US20080016939A1 - Pair of pressing jaws for hydraulic or electric pressing tools - Google Patents
Pair of pressing jaws for hydraulic or electric pressing tools Download PDFInfo
- Publication number
- US20080016939A1 US20080016939A1 US11/850,504 US85050407A US2008016939A1 US 20080016939 A1 US20080016939 A1 US 20080016939A1 US 85050407 A US85050407 A US 85050407A US 2008016939 A1 US2008016939 A1 US 2008016939A1
- Authority
- US
- United States
- Prior art keywords
- pressing
- jaw
- pair
- region
- pressing jaws
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003825 pressing Methods 0.000 title claims abstract description 266
- 230000002093 peripheral effect Effects 0.000 claims abstract description 30
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 7
- 238000005266 casting Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/04—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/04—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
- H01R43/042—Hand tools for crimping
Definitions
- the invention relates, to a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, the two pressing jaws being disposed for rotation about a common axis of rotation and each pressing jaw forming a bearing eye for this purpose.
- Pairs of pressing jaws of the type in question are known and are used, inter alia, for pressing fittings onto pipes, particularly in the sanitary sector. Such pairs of pressing jaws are also used for the press connection of electric cables or for pressing on cable lugs or the like. Such pairs of pressing jaws are preferably secured in a pivotable and exchangeable manner on a pressing tool.
- the invention also relates to an insulating covering for a pressing jaw of a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes for the press connection of electric cables.
- an insulating covering for a pressing jaw of a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes for the press connection of electric cables.
- pressing jaws with an insulating covering.
- These are usually produced as plastics injection moldings, that is to say, also, for example, from polyethylene. It is further known in this respect for these insulating coverings to be secured in a releasable manner on the pressing jaws.
- a pair of pressing jaws of the generic type is already known from DE 10 2005 028083 A1, the disclosure of which is incorporated herein.
- the accommodating opening in the pressing jaw has an opening passing through it transversely.
- a securing part in the form of a securing pin is located in the opening.
- This securing pin is dimensioned to be significantly smaller than the diameter of the opening.
- the securing pin is accommodated loosely in the opening and has a tension-spring end engaging around it. The securing pin is retained in the opening solely by the force of the tension spring.
- pressing jaws as are known, for example, from DE 203 18 618 U1.
- a technical problem of the invention is to configure a pair of pressing jaws of the type in question in a more functionally advantageous manner.
- a problem of configuring the pressing jaws in a more functionally advantageous manner is solved first and foremost in an embodiment of the invention, this being based on the fact that each pressing jaw forms two bearing eyes with coaxial bearing openings, and the bearing eyes are disposed in an interengaging manner in the assembled state, one bearing eye of one pressing jaw engaging between the two bearing eyes of the other pressing jaw.
- the pair of pressing jaws according to the invention is suitable for pressing operations in the range of from 3 to 9 tonnes of pressing force.
- the two pressing jaws here are disposed for rotation, in known manner, in a substantially mirror-symmetrical maimer in relation to one another about the common axis of rotation, the pressing jaws, furthermore, being formed from pressing levers with one end having the pressing jaws, which form a pressing mouth in the closed position, and the ends located opposite the pressing jaws having curved tracks on which tool-mounted pressing rollers act.
- the pairs of pressing jaws can be pivoted in conventional manner like pliers about the axis of rotation, closure of the pressing mouth from an optionally spring-activated basic position, in which the pressing mouth is open, being made possible by means of tool-mounted pressing rollers acting simultaneously and uniformly on the curved tracks.
- the physical axis of rotation here is formed by a bolt or the like which passes through the bearing openings of the pressing jaws and is mounted in an accommodating neck of the pressing tool.
- the bearing eyes of a pressing jaw have different thicknesses, it thus being possible, for example, for the thickness of one bearing eye to correspond approximately to twice to five times the thickness of the other bearing eye of the same pressing jaw, with the thickness measured in the direction of the axis of rotation. It is further proposed that the bearing eye of greater thickness of one pressing jaw is disposed, in the assembled state, between the bearing eye of greater thickness and the bearing eye of lesser thickness of the other pressing jaw.
- the clear spacing between the bearing eye of greater thickness and the bearing eye of lesser thickness of one pressing jaw thus corresponds approximately to the thickness of the thicker bearing eye.
- the pressing jaws it is advantageously made possible for the pressing jaws to be configured identically to one another, which further proves to be advantageous in terms of production. Only one type of pressing jaw thus has to be produced. Two of these identical pressing jaws form a pair of pressing jaws. It is also provided that outwardly oriented stops are formed on one of the bearing eyes in order to limit the pivotability of the mounted pivoting jaw. These stops preferably interact with the pressing-tool accommodating neck, which is fixed in relation to the pressing jaws, both the open position and the closed position of the pressing mouth, furthermore, being stop-limited as a result of this configuration.
- the stops are preferably disposed on the outside of the bearing eye of lesser thickness.
- the pressing jaw is formed with a mount for a pressing insert.
- the pressing jaws are preloaded into their open position.
- the pair of pressing jaws in the basic position, in which they are not subjected to loading by the pressing tool, have the pressing mouth in the open position, and can thus be applied to the pressing location without any further pivoting measure.
- the preloading is preferably achieved by a tension spring which is disposed so as to engage over a separating joint between the pressing jaws.
- each pressing jaw has an insulating covering on its narrow peripheral side. This insulating covering is formed as a plastics-material part which can be associated in a releasable manner with the respective pressing jaw.
- the insulating covering may be produced as a plastics injection molding, for example consisting of polyethylene.
- the significant factor here is that the insulating covering extends over the entire width of the narrow peripheral side, as measured in the direction of the thickness of the pressing jaw, and further preferably over the entire length for which this narrow peripheral edge extends.
- the insulating covering is partly pushed on and partly clipped on.
- the insulating covering in the region of the pressing-jaw mouth, can be pushed in the manner of a shoe onto the pressing-lever portion of the pressing jaw, whereas the rest of the insulating covering is clipped onto the pressing jaw in the region of the narrow peripheral side.
- a securing rib is provided on the pressing-mouth side of a pressing jaw, the securing rib projecting transversely to the longitudinal plane of the jaw.
- This securing rib is formed integrally with the pressing jaw and extends along the peripheral contour of the pressing jaw in the pressing-mouth region. It is possible to provide a securing rib associated with a broad side of the pressing jaw. An arrangement is also conceivable, while maintaining the identical configuration of the two pressing jaws, in which two securing ribs are located opposite one another.
- the insulating covering with a substantially C-shaped cross-sectional configuration, has an articulation portion, as a result of which handling is simplified both when the insulating covering is disposed on the pressing jaw and when it is removed.
- Those regions of the insulating covering which are adjacent to the articulation portion have a substantially U-shaped cross-sectional configuration, the articulation portion being accompanied by a reduction in cross-section of the U-legs, to the extent where, in a portion which forms a geometrical articulation axis, the U-legs tend toward zero; correspondingly, only a U-crosspiece remains here.
- this U-crosspiece which forms the geometrical articulation axis, is adjoined on both sides, in the first instance, by a portion with a U-shaped cross-sectional configuration and, thereafter, by a portion with a C-shaped cross-sectional configuration in each case.
- a widening of the U-crosspiece is formed in the region of the articulation portion, which widening continues, over the longitudinal extent of the insulating covering, into a rib which projects outward on the outer wall of the U-legs.
- the U-leg-free zone of the insulating covering engages around the securing pin.
- the articulation portion furthermore, is formed eccentrically in relation to the longitudinal extent of the insulation covering, the articulation portion preferably being formed between the push-on portion and the clip-on portion of the insulating covering. Accordingly, in particular the application of the insulating covering to the pressing jaws is facilitated in that, in the first instance, the push-on portion is pushed onto the pressing jaw on the pressing-mouth side and, thereafter, the clip-on portion is pivoted about the articulation portion in the direction of the associated narrow peripheral side of the pressing jaw, in order finally for this portion to be clipped on.
- the length of the clip-on portion corresponds approximately to twice to five times, preferably three times, the length of the push-on portion.
- the pressing jaw has further securing ribs which project transversely to the longitudinal plane of the jaw and run along the peripheral edge of the jaw. These securing ribs may be of cross-sectionally identical configuration to the securing ribs for forming the push-on securing means.
- a securing rib disposed along the pressing-jaw peripheral contour which is directed toward the narrow peripheral side may be formed more or less continuously, optionally with an interruption in the region of the securing pin and, correspondingly, in the region of the articulation portion of the insulating covering.
- the securing pins for the pressing inserts of the two pressing jaws can be actuated in opposite directions, thus, in particular, by pressure actuation in the axial direction of the respective securing pin.
- the securing pins are oriented perpendicularly to a longitudinal plane of the jaws and pass through the respective pressing jaw in the region of the pressing-jaw mouth.
- the insulating covering in order to simplify the handling of such an insulating covering, in particular when it is disposed on a pressing jaw and removed therefrom, it is proposed that the insulating covering, with a substantially C-shaped cross-sectional configuration, has an articulation portion.
- an insulating covering for a pressing jaw is provided, which has improved handling.
- the formation of the articulation portion significantly facilitates the operations both of disposing the insulating covering on the pressing jaw and of removing it therefrom.
- the insulating covering can be adapted more easily over its longitudinal extent, by means of the formation of the articulation portion, to the rounded outer contour of the pressing jaw, in order finally to be secured.
- the insulating covering has a push-on portion and a clip-on portion, the push-on portion being formed such that it is directed toward that end of the insulating covering which is to be associated with the pressing mouth.
- the clip-on portion in contrast, is associated with the back of the pressing jaws.
- the clip-on portion In relation to the longitudinal extent of the insulating covering, the clip-on portion has a length which corresponds approximately to twice to five times, preferably three times, the length of the push-on portion.
- Those regions of the insulating covering which are adjacent to the articulation portion preferably have a substantially U-shaped cross-sectional configuration, the articulation portion being accompanied by a reduction in cross-section of the U-legs.
- the length of the U-legs in the articulation portion tends toward zero, so that, in the region of a geometrical articulation axis, the articulation portion is preferably formed just by the U-crosspiece.
- a widening of the U-crosspiece is further preferably formed in the region of the articulation portion. The widening is provided on both sides, the widened portion of the U-crosspiece, running over the longitudinal extent of the insulating covering, forming an outwardly oriented crosspiece in the region of the adjacent U-legs.
- the articulation portion is formed eccentrically in relation to the longitudinal extent of the insulating covering, that is to say preferably between the push-on portion and the clip-on portion. In addition to the insulating action, the insulating covering may also possibly serve as rapture protection in the pressing-mouth region.
- the proposed articulation portion also proves to be advantageous here.
- the invention further relates to a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, two pressing jaws connected to one another in an articulated manner forming a pair of pressing jaws, the pressing jaws being biased into their open position by a tension spring, which spans a free space between the two pressing jaws, and in each case one end of the tension spring being accommodated in an accommodating opening which opens out into a narrow peripheral side of the pressing jaw, this narrow peripheral side being directed toward the free space, and, in order to secure the tension spring, a tension-spring end engaging around a pin-like securing part, which securing part is disposed at that end of the accommodating opening which is directed away from the free space.
- An integrated securing part gives the advantage of it being possible for the tension spring to be connected to the pressing jaw of a pair of pressing jaws directly and without any further fastening means being used.
- the securing part cannot get lost and, during assembly, fewer individual parts have to be assembled.
- a preferably hook-like end of the tension spring engages around the crosspiece, which runs transversely to the accommodating opening.
- the crosspiece may run, for example, parallel to the longitudinal extent, or also in the direction of the thickness, of the pressing jaw.
- the crosspiece preferably has both ends connected to the pressing jaw. It is also possible for the crosspiece only to have one end fixedly connected to the pressing jaw.
- the securing part can be produced by casting, in conjunction with the production of the pressing jaw (for example in the lost-wax process). It is also conceivable, however, for the securing part to be produced, for example, by a metal removal operation.
- the crosspiece is shaped out by a sunk-in region which is disposed so as to overlap an axial extension of the accommodating opening.
- the width of the sunk-in region preferably corresponds to the diameter of the accommodating bore and has at least a sub-region overlapping the accommodating opening.
- a connecting channel can be created by the overlap between the accommodating opening and the sunk-in region.
- the connecting channel connects the accommodating opening to the sunk-in region and/or to the outside of the pressing jaw in this region. It is thus possible for the end of the tension spring to project into the sunk-in region from the accommodating opening.
- the depth of the sunk-in region here corresponds at least to the thickness of a spring wire forming the tension spring.
- the depth of the sunk-in region here is intended to mean the distance from the lateral surface of the accommodating opening as seen in the direction of the longitudinal axis of the accommodating opening.
- An absolute depth of the sunk-in region should be measured from the outer surface of the pressing jaw wall in this region, that is to say it depends on the thickness of the pressing jaw wall (in this region).
- the given depth of the sunk-in region results in it being possible for the tension-spring end to pass through the connecting channel into the region of the sunk-in area.
- the sunk-in region may be of oblong configuration.
- the longitudinal extent of the sunk-in region here is preferably the same as the longitudinal extent of the accommodating opening.
- the sunk-in region is preferably followed by a through-opening in the direction of the thickness of the pressing-jaw wall.
- the tension-spring end can engage into the through-opening from the sunk-in region and engage around a crosspiece, which is also formed as a result of the through-opening being made.
- the sunk-in region is preferably formed in, that is to say starting from, a broad side of a pressing-jaw wall.
- the upper side and underside of the crosspiece are not necessarily spaced apart from the longitudinal axis of the accommodating opening by the same distance. Rather, the crosspiece may be offset in the direction of a broad side of the pressing-jaw wall, as seen in relation to the longitudinal axis of the accommodating opening.
- the pressing-jaw wall is preferably recessed in the region of the sunk-in region.
- the pressing-jaw wall which is thus thinner here, may be symmetrical to a plane which runs through the longitudinal axis of the accommodating opening and parallel to the longitudinal extent of the pressing jaw. This is the case when the accommodating opening is disposed centrally in relation to the two broad sides of the pressing-jaw wall (in the less thick region).
- the thickness of the thinner (recessed) pressing-jaw wall is less than the diameter of the accommodating opening, the thickness preferably corresponding to half to four fifths, further preferably three fifths, of the diameter of the accommodating opening.
- the fact that the pressing-jaw wall is thinner in relation to the diameter of the accommodating opening means that the connecting channel is created solely by the end of the accommodating opening (which is located in that very region of the thinner pressing-jaw wall).
- the already mentioned crosspiece formed preferably has, on one side, a contour corresponding to the curvature of the through-opening, while the contour on the opposite side (in the region where the accommodating opening and the sunk-in region overlap) runs rectilinearly.
- the securing part it would also be conceivable for the securing part to be formed by a protuberance left in the sunk-in region. It is then possible to dispense with the through-opening.
- a protuberance extends transversely to the accommodating opening, in the direction of the thickness of the pressing-jaw wall.
- the height of the protuberance here preferably corresponds to the absolute depth of the sunk-in region.
- the upper side of the protuberance thus preferably terminates with the broad side of the pressing-jaw wall. It is also possible for the protuberance to be configured such that it extends beyond the broad side of the pressing-jaw wall or also terminates some way beneath the broad side. In order to secure the tension spring, the tension-spring end engages around the protuberance.
- the two pressing jaws of the pair of pressing jaws are preferably of axially symmetrical configuration.
- Axial symmetry is intended to mean that the two pressing jaws for a pair of pressing jaws are identical.
- the one pressing jaw In the assembled state, the one pressing jaw is in a state in which it has been turned through 180° about the longitudinal axis relative to the other pressing jaw.
- FIG. 1 shows an exploded illustration, in perspective, of a pair of pressing jaws according to the invention in a first embodiment, with an accommodating neck of a pressing tool;
- FIG. 2 shows the mounted position of the pressing jaws on the accommodating neck in plan view, this view relating to the open position of the pressing mouth;
- FIG. 3 shows an offset longitudinal section through the arrangement according to FIG. 2 ;
- FIG. 4 shows an illustration corresponding to FIG. 2 , but this time relating to the closed position of the pressing mouth;
- FIG. 5 shows a sectional illustration according to FIG. 3 , likewise relating to the closed position of the pressing mouth;
- FIG. 6 shows an exploded illustration, in perspective, of a pair of pressing jaws in a second embodiment
- FIG. 7 shows the mounted position of the pressing jaws on the accommodating neck in plan view, this view relating to the open position of the pressing mouth;
- FIG. 8 shows an offset longitudinal section through the arrangement according to FIG. 7 ;
- FIG. 9 shows the section along line VII-VII in FIG. 7 ;
- FIG. 10 shows the plan view according to FIG. 7 , but this time relating to the closed position of the pressing mouth with pressing-mouth inserts inserted;
- FIG. 11 shows an illustration corresponding to FIG. 8 , but this time relating to the closed position of the pressing mouth;
- FIG. 12 shows the enlarged section along line XII-XII in FIG. 8 ;
- FIG. 13 shows the enlarged section along line XIII-XIII in FIG. 8 ;
- FIG. 14 shows a side view of an insulating covering of a pressing jaw illustrated on its own
- FIG. 15 shows an illustration corresponding to FIG. 14 , but this time relating to a pivoted position of an end portion of the insulating covering which forms a push-on portion;
- FIG. 16 shows the front view of the insulating covering
- FIG. 17 shows the rear view of the insulating covering
- FIG. 18 shows the plan view of the insulating covering
- FIG. 19 shows a perspective illustration of the insulating covering.
- FIG. 20 shows, in plan view, a first exemplary embodiment of a pair of pressing jaws
- FIG. 21 shows an enlarged detail corresponding to the detail II from FIG. 20 ;
- FIG. 22 shows a partial view, in perspective, of a pressing jaw with a view of the securing part
- FIG. 23 shows a partial view as seen in the viewing direction TV from FIG. 22 ;
- FIG. 24 shows a section along line V-V according to FIG. 23 ;
- FIG. 25 shows a second exemplary embodiment in a partial view, in perspective, corresponding to FIG. 22 ;
- FIG. 26 shows a partial view of the pressing jaw as seen in the viewing direction VII from FIG. 25 ;
- FIG. 27 shows a section along line VIII-VIII according to FIG. 26 ;
- FIG. 28 shows a third exemplary embodiment in a view corresponding to FIG. 26 ;
- FIG. 29 shows a section along line X-X according to FIG. 28 .
- the two pressing jaws 3 are configured identically to one another and each have two bearing eyes 4 , 5 with coaxial bearing openings 6 .
- the pressing jaws 3 are part of a pressing lever 7 which, on one side of the bearing opening 6 , forms the pressing jaw 3 and, on the other side of the bearing opening 6 , forms a curved track B.
- the bearing eyes 4 , 5 of each pressing jaw 3 have different thicknesses, as measured in the axial direction of the bearing openings.
- the bearing eye 4 is thus approximately three times the thickness of the bearing eye 5 .
- the clear distance between the two bearing eyes 4 and 5 corresponds approximately to the thickness of the thicker bearing eye 4 , and is thus matched to the thickness of the bearing eye 4 .
- the pressing jaws 3 are oriented in relation to one another in the assembled state such that the bearing eyes 4 , 5 are disposed in an interengaging manner.
- the thicker bearing eye 4 of one pressing jaw 3 accordingly, is disposed between the two bearing eyes 4 , 5 of the other pressing jaw 3 .
- the thinner bearing eyes 5 are thus located on the outside of the pair 1 of pressing jaws formed.
- the bearing openings 6 of the two pressing jaws 3 are oriented coaxially in relation to one another and, in the assembled state, have a locking bolt 9 of the accommodating neck 2 passing through them.
- the accommodating neck 2 is of conventional fork-like configuration with a bolt mount 11 in the form of a through-passage bore passing through the fork legs 10 transversely to the direction in which the neck extends.
- the locking bolt 9 is secured in this bolt mount 11 .
- the bearing eyes 4 , 5 of the pressing jaws 3 extend between the fork legs 10 , a sleeve 12 being positioned between the bearing openings 6 and the locking bolt 9 .
- the curved tracks 8 of the pressing lever 7 project into the region between the fork legs 10 of the accommodating neck 2 and, during the pressing operation, are subjected to the action of rolling bodies 13 of the pressing tool, which are displaceable, preferably hydraulically, in the direction of the curved track 8 , this causing the pressing levers 7 to spread apart in the region of the curved track 8 and consequently causing the pressing mouth 14 , formed by the pressing jaws 3 , to close.
- Both the open position of the pressing mouth (see FIG. 3 ) and the closed position of the pressing mouth (see FIG. 5 ) are defined by outwardly oriented, block-like stops 15 disposed on the thinner bearing eyes 5 , these stops limiting the pivotability of the mounted pressing jaws 3 .
- the pressing jaws 3 are formed with a mount for exchangeable pressing inserts (not illustrated).
- FIGS. 6 to 19 show a second embodiment, the same components, in relation to the first embodiment, having the same reference numbers.
- the pressing jaws 3 of the second embodiment are preloaded into their open position, which is illustrated for example in FIG. 8 , a tension spring 17 being provided for this purpose.
- This tension spring is disposed in order to engage over the separating joint F between the pressing levers 7 of the pressing jaws 3 and is positioned, in each pressing jaw, in an accommodating bore 18 which opens out into that narrow peripheral side of the pressing jaw 3 which is directed toward the separating joint F.
- the two accommodating bores 18 of the pressing jaws 3 are disposed opposite one another. These accommodating bores 18 open out, at the other end, into bores 19 which pass through the pressing jaw 3 , transversely to the direction in which the tension spring 17 extends, in the region of the pressing lever 7 .
- a retaining pin 20 Positioned in each of these bores 19 is a retaining pin 20 which receives the respective end of the tension spring 17 and in this respect, in interaction with the wall of the bore 19 , serves as a spring anchor.
- the second exemplary embodiment provides securing pins 22 which extend parallel in space to the axis of rotation x of the pressing jaw 3 and thus parallel in space to the axis of the pressing mouth.
- These securing pins 22 pass through the pressing jaw 3 in the region surrounding the pressing mouth 14 , the securing pin 22 being provided, at one end, with a plate-like handle grip 23 and, at the other end, that is to say on that broad side of the jaw which is located opposite the grip, with an insert-securing portion 24 .
- the latter is of cylindrical form with a circular cross-section.
- the securing pin 22 By virtue of the securing pin 22 being pushed in its axial direction, the securing portion 24 is correspondingly displaced away from the broad side of the jaw, counter to the action of an interposed compression spring 25 , in order to free a region of reduced cross-section. In this position, the pressing insert 26 can be removed or inserted.
- the identical configuration is still ensured, this further resulting in a situation where the securing pins 22 of the two pressing jaws 3 can be actuated in opposite directions.
- the grip 23 is disposed on one pressing jaw 3 and the securing portion 24 is disposed on the opposite pressing jaw 3 .
- each pressing jaw 3 is assigned an insulating covering 27 .
- an insulating covering 27 is illustrated in different views.
- the latter in the first instance, is preferably produced as a plastics injection molding made of polyethylene or the like and has a substantially C-shaped cross-sectional configuration. Over its longitudinal extent, the insulating covering 27 is formed convexly with changing radii, as seen over its length, matched to the outer contour of a pressing jaw 3 in the region of the narrow peripheral side 28 of the latter.
- the insulating covering 27 is made up of substantially three portions: a push-on portion 29 and a clip-on portion 30 and also an articulation portion 31 , which is formed between these two portions 29 and 30 .
- the clip-on portion 30 has a length which corresponds approximately to three times the length of the push-on portion 29 .
- the substantially C-shaped cross-sectional configuration is interrupted in the region of the articulation portion 31 .
- the regions which are adjacent to the articulation portion 31 on both sides, that is to say the transition regions to the push-on portion 29 and to the clip-on portion 30 have a substantially U-shaped cross-sectional configuration, the articulation portion 31 being accompanied by a reduction in cross-section of the U-legs 32 .
- the latter tend toward zero, so that, in the region of the geometrical articulation axis z, only the U-crosspiece 33 remains. The latter is widened outward beyond the two U-legs 32 .
- This widened portion 34 extends out of the region of the geometrical articulation axis z into the region of the adjacent U-legs 32 of the clip-on portion 30 . This results—as can be seen, for example, from the illustrations in FIGS. 17 and 18 —in a shield-like protective collar 35 in the region of the articulation portion 31 .
- each pressing jaw 3 associated with a broad side of the jaw, has a securing rib 36 which projects transversely to the longitudinal plane of the jaw and, beginning from the free end of the pressing-mouth portion of the pressing jaw 3 , extends approximately into the surroundings of the associated securing pin 22 .
- a securing rib 36 is only provided on one side.
- a solution with securing ribs 36 disposed on both broad sides of the jaw is also conceivable in this respect.
- the securing rib 36 adjoins the contour of the narrow periphery of the pressing jaw 3 , this resulting in a T-shaped configuration in cross section in the case of securing ribs 36 being formed on both sides.
- Such a T-shaped cross-sectional configuration is also selected in the region of the pressing levers 7 .
- a latching rib the cross-sectional configuration of which corresponds more or less to that of the securing rib 36 , extends on both sides, that is to say on each broad side of the pressing jaw 3 , along the pressing lever 7 , on the far side of the securing pin 22 —in relation to the pressing mouth 14 . It is also possible to provide on the broad side of the pressing jaw 3 , which has the securing rib 36 , a rib which is continuous along the peripheral contour and is provided with a generous interruption only in the region of the securing pin 22 .
- the insulating coverings 27 are of identical form.
- the push-on portion 29 is attached on the pressing-mouth side, the securing rib 36 being gripped by the C-shaped cross-section of the push-on portion 29 during the push-on operation.
- the articulated arrangement of the clip-on portion 30 on the push-on portion 29 here allows straightforward handling.
- the clip-on portion 30 is positioned on the narrow peripheral side 28 , the C-crosspieces 38 of the clip-on portion gripping the latching ribs 37 on the pressing jaws.
- the articulation portions 31 of the insulating coverings 27 are associated with the respective securing pins 22 in the positions in which they are secured on the pressing jaws 3 , the U-legs 32 , which are interrupted in the articulation portions 31 , leaving a free space for these securing pins 22 .
- FIGS. 10 and 11 illustrate a closed position of the pressing mouth. This is achieved by rolling bodies 13 of the pressing tool, which can be displaced preferably hydraulically in the direction of the inner narrow peripheral sides of the pressing jaws 3 , these narrow peripheral sides forming curved tracks 8 , and this results in the pressing levers 7 being spread apart in the region of the curved tracks 8 and consequently in the pressing mouth 14 , formed by the pressing jaws 3 , being closed.
- a third exemplary embodiment of a pressing jaw 101 of a pair 102 of pressing jaws will be illustrated and described with reference to FIGS. 20 to 24 .
- the pressing jaw 101 is substantially configured as is described in DE 10 2005 028083 A1, which is mentioned in the introduction.
- Two pressing jaws 101 together form a pair 102 of pressing jaws.
- the two pressing jaws 101 are connected to one another in an articulated manner by means of a sleeve 103 (this may also be a bolt).
- the pressing jaw 101 forms an accommodating opening 104 which opens out into a narrow peripheral side 105 of the pressing jaw 101 , this narrow peripheral side being directed toward the free space F between the two pressing jaws 101 .
- the accommodating opening 104 has a diameter which exceeds the thickness of the pressing-jaw wall 8 in the region of that end of the accommodating opening 104 which is directed toward the pressing-jaw interior. In the exemplary embodiment, the diameter is in the region of 8 mm. It can be seen that, rather than being a through-opening, the accommodating opening 104 terminates in the central region of the pressing jaw 101 .
- Two broad sides 106 , 107 of the pressing-jaw wall 8 each have a recessed region 109 .
- the thickness of the pressing-jaw wall 8 in the peripheral region is selected to be approximately three times the thickness in the region of a recessed region 109 . In the region of a recessed region 109 , 5 mm is a suitable thickness.
- the recessed regions 9 are set into in the pressing-jaw wall 8 from the two broad sides 106 , 107 in each case.
- a sunk-in region 111 is disposed in the recessed region 109 on one side, that is to say extending only from one of the broad sides.
- the sunk-in region 111 partially overlaps an end region (axial extension) of the accommodating opening 104 .
- the width of the sunk-in region 111 is adapted to the diameter of the accommodating opening 104 .
- the depth corresponds to half to three quarters, in the exemplary embodiment three fifths, of the depth of the pressing-jaw wall 108 in the region of the recessed region 109 .
- the extent of the sunk-in region 111 in the axial direction of the accommodating opening 104 corresponds approximately to double the diametral measurement of the pressing-jaw wall 108 in the region of the recessed region 109 .
- the sunk-in region 111 here extends from a peripheral side 112 of the relatively thick periphery of the pressing-jaw wall 108 , this peripheral side being directed toward the interior of the pressing jaw 101 .
- the accommodating opening 104 itself extends axially only a little way into the region of the recessed area 9 , approximately by a quarter to half of the diameter of the accommodating opening 104 . Since, in relation to a center plane of the pressing jaw wall 108 , the accommodating opening 104 is disposed in the region of the recessed area 9 such that it projects beyond the pressing-jaw wall 108 on both sides—in this region—a through-passage connecting channel 113 is correspondingly created. Accordingly, the connecting channel 113 connects the accommodating opening 104 and the sunk-in region 111 on one side, on the side of the sunk-in region 111 .
- the surface of the recessed region 109 runs in the manner of a secant in relation to the accommodating opening 104 . It can also be seen that the surfaces of the mutually opposite recessed regions 9 of the pressing-jaw wall 108 run parallel to one another, spaced apart by the same distance a in each case from a plane running through the center point M (longitudinal axis) of the accommodating opening 104 , parallel to the planar extent of the pressing-jaw wall.
- the sunk-in region 111 is followed by a through-opening 114 as seen in the direction of the thickness of the pressing-jaw wall 108 , the diameter of this through-opening being less than the depth of the sunk-in region 111 .
- the pressing-jaw wall portion 108 ′ of relatively small thickness, which is left by the sulk-in region 111 , in conjunction with the through-opening 114 results in a crosspiece 115 remaining.
- the crosspiece 115 is offset in the thickness direction, that is to say it is associated with the broad side 7 (the broad side located opposite the sunk-in region) and, on this side, terminates with the surface of the recessed region 109 .
- the crosspiece 115 on one side, has a contour corresponding to the through-opening 114 and, on the other side, in the region of the connecting channel 113 , has an extent which runs predominantly rectilinearly.
- the crosspiece 115 forms the securing part 116 for the tension spring 117 .
- each case one end of the tension spring 117 is accommodated in an accommodating opening 104 in a pressing jaw 101 .
- the tension spring 117 here spans the free space F between the two pressing jaws 101 of the pair 102 of pressing jaws.
- a tension-spring end 118 In order to secure the tension spring 117 , a tension-spring end 118 , starting from the broad side 6 , engages around the crosspiece 115 .
- the tension-spring end 118 which is associated with the interior of the pressing jaws, extends through the through-opening 114 to the broad side 7 of the pressing-jaw wall 108 and thus engages around the crosspiece 115 .
- the securing part 116 in the form of the crosspiece 115 , is an integral constituent part of the pressing jaw 101 . This can be realized, for example, by casting, for which purpose the lost-wax process is also suggested.
- FIGS. 25 to 27 illustrate a fourth exemplary embodiment.
- the securing part 116 can also be produced by machining. Nevertheless, it could also be produced by casting.
- the recessed region 109 on the broad side 6 likewise has a sunk-in region 111 .
- the latter is likewise disposed so as to overlap the accommodating opening 104 in the manner described.
- the accommodating opening 104 may be provided such that it runs correspondingly further into the recessed region 109 , in order for the accommodating opening 104 and the sunk-in region 111 to overlap.
- the sunk-in region 111 may be produced, for example, by an end milling cutter.
- a connecting channel 113 is likewise produced in the region of overlap.
- a through-opening 114 is also provided in this embodiment. This through-opening may be, for example, drilled. Just as in the third exemplary embodiment, this results in a securing part 116 in the form of a crosspiece 115 .
- FIGS. 28 and 29 illustrate a fifth exemplary embodiment.
- the same elements are designated by the reference numerals which have been used above.
- the securing part 116 is integrated by casting.
- machining would also be a conceivable production method in order to produce such an integral securing part in the form of a proturberance 119 .
- the fifth exemplary embodiment differs from the third in so far as the through-opening 114 is replaced by a proturberance 119 left by the sunk-in region 111 .
- the free end of the proturberance 119 terminates with the surface of the recessed region 109 . It would also be conceivable to configure the proturberance 119 such that it goes beyond the surface of the recessed region 109 .
- the tension-spring end 118 engages around the proturberance 119 .
- the proturberance 119 forms the crosspiece 115 of the securing part 116 for the tension spring 117 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Clamps And Clips (AREA)
Abstract
The invention relates to a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, two pressing jaws connected to one another in an articulated manner forming a pair of pressing jaws, the pressing jaws being biased into their open position by a tension spring which spans a free space between the two pressing jaws, and in each case one end of the tension spring being accommodated in an accommodating opening which opens out into a narrow peripheral side of the pressing jaw, this narrow peripheral side being directed toward the free space, and, in order to secure the tension spring, a tension-spring end engaging around a pin-like securing part, which securing part is disposed at that end of the accommodating opening which is directed away from the free space. In order to secure the tension spring in a functionally advantageous manner, it is provided that the securing part is formed as an integral crosspiece of the pressing jaw.
Description
- This application is a continuation-in-part of pending U.S. Ser. No. 11/534,737, herein incorporated by reference, filed on Sep. 25, 2006, which is a divisional application of U.S. Ser. No. 10/884,752 filed on Jul. 2, 2004, herein incorporated by reference, now U.S. Pat. No. 7,216,523. This application claims priority from German Patent Application No. DE 202006013693.2, filed Sep. 7, 2006, herein incorporated by reference.
- The invention relates, to a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, the two pressing jaws being disposed for rotation about a common axis of rotation and each pressing jaw forming a bearing eye for this purpose.
- Pairs of pressing jaws of the type in question are known and are used, inter alia, for pressing fittings onto pipes, particularly in the sanitary sector. Such pairs of pressing jaws are also used for the press connection of electric cables or for pressing on cable lugs or the like. Such pairs of pressing jaws are preferably secured in a pivotable and exchangeable manner on a pressing tool.
- The invention also relates to an insulating covering for a pressing jaw of a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes for the press connection of electric cables. In particular in the case of the press connection of electric cables or the operation of pressing on cable lugs or the like, it is known to provide pressing jaws with an insulating covering. These are usually produced as plastics injection moldings, that is to say, also, for example, from polyethylene. It is further known in this respect for these insulating coverings to be secured in a releasable manner on the pressing jaws.
- A pair of pressing jaws of the generic type is already known from DE 10 2005 028083 A1, the disclosure of which is incorporated herein. The accommodating opening in the pressing jaw has an opening passing through it transversely. In order to secure the tension spring, a securing part in the form of a securing pin is located in the opening. This securing pin is dimensioned to be significantly smaller than the diameter of the opening. The securing pin is accommodated loosely in the opening and has a tension-spring end engaging around it. The securing pin is retained in the opening solely by the force of the tension spring. Furthermore, reference should also be made to pressing jaws as are known, for example, from DE 203 18 618 U1.
- In respect of the known prior art, a technical problem of the invention is to configure a pair of pressing jaws of the type in question in a more functionally advantageous manner. A problem of configuring the pressing jaws in a more functionally advantageous manner is solved first and foremost in an embodiment of the invention, this being based on the fact that each pressing jaw forms two bearing eyes with coaxial bearing openings, and the bearing eyes are disposed in an interengaging manner in the assembled state, one bearing eye of one pressing jaw engaging between the two bearing eyes of the other pressing jaw. The pair of pressing jaws according to the invention is suitable for pressing operations in the range of from 3 to 9 tonnes of pressing force. The two pressing jaws here are disposed for rotation, in known manner, in a substantially mirror-symmetrical maimer in relation to one another about the common axis of rotation, the pressing jaws, furthermore, being formed from pressing levers with one end having the pressing jaws, which form a pressing mouth in the closed position, and the ends located opposite the pressing jaws having curved tracks on which tool-mounted pressing rollers act. The pairs of pressing jaws can be pivoted in conventional manner like pliers about the axis of rotation, closure of the pressing mouth from an optionally spring-activated basic position, in which the pressing mouth is open, being made possible by means of tool-mounted pressing rollers acting simultaneously and uniformly on the curved tracks. The physical axis of rotation here is formed by a bolt or the like which passes through the bearing openings of the pressing jaws and is mounted in an accommodating neck of the pressing tool. In a development of the invention, it is provided that the bearing eyes of a pressing jaw have different thicknesses, it thus being possible, for example, for the thickness of one bearing eye to correspond approximately to twice to five times the thickness of the other bearing eye of the same pressing jaw, with the thickness measured in the direction of the axis of rotation. It is further proposed that the bearing eye of greater thickness of one pressing jaw is disposed, in the assembled state, between the bearing eye of greater thickness and the bearing eye of lesser thickness of the other pressing jaw. The clear spacing between the bearing eye of greater thickness and the bearing eye of lesser thickness of one pressing jaw thus corresponds approximately to the thickness of the thicker bearing eye. As a result, it is advantageously made possible for the pressing jaws to be configured identically to one another, which further proves to be advantageous in terms of production. Only one type of pressing jaw thus has to be produced. Two of these identical pressing jaws form a pair of pressing jaws. It is also provided that outwardly oriented stops are formed on one of the bearing eyes in order to limit the pivotability of the mounted pivoting jaw. These stops preferably interact with the pressing-tool accommodating neck, which is fixed in relation to the pressing jaws, both the open position and the closed position of the pressing mouth, furthermore, being stop-limited as a result of this configuration. The stops are preferably disposed on the outside of the bearing eye of lesser thickness. In order for the pressing jaws to be configured in a variable manner in respect of the pressing of different fittings, it is provided that the pressing jaw is formed with a mount for a pressing insert. In a further-preferred configuration, it is provided that the pressing jaws are preloaded into their open position. Correspondingly, the pair of pressing jaws, in the basic position, in which they are not subjected to loading by the pressing tool, have the pressing mouth in the open position, and can thus be applied to the pressing location without any further pivoting measure. The preloading is preferably achieved by a tension spring which is disposed so as to engage over a separating joint between the pressing jaws. For this purpose, the tension spring is secured at its ends, in each pressing jaw, in a bore which passes through the latter transversely to the direction in which the tension spring extends, thus, in particular, by means of a pin which receives the respective free end of the tension spring and is positioned in the bore which passes through the pressing jaw. The tension spring passes through the pressing jaw in the region of a further bore which extends from the narrow peripheral side directed toward the opposite pressing jaw. In particular when using the pair of pressing jaws for the press connection of electric cables, it is provided that each pressing jaw has an insulating covering on its narrow peripheral side. This insulating covering is formed as a plastics-material part which can be associated in a releasable manner with the respective pressing jaw. The insulating covering may be produced as a plastics injection molding, for example consisting of polyethylene. The significant factor here is that the insulating covering extends over the entire width of the narrow peripheral side, as measured in the direction of the thickness of the pressing jaw, and further preferably over the entire length for which this narrow peripheral edge extends. For a releasable arrangement on the pressing jaw, it is provided that the insulating covering is partly pushed on and partly clipped on. Thus, the insulating covering, in the region of the pressing-jaw mouth, can be pushed in the manner of a shoe onto the pressing-lever portion of the pressing jaw, whereas the rest of the insulating covering is clipped onto the pressing jaw in the region of the narrow peripheral side. In order to secure the insulating covering in the pushed-on state, a securing rib is provided on the pressing-mouth side of a pressing jaw, the securing rib projecting transversely to the longitudinal plane of the jaw. This securing rib is formed integrally with the pressing jaw and extends along the peripheral contour of the pressing jaw in the pressing-mouth region. It is possible to provide a securing rib associated with a broad side of the pressing jaw. An arrangement is also conceivable, while maintaining the identical configuration of the two pressing jaws, in which two securing ribs are located opposite one another. In this respect, it proves to be further advantageous that the insulating covering, with a substantially C-shaped cross-sectional configuration, has an articulation portion, as a result of which handling is simplified both when the insulating covering is disposed on the pressing jaw and when it is removed. Those regions of the insulating covering which are adjacent to the articulation portion have a substantially U-shaped cross-sectional configuration, the articulation portion being accompanied by a reduction in cross-section of the U-legs, to the extent where, in a portion which forms a geometrical articulation axis, the U-legs tend toward zero; correspondingly, only a U-crosspiece remains here. Over the longitudinal extent of the insulating portion, this U-crosspiece, which forms the geometrical articulation axis, is adjoined on both sides, in the first instance, by a portion with a U-shaped cross-sectional configuration and, thereafter, by a portion with a C-shaped cross-sectional configuration in each case. A widening of the U-crosspiece is formed in the region of the articulation portion, which widening continues, over the longitudinal extent of the insulating covering, into a rib which projects outward on the outer wall of the U-legs. When the insulating covering is applied to the pressing jaw, a securing pin for pressing inserts is associated with its articulation portion, the securing pin being provided on the pressing jaw. Correspondingly, the U-leg-free zone of the insulating covering engages around the securing pin. The articulation portion, furthermore, is formed eccentrically in relation to the longitudinal extent of the insulation covering, the articulation portion preferably being formed between the push-on portion and the clip-on portion of the insulating covering. Accordingly, in particular the application of the insulating covering to the pressing jaws is facilitated in that, in the first instance, the push-on portion is pushed onto the pressing jaw on the pressing-mouth side and, thereafter, the clip-on portion is pivoted about the articulation portion in the direction of the associated narrow peripheral side of the pressing jaw, in order finally for this portion to be clipped on. As seen in the longitudinal extent of the insulating covering, the length of the clip-on portion corresponds approximately to twice to five times, preferably three times, the length of the push-on portion. In order to secure the clip-on portion, the pressing jaw has further securing ribs which project transversely to the longitudinal plane of the jaw and run along the peripheral edge of the jaw. These securing ribs may be of cross-sectionally identical configuration to the securing ribs for forming the push-on securing means. In this respect, a securing rib disposed along the pressing-jaw peripheral contour which is directed toward the narrow peripheral side may be formed more or less continuously, optionally with an interruption in the region of the securing pin and, correspondingly, in the region of the articulation portion of the insulating covering. It is also provided that the securing pins for the pressing inserts of the two pressing jaws can be actuated in opposite directions, thus, in particular, by pressure actuation in the axial direction of the respective securing pin. The securing pins are oriented perpendicularly to a longitudinal plane of the jaws and pass through the respective pressing jaw in the region of the pressing-jaw mouth.
- With respect to the insulating covering, in order to simplify the handling of such an insulating covering, in particular when it is disposed on a pressing jaw and removed therefrom, it is proposed that the insulating covering, with a substantially C-shaped cross-sectional configuration, has an articulation portion. As a result of this configuration, an insulating covering for a pressing jaw is provided, which has improved handling. The formation of the articulation portion significantly facilitates the operations both of disposing the insulating covering on the pressing jaw and of removing it therefrom. The insulating covering can be adapted more easily over its longitudinal extent, by means of the formation of the articulation portion, to the rounded outer contour of the pressing jaw, in order finally to be secured. The insulating covering has a push-on portion and a clip-on portion, the push-on portion being formed such that it is directed toward that end of the insulating covering which is to be associated with the pressing mouth. The clip-on portion, in contrast, is associated with the back of the pressing jaws. In relation to the longitudinal extent of the insulating covering, the clip-on portion has a length which corresponds approximately to twice to five times, preferably three times, the length of the push-on portion. Those regions of the insulating covering which are adjacent to the articulation portion preferably have a substantially U-shaped cross-sectional configuration, the articulation portion being accompanied by a reduction in cross-section of the U-legs. The length of the U-legs in the articulation portion tends toward zero, so that, in the region of a geometrical articulation axis, the articulation portion is preferably formed just by the U-crosspiece. A widening of the U-crosspiece is further preferably formed in the region of the articulation portion. The widening is provided on both sides, the widened portion of the U-crosspiece, running over the longitudinal extent of the insulating covering, forming an outwardly oriented crosspiece in the region of the adjacent U-legs. The articulation portion is formed eccentrically in relation to the longitudinal extent of the insulating covering, that is to say preferably between the push-on portion and the clip-on portion. In addition to the insulating action, the insulating covering may also possibly serve as rapture protection in the pressing-mouth region. The proposed articulation portion also proves to be advantageous here.
- The invention further relates to a pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, two pressing jaws connected to one another in an articulated manner forming a pair of pressing jaws, the pressing jaws being biased into their open position by a tension spring, which spans a free space between the two pressing jaws, and in each case one end of the tension spring being accommodated in an accommodating opening which opens out into a narrow peripheral side of the pressing jaw, this narrow peripheral side being directed toward the free space, and, in order to secure the tension spring, a tension-spring end engaging around a pin-like securing part, which securing part is disposed at that end of the accommodating opening which is directed away from the free space.
- It is an object of the invention, in the case of a pair of pressing jaws specified, to develop the means of securing the tension spring in a functionally advantageous manner. This object is achieved first and foremost in the case an embodiment of the invention, being based on the fact that the securing part is formed as an integral crosspiece of the pressing jaw.
- An integrated securing part gives the advantage of it being possible for the tension spring to be connected to the pressing jaw of a pair of pressing jaws directly and without any further fastening means being used. As an integral constituent part of the pressing jaw, the securing part cannot get lost and, during assembly, fewer individual parts have to be assembled. In order to secure the tension spring, a preferably hook-like end of the tension spring engages around the crosspiece, which runs transversely to the accommodating opening. The crosspiece may run, for example, parallel to the longitudinal extent, or also in the direction of the thickness, of the pressing jaw. The crosspiece preferably has both ends connected to the pressing jaw. It is also possible for the crosspiece only to have one end fixedly connected to the pressing jaw. The securing part can be produced by casting, in conjunction with the production of the pressing jaw (for example in the lost-wax process). It is also conceivable, however, for the securing part to be produced, for example, by a metal removal operation.
- Other features of the invention are described hereinbelow in relation to the subject matter of the invention described above, but may also be important in their independent formulation.
- It thus appears to be advantageous for the crosspiece to be shaped out by a sunk-in region which is disposed so as to overlap an axial extension of the accommodating opening. The width of the sunk-in region preferably corresponds to the diameter of the accommodating bore and has at least a sub-region overlapping the accommodating opening. With the sunk-in region being of an appropriate depth, a connecting channel can be created by the overlap between the accommodating opening and the sunk-in region. The connecting channel connects the accommodating opening to the sunk-in region and/or to the outside of the pressing jaw in this region. It is thus possible for the end of the tension spring to project into the sunk-in region from the accommodating opening. The depth of the sunk-in region here corresponds at least to the thickness of a spring wire forming the tension spring. The depth of the sunk-in region here is intended to mean the distance from the lateral surface of the accommodating opening as seen in the direction of the longitudinal axis of the accommodating opening. An absolute depth of the sunk-in region, however, should be measured from the outer surface of the pressing jaw wall in this region, that is to say it depends on the thickness of the pressing jaw wall (in this region). The given depth of the sunk-in region results in it being possible for the tension-spring end to pass through the connecting channel into the region of the sunk-in area. The sunk-in region may be of oblong configuration. The longitudinal extent of the sunk-in region here is preferably the same as the longitudinal extent of the accommodating opening.
- The sunk-in region is preferably followed by a through-opening in the direction of the thickness of the pressing-jaw wall. The tension-spring end can engage into the through-opening from the sunk-in region and engage around a crosspiece, which is also formed as a result of the through-opening being made. The sunk-in region is preferably formed in, that is to say starting from, a broad side of a pressing-jaw wall. The upper side and underside of the crosspiece are not necessarily spaced apart from the longitudinal axis of the accommodating opening by the same distance. Rather, the crosspiece may be offset in the direction of a broad side of the pressing-jaw wall, as seen in relation to the longitudinal axis of the accommodating opening. However, it is also possible, in particular when sunk-in regions extend to the same depth from both broad sides of the pressing jaw wall, for the abovementioned surfaces of the crosspiece to be spaced apart from the longitudinal axis of the accommodating opening and/or from the broad sides of the pressing-jaw wall by the same distance.
- In relation to a surrounding peripheral region of the pressing jaw, the pressing-jaw wall is preferably recessed in the region of the sunk-in region. The pressing-jaw wall, which is thus thinner here, may be symmetrical to a plane which runs through the longitudinal axis of the accommodating opening and parallel to the longitudinal extent of the pressing jaw. This is the case when the accommodating opening is disposed centrally in relation to the two broad sides of the pressing-jaw wall (in the less thick region). The thickness of the thinner (recessed) pressing-jaw wall is less than the diameter of the accommodating opening, the thickness preferably corresponding to half to four fifths, further preferably three fifths, of the diameter of the accommodating opening. The fact that the pressing-jaw wall is thinner in relation to the diameter of the accommodating opening means that the connecting channel is created solely by the end of the accommodating opening (which is located in that very region of the thinner pressing-jaw wall).
- The already mentioned crosspiece formed preferably has, on one side, a contour corresponding to the curvature of the through-opening, while the contour on the opposite side (in the region where the accommodating opening and the sunk-in region overlap) runs rectilinearly. As an alternative, it would also be conceivable for the securing part to be formed by a protuberance left in the sunk-in region. It is then possible to dispense with the through-opening. Such a protuberance extends transversely to the accommodating opening, in the direction of the thickness of the pressing-jaw wall. The height of the protuberance here preferably corresponds to the absolute depth of the sunk-in region. The upper side of the protuberance thus preferably terminates with the broad side of the pressing-jaw wall. It is also possible for the protuberance to be configured such that it extends beyond the broad side of the pressing-jaw wall or also terminates some way beneath the broad side. In order to secure the tension spring, the tension-spring end engages around the protuberance.
- The two pressing jaws of the pair of pressing jaws are preferably of axially symmetrical configuration. Axial symmetry is intended to mean that the two pressing jaws for a pair of pressing jaws are identical. In the assembled state, the one pressing jaw is in a state in which it has been turned through 180° about the longitudinal axis relative to the other pressing jaw.
- The invention is explained in more detail hereinbelow, with reference to the accompanying drawings, which illustrate exemplary embodiments and in which:
-
FIG. 1 shows an exploded illustration, in perspective, of a pair of pressing jaws according to the invention in a first embodiment, with an accommodating neck of a pressing tool; -
FIG. 2 shows the mounted position of the pressing jaws on the accommodating neck in plan view, this view relating to the open position of the pressing mouth; -
FIG. 3 shows an offset longitudinal section through the arrangement according toFIG. 2 ; -
FIG. 4 shows an illustration corresponding toFIG. 2 , but this time relating to the closed position of the pressing mouth; -
FIG. 5 shows a sectional illustration according toFIG. 3 , likewise relating to the closed position of the pressing mouth; -
FIG. 6 shows an exploded illustration, in perspective, of a pair of pressing jaws in a second embodiment; -
FIG. 7 shows the mounted position of the pressing jaws on the accommodating neck in plan view, this view relating to the open position of the pressing mouth; -
FIG. 8 shows an offset longitudinal section through the arrangement according toFIG. 7 ; -
FIG. 9 shows the section along line VII-VII inFIG. 7 ; -
FIG. 10 shows the plan view according toFIG. 7 , but this time relating to the closed position of the pressing mouth with pressing-mouth inserts inserted; -
FIG. 11 shows an illustration corresponding toFIG. 8 , but this time relating to the closed position of the pressing mouth; -
FIG. 12 shows the enlarged section along line XII-XII inFIG. 8 ; -
FIG. 13 shows the enlarged section along line XIII-XIII inFIG. 8 ; -
FIG. 14 shows a side view of an insulating covering of a pressing jaw illustrated on its own; -
FIG. 15 shows an illustration corresponding toFIG. 14 , but this time relating to a pivoted position of an end portion of the insulating covering which forms a push-on portion; -
FIG. 16 shows the front view of the insulating covering; -
FIG. 17 shows the rear view of the insulating covering; -
FIG. 18 shows the plan view of the insulating covering; and -
FIG. 19 shows a perspective illustration of the insulating covering. -
FIG. 20 shows, in plan view, a first exemplary embodiment of a pair of pressing jaws; -
FIG. 21 shows an enlarged detail corresponding to the detail II fromFIG. 20 ; -
FIG. 22 shows a partial view, in perspective, of a pressing jaw with a view of the securing part; -
FIG. 23 shows a partial view as seen in the viewing direction TV fromFIG. 22 ; -
FIG. 24 shows a section along line V-V according toFIG. 23 ; -
FIG. 25 shows a second exemplary embodiment in a partial view, in perspective, corresponding toFIG. 22 ; -
FIG. 26 shows a partial view of the pressing jaw as seen in the viewing direction VII fromFIG. 25 ; -
FIG. 27 shows a section along line VIII-VIII according toFIG. 26 ; -
FIG. 28 shows a third exemplary embodiment in a view corresponding toFIG. 26 ; and -
FIG. 29 shows a section along line X-X according toFIG. 28 . - While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, a specific embodiment with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated and described herein.
- Illustrated and described, in the first instance with reference to
FIG. 1 , of apair 1 of pressing jaws, in a first embodiment, for a hydraulic or electric pressing tool, merely anaccommodating neck 2 of the latter, for accommodating apair 1 of pressing jaws, being shown in the illustrations. - The two
pressing jaws 3 are configured identically to one another and each have twobearing eyes coaxial bearing openings 6. - The
pressing jaws 3 are part of apressing lever 7 which, on one side of thebearing opening 6, forms thepressing jaw 3 and, on the other side of thebearing opening 6, forms a curved track B. - The bearing
eyes pressing jaw 3 have different thicknesses, as measured in the axial direction of the bearing openings. Thebearing eye 4 is thus approximately three times the thickness of thebearing eye 5. - The clear distance between the two bearing
eyes thicker bearing eye 4, and is thus matched to the thickness of thebearing eye 4. - The
pressing jaws 3 are oriented in relation to one another in the assembled state such that the bearingeyes thicker bearing eye 4 of onepressing jaw 3, accordingly, is disposed between the two bearingeyes pressing jaw 3. Thethinner bearing eyes 5 are thus located on the outside of thepair 1 of pressing jaws formed. - The bearing
openings 6 of the twopressing jaws 3 are oriented coaxially in relation to one another and, in the assembled state, have alocking bolt 9 of theaccommodating neck 2 passing through them. - The
accommodating neck 2 is of conventional fork-like configuration with abolt mount 11 in the form of a through-passage bore passing through thefork legs 10 transversely to the direction in which the neck extends. Thelocking bolt 9 is secured in thisbolt mount 11. - The bearing
eyes pressing jaws 3 extend between thefork legs 10, asleeve 12 being positioned between the bearingopenings 6 and thelocking bolt 9. - The
curved tracks 8 of thepressing lever 7 project into the region between thefork legs 10 of theaccommodating neck 2 and, during the pressing operation, are subjected to the action of rollingbodies 13 of the pressing tool, which are displaceable, preferably hydraulically, in the direction of thecurved track 8, this causing thepressing levers 7 to spread apart in the region of thecurved track 8 and consequently causing thepressing mouth 14, formed by thepressing jaws 3, to close. - Both the open position of the pressing mouth (see
FIG. 3 ) and the closed position of the pressing mouth (seeFIG. 5 ) are defined by outwardly oriented, block-like stops 15 disposed on thethinner bearing eyes 5, these stops limiting the pivotability of the mountedpressing jaws 3. - These stops 15 move over a circular path about the axis of rotation x of the
pressing jaws 3 and interact with anend surface 16 of theaccommodating neck 2. - The
pressing jaws 3, in addition, are formed with a mount for exchangeable pressing inserts (not illustrated). - FIGS. 6 to 19 show a second embodiment, the same components, in relation to the first embodiment, having the same reference numbers.
- The
pressing jaws 3 of the second embodiment are preloaded into their open position, which is illustrated for example inFIG. 8 , atension spring 17 being provided for this purpose. This tension spring is disposed in order to engage over the separating joint F between thepressing levers 7 of thepressing jaws 3 and is positioned, in each pressing jaw, in anaccommodating bore 18 which opens out into that narrow peripheral side of thepressing jaw 3 which is directed toward the separating joint F. The twoaccommodating bores 18 of thepressing jaws 3 are disposed opposite one another. Theseaccommodating bores 18 open out, at the other end, intobores 19 which pass through thepressing jaw 3, transversely to the direction in which thetension spring 17 extends, in the region of thepressing lever 7. Positioned in each of thesebores 19 is a retainingpin 20 which receives the respective end of thetension spring 17 and in this respect, in interaction with the wall of thebore 19, serves as a spring anchor. - In the open position of the pressing jaws according to the illustrations in
FIGS. 8 and 9 , those portions of the facing narrow peripheral sides of thepressing jaws 3 which are adjacent to theaccommodating bores 18 of thetension spring 17 engage against one another in a stop-limiting manner. These narrow-periphery stop regions are designated 21 inFIG. 9 . - In contrast to the first exemplary embodiment, in which any pressing inserts are secured by means of securing
pins 22 engaging more or less radially in thepressing mouth 14, the second exemplary embodiment provides securingpins 22 which extend parallel in space to the axis of rotation x of thepressing jaw 3 and thus parallel in space to the axis of the pressing mouth. These securing pins 22 pass through thepressing jaw 3 in the region surrounding thepressing mouth 14, the securingpin 22 being provided, at one end, with a plate-like handle grip 23 and, at the other end, that is to say on that broad side of the jaw which is located opposite the grip, with an insert-securingportion 24. The latter is of cylindrical form with a circular cross-section. By virtue of the securingpin 22 being pushed in its axial direction, the securingportion 24 is correspondingly displaced away from the broad side of the jaw, counter to the action of an interposedcompression spring 25, in order to free a region of reduced cross-section. In this position, thepressing insert 26 can be removed or inserted. - It is also the case with this embodiment that the identical configuration is still ensured, this further resulting in a situation where the securing pins 22 of the two
pressing jaws 3 can be actuated in opposite directions. Corresponding to a broad side of thepair 1 of pressing jaws, thegrip 23 is disposed on onepressing jaw 3 and the securingportion 24 is disposed on the oppositepressing jaw 3. - For the press connection of electric cables or for pressing, for example, a cable lug onto an electric cable, it is also possible to provide insulating
coverings 27 in addition to the corresponding pressing inserts 26. For this purpose, eachpressing jaw 3 is assigned an insulatingcovering 27. - In FIGS. 14 to 19, an insulating
covering 27 is illustrated in different views. The latter, in the first instance, is preferably produced as a plastics injection molding made of polyethylene or the like and has a substantially C-shaped cross-sectional configuration. Over its longitudinal extent, the insulatingcovering 27 is formed convexly with changing radii, as seen over its length, matched to the outer contour of apressing jaw 3 in the region of the narrowperipheral side 28 of the latter. - As seen over its longitudinal extent, the insulating
covering 27 is made up of substantially three portions: a push-onportion 29 and a clip-onportion 30 and also anarticulation portion 31, which is formed between these twoportions portion 30 has a length which corresponds approximately to three times the length of the push-onportion 29. - The substantially C-shaped cross-sectional configuration is interrupted in the region of the
articulation portion 31. The regions which are adjacent to thearticulation portion 31 on both sides, that is to say the transition regions to the push-onportion 29 and to the clip-onportion 30, have a substantially U-shaped cross-sectional configuration, thearticulation portion 31 being accompanied by a reduction in cross-section of the U-legs 32. The latter tend toward zero, so that, in the region of the geometrical articulation axis z, only the U-crosspiece 33 remains. The latter is widened outward beyond the two U-legs 32. This widenedportion 34 extends out of the region of the geometrical articulation axis z into the region of the adjacent U-legs 32 of the clip-onportion 30. This results—as can be seen, for example, from the illustrations inFIGS. 17 and 18 —in a shield-likeprotective collar 35 in the region of thearticulation portion 31. - In order for the insulation covering 27, which can be disposed in a releasable manner, to be secured on the associated
pressing jaw 3, the latter has corresponding retaining means. Thus, eachpressing jaw 3, associated with a broad side of the jaw, has a securingrib 36 which projects transversely to the longitudinal plane of the jaw and, beginning from the free end of the pressing-mouth portion of thepressing jaw 3, extends approximately into the surroundings of the associated securingpin 22. As can be gathered from the illustrations, such a securingrib 36 is only provided on one side. However, a solution with securingribs 36 disposed on both broad sides of the jaw is also conceivable in this respect. - The securing
rib 36 adjoins the contour of the narrow periphery of thepressing jaw 3, this resulting in a T-shaped configuration in cross section in the case of securingribs 36 being formed on both sides. - Such a T-shaped cross-sectional configuration is also selected in the region of the
pressing levers 7. Correspondingly, a latching rib, the cross-sectional configuration of which corresponds more or less to that of the securingrib 36, extends on both sides, that is to say on each broad side of thepressing jaw 3, along thepressing lever 7, on the far side of the securingpin 22—in relation to thepressing mouth 14. It is also possible to provide on the broad side of thepressing jaw 3, which has the securingrib 36, a rib which is continuous along the peripheral contour and is provided with a generous interruption only in the region of the securingpin 22. - The insulating
coverings 27, like the pressing jaws, are of identical form. - In order to secure an insulating
covering 27 on apressing jaw 3, in the first instance the push-onportion 29 is attached on the pressing-mouth side, the securingrib 36 being gripped by the C-shaped cross-section of the push-onportion 29 during the push-on operation. The articulated arrangement of the clip-onportion 30 on the push-onportion 29 here allows straightforward handling. Finally, the clip-onportion 30 is positioned on the narrowperipheral side 28, the C-crosspieces 38 of the clip-on portion gripping the latching ribs 37 on the pressing jaws. - As can be gathered from the illustrations in
FIGS. 8 and 11 in particular, thearticulation portions 31 of the insulatingcoverings 27 are associated with the respective securing pins 22 in the positions in which they are secured on thepressing jaws 3, the U-legs 32, which are interrupted in thearticulation portions 31, leaving a free space for these securing pins 22. -
FIGS. 10 and 11 illustrate a closed position of the pressing mouth. This is achieved by rollingbodies 13 of the pressing tool, which can be displaced preferably hydraulically in the direction of the inner narrow peripheral sides of thepressing jaws 3, these narrow peripheral sides formingcurved tracks 8, and this results in thepressing levers 7 being spread apart in the region of thecurved tracks 8 and consequently in thepressing mouth 14, formed by thepressing jaws 3, being closed. - A third exemplary embodiment of a
pressing jaw 101 of apair 102 of pressing jaws will be illustrated and described with reference to FIGS. 20 to 24. Thepressing jaw 101 is substantially configured as is described inDE 10 2005 028083 A1, which is mentioned in the introduction. Twopressing jaws 101 together form apair 102 of pressing jaws. The twopressing jaws 101 are connected to one another in an articulated manner by means of a sleeve 103 (this may also be a bolt). - The
pressing jaw 101 forms anaccommodating opening 104 which opens out into a narrowperipheral side 105 of thepressing jaw 101, this narrow peripheral side being directed toward the free space F between the twopressing jaws 101. Theaccommodating opening 104 has a diameter which exceeds the thickness of the pressing-jaw wall 8 in the region of that end of theaccommodating opening 104 which is directed toward the pressing-jaw interior. In the exemplary embodiment, the diameter is in the region of 8 mm. It can be seen that, rather than being a through-opening, theaccommodating opening 104 terminates in the central region of thepressing jaw 101. Twobroad sides jaw wall 8 each have a recessedregion 109. The thickness of the pressing-jaw wall 8 in the peripheral region, that is to say outside the recessedregion 109, is selected to be approximately three times the thickness in the region of a recessedregion 109. In the region of a recessedregion regions 9 are set into in the pressing-jaw wall 8 from the twobroad sides - A sunk-in
region 111 is disposed in the recessedregion 109 on one side, that is to say extending only from one of the broad sides. The sunk-inregion 111 partially overlaps an end region (axial extension) of theaccommodating opening 104. The width of the sunk-inregion 111 is adapted to the diameter of theaccommodating opening 104. The depth corresponds to half to three quarters, in the exemplary embodiment three fifths, of the depth of the pressing-jaw wall 108 in the region of the recessedregion 109. The extent of the sunk-inregion 111 in the axial direction of theaccommodating opening 104 corresponds approximately to double the diametral measurement of the pressing-jaw wall 108 in the region of the recessedregion 109. The sunk-inregion 111 here extends from aperipheral side 112 of the relatively thick periphery of the pressing-jaw wall 108, this peripheral side being directed toward the interior of thepressing jaw 101. Theaccommodating opening 104 itself extends axially only a little way into the region of the recessedarea 9, approximately by a quarter to half of the diameter of theaccommodating opening 104. Since, in relation to a center plane of thepressing jaw wall 108, theaccommodating opening 104 is disposed in the region of the recessedarea 9 such that it projects beyond the pressing-jaw wall 108 on both sides—in this region—a through-passage connecting channel 113 is correspondingly created. Accordingly, the connectingchannel 113 connects theaccommodating opening 104 and the sunk-inregion 111 on one side, on the side of the sunk-inregion 111. - As can also be gathered, in particular, from
FIG. 23 , the surface of the recessedregion 109 runs in the manner of a secant in relation to theaccommodating opening 104. It can also be seen that the surfaces of the mutually opposite recessedregions 9 of the pressing-jaw wall 108 run parallel to one another, spaced apart by the same distance a in each case from a plane running through the center point M (longitudinal axis) of theaccommodating opening 104, parallel to the planar extent of the pressing-jaw wall. - The sunk-in
region 111 is followed by a through-opening 114 as seen in the direction of the thickness of the pressing-jaw wall 108, the diameter of this through-opening being less than the depth of the sunk-inregion 111. The pressing-jaw wall portion 108′ of relatively small thickness, which is left by the sulk-inregion 111, in conjunction with the through-opening 114 results in acrosspiece 115 remaining. As can also be gathered, in particular, fromFIG. 24 , thecrosspiece 115 is offset in the thickness direction, that is to say it is associated with the broad side 7 (the broad side located opposite the sunk-in region) and, on this side, terminates with the surface of the recessedregion 109. - As can be gathered from
FIG. 22 in particular, thecrosspiece 115, on one side, has a contour corresponding to the through-opening 114 and, on the other side, in the region of the connectingchannel 113, has an extent which runs predominantly rectilinearly. - The
crosspiece 115 forms the securingpart 116 for thetension spring 117. - It can be seen with reference to
FIGS. 20 and 21 that in each case one end of thetension spring 117 is accommodated in anaccommodating opening 104 in apressing jaw 101. Thetension spring 117 here spans the free space F between the twopressing jaws 101 of thepair 102 of pressing jaws. In order to secure thetension spring 117, a tension-spring end 118, starting from thebroad side 6, engages around thecrosspiece 115. The tension-spring end 118, which is associated with the interior of the pressing jaws, extends through the through-opening 114 to thebroad side 7 of the pressing-jaw wall 108 and thus engages around thecrosspiece 115. In the case of the embodiment which has been described up to this point, the securingpart 116, in the form of thecrosspiece 115, is an integral constituent part of thepressing jaw 101. This can be realized, for example, by casting, for which purpose the lost-wax process is also suggested. - FIGS. 25 to 27 illustrate a fourth exemplary embodiment. In particular in the case of this exemplary embodiment, the securing
part 116 can also be produced by machining. Nevertheless, it could also be produced by casting. - In the case of this exemplary embodiment, the same elements are designated by the same reference numerals.
- With reference to FIGS. 25 to 27, the recessed
region 109 on thebroad side 6 likewise has a sunk-inregion 111. The latter is likewise disposed so as to overlap theaccommodating opening 104 in the manner described. However, it is possible here for the sunk-inregion 111 to start at a certain distance from thesides 112 of the recessedregion 109. Theaccommodating opening 104 may be provided such that it runs correspondingly further into the recessedregion 109, in order for theaccommodating opening 104 and the sunk-inregion 111 to overlap. The sunk-inregion 111 may be produced, for example, by an end milling cutter. - As described previously, a connecting
channel 113 is likewise produced in the region of overlap. Furthermore, a through-opening 114 is also provided in this embodiment. This through-opening may be, for example, drilled. Just as in the third exemplary embodiment, this results in a securingpart 116 in the form of acrosspiece 115. -
FIGS. 28 and 29 illustrate a fifth exemplary embodiment. Here too, the same elements are designated by the reference numerals which have been used above. In this exemplary embodiment, just as in the third exemplary embodiment, the securingpart 116 is integrated by casting. However, machining would also be a conceivable production method in order to produce such an integral securing part in the form of aproturberance 119. - The fifth exemplary embodiment differs from the third in so far as the through-
opening 114 is replaced by aproturberance 119 left by the sunk-inregion 111. - The free end of the
proturberance 119 terminates with the surface of the recessedregion 109. It would also be conceivable to configure theproturberance 119 such that it goes beyond the surface of the recessedregion 109. In the case of this exemplary embodiment, in order to secure thetension spring 117, the tension-spring end 118 engages around theproturberance 119. In this case, theproturberance 119 forms thecrosspiece 115 of the securingpart 116 for thetension spring 117. - All features disclosed are (in themselves) pertinent to the invention. The disclosure content of the associated/attached priority documents (copy of the prior application) is hereby also included in full in the disclosure of the application, also for the purpose of incorporating features of these documents in claims of the present application.
- While preferred embodiments of the present invention are shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from the spirit and scope of the appended claims.
Claims (12)
1. Pair of pressing jaws for hydraulic or electric pressing tools for pressing fittings onto pipes or for the press connection of electric cables, comprising:
two pressing jaws connected to one another in an articulated manner forming a pair of pressing jaws, the pressing jaws being biased into their open position by a tension spring, which spans a free space between the two pressing jaws, wherein in each pressing jaw one end of the tension spring is accommodated in an accommodating opening which opens out into a narrow peripheral side of the pressing jaw, said narrow peripheral side being directed toward the free space wherein a tension-spring end engages a pin-like securing part disposed at that end of the accommodating opening which is directed away from the free space, and wherein the securing part is formed as an integral crosspiece of the pressing jaw.
2. Pair of pressing jaws according to claim 1 , wherein the crosspiece is formed by a sunk-in region which is disposed so as to overlap an axial extension of the accommodating opening.
3. Pair of pressing jaws according to claim 2 , wherein the sunk-in region is followed by a through-opening.
4. Pair of pressing jaws according to claim 2 , wherein the sunk-in region is formed in a broad side of a pressing-jaw wall.
5. Pair of pressing jaws according to claim 2 , wherein in relation to a surrounding peripheral region of the pressing jaw, the pressing-jaw wall is recessed in the region of the sunk-in area.
6. Pair of pressing jaws according to claim 2 , wherein the depth of the sunk-in region corresponds at least to the thickness of a spring wire forming the spring.
7. Pair of pressing jaws according to claim 3 , wherein the crosspiece on one side, has a contour corresponding to the curvature of the through-opening while the contour on the opposite side runs rectilinearly.
8. Pair of pressing jaws according to claim 2 , wherein the crosspiece is formed by a protuberance left in the sunk-in region.
9. Pair of pressing jaws according to claim 8 , wherein the height of the protuberance corresponds to the depth of the sunk-in region.
10. Pair of pressing jaws according to claim 1 , wherein the two pressing jaws of the pair of pressing jaws are axially symmetrical in the assembled state.
11. Pair of pressing jaws according to claim 1 , wherein the two pressing jaws of the pair of pressing jaws are mirror-symmetrical in the assembled state.
12. Pair of pressing jaws according to claim 1 , wherein in each pressing jaw one end of the tension spring engages around the securing part of the pressing jaw.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/850,504 US20080016939A1 (en) | 2004-07-02 | 2007-09-05 | Pair of pressing jaws for hydraulic or electric pressing tools |
US13/011,412 US8336362B2 (en) | 2006-09-07 | 2011-01-21 | Pair of pressing jaws for hydraulic or electric pressing tool |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/884,752 US7216523B2 (en) | 2004-07-02 | 2004-07-02 | Pair of pressing jaws for hydraulic or electric pressing tools, and insulating covering for a pressing jaw |
DE202006013693.2 | 2006-09-07 | ||
DE202006013693U DE202006013693U1 (en) | 2006-09-07 | 2006-09-07 | Pressing jaw pair for hydraulic or electrical pressing devices |
US11/534,737 US7409846B2 (en) | 2004-07-02 | 2006-09-25 | Pair of pressing jaws for hydraulic or electric pressing tools, and insulating covering for a pressing jaw |
US11/850,504 US20080016939A1 (en) | 2004-07-02 | 2007-09-05 | Pair of pressing jaws for hydraulic or electric pressing tools |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/534,737 Continuation-In-Part US7409846B2 (en) | 2004-07-02 | 2006-09-25 | Pair of pressing jaws for hydraulic or electric pressing tools, and insulating covering for a pressing jaw |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/011,412 Continuation US8336362B2 (en) | 2006-09-07 | 2011-01-21 | Pair of pressing jaws for hydraulic or electric pressing tool |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080016939A1 true US20080016939A1 (en) | 2008-01-24 |
Family
ID=38970165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/850,504 Abandoned US20080016939A1 (en) | 2004-07-02 | 2007-09-05 | Pair of pressing jaws for hydraulic or electric pressing tools |
Country Status (1)
Country | Link |
---|---|
US (1) | US20080016939A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109070177A (en) * | 2016-05-02 | 2018-12-21 | 豪倍公司 | Online hydraulic crimping tool |
US11236849B2 (en) | 2019-09-04 | 2022-02-01 | Techtronic Cordless Gp | Pressing tool and method for a re-pressing operation |
Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US878493A (en) * | 1907-03-16 | 1908-02-11 | Harold B Barnes | Tool for electric wires. |
US922330A (en) * | 1908-11-30 | 1909-05-18 | Thomas A Powell | Wrench. |
US1619137A (en) * | 1924-11-06 | 1927-03-01 | Detroit Belt Lacer Co | Belt-hook-closing machine |
US1743209A (en) * | 1926-04-05 | 1930-01-14 | Hudson Motor Car Co | Fastener-setting device |
US2396562A (en) * | 1944-01-10 | 1946-03-12 | Independent Pneumatic Tool Co | Clip squeezing tool |
US2595989A (en) * | 1949-01-24 | 1952-05-06 | Harry H Smeltz | Fishmouth holding tool |
US2600860A (en) * | 1949-06-07 | 1952-06-17 | Burndy Engineering Co Inc | Fluid pressure operated portable compressing tool |
US2766631A (en) * | 1950-06-09 | 1956-10-16 | Rotor Tool Company | Power multiplying mechanism for portable hand tools |
US2979032A (en) * | 1958-05-12 | 1961-04-11 | Bahco Ab | Hydraulically operable hand tools |
US3026646A (en) * | 1960-10-31 | 1962-03-27 | John E Weaver | Line holding clamp device |
US3044074A (en) * | 1959-07-08 | 1962-07-17 | Mastabar Mining Equip Co Ltd | Belt lacing machines |
US3323346A (en) * | 1965-01-08 | 1967-06-06 | Etc Inc | Fluid-actuated hand tool |
US3372479A (en) * | 1966-04-29 | 1968-03-12 | Chicago Pneumatic Tool Co | Cutting jaw head unit for a nipping tool |
US3427837A (en) * | 1966-05-06 | 1969-02-18 | Harry A Faulconer | Solenoid-actuated air cylinder |
US3626445A (en) * | 1970-03-13 | 1971-12-07 | Alonzo L Penix | Hydraulic power tool |
US3717744A (en) * | 1971-06-23 | 1973-02-20 | P Pishioneri | Electrode holder |
US3877286A (en) * | 1974-08-12 | 1975-04-15 | Raymond L Fontaine | Closer for sheet metal locks |
US3902385A (en) * | 1974-03-14 | 1975-09-02 | Varco Int | Pipe joint make-up or break-out tool |
US4026028A (en) * | 1975-07-31 | 1977-05-31 | Mario D. Medio | Cable cutting device |
US4169652A (en) * | 1977-04-29 | 1979-10-02 | Karl Pfisterer Elektrotechnische | Method and apparatus for connecting electrical conductors |
US4257135A (en) * | 1977-12-01 | 1981-03-24 | Hackforth Gmbh & Co. Kg | Assembly tool for tube fittings |
US4426869A (en) * | 1982-06-01 | 1984-01-24 | Litton Industrial Products, Inc. | Radial infeed thread roll attachment |
US4607548A (en) * | 1985-05-02 | 1986-08-26 | Milbar Corporation | Pliers |
US4760644A (en) * | 1986-06-24 | 1988-08-02 | Benyamin Yirmiyahu | Hydraulic cutter |
US4869465A (en) * | 1986-06-24 | 1989-09-26 | Mordechai Yirmiyahu | Power-operated spreader tool |
US4956992A (en) * | 1988-10-17 | 1990-09-18 | C. A. Weidmuller Gmbh & Co. | Manual tool drivable by a rotary motor |
US5012666A (en) * | 1989-07-24 | 1991-05-07 | Chen Ching Wen | Crimp tool with adjustable jaw |
US5040278A (en) * | 1989-02-22 | 1991-08-20 | Eckold Gerd Juergen | Power-driven pincer-type tool holder for use in handling apparatuses |
US5105543A (en) * | 1990-10-03 | 1992-04-21 | Code 3 Res Q Equipment, Inc. | Rescue cutting tool |
US5125296A (en) * | 1991-07-29 | 1992-06-30 | Micro Plastics, Inc. | Pneumatic hose clamp assembly tool |
US5138862A (en) * | 1991-08-27 | 1992-08-18 | Ball Corporation | Ram guidance system |
US5138864A (en) * | 1990-12-28 | 1992-08-18 | Ripley Company, Inc. | Crimping tool |
US5243883A (en) * | 1992-09-14 | 1993-09-14 | Savage Dave W | Clamping jaw projectors |
US5284375A (en) * | 1993-03-12 | 1994-02-08 | Ingersoll-Rand Company | Single actuation rod gripping mechanism |
US5335530A (en) * | 1991-09-10 | 1994-08-09 | Hewing Gmbh | Pressing tool for pressing a cylindrical pressing member or a pressing member comprising a cylindrical portion onto a round profile, particularly a pipe conduit |
US5487297A (en) * | 1995-01-17 | 1996-01-30 | The Whitaker Corporation | Crimping tool having mechanism for selectively biasing crimping dies to open or closed position |
US5490406A (en) * | 1994-08-19 | 1996-02-13 | The Whitaker Corporation | Crimping tool having die bottoming monitor |
US5934136A (en) * | 1997-03-07 | 1999-08-10 | Izumi Products Company | Compression head for a hydraulic compression tool |
US6000680A (en) * | 1996-08-26 | 1999-12-14 | Kabushiki Kaisha Ogura | Fluid operated machine for prying and other purposes |
US6035775A (en) * | 1997-02-21 | 2000-03-14 | Novopres Gmbh Pressen Und Presswerkzeuge & Co. Kg | Pressing device having a control device adapted to control the pressing device in accordance with a servocontrol system of the control device |
US6042166A (en) * | 1997-05-07 | 2000-03-28 | Komax Holding Ag | Gripper |
US6044686A (en) * | 1990-04-12 | 2000-04-04 | Dischler; Helmut | Compression tool for compression molding die |
US6244085B1 (en) * | 1999-02-11 | 2001-06-12 | Von Arx Ag | Pressing tool |
US20010027676A1 (en) * | 1997-10-15 | 2001-10-11 | Egbert Frenken | Hydraulic pressing device and method for operating the same |
US6434998B2 (en) * | 2000-01-07 | 2002-08-20 | Von Arx Ag | Pressing pincer |
US6457338B1 (en) * | 1999-10-15 | 2002-10-01 | Gustav Klauke Gmbh | Pressing tool with pressing jaws |
US6510723B2 (en) * | 2000-05-25 | 2003-01-28 | Von Arx Ag | Pressing tool for pressing coupling elements |
US6513198B2 (en) * | 2001-06-26 | 2003-02-04 | Hanlong Industrial Co., Ltd. | Plastic handle structure of a clamp tool |
US6739172B2 (en) * | 2001-01-15 | 2004-05-25 | REMS-WERK Christian Föll und Söhne GmbH & Co. | Pressing tongs |
US6772618B2 (en) * | 2000-10-19 | 2004-08-10 | Gustav Klauke Gmbh | Pressing tool for pressing pipe ends, and pressing insert for a pressing jaw of a pressing tool |
US20050120770A1 (en) * | 2002-04-10 | 2005-06-09 | Egbert Frenken | Electrohydraulic pressing device and method for operating the same |
US20050241359A1 (en) * | 2004-04-30 | 2005-11-03 | Viega Gmbh & Co., Kg | Pressing tool for the pressing-together of workpieces |
US6981326B1 (en) * | 2004-01-09 | 2006-01-03 | Ho Cheng Gardening Tools Co., Ltd. | Gardening scissors provided with a protective cover on the seam |
US20060000072A1 (en) * | 2004-07-02 | 2006-01-05 | Egbert Frenken | Pair of pressing jaws for hydraulic or electric pressing tools, and insulating covering for a pressing jaw |
US7000448B2 (en) * | 2003-02-12 | 2006-02-21 | Emerson Electric Co. | Compression tool jawarm member |
US7043806B2 (en) * | 2003-08-27 | 2006-05-16 | Von Waitzische Beteillgungen, GBR, represented by the Gesellschafter Harald Von Waitz und Dr. Freidrich Von Waitz | Radial press for pressing rotationally symmetrical hollow bodies |
US7055414B2 (en) * | 2002-01-08 | 2006-06-06 | Ideal Industries, Inc. | Soft-grip wire stripper |
US7124608B2 (en) * | 2000-04-28 | 2006-10-24 | Emerson Electric Co. | Pressing tool and pressing process for extruding press fittings |
US7155955B2 (en) * | 2001-09-11 | 2007-01-02 | Emerson Electric Co. | Crimping assembly |
US7299724B1 (en) * | 2007-01-24 | 2007-11-27 | Warheit Matthew W | Self-adjusting gripping tool |
-
2007
- 2007-09-05 US US11/850,504 patent/US20080016939A1/en not_active Abandoned
Patent Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US878493A (en) * | 1907-03-16 | 1908-02-11 | Harold B Barnes | Tool for electric wires. |
US922330A (en) * | 1908-11-30 | 1909-05-18 | Thomas A Powell | Wrench. |
US1619137A (en) * | 1924-11-06 | 1927-03-01 | Detroit Belt Lacer Co | Belt-hook-closing machine |
US1743209A (en) * | 1926-04-05 | 1930-01-14 | Hudson Motor Car Co | Fastener-setting device |
US2396562A (en) * | 1944-01-10 | 1946-03-12 | Independent Pneumatic Tool Co | Clip squeezing tool |
US2595989A (en) * | 1949-01-24 | 1952-05-06 | Harry H Smeltz | Fishmouth holding tool |
US2600860A (en) * | 1949-06-07 | 1952-06-17 | Burndy Engineering Co Inc | Fluid pressure operated portable compressing tool |
US2766631A (en) * | 1950-06-09 | 1956-10-16 | Rotor Tool Company | Power multiplying mechanism for portable hand tools |
US2979032A (en) * | 1958-05-12 | 1961-04-11 | Bahco Ab | Hydraulically operable hand tools |
US3044074A (en) * | 1959-07-08 | 1962-07-17 | Mastabar Mining Equip Co Ltd | Belt lacing machines |
US3026646A (en) * | 1960-10-31 | 1962-03-27 | John E Weaver | Line holding clamp device |
US3323346A (en) * | 1965-01-08 | 1967-06-06 | Etc Inc | Fluid-actuated hand tool |
US3372479A (en) * | 1966-04-29 | 1968-03-12 | Chicago Pneumatic Tool Co | Cutting jaw head unit for a nipping tool |
US3427837A (en) * | 1966-05-06 | 1969-02-18 | Harry A Faulconer | Solenoid-actuated air cylinder |
US3626445A (en) * | 1970-03-13 | 1971-12-07 | Alonzo L Penix | Hydraulic power tool |
US3717744A (en) * | 1971-06-23 | 1973-02-20 | P Pishioneri | Electrode holder |
US3902385A (en) * | 1974-03-14 | 1975-09-02 | Varco Int | Pipe joint make-up or break-out tool |
US3877286A (en) * | 1974-08-12 | 1975-04-15 | Raymond L Fontaine | Closer for sheet metal locks |
US4026028A (en) * | 1975-07-31 | 1977-05-31 | Mario D. Medio | Cable cutting device |
US4169652A (en) * | 1977-04-29 | 1979-10-02 | Karl Pfisterer Elektrotechnische | Method and apparatus for connecting electrical conductors |
US4257135A (en) * | 1977-12-01 | 1981-03-24 | Hackforth Gmbh & Co. Kg | Assembly tool for tube fittings |
US4426869A (en) * | 1982-06-01 | 1984-01-24 | Litton Industrial Products, Inc. | Radial infeed thread roll attachment |
US4607548A (en) * | 1985-05-02 | 1986-08-26 | Milbar Corporation | Pliers |
US4760644A (en) * | 1986-06-24 | 1988-08-02 | Benyamin Yirmiyahu | Hydraulic cutter |
US4869465A (en) * | 1986-06-24 | 1989-09-26 | Mordechai Yirmiyahu | Power-operated spreader tool |
US4956992A (en) * | 1988-10-17 | 1990-09-18 | C. A. Weidmuller Gmbh & Co. | Manual tool drivable by a rotary motor |
US5040278A (en) * | 1989-02-22 | 1991-08-20 | Eckold Gerd Juergen | Power-driven pincer-type tool holder for use in handling apparatuses |
US5012666A (en) * | 1989-07-24 | 1991-05-07 | Chen Ching Wen | Crimp tool with adjustable jaw |
US6044686A (en) * | 1990-04-12 | 2000-04-04 | Dischler; Helmut | Compression tool for compression molding die |
US5105543A (en) * | 1990-10-03 | 1992-04-21 | Code 3 Res Q Equipment, Inc. | Rescue cutting tool |
US5138864A (en) * | 1990-12-28 | 1992-08-18 | Ripley Company, Inc. | Crimping tool |
US5125296A (en) * | 1991-07-29 | 1992-06-30 | Micro Plastics, Inc. | Pneumatic hose clamp assembly tool |
US5138862A (en) * | 1991-08-27 | 1992-08-18 | Ball Corporation | Ram guidance system |
US5335530A (en) * | 1991-09-10 | 1994-08-09 | Hewing Gmbh | Pressing tool for pressing a cylindrical pressing member or a pressing member comprising a cylindrical portion onto a round profile, particularly a pipe conduit |
US5243883A (en) * | 1992-09-14 | 1993-09-14 | Savage Dave W | Clamping jaw projectors |
US5284375A (en) * | 1993-03-12 | 1994-02-08 | Ingersoll-Rand Company | Single actuation rod gripping mechanism |
US5490406A (en) * | 1994-08-19 | 1996-02-13 | The Whitaker Corporation | Crimping tool having die bottoming monitor |
US5487297A (en) * | 1995-01-17 | 1996-01-30 | The Whitaker Corporation | Crimping tool having mechanism for selectively biasing crimping dies to open or closed position |
US6000680A (en) * | 1996-08-26 | 1999-12-14 | Kabushiki Kaisha Ogura | Fluid operated machine for prying and other purposes |
US6035775A (en) * | 1997-02-21 | 2000-03-14 | Novopres Gmbh Pressen Und Presswerkzeuge & Co. Kg | Pressing device having a control device adapted to control the pressing device in accordance with a servocontrol system of the control device |
US5934136A (en) * | 1997-03-07 | 1999-08-10 | Izumi Products Company | Compression head for a hydraulic compression tool |
US6042166A (en) * | 1997-05-07 | 2000-03-28 | Komax Holding Ag | Gripper |
US20010027676A1 (en) * | 1997-10-15 | 2001-10-11 | Egbert Frenken | Hydraulic pressing device and method for operating the same |
US6244085B1 (en) * | 1999-02-11 | 2001-06-12 | Von Arx Ag | Pressing tool |
US6457338B1 (en) * | 1999-10-15 | 2002-10-01 | Gustav Klauke Gmbh | Pressing tool with pressing jaws |
US6434998B2 (en) * | 2000-01-07 | 2002-08-20 | Von Arx Ag | Pressing pincer |
US7124608B2 (en) * | 2000-04-28 | 2006-10-24 | Emerson Electric Co. | Pressing tool and pressing process for extruding press fittings |
US6510723B2 (en) * | 2000-05-25 | 2003-01-28 | Von Arx Ag | Pressing tool for pressing coupling elements |
US6772618B2 (en) * | 2000-10-19 | 2004-08-10 | Gustav Klauke Gmbh | Pressing tool for pressing pipe ends, and pressing insert for a pressing jaw of a pressing tool |
US6739172B2 (en) * | 2001-01-15 | 2004-05-25 | REMS-WERK Christian Föll und Söhne GmbH & Co. | Pressing tongs |
US6513198B2 (en) * | 2001-06-26 | 2003-02-04 | Hanlong Industrial Co., Ltd. | Plastic handle structure of a clamp tool |
US7155955B2 (en) * | 2001-09-11 | 2007-01-02 | Emerson Electric Co. | Crimping assembly |
US7055414B2 (en) * | 2002-01-08 | 2006-06-06 | Ideal Industries, Inc. | Soft-grip wire stripper |
US20050120770A1 (en) * | 2002-04-10 | 2005-06-09 | Egbert Frenken | Electrohydraulic pressing device and method for operating the same |
US7000448B2 (en) * | 2003-02-12 | 2006-02-21 | Emerson Electric Co. | Compression tool jawarm member |
US7043806B2 (en) * | 2003-08-27 | 2006-05-16 | Von Waitzische Beteillgungen, GBR, represented by the Gesellschafter Harald Von Waitz und Dr. Freidrich Von Waitz | Radial press for pressing rotationally symmetrical hollow bodies |
US6981326B1 (en) * | 2004-01-09 | 2006-01-03 | Ho Cheng Gardening Tools Co., Ltd. | Gardening scissors provided with a protective cover on the seam |
US20050241359A1 (en) * | 2004-04-30 | 2005-11-03 | Viega Gmbh & Co., Kg | Pressing tool for the pressing-together of workpieces |
US20060000072A1 (en) * | 2004-07-02 | 2006-01-05 | Egbert Frenken | Pair of pressing jaws for hydraulic or electric pressing tools, and insulating covering for a pressing jaw |
US7299724B1 (en) * | 2007-01-24 | 2007-11-27 | Warheit Matthew W | Self-adjusting gripping tool |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109070177A (en) * | 2016-05-02 | 2018-12-21 | 豪倍公司 | Online hydraulic crimping tool |
EP3452237A4 (en) * | 2016-05-02 | 2020-05-06 | Hubbell Incorporated | In-line hydraulic crimp tool |
US11236849B2 (en) | 2019-09-04 | 2022-02-01 | Techtronic Cordless Gp | Pressing tool and method for a re-pressing operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8336362B2 (en) | Pair of pressing jaws for hydraulic or electric pressing tool | |
US7434441B2 (en) | Pair of pressing jaws for hydraulic or electric pressing tools | |
US8245561B2 (en) | Hydraulically driven pressing device, and method of pressing a fitting | |
US8286461B2 (en) | Hand-operated pliers | |
US6474130B2 (en) | Pliers for crimping work pieces | |
AU2012299719B2 (en) | Pressing device | |
US7779523B2 (en) | Pressing device | |
US7155954B2 (en) | Pliers for crimping work pieces | |
US6308597B1 (en) | Locking device for a hand tool | |
US8196288B2 (en) | Double crimping tool | |
EP1820608B1 (en) | Link for crimping tool | |
US6405411B1 (en) | Catch at a pressring | |
CN111279561A (en) | Crimping ports and crimping pliers with two jaws | |
US20080072436A1 (en) | Pair of cutting jaws | |
JP7587819B2 (en) | Hand pliers tool and method for assembling same | |
US20060150786A1 (en) | Plastic rivet puller pliers | |
US20080016939A1 (en) | Pair of pressing jaws for hydraulic or electric pressing tools | |
US20080104765A1 (en) | Combination pliers and adjustable wrench | |
US7874193B2 (en) | Crimping die and crimping tool | |
US20030110642A1 (en) | Cable cutter | |
US6161416A (en) | Tool for crimping contact elements | |
KR101257027B1 (en) | Split pin banding tool | |
US9751224B2 (en) | Forceps | |
US5131127A (en) | Tool for removing a split washer | |
CA3173002A1 (en) | Hand pliers designed to carry out crimping, and hand pliers comprising a plier head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GUSTAV KLAUKE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRENKEN, EGBERT;REEL/FRAME:019948/0758 Effective date: 20070914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |