US20080017189A1 - Breath actuated inhaler - Google Patents
Breath actuated inhaler Download PDFInfo
- Publication number
- US20080017189A1 US20080017189A1 US11/709,535 US70953507A US2008017189A1 US 20080017189 A1 US20080017189 A1 US 20080017189A1 US 70953507 A US70953507 A US 70953507A US 2008017189 A1 US2008017189 A1 US 2008017189A1
- Authority
- US
- United States
- Prior art keywords
- metered dose
- recited
- breath actuated
- dose inhaler
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 44
- 229940071648 metered dose inhaler Drugs 0.000 claims abstract description 26
- 230000037361 pathway Effects 0.000 claims abstract description 13
- 230000001960 triggered effect Effects 0.000 claims abstract description 6
- 239000007921 spray Substances 0.000 claims description 16
- 239000000443 aerosol Substances 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000037452 priming Effects 0.000 claims description 2
- 230000006837 decompression Effects 0.000 claims 1
- 239000003814 drug Substances 0.000 description 29
- 229940079593 drug Drugs 0.000 description 23
- 239000003570 air Substances 0.000 description 13
- 239000012528 membrane Substances 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000012377 drug delivery Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000012387 aerosolization Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003434 inspiratory effect Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 208000032974 Gagging Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 206010038776 Retching Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012383 pulmonary drug delivery Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0091—Inhalators mechanically breath-triggered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/001—Particle size control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0001—Details of inhalators; Constructional features thereof
- A61M15/0021—Mouthpieces therefor
- A61M15/0025—Mouthpieces therefor with caps
- A61M15/0026—Hinged caps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
- A61M15/0068—Indicating or counting the number of dispensed doses or of remaining doses
- A61M15/008—Electronic counters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/009—Inhalators using medicine packages with incorporated spraying means, e.g. aerosol cans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0091—Inhalators mechanically breath-triggered
- A61M15/0096—Hindering inhalation before activation of the dispenser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/16—General characteristics of the apparatus with back-up system in case of failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/27—General characteristics of the apparatus preventing use
- A61M2205/276—General characteristics of the apparatus preventing use preventing unwanted use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/16—Rotating swirling helical flow, e.g. by tangential inflows
Definitions
- the present invention is directed to a breath actuated pulmonary drug delivery device used in the delivery of fluid dispensations from a drug-containing canister.
- the delivery device provides a metered dose of drug or other therapeutic agent when the patient inhales from the device.
- inhalation devices which release aerosol medication, either in a continuous spray or in a predetermined amount of medication, commonly referred to as a metered dose.
- metered dose Most common in this category are “press and breathe”, canister in actuator, delivery systems (pMDIs or pressurized metered dose inhalers).
- drug for multiple doses is stored under pressure in a canister fitted at one end with a metering valve and an associated discharge port or stem.
- puff or single dose of the stored drug is metered and delivered when the patient depresses the canister within the actuator.
- the spray is applied directly into the patient's mouth, nasal area or respiratory airways.
- these devices are actuated by the pressure applied by the user's fingers, button action, or other related manual techniques.
- a breath actuated inhaler helps eliminate the problems associated with manually actuated inhalers by making the product easier to coordinate and more patient friendly, with predictable delivery and dispersion in the respiratory airways.
- Breath-actuated inhalers U.S. Pat. Nos. 5,408,994 and 5,447,150 address the problems associated with synchronization of drug delivery with inhalation. Both commercially available devices, however, rely on either pneumatic or mechanical functions that generally limit their utility. Further, they do not incorporate added features of importance to patients, i.e. low spray velocity and indication of number of drug doses or “puffs” remaining after each use.
- the inventors have recognized that while there are metered dose inhalation devices that are activated by the breath of users, a greatly improved breath actuated device could be developed.
- the present invention is directed toward a breath actuated metered dose inhaler that overcomes many of the drawbacks associated with prior inhalers.
- a breath actuated metered dose inhaler includes a housing, a mouthpiece positioned at one end of the housing, and a mechanical release mechanism positioned at another end of the housing.
- the release mechanism is triggered by a diaphragm and the inhaler is configured such that the air inhalation pathway is unimpeded by the release mechanism.
- the velocity, with which the inhaler discharges drug and propellant, is extremely important. If too high drug particles may impact upon the throat inducing a gagging or choking reflex thus limiting the amount of drug reaching the lung. It is also important that the actuator nozzle delivering the plume provide aerosolization and deaggregation of drug in suspension to insure particle sizes appropriate for delivery to the desired target area within the lung.
- the device of the present invention may employ a nozzle of conventional design. A preferred embodiment, however, might utilize a vortex nozzle as described in U.S. Patent No. 6 , 418 , 925 , which is commonly assigned and the contents of which are expressly incorporated herein by reference, producing a slowly moving spray while meeting aerosolization requirements with less retention of drug within the structure.
- An additional feature of the invention is the inclusion of a record keeping means as described in U.S. Pat. Nos. 5,544,647 and 5,622,163, which are commonly assigned and the contents of which are expressly incorporated herein by reference.
- An electronic event counter provides the patient with a numerical indication of puffs remaining in the canister as well as the number of puffs taken in a sequence to obtain a prescribed dose. This information display assures that the patient can be kept aware of depletion of medication in time to refill their prescription.
- This breath-actuated inhaler overcomes deficiencies apparent in earlier mechanical and pneumatic devices while adding additional user benefits.
- a breath-actuated metered dose inhaler according to the invention is housed within a structure in a form to comfortably fit in the hand of the user.
- Said housing includes a mouthpiece positioned at one end and a mechanical release mechanism at another end.
- a diaphragm in the inhalation air passageway triggers the release mechanism. Inclusion of an event counter and a vortex drug delivery nozzle are facilitated by the design of the structure.
- FIG. 1 is an external view of one embodiment of the compact, hand held, breath-actuated inhaler
- FIG. 2 is a rotated, perspective view, of the breath-actuated inhaler of FIG. 1 showing the location of an electronic event counter not visible in FIG. 1 ;
- FIG. 3 is a plan view of the mechanism of the breath-actuated inhaler of FIG. 1 in the initial armed, at rest, state;
- FIG. 4 is a plan view of the mechanism of the breath-actuated inhaler of FIG. 1 in the mouthpiece cover open, armed, cocked and ready to fire state.
- FIG. 5 is a plan view of the mechanism of the breath-actuated inhaler of FIG. 1 in the actuated state
- FIG. 6 is a perspective view of the cocking lever with a mouthpiece cover showing the location of the cams for arming and cocking the inhaler;
- FIG. 7 is a perspective view of a sleeve, which is a component of the arming and cocking system contained within the bottom section of the housing;
- FIG. 8 is a perspective view of the sliding load sleeve showing the detail of the arms and right angle supporting cylinders;
- FIG. 9 is a perspective view of the toggle showing details of the functional elements
- FIG. 9A is a plan view of the toggle shown in FIG. 9 ;
- FIG. 10 is a perspective view of the escapement that releases the toggle upon initiation of an inhalation maneuver
- FIG. 11 is a perspective view of the elastomeric diaphragm, which upon inhalation displaces the escapement triggering automatic drug delivery;
- FIG. 12 is a perspective view of the spring cup positioned between main the spring and the drug canister;
- FIG. 13 is a perspective view of the membrane event counter switch trigger
- FIG. 14 is an internal plan view of breath actuated inhaler having a dose counter
- FIG. 15 is a cross-section view of a vortex nozzle design
- FIG. 16 is a plan view of a vortex nozzle.
- the breath actuated inhaler of the present invention is suitable for the delivery of practically any inhaled aerosol medication that would benefit from the controlled, precision delivery offered by a breath actuated inhaler.
- the device of the invention can generally be made using parts molded of plastic materials, with the exception of springs, generally made of metal and seals, gaskets and diaphragms made of elastomeric materials.
- Components of the electronic event counter may include semiconductor elements, battery, circuit board and display means.
- FIG. 1 depicts an external view of the hand held, breath-actuated inhaler 1 according to the present invention.
- the housing structure 100 consists of a lower section 2 with a mouthpiece 3 , and an upper section 4 .
- a bayonet type twist lock at mid portion 5 joins the lower section 2 and the upper section of the housing structure 100 .
- a cocking lever 6 Pivotally attached to lower section 2 is a cocking lever 6 which may have an integral mouthpiece cover 7 .
- a window for viewing the numerical display of event counter 8 (described in more detail below).
- a vent port 9 for inspiratory “make up” air is included between lower section 2 and upper section 4 .
- the breath-actuated inhaler 1 is rotated so as to show the position of event counter 8 in the back of lower section 2 .
- FIG. 3 is a plan view of the mechanism within the housing structure 100 of FIG. 1 in the initial, armed, at rest, state.
- Lower section 2 of housing structure 100 has a cylindrical cavity 10 in which a sleeve 12 (shown in detail in FIG. 7 ) is fitted. Projecting from the lower end 17 of sleeve 12 are two posts 14 that are displaced 180-degrees apart. Posts 14 extend through openings 16 in the bottom of lower section 2 and bear upon cam lobes 18 (shown by dotted line) on the inside of cocking lever 6 (shown in detail in FIG. 6 ). Lower and upper sections 2 , 4 are joined by means of a bayonet twist lock 5 .
- a cylindrical cavity 20 in upper section 4 of housing structure 100 retains sliding load sleeve 22 (shown in detail in FIG. 8 ), the lower end 29 of which is in contact with the upper edge 27 of sleeve 12 (see FIG. 7 ).
- a slot 23 in the upper edge of the sliding load sleeve 22 is an element of a shuttle valve for the ingress of ambient air post drug delivery (makeup air) to insure an uninhibited continuation of the inhalation maneuver.
- the upper end of load sleeve 22 has two projecting arms 24 , which at their upper extremity have cylindrical bosses 26 set at right angles to the projecting arms 24 . Cylindrical bosses 26 engage receiver slot 28 in toggle 30 . The top radius of the cylindrical bosses 26 bear against the lower surface of platen 33 to oppose the force of main spring 44 . Toggle 30 rotates on integral axle 32 , the ends of which are seated within bearing sockets molded into upper section 4 of housing structure 100 . The features of toggle 30 are best understood by the study of FIG. 9 .
- a platen 33 on toggle 30 has projecting nodes 34 at a junction with shelf 36 .
- toggle 30 is cut away at 35 to allow for passage there through of spring cup 38 that is depicted in FIG. 12 .
- Upper end 40 of spring cup 38 is a platform which projects out from spring clamp 38 , where upon the under side of platform end 40 bears nodes 34 of toggle 30 .
- Interior floor 42 forms a seat in the cylindrical portion 41 of spring cup 38 for main spring 44 , which is held captive between 42 and the inner, top, surface of upper section 4 of housing structure 100 .
- a pressurized metered dose inhaler (pMDI) canister 46 rides within sleeve 12 and load sleeve 22 .
- the lower end of spring cup 38 rests against the bottom of the pMDI canister 46 .
- Canister 46 has, at the other end, a ferrule 48 retaining a metering valve therein which discharges a discrete dose of drug upon displacement of a delivery stem 50 .
- Delivery stem 50 engages vortex nozzle 49 (described in more detail below) within mouthpiece 3 .
- the twist lock feature 5 facilitates separation of upper and lower sections 2 , 4 in order to access pMDI canister 46 for priming and vortex nozzle 49 for cleaning.
- accessing pMDI canister 46 allows a user to manually operate the inhaler 1 by pressing down on the canister 46 in order to manually operate the device in the event of a failure of the actuating mechanism.
- An escapement 52 as shown in FIG. 10 pivots about post 54 , which is retained by bearings molded in upper section 4 of housing structure 100 .
- Rollers or rounded, low friction surfaces, 56 on escapement 52 support cylindrical bars 57 projecting from the distal inner end of platen 33 of toggle 30 when the inhaler is armed and cocked.
- an opening 37 is provided in toggle 30 to permit rollers 56 to pass through upon displacement of escapement 52 .
- Elastomeric diaphragm 60 is retained within a channel 61 that is molded into upper section 4 .
- Rail 62 at the bottom edge of escapement 52 rests on stop 64 in upper section 4 in order to accurately set the angular position of the escapement 52 .
- Mounted within lower section 2 is an electronic event counter 8 . Count recordation and display occurs in event counter 8 when switch 66 is depressed by the displacement of ramp 68 of diaphragm 70 as depicted in FIG. 13 .
- the event counter 8 will be discussed in further detail below.
- FIG. 4 depicts the breath-actuated inhaler 1 of FIG. 1 in the armed, cocked, and ready to fire state.
- Cocking arm 6 with mouthpiece cover 7 has been lowered to expose mouthpiece 3 and is now ready for patient inhalation.
- Cams 18 integral with arm 6 rotate such that the short radius comes into position beneath posts 14 of sleeve 12 allowing sleeve 12 to fall away from the lower end of load sleeve 22 .
- This action permits load sleeve 22 to retract slightly allowing toggle 30 to rotate a few degrees such that cylindrical support bars 57 come to bear on rollers 56 of escapement 52 .
- the breath actuated inhaler 1 is now armed and cocked and ready to fire upon patient inhalation.
- the inhalation air pathway A-A is directed from openings 19 at the back of vortex nozzle 49 within mouthpiece 3 between canister 46 and sleeve 12 and load sleeve 22 to diaphragm 60 .
- the raised position of load sleeve 22 obstructs vent port 9 in housing structure 100 .
- FIG. 5 the mechanism of the breath-actuated inhaler 1 is in an actuated state.
- the negative pressure created upon inhalation at mouthpiece 3 is conducted through openings 19 at the rear of vortex nozzle 49 along pathway A-A from FIG. 4 , between canister 46 and sleeve 12 and load sleeve 22 to draw diaphragm 60 inward.
- the displacement of diaphragm 60 , bearing upon finger 58 of escapement 52 causes escapement 52 to pivot on post 54 , swinging support rollers 56 out from beneath cylindrical bars 57 on platen 33 of toggle 30 .
- a very small displacement of diaphragm 60 is all that is required to impart adequate motion to escapement 52 for rollers 56 to travel “over center” of bars 57 at which point the force of spring 44 further displaces escapement 52 .
- Toggle 30 rotates on axle 32 urged by the downward force of compression spring 44 upon the floor 42 of spring cup 38 .
- Platform 40 slides off of nodes 34 on toggle 30 , moves downward, and comes to rest on toggle shelf 36 .
- Integral spring cup body 38 the lower (floor) end of which is in contact with the bottom of canister 46 , drives the canister down displacing metering valve stem 50 , discharging a dose of drug into vortex nozzle 49 .
- ferrule 48 (shown in dotted line) engages ramp 68 on diaphragm 70 in the wall of lower section 2 depressing switch 66 of event counter 8 .
- the placement and angle of ramp 68 insure that the count is decremented immediately prior to or at drug delivery.
- FIG. 6 depicts the cocking lever 6 with integral mouthpiece cover 7 .
- Cocking lever 6 attaches to the lower section 2 of housing structure 100 by means of posts 27 which are molded integral with cams 18 into the interior surface of side plates 25 . Posts 27 snap into openings in lower section 2 of housing structure 100 . Rotation of cocking lever 6 raises and lowers sleeve 12 within cylindrical cavity 10 .
- sleeve 12 has an upper edge 27 that abuts the lower end 29 of load sleeve 22 in the raised, armed, position.
- Projecting downward from the bottom edge 17 of sleeve 12 are two posts 14 that pass through openings in the bottom of lower section 2 to engage cam lobes 18 on cocking lever 6 .
- Posts 14 are rounded at corners 21 to facilitate engagement with cams 18 .
- Flat regions 23 on the bottom of posts 14 bear on cam lobes 18 during the arming, cocking and firing processes.
- a slot 15 in the bottom edge 17 of sleeve 12 straddles ramp 68 of diaphragm 70 allowing free access to ferrule 48 on canister 46 for event counter 8 function.
- Toggle 30 is shown in FIG. 9 and pivots on axle 32 that rides in bearings molded into the top of upper section 4 of housing structure 100 .
- the load force of main spring 44 carried by spring cup 38 is borne on nodes 34 of toggle 30 and the cylindrical bosses 26 on load sleeve 22 act through sleeve 12 with cams 18 of cocking lever 6 , to oppose the force of main spring 44 .
- rollers 56 on escapement 52 maintain toggle 30 in the cocked state by supporting cylindrical bars 57 projecting from platen 33 .
- toggle 30 rotates on axle 32 urged by main spring 44 forcing spring cup 38 to travel downward coming to rest on shelf 36 .
- FIG. 9 a which is a different view of toggle 30 , shows the distance that spring cup 38 drops from the node 34 to the shelf 36 . This occurs as toggle 30 rotates on axle 32 when rollers 56 of escapement 52 release bars 57 of platen 33 (platen 33 moves from position A to position B).
- the 45-degree rotation of axle 32 conveys the force of main spring 44 to canister 46 .
- the displacement of canister 46 by a distance X (which is anywhere from 0.125 to 0.150 inches depending on drug canister specifications), is adequate to insure drug delivery.
- Escapement 52 is depicted in FIG. 10 .
- Axle 54 of escapement 52 is retained by bearings molded in upper section 4 of housing structure 100 .
- a finger 58 projecting from the front surface of escapement 52 touches the center 59 of diaphragm 60 when the inhaler is at rest or cocked.
- a spring (not shown) bearing upon the back of escapement 52 biases the escapement 52 toward diaphragm 60 .
- Rail 62 at the lower edge of escapement 52 rests against stop 64 in upper section 4 maintaining the proper angle for rollers 56 to support cylindrical bars 57 on platen 33 of toggle 30 when the inhaler is cocked.
- elastomeric diaphragm 60 has a center 59 that contacts finger 58 of escapement 52 . Deflection of diaphragm 60 at inhalation is the breath actuation trigger for the inhaler 1 .
- Diaphragm rim 63 is retained in a channel 61 molded in the wall of upper housing section 4 . There are vents 65 in the outside wall of upper section 4 in front of diaphragm 60 to permit unrestrained displacement.
- FIG. 12 depicts spring cup 38 that has a lower end surface 42 of cylinder 41 which retains main spring 44 between lower surface 42 and the inside top of upper section 4 of housing 100 .
- the lower end of spring cup 38 bears upon the bottom of canister 46 .
- Nodes 34 and shelf 36 of toggle 30 support top plate 40 from the bottom side. Keyways 43 in plate 40 , straddle rails molded into upper housing section 4 preventing rotation of spring cup 38 as it drives canister 46 down when fired.
- an event counter switch membrane trigger 70 is depicted.
- Membrane trigger 70 is sealed by edge bead 75 within the inner wall 71 of lower housing section 2 as shown in FIG. 3 .
- Membrane trigger 70 is molded of elastomeric material with an external ramp 68 that is deflected by contact with ferrule 48 of canister 46 as the canister 46 descends during firing. The displacement of ramp 68 depresses switch 66 of event counter 8 causing a decrement of one in the display of the doses remaining.
- toggle 30 also forces spring cup 38 upward, compressing main spring 44 as the bottom edge of 38 shifts from a seat on shelf 36 of toggle 30 to nodes 34 .
- the full, armed, spring force is born by the vertically aligned elements of spring cup 38 , toggle 30 , sleeve 12 and load sleeve 22 , and cams 18 . Escapement 52 and diaphragm 60 are effectively decoupled from the inhaler mechanism. This insures against misfire due to accidental impact or other unanticipated events.
- the breath actuated inhaler 1 of the present invention includes an event counter 8 .
- the dispensation history of the event counter 8 can include, but is not limited to, the number of doses of medication or actuations remaining in the canister, the number of actuations of the inhaler during a dosage sequence, the number of doses or actuations taken over a period of time, and the time since the last dispensation of the medication.
- FIG. 14 Depicted in FIG. 14 is a typical event counter 8 with the display 200 electrically connected thereto.
- the display 200 is shown physically mounted to the event counter 8 , however, other arrangements of the two components may be made.
- a battery 300 provides the power necessary to operate the event counter 8 and display 200 .
- the event counter switch membrane trigger 70 is also provided as part of the event counter 8 .
- the switch membrane trigger 70 is mounted external to a printed circuit board 340 and is isolated from canister 46 and mouthpiece 3 by an elastomeric edge bead seal 75 .
- the switch membrane trigger 70 is electrically connected to circuit board 340 , using wires or flexible circuitry (not shown).
- the event counter 8 is comprised of a circuit board 340 for mounting all or substantially all of the components of the event counter 8 . These components include the battery 300 , the display 200 , the switch membrane trigger 70 , and an application specific integrated circuit (ASIC).
- the event counter 8 can operate in a variety of counting modes. The manufacturer may select the mode of the apparatus during production. Alternatively, the user may select the mode in an apparatus that is enabled with two or more counting modes.
- the breath actuated inhaler 1 of the present invention also includes a vortex nozzle 49 as depicted in FIG. 3 and disclosed in commonly assigned U.S. Patent No. 6 , 418 , 925 , the contents of which are expressly incorporated herein by reference.
- the vortex nozzle 49 is designed to cause the medicament contained within canister 46 to aerosolize when ejected or sprayed into the nozzle. The aerosolization or atomization of the sprayed medicament results in a higher, more uniform dose of medication reaching a patient.
- FIG. 15 shows a design of vortex nozzle 49 .
- the vortex nozzle 49 works as follows.
- the medicament is fed, under pressure, into a swirl chamber 120 through an inlet 140 into an inlet chamber 160 having an outlet passage 180 .
- the swirl chamber 120 has a first end and a second end where the diameter of the first end is greater than the diameter of the second end.
- Outlet passage 180 is tangential to the outer circumference of swirl chamber 120 .
- the inlet 140 , particularly the outlet passage 180 is set at a specified angle which is 105-degrees from the axis through exit orifice 200 but can be perpendicular to this axis.
- the liquid entering swirl chamber 120 from outlet passage 180 imparts a high angular velocity creating a low-pressure central region that creates an air-cored vortex.
- This vortex spins through swirl chamber 120 and emerges with tangential and axial components via an exit orifice 200 .
- a hollow annular spray is produced.
- This spray exits orifice 200 as a conical sheet through nozzle face 220 .
- the air core in conjunction with the swirl motion creates tremendous shear forces to the exit orifice 200 thereby causing the exiting annular spray to break up into ligaments and drops.
- Nozzle face 220 may be flat as shown in FIG. 15 or may have other shapes, such as but not limited to, a conical or parabolic shape.
- the shape of the nozzle face 220 along with the internal angle of the swirl chamber 120 may be modified to affect the desired retention, plume force, and angle of the resulting plume.
- a corresponding nozzle back seal 240 forms the backside of the vortex chamber and is a means for manufacturing the device.
- Nozzle back seal 24 is inserted into back of the nozzle and extends to the very edge of the tangential passage 180 , which feeds liquid into swirl chamber 120 .
- Back seal 240 is preferably attached to the nozzle using ultrasonic welding.
- the back surface of the vortex nozzle 46 is flat while the main vortex chamber is shown as primarily funnel shaped with a 90-degree cone leading to the exit orifice 200 but may be modified as aforesaid.
- FIG. 16 depicts construction of a vortex nozzle where there is shown mouthpiece insert 436 , which is intended to be inserted into the mouthpiece 3 of housing structure 100 .
- Insert 436 has a forward or open end 440 and a rearward end 442 . Coupled at end 442 is nozzle 410 by way of ribs 444 , 446 and 448 . Rib 446 has an opposite rib (not shown).
- Nozzle 410 is positioned at a spaced distance from end 442 so as to create slits 434 .
- a back seal or plug 460 is provided for insertion into the rear of nozzle 410 .
- nozzle 410 and insert 436 may be fabricated integrally or separately and then coupled together in an appropriate means suitable for purpose.
- Plug 460 may be made of a somewhat resilient material as to allow for its insertion into the back of nozzle 410 . As can be seen in FIG. 3 , upon completion of insertion of insert 436 , plug 460 abuts flange 462 on lower section 2 of housing structure 100 . This assures plug 460 stops in place and also helps maintain the proper position of inlet 140 .
- the inhaler of the present invention includes several advantageous structural features.
- One such feature is the nesting of the main spring within the toggle mechanism.
- the release arm was “de-coupled” from the toggle and pivotally attached to the upper unit of the housing, where its motion during actuation does not move it into the space occupied by the main spring. This allows for the use of a main spring of increased diameter, thereby increasing the actuation force capacity of the device.
- Another advantageous feature is the interfacing of the diaphragm and release mechanism within a very small space. That is, the toggle is designed to pass over the moving escapement, within the same space envelope, without interference. Such “nesting action” reduces the space occupied by the release mechanism. Nevertheless, the escapement still has access outside the “travel envelope” for interfacing with the diaphragm and travel stops on the housing.
- Still another advantageous feature is the interfacing of the sleeves with the release mechanism.
- the two cylindrical bosses on the upper sleeve fit into mating slots on the toggle, causing the upper sleeve to move vertically in response to the pivoting motion of the toggle.
- the upper sleeve pivots the toggle to its closed position, compressing the main spring and resetting the device.
- Yet another advantageous feature of the device is that of using a “sleeve valve” to open a make-up air pathway. More specifically, the openings in the upper sleeve provide the make-up air pathway. When the device fires, the toggle rotates downward, urging the upper sleeve downward. When the upper sleeve reaches the lower limit of travel, the two openings in the sleeve align with ports in the upper housing unit. The alignment of the holes creates an open pathway to ambient air outside the device, allowing it to be drawn through the device as “make-up” air for inhalation.
- the size and shape of the openings on the upper sleeve, and/or the ports in the upper housing unit may be tailored to manage inhalation resistance and flow rate.
- An additional advantage of the device of the present invention is that the bayonet twist lock joining the upper and lower parts of the assembly provide for easy disassembly for cleaning of the nozzle orifice and, in the event of mechanical failure, operation as a conventional “press and breathe” device.
- An additional advantage is the means by which the event counter is affixed to the inhaler.
- the counter is totally isolated from the airflow path and all other components by a membrane/ramp switch seal in the wall of the inhaler body. This feature also prevents moisture from reaching the event counter during rinsing or washing of the drug delivery nozzle.
- Still another advantageous feature is the way the event counter is integrated into the device, particularly the interfacing of the event counter with the ferrule of the canister. Access to the ferrule is facilitated by the location of the release mechanism and triggering function above the canister, leaving the entire lower portion of the canister and metering valve open to access.
- the present inhaler uses a mechanical (non-vacuum) release mechanism that is located at the top of the device, above the canister.
- This approach provides for ample stored energy capacity, while avoiding the issues associated with a mechanism that “surrounds” the metering valve.
- the present inhaler uses a flexible diaphragm for triggering, instead of a rotating vane/door.
- a diaphragm is much easier to locate away from the inhalation airflow path, facilitating the placement of the release mechanism at the top of the device.
- the mechanism does not encroach upon the airflow pathway and second, there is no way components can be inhaled in the event of mechanical failure.
- the overall force capacity of the inhaler is sufficient to actuate any metering valve commonly used in pressurized metered dose inhalers (pMDIs).
- the present inhaler uses sliding sleeves to link the mouthpiece cover to the arming mechanism. Thereby, allowing the actions of opening and closing the mouthpiece cover to be used to input energy to arm the device (no separate arming lever is needed).
- the sleeves (upper and lower) also serve as an interface between the detachable upper and lower units of the device. In the rest state (mouthpiece-cover-closed), the force of the compressed main spring is resisted by the sleeves and the mouthpiece cover, which is closed past an actuation point.
- the release mechanism components physically smaller than prior release mechanism components—are not loaded in this state. Therefore, motion-induced misfires are unlikely.
- the advantages of the present invention stand in contrast to some of the disadvantages of prior breath actuated inhalers.
- the disadvantages of one type of prior breath actuated inhalers include: (1) small parts and/or features in the inhalation air pathway, allowing for the possibility of a user inhaling a mechanical component of a failed device; (2) susceptibility to inadvertent triggering; (3) triggering mechanisms that effectively prevent access to the ferrule of the canister, which is a very desirable area from which to activate a counter mechanism (FDA guidance currently recommends a counter on all new devices); (4) a triggering vane located in the mouthpiece and hinged very close to the nozzle orifice, acting as a “ceiling” just above the orifice during delivery of the dose potentially compromising spray quality and metrics of the emitted dose, (5) the use of a lever to arm the device, requiring added parts and an additional user operational step and; (6) components of the device do not separate enabling the patient to use the device as a conventional “press and breathe” in
- the disadvantages of another type of prior breath actuated inhalers include: (1) the use of a “vacuum-holdup” mechanism that retains stored energy in the compressed spring, limiting the stored energy capacity of the device according to the ambient air pressure, the volume of the device and the integrity of the vacuum seals—for this reason the device does not have enough stored energy capacity to actuate all metering valves, significantly limiting the device's applicability; (2) preloading of the metering valve, that is maintaining the medicament canister in a state in which the valve stem is partially depressed, can have undesirable side effects, such as allowing for gradual leaking of drug or propellant; and (3) dependence on the creation of a consistently reproducible vacuum seal can adversely affect reliability and manufacturing yield of the device.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Pulmonology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Medicinal Preparation (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Nozzles (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
A breath actuated metered dose inhaler including a housing, a mouthpiece positioned at one end of the housing, and a mechanical release mechanism positioned at another end of the housing. The release mechanism is triggered by a diaphragm and the inhaler is configured such that the air inhalation pathway is unimpeded by the release mechanism.
Description
- This application is a continuation of U.S. Patent Application No. 10/908,133, filed April 28, 2005, pending.
- 1. Field of the Invention
- The present invention is directed to a breath actuated pulmonary drug delivery device used in the delivery of fluid dispensations from a drug-containing canister. The delivery device provides a metered dose of drug or other therapeutic agent when the patient inhales from the device.
- 2. Description of the Prior Art
- There are a variety of inhalation devices which release aerosol medication, either in a continuous spray or in a predetermined amount of medication, commonly referred to as a metered dose. Most common in this category are “press and breathe”, canister in actuator, delivery systems (pMDIs or pressurized metered dose inhalers). In these devices, drug for multiple doses is stored under pressure in a canister fitted at one end with a metering valve and an associated discharge port or stem. When inserted into an actuator body with mouthpiece, a “puff” or single dose of the stored drug is metered and delivered when the patient depresses the canister within the actuator. The spray is applied directly into the patient's mouth, nasal area or respiratory airways. Typically, these devices are actuated by the pressure applied by the user's fingers, button action, or other related manual techniques.
- Proper use of these manually actuated devices requires that the spray be activated at the appropriate point in the inspiratory cycle, so that the medication is carried into the lungs rather than being deposited in the mouth or throat. If this actuation is not correctly coordinated with the inspiratory phase, the metered dose may be deposited differently with each actuation and potentially compromise the therapeutics and safety of the product.
- There are numerous factors leading to poor coordination of actuation of the spray and the inspiration cycle. Included in those factors are poor training, the inherent limitations of the users (if any), such as impaired physical abilities of geriatric patients or the as-yet-undeveloped skills of children, or their inability of either group to comprehend the correct way to use the device. In view of the difficulties associated with manually actuated devices, it has been recognized that there is a need for correct and accurately delivered doses for patients having either local or systemic pulmonary diseases. It has been further recognized that a reliable breath activated device would improve the quality of life for these afflicted people.
- A breath actuated inhaler helps eliminate the problems associated with manually actuated inhalers by making the product easier to coordinate and more patient friendly, with predictable delivery and dispersion in the respiratory airways. Breath-actuated inhalers (U.S. Pat. Nos. 5,408,994 and 5,447,150) address the problems associated with synchronization of drug delivery with inhalation. Both commercially available devices, however, rely on either pneumatic or mechanical functions that generally limit their utility. Further, they do not incorporate added features of importance to patients, i.e. low spray velocity and indication of number of drug doses or “puffs” remaining after each use.
- The inventors have recognized that while there are metered dose inhalation devices that are activated by the breath of users, a greatly improved breath actuated device could be developed. The present invention is directed toward a breath actuated metered dose inhaler that overcomes many of the drawbacks associated with prior inhalers.
- A breath actuated metered dose inhaler according to the invention includes a housing, a mouthpiece positioned at one end of the housing, and a mechanical release mechanism positioned at another end of the housing. The release mechanism is triggered by a diaphragm and the inhaler is configured such that the air inhalation pathway is unimpeded by the release mechanism.
- The velocity, with which the inhaler discharges drug and propellant, is extremely important. If too high drug particles may impact upon the throat inducing a gagging or choking reflex thus limiting the amount of drug reaching the lung. It is also important that the actuator nozzle delivering the plume provide aerosolization and deaggregation of drug in suspension to insure particle sizes appropriate for delivery to the desired target area within the lung. The device of the present invention may employ a nozzle of conventional design. A preferred embodiment, however, might utilize a vortex nozzle as described in U.S. Patent No. 6,418,925, which is commonly assigned and the contents of which are expressly incorporated herein by reference, producing a slowly moving spray while meeting aerosolization requirements with less retention of drug within the structure.
- An additional feature of the invention, herein, is the inclusion of a record keeping means as described in U.S. Pat. Nos. 5,544,647 and 5,622,163, which are commonly assigned and the contents of which are expressly incorporated herein by reference. An electronic event counter provides the patient with a numerical indication of puffs remaining in the canister as well as the number of puffs taken in a sequence to obtain a prescribed dose. This information display assures that the patient can be kept aware of depletion of medication in time to refill their prescription. This breath-actuated inhaler overcomes deficiencies apparent in earlier mechanical and pneumatic devices while adding additional user benefits. A breath-actuated metered dose inhaler according to the invention is housed within a structure in a form to comfortably fit in the hand of the user. Said housing includes a mouthpiece positioned at one end and a mechanical release mechanism at another end. A diaphragm in the inhalation air passageway triggers the release mechanism. Inclusion of an event counter and a vortex drug delivery nozzle are facilitated by the design of the structure.
- The following detailed description, given by way of example and not intended to limit the present invention solely thereto, will best be appreciated in conjunction with the accompanying drawings, wherein like reference numerals denote like elements and parts, in which:
-
FIG. 1 is an external view of one embodiment of the compact, hand held, breath-actuated inhaler; -
FIG. 2 is a rotated, perspective view, of the breath-actuated inhaler ofFIG. 1 showing the location of an electronic event counter not visible inFIG. 1 ; -
FIG. 3 is a plan view of the mechanism of the breath-actuated inhaler ofFIG. 1 in the initial armed, at rest, state; -
FIG. 4 is a plan view of the mechanism of the breath-actuated inhaler ofFIG. 1 in the mouthpiece cover open, armed, cocked and ready to fire state. -
FIG. 5 is a plan view of the mechanism of the breath-actuated inhaler ofFIG. 1 in the actuated state; -
FIG. 6 is a perspective view of the cocking lever with a mouthpiece cover showing the location of the cams for arming and cocking the inhaler; -
FIG. 7 is a perspective view of a sleeve, which is a component of the arming and cocking system contained within the bottom section of the housing; -
FIG. 8 is a perspective view of the sliding load sleeve showing the detail of the arms and right angle supporting cylinders; -
FIG. 9 is a perspective view of the toggle showing details of the functional elements; -
FIG. 9A is a plan view of the toggle shown inFIG. 9 ; -
FIG. 10 is a perspective view of the escapement that releases the toggle upon initiation of an inhalation maneuver; -
FIG. 11 is a perspective view of the elastomeric diaphragm, which upon inhalation displaces the escapement triggering automatic drug delivery; -
FIG. 12 is a perspective view of the spring cup positioned between main the spring and the drug canister; -
FIG. 13 is a perspective view of the membrane event counter switch trigger; -
FIG. 14 is an internal plan view of breath actuated inhaler having a dose counter; -
FIG. 15 is a cross-section view of a vortex nozzle design; and -
FIG. 16 is a plan view of a vortex nozzle. - The breath actuated inhaler of the present invention is suitable for the delivery of practically any inhaled aerosol medication that would benefit from the controlled, precision delivery offered by a breath actuated inhaler.
- Prior to discussing the advantages of the present breath actuated inhaler, the structure and function of the inhaler will be described.
- The device of the invention can generally be made using parts molded of plastic materials, with the exception of springs, generally made of metal and seals, gaskets and diaphragms made of elastomeric materials. Components of the electronic event counter may include semiconductor elements, battery, circuit board and display means.
-
FIG. 1 depicts an external view of the hand held, breath-actuatedinhaler 1 according to the present invention. Thehousing structure 100 consists of alower section 2 with amouthpiece 3, and anupper section 4. A bayonet type twist lock atmid portion 5 joins thelower section 2 and the upper section of thehousing structure 100. - Pivotally attached to lower
section 2 is a cockinglever 6 which may have anintegral mouthpiece cover 7. Not visible in this view but located on the back of theinhaler 1 inlower section 2 is a window for viewing the numerical display of event counter 8 (described in more detail below). Betweenlower section 2 andupper section 4 is included avent port 9 for inspiratory “make up” air. InFIG. 2 , the breath-actuatedinhaler 1 is rotated so as to show the position ofevent counter 8 in the back oflower section 2. -
FIG. 3 is a plan view of the mechanism within thehousing structure 100 ofFIG. 1 in the initial, armed, at rest, state.Lower section 2 ofhousing structure 100 has acylindrical cavity 10 in which a sleeve 12 (shown in detail inFIG. 7 ) is fitted. Projecting from thelower end 17 ofsleeve 12 are twoposts 14 that are displaced 180-degrees apart.Posts 14 extend throughopenings 16 in the bottom oflower section 2 and bear upon cam lobes 18 (shown by dotted line) on the inside of cocking lever 6 (shown in detail inFIG. 6 ). Lower andupper sections bayonet twist lock 5. A cylindrical cavity 20 inupper section 4 ofhousing structure 100 retains sliding load sleeve 22 (shown in detail inFIG. 8 ), thelower end 29 of which is in contact with theupper edge 27 of sleeve 12 (seeFIG. 7 ). Aslot 23 in the upper edge of the slidingload sleeve 22 is an element of a shuttle valve for the ingress of ambient air post drug delivery (makeup air) to insure an uninhibited continuation of the inhalation maneuver. - The upper end of
load sleeve 22 has two projectingarms 24, which at their upper extremity havecylindrical bosses 26 set at right angles to the projectingarms 24.Cylindrical bosses 26 engagereceiver slot 28 intoggle 30. The top radius of thecylindrical bosses 26 bear against the lower surface ofplaten 33 to oppose the force ofmain spring 44.Toggle 30 rotates onintegral axle 32, the ends of which are seated within bearing sockets molded intoupper section 4 ofhousing structure 100. The features oftoggle 30 are best understood by the study ofFIG. 9 . Aplaten 33 ontoggle 30 has projectingnodes 34 at a junction withshelf 36. The center section oftoggle 30 is cut away at 35 to allow for passage there through ofspring cup 38 that is depicted inFIG. 12 .Upper end 40 ofspring cup 38 is a platform which projects out fromspring clamp 38, where upon the under side ofplatform end 40bears nodes 34 oftoggle 30.Interior floor 42 forms a seat in thecylindrical portion 41 ofspring cup 38 formain spring 44, which is held captive between 42 and the inner, top, surface ofupper section 4 ofhousing structure 100. - A pressurized metered dose inhaler (pMDI)
canister 46 rides withinsleeve 12 andload sleeve 22. The lower end ofspring cup 38 rests against the bottom of thepMDI canister 46.Canister 46 has, at the other end, aferrule 48 retaining a metering valve therein which discharges a discrete dose of drug upon displacement of adelivery stem 50.Delivery stem 50 engages vortex nozzle 49 (described in more detail below) withinmouthpiece 3. Thetwist lock feature 5 facilitates separation of upper andlower sections pMDI canister 46 for priming andvortex nozzle 49 for cleaning. Additionally, accessingpMDI canister 46 allows a user to manually operate theinhaler 1 by pressing down on thecanister 46 in order to manually operate the device in the event of a failure of the actuating mechanism. - An
escapement 52 as shown inFIG. 10 , pivots aboutpost 54, which is retained by bearings molded inupper section 4 ofhousing structure 100. Rollers or rounded, low friction surfaces, 56 onescapement 52 supportcylindrical bars 57 projecting from the distal inner end ofplaten 33 oftoggle 30 when the inhaler is armed and cocked. As depicted inFIG. 9 , anopening 37 is provided intoggle 30 to permitrollers 56 to pass through upon displacement ofescapement 52. - A
finger 58 projecting from the face ofescapement 52 contacts thecenter 59 ofelastomeric diaphragm 60 shown inFIG. 11 .Elastomeric diaphragm 60 is retained within achannel 61 that is molded intoupper section 4.Rail 62 at the bottom edge ofescapement 52 rests onstop 64 inupper section 4 in order to accurately set the angular position of theescapement 52. Mounted withinlower section 2 is anelectronic event counter 8. Count recordation and display occurs inevent counter 8 whenswitch 66 is depressed by the displacement oframp 68 ofdiaphragm 70 as depicted inFIG. 13 . Theevent counter 8 will be discussed in further detail below. -
FIG. 4 depicts the breath-actuatedinhaler 1 ofFIG. 1 in the armed, cocked, and ready to fire state.Cocking arm 6 withmouthpiece cover 7 has been lowered to exposemouthpiece 3 and is now ready for patient inhalation.Cams 18, integral witharm 6 rotate such that the short radius comes into position beneath posts 14 ofsleeve 12 allowingsleeve 12 to fall away from the lower end ofload sleeve 22. This action permitsload sleeve 22 to retract slightly allowingtoggle 30 to rotate a few degrees such that cylindrical support bars 57 come to bear onrollers 56 ofescapement 52. The breath actuatedinhaler 1 is now armed and cocked and ready to fire upon patient inhalation. The inhalation air pathway A-A is directed fromopenings 19 at the back ofvortex nozzle 49 withinmouthpiece 3 betweencanister 46 andsleeve 12 andload sleeve 22 todiaphragm 60. In the pre-fire state, the raised position ofload sleeve 22 obstructs ventport 9 inhousing structure 100. - In
FIG. 5 , the mechanism of the breath-actuatedinhaler 1 is in an actuated state. The negative pressure created upon inhalation atmouthpiece 3 is conducted throughopenings 19 at the rear ofvortex nozzle 49 along pathway A-A fromFIG. 4 , betweencanister 46 andsleeve 12 andload sleeve 22 to drawdiaphragm 60 inward. The displacement ofdiaphragm 60, bearing uponfinger 58 ofescapement 52 causes escapement 52 to pivot onpost 54, swingingsupport rollers 56 out from beneathcylindrical bars 57 onplaten 33 oftoggle 30. A very small displacement ofdiaphragm 60 is all that is required to impart adequate motion to escapement 52 forrollers 56 to travel “over center” ofbars 57 at which point the force ofspring 44 further displacesescapement 52.Toggle 30 rotates onaxle 32 urged by the downward force ofcompression spring 44 upon thefloor 42 ofspring cup 38.Platform 40 slides off ofnodes 34 ontoggle 30, moves downward, and comes to rest ontoggle shelf 36. Integralspring cup body 38, the lower (floor) end of which is in contact with the bottom ofcanister 46, drives the canister down displacingmetering valve stem 50, discharging a dose of drug intovortex nozzle 49. Ascanister 46 descends, ferrule 48 (shown in dotted line) engagesramp 68 ondiaphragm 70 in the wall oflower section 2depressing switch 66 ofevent counter 8. The placement and angle oframp 68 insure that the count is decremented immediately prior to or at drug delivery. - Simultaneous with the displacement of
canister 46, the rotation oftoggle 30 onaxle 32 forces downcylindrical bosses 26 riding intoggle receiver slot 28.Cylindrical bosses 26 transmit the force to loadsleeve 22 viaarms 24. Motion ofload sleeve 22 downward uncovers ventport 9 inhousing structure 100, opening make up air route B-B by which an inhalation maneuver post drug delivery may continue. Ambient air enteringvent port 9 passes throughslot 23, betweencanister 46 andsleeve 12, toopenings 19 in the rear ofvortex nozzle 49. -
FIG. 6 depicts the cockinglever 6 withintegral mouthpiece cover 7.Cocking lever 6 attaches to thelower section 2 ofhousing structure 100 by means ofposts 27 which are molded integral withcams 18 into the interior surface ofside plates 25.Posts 27 snap into openings inlower section 2 ofhousing structure 100. Rotation of cockinglever 6 raises and lowerssleeve 12 withincylindrical cavity 10. - As shown in
FIG. 7 ,sleeve 12 has anupper edge 27 that abuts thelower end 29 ofload sleeve 22 in the raised, armed, position. Projecting downward from thebottom edge 17 ofsleeve 12 are twoposts 14 that pass through openings in the bottom oflower section 2 to engagecam lobes 18 on cockinglever 6.Posts 14 are rounded atcorners 21 to facilitate engagement withcams 18.Flat regions 23 on the bottom ofposts 14 bear oncam lobes 18 during the arming, cocking and firing processes. Aslot 15 in thebottom edge 17 ofsleeve 12 straddlesramp 68 ofdiaphragm 70 allowing free access toferrule 48 oncanister 46 forevent counter 8 function. - The structure of
arms 24 that extend from the upper side ofload sleeve 22 is depicted in greater detail inFIG. 8 . At the extremities ofarms 24 and at right angles thereto arecylindrical bosses 26 that engageslot 28 intoggle 30.Slot 23 in the body ofload sleeve 22 opens to thevent port 9 inhousing structure 100 betweenlower section 2 andupper section 4 for makeup air whenload sleeve 22 descends withincylindrical cavity 10 upon breath actuation. Therefore, in effect,load sleeve 22 acts as a shuttle valve in performing this function. -
Toggle 30 is shown inFIG. 9 and pivots onaxle 32 that rides in bearings molded into the top ofupper section 4 ofhousing structure 100. In the armed state, the load force ofmain spring 44 carried byspring cup 38 is borne onnodes 34 oftoggle 30 and thecylindrical bosses 26 onload sleeve 22 act throughsleeve 12 withcams 18 of cockinglever 6, to oppose the force ofmain spring 44. In the ready to fire state,rollers 56 onescapement 52 maintaintoggle 30 in the cocked state by supportingcylindrical bars 57 projecting fromplaten 33. When support atcylindrical bars 57 is removed, toggle 30 rotates onaxle 32 urged bymain spring 44 forcingspring cup 38 to travel downward coming to rest onshelf 36. The drop fromnodes 34 to toggleshelf 36 transfers, viaspring cup 38, the force ofmain spring 44 tocanister 46.Spring cup 38 moves within opening 35 intoggle 30. Anopening 37 intoggle 30 provides clearance forescapement rollers 56 whentoggle 30 rotates, as support atbars 57 slides away.Slot 28 provides translation of the rotation oftoggle 30 to a linear travel ofload sleeve 22. -
FIG. 9 a, which is a different view oftoggle 30, shows the distance thatspring cup 38 drops from thenode 34 to theshelf 36. This occurs astoggle 30 rotates onaxle 32 whenrollers 56 ofescapement 52 release bars 57 of platen 33 (platen 33 moves from position A to position B). The 45-degree rotation ofaxle 32, as illustrated, conveys the force ofmain spring 44 tocanister 46. The displacement ofcanister 46 by a distance X (which is anywhere from 0.125 to 0.150 inches depending on drug canister specifications), is adequate to insure drug delivery. -
Escapement 52 is depicted inFIG. 10 .Axle 54 ofescapement 52 is retained by bearings molded inupper section 4 ofhousing structure 100. Afinger 58 projecting from the front surface ofescapement 52 touches thecenter 59 ofdiaphragm 60 when the inhaler is at rest or cocked. A spring (not shown) bearing upon the back ofescapement 52 biases theescapement 52 towarddiaphragm 60.Rail 62 at the lower edge ofescapement 52, rests againststop 64 inupper section 4 maintaining the proper angle forrollers 56 to supportcylindrical bars 57 onplaten 33 oftoggle 30 when the inhaler is cocked. - As shown in
FIG. 1 ,elastomeric diaphragm 60 has acenter 59 thatcontacts finger 58 ofescapement 52. Deflection ofdiaphragm 60 at inhalation is the breath actuation trigger for theinhaler 1.Diaphragm rim 63 is retained in achannel 61 molded in the wall ofupper housing section 4. There arevents 65 in the outside wall ofupper section 4 in front ofdiaphragm 60 to permit unrestrained displacement. -
FIG. 12 depictsspring cup 38 that has alower end surface 42 ofcylinder 41 which retainsmain spring 44 betweenlower surface 42 and the inside top ofupper section 4 ofhousing 100. The lower end ofspring cup 38 bears upon the bottom ofcanister 46.Nodes 34 andshelf 36 oftoggle 30support top plate 40 from the bottom side.Keyways 43 inplate 40, straddle rails molded intoupper housing section 4 preventing rotation ofspring cup 38 as it drivescanister 46 down when fired. - In
FIG. 13 is depicted an event counterswitch membrane trigger 70.Membrane trigger 70 is sealed byedge bead 75 within theinner wall 71 oflower housing section 2 as shown inFIG. 3 .Membrane trigger 70 is molded of elastomeric material with anexternal ramp 68 that is deflected by contact withferrule 48 ofcanister 46 as thecanister 46 descends during firing. The displacement oframp 68 depresses switch 66 ofevent counter 8 causing a decrement of one in the display of the doses remaining. - Returning
mouthpiece cover 7 to the closed position overmouthpiece 3 after use, rearms the inhaler for the next breath actuation. Rotation of cocking lever 6 (integral with 7) in closing, raisescam lobes 18 into contact withposts 14 onsleeve 12. Assleeve 12 rises, it pushesadjacent load sleeve 22 up in such a manner thatcylindrical bosses 26 onarms 24 ofload sleeve 22force toggle 30 to rotate up to the armed, latched, position.Toggle 30 rotates onaxle 32 as it is moved upward to a position at whichescapement 52, urged by a biasing spring, returns to rest withrail 62 againststop 64. During rotation, toggle 30 also forcesspring cup 38 upward, compressingmain spring 44 as the bottom edge of 38 shifts from a seat onshelf 36 oftoggle 30 tonodes 34. The full, armed, spring force is born by the vertically aligned elements ofspring cup 38,toggle 30,sleeve 12 andload sleeve 22, andcams 18.Escapement 52 anddiaphragm 60 are effectively decoupled from the inhaler mechanism. This insures against misfire due to accidental impact or other unanticipated events. - As previously discussed, the breath actuated
inhaler 1 of the present invention includes anevent counter 8. The dispensation history of theevent counter 8 can include, but is not limited to, the number of doses of medication or actuations remaining in the canister, the number of actuations of the inhaler during a dosage sequence, the number of doses or actuations taken over a period of time, and the time since the last dispensation of the medication. - Depicted in
FIG. 14 is atypical event counter 8 with thedisplay 200 electrically connected thereto. Thedisplay 200 is shown physically mounted to theevent counter 8, however, other arrangements of the two components may be made. A battery 300 provides the power necessary to operate theevent counter 8 anddisplay 200. Also provided as part of theevent counter 8 is the event counterswitch membrane trigger 70. As shown, theswitch membrane trigger 70 is mounted external to a printedcircuit board 340 and is isolated fromcanister 46 andmouthpiece 3 by an elastomericedge bead seal 75. Theswitch membrane trigger 70 is electrically connected tocircuit board 340, using wires or flexible circuitry (not shown). - The
event counter 8 is comprised of acircuit board 340 for mounting all or substantially all of the components of theevent counter 8. These components include the battery 300, thedisplay 200, theswitch membrane trigger 70, and an application specific integrated circuit (ASIC). Theevent counter 8 can operate in a variety of counting modes. The manufacturer may select the mode of the apparatus during production. Alternatively, the user may select the mode in an apparatus that is enabled with two or more counting modes. - The breath actuated
inhaler 1 of the present invention also includes avortex nozzle 49 as depicted inFIG. 3 and disclosed in commonly assigned U.S. Patent No. 6,418,925, the contents of which are expressly incorporated herein by reference. Thevortex nozzle 49 is designed to cause the medicament contained withincanister 46 to aerosolize when ejected or sprayed into the nozzle. The aerosolization or atomization of the sprayed medicament results in a higher, more uniform dose of medication reaching a patient. -
FIG. 15 shows a design ofvortex nozzle 49. Thevortex nozzle 49 works as follows. Innozzle 49 the medicament is fed, under pressure, into aswirl chamber 120 through aninlet 140 into aninlet chamber 160 having anoutlet passage 180. Theswirl chamber 120 has a first end and a second end where the diameter of the first end is greater than the diameter of the second end.Outlet passage 180 is tangential to the outer circumference ofswirl chamber 120. Theinlet 140, particularly theoutlet passage 180 is set at a specified angle which is 105-degrees from the axis throughexit orifice 200 but can be perpendicular to this axis. The liquid enteringswirl chamber 120 fromoutlet passage 180 imparts a high angular velocity creating a low-pressure central region that creates an air-cored vortex. This vortex spins throughswirl chamber 120 and emerges with tangential and axial components via anexit orifice 200. Here, a hollow annular spray is produced. This spray exitsorifice 200 as a conical sheet throughnozzle face 220. The air core in conjunction with the swirl motion creates tremendous shear forces to theexit orifice 200 thereby causing the exiting annular spray to break up into ligaments and drops. -
Nozzle face 220 may be flat as shown inFIG. 15 or may have other shapes, such as but not limited to, a conical or parabolic shape. The shape of thenozzle face 220 along with the internal angle of theswirl chamber 120 may be modified to affect the desired retention, plume force, and angle of the resulting plume. - A corresponding nozzle back seal 240 forms the backside of the vortex chamber and is a means for manufacturing the device. Nozzle back seal 24 is inserted into back of the nozzle and extends to the very edge of the
tangential passage 180, which feeds liquid intoswirl chamber 120. Back seal 240 is preferably attached to the nozzle using ultrasonic welding. In essence, the back surface of thevortex nozzle 46 is flat while the main vortex chamber is shown as primarily funnel shaped with a 90-degree cone leading to theexit orifice 200 but may be modified as aforesaid. -
FIG. 16 depicts construction of a vortex nozzle where there is shownmouthpiece insert 436, which is intended to be inserted into themouthpiece 3 ofhousing structure 100.Insert 436 has a forward oropen end 440 and arearward end 442. Coupled atend 442 isnozzle 410 by way ofribs Rib 446 has an opposite rib (not shown).Nozzle 410 is positioned at a spaced distance fromend 442 so as to createslits 434. A back seal or plug 460 is provided for insertion into the rear ofnozzle 410. In this regard,nozzle 410 and insert 436 may be fabricated integrally or separately and then coupled together in an appropriate means suitable for purpose. The material used may be HDPE or any other appropriate material. Plug 460 may be made of a somewhat resilient material as to allow for its insertion into the back ofnozzle 410. As can be seen inFIG. 3 , upon completion of insertion ofinsert 436, plug 460 abutsflange 462 onlower section 2 ofhousing structure 100. This assures plug 460 stops in place and also helps maintain the proper position ofinlet 140. - Having described the structure and operation of the breath actuated
inhaler 1 of the present invention, the advantages of the inhaler over prior inhalers will now be discussed in detail. - The inhaler of the present invention includes several advantageous structural features. One such feature is the nesting of the main spring within the toggle mechanism. To implement this feature, the release arm was “de-coupled” from the toggle and pivotally attached to the upper unit of the housing, where its motion during actuation does not move it into the space occupied by the main spring. This allows for the use of a main spring of increased diameter, thereby increasing the actuation force capacity of the device.
- Another advantageous feature is the interfacing of the diaphragm and release mechanism within a very small space. That is, the toggle is designed to pass over the moving escapement, within the same space envelope, without interference. Such “nesting action” reduces the space occupied by the release mechanism. Nevertheless, the escapement still has access outside the “travel envelope” for interfacing with the diaphragm and travel stops on the housing.
- Still another advantageous feature is the interfacing of the sleeves with the release mechanism. In particular, the two cylindrical bosses on the upper sleeve fit into mating slots on the toggle, causing the upper sleeve to move vertically in response to the pivoting motion of the toggle. Upon closure of the mouthpiece cover, the upper sleeve pivots the toggle to its closed position, compressing the main spring and resetting the device.
- Yet another advantageous feature of the device is that of using a “sleeve valve” to open a make-up air pathway. More specifically, the openings in the upper sleeve provide the make-up air pathway. When the device fires, the toggle rotates downward, urging the upper sleeve downward. When the upper sleeve reaches the lower limit of travel, the two openings in the sleeve align with ports in the upper housing unit. The alignment of the holes creates an open pathway to ambient air outside the device, allowing it to be drawn through the device as “make-up” air for inhalation. The size and shape of the openings on the upper sleeve, and/or the ports in the upper housing unit, may be tailored to manage inhalation resistance and flow rate.
- An additional advantage of the device of the present invention is that the bayonet twist lock joining the upper and lower parts of the assembly provide for easy disassembly for cleaning of the nozzle orifice and, in the event of mechanical failure, operation as a conventional “press and breathe” device.
- An additional advantage is the means by which the event counter is affixed to the inhaler. The counter is totally isolated from the airflow path and all other components by a membrane/ramp switch seal in the wall of the inhaler body. This feature also prevents moisture from reaching the event counter during rinsing or washing of the drug delivery nozzle.
- Still another advantageous feature is the way the event counter is integrated into the device, particularly the interfacing of the event counter with the ferrule of the canister. Access to the ferrule is facilitated by the location of the release mechanism and triggering function above the canister, leaving the entire lower portion of the canister and metering valve open to access.
- The present inhaler uses a mechanical (non-vacuum) release mechanism that is located at the top of the device, above the canister. This approach provides for ample stored energy capacity, while avoiding the issues associated with a mechanism that “surrounds” the metering valve. In particular, it is noted that there are no small parts or features in the inhalation air pathway; the canister ferrule is accessible to an isolated event counter via a membrane/ramp interface; and the layout does not require compromise of any kind in the design of the vortex nozzle.
- The present inhaler uses a flexible diaphragm for triggering, instead of a rotating vane/door. A diaphragm is much easier to locate away from the inhalation airflow path, facilitating the placement of the release mechanism at the top of the device. There are two significant advantages to this arrangement, first the mechanism does not encroach upon the airflow pathway and second, there is no way components can be inhaled in the event of mechanical failure. Further, in as much as the present inhaler does not employ a vacuum “holdup” mechanism to retain stored energy in the spring, the overall force capacity of the inhaler is sufficient to actuate any metering valve commonly used in pressurized metered dose inhalers (pMDIs).
- The present inhaler uses sliding sleeves to link the mouthpiece cover to the arming mechanism. Thereby, allowing the actions of opening and closing the mouthpiece cover to be used to input energy to arm the device (no separate arming lever is needed). The sleeves (upper and lower) also serve as an interface between the detachable upper and lower units of the device. In the rest state (mouthpiece-cover-closed), the force of the compressed main spring is resisted by the sleeves and the mouthpiece cover, which is closed past an actuation point. Importantly, the release mechanism components—physically smaller than prior release mechanism components—are not loaded in this state. Therefore, motion-induced misfires are unlikely.
- The advantages of the present invention stand in contrast to some of the disadvantages of prior breath actuated inhalers. The disadvantages of one type of prior breath actuated inhalers include: (1) small parts and/or features in the inhalation air pathway, allowing for the possibility of a user inhaling a mechanical component of a failed device; (2) susceptibility to inadvertent triggering; (3) triggering mechanisms that effectively prevent access to the ferrule of the canister, which is a very desirable area from which to activate a counter mechanism (FDA guidance currently recommends a counter on all new devices); (4) a triggering vane located in the mouthpiece and hinged very close to the nozzle orifice, acting as a “ceiling” just above the orifice during delivery of the dose potentially compromising spray quality and metrics of the emitted dose, (5) the use of a lever to arm the device, requiring added parts and an additional user operational step and; (6) components of the device do not separate enabling the patient to use the device as a conventional “press and breathe” inhaler in the event of mechanical failure.
- The disadvantages of another type of prior breath actuated inhalers include: (1) the use of a “vacuum-holdup” mechanism that retains stored energy in the compressed spring, limiting the stored energy capacity of the device according to the ambient air pressure, the volume of the device and the integrity of the vacuum seals—for this reason the device does not have enough stored energy capacity to actuate all metering valves, significantly limiting the device's applicability; (2) preloading of the metering valve, that is maintaining the medicament canister in a state in which the valve stem is partially depressed, can have undesirable side effects, such as allowing for gradual leaking of drug or propellant; and (3) dependence on the creation of a consistently reproducible vacuum seal can adversely affect reliability and manufacturing yield of the device.
- Modifications to the present invention would be obvious to those of ordinary skill in the art in view of this disclosure, but would not bring the invention so modified beyond the scope of the appended claims.
Claims (22)
1. A breath actuated metered dose inhaler, comprising:
a housing;
a mouthpiece positioned at one end of the housing; and
a mechanical release mechanism positioned at another end of the housing;
whereby the release mechanism is triggered by a diaphragm and the air inhalation pathway is unimpeded by the release mechanism.
2. A breath actuated metered dose inhaler as recited in claim 1 , wherein the release mechanism comprises a spring that is compressed to store energy for the purpose of providing the metered dose.
3. A breath actuated metered dose inhaler as recited in claim 2 , wherein the release mechanism further comprises a rocker, and wherein the spring is nested within the rocker and the rocker is operable to pivot to allow compression and decompression of the spring.
4. A breath actuated metered dose inhaler as recited in claim 3 , further comprising a spring cup that provides an interface between the rocker and the spring.
5. A breath actuated metered dose inhaler as recited in claim 3 , wherein the release mechanism further comprises a release arm for impeding the rocker prior to triggering of the inhaler.
6. A breath actuated metered dose inhaler as recited in claim 5 , wherein the rocker does not bear on the release arm in a rest state and does bear on the release arm in a ready-to-fire state.
7. A breath actuated metered dose inhaler as recited in claim 5 , wherein the inhaler is triggered upon movement of the release arm by the diaphragm.
8. A breath actuated metered dose inhaler as recited in claim 3 , further comprising a mouthpiece cover and a sleeve, wherein the sleeve contacts the mouthpiece cover and the rocker, and wherein the rocker is pivoted to compress the spring in response to movement of the sleeve which is caused by movement of the mouthpiece cover.
9. A breath actuated metered dose inhaler as recited in claim 8 , wherein the sleeve includes slots for allowing make-up air to enter the housing.
10. A breath actuated metered dose inhaler as recited in claim 3 , further comprising a mouthpiece cover, a lower sleeve and an upper sleeve, wherein the lower sleeve contacts the mouthpiece cover and the upper sleeve contacts the lower sleeve and the rocker, and wherein the rocker is pivoted to compress the spring in response to movement of the upper sleeve which is caused by movement of the lower sleeve produced by movement of the mouthpiece cover.
11. A breath actuated metered dose inhaler as recited in claim 10 , wherein the upper sleeve includes slots for allowing make-up air to enter the housing.
12. A breath actuated metered dose inhaler as recited in claim 1 , further comprising an event counter for indicating the number of sprays remaining in the reservoir as well as the number of sprays taken during a dose sequence.
13. A breath actuated metered does inhaler as recited in claim 1 , wherein the housing comprises a separable upper and lower section thereby allowing for manual press and breath operation to facilitate priming or to use in the in the event of release mechanism failure.
14. A breath actuated metered dose inhaler, comprising:
a housing;
a mouthpiece positioned at one end of the housing;
a mechanical release mechanism positioned at another end of the housing;
whereby the release mechanism is triggered by a diaphragm and the air inhalation pathway is unimpeded by the release mechanism; and
a vortex nozzle positioned within the mouthpiece.
15. A breath actuated metered dose inhaler as recited in claim 14 , wherein the vortex nozzle comprises:
a nozzle housing including an inlet which opens into a swirl chamber having an outer circumference, a diameter and a first swirl chamber end having a diameter, the inlet being tangential to the outer circumference and set at an angle to the first swirl chamber end, an exit passage positioned at a second swirl chamber end having a diameter, the diameter of the first swirl chamber end having a diameter greater than the diameter of the second swirl chamber end, the exit passage communicating with a nozzle face through which an aerosol is discharged.
16. A breath actuated metered dose inhaler as recited in claim 15 , wherein the nozzle face is flat.
17. A breath actuated metered dose inhaler as recited in claim 15 , wherein the nozzle face has a conical shaped.
18. A breath actuated metered dose inhaler as recited in claim 15 , wherein the nozzle face has a parabolic shaped.
19. A breath actuated metered dose inhaler as recited in claim 14 further comprising an event counter for indicating the number of sprays remaining in the reservoir as well as the number of sprays taken during a dose sequence.
20. A breath actuated metered dose inhaler, comprising:
a housing;
a mouthpiece positioned at one end of the housing;
a mechanical release mechanism positioned at another end of the housing;
whereby the release mechanism is triggered by a diaphragm and the air inhalation pathway is unimpeded by the release mechanism; and
an event counter for indicating the number of sprays remaining in the reservoir as well as the number of sprays taken during a dose sequence.
21. A breath actuated metered dose inhaler as recited in claim 20 , wherein the event counter comprises:
a display;
a battery to provide power necessary to operate the dose counter;
an event counter switch trigger; and
a printed circuit board for mounting all or substantially all of the said dose counter components.
22. A breath actuated metered dose inhaler as recited in claim 20 further comprising a vortex nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/709,535 US20080017189A1 (en) | 2005-04-28 | 2007-02-22 | Breath actuated inhaler |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/908,133 US7219664B2 (en) | 2005-04-28 | 2005-04-28 | Breath actuated inhaler |
US11/709,535 US20080017189A1 (en) | 2005-04-28 | 2007-02-22 | Breath actuated inhaler |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/908,133 Continuation US7219664B2 (en) | 2005-04-28 | 2005-04-28 | Breath actuated inhaler |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080017189A1 true US20080017189A1 (en) | 2008-01-24 |
Family
ID=37215200
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/908,133 Expired - Fee Related US7219664B2 (en) | 2005-04-28 | 2005-04-28 | Breath actuated inhaler |
US11/709,535 Abandoned US20080017189A1 (en) | 2005-04-28 | 2007-02-22 | Breath actuated inhaler |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/908,133 Expired - Fee Related US7219664B2 (en) | 2005-04-28 | 2005-04-28 | Breath actuated inhaler |
Country Status (14)
Country | Link |
---|---|
US (2) | US7219664B2 (en) |
EP (1) | EP1877122A2 (en) |
JP (1) | JP2008538987A (en) |
KR (1) | KR20080005992A (en) |
CN (1) | CN101193676B (en) |
AU (1) | AU2006240322A1 (en) |
BR (1) | BRPI0608329A2 (en) |
CA (1) | CA2605917A1 (en) |
IL (1) | IL186698A (en) |
MX (1) | MX2007013462A (en) |
NZ (1) | NZ562769A (en) |
TW (1) | TWI316408B (en) |
WO (1) | WO2006115732A2 (en) |
ZA (1) | ZA200709046B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080135576A1 (en) * | 2004-11-19 | 2008-06-12 | Raymond Bacon | Substance Source |
US20080178872A1 (en) * | 2006-12-01 | 2008-07-31 | Perry Genova | Dose selective breath actuated inhaler |
US20080210231A1 (en) * | 2007-01-31 | 2008-09-04 | Abbott Laboratories | Metered dose inhaler cleaning method and apparatus |
US8329271B2 (en) | 2004-12-23 | 2012-12-11 | Clinical Designs Limited | Medicament container |
US8684980B2 (en) | 2010-07-15 | 2014-04-01 | Corinthian Ophthalmic, Inc. | Drop generating device |
US8733935B2 (en) | 2010-07-15 | 2014-05-27 | Corinthian Ophthalmic, Inc. | Method and system for performing remote treatment and monitoring |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US9087145B2 (en) | 2010-07-15 | 2015-07-21 | Eyenovia, Inc. | Ophthalmic drug delivery |
US9114221B2 (en) | 2009-03-10 | 2015-08-25 | Euro-Celtique S.A. | Counter |
US9179691B2 (en) | 2007-12-14 | 2015-11-10 | Aerodesigns, Inc. | Delivering aerosolizable food products |
US9415178B2 (en) | 2009-03-10 | 2016-08-16 | Euro-Celtique S.A. | Counter |
US9592355B2 (en) | 2005-09-09 | 2017-03-14 | Raymond John Bacon | Dispenser |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
WO2018091957A1 (en) * | 2016-11-18 | 2018-05-24 | Norton (Waterford) Limited | Inhaler |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
WO2018200431A1 (en) * | 2017-04-25 | 2018-11-01 | 3M Innovative Properties Company | Medicinal inhaler drive mechanism |
US10154923B2 (en) | 2010-07-15 | 2018-12-18 | Eyenovia, Inc. | Drop generating device |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US10569034B2 (en) | 2014-08-28 | 2020-02-25 | Norton (Waterford) Limited | Compliance monitoring module for a breath-actuated inhaler |
US10639194B2 (en) | 2011-12-12 | 2020-05-05 | Eyenovia, Inc. | High modulus polymeric ejector mechanism, ejector device, and methods of use |
JP2020518374A (en) * | 2017-05-04 | 2020-06-25 | スリーエム イノベイティブ プロパティズ カンパニー | Inhaler flow control mechanism |
US11040156B2 (en) | 2015-07-20 | 2021-06-22 | Pearl Therapeutics, Inc. | Aerosol delivery systems |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
US11938056B2 (en) | 2017-06-10 | 2024-03-26 | Eyenovia, Inc. | Methods and devices for handling a fluid and delivering the fluid to the eye |
US12161585B2 (en) | 2019-12-11 | 2024-12-10 | Eyenovia, Inc. | Systems and devices for delivering fluids to the eye and methods of use |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9006175B2 (en) | 1999-06-29 | 2015-04-14 | Mannkind Corporation | Potentiation of glucose elimination |
US7464706B2 (en) | 1999-07-23 | 2008-12-16 | Mannkind Corporation | Unit dose cartridge and dry powder inhaler |
US7305986B1 (en) | 1999-07-23 | 2007-12-11 | Mannkind Corporation | Unit dose capsules for use in a dry powder inhaler |
AU2003220125B2 (en) | 2002-03-20 | 2006-06-15 | Mannkind Corporation | Inhalation apparatus |
PL1786784T3 (en) | 2004-08-20 | 2011-04-29 | Mannkind Corp | Catalysis of diketopiperazine synthesis |
AU2005277041B2 (en) | 2004-08-23 | 2012-03-22 | Mannkind Corporation | Diketopiperazine salts, diketomorpholine salts or diketodioxane salts for drug delivery |
US7219664B2 (en) * | 2005-04-28 | 2007-05-22 | Kos Life Sciences, Inc. | Breath actuated inhaler |
MX381952B (en) | 2005-09-14 | 2025-03-13 | Mannkind Corp | METHOD FOR FORMULATING A DRUG BASED ON INCREASING THE AFFINITY OF ACTIVE AGENTS TOWARDS THE SURFACES OF CRYSTALLINE MICROPARTICLES. |
EP2497484A3 (en) | 2006-02-22 | 2012-11-07 | MannKind Corporation | A method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent |
US20070295329A1 (en) * | 2006-06-13 | 2007-12-27 | Lieberman Eric A | Dose indicator |
US20100275909A1 (en) * | 2006-08-22 | 2010-11-04 | Glaxo Group Limited | Actuator for an inhaler |
AU2007287548A1 (en) * | 2006-08-22 | 2008-02-28 | Glaxo Group Limited | Actuator for an inhaler |
US20110030700A1 (en) * | 2006-08-30 | 2011-02-10 | Wilson John K | Snoring Treatment and Associated Apparatus, System and Method |
US7775211B2 (en) * | 2006-08-30 | 2010-08-17 | Wilson John K | Snoring treatment and associated apparatus, system and method |
US8225790B2 (en) | 2007-01-02 | 2012-07-24 | Astrazeneca Ab | Inhaler 624 |
HUE026884T2 (en) * | 2007-02-11 | 2016-08-29 | Map Pharmaceuticals Inc | Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile |
GB2451833A (en) * | 2007-08-13 | 2009-02-18 | Bespak Plc | Electrically actuated dose counter for dispensing apparatus |
EP2197524B1 (en) * | 2007-08-21 | 2016-09-28 | Glaxo Group Limited | Drug dispenser |
WO2011163272A1 (en) | 2010-06-21 | 2011-12-29 | Mannkind Corporation | Dry powder drug delivery system and methods |
EP2082759A1 (en) * | 2008-01-24 | 2009-07-29 | Boehringer Ingelheim International GmbH | Inhaler |
CN103908712A (en) * | 2008-03-27 | 2014-07-09 | 曼金德公司 | Dry powder inhalation system |
US8485180B2 (en) | 2008-06-13 | 2013-07-16 | Mannkind Corporation | Dry powder drug delivery system |
KR101672684B1 (en) | 2008-06-13 | 2016-11-03 | 맨카인드 코포레이션 | A dry powder inhaler and system for drug delivery |
CN103751892B (en) | 2008-06-20 | 2017-03-01 | 曼金德公司 | For suction work is carried out with interactive device and the method for real-time depiction |
GB2461752B (en) * | 2008-07-14 | 2013-04-17 | Neo Inhalation Products Ltd | Metered dose inhaler |
TWI532497B (en) | 2008-08-11 | 2016-05-11 | 曼凱公司 | Ultra-fast use of insulin |
WO2010065547A1 (en) * | 2008-12-01 | 2010-06-10 | Map Pharmaceuticals, Inc. | Inhalation delivery methods and devices |
US8314106B2 (en) | 2008-12-29 | 2012-11-20 | Mannkind Corporation | Substituted diketopiperazine analogs for use as drug delivery agents |
CA2754595C (en) | 2009-03-11 | 2017-06-27 | Mannkind Corporation | Apparatus, system and method for measuring resistance of an inhaler |
GB0905840D0 (en) | 2009-04-06 | 2009-05-20 | Sagentia Ltd | Apparatus and methods |
MY186975A (en) | 2009-06-12 | 2021-08-26 | Mannkind Corp | Diketopiperazine microparticles with defined specific surface areas |
JP5784622B2 (en) | 2009-11-03 | 2015-09-24 | マンカインド コーポレ−ション | Apparatus and method for simulating inhalation activity |
US9545488B2 (en) | 2010-01-12 | 2017-01-17 | Dance Biopharm Inc. | Preservative-free single dose inhaler systems |
US20130269684A1 (en) | 2012-04-16 | 2013-10-17 | Dance Pharmaceuticals, Inc. | Methods and systems for supplying aerosolization devices with liquid medicaments |
US9180261B2 (en) | 2010-01-12 | 2015-11-10 | Dance Biopharm Inc. | Preservative free insulin formulations and systems and methods for aerosolizing |
CN102218180B (en) * | 2010-04-13 | 2013-11-06 | 健乔信元医药生技股份有限公司 | Spray counter |
US9492068B2 (en) | 2010-06-04 | 2016-11-15 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Nasal aerosol delivery system |
RU2569776C2 (en) | 2011-04-01 | 2015-11-27 | Маннкайнд Корпорейшн | Blister package for pharmaceutical cartridges |
EP2709700B1 (en) * | 2011-05-16 | 2016-06-22 | The Technology Partnership PLC | Dose container |
WO2012174472A1 (en) | 2011-06-17 | 2012-12-20 | Mannkind Corporation | High capacity diketopiperazine microparticles |
WO2013045996A1 (en) | 2011-09-26 | 2013-04-04 | Trudell Medical International | Dose counter and medication delivery device |
US9233159B2 (en) | 2011-10-24 | 2016-01-12 | Mannkind Corporation | Methods and compositions for treating pain |
GB201118845D0 (en) * | 2011-11-01 | 2011-12-14 | Euro Celtique Sa | Dispenser |
US9849255B2 (en) * | 2011-11-25 | 2017-12-26 | Mahmut Bilgic | Inhalation device |
RU2635005C2 (en) | 2012-04-24 | 2017-11-08 | Конинклейке Филипс Н.В. | Portable manual system and pressure support method |
RU2650035C2 (en) | 2012-07-12 | 2018-04-06 | Маннкайнд Корпорейшн | Dry powder drug delivery systems and methods |
JP6438393B2 (en) * | 2012-08-13 | 2018-12-12 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Handheld dyspnea treatment device including drug delivery and gas supply |
WO2014066856A1 (en) | 2012-10-26 | 2014-05-01 | Mannkind Corporation | Inhalable influenza vaccine compositions and methods |
BR112015023168B1 (en) | 2013-03-15 | 2021-08-10 | Mannkind Corporation | COMPOSITION OF 3,6-BIS(N-FUMARYL-4-AMINOBUTYL)-2,5-CRYSTALLINE DICETOPIPERAZINE, METHOD OF PRODUCTION OF 3,6-BIS(N-FUMARYL-4-AMINOBUTYL)-2,5-DICETOPIPERAZINE PARTICLES AND USE OF A CRYSTALLINE DICETOPIPERAZINE COMPOSITION |
CN103143089B (en) * | 2013-03-19 | 2015-05-27 | 卓效医疗有限公司 | Micro handheld atomizer capable of quantitatively atomizing during air suction |
MX375448B (en) | 2013-07-18 | 2025-03-06 | Mannkind Corp | HEAT-STABLE DRY POWDER PHARMACEUTICAL COMPOSITIONS AND METHODS. |
EP3030294B1 (en) | 2013-08-05 | 2020-10-07 | MannKind Corporation | Insufflation apparatus |
WO2015148905A1 (en) | 2014-03-28 | 2015-10-01 | Mannkind Corporation | Use of ultrarapid acting insulin |
US10307550B2 (en) | 2014-06-09 | 2019-06-04 | Dance Biopharm Inc. | Liquid drug cartridges and associated dispenser |
US10857313B2 (en) | 2014-07-01 | 2020-12-08 | Aerami Therapeutics, Inc. | Liquid nebulization systems and methods |
US11273271B2 (en) | 2014-07-01 | 2022-03-15 | Aerami Therapeutics, Inc. | Aerosolization system with flow restrictor and feedback device |
US10471222B2 (en) | 2014-07-01 | 2019-11-12 | Dance Biopharm Inc. | Aerosolization system with flow restrictor and feedback device |
US10561806B2 (en) | 2014-10-02 | 2020-02-18 | Mannkind Corporation | Mouthpiece cover for an inhaler |
US10953168B2 (en) | 2014-11-20 | 2021-03-23 | Cognita Labs, LLC | Method and apparatus to measure, aid and correct the use of inhalers |
USD809127S1 (en) | 2016-04-05 | 2018-01-30 | 3M Innovative Properties Company | Inhaler refill assembly |
WO2017176704A1 (en) | 2016-04-05 | 2017-10-12 | 3M Innovative Properties Company | Medicinal inhaler refill assemblies comprising a lockout mechanism |
WO2017176693A1 (en) | 2016-04-05 | 2017-10-12 | 3M Innovative Properties Company | Medicinal inhaler refill assemblies comprising a lockout override mechanism |
USD808515S1 (en) | 2016-04-05 | 2018-01-23 | 3M Innovative Properties Company | Inhaler |
FR3050115B1 (en) | 2016-04-15 | 2023-05-12 | Aptar France Sas | FLUID PRODUCT DELIVERY DEVICE SYNCHRONIZED WITH INHALATION. |
CN109475707A (en) | 2016-05-03 | 2019-03-15 | 精呼吸股份有限公司 | Droplet delivery device for delivering fluid to pulmonary system and method of use |
US11285285B2 (en) | 2016-05-03 | 2022-03-29 | Pneuma Respiratory, Inc. | Systems and methods comprising a droplet delivery device and a breathing assist device for therapeutic treatment |
WO2017192774A1 (en) | 2016-05-03 | 2017-11-09 | Pneuma Respiratory, Inc. | Methods for the systemic delivery of therapeutic agents to the pulmonary system using a droplet delivery device |
WO2017192771A1 (en) | 2016-05-03 | 2017-11-09 | Pneuma Respiratory, Inc. | Methods for generating and delivering droplets to the pulmonary system using a droplet delivery device |
US11285284B2 (en) | 2016-05-03 | 2022-03-29 | Pneuma Respiratory, Inc. | Methods for treatment of pulmonary lung diseases with improved therapeutic efficacy and improved dose efficiency |
ES2971124T3 (en) | 2016-05-19 | 2024-06-03 | Mannkind Corp | Apparatus, system and method for detecting and monitoring inhalations |
GB201615186D0 (en) * | 2016-09-07 | 2016-10-19 | 3M Innovative Properties Co | Energy storage mechanism for an inhaler |
EP3300753B2 (en) * | 2016-09-30 | 2025-02-12 | Presspart Gmbh & Co. Kg | Metered dose inhaler for dispensing aerosol doses |
CN114177442A (en) * | 2016-11-18 | 2022-03-15 | 诺顿(沃特福特)有限公司 | Drug delivery device with electronics |
GB201700727D0 (en) * | 2017-01-16 | 2017-03-01 | Teva Pharma | Inhalers and airflow adaptors therefor |
GB201702408D0 (en) * | 2017-02-14 | 2017-03-29 | Norton (Waterford) Ltd | Inhalers and related methods |
ES2913089T3 (en) * | 2017-02-20 | 2022-05-31 | Presspart Gmbh & Co Kg | metered dose inhaler |
CN107041986A (en) * | 2017-04-17 | 2017-08-15 | 苏州新劢德医疗器械科技有限公司 | Powder pharmaceutical inhalator |
GB201706504D0 (en) * | 2017-04-25 | 2017-06-07 | 3M Innovative Properties Co | Medicinal inhaler comprising a lockout override mechanism |
CA3064005C (en) | 2017-05-19 | 2023-03-07 | Pneuma Respiratory, Inc. | Dry powder delivery device and methods of use |
US11738158B2 (en) | 2017-10-04 | 2023-08-29 | Pneuma Respiratory, Inc. | Electronic breath actuated in-line droplet delivery device and methods of use |
US11458267B2 (en) | 2017-10-17 | 2022-10-04 | Pneuma Respiratory, Inc. | Nasal drug delivery apparatus and methods of use |
FR3072294B1 (en) | 2017-10-18 | 2019-10-11 | Aptar France Sas | DEVICE FOR DISPENSING FLUID PRODUCT SYNCHRONIZED WITH INHALATION. |
FR3072295B1 (en) | 2017-10-18 | 2019-10-11 | Aptar France Sas | DEVICE FOR DISPENSING FLUID PRODUCT SYNCHRONIZED WITH INHALATION. |
JP2021502178A (en) | 2017-11-08 | 2021-01-28 | ニューマ・リスパイラトリー・インコーポレイテッド | In-line droplet delivery device with a small volume ampoule and electrically actuated by breathing and how to use |
EA202092023A1 (en) * | 2018-03-07 | 2020-12-04 | Астразенека Аб | INHALER |
CN109091734A (en) * | 2018-10-30 | 2018-12-28 | 徐州医科大学 | A kind of inspiration trigger and have the aerosol suction apparatus of tally function |
FR3089127B1 (en) * | 2018-11-30 | 2020-11-20 | Aptar France Sas | Fluid dispenser device synchronized with inhalation |
CN109621111B (en) * | 2019-01-28 | 2024-01-16 | 宁波睿爱产品设计有限公司 | Breath actuated inhaler |
FR3092252B1 (en) | 2019-02-04 | 2021-01-22 | Aptar France Sas | Fluid dispenser device synchronized with inhalation |
FR3092250B1 (en) | 2019-02-04 | 2021-01-22 | Aptar France Sas | Fluid dispenser device synchronized with inhalation |
FR3092251B1 (en) | 2019-02-04 | 2021-01-22 | Aptar France Sas | Fluid dispenser device synchronized with inhalation and method of assembling said device |
CA3135169A1 (en) * | 2019-03-27 | 2020-10-01 | Zeteo Biomedical, Llc | Hand operated devices for administration of a medicament |
EP3753432A1 (en) * | 2019-06-21 | 2020-12-23 | Nerudia Limited | Aerosol delivery device |
US20220265939A1 (en) * | 2019-07-12 | 2022-08-25 | Sanofi | Fluid dispensing device |
WO2021023878A1 (en) | 2019-08-08 | 2021-02-11 | Jt International S.A. | Aerosol generation device having closure with rigid biasing element |
US11883582B2 (en) * | 2019-10-17 | 2024-01-30 | Astrazeneca Ab | Inhaler |
US12185752B2 (en) | 2020-07-21 | 2025-01-07 | Rai Strategic Holdings, Inc. | Case for aerosol generation device |
US10994083B1 (en) | 2020-10-02 | 2021-05-04 | Bahram Kam Habibi | Electronic inhaler |
JP2024525200A (en) | 2021-06-22 | 2024-07-10 | ニューマ・リスパイラトリー・インコーポレイテッド | Droplet delivery device using push ejection |
CN115120820B (en) * | 2022-07-04 | 2022-12-30 | 上海华瑞气雾剂有限公司 | Lever-type breath-actuated inhaler device |
CN115040735B (en) * | 2022-07-04 | 2022-11-15 | 上海华瑞气雾剂有限公司 | Cam-type breath-actuated inhaler device |
KR20250038748A (en) | 2022-07-18 | 2025-03-19 | 뉴마 레스퍼러토리 인코포레이티드 | Small step size and high resolution aerosol generation system and method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3636949A (en) * | 1969-08-08 | 1972-01-25 | Armstrong Kropp Dev Corp | Inhalation-initiated aerosol dispenser |
US3789843A (en) * | 1971-02-25 | 1974-02-05 | Armstrong Kropp Dev Corp | Breath-actuated aerosol dispenser |
US5020527A (en) * | 1990-02-20 | 1991-06-04 | Texax-Glynn Corporation | Inhaler device with counter/timer means |
US5178325A (en) * | 1991-06-25 | 1993-01-12 | Union Carbide Chemicals & Plastics Technology Corporation | Apparatus and methods for application of coatings with compressible fluids as diluent by spraying from an orifice |
US5408994A (en) * | 1990-11-14 | 1995-04-25 | Minnesota Mining And Manufacturing Company | Inhalation device |
US5447150A (en) * | 1990-12-01 | 1995-09-05 | Norton Healthcare Limited | Medicament dispensing device |
US5544647A (en) * | 1994-11-29 | 1996-08-13 | Iep Group, Inc. | Metered dose inhalator |
US5622163A (en) * | 1994-11-29 | 1997-04-22 | Iep Group, Inc. | Counter for fluid dispensers |
US6354290B1 (en) * | 1998-12-11 | 2002-03-12 | Bespak Plc | Inhalation apparatus |
US6418925B1 (en) * | 1999-05-20 | 2002-07-16 | Iep Pharmaceutical Devices Inc. | Low spray force, low retention atomization system |
US6581590B1 (en) * | 2000-03-21 | 2003-06-24 | Iep Pharmaceutical Devices Inc. | Inhalation actuated device |
US6637432B2 (en) * | 2000-05-09 | 2003-10-28 | Iep Pharmaceutical Devices Inc. | Inhalation actuated device |
US6672304B1 (en) * | 1995-06-08 | 2004-01-06 | Innovative Devices, Llc | Inhalation actuated device for use with metered dose inhalers (MDIs) |
US6718972B2 (en) * | 2000-06-23 | 2004-04-13 | Ivax Corporation | Dose metering system for medicament inhaler |
US6981499B2 (en) * | 1999-12-11 | 2006-01-03 | Glaxo Group Limited | Medicament dispenser |
US7219664B2 (en) * | 2005-04-28 | 2007-05-22 | Kos Life Sciences, Inc. | Breath actuated inhaler |
US7383837B2 (en) * | 2000-08-29 | 2008-06-10 | Smithkline Beecham Corporation | Inhalation device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9211436D0 (en) * | 1992-05-29 | 1992-07-15 | Norton Healthcare Ltd | Dose indicating device |
CN2235825Y (en) * | 1995-11-17 | 1996-09-25 | 蒋有成 | Medicine-applicating device for respiratory tract |
GB2323040A (en) * | 1997-03-14 | 1998-09-16 | Bespak Plc | Inhalation apparatus |
EP1392382B1 (en) * | 2001-05-10 | 2008-08-06 | Vectura Delivery Devices Limited | Inhaler |
KR101124007B1 (en) * | 2003-03-04 | 2012-03-23 | 노턴 헬스케어 리미티드 | A medicament inhaler assembly |
-
2005
- 2005-04-28 US US10/908,133 patent/US7219664B2/en not_active Expired - Fee Related
-
2006
- 2006-04-07 AU AU2006240322A patent/AU2006240322A1/en not_active Abandoned
- 2006-04-07 MX MX2007013462A patent/MX2007013462A/en active IP Right Grant
- 2006-04-07 CA CA002605917A patent/CA2605917A1/en not_active Abandoned
- 2006-04-07 KR KR1020077027696A patent/KR20080005992A/en not_active Ceased
- 2006-04-07 WO PCT/US2006/013087 patent/WO2006115732A2/en active Application Filing
- 2006-04-07 EP EP06758288A patent/EP1877122A2/en not_active Withdrawn
- 2006-04-07 JP JP2008508884A patent/JP2008538987A/en active Pending
- 2006-04-07 NZ NZ562769A patent/NZ562769A/en not_active IP Right Cessation
- 2006-04-07 BR BRPI0608329-3A patent/BRPI0608329A2/en not_active Application Discontinuation
- 2006-04-07 CN CN2006800141145A patent/CN101193676B/en not_active Expired - Fee Related
- 2006-04-21 TW TW095114358A patent/TWI316408B/en not_active IP Right Cessation
-
2007
- 2007-02-22 US US11/709,535 patent/US20080017189A1/en not_active Abandoned
- 2007-10-16 IL IL186698A patent/IL186698A/en not_active IP Right Cessation
- 2007-10-19 ZA ZA200709046A patent/ZA200709046B/en unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3636949A (en) * | 1969-08-08 | 1972-01-25 | Armstrong Kropp Dev Corp | Inhalation-initiated aerosol dispenser |
US3789843A (en) * | 1971-02-25 | 1974-02-05 | Armstrong Kropp Dev Corp | Breath-actuated aerosol dispenser |
US5020527A (en) * | 1990-02-20 | 1991-06-04 | Texax-Glynn Corporation | Inhaler device with counter/timer means |
US5408994A (en) * | 1990-11-14 | 1995-04-25 | Minnesota Mining And Manufacturing Company | Inhalation device |
US5447150A (en) * | 1990-12-01 | 1995-09-05 | Norton Healthcare Limited | Medicament dispensing device |
US5178325A (en) * | 1991-06-25 | 1993-01-12 | Union Carbide Chemicals & Plastics Technology Corporation | Apparatus and methods for application of coatings with compressible fluids as diluent by spraying from an orifice |
US5544647A (en) * | 1994-11-29 | 1996-08-13 | Iep Group, Inc. | Metered dose inhalator |
US5622163A (en) * | 1994-11-29 | 1997-04-22 | Iep Group, Inc. | Counter for fluid dispensers |
US6672304B1 (en) * | 1995-06-08 | 2004-01-06 | Innovative Devices, Llc | Inhalation actuated device for use with metered dose inhalers (MDIs) |
US6354290B1 (en) * | 1998-12-11 | 2002-03-12 | Bespak Plc | Inhalation apparatus |
US6418925B1 (en) * | 1999-05-20 | 2002-07-16 | Iep Pharmaceutical Devices Inc. | Low spray force, low retention atomization system |
US6981499B2 (en) * | 1999-12-11 | 2006-01-03 | Glaxo Group Limited | Medicament dispenser |
US6581590B1 (en) * | 2000-03-21 | 2003-06-24 | Iep Pharmaceutical Devices Inc. | Inhalation actuated device |
US6637432B2 (en) * | 2000-05-09 | 2003-10-28 | Iep Pharmaceutical Devices Inc. | Inhalation actuated device |
US6718972B2 (en) * | 2000-06-23 | 2004-04-13 | Ivax Corporation | Dose metering system for medicament inhaler |
US7383837B2 (en) * | 2000-08-29 | 2008-06-10 | Smithkline Beecham Corporation | Inhalation device |
US7219664B2 (en) * | 2005-04-28 | 2007-05-22 | Kos Life Sciences, Inc. | Breath actuated inhaler |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080135576A1 (en) * | 2004-11-19 | 2008-06-12 | Raymond Bacon | Substance Source |
US9707360B2 (en) | 2004-11-19 | 2017-07-18 | Clinical Designs Limited | Substance source |
US8329271B2 (en) | 2004-12-23 | 2012-12-11 | Clinical Designs Limited | Medicament container |
US10369307B2 (en) | 2005-09-09 | 2019-08-06 | Clinical Designs Limited | Dispenser |
US9592355B2 (en) | 2005-09-09 | 2017-03-14 | Raymond John Bacon | Dispenser |
US20080178872A1 (en) * | 2006-12-01 | 2008-07-31 | Perry Genova | Dose selective breath actuated inhaler |
US20080210231A1 (en) * | 2007-01-31 | 2008-09-04 | Abbott Laboratories | Metered dose inhaler cleaning method and apparatus |
US9179691B2 (en) | 2007-12-14 | 2015-11-10 | Aerodesigns, Inc. | Delivering aerosolizable food products |
US9987441B2 (en) | 2009-03-10 | 2018-06-05 | Euro-Celtique S.A. | Counter |
US9114221B2 (en) | 2009-03-10 | 2015-08-25 | Euro-Celtique S.A. | Counter |
US9415178B2 (en) | 2009-03-10 | 2016-08-16 | Euro-Celtique S.A. | Counter |
US9087145B2 (en) | 2010-07-15 | 2015-07-21 | Eyenovia, Inc. | Ophthalmic drug delivery |
US12268517B2 (en) | 2010-07-15 | 2025-04-08 | Eyenovia, Inc. | Drop generating device |
US11839487B2 (en) | 2010-07-15 | 2023-12-12 | Eyenovia, Inc. | Ophthalmic drug delivery |
US11398306B2 (en) | 2010-07-15 | 2022-07-26 | Eyenovia, Inc. | Ophthalmic drug delivery |
US8733935B2 (en) | 2010-07-15 | 2014-05-27 | Corinthian Ophthalmic, Inc. | Method and system for performing remote treatment and monitoring |
US11011270B2 (en) | 2010-07-15 | 2021-05-18 | Eyenovia, Inc. | Drop generating device |
US10073949B2 (en) | 2010-07-15 | 2018-09-11 | Eyenovia, Inc. | Ophthalmic drug delivery |
US10839960B2 (en) | 2010-07-15 | 2020-11-17 | Eyenovia, Inc. | Ophthalmic drug delivery |
US10154923B2 (en) | 2010-07-15 | 2018-12-18 | Eyenovia, Inc. | Drop generating device |
US8684980B2 (en) | 2010-07-15 | 2014-04-01 | Corinthian Ophthalmic, Inc. | Drop generating device |
US10646373B2 (en) | 2011-12-12 | 2020-05-12 | Eyenovia, Inc. | Ejector mechanism, ejector device, and methods of use |
US10639194B2 (en) | 2011-12-12 | 2020-05-05 | Eyenovia, Inc. | High modulus polymeric ejector mechanism, ejector device, and methods of use |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10806879B2 (en) | 2012-04-27 | 2020-10-20 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
US11642042B2 (en) | 2012-07-09 | 2023-05-09 | Covidien Lp | Systems and methods for missed breath detection and indication |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
US10569034B2 (en) | 2014-08-28 | 2020-02-25 | Norton (Waterford) Limited | Compliance monitoring module for a breath-actuated inhaler |
EP3097937B1 (en) * | 2014-08-28 | 2020-12-09 | Norton (Waterford) Limited | Compliance monitoring module for a breath-actuated inhaler |
US10918816B2 (en) | 2014-08-28 | 2021-02-16 | Norton (Waterford) Limited | Compliance monitoring module for a breath-actuated inhaler |
US11712174B2 (en) | 2014-10-27 | 2023-08-01 | Covidien Lp | Ventilation triggering |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
US10940281B2 (en) | 2014-10-27 | 2021-03-09 | Covidien Lp | Ventilation triggering |
US12151061B2 (en) | 2015-07-20 | 2024-11-26 | Pearl Therapeutics, Inc. | Aerosol delivery systems and related methods |
US11040156B2 (en) | 2015-07-20 | 2021-06-22 | Pearl Therapeutics, Inc. | Aerosol delivery systems |
US20210220579A1 (en) * | 2016-11-18 | 2021-07-22 | Norton (Waterford) Limited | Inhaler |
EP3733233A1 (en) * | 2016-11-18 | 2020-11-04 | Norton (Waterford) Limited | Inhaler |
US11000653B2 (en) | 2016-11-18 | 2021-05-11 | Norton (Waterford) Limited | Inhaler |
EA039125B1 (en) * | 2016-11-18 | 2021-12-08 | Нортон (Уотерфорд) Лимитед | Inhaler |
WO2018091957A1 (en) * | 2016-11-18 | 2018-05-24 | Norton (Waterford) Limited | Inhaler |
WO2018200431A1 (en) * | 2017-04-25 | 2018-11-01 | 3M Innovative Properties Company | Medicinal inhaler drive mechanism |
US11040157B2 (en) | 2017-04-25 | 2021-06-22 | Kindeva Drug Delivery L.P. | Medicinal inhaler drive mechanism |
US11707584B2 (en) | 2017-05-04 | 2023-07-25 | Kindeva Drug Delivery L.P. | Inhaler flow control mechanism |
JP7088961B2 (en) | 2017-05-04 | 2022-06-21 | キンデーバ ドラッグ デリバリー リミティド パートナーシップ | Inhaler flow control mechanism |
JP2020518374A (en) * | 2017-05-04 | 2020-06-25 | スリーエム イノベイティブ プロパティズ カンパニー | Inhaler flow control mechanism |
US11938056B2 (en) | 2017-06-10 | 2024-03-26 | Eyenovia, Inc. | Methods and devices for handling a fluid and delivering the fluid to the eye |
US12213912B2 (en) | 2017-06-10 | 2025-02-04 | Eyenovia, Inc. | Methods and devices for handling a fluid and delivering the fluid to the eye |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
US12036409B2 (en) | 2019-06-28 | 2024-07-16 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
US12161585B2 (en) | 2019-12-11 | 2024-12-10 | Eyenovia, Inc. | Systems and devices for delivering fluids to the eye and methods of use |
Also Published As
Publication number | Publication date |
---|---|
NZ562769A (en) | 2010-12-24 |
US7219664B2 (en) | 2007-05-22 |
CA2605917A1 (en) | 2006-11-02 |
JP2008538987A (en) | 2008-11-13 |
BRPI0608329A2 (en) | 2009-12-29 |
CN101193676A (en) | 2008-06-04 |
ZA200709046B (en) | 2009-08-26 |
KR20080005992A (en) | 2008-01-15 |
AU2006240322A1 (en) | 2006-11-02 |
MX2007013462A (en) | 2008-04-17 |
CN101193676B (en) | 2010-05-19 |
IL186698A (en) | 2011-08-31 |
TW200702002A (en) | 2007-01-16 |
WO2006115732A3 (en) | 2007-03-22 |
TWI316408B (en) | 2009-11-01 |
EP1877122A2 (en) | 2008-01-16 |
WO2006115732A2 (en) | 2006-11-02 |
IL186698A0 (en) | 2008-02-09 |
US20060243275A1 (en) | 2006-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7219664B2 (en) | Breath actuated inhaler | |
DK1646417T3 (en) | inhaler | |
EP1443997B1 (en) | An inhalation actuated device | |
US7571722B2 (en) | Nebulizer | |
CN109689139B (en) | Trigger mechanism for an inhaler | |
US20060254581A1 (en) | Dose counting in metered dose inhaler | |
JP5681622B2 (en) | Dose counter and lockout mechanism | |
JP7423642B2 (en) | Intake synchronized fluid product dispensing device and method of assembling the fluid product dispensing device | |
JP2019511328A (en) | Intake synchronous fluid discharge device | |
CN109689140B (en) | Trigger mechanism for an inhaler | |
TW200902103A (en) | Dispensing device | |
JP2004522514A (en) | Drug dosing device | |
JP7427681B2 (en) | Intake synchronized fluid product dispensing device | |
JP4723785B2 (en) | Powder inhaler | |
US20170281886A1 (en) | Inhaler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUCKDESCHEL, THOMAS;GENOVA, PERRY;DEATON, DAN;AND OTHERS;REEL/FRAME:019929/0397;SIGNING DATES FROM 20050614 TO 20050620 |
|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUCKDESCHEL, THOMAS;GENOVA, PERRY;DEATON, DAN;AND OTHERS;REEL/FRAME:019940/0584;SIGNING DATES FROM 20050614 TO 20050620 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |