 10 schematically shows a configuration of the endoscope and the high-frequency tool according to the third embodiment.
- FIG. 1 shows a cross-sectional view of a high-frequency tool according to a first embodiment of the invention and a tip portion of the inserting section 1 of an endoscope to which the high-frequency tool 10 is coupled
- FIG. 2A is a front view of the high-frequency tool 10
- FIG. 2B is a partially cross-sectional bottom view of the high-frequency tool 10
- FIG. 3 is a perspective view of the high-frequency tool 10 .
- the endoscope is a so-called front view type endoscope, which is configured such that an observing window 53 for observing an object in front of a tip end surface 52 of the endoscope is provided on the tip end surface 52 .
- the endoscope may be an oblique-front view type.
- the tip end portion has a tip end body 2 , which has the tip end surface 52 .
- Light from the object is incident on the observing window 53 and converged by an objective optical system 54 .
- the converged light forms an image of the object on a image capturing surface of a solid state imaging element 55 (e.g., a CCD: Charge Coupled Device).
- a solid state imaging element 55 e.g., a CCD: Charge Coupled Device
- an image guide fiber bundle is provided through the endoscope, and the image formed by the objective optical system may be formed on an end side surface of the light guide fiber bundle.
- 56 denotes a treatment tool insertion channel through which various tools can be inserted for treatment.
- An outlet of the treatment tool insertion channel is located on the tip end side surface 52 .
- a main body of the high-frequency tool 10 is a transparent hood 11 formed of acrylic resin or polycarbonate resin.
- An endoscope side of the hood 11 is formed to have a cylindrical shape having an inner diameter substantially equal to an outer diameter of the tip end body 2 so that the hood 11 surrounds the tip end surface 52 .
- the hood 11 is detachable coupled to the tip end body 2 .
- a stepped portion 13 is formed on the inner wall of the hood 11 .
- the end surface 52 abuts the stepped portion 13 (i.e., an end surface of a smaller diameter portion), thereby the axial position of the hood 11 with respect to the tip end body 2 is adjusted.
- a tip end half of the hood 11 is formed to have a shape which is the cylindrical shape collapsed and slightly curved in its axial direction. Further, an opening 14 is formed on a portion opposite to the collapsed-shape portion.
- the opening 14 is formed, which is located in front of the treatment tool insertion channel 56 , it is possible to locate a treatment tool inserted through the channel 56 to protrude out of the hood 11 through the opening 14 .
- a mono-polar high-frequency electrode 16 is protruded toward the front side, which is to be contacted with the mucous and the like. Since the hood 11 is formed of the transparent resin, the high-frequency electrode 16 and its surroundings can be observed from the observing window 53 through the hood 11 .
- the depth of field of the observing optical system 54 is appropriate for such an observation.
- a distance from the observation window 53 and the high-frequency electrode 16 is slightly longer than 10 mm, operability of the high-frequency tool 10 is improved.
- the high-frequency electrode 16 is formed from a conductive wire. As shown in FIGS. 1-3 , a pair of ceramic heat-resisting pipes 17 spaced from each other are penetrated through the tip end of the hood 11 in the axial direction of the tip end body 2 . The wire forming the high-frequency electrode 16 is inserted through the pair of ceramic heat-resisting pipes 17 so that the wire (i.e., the electrode 16 ) is stretched therebetween, outside the hood 11 .
- a contact 19 is protruded.
- the contact 19 contacts a contact 58 a provided on the outer surface of the tip end body 2 when the hood 11 is attached to the tip end body 2 .
- the electrode 16 and the contact 19 are connected with conductive members 18 , which are arranged to extend along the inner surface of the hood 11 . As shown in FIG. 1 , a part of each conductive member 18 is buried inside the hood 11 , at the coupling part 12 . On the inner wall of the hood 11 , at a position opposite to the contact 19 (i.e., 180° spaced from the contact 58 a ), a dummy contact 19 ′ is provided on the inner wall of the hood 11 , at a position opposite to the contact 19 (i.e., 180° spaced from the contact 58 a ), a dummy contact 19 ′ is provided on the inner wall of the hood 11 , at a position opposite to the contact 19 (i.e., 180° spaced from the contact 58 a ), a dummy contact 19 ′ is provided on the inner wall of the hood 11 , at a position opposite to the contact 19 (i.e., 180° spaced from the contact 58
- a pair of grooves 57 a and 57 b reaching the end surface 52 are formed at positions corresponding to the contact 19 and the dummy contact 19 ′.
- the electrode 58 a that contacts the contact 19 when the hood 11 is fitted on the tip end body 2 is arranged inside the groove 57 a
- the other electrode 58 b to contact the dummy contact 19 ′ is arranged inside the groove 57 b.
- Each electrode 58 a ( 58 b ) is formed from conductive and elastic metal plate.
- a distal end side half (i.e., a left-hand side half in FIG. 1 ) of each electrode 58 a ( 58 b ) is formed to have a portion which is curved to expand outward so that it interferes with the contact 19 ( 19 ′) when the hood 11 is fitted on the tip end body 2 .
- the electrodes 58 a and 58 b are pressed inward by the contact 19 and the dummy contact 19 ′ and elastically deform, respectively.
- the electrodes 58 a and 58 b return to their original shapes by the elasticity thereof with keep contacting the contact 19 and dummy contact 19 ′, respectively, as shown in FIG. 4 .
- the electrodes 58 a and 58 b function as click springs for elastically retaining the transparent hood 11 in position. That is, the hood 11 fitted on the tip end body 2 is kept in position by the elastic force of the electrodes 58 a and 58 b.
- the hood 11 In order to detach the hood 11 from the tip end body 2 , the hood 11 is pulled strongly. The, the contact 19 and the dummy contact 19 ′ slide along the grooves 57 a and 57 b with elastically deforming the electrodes 58 a and 58 b , respectively, thereby the hood 11 being detached from the tip end body 2 . After the hood 11 is detached from the tip end body 2 , the electrodes 58 a and 58 b return to their original shapes.
- a pair of lead lines 59 a and 59 b are connected, respectively.
- the transparent hood 11 is attached to the tip end body 2 , through the contact between the electrode 58 a and the contact 19 , the high-frequency electrode 16 is connected with the lead line 59 a.
- the proximal ends of the pair of lead lines 59 a and 59 b are connected with power source terminals 5 a and 5 b , respectively, as shown in FIG. 5 .
- the power source terminals 5 a and 5 b are provided on a side surface of an operation section 3 of the endoscope.
- the power source terminal 5 a is connected with one output terminal of a high-frequency power source 70 .
- the high-frequency power source 70 has a pair of high-frequency power supply cords 71 a and 71 b .
- a plug 72 a is provided, which can be detachably connected with the power source terminal 5 a.
- an opposite pole electrode plate 73 is connected, which is to be located outside a patient.
- the high-frequency electrode 16 is connected to the high-frequency power source 70 .
- the high-frequency treatment such as the excision or exsecsion of mucous of human tissues at a position where the high-frequency electrode 16 contacts can be performed.
- the lead lines 59 a and 59 b are buried in the body of the inserting section 1 (the lead line 59 b not being necessary in the first embodiment), they do not tangle around the inserting section 1 . Therefore, for both the patient and operator, the lead lines 59 a and 59 b do not cause difficulties and/or pain, which was unavoidable in the conventional endoscopes.
- FIG. 6A is a cross-sectional side view of a high-frequency tool 10 A according to a second embodiment
- FIG. 6B is a front view of the high-frequency tool 10 A shown in FIG. 6 A
- FIG. 7 is a perspective view of the high-frequency tool 10 A shown in FIGS. 6A and 6B .
- a front side portion of a transparent hood 11 A may be formed to be collapsed to have a shape of an elongated circle or rounded rectangle.
- the entire body of the hood may be formed to have another shape such as a cylindrical shape.
- the conductive members 18 are entirely buried in the body of the hood 11 A, and both ends of the conductive member are connected with contacts 19 a and 19 b , which are provided corresponding to the electrodes 58 a and 58 b (see FIG. 1 ) of the endoscope. Since the high-frequency tool 10 A shown in FIGS. 6A, 6B and 7 is a monopole type tool, only one of the contacts 19 a and 19 b is applied with the high-frequency electrical current. Specifically, when the plug 72 a is connected with the power source terminal 5 a , only the contact 19 a is supplied with the electrical current.
- FIG. 8A is a cross-sectional side view of a high-frequency tool 10 B according to a third embodiment
- FIG. 8B is a front view of the high-frequency tool 10 B shown in FIG. 8A
- FIG. 9 is a perspective view of the high-frequency tool 10 B shown in FIGS. 8A and 8B
- FIG. 10 schematically shows a configuration of the endoscope and the high-frequency tool 10 B according to the third embodiment.
- the high-frequency tool 10 B is a bipolar type tool.
- a pair of high-frequency electrodes 16 a and 16 b are protrude at the tip end side surface of a transparent hood 11 B.
- a pair of conductive members 18 a and 18 b are provided to connect the pair of high-frequency electrodes 16 a and 16 b to a pair of contacts 19 a and 19 b , respectively. Similar to the second embodiment, the pair of contacts 19 a and 19 b are located at positions corresponding to the electrodes 58 a and 58 b , respectively.
- opposite electrical voltages are applied to the pair of high-frequency electrodes 16 a and 16 b . Therefore, as shown in FIG. 10 , at the distal end of the opposite pole cord 71 b , a plug 72 b is connected, which is to be connected with the power source terminal 5 b.
- the high-frequency electrodes 16 a and 16 b are connected with the high-frequency power source 70 .
- a front side portion of a transparent hood 11 B may be formed to be collapsed to have a shape of an elongated circle or rounded rectangle similarly to the second embodiment.
- the entire body of the hood may be formed to have another shape such as a cylindrical shape.
- the pair of contacts 19 a and 19 b are arranged to be spaced by 180°.
- the invention need not be limited to such a configuration, and the positions of the contacts 19 a and 19 b may be varied. In such a case, the positions of the electrodes 58 a and 58 b may also be changed corresponding to the positions of the contacts 19 a and 19 b.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Cardiology (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
Abstract
A high-frequency treatment tool for an endoscope includes a transparent hood that can be detachably coupled to a distal end of an endoscope provided with two electrodes. Two high-frequency electrodes are provided at a tip end of the transparent hood and two contacts, each configured to electrically contact one of the two electrodes of the endoscope are provided. Two conductive members are electrically connectable to the two high-frequency electrodes and the two contacts, the two conductive members being arranged to be located at an inner position with respect to an outer surface of the transparent hood.
Description
- The present application is a Divisional Application of pending U.S. patent application Ser. No. 10/962,606, filed on Oct. 13, 2004, which claims the benefit of Japanese Patent Application No. 2003-353584, filed on Oct. 14, 2003, the subject matter of which are expressly incorporated herein by reference in their entirety.
- The present invention relates to a high-frequency tool for an endoscope.
- The high-frequency tool for the endoscope is typically attached to a tip of an inserting section of the endoscope for a treatment such as incision or coagulation of the mucous of human tissues.
- Since a high-frequency electrical current flows through the high-frequency tool, it is generally configured such that a high-frequency electrode is attached at the tip of a flexible electrically-insulating tube, which is inserted through a treatment tool channel of the endoscope.
- In some cases, however, treatment cannot be done well with the high-frequency tool configured as above. As an alternative, a high-frequency tool configured such that a high-frequency electrode is provided to a hood that is detachably attached onto the tip of the inserting section of the endoscope has been suggested. An example of such a tool is disclosed in Japanese Patent Provisional Publication No. HEI 09-0187415.
- In the above publication, besides channel(s) formed in the endoscope body, another channel is provided outside the endoscope and the hood, and the high-frequency snare is inserted therethrough. According to this structure, depending on the high-frequency tool, lead lines for supplying electrical current to the electrodes of the high-frequency tool mounted on the hood may be run outside the inserting section of the endoscope.
- According to the publication above, since the high-frequency electrode is provided to the detachable hood coupled to the tip of the endoscope, a lead line supplying the electrical current to the electrode is hung around the inserting section and swings around the inserting section of the endoscope,
- Thus, the lead lines are troublesome for an operator since they may twine his/her hand and obstruct the operation of the endoscope. However, if the lead lines are inserted into the channel for a treatment tool, other tools such as a suction tool and the like cannot be used simultaneously.
- The present invention is advantageous in that an improved high-frequency tool for an endoscope is provided. The endoscope has a detachably coupled tip hood that functions as a base for the high-frequency tools, and can be used without imposing burden to both the patient and the operator.
- According to the invention, there is provided a high-frequency treatment tool for an endoscope, which is provided with a transparent hood to be detachably coupled to a distal end of an endoscope provided with at least one electrode, at least one high-frequency electrode provided at a tip end of the transparent hood, at least one contact which is to electrically contact the at least one electrode of the endoscope, and at least one conductive member that electrically connects the at least one high-frequency electrode and the at least one contact, the at least one conductive member being arranged to be located at an inner position with respect to an outer surface of the transparent hood.
- Optionally, the at least one high-frequency electrode may include a linear electrode connecting two positions spaced from each other when viewed from a front of the tip end of the transparent hood.
- In this case, the two positions may be opposite positions with respect a center of the high-frequency tool when viewed from the front of the tip end of the transparent hood.
- Further, the linear electrode may be formed of an electrically conductive wire.
- Still optionally, the at least one contact includes a single contact, while the at least one conductive member may include two conductive members. Ends of the two conductive members may be connected with the linear electrode at the two positions, respectively. The other ends of the two conductive members may be connected with the single contact.
- Further optionally, the at least one contact may include two contacts, the at least one conductive member includes two conductive members, ends of the two conductive members being connected with the linear electrode at the two positions, respectively, the other ends of the two conductive members being connected with the two contacts, respectively, only one of the two contacts being supplied with a high-frequency electrical current.
- Still optionally, the at least one high-frequency electrode may include two electrodes, at least one contact may include two contacts, and the at least one conductive member may include two conductive members, the two contacts connecting the two electrodes with the two contacts, respectively,
- In a particular case, the two electrodes may be arrange to be spaced from each other when viewed from the tip end side of the transparent hood.
- Alternatively, the two electrodes may be located at opposite positions with respect a center of the high-frequency tool when viewed from the tip end side of the transparent hood.
- Still optionally, at least a part of the at least one conductive member may be arranged to extend along an inner wall of the transparent hood.
- Alternatively or optionally, at least a part of the at least one conductive member may be buried in a body of the transparent hood.
-
FIG. 1 shows a cross-sectional view of a high-frequency tool according to a first embodiment of the invention and a tip portion of the inserting section of an endoscope to which the high-frequency tool is coupled; -
FIG. 2A is a front view of the high-frequency tool according to the first embodiment; -
FIG. 2B is a partially cross-sectional bottom view of the high-frequency tool according to the first embodiment; -
FIG. 3 is a perspective view of the high-frequency tool according to the first embodiment; -
FIG. 4 is a cross-sectional view of the high-frequency tool according to the first embodiment coupled to the tip portion of the inserting section of the endoscope; -
FIG. 5 schematically shows an arrangement of the endoscope coupled with the high-frequency tool according to the first embodiment when incision of mucous of human tissues is carried out; -
FIG. 6A is a cross-sectional side view of a high-frequency tool according to a second embodiment; -
FIG. 6B is a front view of the high-frequency tool according to the second embodiment; -
FIG. 7 is a perspective view of the high-frequency tool according to the second embodiment; -
FIG. 8A is a cross-sectional side view of a high-frequency tool according to a third embodiment; -
FIG. 8B is a front view of the high-frequency tool according to the third embodiment; and -
FIG. 9 is a perspective view of the high-frequency tool according to the third embodiment; and -
FIG. 10 schematically shows a configuration of the endoscope and the high-frequency tool according to the third embodiment. - Referring now to the accompanying drawings, high-frequency tools according to three embodiments of the present invention will be described.
-
FIG. 1 shows a cross-sectional view of a high-frequency tool according to a first embodiment of the invention and a tip portion of the inserting section 1 of an endoscope to which the high-frequency tool 10 is coupled,FIG. 2A is a front view of the high-frequency tool 10,FIG. 2B is a partially cross-sectional bottom view of the high-frequency tool 10, andFIG. 3 is a perspective view of the high-frequency tool 10. - In the example shown in
FIG. 1 , the endoscope is a so-called front view type endoscope, which is configured such that anobserving window 53 for observing an object in front of atip end surface 52 of the endoscope is provided on thetip end surface 52. It should be noted that, according to the invention, the endoscope may be an oblique-front view type. - As shown in
FIG. 1 , the tip end portion has atip end body 2, which has thetip end surface 52. Light from the object is incident on the observingwindow 53 and converged by an objectiveoptical system 54. The converged light forms an image of the object on a image capturing surface of a solid state imaging element 55 (e.g., a CCD: Charge Coupled Device). Alternatively, instead of the imaging element, an image guide fiber bundle is provided through the endoscope, and the image formed by the objective optical system may be formed on an end side surface of the light guide fiber bundle. InFIG. 1, 56 denotes a treatment tool insertion channel through which various tools can be inserted for treatment. An outlet of the treatment tool insertion channel is located on the tipend side surface 52. - A main body of the high-
frequency tool 10 is atransparent hood 11 formed of acrylic resin or polycarbonate resin. An endoscope side of thehood 11 is formed to have a cylindrical shape having an inner diameter substantially equal to an outer diameter of thetip end body 2 so that thehood 11 surrounds thetip end surface 52. Thehood 11 is detachable coupled to thetip end body 2. - On the inner wall of the
hood 11, a steppedportion 13 is formed. As thehood 11 is fitted on thetip end body 2, theend surface 52 abuts the stepped portion 13 (i.e., an end surface of a smaller diameter portion), thereby the axial position of thehood 11 with respect to thetip end body 2 is adjusted. - A tip end half of the
hood 11 is formed to have a shape which is the cylindrical shape collapsed and slightly curved in its axial direction. Further, anopening 14 is formed on a portion opposite to the collapsed-shape portion. - Since the
opening 14 is formed, which is located in front of the treatmenttool insertion channel 56, it is possible to locate a treatment tool inserted through thechannel 56 to protrude out of thehood 11 through theopening 14. - As shown in
FIG. 1 , at the tip of thehood 11, a mono-polar high-frequency electrode 16 is protruded toward the front side, which is to be contacted with the mucous and the like. Since thehood 11 is formed of the transparent resin, the high-frequency electrode 16 and its surroundings can be observed from the observingwindow 53 through thehood 11. - It is convenient if the depth of field of the observing
optical system 54 is appropriate for such an observation. In an example, a distance from theobservation window 53 and the high-frequency electrode 16 is slightly longer than 10 mm, operability of the high-frequency tool 10 is improved. - The high-
frequency electrode 16 is formed from a conductive wire. As shown inFIGS. 1-3 , a pair of ceramic heat-resistingpipes 17 spaced from each other are penetrated through the tip end of thehood 11 in the axial direction of thetip end body 2. The wire forming the high-frequency electrode 16 is inserted through the pair of ceramic heat-resistingpipes 17 so that the wire (i.e., the electrode 16) is stretched therebetween, outside thehood 11. - On the inner surface of the
hood 11, at a position on the endoscope side with respect to the steppedportion 13, acontact 19 is protruded. Thecontact 19 contacts acontact 58 a provided on the outer surface of thetip end body 2 when thehood 11 is attached to thetip end body 2. - The
electrode 16 and thecontact 19 are connected withconductive members 18, which are arranged to extend along the inner surface of thehood 11. As shown inFIG. 1 , a part of eachconductive member 18 is buried inside thehood 11, at thecoupling part 12. On the inner wall of thehood 11, at a position opposite to the contact 19 (i.e., 180° spaced from thecontact 58 a), adummy contact 19′ is provided. As shown inFIG. 1 , thetip end body 2 is provided with anotherelectrode 58 b, which is not used in the first embodiment, and thedummy contact 19′ contacts theelectrode 58 b. - On the outer surface of the
tip end body 2, a pair ofgrooves end surface 52 are formed at positions corresponding to thecontact 19 and thedummy contact 19′. Theelectrode 58 a that contacts thecontact 19 when thehood 11 is fitted on thetip end body 2 is arranged inside thegroove 57 a, and theother electrode 58 b to contact thedummy contact 19′ is arranged inside thegroove 57 b. - Each
electrode 58 a (58 b) is formed from conductive and elastic metal plate. A distal end side half (i.e., a left-hand side half inFIG. 1 ) of eachelectrode 58 a (58 b) is formed to have a portion which is curved to expand outward so that it interferes with the contact 19 (19′) when thehood 11 is fitted on thetip end body 2. - When the
hood 11 is coupled to (i.e., fitted on) thetip end body 2, theelectrodes contact 19 and thedummy contact 19′ and elastically deform, respectively. When thehood 11 is completely coupled (i.e., when theend surface 52 contacts the stepped portion 13), theelectrodes contact 19 anddummy contact 19′, respectively, as shown inFIG. 4 . - As a result, the
electrodes transparent hood 11 in position. That is, thehood 11 fitted on thetip end body 2 is kept in position by the elastic force of theelectrodes - In order to detach the
hood 11 from thetip end body 2, thehood 11 is pulled strongly. The, thecontact 19 and thedummy contact 19′ slide along thegrooves electrodes hood 11 being detached from thetip end body 2. After thehood 11 is detached from thetip end body 2, theelectrodes - To the
electrodes lead lines transparent hood 11 is attached to thetip end body 2, through the contact between theelectrode 58 a and thecontact 19, the high-frequency electrode 16 is connected with thelead line 59 a. - The proximal ends of the pair of
lead lines power source terminals FIG. 5 . Thepower source terminals - According to the first embodiment, the
power source terminal 5 a is connected with one output terminal of a high-frequency power source 70. Specifically, the high-frequency power source 70 has a pair of high-frequencypower supply cords power supply cord 71 a, aplug 72 a is provided, which can be detachably connected with thepower source terminal 5 a. - Further, according to the first embodiment, at the distal end of the
power supply cords 71 b, an oppositepole electrode plate 73 is connected, which is to be located outside a patient. - When the
hood 11 is attached to thetip end body 2, and theplug 72 a is connected to thepower source terminal 5 a, the high-frequency electrode 16 is connected to the high-frequency power source 70. By locating the oppositepole electrode plate 73 outside the patient and locating the high-frequency electrode 16 at a target inside the cavity of the patient, the high-frequency treatment such as the excision or exsecsion of mucous of human tissues at a position where the high-frequency electrode 16 contacts can be performed. - It should be noted that, since the lead lines 59 a and 59 b are buried in the body of the inserting section 1 (the
lead line 59 b not being necessary in the first embodiment), they do not tangle around the inserting section 1. Therefore, for both the patient and operator, the lead lines 59 a and 59 b do not cause difficulties and/or pain, which was unavoidable in the conventional endoscopes. - Further, since the no lead lines are inserted through the
treatment tool channel 56, suction via thetreatment tool channel 56 or inserting a treatment tool therethrough can be performed. - The invention is not limited to the above-described exemplary embodiment, and various modifications can be made without departing from the scope of the invention.
-
FIG. 6A is a cross-sectional side view of a high-frequency tool 10A according to a second embodiment,FIG. 6B is a front view of the high-frequency tool 10A shown in FIG. 6A, andFIG. 7 is a perspective view of the high-frequency tool 10A shown inFIGS. 6A and 6B . - As shown in
FIGS. 6B and 7 , a front side portion of atransparent hood 11A may be formed to be collapsed to have a shape of an elongated circle or rounded rectangle. Alternatively, the entire body of the hood may be formed to have another shape such as a cylindrical shape. - In the second embodiment shown in
FIGS. 6A, 6B and 7, theconductive members 18 are entirely buried in the body of thehood 11A, and both ends of the conductive member are connected withcontacts electrodes FIG. 1 ) of the endoscope. Since the high-frequency tool 10A shown inFIGS. 6A, 6B and 7 is a monopole type tool, only one of thecontacts plug 72 a is connected with thepower source terminal 5 a, only thecontact 19 a is supplied with the electrical current. -
FIG. 8A is a cross-sectional side view of a high-frequency tool 10B according to a third embodiment,FIG. 8B is a front view of the high-frequency tool 10B shown inFIG. 8A , andFIG. 9 is a perspective view of the high-frequency tool 10B shown inFIGS. 8A and 8B .FIG. 10 schematically shows a configuration of the endoscope and the high-frequency tool 10B according to the third embodiment. - The high-
frequency tool 10B is a bipolar type tool. A pair of high-frequency electrodes transparent hood 11B. A pair ofconductive members frequency electrodes contacts contacts electrodes - In the third embodiment, opposite electrical voltages are applied to the pair of high-
frequency electrodes FIG. 10 , at the distal end of theopposite pole cord 71 b, aplug 72 b is connected, which is to be connected with thepower source terminal 5 b. - When the
hood 11B is coupled to thetip end body 2 of the endoscope and theplugs power source terminals frequency electrodes frequency power source 70. - As shown in
FIGS. 8B and 9 , a front side portion of atransparent hood 11B may be formed to be collapsed to have a shape of an elongated circle or rounded rectangle similarly to the second embodiment. Alternatively, the entire body of the hood may be formed to have another shape such as a cylindrical shape. - In the second and third embodiments, the pair of
contacts contacts electrodes contacts - The present disclosure relates to the subject matter contained in Japanese Patent Application No. 2003-353584, filed on Oct. 14, 2003, which is expressly incorporated herein by reference in its entirety.
Claims (9)
1. A high-frequency treatment tool for an endoscope, comprising:
a transparent hood configured to be detachably coupled to a distal end of an endoscope provided with two electrodes;
two high-frequency electrodes provided at a tip end of the transparent hood;
two contacts, each configured to electrically contact one of the two electrodes of the endoscope; and
two conductive members configured to electrically connect the two high-frequency electrodes and the two contacts, the two conductive members being arranged to be located at an inner position with respect to an outer surface of the transparent hood.
2. The high-frequency treatment tool according to claim 1 ,
wherein the two electrodes are arranged to be spaced from each other when viewed from the tip end side of the transparent hood.
3. The high-frequency treatment tool according to claim 2 ,
wherein the two electrodes are located at opposite positions with respect a center of the high-frequency tool when viewed from the front of the tip end of the transparent hood.
4. The high-frequency treatment tool according to claim 1 ,
wherein at least a part of one of the conductive members is arranged to extend along an inner wall of the transparent hood.
5. The high-frequency treatment tool according to claim 1 ,
wherein at least a part of one of the conductive members being within a body of the transparent hood.
6. The high-frequency treatment tool according to claim 1 , the two high-frequency electrodes comprising electrically conductive wires.
7. The high-frequency treatment tool according to claim 1 , further comprising a pair of spaced pipes extending through the hood and receiving individual ones of the high-frequency electrodes.
8. The high-frequency treatment tool according to claim 1 , an endoscope side of the hood configured to have a generally cylindrical shape with an inner diameter substantially equal to an outer diameter of a tip end of the endoscope.
9. The high-frequency treatment tool according to claim 1 , the hood being detachably attachable to a tip end of an endoscope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/832,300 US20080033237A1 (en) | 2003-10-14 | 2007-08-01 | High-frequency tool for endoscope |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-353584 | 2003-10-14 | ||
JP2003353584A JP4495438B2 (en) | 2003-10-14 | 2003-10-14 | Endoscopic high-frequency treatment instrument |
US10/962,606 US7303561B2 (en) | 2003-10-14 | 2004-10-13 | High-frequency tool for endoscope |
US11/832,300 US20080033237A1 (en) | 2003-10-14 | 2007-08-01 | High-frequency tool for endoscope |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,606 Division US7303561B2 (en) | 2003-10-14 | 2004-10-13 | High-frequency tool for endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080033237A1 true US20080033237A1 (en) | 2008-02-07 |
Family
ID=34419921
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,606 Expired - Fee Related US7303561B2 (en) | 2003-10-14 | 2004-10-13 | High-frequency tool for endoscope |
US11/832,300 Abandoned US20080033237A1 (en) | 2003-10-14 | 2007-08-01 | High-frequency tool for endoscope |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/962,606 Expired - Fee Related US7303561B2 (en) | 2003-10-14 | 2004-10-13 | High-frequency tool for endoscope |
Country Status (2)
Country | Link |
---|---|
US (2) | US7303561B2 (en) |
JP (1) | JP4495438B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080300460A1 (en) * | 2007-05-28 | 2008-12-04 | Hoya Corporation | Distal end portion of endoscope |
US20090281375A1 (en) * | 2008-05-09 | 2009-11-12 | Hoya Corporation | Operation Unit and Treatment Tool for Endoscope Provided with the Same |
US20130231531A1 (en) * | 2011-09-14 | 2013-09-05 | Olympus Medical Systems Corp. | Endoscopic device |
US8603105B2 (en) * | 2011-06-21 | 2013-12-10 | Lsi Solutions, Inc. | Ergonomic, lighted uterine manipulator with cautery |
US10806522B2 (en) | 2016-02-10 | 2020-10-20 | Covidien Lp | Colpotomy system for total laparoscopic hysterectomy |
CN113317865A (en) * | 2017-01-23 | 2021-08-31 | 杭州安杰思医学科技股份有限公司 | Expanding device for endoscope |
WO2022094087A1 (en) * | 2020-10-28 | 2022-05-05 | United States Endoscopy Group, Inc. | Cap for endoscope |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7497826B2 (en) * | 2003-08-27 | 2009-03-03 | Hoya Corporation | Endoscopic high-frequency knife |
JP4296141B2 (en) * | 2004-09-06 | 2009-07-15 | Hoya株式会社 | Endoscopic high-frequency treatment instrument |
CN101111200B (en) * | 2004-12-17 | 2010-05-12 | 国立大学法人京都大学 | Cap attachment and endoscope with cutting function |
JP5090334B2 (en) | 2005-03-17 | 2012-12-05 | ストライカー コーポレーション | Surgical instrument device |
US9526487B2 (en) * | 2007-12-05 | 2016-12-27 | Indiana University Research & Technology Corporation | Methods and apparatuses for delivering anchoring devices into body passage walls |
US8137345B2 (en) | 2009-01-05 | 2012-03-20 | Peak Surgical, Inc. | Electrosurgical devices for tonsillectomy and adenoidectomy |
CN103830004A (en) | 2009-02-26 | 2014-06-04 | 斯特赖克公司 | Surgical tool arrangement having handpiece usable with multiple surgical tools |
JP5491094B2 (en) * | 2009-07-31 | 2014-05-14 | 敏郎 飯塚 | Endoscope hood |
US10219826B2 (en) | 2010-07-14 | 2019-03-05 | Seg-Way Orthopaedics, Inc. | Method and apparatus for endoscopic ligament release |
WO2012170364A1 (en) | 2011-06-10 | 2012-12-13 | Medtronic, Inc. | Wire electrode devices for tonsillectomy and adenoidectomy |
CN103732170B (en) | 2011-08-19 | 2016-09-21 | 库克医学技术有限责任公司 | Ablation cap |
WO2013028381A1 (en) | 2011-08-19 | 2013-02-28 | Cook Medical Technologies Llc | Cap for attachment to an endoscope |
WO2013040175A2 (en) * | 2011-09-13 | 2013-03-21 | Tyco Health Care Group Lp | Operative element support structure and method |
US9089359B2 (en) * | 2011-12-20 | 2015-07-28 | Cook Medical Technologies Llc | Endoscopic systems and methods for resection of tissue |
CN102871726A (en) * | 2012-09-23 | 2013-01-16 | 浙江舒友仪器设备有限公司 | Minimally invasive surgical scalpel of laparoscope |
US9526570B2 (en) * | 2012-10-04 | 2016-12-27 | Cook Medical Technologies Llc | Tissue cutting cap |
CN104510527B (en) * | 2013-09-29 | 2017-04-12 | 柯惠有限合伙公司 | Medical treatment device adjustable in length and/or diameter |
WO2015042900A1 (en) * | 2013-09-29 | 2015-04-02 | Covidien Lp | Medical treatment devices having adjustable length and/or diameter |
US10092323B2 (en) | 2013-11-01 | 2018-10-09 | Lsi Solutions, Inc. | Ergonomic, lighted uterine manipulator with cautery |
WO2015069978A1 (en) | 2013-11-08 | 2015-05-14 | The Cleveland Clinic Foundation | Excising endocap |
JP6084338B2 (en) * | 2014-07-10 | 2017-02-22 | オリンパス株式会社 | Endoscopic submucosal dissection device and endoscope system |
FR3026935B1 (en) * | 2014-10-14 | 2021-04-02 | Hopitaux Paris Assist Publique | DEVICE FOR ENDOSCOPIC SUBMUCOSAL DISSECTION INCLUDING AN ELECTRIC FILAMENT. |
US10779886B2 (en) * | 2015-02-03 | 2020-09-22 | Mayo Foundation For Medical Education And Research | Thermal therapy systems and methods |
CN111465341A (en) * | 2017-10-04 | 2020-07-28 | 杜克大学 | Colposcopes, mammoscopes and inserters with curved tips and related methods |
US12073559B2 (en) | 2018-10-04 | 2024-08-27 | Duke University | Methods for automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket colposcope |
DE102019102839A1 (en) | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Irrigation fluid for resection |
DE102019102841A1 (en) * | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Detachable insulating insert for use in a resectoscope |
DE102019106430A1 (en) | 2019-03-13 | 2020-09-17 | Olympus Winter & Ibe Gmbh | Electrode instrument and resectoscope with gripping function |
DE102020118965A1 (en) * | 2020-07-17 | 2022-02-10 | Olympus Winter & Ibe Gmbh | Surgical handpiece, insulating liner for a surgical handpiece and method of handling a surgical handpiece |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250047A (en) * | 1991-10-21 | 1993-10-05 | Everest Medical Corporation | Bipolar laparoscopic instrument with replaceable electrode tip assembly |
US6086583A (en) * | 1997-06-05 | 2000-07-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electric cautery for endoscope |
US20050080411A1 (en) * | 2003-10-08 | 2005-04-14 | Pentax Corporation | Endoscope for high-frequency treatment |
US7497826B2 (en) * | 2003-08-27 | 2009-03-03 | Hoya Corporation | Endoscopic high-frequency knife |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2053691B (en) * | 1979-07-24 | 1983-04-27 | Wolf Gmbh Richard | Endoscopes |
JP3717558B2 (en) * | 1995-09-29 | 2005-11-16 | オリンパス株式会社 | Endoscope hood |
JP3587594B2 (en) | 1995-09-04 | 2004-11-10 | オリンパス株式会社 | High-frequency treatment device using endoscope hood |
JP3017451B2 (en) | 1996-11-11 | 2000-03-06 | オリンパス光学工業株式会社 | Hood for endoscope |
US6095970A (en) | 1997-02-19 | 2000-08-01 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope |
JPH10328203A (en) * | 1997-06-05 | 1998-12-15 | Asahi Optical Co Ltd | Cautery for endoscope |
JPH119610A (en) * | 1997-06-20 | 1999-01-19 | Asahi Optical Co Ltd | Burning implement for encoscope |
US6193717B1 (en) | 1997-10-16 | 2001-02-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treating instrument for endoscope |
JP3473935B2 (en) | 1998-02-24 | 2003-12-08 | 住友ベークライト株式会社 | Endoscope hood |
JP2001061855A (en) * | 1999-08-31 | 2001-03-13 | Olympus Optical Co Ltd | Cauterization apparatus for endoscope |
JP4674975B2 (en) | 2000-05-26 | 2011-04-20 | オリンパス株式会社 | Endoscope hood |
JP3722729B2 (en) * | 2001-06-04 | 2005-11-30 | オリンパス株式会社 | Endoscope treatment device |
JP4338484B2 (en) * | 2003-09-10 | 2009-10-07 | Hoya株式会社 | Endoscopic high-frequency incision tool |
-
2003
- 2003-10-14 JP JP2003353584A patent/JP4495438B2/en not_active Expired - Fee Related
-
2004
- 2004-10-13 US US10/962,606 patent/US7303561B2/en not_active Expired - Fee Related
-
2007
- 2007-08-01 US US11/832,300 patent/US20080033237A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250047A (en) * | 1991-10-21 | 1993-10-05 | Everest Medical Corporation | Bipolar laparoscopic instrument with replaceable electrode tip assembly |
US6086583A (en) * | 1997-06-05 | 2000-07-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electric cautery for endoscope |
US7497826B2 (en) * | 2003-08-27 | 2009-03-03 | Hoya Corporation | Endoscopic high-frequency knife |
US20050080411A1 (en) * | 2003-10-08 | 2005-04-14 | Pentax Corporation | Endoscope for high-frequency treatment |
US7347860B2 (en) * | 2003-10-08 | 2008-03-25 | Pentax Corporation | Endoscope for high-frequency treatment |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080300460A1 (en) * | 2007-05-28 | 2008-12-04 | Hoya Corporation | Distal end portion of endoscope |
US20090281375A1 (en) * | 2008-05-09 | 2009-11-12 | Hoya Corporation | Operation Unit and Treatment Tool for Endoscope Provided with the Same |
US8469946B2 (en) | 2008-05-09 | 2013-06-25 | Hoya Corporation | Operation unit and treatment tool for endoscope provided with the same |
US8603105B2 (en) * | 2011-06-21 | 2013-12-10 | Lsi Solutions, Inc. | Ergonomic, lighted uterine manipulator with cautery |
US20130231531A1 (en) * | 2011-09-14 | 2013-09-05 | Olympus Medical Systems Corp. | Endoscopic device |
US8882659B2 (en) * | 2011-09-14 | 2014-11-11 | Olympus Medical Systems Corp. | Endoscopic device |
US10806522B2 (en) | 2016-02-10 | 2020-10-20 | Covidien Lp | Colpotomy system for total laparoscopic hysterectomy |
CN113317865A (en) * | 2017-01-23 | 2021-08-31 | 杭州安杰思医学科技股份有限公司 | Expanding device for endoscope |
WO2022094087A1 (en) * | 2020-10-28 | 2022-05-05 | United States Endoscopy Group, Inc. | Cap for endoscope |
Also Published As
Publication number | Publication date |
---|---|
JP2005118101A (en) | 2005-05-12 |
US7303561B2 (en) | 2007-12-04 |
JP4495438B2 (en) | 2010-07-07 |
US20050080412A1 (en) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7303561B2 (en) | High-frequency tool for endoscope | |
US7347860B2 (en) | Endoscope for high-frequency treatment | |
ES3008558T3 (en) | Electrosurgical energy conveying structure and electrosurgical device incorporating the same | |
US9345384B2 (en) | Endoscope having breakable portions for preventing damage to the imaging unit | |
CN103153152B (en) | Electrical connector and endoscopic system | |
US7497826B2 (en) | Endoscopic high-frequency knife | |
US6893441B2 (en) | Urological electrosurgical resectoscope | |
US20170105797A1 (en) | Endoscopic submucosal dissection device and endoscope system | |
US4919131A (en) | Resectoscope with improved guide block and electrical plug connection | |
CN111990947B (en) | Flexible endoscope device | |
JP4424940B2 (en) | Endoscopic high-frequency incision tool | |
US20040015165A1 (en) | Treatment tool for endoscope having end effector operating like pincers | |
US6974458B2 (en) | Medical device with improved power plug connection | |
JPH0416649Y2 (en) | ||
US11503989B2 (en) | Multi-channel system | |
CN113453605B (en) | Electrode unit and endoscope system | |
JP3805652B2 (en) | Endoscopic forceps adapter | |
JP4338484B2 (en) | Endoscopic high-frequency incision tool | |
JP2023101217A (en) | Endoscope system with electrode | |
US20250120579A1 (en) | Medical devices with illumination devices and related systems and methods of use | |
JP4388204B2 (en) | Endoscope | |
CN113473930B (en) | Electrode unit and endoscope system | |
JP3439133B2 (en) | Endoscope device | |
JP2002204777A (en) | Endoscope | |
JPH0280022A (en) | Resectscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |