+

US20080009065A1 - Genes encoding insect odorant receptors and uses thereof - Google Patents

Genes encoding insect odorant receptors and uses thereof Download PDF

Info

Publication number
US20080009065A1
US20080009065A1 US11/825,626 US82562607A US2008009065A1 US 20080009065 A1 US20080009065 A1 US 20080009065A1 US 82562607 A US82562607 A US 82562607A US 2008009065 A1 US2008009065 A1 US 2008009065A1
Authority
US
United States
Prior art keywords
seq
nucleic acid
receptor
odorant receptor
insect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/825,626
Inventor
Leslie Vosshall
Hubert Amrein
Richard Axel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University in the City of New York
Original Assignee
Columbia University in the City of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University in the City of New York filed Critical Columbia University in the City of New York
Priority to US11/825,626 priority Critical patent/US20080009065A1/en
Publication of US20080009065A1 publication Critical patent/US20080009065A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: COLUMBIA UNIV NEW YORK MORNINGSIDE
Assigned to NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR reassignment NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43577Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from flies
    • C07K14/43581Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from flies from Drosophila

Definitions

  • olfactory information requires that the brain discern which of the numerous receptors have been activated by an odorant.
  • individual olfactory sensory neurons express only one of a thousand receptor genes such that the neurons are functionally distinct (Ngai et al., 1993; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994).
  • the axons from olfactory neurons expressing a specific receptor converge upon two spatially invariant glomeruli among the 1800 glomeruli within the olfactory bulb (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; Wang et al., 1998).
  • the bulb therefore provides a spatial map that identifies which of the numerous receptors has been activated within the sensory epithelium.
  • the quality of an olfactory stimulus would therefore be encoded by specific combinations of glomeruli activated by a given odorant.
  • Vertebrates create an internal representation of the external olfactory world that must translate stimulus features into neural information. Despite the elucidation of a precise spatial map, it has been difficult in vertebrates to discern how this information is decoded to relate the recognition of odors to specific behavioral responses. Genetic analysis of olfactory-driven behavior in invertebrates may ultimately afford a system to understand the mechanistic link between odor recognition and behavior. Insects provide an attractive model system for studying the peripheral and central events in olfaction because they exhibit sophisticated olfactory-driven behaviors under control of an olfactory sensory system that is significantly simpler anatomically than that of vertebrates (Siddiqi, 1987; Carlson, 1996).
  • Olfactory-based associative learning for example, is robust in insects and results in discernible modifications in the neural representation of odors in the brain (Faber et al., 1998). It may therefore be possible to associate modifications in defined olfactory connections with in vivo paradigms for learning and memory.
  • Olfactory recognition in the fruit fly Drosophila is accomplished by sensory hairs distributed over the surface of the third antennal segment and the maxillary palp. Olfactory neurons within sensory hairs send projections to one of 43 glomeruli within the antennal lobe of the brain (Stocker, 1994; Laissue et al., 1999). The glomeruli are innervated by dendrites of the projection neurons, the insect equivalent of the mitral cells in the vertebrate olfactory bulb, whose cell bodies surround the glomeruli. These antennal lobe neurons in turn project to the mushroom body and lateral horn of the protocerebrum (reviewed in Stocker, 1994).
  • the present application discloses a large family of genes that are likely to encode the odorant receptors of Drosophila melanogaster .
  • Difference cloning, along with analysis of Drosophila genomic sequences, has led to the identification of a novel family of putative seven transmembrane domain receptors likely to be encoded by 100 to 200 genes within the Drosophila genome.
  • Each receptor is expressed in a small subset of sensory cells (0.5-1.5%) that is spatially defined within the antenna and maxillary palp.
  • different neurons express distinct complements of receptor genes such that individual neurons are functionally distinct.
  • Identification of a large family of putative odorant receptors in insects indicates that, as in other species, the diversity and specificity of odor recognition is accommodated by a large family of receptor genes.
  • the identification of the family of putative odorant receptor genes may afford insight into the logic of olfactory perception in Drosophila.
  • Insects provide an attractive system for the study of olfactory sensory perception.
  • the present application identifies a novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors. Members of this gene family are expressed in topographically defined subpopulations of olfactory sensory neurons in either the antenna or the maxillary palp. Sensory neurons express different complements of receptor genes, such that individual neurons are functionally distinct. The isolation of candidate odorant receptor genes along with a genetic analysis of olfactory-driven behavior in insects may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.
  • This invention provides an isolated nucleic acid encoding an insect odorant receptor.
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor which polypeptide comprises seven transmembrane domains and a C-terminal domain, wherein one of the seven transmembrane domains is located within the polypeptide at a position adjoining the C-terminal domain and wherein this seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 107) -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L or A)-(Y, N, F, M, I, L, K, S, H or T)-(X) 20 -W-;
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide is selected from the group consisting of polypeptides comprising consecutive amino acids the sequence of which is one of the following:
  • the invention provides an isolated nucleic acid encoding an odorant receptor protein from an insect, wherein the nucleic acid comprises
  • This invention provides a nucleic acid of at least 12 nucleotides capable of specifically hybridizing with the sequence of any of the herein described nucleic acids.
  • This invention provides a nucleic acid comprising at least 12 nucleotides which specifically hybridize with nucleic acid having any of the sequences described herein.
  • This invention provides a vector which comprises any of the herein described isolated nucleic acids. In another embodiment, the vector is a plasmid.
  • This invention also provides a host vector system for the production of a polypeptide having the biological activity of an insect odorant receptor which comprises the above described vector and a suitable host.
  • This invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing the above described host vector system under conditions permitting production of the polypeptide and recovering the polypeptide so produced.
  • (bbb) a polypeptide which shares greater than 25% amino acid identity with any one of the polypeptides of (a)-(aaa), and comprises a transmembrane domain and an adjoining C-terminal domain which together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 107) -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L or A)-(Y, N, F, M, I, L, K, S, H or T)-(X) 20 -W-;
  • the invention provides an isolated nucleic acid encoding an odorant receptor protein from an insect, wherein the receptor protein comprises consecutive amino acids having a sequence identical to that set forth for DORA45 in SEQ ID NO: 104.
  • This invention also provides a purified, insect odorant receptor. This invention further provides a polypeptide encoded by the herein described isolated nucleic acids.
  • This invention provides an antibody which specifically binds to an insect odorant receptor. This invention also provides an antibody which competitively inhibits the binding of the antibody capable of specifically binding to an insect odorant receptor.
  • This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors comprising: (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons; (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue; (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and (d) isolating clones which carry the hybridized inserts, thereby identifying the inserts encoding odorant receptors.
  • This invention also provides cDNA inserts identified by the above method.
  • This invention further provides a method for identifying DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron; (b) contacting clones from the cDNA libraries generated in step (a) with nucleic acid molecule capable of specifically hybridizing with the sequence which encodes an insect odorant receptor in appropriate conditions permitting the hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule; (c) selecting clones which hybridized with the nucleic acid molecule; and (d) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.
  • This invention also provides a method to identify DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron; (b) contacting the clones from the DNA libraries generated in step (a) with appropriate polymerase chain reaction primers which specifically bind to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction; (c) selecting the amplified inserts; and (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptors.
  • This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising: (a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers which specifically bind to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.
  • This invention also provides a method for obtaining a nucleic acid encoding an insect odorant receptor which comprises:
  • This invention also provides a method of transforming cells which comprises transfecting a host cell with a suitable vector described above. This invention also provides transformed cells produced by the above method.
  • This invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting a transfected cell or membrane fraction of the above described transfected cell with an appropriate amount of the compound under conditions permitting binding of the compound to such receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to the receptor.
  • This invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting binding of the compound to such purified receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining identifying the compound as a compound which specifically binds to the receptor.
  • This invention also provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is a compound which activates an insect odorant receptor.
  • This invention also provides a method of identifying a compound which activates an odorant receptor which comprises contacting a purified insect odorant receptor with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is a compound which activates an insect odorant receptor.
  • the purified receptor is embedded in a lipid bilayer.
  • This invention also provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is a compound which inhibits the activity of an insect odorant receptor.
  • This invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is a compound which inhibits the activity of a odorant receptor.
  • the purified receptor is embedded in a lipid bilayer.
  • This invention also provides the compound identified by any of the above-described methods.
  • This invention provides a method of controlling pest populations which comprises identifying odorant ligands by the above-described method which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.
  • This invention provides a method of controlling a pest population which comprises identifying odorant ligands by the above-described method which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.
  • FIG. 1A-1D Identification of Rare Antennal- and Maxillary Palp-Specific Genes
  • FIG. 2A-2C Expression of DOR104 in a Subset of Maxillary Palp Neurons
  • a frontal section of an adult maxillary palp was hybridized with a digoxigenin-labeled antisense RNA probe and visualized with anti-digoxigenin conjugated to alkaline phosphatase. Seven cells expressing DOR104 are visible in this 15 ⁇ m section, which represents about one third of the diameter of the maxillary palp. Serial sections of multiple maxillary palps were scored for DOR104 expression and on average 20 cells per maxillary palp are positive for this receptor.
  • FIG. 3A-3B Predicted Amino Acid Sequences of Drosophila Odorant Receptor Genes
  • DOR87 SEQ ID NO: 6
  • DOR53 SEQ ID NO: 8
  • DOR67 SEQ ID NO: 10
  • DOR104 SEQ ID NO: 4
  • DOR64 SEQ ID NO: 12
  • FIG. 4A-4I Receptor Gene Expression in Spatially Restricted Regions of the Antenna
  • Digoxigenin-labeled antisense RNA probes against 8 DOR genes each hybridize to a small number of cells distributed in distinct regions in the antenna.
  • the total number of cells per antenna expressing a given receptor was obtained by counting positive cells in serial sections of multiple antennae. There are approximately 20 positive cells per antenna for DOR67 (A), DOR53 (B), and DOR24 (data not shown); 15 positive cells for DOR62 (C) and DOR87 (D); and 10 positive cells for DOR64 (E).
  • the actual number of cells staining in these sections is a subset of this total number.
  • DOR53 and DOR67 which strongly cross-hybridize, the receptor genes likely identify different olfactory neurons, such that the number of cells staining with a mixed probe (F) is equal to the sum of those staining with the individual probes (A-E).
  • the mixture of DOR53, 67, 62, 87 and 64 labels a total of about 60 cells per antenna. A total of 34 cells stain with the mixed probe in this 15 ⁇ m section.
  • Expression of the linked genes DOR71g, DOR72g, and DOR73g is shown in panels (G), (H), and (I), respectively. DOR71g is expressed in approximately 10 cells in the maxillary palp. Five positive cells are seen in the horizontal section in panel (G). The expression of the other members of this linkage group was also examined. DOR72g was found in approximately 15 cells (of which 3 label in this section) (H) and DOR73g in 1 to 2 cells per antenna (I).
  • FIG. 5A-5G Odorant Receptors are Restricted to Distinct Populations of Olfactory Neurons
  • A-C Flies of the C155 elav-GAL4; UAS-lacZ genotype express cytoplasmic lacZ in all neuronal cells.
  • Panels (A-C) show confocal images of a horizontal maxillary palp section from such a fly incubated with an antisense RNA probe against DOR104 (red) and anti- ⁇ -galactosidase antibody (green). DOR104 recognizes five cells in this maxillary palp section (A), all of which also express elav-lacZ (B), as demonstrated by the yellow cells in the merged image in panel (C).
  • DOR64 and DOR87 are expressed in non-overlapping neurons at the tip of the antenna.
  • Antisense RNA probes for DOR64 (digoxigenin-RNA; red) and DOR87 (FITC-RNA; green) were annealed to the same antennal sections and viewed by confocal microscopy.
  • Panel (D) is a digital superimposition of confocal images taken at 0.5 ⁇ m intervals through a 10 ⁇ m section of the antenna. Cells at different focal planes express both receptors, but no double labeled cells are found.
  • FIG. 6A-6F Receptor Expression is conserveed Between Individuals
  • DOR53 labels approximately 20 cells on the proximal-medial edge of the antenna, of which approximately 5 are shown labeling in these sections.
  • DOR87 is expressed in about the same number of cells at the distal tip. Both the position and number of staining cells is conserved between different individuals and is not sexually dimorphic.
  • FIG. 7A-7E Drosophila Odorant Receptors are Highly Divergent
  • Oregon R genomic DNA isolated from whole flies was digested with BamHI (B), EcoRI (E), or HindIII (H), electrophoresed on 0.8% agarose gels, and blotted to nitrocellulose membranes. Blots were annealed with 32 P-labeled probes derived from DOR53 cDNA (A), DOR67 cDNA (B), or DNA fragments generated by RT-PCR from antennal mRNA for DOR24 (C), DOR62 (D), and DOR72g (E).
  • FIG. 8 Analysis of axonal projections of olfactory receptor neurons expressing a given Drosophila odorant receptor. Result: all neurons expressing a given receptor send their axons to a single glomerulus, or discrete synaptic structure, in the olfactory processing center of the fly brain. This result is identical to that obtained with mouse odorant receptors: each glomerulus is dedicated to receiving axonal input from neurons expressing a given odorant receptor. Therefore, this result strengthens the argument that these genes indeed function as odorant receptors in Drosophila.
  • FIGS. 9 A 1 - 9 B ClustalW alignments of two subfamilies of the Drosophila odorant receptors, the DOR53 (A-1 and A-2) and DOR64 (B) families.
  • This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor.
  • the nucleic acid includes but is not limited to DNA, cDNA, genomic DNA, synthetic DNA or RNA.
  • the nucleic acid molecule encodes a Drosophila odorant receptor.
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor which polypeptide comprises seven transmembrane domains and a C-terminal domain, wherein one of the seven transmembrane domains is located within the polypeptide at a position adjoining the C-terminal domain and wherein this seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 107) -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L or A)-(Y, N, F, M, I, L, K, S, H or T)-(X) 20 -W-;
  • the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 111) -(F, Y, L, A or T)-(P, I, M, V or T)-(F, Y, I, S, L or C)-(C, Y or T)-(Y, N, F, M or I)-(X) 20 -W-.
  • the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 109) -(F, Y or L)-(P, I, M, V or T)-(F, Y, I, S, L or C)-(C, Y or T)-(Y, N or F)-(X) 20 -W-.
  • the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 112) -F-P-X-C-Y-(X) 20 -W-.
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide is selected from the group consisting of polypeptides comprising consecutive amino acids the sequence of which is one of the following:
  • (bbb) a polypeptide which shares greater than 25% amino acid identity with any one of the polypeptides of (a)-(aaa), and comprises a transmembrane domain and an adjoining C-terminal domain which together comprise consecutive amino acids the sequence of which is as follows: (SEQ ID NO: 107) -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L or A)-(Y, N, F, M, I, L, K, S, H or T)-(X) 20 -W-;
  • the nucleic acid encodes a polypeptide which shares greater than 35% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 45% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 55% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 65% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 75% amino acid identity with any one of the polypeptides of (a)-(aaa).
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid hybridizes under high stringency to a complement of any of the nucleic acids disclosed herein.
  • the invention also provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid hybridizes under high stringency to any of the nucleic acids disclosed herein.
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide comprises consecutive amino acids having a sequence identical to that set forth for DORA45 in SEQ ID NO: 104.
  • the invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid comprises:
  • the insect odorant receptor comprises seven transmembrane domains.
  • the nucleic acid is DNA or RNA.
  • the DNA is cDNA, genomic DNA, or synthetic DNA.
  • the RNA is synthetic RNA.
  • the nucleic acid molecule encodes a Drosophila odorant receptor.
  • the nucleic acids encoding an insect odorant receptor includes molecules coding for polypeptide analogs, fragments or derivatives of antigenic polypeptides which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues and addition analogs where in one or more amino acid residues is added to a terminal or medial portion of the polypeptides) and which share some or all properties of naturally-occurring forms.
  • These molecules include but not limited to: the incorporation of codons “preferred” for expression by selected non-mammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate sequences that facilitate construction of readily expressed vectors. Accordingly, these changes may result in a modified insect odorant receptor. It is the intent of this invention to include nucleic acid molecules which encode modified insect odorant receptors. Also, to facilitate the expression of receptors in different host cells, it may be necessary to modify the molecule such that the expressed receptors may reach the surface of the host cells. The modified insect odorant receptor should have biological activities similar to the unmodified insect odorant receptor. The molecules may also be modified to increase the biological activity of the expressed receptor.
  • the invention provides a nucleic acid comprising at least 12 nucleotides which specifically hybridizes with any of the isolated nucleic acids described herein.
  • the nucleic acid hybridizes with a unique sequence within the sequence of any of the nucleic acid molecules described herein.
  • the nucleic acid is DNA, cDNA, genomic DNA, synthetic DNA or RNA.
  • This invention provides a nucleic acid probe which comprises:
  • the probes are cDNA probes.
  • This invention provides a vector which comprises any of the isolated nucleic acids described herein.
  • the vector is a plasmid.
  • the isolated nucleic acids described herein is operatively linked to a regulatory element.
  • Regulatory elements required for expression include promoter sequences to bind RNA polymerase and transcription initiation sequences for ribosome binding.
  • a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG.
  • a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome.
  • Such vectors may be obtained commercially or assembled from the sequences described by methods well-known in the art, for example the methods described herein for constructing vectors in general.
  • the invention provides a host vector system for production of a polypeptide having the biological activity of an insect odorant receptor, which comprises any of the vectors described herein and a suitable host.
  • the suitable host is a bacterial cell, a yeast cell, an insect cell, or an animal cell.
  • the host cell of the expression system described herein may be selected from the group consisting of the cells where the protein of interest is normally expressed, or foreign cells such as bacterial cells (such as E. coli ), yeast cells, fungal cells, insect cells, nematode cells, plant or animal cells, where the protein of interest is not normally expressed.
  • Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.
  • the invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing any of the host vector systems described herein under conditions permitting production of the polypeptide and recovering the polypeptide so produced.
  • the invention provides a purified insect odorant receptor protein encoded by any of the isolated nucleic acids described herein. This invention further provides a polypeptide encoded by any of the isolated nucleic acids described herein.
  • the invention provides an antibody which specifically binds to an insect odorant receptor protein encoded by any of the isolated nucleic acids described herein.
  • the antibody is a monoclonal antibody.
  • the antibody is polyclonal.
  • the invention provides an antibody which competitively inhibits the binding of any of the antibodies described herein capable of specifically binding to an insect odorant receptor.
  • the antibody is a monoclonal antibody.
  • the antibody is polyclonal.
  • Monoclonal antibody directed to an insect odorant receptor may comprise, for example, a monoclonal antibody directed to an epitope of an insect odorant receptor present on the surface of a cell.
  • Amino acid sequences may be analyzed by methods well known to those skilled in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into the lipid bilayer which forms the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment.
  • Antibodies directed to an insect odorant receptor may be serum-derived or monoclonal and are prepared using methods well known in the art.
  • monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody.
  • Cells such as NIH3T3 cells or 293 cells which express the receptor may be used as immunogens to raise such an antibody.
  • synthetic peptides may be prepared using commercially available machines.
  • DNA such as a cDNA or a fragment thereof, encoding the receptor or a portion of the receptor may be cloned and expressed.
  • the expressed polypeptide may be recovered and used as an immunogen.
  • the resulting antibodies are useful to detect the presence of insect odorant receptors or to inhibit the function of the receptor in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.
  • antibodies against the Drosophila odorant receptor may be used to screen an cockroach expression library for a cockroach odorant receptor.
  • Such antibodies may be monoclonal or monospecific polyclonal antibody against a selected insect odorant receptor.
  • Different insect expression libraries are readily available and may be made using technologies well-known in the art.
  • One means of isolating a nucleic acid molecule which encodes an insect odorant receptor is to probe a libraries with a natural or artificially designed probes, using methods well known in the art.
  • the probes may be DNA or RNA.
  • the library may be cDNA or genomic DNA.
  • the invention provides a method for identifying cDNA inserts encoding insect an odorant receptor which comprises:
  • step (c) further comprises:
  • the invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
  • This invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
  • the appropriate polymerase chain reaction primers may be chosen from the conserved regions of the known insect odorant receptor sequences. Alternatively, the primers may be chosen from the regions which are the active sites for the binding of ligands.
  • the insect odorant receptor is encoded by any of the isolated nucleic acid molecules described herein.
  • the invention provides the cDNA inserts identified by any of the methods described herein.
  • the invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
  • the invention provides a method for identifying cDNA inserts encoding an insect odorant receptor which comprises:
  • the insect odorant receptor is encoded by any of the isolated nucleic acids described herein.
  • the invention provides the cDNA inserts identified by any of the methods described herein.
  • This invention provides a method for identifying a cDNA insert encoding an odorant receptor from an insect which comprises:
  • the invention provides a method for obtaining a nucleic acid encoding an odorant receptor from an insect which comprises:
  • This invention provides a method for obtaining a nucleic acid encoding an odorant receptor from an insect which comprises:
  • the insect odorant receptor is encoded by any of the isolated nucleic acids described herein.
  • This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising: (a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.
  • This invention provides a cDNA insert encoding an insect odorant receptor obtainable by the following method:
  • the invention provides a method of transforming a cell which comprises transfecting a host cell with any of the vectors described herein.
  • the invention provides a transformed cell produced by any of the methods described herein. In one embodiment, prior to being transfected with the vector the host cell does not express an insect odorant receptor. In one embodiment, prior to being transfected with the vector the host cell does express an insect odorant receptor.
  • the invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting binding of the compound to the odorant receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to an insect odorant receptor.
  • the invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting binding of the compound to the purified odorant receptor protein, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to an insect odorant receptor.
  • the purified insect odorant receptor protein is embedded in a lipid bilayer.
  • the purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • the invention provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting activation of the odorant receptor, detecting activation of the receptor, and thereby identifying the compound as a compound which activates an insect odorant receptor.
  • the invention provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting activation of the odorant receptor, detecting activation of the receptor, and thereby identify the compound as a compound which activates an insect odorant receptor.
  • the purified insect odorant receptor protein is embedded in a lipid bilayer.
  • the purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • the invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting inhibition of the activity of the odorant receptor, detecting inhibition of the activity of the receptor, and thereby identifying the compound as a compound which inhibits the activity of an insect odorant receptor.
  • the invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting inhibition of the activity of the odorant receptor, detecting inhibition of the activity of the receptor, and thereby identifying the compound as a compound which inhibits the activity of an insect odorant receptor.
  • the purified insect odorant receptor protein is embedded in a lipid bilayer.
  • the purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • the compound is not previously known to specifically bind to an insect odorant receptor. In one embodiment, the compound is not previously known to activate an insect odorant receptor. In one embodiment, the compound is not previously known to inhibit the activity of an insect odorant receptor.
  • the invention provides a compound identified by any of the methods described herein.
  • the compound is an alarm odorant ligand. In one embodiment, the compound is an odorant ligand associated with fertility of the insect.
  • the invention provides a method of controlling a population of an insect in an area which comprises identifying a compound using any of the methods described herein and spraying the area with the compound.
  • the compound is an alarm odorant ligand or a ligand associated with fertility of the insect.
  • the invention provides a method of controlling a population of an insect which comprises using a compound identified by any of the methods described herein, wherein the compound interferes with an interaction between an odorant ligand and an odorant receptor, which interaction is associated with fertility of the insect.
  • This invention provides a method of preparing a composition which comprises identifying a compound using any of the methods described herein, recovering the compound free of any insect odorant receptor, and admixing a carrier.
  • Oregon R flies (Drosophila melanogaster) were raised on standard cornmeal-agar-molasses medium at 25° C. Transgenic constructs were injected into yw embryos. C155 elav-GAL4 flies were obtained from Corey Goodman (Lin and Goodman, 1994) and Gary Struhl provided the UAS-(cytoplasmic) lacZ stock.
  • Drosophila antennae and maxillary palps were obtained by manually decapitating and freezing 5000 adult flies and shaking antennae and maxillary palps through a fine metal sieve.
  • mRNA was prepared using a polyA+ RNA Purification Kit (Stratagene).
  • An antennal/maxillary palp cDNA library was made from 0.5 ⁇ g mRNA using the LambdaZAPIIXR kit from Stratagene.
  • phage were plated at low density (500-1000 pfu/150 mm plate) and UV-crosslinked after lifting in triplicate to Hybond-N+ (Amersham).
  • Complex probes were generated by random primed labeling (PrimeItII, Stratagene) of reverse transcribed mRNA (RT-PCR kit, Stratagene) from virgin adult female body mRNA and duplicate lifts hybridized at high stringency for 36 hours (65° C. in 0.5M Sodium Phosphate buffer (pH7.3) containing 1% bovine serum albumin, 4% SDS, and 0.5 mg/ml herring sperm DNA).
  • the third lift was prescreened with a mix of all previously cloned OBPs/PBPs (McKenna et al., 1994; Pikielny et al., 1994; Kim et al., 1998) remove a source of abundant but undesired olfactory-specific clones.
  • Approximately 5000 individual OBP/PBP and virgin female body negative phage clones were isolated, their inserts amplified by PCR with T3 and T7 primers, and approximately 3 ⁇ g of DNA were electrophoresed on 1.5% agarose gels.
  • Drosophila genomic sequences were batch downloaded in April 1998 from the Berkeley Drosophila Genome Project (Berkeley Drosophila Genome Project, unpublished). Genomic P1 sequences were first analyzed with the GENSCAN program (Burge and Karlin, 1997) which predicts intron-exon structures and generates hypothetical coding sequences (CDS) and open reading frames. GENSCAN predicted proteins shorter than 50 amino acids were discarded. The remaining open reading frames were used to search for putative transmembrane regions greater than 15 amino acids with two programs that were obtained from the authors and used in stand-alone mode locally (see Persson and Argos, 1994; Cserzo et al., 1997). The Dense Surface Alignment (DAS) program is available from M. Cserzo (miklos@pugh.bip.bham.ac.uk). TMAP is available by contacting the author, Bengt Persson (bpn@mbb.ki.se).
  • DAS Dense Surface Alignment
  • Scripts were written to apply the DAS and TMAP programs repeatedly to genome scale sequence sets. Genes showing significant sequence similarity to the NCBI non-redundant protein database using BLAST analysis (Altschul et al., 1990; Altschul et al., 1997) were eliminated. All scripts required for these computations were written in standard ANSI C and run on a SUN Enterprise 3000.
  • Probes for in situ hybridization were generated by RT-PCR using antennal/maxillary palp mRNA as a template.
  • the chromosome position of DOR104 was determined by in situ hybridization of a biotin-labeled probe to salivary gland polytene chromosome squashes as described (Amrein et al., 1988).
  • DOR62 maps to a cosmid sequenced by the European Drosophila Genome Project (Siden-Kiamos et al., 1990).
  • RNA in situ hybridization was carried out essentially as described (Schaeren-Wiemers and Gerfin-Moser, 1993). This protocol was modified to include detergents in most steps to increase sensitivity and reduce background.
  • the hybridization buffer contained 50% formamide, 5 ⁇ SSC, 5 ⁇ Denhardts, 250 ⁇ g/ml yeast tRNA, 500 ⁇ g/ml herring sperm DNA, 50 ⁇ g/ml Heparin, 2.5 mM EDTA, 0.1% Tween-20, 0.25% CHAPS. All antibody steps were in the presence of 0.1% Triton X-100, and the reaction was developed in buffer containing 0.1% Tween-20. Slides were mounted in Glycergel (DAKO) and viewed with Nomarski optics.
  • Fluorescent in situ hybridization was carried out as above with either digoxigenin or FITC labeled RNA probes.
  • the digoxigenin probe was visualized with sheep anti-digoxigenin (Boehringer) followed by donkey anti-sheep CY3 (Jackson).
  • FITC probes were visualized with mouse anti-FITC (Boehringer) and goat anti-mouse Alexa 488 (Molecular Probes) following preincubation with normal goat serum. Sections were mounted in Vectashield reagent (Vector Labs) and viewed on a Biorad 1024 Confocal Microscope.
  • mice of the genotype C155 elav-Gal4; UAS-lacZ were sectioned and first hybridized with a digoxigenin labeled antisense DOR104 RNA probe and developed as described above.
  • Neuron-specific expression of lacZ driven by the elav-Gal4 enhancer trap was visualized with a polyclonal rabbit anti- ⁇ -galactosidase antibody (Organon-Technika/Cappel), visualized by a goat anti-rabbit Alexa488 conjugated secondary antibody (Molecular Probes) following preincubation with normal goat serum.
  • the proportion of neurons in the third antennal segment was calculated by comparing the number of nuclei staining with the 44C11 ELAV monoclonal (kindly provided by Lily Jan) and those staining with TOTO-3 (Molecular Probes), a nucleic acid counterstain, in several confocal sections of multiple antennae. On average, 36% of the nuclei in the antenna were ELAV positive.
  • a genomic clone containing the DOR104 coding region and several kb of upstream sequence was isolated from a genomic library prepared from flies isogenic for the third chromosome (a gift of Kevin Moses and Gerry Rubin). Approximately 3 kb of DNA immediately upstream of the putative translation start site of DOR104 were isolated by PCR and subcloned into the pCasperAUG ⁇ Gal vector (Thummel et al., 1988). ⁇ -galactosidase activity staining was carried out with whole mount head preparations essentially as described in Wang et al. (1998). Frozen sections of DOR104-lacZ maxillary palps were incubated with a polyclonal rabbit anti- ⁇ -galactosidase antibody and as described above.
  • a cDNA encoding a putative odorant receptor was isolated by a difference cloning strategy designed to detect cDNA copies of mRNA present at extremely low frequencies in an mRNA population.
  • the antenna and maxillary palp about 30% of the cells are olfactory neurons. If each neuron expressed only one of a possible 100 different odorant receptor genes at a level of 0.1% of the mRNA in a sensory neuron, then a given receptor mRNA would be encountered at a frequency of one in 300,000 in antennal mRNA. If 100 different receptor genes were expressed, then the entire family of receptor genes would be represented at a frequency of one in 3,000 mRNAs. Experimental modifications were therefore introduced into standard difference cloning to allow for the identification of extremely rare mRNAs whose expression is restricted to either the antenna or the maxillary palp.
  • DOR104 for Drosophila Odorant Receptor (SEQ ID NO: 3) ( FIG. 1 , Lane 9), encodes a putative seven-transmembrane domain protein (SEQ ID NO: 4) with no obvious sequence similarity to known serpentine receptors ( FIG. 3 ).
  • In situ hybridization revealed that this cDNA anneals to about 15% of the 120 sensory neurons within the maxillary palp but does not anneal with neurons in either the brain or antenna. Seven cells expressing DOR104 are shown in the frontal maxillary palp section in FIG. 2A .
  • DOR104 might be one member of a larger family of odorant receptor genes within the Drosophila genome.
  • additional genes homologous to DOR104 could not be identified by low stringency hybridization to genomic DNA and cDNA libraries or upon analysis of linked genes in a genomic walk. Therefore, the Drosophila genome database was analyzed for families of multiple transmembrane domain proteins that share sequence similarity with DOR104. Sequences representing about 10% of the Drosophila genome were downloaded (Berkeley Drosophila Genome Project) and subjected to GENSCAN analysis (Burge and Karlin, 1997) to predict the intron-exon structure of all sequences within the database.
  • cDNA clones containing the coding regions for 5 of the 11 genes identified by GENSCAN analysis have been isolated from an antennal/maxillary palp cDNA library and their sequences are provided in FIG. 3 .
  • the remaining 6 protein sequences derive from GENSCAN predictions for intron-exon arrangement. Their organization conforms well to the actual structure determined from the cDNA sequences of other members of the gene family ( FIG. 3 ).
  • the receptors consist of a short extracellular N-terminal domain (usually less than 50 amino acids) and seven presumed membrane-spanning domains. Analysis of presumed transmembrane domains (Kyte and Doolittle, 1982; Persson and Argos, 1994; Cserzo et al., 1997) reveals multiple hydrophobic segments, but it is not possible from this analysis to unequivocally determine either the number or placement of the membrane spanning domains. At present, the assignment of transmembrane domains is therefore tentative.
  • the individual family members are divergent and most exhibit from 17-26% amino acid identity.
  • Two linked clusters of receptor genes constitute small subfamilies of genes with significantly greater sequence conservation.
  • Two linked genes when expressed, DOR53 (SEQ ID NOs: 7 and 8) and DOR67 (SEQ ID NOs: 9 and 10) exhibit 76% amino acid identity; whereas the three linked genes when expressed, DOR71g (SEQ ID NOs: 13 and 14), DOR72g (SEQ ID NOs: 15 and 16) and DOR73g (SEQ ID Nos: 17 and 18), reveal 30-55% identity ( FIG. 3 ; see below).
  • each of the genes shares short, common motifs in fixed positions within the putative seven transmembrane domain structure that define these sequences as highly divergent members of a novel family of putative receptor molecules.
  • olfactory sensory neurons are restricted to the maxillary palp and third antennal segment.
  • the third antennal segment is covered with approximately 500 fine sensory bristles or sensilla (Stocker, 1994), each containing from one to four neurons (Venkatesh and Singh, 1984).
  • the maxillary palp is covered with approximately 60 sensilla, each of which is innervated by two or three neurons (Singh and Nayak, 1985).
  • the third antennal segment and maxillary palp contain about 1500 and 120 sensory neurons, respectively.
  • RNA in situ hybridization experiments were performed with digoxigenin-labeled RNA antisense probes to each of the 11 new members of the gene family under conditions of high stringency.
  • One linked pair of homologous genes, DOR53 and DOR67 crosshybridizes, whereas the remaining 10 genes exhibit no crosshybridization under these conditions (see below).
  • Eight of the 11 genes hybridize to a small subpopulation (0.5-1.5%) of the 1500 olfactory sensory neurons in the third antennal segment ( FIG. 4 ).
  • One gene, DOR71g is expressed in about 10% of the sensory neurons in the maxillary palp but not in the antenna ( FIG. 4G ). Expression of DOR46 or DOR19g has not been detected in the antenna or the maxillary palp.
  • Fluorescent antibody detection of lacZ identifies the sensory neurons in a horizontal section of the maxillary palp ( FIG. 5B ). Hybridization with the receptor probe DOR104 reveals expression in 5 of the 12 lacZ positive cells in a horizontal section of the maxillary palp ( FIG. 5A ). All cells that express DOR104 are also positive for lacZ ( FIG. 5C ), indicating that this receptor is expressed only in neurons.
  • the probe DOR53 anneals to a non-overlapping subpopulation of neurons restricted to the medial-proximal domain of the antenna.
  • in situ hybridization with the odorant binding protein, OS-F identifies a spatially restricted subpopulation of support cells in the antenna
  • the DOR67 probe identifies a distinct subpopulation of neurons in a medial-proximal domain ( FIG. 5G ).
  • the putative odorant receptor genes are expressed in a subpopulation of sensory neurons distinct from the support cells that express the odorant binding proteins.
  • each receptor is expressed in a spatially restricted subpopulation of neurons in the antenna or maxillary palp ( FIG. 4 ).
  • the total number of cells expressing each receptor per antenna was obtained by counting the positive cells in serial sections of antennae from multiple flies. These numbers are presented in the legend of FIG. 4 .
  • DOR67 and 53 probes, for example, anneal to about 20 neurons on the medial proximal edge of the antenna ( FIGS. 4A and B), whereas DOR62 and 87 probes anneal to subpopulations of 20 cells at the distal edge of the antenna ( FIG. 4C -D).
  • Approximately 10 cells in the distal domain express DOR64 ( FIG. 4E ).
  • DOR71g is expressed in different neurons.
  • DOR72g is expressed in approximately 15 antennal cells ( FIG. 4H ), while DOR73g is expressed in 1 to 2 cells at the distal edge of the antenna ( FIG. 4I ).
  • DOR71g is expressed in approximately 10 maxillary palp neurons but is not detected in the antenna ( FIG. 4G ).
  • the three sensillar types are represented in a coarse topographic map across the third antennal segment.
  • the proximal-medial region for example, contains largely basiconic sensilla. Receptors expressed in this region (DOR53 and 67) are therefore likely to be restricted to the large basiconic sensilla. More distal regions contain a mixture of all three sensilla types and it is therefore not possible from these data to assign specific receptors to specific sensillar types.
  • DOR104 the spatial pattern of expression of one receptor, DOR104, was recapitulated in transgenic flies with a promoter fragment flanking the DOR104 gene.
  • the fusion of the presumed DOR104 promoter (consisting of 3 kb of 5′ DNA immediately adjacent to the coding region) to the lacZ reporter gene has allowed us to visualize a subpopulation of neurons expressing DOR104 within the maxillary palp.
  • Whole mount preparations of the heads of transgenic flies reveal a small subpopulation of sensory neurons within the maxillary palp whose cell bodies exhibit blue color after staining with X-gal ( FIG. 2B ).
  • the number of positive cells, approximately 20 per maxillary palp, corresponds well with that seen for DOR104 RNA expression.
  • In situ hybridization was therefore performed with either a mix of five receptor probes ( FIG. 4F ) or individually with each of the five probes ( FIG. 4A -E).
  • the number of olfactory neurons identified with the mixed probe (about 60 per antenna) approximates the sum of the positive neurons detected with the five individual probes.
  • DORA45 SEQ ID NOs: 103 and 104
  • This gene does not appear to be a classical member of the DOR family: it is far more divergent and significantly larger than the other family members (486 amino acids).
  • This gene is expressed in all olfactory sensory neurons. If DORA45 does encode a divergent odorant receptor, then it would be present in all sensory neurons along with different complements of the more classical members of the DOR gene family.
  • DOR67 and DOR53 members of a second subfamily, reside within 1 kb of each other at map position 22A2-3 and exhibit 76% sequence identity. Not surprisingly, these two linked genes crosshybridize at low stringency. Southern blots with either DOR67 or DOR53 probes reveal two hybridizing bands corresponding to the two genes within the subfamily but fail to detect additional subfamily members in the chromosome ( FIGS. 7A and B).
  • the members of the receptor gene family described here are present on all but the small fourth chromosome. No bias is observed toward telomeric or centromeric regions.
  • the map positions, as determined from P1 and cosmid clones (Berkeley Drosophila Genome Project; European Drosophila Genome Project) are provided in Experimental Procedures. A comparatively large number of receptor genes map to chromosome 2 because the Berkeley Drosophila Genome Project has concentrated its efforts on this chromosome.
  • the high degree of divergence among members of the Drosophila odorant receptor gene family is more pronounced of the family of chemoreceptors in C. elegans than the more highly conserved odorant receptors of vertebrates.
  • Estimates of the size of the Drosophila receptor gene family therefore, cannot be obtained by either Southern blot hybridization or PCR analysis of genomic DNA. Rather, estimates of the gene family derive from the statistics of small numbers. Twelve members of the odorant receptor gene family were detected from a Drosophila genome database that includes roughly 10% of the genome. Recognizing a possible bias in this estimate, it seems reasonable at present to estimate that the odorant receptor family is likely to include 100 to 200 genes.
  • the present application discloses a novel family of seven transmembrane domain proteins that is likely to encode the Drosophila odorant receptors.
  • the number of different receptor genes expressed in the neurons of the antenna and maxillary palp will reflect the diversity and specificity of odor recognition in the fruit fly. How large is the Drosophila odorant receptor gene family? We have identified 11 members of this divergent gene family in the Drosophila DNA database. The potential for bias notwithstanding, it seems reasonable to assume then that since only 10% of genomic sequence has been deposited, this gene family is likely to contain from 100 to 200 genes. However, significant errors in these estimates could result from bias in the nature of the sequences represented in the 10% of the Drosophila genome analyzed to date. In situ hybridization experiments demonstrating that each of the receptor genes labels from 0.5-1.5% of the olfactory sensory neurons are in accord with the estimate of 100 to 200 receptor genes.
  • Vomeronasal sensory neurons express two distinct families of receptors each thought to contain from 100 to 200 genes: one novel family of serpentine receptors (Dulac and Axel, 1995), and a second related to the metabotropic neurotransmitter receptors (Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba and Tirindelli, 1997).
  • chemosensory receptors are organized into four gene families that share 20-40% sequence similarity within a family and essentially no sequence similarity between families (Troemel et al., 1995; Sengupta et al., 1996; Robertson, 1998).
  • the four gene families in C. elegans together contain about 1,000 genes engaged in the detection of odors.
  • the nematode receptors exhibit no sequence conservation with the three distinct families of vertebrate odorant receptor genes.
  • Our studies reveal that Drosophila has evolved an additional divergent gene family of serpentine receptors comprised of from 100 to 200 genes.
  • mammalian receptors not only recognize odorants in the environment but are likely to recognize guidance cues governing formation of a sensory map in the brain (Wang et al., 1998).
  • the multiple properties required of the odorant receptors might change vastly over evolutionary time and this might underlie the independent origins of the multiple chemosensory receptor gene families.
  • a given receptor can be expressed in one of four broad but circumscribed zones in the main olfactory epithelium (Ressler et al., 1993; Vassar et al., 1993).
  • a given zone can express up to 250 different receptors and neurons expressing a given receptor within a zone appear to be randomly dispersed (Ressler et al., 1993; Vassar et al., 1993).
  • the highly ordered pattern of expression observed in the Drosophila antenna might have important implications for patterning the projections to the antennal lobe.
  • peripheral receptor sheet In visual, somatosensory, and auditory systems the peripheral receptor sheet is highly ordered and neighbor relations in the periphery are maintained in the projections to the brain. These observations suggest that the relative position of the sensory neuron in the periphery will determine the pattern of projections to the brain.
  • olfactory neurons express only one of the thousand odorant receptor genes. Neurons expressing a given receptor project with precision to 2 of the 1800 glomeruli in the mouse olfactory bulb. Odorants will therefore elicit spatially defined patterns of glomerular activity such that the quality of an olfactory stimulus is encoded by the activation of a specific combination of glomeruli (Stewart et al., 1979; Lancet et al., 1982; Kauer et al., 1987; Imamura et al., 1992; Mori et al., 1992; Katoh et al., 1993; Friedrich and Korsching, 1997).
  • an odorant to activate a combination of glomeruli allows for the discrimination of a diverse array of odors far exceeding the number of receptors and their associated glomeruli.
  • an equally large family of receptor genes is expressed in 16 pairs of chemosensory cells, only three of which respond to volatile odorants (Bargmann and Horvitz, 1991; Bargmann et al., 1993). This immediately implies that a given chemosensory neuron will express multiple receptors and that the diversity of odors recognized by the nematode might approach that of mammals, but the discriminatory power is necessarily dramatically reduced.
  • Drosophila odorant receptors comprise a family of from 100 to 200 genes.
  • the pattern of expression of these genes in the third antennal segment suggests that individual sensory neurons express a different complement of receptors and, at the extreme, the data presented herein are consistent with the suggestion that individual neurons express one or a small number of receptors.
  • the problem of odor discrimination therefore reduces to a problem of the brain discerning which receptors have been activated by a given odorant.
  • This model of olfactory coding is in sharp contrast with the main olfactory system of vertebrates in which sensory neurons express only a single receptor and converge on only a single pair of spatially fixed glomeruli in the olfactory bulb. Moreover, each projection neuron in the mammalian bulb extends its dendrite to only a single glomerulus.
  • the integration and decoding of spatial patterns of glomerular activity, in vertebrates must occur largely in the olfactory cortex. In the fruit fly, the observation that the number of receptors may exceed the number of glomeruli suggests that individual glomeruli will receive input from more than one type of sensory neuron.
  • a second level of integration in the antennal lobe is afforded by subsets of projection neurons that elaborate extensive dendritic arbors that synapse with multiple glomeruli.
  • the Drosophila olfactory system reveals levels of processing and integration of sensory input in the antennal lobe that is likely to be restricted to higher cortical centers in the main olfactory system of vertebrates.
  • DOR10 (SEQ ID NO: 26) MEKLRSYEDFIFMANMMFKTLGYDLFHTPKPWWRYLLVRGYFVLCTISNF YEASMVTTRIIEWESLAGSPSKIMRQGLHFFYMLSSQLKFITFMINRKRL LQLSHRLKELYPHKEQNQRKYEVNKYYLSCSTRNVLYVYYFVMVVMALEP LVQSQFIVNVSLGTDLWMMCVSSQISMHLGYLANMLASIRPSPETEQQDC DFLASIIKRHQLMIRLQKDVNYVFGLLLASNLFTTSCLLCCMAYYTVVEG FNWEGISYMMLFASVAAQFYVVSSHGQMLIDLLMTITYRFFAVIRQTVEK DOR10nt (SEQ ID NO: 25) ATGGAAAAACTACGTTCCTATGAGGATTTCATCTTCATGGCCAACATGA
  • accession numbers for the sequences reported in this paper are AF127921-AF127926.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor. This invention provides a nucleic acid molecule of at least 12 nucleotides capable of specifically hybridizing with the nucleic acid molecule encoding an insect odorant receptor. This invention also provides a purified, insect odorant receptor. This invention provides an antibody capable of specifically binding to an insect odorant receptor. This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors. This invention provides a method of identifying a compound capable of specifically bind to an insect odorant receptor. This invention also provides a method of identifying a compound capable of activating the activity of an insect odorant receptor.

Description

  • This application is a continuation of U.S. Ser. No. 09/932,227, filed Aug. 17, 2001, which is a continuation of PCT International Application No. PCT/US00/04995, filed Feb. 25, 2000, which was a continuation-in-part of, and claimed priority of, U.S. Ser. No. 09/257,706, filed Feb. 25, 1999, now abandoned, the contents of all of which are hereby incorporated by reference into the subject application.
  • The invention disclosed herein was made with Government support under NIH:NIMH, 5P50, MH50733-05 and NINDS, NS29832-07 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.
  • Throughout this application, various publications are referred to by arabic numeral within parentheses. Full citations for these publications are presented immediately before the claims. Disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
  • BACKGROUND OF THE INVENTION
  • All animals possess a “nose,” an olfactory sense organ that allows for the recognition and discrimination of chemosensory information in the environment. Humans, for example, are thought to recognize over 10,000 discrete odors with exquisite discriminatory power such that subtle differences in chemical structure can often lead to profound differences in perceived odor quality. What mechanisms have evolved to allow the recognition and discrimination of complex olfactory information and how is olfactory perception ultimately translated into appropriate behavioral responses? The recognition of odors is accomplished by odorant receptors that reside on olfactory cilia, a specialization of the dendrite of the olfactory sensory neuron. The odorant receptor genes encode novel serpentine receptors that traverse the membrane seven times. In several vertebrate species, and in the invertebrate Caenorhabditis elegans, as many as 1000 genes encode odorant receptors, suggesting that 1-5% of the coding potential of the genome in these organisms is devoted to the recognition of olfactory sensory stimuli (Buck and Axel, 1991; Levy et al., 1991; Parmentier et al., 1992; Ben-Arie et al., 1994; Troemel et al., 1995; Sengupta et al., 1996; Robertson, 1998). Thus, unlike color vision in which three photoreceptors can absorb light across the entire visible spectrum, these data suggest that a small number of odorant receptors are insufficient to recognize the full spectrum of distinct molecular structures perceived by the olfactory system. Rather, the olfactory sensory system employs an extremely large number of receptors, each capable of recognizing a small number of odorous ligands.
  • The discrimination of olfactory information requires that the brain discern which of the numerous receptors have been activated by an odorant. In mammals, individual olfactory sensory neurons express only one of a thousand receptor genes such that the neurons are functionally distinct (Ngai et al., 1993; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994). The axons from olfactory neurons expressing a specific receptor converge upon two spatially invariant glomeruli among the 1800 glomeruli within the olfactory bulb (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; Wang et al., 1998). The bulb therefore provides a spatial map that identifies which of the numerous receptors has been activated within the sensory epithelium. The quality of an olfactory stimulus would therefore be encoded by specific combinations of glomeruli activated by a given odorant.
  • The logic of olfactory discrimination is quite different in the nematode, C. elegans. Despite the large size of the odorant receptor gene family, volatile odorants are recognized by only three pairs of chemosensory cells each likely to express a large number of receptor genes (Bargmann and Horvitz, 1991; Colbert and Bargmann, 1995; Troemel et al., 1995). Activation of any one of the multiple receptors in one cell will lead to chemoattraction, whereas activation of receptors in a second cell will result in chemorepulsion (Troemel et al., 1997). The specific neural circuit activated by a given sensory neuron is therefore the determinant of the behavioral response. Thus, this invertebrate olfactory sensory system retains the ability to recognize a vast array of odorants but has only limited discriminatory power.
  • Vertebrates create an internal representation of the external olfactory world that must translate stimulus features into neural information. Despite the elucidation of a precise spatial map, it has been difficult in vertebrates to discern how this information is decoded to relate the recognition of odors to specific behavioral responses. Genetic analysis of olfactory-driven behavior in invertebrates may ultimately afford a system to understand the mechanistic link between odor recognition and behavior. Insects provide an attractive model system for studying the peripheral and central events in olfaction because they exhibit sophisticated olfactory-driven behaviors under control of an olfactory sensory system that is significantly simpler anatomically than that of vertebrates (Siddiqi, 1987; Carlson, 1996). Olfactory-based associative learning, for example, is robust in insects and results in discernible modifications in the neural representation of odors in the brain (Faber et al., 1998). It may therefore be possible to associate modifications in defined olfactory connections with in vivo paradigms for learning and memory.
  • Olfactory recognition in the fruit fly Drosophila is accomplished by sensory hairs distributed over the surface of the third antennal segment and the maxillary palp. Olfactory neurons within sensory hairs send projections to one of 43 glomeruli within the antennal lobe of the brain (Stocker, 1994; Laissue et al., 1999). The glomeruli are innervated by dendrites of the projection neurons, the insect equivalent of the mitral cells in the vertebrate olfactory bulb, whose cell bodies surround the glomeruli. These antennal lobe neurons in turn project to the mushroom body and lateral horn of the protocerebrum (reviewed in Stocker, 1994). 2-deoxyglucose mapping in the fruit fly (Rodrigues, 1988) and calcium imaging in the honeybee (Joerges et al., 1997; Faber et al., 1998) demonstrate that different odorants elicit defined patterns of glomerular activity, suggesting that in insects as in vertebrates, a topographic map of odor quality is represented in the antennal lobe. However, in the absence of the genes encoding the receptor molecules, it has not been possible to define a physical basis for this spatial map.
  • The present application discloses a large family of genes that are likely to encode the odorant receptors of Drosophila melanogaster. Difference cloning, along with analysis of Drosophila genomic sequences, has led to the identification of a novel family of putative seven transmembrane domain receptors likely to be encoded by 100 to 200 genes within the Drosophila genome. Each receptor is expressed in a small subset of sensory cells (0.5-1.5%) that is spatially defined within the antenna and maxillary palp. Moreover, different neurons express distinct complements of receptor genes such that individual neurons are functionally distinct. Identification of a large family of putative odorant receptors in insects indicates that, as in other species, the diversity and specificity of odor recognition is accommodated by a large family of receptor genes. The identification of the family of putative odorant receptor genes may afford insight into the logic of olfactory perception in Drosophila.
  • Insects provide an attractive system for the study of olfactory sensory perception. The present application identifies a novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors. Members of this gene family are expressed in topographically defined subpopulations of olfactory sensory neurons in either the antenna or the maxillary palp. Sensory neurons express different complements of receptor genes, such that individual neurons are functionally distinct. The isolation of candidate odorant receptor genes along with a genetic analysis of olfactory-driven behavior in insects may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.
  • SUMMARY OF THE INVENTION
  • This invention provides an isolated nucleic acid encoding an insect odorant receptor.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor which polypeptide comprises seven transmembrane domains and a C-terminal domain, wherein one of the seven transmembrane domains is located within the polypeptide at a position adjoining the C-terminal domain and wherein this seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 107)
    -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S
    or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L
    or A)-(Y, N, F, M, I, L, K, S, H or T)-(X)20-W-;
      • wherein each X in (X)20 represents an amino acid and the identity of each X is independent of the identity of any other X.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide is selected from the group consisting of polypeptides comprising consecutive amino acids the sequence of which is one of the following:
  • (a) SEQ ID NO: 2, (b) SEQ ID NO: 4, (c) SEQ ID NO: 6, (d) SEQ ID NO: 8, (e) SEQ ID NO: 10, (f) SEQ ID NO: 12, (g) SEQ ID NO: 14, (h) SEQ ID NO: 16, (i) SEQ ID NO: 18, (j) SEQ ID NO: 20, (k) SEQ ID NO: 22, (l) SEQ ID NO: 24, (m) SEQ ID NO: 26, (n) SEQ ID NO: 28, (o) SEQ ID NO: 30, (p) SEQ ID NO: 32, (q) SEQ ID NO: 34, (r) SEQ ID NO: 36, (s) SEQ ID NO: 38, (t) SEQ ID NO: 40, (u) SEQ ID NO: 42, (v) SEQ ID NO: 44, (w) SEQ ID NO: 46, (x) SEQ ID NO: 48, The invention provides an isolated nucleic acid encoding an odorant receptor protein from an insect, wherein the nucleic acid comprises:
      • (a) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or
      • (b) a nucleic acid sequence degenerate to a sequence of (a) as a result of the genetic code.
  • This invention provides a nucleic acid of at least 12 nucleotides capable of specifically hybridizing with the sequence of any of the herein described nucleic acids. This invention provides a nucleic acid comprising at least 12 nucleotides which specifically hybridize with nucleic acid having any of the sequences described herein. This invention provides a vector which comprises any of the herein described isolated nucleic acids. In another embodiment, the vector is a plasmid.
  • This invention also provides a host vector system for the production of a polypeptide having the biological activity of an insect odorant receptor which comprises the above described vector and a suitable host.
  • This invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing the above described host vector system under conditions permitting production of the polypeptide and recovering the polypeptide so produced.
  • (y) SEQ ID NO: 50, (z) SEQ ID NO: 52, (aa) SEQ ID NO: 54, (bb) SEQ ID NO: 56, (cc) SEQ ID NO: 58, (dd) SEQ ID NO: 60, (ee) SEQ ID NO: 62, (ff) SEQ ID NO: 64, (gg) SEQ ID NO: 66, (hh) SEQ ID NO: 68, (ii) SEQ ID NO: 70, (jj) SEQ ID NO: 72, (kk) SEQ ID NO: 74, (ll) SEQ ID NO: 76, (mm) SEQ ID NO: 78, (nn) SEQ ID NO: 80, (oo) SEQ ID NO: 82, (pp) SEQ ID NO: 84, (qq) SEQ ID NO: 86, (rr) SEQ ID NO: 88, (ss) SEQ ID NO: 90, (tt) SEQ ID NO: 92, (uu) SEQ ID NO: 94, (vv) SEQ ID NO: 96, (ww) SEQ ID NO: 98, (xx) SEQ ID NO: 100, (yy) SEQ ID NO: 102, (zz) SEQ ID NO: 104, (aaa) SEQ ID NO: 106, or
  • (bbb) a polypeptide which shares greater than 25% amino acid identity with any one of the polypeptides of (a)-(aaa), and comprises a transmembrane domain and an adjoining C-terminal domain which together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 107)
    -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S
    or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L
    or A)-(Y, N, F, M, I, L, K, S, H or T)-(X)20-W-;
      •  wherein each X in (X)20 represents an amino acid and the identity of each X is independent of the identity of any other X.
  • The invention provides an isolated nucleic acid encoding an odorant receptor protein from an insect, wherein the receptor protein comprises consecutive amino acids having a sequence identical to that set forth for DORA45 in SEQ ID NO: 104.
  • This invention also provides a purified, insect odorant receptor. This invention further provides a polypeptide encoded by the herein described isolated nucleic acids.
  • This invention provides an antibody which specifically binds to an insect odorant receptor. This invention also provides an antibody which competitively inhibits the binding of the antibody capable of specifically binding to an insect odorant receptor.
  • This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors comprising: (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons; (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue; (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and (d) isolating clones which carry the hybridized inserts, thereby identifying the inserts encoding odorant receptors.
  • This invention also provides cDNA inserts identified by the above method.
  • This invention further provides a method for identifying DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron; (b) contacting clones from the cDNA libraries generated in step (a) with nucleic acid molecule capable of specifically hybridizing with the sequence which encodes an insect odorant receptor in appropriate conditions permitting the hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule; (c) selecting clones which hybridized with the nucleic acid molecule; and (d) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.
  • This invention also provides a method to identify DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron; (b) contacting the clones from the DNA libraries generated in step (a) with appropriate polymerase chain reaction primers which specifically bind to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction; (c) selecting the amplified inserts; and (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptors.
  • This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising: (a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers which specifically bind to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.
  • This invention also provides a method for obtaining a nucleic acid encoding an insect odorant receptor which comprises:
      • (a) contacting a sample containing nucleic acids of insect origin with primers which comprise a nucleic acid corresponding to a nucleic acid which encodes consecutive amino acids having the sequence set forth in SEQ ID NO: 107 and are capable of specifically binding to a nucleic acid encoding an insect odorant receptor under appropriate conditions permitting hybridization of the primers to such nucleic acid to produce a hybridization product;
      • (b) amplifying the resulting hybridization product using a polymerase chain reaction; and
      • (c) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.
  • This invention also provides a method of transforming cells which comprises transfecting a host cell with a suitable vector described above. This invention also provides transformed cells produced by the above method.
  • This invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting a transfected cell or membrane fraction of the above described transfected cell with an appropriate amount of the compound under conditions permitting binding of the compound to such receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to the receptor.
  • This invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting binding of the compound to such purified receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining identifying the compound as a compound which specifically binds to the receptor.
  • This invention also provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is a compound which activates an insect odorant receptor.
  • This invention also provides a method of identifying a compound which activates an odorant receptor which comprises contacting a purified insect odorant receptor with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is a compound which activates an insect odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.
  • This invention also provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is a compound which inhibits the activity of an insect odorant receptor.
  • This invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is a compound which inhibits the activity of a odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.
  • This invention also provides the compound identified by any of the above-described methods.
  • This invention provides a method of controlling pest populations which comprises identifying odorant ligands by the above-described method which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.
  • This invention provides a method of controlling a pest population which comprises identifying odorant ligands by the above-described method which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1A-1D Identification of Rare Antennal- and Maxillary Palp-Specific Genes
  • Candidate antennal/maxillary palp-specific phage were subjected to in vivo excision, digestion of resulting pBLUESCRIPT plasmid DNAs with BamHI/Asp718, and electrophoresis on 1.5% agarose gels. Southern blots were hybridized with 32P-labeled cDNA probes generated from antennal/maxillary palp mRNA (Panel A), head minus antennal/maxillary palp mRNA (Panel B), or virgin female body mRNA (Panel C). The ethidium bromide stained gel is shown in Panel D. Of the thirteen clones displayed in this figure, four appear to be antennal/maxillary palp specific ( lanes 5, 7, 9, and 11). However, only two are selectively expressed in subsets of cells in chemosensory organs of the adult fly. DOR104, a putative maxillary palp odorant receptor, is in Lane 9. The clone in Lane 11 (RN106) is homologous to lipoprotein and triglyceride lipases and is expressed in a restricted domain in the antenna (data not shown).
  • FIG. 2A-2C Expression of DOR104 in a Subset of Maxillary Palp Neurons
  • (A) A frontal section of an adult maxillary palp was hybridized with a digoxigenin-labeled antisense RNA probe and visualized with anti-digoxigenin conjugated to alkaline phosphatase. Seven cells expressing DOR104 are visible in this 15 μm section, which represents about one third of the diameter of the maxillary palp. Serial sections of multiple maxillary palps were scored for DOR104 expression and on average 20 cells per maxillary palp are positive for this receptor.
  • (B) Transgenic flies carrying a DOR104-lacZ reporter transgene were stained with X-GAL in a whole mount preparation. Maxillary palps were dissected from the head and viewed in a flattened cover slipped preparation under Nomarski optics, which allows the visualization of all 20 cells expressing DOR104-lacZ.
  • (C) Dendrites and axons of neurons expressing DOR104-lacZ are visible in this horizontal section of a maxillary palp. LacZ expression was visualized with a polyclonal anti-β-galactosidase primary antibody and a CY3-conjugated secondary antibody. Sections were viewed under epifluorescence and photographed on black and white film.
  • FIG. 3A-3B Predicted Amino Acid Sequences of Drosophila Odorant Receptor Genes
  • Deduced amino acid sequences of 12 DOR genes are aligned using ClustalW (MacVector, Oxford Molecular). Predicted positions of transmembrane regions (I-VII) are indicated by rectangular boxes above the alignment. Amino acids identities are marked with black shading and similarities are indicated with light shading. Protein sequences of DOR87 (SEQ ID NO: 6), DOR53 (SEQ ID NO: 8), DOR67 (SEQ ID NO: 10), DOR104 (SEQ ID NO: 4), and DOR64 (SEQ ID NO: 12) were derived from cDNA clones. All others were derived from GENSCAN predictions of intron-exon arrangements in genomic DNA, as indicated by the letter “g” after the gene name.
  • FIG. 4A-4I Receptor Gene Expression in Spatially Restricted Regions of the Antenna
  • Digoxigenin-labeled antisense RNA probes against 8 DOR genes each hybridize to a small number of cells distributed in distinct regions in the antenna. The total number of cells per antenna expressing a given receptor was obtained by counting positive cells in serial sections of multiple antennae. There are approximately 20 positive cells per antenna for DOR67 (A), DOR53 (B), and DOR24 (data not shown); 15 positive cells for DOR62 (C) and DOR87 (D); and 10 positive cells for DOR64 (E). The actual number of cells staining in these sections is a subset of this total number. With the exception of DOR53 and DOR67, which strongly cross-hybridize, the receptor genes likely identify different olfactory neurons, such that the number of cells staining with a mixed probe (F) is equal to the sum of those staining with the individual probes (A-E). The mixture of DOR53, 67, 62, 87 and 64 labels a total of about 60 cells per antenna. A total of 34 cells stain with the mixed probe in this 15 μm section. Expression of the linked genes DOR71g, DOR72g, and DOR73g is shown in panels (G), (H), and (I), respectively. DOR71g is expressed in approximately 10 cells in the maxillary palp. Five positive cells are seen in the horizontal section in panel (G). The expression of the other members of this linkage group was also examined. DOR72g was found in approximately 15 cells (of which 3 label in this section) (H) and DOR73g in 1 to 2 cells per antenna (I).
  • FIG. 5A-5G Odorant Receptors are Restricted to Distinct Populations of Olfactory Neurons
  • (A-C) Flies of the C155 elav-GAL4; UAS-lacZ genotype express cytoplasmic lacZ in all neuronal cells. Panels (A-C) show confocal images of a horizontal maxillary palp section from such a fly incubated with an antisense RNA probe against DOR104 (red) and anti-β-galactosidase antibody (green). DOR104 recognizes five cells in this maxillary palp section (A), all of which also express elav-lacZ (B), as demonstrated by the yellow cells in the merged image in panel (C).
  • (D, E) DOR64 and DOR87 are expressed in non-overlapping neurons at the tip of the antenna. Antisense RNA probes for DOR64 (digoxigenin-RNA; red) and DOR87 (FITC-RNA; green) were annealed to the same antennal sections and viewed by confocal microscopy. Panel (D) is a digital superimposition of confocal images taken at 0.5 μm intervals through a 10 μm section of the antenna. Cells at different focal planes express both receptors, but no double labeled cells are found.
  • (F, G) Two color RNA in situ hybridization with odorant receptors and odorant binding proteins demonstrates that these proteins are expressed in different populations of cells. DOR53 (FITC-RNA; green) labels a few cells internal to the cuticle at the proximal-medial edge, while PBPRP2 (digoxigenin-RNA; red) labels a large number of cells apposed to the cuticle throughout the antenna (F). The more restricted odorant binding protein OS-F (digoxigenin-RNA; red) also stains cells distinct from those expressing DOR67 (FITC-RNA; green)(G).
  • FIG. 6A-6F Receptor Expression is Conserved Between Individuals
  • Frontal sections of antennae from six different individuals were hybridized with digoxigenin-labeled antisense RNA probes against DOR53 (A-C) or DOR87 (D-F). DOR53 labels approximately 20 cells on the proximal-medial edge of the antenna, of which approximately 5 are shown labeling in these sections. DOR87 is expressed in about the same number of cells at the distal tip. Both the position and number of staining cells is conserved between different individuals and is not sexually dimorphic.
  • FIG. 7A-7E Drosophila Odorant Receptors are Highly Divergent
  • Oregon R genomic DNA isolated from whole flies was digested with BamHI (B), EcoRI (E), or HindIII (H), electrophoresed on 0.8% agarose gels, and blotted to nitrocellulose membranes. Blots were annealed with 32P-labeled probes derived from DOR53 cDNA (A), DOR67 cDNA (B), or DNA fragments generated by RT-PCR from antennal mRNA for DOR24 (C), DOR62 (D), and DOR72g (E). Strong crosshybridization of DOR53 and DOR67 is seen at both high and low stringency (A, B), while DOR24, 62, and 72 reveal only a single hybridizing band in each lane at both low stringency (C-E) and high stringency (data not shown).
  • FIG. 8 Analysis of axonal projections of olfactory receptor neurons expressing a given Drosophila odorant receptor. Result: all neurons expressing a given receptor send their axons to a single glomerulus, or discrete synaptic structure, in the olfactory processing center of the fly brain. This result is identical to that obtained with mouse odorant receptors: each glomerulus is dedicated to receiving axonal input from neurons expressing a given odorant receptor. Therefore, this result strengthens the argument that these genes indeed function as odorant receptors in Drosophila.
  • FIGS. 9A1-9B ClustalW alignments of two subfamilies of the Drosophila odorant receptors, the DOR53 (A-1 and A-2) and DOR64 (B) families.
  • This figure highlights sequence similarities between DOR genes, that are diagnostic hallmarks of the proteins. Residues that are identical in different DOR genes are highlighted in black shading, while residues that are similar are highlighted in light shading.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In order to facilitate an understanding of the Experimental Procedures section which follow, certain frequently occurring methods and/or terms are described in Sambrook, et al. (1989).
  • Throughout this application, the following standard abbreviations are used throughout the specification to indicate specific nucleotides:
      • C=cytosine A=adenosine
      • T=thymidine G=guanosine.
  • This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor. The nucleic acid includes but is not limited to DNA, cDNA, genomic DNA, synthetic DNA or RNA. In an embodiment, the nucleic acid molecule encodes a Drosophila odorant receptor.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor which polypeptide comprises seven transmembrane domains and a C-terminal domain, wherein one of the seven transmembrane domains is located within the polypeptide at a position adjoining the C-terminal domain and wherein this seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 107)
    -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S
    or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L
    or A)-(Y, N, F, M, I, L, K, S, H or T)-(X)20-W-;
      • wherein each X in (X)20 represents an amino acid and the identity of each X is independent of the identity of any other X.
  • In one embodiment, the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 111)
    -(F, Y, L, A or T)-(P, I, M, V or T)-(F, Y, I, S,
    L or C)-(C, Y or T)-(Y, N, F, M or I)-(X)20-W-.
  • In one embodiment, the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 109)
    -(F, Y or L)-(P, I, M, V or T)-(F, Y, I, S, L or
    C)-(C, Y or T)-(Y, N or F)-(X)20-W-.
  • In one embodiment, the seventh transmembrane domain and the adjoining C-terminal domain together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 112)
    -F-P-X-C-Y-(X)20-W-.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide is selected from the group consisting of polypeptides comprising consecutive amino acids the sequence of which is one of the following:
  • (a) SEQ ID NO: 2, (b) SEQ ID NO: 4, (c) SEQ ID NO: 6, (d) SEQ ID NO: 8, (e) SEQ ID NO: 10, (f) SEQ ID NO: 12, (g) SEQ ID NO: 14, (h) SEQ ID NO: 16, (i) SEQ ID NO: 18, (j) SEQ ID NO: 20, (k) SEQ ID NO: 22, (l) SEQ ID NO: 24, (m) SEQ ID NO: 26, (n) SEQ ID NO: 28, (o) SEQ ID NO: 30, (p) SEQ ID NO: 32, (q) SEQ ID NO: 34, (r) SEQ ID NO: 36, (s) SEQ ID NO: 38, (t) SEQ ID NO: 40, (u) SEQ ID NO: 42, (v) SEQ ID NO: 44, (w) SEQ ID NO: 46, (x) SEQ ID NO: 48, (y) SEQ ID NO: 50, (z) SEQ ID NO: 52, (aa) SEQ ID NO: 54, (bb) SEQ ID NO: 56, (cc) SEQ ID NO: 58, (dd) SEQ ID NO: 60, (ee) SEQ ID NO: 62, (ff) SEQ ID NO: 64, (gg) SEQ ID NO: 66, (hh) SEQ ID NO: 68, (ii) SEQ ID NO: 70, (jj) SEQ ID NO: 72, (kk) SEQ ID NO: 74, (ll) SEQ ID NO: 76, (mm) SEQ ID NO: 78, (nn) SEQ ID NO: 80, (oo) SEQ ID NO: 82, (pp) SEQ ID NO: 84, (qq) SEQ ID NO: 86, (rr) SEQ ID NO: 88, (ss) SEQ ID NO: 90, (tt) SEQ ID NO: 92, (uu) SEQ ID NO: 94, (vv) SEQ ID NO: 96, (ww) SEQ ID NO: 98, (xx) SEQ ID NO: 100, (yy) SEQ ID NO: 102, (zz) SEQ ID NO: 104, (aaa) SEQ ID NO: 106, or
  • (bbb) a polypeptide which shares greater than 25% amino acid identity with any one of the polypeptides of (a)-(aaa), and comprises a transmembrane domain and an adjoining C-terminal domain which together comprise consecutive amino acids the sequence of which is as follows:
    (SEQ ID NO: 107)
    -(F, Y, L, A, T, S or C)-(P, I, M, V, T, L, Q, S
    or H)-(F, Y, I, S, L, C, M or V)-(C, Y, T, S, L
    or A)-(Y, N, F, M, I, L, K, S, H or T)-(X)20-W-;
      •  wherein each X in (X)20 represents an amino acid and the identity of each X is independent of the identity of any other X.
  • In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 35% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 45% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 55% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 65% amino acid identity with any one of the polypeptides of (a)-(aaa). In one embodiment, the nucleic acid encodes a polypeptide which shares greater than 75% amino acid identity with any one of the polypeptides of (a)-(aaa).
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid hybridizes under high stringency to a complement of any of the nucleic acids disclosed herein. The invention also provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid hybridizes under high stringency to any of the nucleic acids disclosed herein.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide comprises consecutive amino acids having a sequence identical to that set forth for DORA45 in SEQ ID NO: 104.
  • The invention provides an isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid comprises:
      • (a) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or
      • (b) a nucleic acid sequence degenerate to a sequence of (a) as a result of the genetic code.
  • In one embodiment, the insect odorant receptor comprises seven transmembrane domains.
  • In different embodiments of any of the isolated nucleic acids described herein, the nucleic acid is DNA or RNA. In different embodiments, the DNA is cDNA, genomic DNA, or synthetic DNA. In different embodiments, the RNA is synthetic RNA.
  • In one embodiment of any of the isolated nucleic acids described herein, the nucleic acid molecule encodes a Drosophila odorant receptor.
  • The nucleic acids encoding an insect odorant receptor includes molecules coding for polypeptide analogs, fragments or derivatives of antigenic polypeptides which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues and addition analogs where in one or more amino acid residues is added to a terminal or medial portion of the polypeptides) and which share some or all properties of naturally-occurring forms.
  • These molecules include but not limited to: the incorporation of codons “preferred” for expression by selected non-mammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate sequences that facilitate construction of readily expressed vectors. Accordingly, these changes may result in a modified insect odorant receptor. It is the intent of this invention to include nucleic acid molecules which encode modified insect odorant receptors. Also, to facilitate the expression of receptors in different host cells, it may be necessary to modify the molecule such that the expressed receptors may reach the surface of the host cells. The modified insect odorant receptor should have biological activities similar to the unmodified insect odorant receptor. The molecules may also be modified to increase the biological activity of the expressed receptor.
  • The invention provides a nucleic acid comprising at least 12 nucleotides which specifically hybridizes with any of the isolated nucleic acids described herein. In one embodiment, the nucleic acid hybridizes with a unique sequence within the sequence of any of the nucleic acid molecules described herein. In different embodiments, the nucleic acid is DNA, cDNA, genomic DNA, synthetic DNA or RNA.
  • This invention provides a nucleic acid probe which comprises:
      • (a) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or
      • (b) a nucleic acid sequence degenerate to a sequence of (a) as a result of the genetic code; or
      • (c) a portion of a nucleic acid sequence of (a) or (b) which encodes consecutive amino acids having the sequence set forth in SEQ ID NO: 107.
  • In an embodiment, the probes are cDNA probes.
  • This invention provides a vector which comprises any of the isolated nucleic acids described herein. In one embodiment, the vector is a plasmid.
  • In one embodiment of the vector, the isolated nucleic acids described herein is operatively linked to a regulatory element. Regulatory elements required for expression include promoter sequences to bind RNA polymerase and transcription initiation sequences for ribosome binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG. Similarly, a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. Such vectors may be obtained commercially or assembled from the sequences described by methods well-known in the art, for example the methods described herein for constructing vectors in general.
  • The invention provides a host vector system for production of a polypeptide having the biological activity of an insect odorant receptor, which comprises any of the vectors described herein and a suitable host. In different embodiments, the suitable host is a bacterial cell, a yeast cell, an insect cell, or an animal cell.
  • The host cell of the expression system described herein may be selected from the group consisting of the cells where the protein of interest is normally expressed, or foreign cells such as bacterial cells (such as E. coli), yeast cells, fungal cells, insect cells, nematode cells, plant or animal cells, where the protein of interest is not normally expressed. Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.
  • The invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing any of the host vector systems described herein under conditions permitting production of the polypeptide and recovering the polypeptide so produced.
  • The invention provides a purified insect odorant receptor protein encoded by any of the isolated nucleic acids described herein. This invention further provides a polypeptide encoded by any of the isolated nucleic acids described herein.
  • The invention provides an antibody which specifically binds to an insect odorant receptor protein encoded by any of the isolated nucleic acids described herein. In one embodiment, the antibody is a monoclonal antibody. In another embodiment, the antibody is polyclonal. The invention provides an antibody which competitively inhibits the binding of any of the antibodies described herein capable of specifically binding to an insect odorant receptor. In one embodiment, the antibody is a monoclonal antibody. In another embodiment, the antibody is polyclonal.
  • Monoclonal antibody directed to an insect odorant receptor may comprise, for example, a monoclonal antibody directed to an epitope of an insect odorant receptor present on the surface of a cell. Amino acid sequences may be analyzed by methods well known to those skilled in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into the lipid bilayer which forms the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment.
  • Antibodies directed to an insect odorant receptor may be serum-derived or monoclonal and are prepared using methods well known in the art. For example, monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody. Cells such as NIH3T3 cells or 293 cells which express the receptor may be used as immunogens to raise such an antibody. Alternatively, synthetic peptides may be prepared using commercially available machines.
  • As a still further alternative, DNA, such as a cDNA or a fragment thereof, encoding the receptor or a portion of the receptor may be cloned and expressed. The expressed polypeptide may be recovered and used as an immunogen.
  • The resulting antibodies are useful to detect the presence of insect odorant receptors or to inhibit the function of the receptor in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.
  • This antibodies may also be useful for identifying or isolating other insect odorant receptors. For example, antibodies against the Drosophila odorant receptor may be used to screen an cockroach expression library for a cockroach odorant receptor. Such antibodies may be monoclonal or monospecific polyclonal antibody against a selected insect odorant receptor. Different insect expression libraries are readily available and may be made using technologies well-known in the art.
  • One means of isolating a nucleic acid molecule which encodes an insect odorant receptor is to probe a libraries with a natural or artificially designed probes, using methods well known in the art. The probes may be DNA or RNA. The library may be cDNA or genomic DNA.
  • The invention provides a method for identifying cDNA inserts encoding insect an odorant receptor which comprises:
      • (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons;
      • (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue;
      • (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and
      • (d) isolating clones which carry the hybridized inserts, thereby identifying inserts encoding an odorant receptor.
  • In one embodiment, the method described herein, after step (c), further comprises:
      • (a) amplifying the inserts from the selected clones by polymerase chain reaction;
      • (b) hybridizing the amplified inserts with probes from the antennal or maxillary palp neurons; and
      • (c) isolating the clones which carry the hybridized inserts, thereby identifying inserts encoding the odorant receptor.
  • The invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
      • (a) generating a cDNA library comprising clones carrying cDNA inserts from antennal or maxillary palp sensory neurons from an insect;
      • (b) hybridizing nucleic acids of the clones from the cDNA libraries generated in step (a) with a probe which comprises (i) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or (ii) a nucleic acid sequence degenerate to a sequence of (i) as a result of the genetic code; or (iii) a portion of a nucleic acid sequence of (i) or (ii) which encodes consecutive amino acids having the sequence set forth in SEQ ID NO: 107; and
      • (c) isolating the resulting hybridized nucleic acids so as to thereby identify the cDNA insert encoding the insect odorant receptor.
  • This invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
      • (a) generating a cDNA library comprising clones carrying cDNA inserts from antennal or maxillary palp sensory neurons from an insect;
      • (b) hybridizing nucleic acids of the clones from the cDNA libraries generated in step (a) with a probe which comprises (i) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or (ii) a nucleic acid sequence degenerate to a sequence of (i) as a result of the genetic code; or (iii) a portion of a nucleic acid sequence of (i) or (ii) which encodes consecutive amino acids having the sequence set forth in SEQ ID NO: 107; and
      • (c) isolating the hybridized inserts, thereby identifying a cDNA insert encoding an insect odorant receptor.
  • The appropriate polymerase chain reaction primers may be chosen from the conserved regions of the known insect odorant receptor sequences. Alternatively, the primers may be chosen from the regions which are the active sites for the binding of ligands.
  • In one embodiment of any of the methods described herein, the insect odorant receptor is encoded by any of the isolated nucleic acid molecules described herein.
  • The invention provides the cDNA inserts identified by any of the methods described herein.
  • The invention provides a method for identifying a cDNA insert encoding an insect odorant receptor which comprises:
      • (a) generating cDNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron;
      • (b) contacting clones from the cDNA libraries generated in step (a) with any of the nucleic acid molecules described herein which specifically hybridize with any of the isolated nucleic acid molecules described herein which encode an insect odorant receptor protein, in conditions permitting hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule;
      • (c) selecting clones which hybridized with the nucleic acid molecule; and
      • (d) isolating the clones which carry the hybridized inserts, thereby identifying inserts encoding the odorant receptor.
  • The invention provides a method for identifying cDNA inserts encoding an insect odorant receptor which comprises:
      • (a) generating cDNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron;
      • (b) contacting the clones from the cDNA libraries generated in step (a) with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction;
      • (c) selecting the amplified inserts; and
      • (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptor.
  • In one embodiment, the insect odorant receptor is encoded by any of the isolated nucleic acids described herein.
  • The invention provides the cDNA inserts identified by any of the methods described herein.
  • This invention provides a method for identifying a cDNA insert encoding an odorant receptor from an insect which comprises:
      • (a) generating cDNA libraries which contain clones carrying cDNA inserts from the insect;
      • (b) contacting the cDNA libraries containing the clones generated in step (a) with any of the nucleic acid molecules described herein which specifically hybridize with any of the isolated nucleic acid molecules described herein which encode an insect odorant receptor protein under conditions permitting hybridization of the clones and the nucleic acid;
      • (c) selecting clones which hybridized with the nucleic acid; and
      • (d) isolating the hybridized clones which contain the cDNA inserts so as to thereby identify inserts encoding the odorant receptor from the insect.
  • The invention provides a method for obtaining a nucleic acid encoding an odorant receptor from an insect which comprises:
      • (a) contacting a sample containing nucleic acid of insect origin with primers which comprise nucleic acid corresponding to a nucleic acid which encodes an amino acid sequence set forth in SEQ ID NO: 107 under appropriate conditions permitting hybridization of the primers to the nucleic acid of insect origin to produce a hybridization product;
      • (b) amplifying the resulting hybridization product using a polymerase chain reaction; and
      • (c) isolating the amplified molecules, thereby obtaining a nucleic acid encoding an odorant receptors from an insect.
  • This invention provides a method for obtaining a nucleic acid encoding an odorant receptor from an insect which comprises:
      • (a) contacting a sample containing nucleic acid of insect origin with polymerase chain reaction primers which specifically hybridize with nucleic acid which encodes an amino acid sequence set forth in SEQ ID NO: 107 under appropriate conditions permitting hybridization of the primers to the nucleic acid to produce a hybridization product;
      • (b) amplifying the resulting hybridization product using a polymerase chain reaction; and
      • (c) isolating the amplified molecules, thereby obtaining a nucleic acid encoding an odorant receptor from an insect.
  • In one embodiment, the insect odorant receptor is encoded by any of the isolated nucleic acids described herein.
  • This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising: (a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.
  • This invention provides a cDNA insert encoding an insect odorant receptor obtainable by the following method:
      • (a) generating cDNA libraries which contain clones carrying cDNA inserts from the insect;
      • (b) contacting the cDNA libraries containing the clones generated in step (a) with any of the nucleic acid molecules described herein which specifically hybridize with any of the isolated nucleic acid molecules described herein which encode an insect odorant receptor protein under conditions permitting hybridization of the clones and the nucleic acid;
      • (c) selecting clones which hybridized with the nucleic acid; and
      • (d) isolating the hybridized clones which contain the cDNA inserts so as to thereby identify inserts encoding the odorant receptor from the insect.
  • The invention provides a method of transforming a cell which comprises transfecting a host cell with any of the vectors described herein.
  • The invention provides a transformed cell produced by any of the methods described herein. In one embodiment, prior to being transfected with the vector the host cell does not express an insect odorant receptor. In one embodiment, prior to being transfected with the vector the host cell does express an insect odorant receptor.
  • The invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting binding of the compound to the odorant receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to an insect odorant receptor.
  • The invention provides a method of identifying a compound which specifically binds to an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting binding of the compound to the purified odorant receptor protein, detecting the presence of any such compound specifically bound to the receptor, and thereby identifying the compound as a compound which specifically binds to an insect odorant receptor. In one embodiment, the purified insect odorant receptor protein is embedded in a lipid bilayer. The purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • The invention provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting activation of the odorant receptor, detecting activation of the receptor, and thereby identifying the compound as a compound which activates an insect odorant receptor.
  • The invention provides a method of identifying a compound which activates an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting activation of the odorant receptor, detecting activation of the receptor, and thereby identify the compound as a compound which activates an insect odorant receptor. In one embodiment, the purified insect odorant receptor protein is embedded in a lipid bilayer. The purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • The invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting any of the transformed cells described herein, or a membrane fraction from said cells, with the compound under conditions permitting inhibition of the activity of the odorant receptor, detecting inhibition of the activity of the receptor, and thereby identifying the compound as a compound which inhibits the activity of an insect odorant receptor.
  • The invention provides a method of identifying a compound which inhibits the activity of an insect odorant receptor which comprises contacting any of the purified insect odorant receptor proteins described herein with the compound under conditions permitting inhibition of the activity of the odorant receptor, detecting inhibition of the activity of the receptor, and thereby identifying the compound as a compound which inhibits the activity of an insect odorant receptor. In one embodiment, the purified insect odorant receptor protein is embedded in a lipid bilayer. The purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.
  • In one embodiment of any of the methods described herein, the compound is not previously known to specifically bind to an insect odorant receptor. In one embodiment, the compound is not previously known to activate an insect odorant receptor. In one embodiment, the compound is not previously known to inhibit the activity of an insect odorant receptor.
  • The invention provides a compound identified by any of the methods described herein.
  • In one embodiment, the compound is an alarm odorant ligand. In one embodiment, the compound is an odorant ligand associated with fertility of the insect.
  • The invention provides a method of controlling a population of an insect in an area which comprises identifying a compound using any of the methods described herein and spraying the area with the compound. In one embodiment, the compound is an alarm odorant ligand or a ligand associated with fertility of the insect.
  • The invention provides a method of controlling a population of an insect which comprises using a compound identified by any of the methods described herein, wherein the compound interferes with an interaction between an odorant ligand and an odorant receptor, which interaction is associated with fertility of the insect.
  • This invention provides a method of preparing a composition which comprises identifying a compound using any of the methods described herein, recovering the compound free of any insect odorant receptor, and admixing a carrier.
  • This invention will be better understood from the Experimental Procedures which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.
  • Experimental Procedures
  • Experimental Animals
  • Oregon R flies (Drosophila melanogaster) were raised on standard cornmeal-agar-molasses medium at 25° C. Transgenic constructs were injected into yw embryos. C155 elav-GAL4 flies were obtained from Corey Goodman (Lin and Goodman, 1994) and Gary Struhl provided the UAS-(cytoplasmic) lacZ stock.
  • Preparation and Differential Screening of a Drosophila Antennal/Maxillary Pale cDNA Library
  • Drosophila antennae and maxillary palps were obtained by manually decapitating and freezing 5000 adult flies and shaking antennae and maxillary palps through a fine metal sieve. mRNA was prepared using a polyA+ RNA Purification Kit (Stratagene). An antennal/maxillary palp cDNA library was made from 0.5 μg mRNA using the LambdaZAPIIXR kit from Stratagene.
  • Briefly, phage were plated at low density (500-1000 pfu/150 mm plate) and UV-crosslinked after lifting in triplicate to Hybond-N+ (Amersham). Complex probes were generated by random primed labeling (PrimeItII, Stratagene) of reverse transcribed mRNA (RT-PCR kit, Stratagene) from virgin adult female body mRNA and duplicate lifts hybridized at high stringency for 36 hours (65° C. in 0.5M Sodium Phosphate buffer (pH7.3) containing 1% bovine serum albumin, 4% SDS, and 0.5 mg/ml herring sperm DNA). The third lift was prescreened with a mix of all previously cloned OBPs/PBPs (McKenna et al., 1994; Pikielny et al., 1994; Kim et al., 1998) remove a source of abundant but undesired olfactory-specific clones. Approximately 5000 individual OBP/PBP and virgin female body negative phage clones were isolated, their inserts amplified by PCR with T3 and T7 primers, and approximately 3 μg of DNA were electrophoresed on 1.5% agarose gels. Gels were blotted in duplicate to Hybond-N+ (Amersham), filters were UV-crosslinked, and the resulting Southern blots were subjected to reverse Northern analysis using complex probes generated from virgin female body mRNA. Approximately 500 clones not hybridizing with virgin female body probes were identified and consolidated onto secondary Southern blots in triplicate. These blots were probed with complex probes derived from antennal/maxillary palp, head-minus-antenna/maxillary palp, and virgin female body mRNA. A total of 210 clones negative with head-minus-antenna/maxillary palp and virgin female body probes and strongly positive, weakly positive, or negative with antennal/maxillary palp probes were further analyzed by sequencing and in situ hybridization.
  • Analysis of Drosophila Genome Project Sequences for Transmembrane Proteins
  • All Drosophila genomic sequences were batch downloaded in April 1998 from the Berkeley Drosophila Genome Project (Berkeley Drosophila Genome Project, unpublished). Genomic P1 sequences were first analyzed with the GENSCAN program (Burge and Karlin, 1997) which predicts intron-exon structures and generates hypothetical coding sequences (CDS) and open reading frames. GENSCAN predicted proteins shorter than 50 amino acids were discarded. The remaining open reading frames were used to search for putative transmembrane regions greater than 15 amino acids with two programs that were obtained from the authors and used in stand-alone mode locally (see Persson and Argos, 1994; Cserzo et al., 1997). The Dense Surface Alignment (DAS) program is available from M. Cserzo (miklos@pugh.bip.bham.ac.uk). TMAP is available by contacting the author, Bengt Persson (bpn@mbb.ki.se).
  • Scripts were written to apply the DAS and TMAP programs repeatedly to genome scale sequence sets. Genes showing significant sequence similarity to the NCBI non-redundant protein database using BLAST analysis (Altschul et al., 1990; Altschul et al., 1997) were eliminated. All scripts required for these computations were written in standard ANSI C and run on a SUN Enterprise 3000.
  • Of 229 novel Drosophila proteins with three or more predicted transmembrane spanning regions, 35 showed no clear sequence similarity to any known protein and were selected for further analysis by in situ hybridization. Probes for in situ hybridization were generated by RT-PCR using antennal/maxillary palp mRNA as a template.
  • Map Positions of DOR Genes
  • The chromosome position of DOR104 was determined by in situ hybridization of a biotin-labeled probe to salivary gland polytene chromosome squashes as described (Amrein et al., 1988).
  • Chromosomal positions of all other DOR genes were based on chromosome assignments of the P1 clones to which they map, as determined by the Berkeley Drosophila Genome Project (see also Hartl et al., 1994; Kimmerly et al., 1996). DOR62 maps to a cosmid sequenced by the European Drosophila Genome Project (Siden-Kiamos et al., 1990).
    RECEPTOR MAP POSITION P1 CLONE ACCESSION NUMBER
    DOR62 (X) 2F 62D9 (EDGP cosmid)
    DOR67 (2L) 22A3 DS00676
    DOR53 (2L) 22A2-3 DS05342
    DOR64 (2L) 23A1-2 DS06400
    DOR71g (2L) 33B1-2 DS07071
    DOR72g (2L) 33B1-2 DS07071
    DOR73g (2L) 33B1-2 DS07071
    DOR87 (2R) 43B1-2 DS08779
    DOR19g (2R) 46F5-6 DS01913
    DOR24 (2R) 47D6-E2 DS00724
    DOR46 (2R) 59D5-7 DS07462
    DOR104 (3L) 85B not applicable

    The Isolation of DOR cDNA Clones and Southern Blotting
  • 3×106 clones of the antennal/maxillary palp library described above were screened with PCR probes for the genes DOR87, DOR53, DOR67, DOR64, and DOR62. cDNAs were present at a frequency ranging from 1:200,000 (DOR67) to 1:1,000,000 (DOR62) in the library and their sequences were remarkably similar to the hypothetical CDS predicted by the GENSCAN program. The frequency of these genes is similar to that of DOR104, which is present at 1:125,000 in the antennal/maxillary palp library. All sequencing was with ABI cycle sequencing kits and reactions were run on an ABI 310 or 377 sequencing system.
  • Five μg of Oregon R genomic DNA isolated from whole flies were digested with BamHI, EcoRI, or HindIII, electrophoresed on 0.8% agarose gels, and blotted to Nitropure nitrocellulose membranes (Micron Separations Inc.). Blots were baked and annealed with 32P-labeled probes derived from cDNA probes of DOR53 and DOR67, or PCR fragments from DOR24, DOR62, and DOR72g. Hybridization was at 42° C. for 36 hours in 5×SSCP, 10×Denhardts, 500 μg/ml herring sperm DNA, and either 50% (high stringency) or 25% (low stringency) formamide (Sambrook et al., 1989). Blots were washed for 1 hour in 0.2×SSC, 0.5% SDS at 65° C. (high stringency) or 1×SSC, 0.5% SDS at 42° C. (low stringency).
  • In Situ Hybridization
  • RNA in situ hybridization was carried out essentially as described (Schaeren-Wiemers and Gerfin-Moser, 1993). This protocol was modified to include detergents in most steps to increase sensitivity and reduce background. The hybridization buffer contained 50% formamide, 5×SSC, 5×Denhardts, 250 μg/ml yeast tRNA, 500 μg/ml herring sperm DNA, 50 μg/ml Heparin, 2.5 mM EDTA, 0.1% Tween-20, 0.25% CHAPS. All antibody steps were in the presence of 0.1% Triton X-100, and the reaction was developed in buffer containing 0.1% Tween-20. Slides were mounted in Glycergel (DAKO) and viewed with Nomarski optics.
  • Fluorescent in situ hybridization was carried out as above with either digoxigenin or FITC labeled RNA probes. The digoxigenin probe was visualized with sheep anti-digoxigenin (Boehringer) followed by donkey anti-sheep CY3 (Jackson). FITC probes were visualized with mouse anti-FITC (Boehringer) and goat anti-mouse Alexa 488 (Molecular Probes) following preincubation with normal goat serum. Sections were mounted in Vectashield reagent (Vector Labs) and viewed on a Biorad 1024 Confocal Microscope.
  • For double labeling with a neural marker, animals of the genotype C155 elav-Gal4; UAS-lacZ were sectioned and first hybridized with a digoxigenin labeled antisense DOR104 RNA probe and developed as described above. Neuron-specific expression of lacZ driven by the elav-Gal4 enhancer trap was visualized with a polyclonal rabbit anti-β-galactosidase antibody (Organon-Technika/Cappel), visualized by a goat anti-rabbit Alexa488 conjugated secondary antibody (Molecular Probes) following preincubation with normal goat serum.
  • The proportion of neurons in the third antennal segment was calculated by comparing the number of nuclei staining with the 44C11 ELAV monoclonal (kindly provided by Lily Jan) and those staining with TOTO-3 (Molecular Probes), a nucleic acid counterstain, in several confocal sections of multiple antennae. On average, 36% of the nuclei in the antenna were ELAV positive.
  • DOR104-lacZ Transgene Construction and Histochemical Staining
  • A genomic clone containing the DOR104 coding region and several kb of upstream sequence was isolated from a genomic library prepared from flies isogenic for the third chromosome (a gift of Kevin Moses and Gerry Rubin). Approximately 3 kb of DNA immediately upstream of the putative translation start site of DOR104 were isolated by PCR and subcloned into the pCasperAUGβGal vector (Thummel et al., 1988). β-galactosidase activity staining was carried out with whole mount head preparations essentially as described in Wang et al. (1998). Frozen sections of DOR104-lacZ maxillary palps were incubated with a polyclonal rabbit anti-β-galactosidase antibody and as described above.
  • Experimental Results
  • Cloning Candidate Odorant Receptors
  • In initial experiments, a cDNA encoding a putative odorant receptor was isolated by a difference cloning strategy designed to detect cDNA copies of mRNA present at extremely low frequencies in an mRNA population. In the antenna and maxillary palp, about 30% of the cells are olfactory neurons. If each neuron expressed only one of a possible 100 different odorant receptor genes at a level of 0.1% of the mRNA in a sensory neuron, then a given receptor mRNA would be encountered at a frequency of one in 300,000 in antennal mRNA. If 100 different receptor genes were expressed, then the entire family of receptor genes would be represented at a frequency of one in 3,000 mRNAs. Experimental modifications were therefore introduced into standard difference cloning to allow for the identification of extremely rare mRNAs whose expression is restricted to either the antenna or the maxillary palp.
  • Briefly, 5000 insets from an antennal/maxillary palp cDNA library were prescreened (see Experimental Procedures) and then subjected to Southern blot hybridization with cDNA probes from antennal/maxillary palp, head minus antenna/maxillary palp, or virgin female body mRNA (see FIG. 1). This Southern blot hybridization (or reverse Northern) to candidate cDNAs allows for the detection of sequences present at a frequency of 1 in 100,000 in the probe, a sensitivity about one hundred-fold greater than that of plaque screening (see Experimental Procedures). This procedure led to the identification of multiple antennal/maxillary palp-specific cDNAs that were analyzed by DNA sequencing and in situ hybridization. One cDNA, DOR104 (for Drosophila Odorant Receptor) (SEQ ID NO: 3) (FIG. 1, Lane 9), encodes a putative seven-transmembrane domain protein (SEQ ID NO: 4) with no obvious sequence similarity to known serpentine receptors (FIG. 3). In situ hybridization revealed that this cDNA anneals to about 15% of the 120 sensory neurons within the maxillary palp but does not anneal with neurons in either the brain or antenna. Seven cells expressing DOR104 are shown in the frontal maxillary palp section in FIG. 2A.
  • These observations suggested that DOR104 might be one member of a larger family of odorant receptor genes within the Drosophila genome. However, additional genes homologous to DOR104 could not be identified by low stringency hybridization to genomic DNA and cDNA libraries or upon analysis of linked genes in a genomic walk. Therefore, the Drosophila genome database was analyzed for families of multiple transmembrane domain proteins that share sequence similarity with DOR104. Sequences representing about 10% of the Drosophila genome were downloaded (Berkeley Drosophila Genome Project) and subjected to GENSCAN analysis (Burge and Karlin, 1997) to predict the intron-exon structure of all sequences within the database. Open reading frames greater than 50 amino acids were searched for proteins with three or more predicted transmembrane-spanning regions using the dense alignment surface (DAS) and TMAP algorithms (Persson and Argos, 1994; Cserzo et al., 1997; also see Experimental Procedures). Of 229 candidate genes identified in this manner, 11 encode proteins that define a novel divergent family of presumed seven transmembrane domain proteins with sequence similarity to the DOR104 sequence. This family of candidate odorant receptors does not share any conserved sequence motifs with previously identified families of seven transmembrane domain receptors. cDNA clones containing the coding regions for 5 of the 11 genes identified by GENSCAN analysis have been isolated from an antennal/maxillary palp cDNA library and their sequences are provided in FIG. 3. The remaining 6 protein sequences derive from GENSCAN predictions for intron-exon arrangement. Their organization conforms well to the actual structure determined from the cDNA sequences of other members of the gene family (FIG. 3).
  • The receptors consist of a short extracellular N-terminal domain (usually less than 50 amino acids) and seven presumed membrane-spanning domains. Analysis of presumed transmembrane domains (Kyte and Doolittle, 1982; Persson and Argos, 1994; Cserzo et al., 1997) reveals multiple hydrophobic segments, but it is not possible from this analysis to unequivocally determine either the number or placement of the membrane spanning domains. At present, the assignment of transmembrane domains is therefore tentative.
  • The individual family members are divergent and most exhibit from 17-26% amino acid identity. Two linked clusters of receptor genes constitute small subfamilies of genes with significantly greater sequence conservation. Two linked genes when expressed, DOR53 (SEQ ID NOs: 7 and 8) and DOR67 (SEQ ID NOs: 9 and 10), exhibit 76% amino acid identity; whereas the three linked genes when expressed, DOR71g (SEQ ID NOs: 13 and 14), DOR72g (SEQ ID NOs: 15 and 16) and DOR73g (SEQ ID Nos: 17 and 18), reveal 30-55% identity (FIG. 3; see below). Despite the divergence, each of the genes shares short, common motifs in fixed positions within the putative seven transmembrane domain structure that define these sequences as highly divergent members of a novel family of putative receptor molecules.
  • Expression of the DOR Gene Family in Olfactory Neurons
  • If this gene family encodes putative odorant receptors in the fly, one might expect that other members of the family in addition to DOR104 would also be expressed in olfactory sensory neurons. Therefore, in situ hybridization was performed to examine the pattern of receptor expression of each of the 11 additional members of the gene family in adult and developing organisms. In Drosophila, olfactory sensory neurons are restricted to the maxillary palp and third antennal segment. The third antennal segment is covered with approximately 500 fine sensory bristles or sensilla (Stocker, 1994), each containing from one to four neurons (Venkatesh and Singh, 1984). The maxillary palp is covered with approximately 60 sensilla, each of which is innervated by two or three neurons (Singh and Nayak, 1985). Thus, the third antennal segment and maxillary palp contain about 1500 and 120 sensory neurons, respectively.
  • RNA in situ hybridization experiments were performed with digoxigenin-labeled RNA antisense probes to each of the 11 new members of the gene family under conditions of high stringency. One linked pair of homologous genes, DOR53 and DOR67, crosshybridizes, whereas the remaining 10 genes exhibit no crosshybridization under these conditions (see below). Eight of the 11 genes hybridize to a small subpopulation (0.5-1.5%) of the 1500 olfactory sensory neurons in the third antennal segment (FIG. 4). One gene, DOR71g, is expressed in about 10% of the sensory neurons in the maxillary palp but not in the antenna (FIG. 4G). Expression of DOR46 or DOR19g has not been detected in the antenna or the maxillary palp. Expression of this gene family is only observed in cells within the antenna and maxillary palp. No hybridization was observed in neurons of the brain, nor was hybridization observed in any sections elsewhere in the adult fly or in any tissue at any stage during embryonic development. However, hybridization was observed to a small number of cells in the developing antennae in the late pupal stage. We have not yet determined whether this family of receptors is expressed in the larval olfactory apparatus.
  • Only about one third of the cells in the third antennal segment and the maxillary palp are neurons (data not shown), which are interspersed with non-neuronal sensillar support cells and glia. Two experiments were performed to demonstrate that the family of seven transmembrane domain receptor genes is expressed in sensory neurons rather than support cells or glia within the antenna and maxillary palp. First, two-color fluorescent antibody detection schemes were developed to co-localize receptor expression in cells that express the neuron-specific RNA binding protein, ELAV (Robinow and White, 1988). An enhancer trap line carrying an insertion of GAL4 at the elav locus expresses high levels of lacZ in neurons when crossed to a transgenic UAS-lacZ responder line (Lin and Goodman, 1994). Fluorescent antibody detection of lacZ identifies the sensory neurons in a horizontal section of the maxillary palp (FIG. 5B). Hybridization with the receptor probe DOR104 reveals expression in 5 of the 12 lacZ positive cells in a horizontal section of the maxillary palp (FIG. 5A). All cells that express DOR104 are also positive for lacZ (FIG. 5C), indicating that this receptor is expressed only in neurons.
  • In a second experiment, it was demonstrated that the receptor genes are not expressed in non-neuronal cells. The support cells of the antenna express different members of a family of odorant binding proteins (McKenna et al., 1994; Pikielny et al., 1994; Kim et al., 1998). These genes encode abundant low molecular weight proteins thought to transport odorants through the sensillar lymph (reviewed in Pelosi, 1994). Two-color in situ experiments with a probe for the odorant binding protein, PBPRP2 (Pikielny et al., 1994), reveal hybridization to a large number of cells broadly distributed throughout the antenna (FIG. 5F). In the same section, however, the probe DOR53 anneals to a non-overlapping subpopulation of neurons restricted to the medial-proximal domain of the antenna. In a similar experiment, in situ hybridization with the odorant binding protein, OS-F (McKenna et al., 1994), identifies a spatially restricted subpopulation of support cells in the antenna, whereas the DOR67 probe identifies a distinct subpopulation of neurons in a medial-proximal domain (FIG. 5G). Thus, the putative odorant receptor genes are expressed in a subpopulation of sensory neurons distinct from the support cells that express the odorant binding proteins. Taken together, these data demonstrate that 10 of the 12 family members disclosed herein are expressed in small subpopulations of olfactory sensory neurons in the antenna and maxillary palp.
  • Spatially Defined Patterns of Receptor Expression
  • The in situ hybridization experiments reveal that each receptor is expressed in a spatially restricted subpopulation of neurons in the antenna or maxillary palp (FIG. 4). The total number of cells expressing each receptor per antenna was obtained by counting the positive cells in serial sections of antennae from multiple flies. These numbers are presented in the legend of FIG. 4. DOR67 and 53 probes, for example, anneal to about 20 neurons on the medial proximal edge of the antenna (FIGS. 4A and B), whereas DOR62 and 87 probes anneal to subpopulations of 20 cells at the distal edge of the antenna (FIG. 4C-D). Approximately 10 cells in the distal domain express DOR64 (FIG. 4E). Each of the three linked genes DOR71g, DOR72g, and DOR73g is expressed in different neurons. DOR72g is expressed in approximately 15 antennal cells (FIG. 4H), while DOR73g is expressed in 1 to 2 cells at the distal edge of the antenna (FIG. 4I). In contrast, DOR71g is expressed in approximately 10 maxillary palp neurons but is not detected in the antenna (FIG. 4G). The three sensillar types are represented in a coarse topographic map across the third antennal segment. The proximal-medial region, for example, contains largely basiconic sensilla. Receptors expressed in this region (DOR53 and 67) are therefore likely to be restricted to the large basiconic sensilla. More distal regions contain a mixture of all three sensilla types and it is therefore not possible from these data to assign specific receptors to specific sensillar types.
  • The spatial pattern of neurons expressing a given receptor is conserved between individuals. In situ hybridization with two receptor probes to three individual flies reveals that both the frequency and spatial distributions of the hybridizing neurons is conserved in different individuals (FIG. 6). At present, the precision of this topographic map cannot be determined and one can only argue that given receptors are expressed in localized domains.
  • In preliminary experiments, the spatial pattern of expression of one receptor, DOR104, was recapitulated in transgenic flies with a promoter fragment flanking the DOR104 gene. The fusion of the presumed DOR104 promoter (consisting of 3 kb of 5′ DNA immediately adjacent to the coding region) to the lacZ reporter gene has allowed us to visualize a subpopulation of neurons expressing DOR104 within the maxillary palp. Whole mount preparations of the heads of transgenic flies reveal a small subpopulation of sensory neurons within the maxillary palp whose cell bodies exhibit blue color after staining with X-gal (FIG. 2B). The number of positive cells, approximately 20 per maxillary palp, corresponds well with that seen for DOR104 RNA expression. Immunofluorescent staining of sections with antibodies directed against β-galactosidase more clearly reveals the dendrites and axons of these bipolar neurons in the maxillary palp (FIG. 2C). Levels of lacZ expression in these transgenic lines are low and further amplification will be necessary to allow us to trace the axons to glomeruli in the antennal lobe. Nonetheless, the data suggest that the information governing the spatial pattern of DOR104 expression in a restricted subpopulation of maxillary palp neurons resides within 3 kb of DNA 5′ to the DOR104 gene.
  • Individual Neurons Express Different Complements of Receptors
  • An understanding of the logic of olfactory discrimination in Drosophila will require a determination of the diversity and specificity of receptor expression in individual neurons. In the vertebrate olfactory epithelium, a given neuron is likely to express only one receptor from the family of 1,000 genes (Ngai et al., 1993; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994). In the nematode C. elegans, however, individual chemosensory neurons are thought to express multiple receptor genes (Troemel et al., 1995). Our observations with the putative Drosophila odorant receptors indicate that a given receptor probe anneals with 0.5-1.5% of antennal neurons, suggesting that each cell expresses only a subset of receptor genes. If we demonstrate that each of the different receptor probes hybridizes with distinct, nonoverlapping subpopulations of neurons, this would provide evidence that neurons differ with respect to the receptors they express.
  • In situ hybridization was therefore performed with either a mix of five receptor probes (FIG. 4F) or individually with each of the five probes (FIG. 4A-E). The number of olfactory neurons identified with the mixed probe (about 60 per antenna) approximates the sum of the positive neurons detected with the five individual probes. These results demonstrate that individual receptors are expressed in distinct nonoverlapping populations of olfactory neurons.
  • An additional experiment was performed using two-color RNA in situ hybridization to ask whether two receptor genes, DOR64 and DOR87, expressed in interspersed cells in the distal antenna are expressed in different neurons. Antisense RNA probes for the two genes were labeled with either digoxigenin- or FITC-UTP and were used in pairwise combinations in in situ hybridization to sections through the Drosophila antenna. Although these two genes are expressed in overlapping lateral-distal domains, two-color in situ hybridization reveals that neurons expressing DOR64 do not express DOR87, rather each gene is expressed in distinct cell populations (FIGS. 5D and E). Taken together, these data suggest that olfactory sensory neurons within the antenna are functionally distinct and express different complements of odorant receptors. At the extreme, the experiments are consistent with a model in which individual neurons express only a single receptor gene.
  • Our differential cloning procedure identified one additional gene, DORA45 (SEQ ID NOs: 103 and 104), which shares weak identity (24%) with the DOR gene family over a short region (93 amino acids). This gene, however, does not appear to be a classical member of the DOR family: it is far more divergent and significantly larger than the other family members (486 amino acids). This gene is expressed in all olfactory sensory neurons. If DORA45 does encode a divergent odorant receptor, then it would be present in all sensory neurons along with different complements of the more classical members of the DOR gene family.
  • The Size and Organization of the Odorant Receptor Gene Family
  • How large is the family of odorant receptor genes in Drosophila? Unlike vertebrate odorant receptors, which share 40-98% sequence identity at the amino acid level, the fly receptors are extremely divergent. The extent of sequence similarity between receptor subfamilies ranges from 20-30%. The maxillary palp receptor DOR104 is the most distantly related member of the family with about 17% identity to the other receptor genes. Inspection of the receptor sequences suggests that Southern blot hybridizations, even those performed at low stringency, are unlikely to reveal multiple additional members of a gene family. In accord with this, Southern blot hybridization with receptor probes for DOR24, DOR62, and DOR72g, performed at either high or low stringency, reveals only a single hybridizing band following cleavage of genomic DNA with three different restriction endonucleases (FIG. 7C-E). The two linked clusters of receptors contain genes with a greater degree of sequence conservation and define small subfamilies of receptor genes. A cluster of three receptors, DOR71g, DOR72g, and DOR73g, is located at map position 33B1-2. The antennal receptors DOR72g and DOR73g are 55% identical and both exhibit about 30% identity to the third gene at the locus, DOR71g, which is expressed in the maxillary palp. DOR67 and DOR53, members of a second subfamily, reside within 1 kb of each other at map position 22A2-3 and exhibit 76% sequence identity. Not surprisingly, these two linked genes crosshybridize at low stringency. Southern blots with either DOR67 or DOR53 probes reveal two hybridizing bands corresponding to the two genes within the subfamily but fail to detect additional subfamily members in the chromosome (FIGS. 7A and B).
  • The members of the receptor gene family described here are present on all but the small fourth chromosome. No bias is observed toward telomeric or centromeric regions. The map positions, as determined from P1 and cosmid clones (Berkeley Drosophila Genome Project; European Drosophila Genome Project) are provided in Experimental Procedures. A comparatively large number of receptor genes map to chromosome 2 because the Berkeley Drosophila Genome Project has concentrated its efforts on this chromosome. Unlike the distribution of odorant receptors in nematodes and mammals (Ben-Arie et al., 1994; Troemel et al., 1995; Robertson, 1998), only small linked arrays have been identified and the majority of the family members are isolated at multiple, scattered loci in the Drosophila genome.
  • The high degree of divergence among members of the Drosophila odorant receptor gene family is more reminiscent of the family of chemoreceptors in C. elegans than the more highly conserved odorant receptors of vertebrates. Estimates of the size of the Drosophila receptor gene family, therefore, cannot be obtained by either Southern blot hybridization or PCR analysis of genomic DNA. Rather, estimates of the gene family derive from the statistics of small numbers. Twelve members of the odorant receptor gene family were detected from a Drosophila genome database that includes roughly 10% of the genome. Recognizing a possible bias in this estimate, it seems reasonable at present to estimate that the odorant receptor family is likely to include 100 to 200 genes. This is in accord with independent estimates from in situ hybridization experiments that demonstrate that a given receptor probe hybridizes with 0.5-1.5% of the neurons. If one assumes that a given neuron expresses only a single receptor gene, these observations suggest that the gene family would include 100 to 200 members.
  • Experimental Discussion
  • The Size and Divergence of the Gene Family
  • The present application discloses a novel family of seven transmembrane domain proteins that is likely to encode the Drosophila odorant receptors. The number of different receptor genes expressed in the neurons of the antenna and maxillary palp will reflect the diversity and specificity of odor recognition in the fruit fly. How large is the Drosophila odorant receptor gene family? We have identified 11 members of this divergent gene family in the Drosophila DNA database. The potential for bias notwithstanding, it seems reasonable to assume then that since only 10% of genomic sequence has been deposited, this gene family is likely to contain from 100 to 200 genes. However, significant errors in these estimates could result from bias in the nature of the sequences represented in the 10% of the Drosophila genome analyzed to date. In situ hybridization experiments demonstrating that each of the receptor genes labels from 0.5-1.5% of the olfactory sensory neurons are in accord with the estimate of 100 to 200 receptor genes.
  • Several divergent odorant receptor gene families, each encoding seven transmembrane proteins, have been identified in vertebrate and invertebrate species. In mammals, volatile odorants are detected by a family of as many as 1,000 receptors each expressed in the main olfactory epithelium (Buck and Axel, 1991; Levy et al., 1991; Parmentier et al., 1992; Ben-Arie et al., 1994). This gene family shares features with the serpentine neurotransmitter receptors and is conserved in all vertebrates examined. Terrestrial vertebrates have a second anatomically and functionally distinct olfactory system, the vomeronasal organ, dedicated to the detection of pheromones. Vomeronasal sensory neurons express two distinct families of receptors each thought to contain from 100 to 200 genes: one novel family of serpentine receptors (Dulac and Axel, 1995), and a second related to the metabotropic neurotransmitter receptors (Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba and Tirindelli, 1997).
  • In the invertebrate C. elegans, chemosensory receptors are organized into four gene families that share 20-40% sequence similarity within a family and essentially no sequence similarity between families (Troemel et al., 1995; Sengupta et al., 1996; Robertson, 1998). The four gene families in C. elegans together contain about 1,000 genes engaged in the detection of odors. The nematode receptors exhibit no sequence conservation with the three distinct families of vertebrate odorant receptor genes. Our studies reveal that Drosophila has evolved an additional divergent gene family of serpentine receptors comprised of from 100 to 200 genes.
  • The observation that a similar function, chemosensory detection, is accomplished by at least eight highly divergent gene families, sharing little or no sequence similarity, is quite unusual.
  • Why is the evolutionary requirement for odorant receptors so often met by recruitment of novel gene families rather than exploiting pre-existing odorant receptor families in ancestral genomes? The character of natural odorants along with their physical properties (e.g. aqueous or volatile) represent important selectors governing the evolution of receptor gene families. The use of common “anthropomorphic” odorant sets in the experimental analysis of olfactory specificity has led to the prevailing view that significant overlap exists in the repertoire of perceived odors between different species. Studies of odorant specificity in different species often employ odors at artificially high concentrations and may present an inaccurate image of the natural repertoire of odorants. We simply do not know the nature of the odors that initially led to the ancestral choice of receptor genes during the evolution of the nematode, insect, or vertebrate species. Clearly, vastly different properties in salient odors could dictate the recruitment of new gene families to effect an old function, olfaction. The character of the odor is not the only evolutionary selector. Odorant receptors must interact with other components in the signal transduction pathway [G proteins (for review see Buck, 1996; Bargmann and Kaplan, 1998) and perhaps even RAMPs (McLatchie et al, 1998) and rho (Mitchell et al., 1998)] that may govern the choice of one family of serpentine receptors over another. Moreover, mammalian receptors not only recognize odorants in the environment but are likely to recognize guidance cues governing formation of a sensory map in the brain (Wang et al., 1998). Thus, the multiple properties required of the odorant receptors might change vastly over evolutionary time and this might underlie the independent origins of the multiple chemosensory receptor gene families.
  • Establishing a Topographic Map in the Antenna and the Brain
  • Individual receptor genes in the fly are expressed in topographically conserved domains within the antenna. This highly ordered spatial distribution of receptor expression differs from that observed in the mammalian olfactory epithelium. In mammals, a given receptor can be expressed in one of four broad but circumscribed zones in the main olfactory epithelium (Ressler et al., 1993; Vassar et al., 1993). A given zone can express up to 250 different receptors and neurons expressing a given receptor within a zone appear to be randomly dispersed (Ressler et al., 1993; Vassar et al., 1993). The highly ordered pattern of expression observed in the Drosophila antenna might have important implications for patterning the projections to the antennal lobe. In visual, somatosensory, and auditory systems the peripheral receptor sheet is highly ordered and neighbor relations in the periphery are maintained in the projections to the brain. These observations suggest that the relative position of the sensory neuron in the periphery will determine the pattern of projections to the brain.
  • Our data on the spatial conservation of receptor expression in the antenna suggest that superimposed upon coarse spatial patterning of olfactory sensilla (Venkatesh and Singh, 1984; Ray and Rodrigues, 1995; Reddy et al., 1997) must be more precise positional information governing the choice of receptor expression. This spatial information might dictate the fixed topographic pattern of receptor expression in the peripheral receptor sheet and at the same time govern the ordered sensory projections to the brain. This relationship between positional identity and the pattern of neuronal projections has been suggested for both peripheral sensory neurons (Merritt and Whitington, 1995; Grillenzoni et al., 1998) and neurons in the embryonic central nervous system of Drosophila (Doe and Skeath, 1996).
  • Implications for Sensory Processing
  • In mammals, olfactory neurons express only one of the thousand odorant receptor genes. Neurons expressing a given receptor project with precision to 2 of the 1800 glomeruli in the mouse olfactory bulb. Odorants will therefore elicit spatially defined patterns of glomerular activity such that the quality of an olfactory stimulus is encoded by the activation of a specific combination of glomeruli (Stewart et al., 1979; Lancet et al., 1982; Kauer et al., 1987; Imamura et al., 1992; Mori et al., 1992; Katoh et al., 1993; Friedrich and Korsching, 1997). Moreover, the ability of an odorant to activate a combination of glomeruli allows for the discrimination of a diverse array of odors far exceeding the number of receptors and their associated glomeruli. In the nematode, an equally large family of receptor genes is expressed in 16 pairs of chemosensory cells, only three of which respond to volatile odorants (Bargmann and Horvitz, 1991; Bargmann et al., 1993). This immediately implies that a given chemosensory neuron will express multiple receptors and that the diversity of odors recognized by the nematode might approach that of mammals, but the discriminatory power is necessarily dramatically reduced.
  • What does the character of the gene family identified herein in Drosophila tell us about the logic of olfactory processing in this organism? We estimate that the Drosophila odorant receptors comprise a family of from 100 to 200 genes. Moreover, the pattern of expression of these genes in the third antennal segment suggests that individual sensory neurons express a different complement of receptors and, at the extreme, the data presented herein are consistent with the suggestion that individual neurons express one or a small number of receptors. As in the case of mammals, the problem of odor discrimination therefore reduces to a problem of the brain discerning which receptors have been activated by a given odorant. If the number of different types of neurons exceeds the number of glomeruli (43) (Stocker, 1994; Laissue et al., 1999), it immediately follows that a given glomerulus must receive input from more than one kind of sensory neuron. This implies that a single glomerulus will integrate multiple olfactory stimuli. One possible consequence of this model would be a loss of discriminatory power while maintaining the ability to recognize a vast array of odors. Alternatively, significant processing of sensory input may occur in the fly antennal lobe to afford discrimination commensurate with the large number of receptors.
  • This model of olfactory coding is in sharp contrast with the main olfactory system of vertebrates in which sensory neurons express only a single receptor and converge on only a single pair of spatially fixed glomeruli in the olfactory bulb. Moreover, each projection neuron in the mammalian bulb extends its dendrite to only a single glomerulus. Thus the integration and decoding of spatial patterns of glomerular activity, in vertebrates, must occur largely in the olfactory cortex. In the fruit fly, the observation that the number of receptors may exceed the number of glomeruli suggests that individual glomeruli will receive input from more than one type of sensory neuron. A second level of integration in the antennal lobe is afforded by subsets of projection neurons that elaborate extensive dendritic arbors that synapse with multiple glomeruli. Thus, the Drosophila olfactory system reveals levels of processing and integration of sensory input in the antennal lobe that is likely to be restricted to higher cortical centers in the main olfactory system of vertebrates.
  • Protein and Nucleic Acid (nt) Sequences of 55 Drosophila Odorant Receptor Genes
  • The following includes those genes first identified in 1998-1999. Protein sequences used single letter amino acid codes.
    DOR10
    (SEQ ID NO: 26)
    MEKLRSYEDFIFMANMMFKTLGYDLFHTPKPWWRYLLVRGYFVLCTISNF
    YEASMVTTRIIEWESLAGSPSKIMRQGLHFFYMLSSQLKFITFMINRKRL
    LQLSHRLKELYPHKEQNQRKYEVNKYYLSCSTRNVLYVYYFVMVVMALEP
    LVQSQFIVNVSLGTDLWMMCVSSQISMHLGYLANMLASIRPSPETEQQDC
    DFLASIIKRHQLMIRLQKDVNYVFGLLLASNLFTTSCLLCCMAYYTVVEG
    FNWEGISYMMLFASVAAQFYVVSSHGQMLIDLLMTITYRFFAVIRQTVEK
    DOR10nt
    (SEQ ID NO: 25)
    ATGGAAAAACTACGTTCCTATGAGGATTTCATCTTCATGGCCAACATGAT
    GTTCAAGACCCTTGGCTACGATCTATTCCATACACCCAAACCCTGGTGGC
    GCTATCTGCTTGTGCGAGGATACTTCGTTTTGTGCACGATCAGCAACTTT
    TACGAGGCTTCCATGGTGACGACAAGGATAATTGAGTGGGAATCCTTGGC
    CGGAAGTCCCTCCAAAATAATGCGACAGGGTCTGCACTTCTTTTACATGT
    TGAGTAGCCAATTGAAATTTATCACATTCATGATAAATCGCAAACGCCTA
    CTGCAGCTGAGCCATCGTTTGAAAGAGTTGTATCCTCATAAAGAGCAAAA
    TCAAAGGAAGTACGAGGTGAATAAATACTACCTATCCTGTTCCACGCGCA
    ATGTTTTGTACGTGTACTACTTTGTAATGGTCGTCATGGCACTGGAACCC
    CTCGTTCAGTCCCAGTTCATAGTGAATGTGAGCCTGGGCACAGATCTGTG
    GATGATGTGCGTCTCAAGCCAAATATCGATGCACTTGGGCTATCTGGCCA
    ATATGTTGGCCTCCATTCGACCAAGTCCAGAAACGGAACAACAAGACTGT
    GACTTCTTGGCCAGCATTATAAAGAGACATCAACTAATGATCAGGCTTCA
    AAAGGACGTGAACTATGTTTTTGGACTCTTATTGGCATCTAATCTGTTTA
    CCACATCCTGTTTACTTTGCTGCATGGCGTACTATACCGTCGTCGAAGGT
    TTCAATTGGGAGGGCATTTCCTATATGATGCTCTTTGCTAGTGTAGCTGC
    CCAGTTCTACGTTGTCAGCTCACACGGACAAATGTTAATAGATTTGTTGA
    TGACCATCACATACAGATTTTTCGCGGTTATACGACAAACTGTAGAAAAG
    DOR104
    (SEQ ID NO: 4)
    MASLQFHGNVDADIRYDISLDPARESNLFRLLMGLQLANGTKPSPRLPKW
    WPKRLEMIGKVLPKAYCSMVIFTSLHLGVLFTKTTLDVLPTGELQAITDA
    LTMTIIYFFTGYGTIYWCLRSRRLLAYMEHMNREYRHHSLAGVTFVSSHA
    AFRMSRNFTVVWIMSCLLGVISWGVSPLMLGIRMLPLQCWYPFDALGPGT
    YTAVYATQLFGQIMVGMTFGFGGSLFVTLSLLLLGQFDVLYCSLKNLDAH
    TKLLGGESVNGLSSLQEELLLGDSKRELNQYVLLQEHPTDLLRLSAGRKC
    PDQGNAFHNALVECIRLHRFILHCSQELENLFSPYCLVKSLQITFQLCLL
    VFVGVSGTREVLRIVNQLQYLGLTIFELLMFTYCGELLSRHSIRSGDAFW
    RGAWWKHAHFIRQDILIFLVNSRRAVHVTAGKFYVMDVNRLRSVITQAFS
    FLTLLQKLAAKKTESEL
    DOR104nt
    (SEQ ID NO: 3)
    GAATTCGGCACGAGCAGTCGATGGCCAGTCTTCAGTTCCACGGCAACGTC
    GATGCGGACATCAGGTATGATATTAGCCTGGATCCGGCTAGGGAATCGAA
    TCTCTTCCGTCTGCTAATGGGACTCCAGTTGGCGAATGGCACGAAGCCAT
    CGCCGCGGTTACCCAAATGGTGGCCAAAGCGGCTGGAAATGATTGGTAAA
    GTGCTGCCCAAAGCCTATTGTTCCATGGTGATTTTCACCTCCCTGCATTT
    GGGTGTCCTGTTCACGAAAACCACACTGGATGTCCTGCCGACGGGGGAGC
    TGCAGGCCATAACGGATGCCCTCACCATGACCATAATATACTTTTTCACG
    GGCTACGGCACCATCTACTGGTGCCTGCGCTCCCGGCGCCTCTTGGCCTA
    CATGGAGCACATGAACCGGGAGTATCGCCATCATTCGCTGGCCGGGGTGA
    CCTTTGTGAGTAGCCATGCGGCCTTTAGGATGTCCAGAAACTTCACGGTG
    GTGTGGATAATGTCCTGCCTGCTGGGCGTGATTTCCTGGGGCGTTTCGCC
    ACTGATGCTGGGCATCCGGATGCTGCCGCTCCAATGTTGGTATCCCTTCG
    ACGCCCTGGGTCCCGGCACATATACGGCGGTCTATGCTACACAACTTTTC
    GGTCAGATCATGGTGGGCATGACCTTTGGATTCGGGGGATCACTGTTTGT
    CACCCTGAGCCTGCTACTCCTGGGACAATTCGATGTGCTCTACTGCAGCC
    TGAAGAACCTGGATGCCCATACCAAGTTGCTGGGCGGGGAGTCTGTAAAT
    GGCCTGAGTTCGCTGCAAGAGGAGTTGCTGCTGGGGGACTCGAAGAGGGA
    ATTAAATCAGTACGTTTTGCTCCAGGAGCATCCGACGGATCTGCTGAGAT
    TGTCGGCAGGACGAAAATGTCCTGACCAAGGAAATGCGTTTCACAACGCC
    TTGGTGGAATGCATTCGCTTGCATCGCTTCATTCTGCACTGCTCACAGGA
    GTTGGAGAATCTATTCAGTCCATATTGTCTGGTCAAGTCACTGCAGATCA
    CCTTTCAGCTTTGCCTGCTGGTCTTTGTGGGCGTTTCGGGTACTCGAGAG
    GTCCTGCGGATTGTCAACCAGCTACAGTACTTGGGACTGACCATCTTCGA
    GCTCCTAATGTTCACCTATTGTGGCGAACTCCTCAGTCGGCATAGTATTC
    GATCTGGCGACGCCTTTTGGAGGGGTGCGTGGTGGAAGCACGCCCATTTC
    ATCCGCCAGGACATCCTCATCTTTCTGGTCAATAGTAGACGTGCAGTTCA
    CGTGACTGCCGGCAAGTTTTATGTGATGGATGTGAATCGTCTAAGATCGG
    TTATAACGCAGGCGTTCAGCTTCTTGACTTTGCTGCAAAAGTTGGCTGCC
    AAGAAGACGGAATCGGAGCTCTAAACTGGTACCACGCATCGATATTTATT
    TAGCGCATTAAAAAAAAGTCGAGTAAAAGCAAAAAAAAAAAAAAAAAAA
    DOR105
    (SEQ ID NO: 28)
    MFEDIQLIYMNIKILRFWALLYDKNLRRYVCIGLASFHIFTQIVYMMSTN
    EGLTGIIRNSYMLVLWINTVLRAYLLLADHDRYLALIQKLTEAYYDLLNL
    NDSYISEILDQVNKVGKLMARGNLFFGMLTSMGFGLYPLSSSERVLPFGS
    KIPGLNEYESPYYEMWYIFQMLITPMGCCMYIPYTSLIVGLIMFGIVRCK
    ALQHRLRQVALKHPYGDRDPRELREEIIACIRYQQSIIEYMDHINELTTM
    MFLFELMAFSALLCALLFMLIIVSGTSQLIIVCMYINMILAQILALYWYA
    NELREQNLAVATAAYETEWFTFDVPLRKNILFMMMRAQRPAAILLGNIRP
    ITLELFQNLLNTTYTFFTVLKRVYG
    DOR105nt
    (SEQ ID NO: 27)
    ATGTTTGAAGACATTCAGCTAATCTACATGAATATCAAGATATTGCGATT
    CTGGGCCCTGCTCTATGACAAAAACTTGAGGCGTTATGTGTGCATTGGAC
    TGGCCTCATTCCACATCTTCACCCAAATCGTCTACATGATGAGTACCAAT
    GAAGGACTAACCGGGATAATTCGTAACTCATATATGCTCGTCCTTTGGAT
    TAATACGGTGCTGCGAGCTTATCTCTTGCTGGCGGATCACGACAGATATT
    TGGCTTTGATCCAAAAACTAACTGAGGCCTATTACGATTTACTGAATCTG
    AACGATTCGTATATATCGGAAATATTGGACCAGGTGAACAAGGTGGGAAA
    GTTGATGGCTAGGGGCAATCTGTTCTTTGGCATGCTCACATCCATGGGAT
    TCGGTCTGTACCCATTGTCCTCCAGCGAAAGAGTCCTGCCATTTGGCAGC
    AAAATTCCTGGTCTAAATGAGTACGAGAGTCCGTACTATGAGATGTGGTA
    CATCTTTCAGATGCTCATCACCCCGATGGGCTGTTGCATGTACATTCCGT
    ACACCAGTCTGATTGTGGGCTTGATAATGTTCGGCATTGTGAGGTGCAAG
    GCTTTGCAGCATCGCCTCCGCCAGGTGGCGCTTAAGCATCCGTACGGAGA
    TCGCGATCCCCGTGAACTGAGGGAGGAGATCATAGCCTGCATACGTTACC
    AGCAGAGCATTATCGAGTACATGGATCACATAAACGAGCTGACCACCATG
    ATGTTCCTATTCGAACTGATGGCCTTTTCGGCGCTGCTCTGTGCGCTGCT
    CTTTATGCTGATTATCGTCAGCGGCACCAGTCAGCTGATAATTGTTTGCA
    TGTACATTAACATGATTCTGGCCCAAATACTGGCCCTCTATTGGTATGCA
    AATGAGTTAAGGGAACAGAATCTGGCGGTGGCCACCGCAGCCTACGAAAC
    GGAGTGGTTCACCTTCGACGTTCCACTGCGCAAAAACATCCTGTTCATGA
    TGATGAGGGCACAGCGGCCAGCTGCAATACTACTGGGCAATATACGCCCC
    ATCACTTTGGAACTGTTCCAAAACCTACTGAACACAACCTATACATTTTT
    TACGGTTCTCAAGCGAGTCTACGGA
    DOR107
    (SEQ ID NO: 30)
    MYPRFLSRNYPLAKHLFFVTRYSFGLLGLRFGKEQSWLHLLWLVFNFVNL
    AHCCQAEFVFGWSHLRTSPVDAMDAFCPLACSFTTLFKLGWMWWRRQEVA
    DLMDRIRLLIGEQEKREDSRRKVAQRSYYLMVTRCGMLVFTLGSITTGAF
    VLRSLWEMWVRRHQEFKFDMPFRMLFHDFAHRMPWFPVFYLYSTWSGQVT
    VYAFAGTDGFFFGFTLYMAFLLQALRYDIQDALKPIRDPSLRESKICCQR
    LADIVDRHNEIEKIVKEFSGIMAAPTFVHFVSASLVIATSVIDILLYSGY
    NIIRYVVYTFTVSSAIFLYCYGGTEMSTESLSLGEAAYSSAWYTWDRETR
    RRVFLIILRAQRPITVRVPFFAPSLPVFTSVIKFTGSIVALAKTIL
    DOR107nt
    (SEQ ID NO: 29)
    ATGTATCCGCGATTCCTCAGCCGTAACTATCCGCTGGCCAAGCATTTGTT
    CTTCGTCACCAGATACTCCTTTGGCCTGCTGGGCCTGAGATTTGGCAAAG
    AGCAATCGTGGCTTCACCTCTTGTGGCTGGTGTTCAATTTCGTTAACCTG
    GCGCACTGCTGCCAGGCGGAGTTCGTCTTCGGCTGGAGTCACTTGCGCAC
    CAGTCCCGTGGATGCCATGGACGCCTTTTGTCCTCTGGCCTGCAGTTTCA
    CCACGCTCTTCAAGCTGGGATGGATGTGGTGGCGTCGCCAGGAAGTAGCT
    GATCTAATGGACCGCATCCGCTTGCTCATCGGGGAGCAGGAGAAGAGGGA
    GGACTCCCGGAGAAAGGTGGCTCAAAGGAGCTACTATCTCATGGTCACCA
    GGTGCGGTATGCTGGTCTTCACCCTGGGCAGCATTACCACTGGAGCCTTC
    GTTCTGCGTTCCCTTTGGGAAATGTGGGTGCGTCGTCATCAGGAGTTCAA
    ATTCGATATGCCCTTTCGCATGCTGTTCCACGACTTTGCGCATCGCATGC
    CCTGGTTTCCAGTTTTCTATCTCTACTCCACATGGAGTGGCCAGGTCACT
    GTGTACGCCTTTGCTGGTACAGATGGTTTCTTCTTTGGCTTTACCCTCTA
    CATGGCCTTCTTGCTGCAGGCCTTAAGATACGATATCCAGGATGCCCTCA
    AGCCAATAAGAGATCCCTCGCTTAGGGAATCCAAAATCTGCTGTCAGCGA
    TTGGCGGACATCGTGGATCGCCACAATGAGATAGAGAAGATAGTCAAGGA
    ATTTTCTGGAATTATGGCTGCTCCAACTTTTGTTCACTTCGTATCAGCCA
    GCTTAGTGATAGCCACCAGCGTCATTGATATACTATTGTATTCCGGCTAT
    AACATCATCCGTTACGTGGTGTACACCTTCACGGTTTCCTCGGCCATCTT
    CCTCTATTGCTACGGAGGCACAGAAATGTCAACTGAGAGCCTTTCCTTGG
    GAGAAGCAGCCTACAGCAGTGCCTGGTATACTTGGGATCGAGAGACCCGC
    AGGCGGGTCTTTCTCATTATCCTGCGTGCTCAACGACCCATTACGGTGAG
    GGTGCCCTTTTTTGCACCATCGTTACCAGTCTTCACATCGGTCATCAAGT
    TTACAGGTTCGATTGTGGCACTGGCTAAGACGATACTG
    DOR108
    (SEQ ID NO: 32)
    MDKHKDRIESMRLILQVMQLFGLWPWSLKSEEEWTFTGFVKRNYRFLLHL
    PITFTFIGLMWLEAFISSNLEQAGQVLYMSITEMALVVKILSIWHYRTEA
    WRLMYELQHAPDYQLHNQEEVDFWRREQRFFKWFFYIYILlSLGVVYSGC
    TGVLFLEGYELPFAYYVPFEWQNERRYWFAYGYDMAGMTLTCISNITLDT
    LGCYFLFHISLLYRLLGLRLRETKNMKNDTIFGQQLRAIFIMHQRIRSLT
    LTCQRIVSPYILSQIILSALIICFSGYRLQHVGIRDNPGQFISMLQFVSV
    MILQIYLPCYYGNEITVYANQLTNEVYHTNWLECRPPIRKLLNAYMEHLK
    KPVTIRAGNSFAVGLPIFVKTINNAYSFLALLLNVSN
    DOR108nt
    (SEQ ID NO: 31)
    ATGGATAAACACAAGGATCGCATTGAATCCATGCGCCTAATTCTTCAGGT
    CATGCAACTATTTGGCCTCTGGCCGTGGTCCTTGAAATCGGAAGAGGAGT
    GGACTTTCACCGGTTTTGTAAAGCGCAACTATCGCTTCCTCCTCCATCTG
    CCCATTACCTTCACCTTTATTGGACTCATGTGGCTGGAGGCCTTCATCTC
    GAGCAATCTGGAGCAGGCTGGCCAGGTTCTGTACATGTCCATCACCGAGA
    TGGCTTTGGTGGTGAAAATCCTGAGCATTTGGCACTATCGCACCGAAGCT
    TGGCGGCTGATGTACGAACTCCAACATGCTCCGGACTACCAACTCCACAA
    CCAGGAGGAGGTAGACTTTTGGCGCCGGGAGCAACGATTCTTCAAGTGGT
    TCTTCTACATCTACATTCTGATTAGCTTGGGCGTGGTATATAGTGGCTGC
    ACTGGAGTACTTTTTCTGGAGGGCTACGAACTGCCCTTTGCCTACTACGT
    GCCCTTCGAATGGCAGAACGAGAGAAGGTACTGGTTCGCCTATGGTTACG
    ATATGGCGGGCATGACGCTGACCTGCATCTCAAACATTACCCTGGACACC
    CTGGGTTGCTATTTCCTGTTCCATATCTCTCTTTTGTACCGACTGCTTGG
    TCTGCGATTGAGGGAAACGAAGAATATGAAGAATGATACCATTTTTGGCC
    AGCAGTTGCGTGCCATCTTCATTATGCATCAGAGGATTAGAAGCCTAACC
    CTGACCTGCCAGAGAATCGTATCTCCCTATATCCTATCTCAGATCATTTT
    GAGTGCCCTGATCATCTGCTTTAGTGGATACCGCTTGCAGCATGTGGGAA
    TTCGCGATAATCCCGGCCAGTTTATATCCATGTTGCAGTTTGTCAGTGTG
    ATGATCCTGCAGATTTACTTGCCCTGCTACTATGGAAACGAGATAACCGT
    GTATGCCAATCAGCTGACCAACGAGGTTTACCATACCAATTGGCTGGAAT
    GTCGGCCACCGATTCGAAAGTTACTCAATGCCTACATGGAGCACCTGAAG
    AAACCGGTGACCATCCGGGCTGGCAACTCCTTCGCCGTGGGACTACCAAT
    TTTTGTTAAGACCATCAACAACGCCTACAGTTTCTTGGCTTTATTACTAA
    ATGTATCGAAT
    DOR109
    (SEQ ID NO: 34)
    MESTNRLSAIQTLLVIQRWIGLLKWENEGEDGVLTWLKRIYPFVLHLPLT
    FTYIALMWYEAITSSDFEEAGQVLYMSITELALVTKLLNIWYRRHEAASL
    IHELQHDPAFNLRNSEEIKFWQQNQRNFKRIFYWYIWGSLFVAVMGYISV
    FFQEDYELPFGYYVPFEWRTRERYFYAWGYNVVAMTLCCLSNILLDTLGC
    YFMFHIASLFRLLGMRLEALKNAAEEKARPELRRIFQLHTKVRRLTRECE
    VLVSPYVLSQVVFSAFIICFSAYRLVHMGFKQRPGLFVTTVQFVAVMIVQ
    IFLPCYYGNELTFHANALTNSVFGTNWLEYSVGTRKLLNCYMEFLKRPVK
    VRAGVFFEIGLPIFVKTINNAYSFFALLLKISK
    DOR109nt
    (SEQ ID NO: 33)
    ATGGAGTCTACAAATCGCCTAAGTGCCATCCAAACACTTTTAGTAATCCA
    ACGTTGGATAGGACTTCTTAAATGGGAAAACGAGGGCGAGGATGGAGTAT
    TAACCTGGCTAAAACGAATATATCCTTTTGTACTGCACCTTCCACTGACC
    TTCACGTATATTGCCTTAATGTGGTATGAAGCTATTACATCGTCAGATTT
    TGAGGAAGCTGGTCAAGTTCTGTACATGTCCATCACCGAACTGGCATTGG
    TCACTAAACTGCTGAATATTTGGTATCGTCGTCATGAAGCTGCTAGTCTA
    ATCCACGAATTGCAACACGATCCCGCATTTAATCTGCGCAATTCGGAGGA
    AATCAAATTCTGGCAGCAAAATCAGAGGAACTTTAAGAGAATATTTTACT
    GGTACATCTGGGGCAGCCTTTTCGTGGCTGTAATGGGTTATATAAGCGTG
    TTTTTCCAGGAGGATTACGAGCTGCCCTTTGGCTACTACGTGCCATTCGA
    GTGGCGCACCAGGGAACGATACTTCTACGCTTGGGGCTATAATGTGGTGG
    CCATGACCCTGTGCTGTCTATCCAACATCCTACTGGACACACTAGGCTGT
    TATTTCATGTTCCACATCGCCTCGCTTTTCAGGCTTTTGGGAATGCGACT
    GGAGGCCTTGAAAAATGCAGCCGAAGAGAAAGCCAGACCGGAGTTGCGCC
    GCATTTTCCAACTGCACACTAAAGTCCGCCGATTGACGAGGGAATGCGAA
    GTGTTAGTTTCACCCTATGTTCTATCCCAAGTGGTCTTCAGTGCCTTCAT
    CATCTGCTTCAGTGCCTATCGACTGGTGCACATGGGCTTCAAGCAGCGAC
    CTGGACTCTTCGTGACCACCGTGCAATTCGTGGCCGTCATGATCGTCCAG
    ATTTTCTTGCCCTGTTACTACGGCAATGAGTTGACCTTTCATGCCAATGC
    ACTCACTAATAGTGTCTTCGGTACCAATTGGCTGGAGTACTCCGTGGGCA
    CTCGCAAGCTGCTTAACTGCTACATGGAGTTCCTCAAGCGACCGGTTAAA
    GTGCGAGCTGGGGTGTTCTTTGAAATAGGACTACCCATCTTTGTGAAGAC
    CATCAACAATGCCTACAGTTTCTTCGCCCTGCTGCTAAAGATATCCAAG
    DOR110
    (SEQ ID NO: 36)
    MLFNYLRKPNPTNLLTSPDSFRYFEYGMFCMGWHTPATHKIIYYITSCLI
    FAWCAVYLPIGIIISFKTDINTFTPNELLTVMQLFFNSVGMPFKVLFFNL
    YISGFYKAKKLLSEMDKRCTTLKERVEVHQGVVRCNKAYLIYQFIYTAYT
    ISTFLSAALSGKLPWRIYNPFVDFRESRSSFWKAALNETALMLFAVTQTL
    MSDIYPLLYGLILRVHLKLLRLRVESLCTDSGKSDAENEQDLINYAAAIR
    PAVTRTIFVQFLLIGICLGLSMINLLFFADIWTGLATVAYINGLMVQTFP
    FCFVCDLLKKDCELLVSAIFHSNWINSSRSYKSSLRYFLKNAQKSIAFTA
    GSIFPISTGSNIKVAKLAFSVVTFVNQLNIADRLTKN
    DOR110nt
    (SEQ ID NO: 35)
    ATGTTGTTCAACTATCTGCGAAAGCCGAATCCCACAAACCTTTTGACTTC
    TCCGGACTCATTTAGATACTTTGAGTATGGAATGTTTTGCATGGGATGGC
    ACACACCAGCAACGCATAAGATAATCTACTATATAACATCCTGTTTGATT
    TTTGCTTGGTGTGCCGTATACTTGCCAATCGGAATCATCATTAGTTTCAA
    AACGGATATTAACACATTCACACCGAATGAACTGTTGACAGTTATGCAAT
    TATTTTTCAATTCAGTGGGAATGCCATTCAAGGTTCTGTTCTTCAATTTG
    TATATTTCTGGATTTTACAAGGCCAAAAAGCTCCTTAGCGAAATGGACAA
    ACGTTGCACCACTTTGAAGGAGCGAGTGGAAGTGCACCAAGGTGTGGTCC
    GTTGCAACAAGGCCTACCTCATTTACCAGTTCATTTATACCGCGTACACT
    ATTTCAACATTTCTATCGGCGGCTCTTAGTGGAAAATTGCCATGGCGCAT
    CTATAATCCTTTTGTGGATTTTCGAGAAAGTAGATCCAGTTTTTGGAAAG
    CTGCCCTCAACGAGACAGCACTTATGCTATTTGCTGTGACTCAAACCCTA
    ATGAGTGATATATATCCACTGCTTTATGGTTTGATCCTGAGAGTTCACCT
    CAAACTTTTGCGACTAAGAGTGGAGAGCCTGTGCACAGATTCTGGAAAAA
    GCGATGCTGAAAACGAGCAAGATTTGATTAACTATGCTGCAGCAATACGA
    CCAGCGGTTACCCGCACAATTTTCGTTCAATTCCTCTTGATCGGAATTTG
    CCTTGGCCTTTCAATGATCAATCTACTCTTCTTTGCCGACATCTGGACAG
    GATTGGCCACAGTGGCTTACATCAATGGTCTAATGGTGCAGACATTTCCA
    TTTTGCTTCGTTTGTGATCTACTCAAAAAGGATTGTGAACTTCTTGTGTC
    GGCCATATTTCATTCCAACTGGATTAATTCAAGCCGCAGTTACAAGTCAT
    CTTTGAGATATTTTCTGAAGAACGCCCAGAAATCAATTGCTTTTACAGCC
    GGCTCTATTTTTCCCATTTCTACTGGCTCGAATATTAAGGTGGCTAAGCT
    GGCATTTTCGGTGGTTACTTTTGTCAATCAACTTAACATAGCTGACAGAT
    TGACAAAGAAC
    DOR111
    (SEQ ID NO: 38)
    MLFRKRKPKSDDEVITFDELTRFPMTFYKTIGEDLYSDRDPNVIRRYLLR
    FYLVLGFLNFNAYVVGEIAYFIVHIMSTTTLLEATAVAPCIGFSFMADFK
    QFGLTVNRKRLVRLLDDLKEIFPLDLEAQRKYNVSFYRKHMNRVMTLFTI
    LCMTYTSSFSFYPAIKSTIKYYLMGSEIFERNYGFHILFPYDAETDLTVY
    WFSYWGLAHCAYVAGVSYVCVDLLLIATITQLTMHFNFIANDLEAYEGGD
    HTDEENIKYLHNLVVYHARALDINKKCTFQSSRIGHSAFNQNWLPCSTKY
    KRILQFIIARSQKPASIRPPTFPPISFNTFMKVISMSYQFFALLRTTYYG
    DOR111nt
    (SEQ ID NO: 37)
    ATGCTGTTCCGCAAACGTAAGCCAAAAAGTGACGATGAAGTCATCACCTT
    CGACGAACTTACCCGGTTTCCGATGACTTTCTACAAGACCATCGGCGAGG
    ATCTGTACTCCGATAGGGATCCGAATGTGATAAGGCGTTACCTGCTACGT
    TTTTATCTGGTACTCGGTTTTCTCAACTTCAATGCCTATGTGGTGGGCGA
    AATCGCGTACTTTATAGTCCATATAATGTCGACGACTACTCTTTTGGAGG
    CCACTGCAGTGGCACCGTGCATTGGCTTCAGCTTCATGGCCGACTTTAAG
    CAGTTCGGTCTCACAGTGAATAGAAAGCGATTGGTCAGATTGCTGGATGA
    TCTCAAGGAGATATTTCCTTTAGATTTAGAAGCGCACCGGAAGTATAACG
    TATCGTTTTACCGGAAACACATGAACAGGGTCATGACCCTATTCACCATC
    CTCTGCATGACCTACACCTCGTCATTTAGCTTTTATCCAGCCATCAAGTC
    GACCATAAAGTATTACCTTATGGGATCGGAAATCTTTGAGCGCAACTACG
    GATTTCACATTTTGTTTCCCTACGACGCAGAAACGGATCTGACGGTCTAC
    TGGTTTTCCTACTGGGGATTGGCTCATTGTGCCTATGTGGCCGGAGTTTC
    CTACGTCTGCGTGGATCTCCTGCTGATCGCGACCATAACCCAGCTGACCA
    TGCACTTCAACTTTATAGCGAATGATTTGGAGGCCTACGAAGGAGGTGAT
    CATACGGATGAAGAAAATATCAAATACCTGCACAACTTGGTCGTCTATCA
    TGCCAGGGCGCTGGATATTAACAAGAAATGTACATTTCAGAGCTCTCGGA
    TTGGCCATTCGGCATTTAATCAGAACTGGTTGCCATGCAGCACCAAATAC
    AAACGCATCCTGCAATTTATTATCGCGCGCAGCCAGAAGCCCGCCTCTAT
    AAGACCGCCTACCTTTCCACCCATATCTTTTAATACCTTTATGAAGGTAA
    TCAGCATGTCGTATCAGTTTTTTGCACTGCTCCGCACCACATATTATGGT
    DOR114
    (SEQ ID NO: 40)
    MLTKKDTQSAKEQEKLKAIPLHSFLKYANVFYLSIGMMAYDHKYSQKWKE
    VLLHWTFIAQMVNLNTVLISELIYVFLAIGKGSNFLEATMNLSFIGFVIV
    GDFKIWNISRQRKRLTQVVSRLEELHPQGLAQQEPYNIGHHLSGYSRYSK
    FYFGMHMVLIWTYNLYWAVYYLVCDFWLGMRQFERMLPYYCWVPWDWSTG
    YSYYFMYISQNIGGQACLSGQLAADMLMCALVTLVVMHFIRLSAHIESHV
    AGIGSFQHDLEFLQATVAYHQSLIHLCQDINEIFGVSLLSNFVSSSFIIC
    FVGFQMTIGSKIDNLVMLVLFLFCAMVQVFMIATHAQRLVDASEQIGQAV
    YNHDWFRADLRYRKMLILIIKRAQQPSRLKATMFLNISLVTVSDLLQLSY
    KFFALLRTMYVN
    DOR114nt
    (SEQ ID NO: 39)
    ATGTTGACTAAGAAGGATACTCAAAGTGCCAAGGAGCAGGAAAAGTTGAA
    GGCCATTCCATTGCACAGCTTTCTGAAATATGCCAACGTGTTCTATTTAT
    CGATTGGAATGATGGCCTACGATCACAAGTACAGTCAAAAGTGGAAGGAG
    GTCCTGCTGCACTGGACATTCATTGCCCAGATGGTCAATCTGAATACAGT
    GCTCATCTCGGAACTGATTTACGTATTCCTGGCGATCGGCAAAGGTAGCA
    ATTTTCTGGAGGCCACCATGAATCTGTCTTTCATTGGATTTGTCATCGTT
    GGTGACTTCAAAATCTGGAACATTTCGCGGCAGAGAAAGAGACTCACCCA
    AGTGGTCAGCCGATTGGAAGAACTGCATCCGCAAGGCTTGGCTCAACAAG
    AACCCTATAATATAGGGCATCATCTGAGCGGCTATAGCCGATATAGCAAA
    TTTTACTTCGGCATGCACATGGTGCTGATATGGACGTACAACCTGTATTG
    GGCCGTTTACTATCTGGTCTGTGATTTCTGGCTGGGAATGCGTCAATTTG
    AGAGGATGCTGCCCTACTACTGCTGGGTTCCCTGGGATTGGAGTACCGGA
    TATAGCTACTATTTCATGTATATCTCACAGAATATCGGCGGTCAGGCTTG
    TCTGTCCGGTCAGCTAGCAGCTGACATGTTAATGTGCGCCCTGGTCACTT
    TGGTGGTGATGCACTTCATCCGGCTTTCCGCTCACATCGAGAGTCATGTT
    GCGGGCATTGGCTCATTCCAGCACCATTTGGAGTTCCTCCAAGCGACGGT
    GGCGTATCACCAGAGCTTGATCCACCTCTGCCAGGATATCAATGAGATAT
    TCGGTGTTTCACTGTTGTCCAACTTTGTATCCTCGTCGTTTATCATCTGC
    TTCGTGGGTTTCCAGATGACCATCGGCAGCAAGATCGACAACCTGGTAAT
    GCTTGTGCTTTTCCTGTTTTGTGCCATGGTTCAGGTCTTCATGATTGCCA
    CCCATGCTCAGAGGCTCGTTGATGCGAGTGAACAGATTGGTCAAGCGGTC
    TATAATCACGACTGGTTCCGTGCTGATCTGCGGTATCGTAAAATGCTGAT
    CCTGATTATTAAGAGGGCCCAACAGCCGAGTCGACTCAAGGCCACAATGT
    TCCTGAACATCTCACTGGTCACCGTGTCGGATCTCTTGCAACTCTCGTAC
    AAATTCTTTGCCCTTCTGCGCACAATGTACGTGAAT
    DOR115
    (SEQ ID NO: 42)
    MEKLMKYASFFYTAVGIRPYTNGEESKMNKLIFHIVFWSNVINLSFVGLF
    ESIYVYSAFMDNKFLEAVTALSYIGFVTVGMSKMFFIRWKKTAITELINE
    LKEIYPNGLIREERYNLPMYLGTCSRISLIYSLLYSVLIWTFNLFCVMEY
    WVYDKWLNIRVVGKQLPYLMYIPWKWQDNWSYYPLLFSQNFAGYTSAAGQ
    ISTDVLLCAVATQLVMHFDFLSNSMERHELSGDWKKDSRFLVDIVRYHER
    ILRLSDAVNDIFGIPLLLNFMVSSFVICFVGFQMTVGVPPDIVVKLFLFL
    VSSMSQVYLICHYGQLVADASYGFSVATYNQKWYKADVRYKRALVIIIAR
    SQKVTFLKATIFLDITRSTMTDVRNCVLSV
    DOR115nt
    (SEQ ID NO: 41)
    ATGGAGAAGCTAATGAAGTACGCTAGCTTCTTCTACACAGCAGTGGGCAT
    ACGGCCATATACCAATGGTGAAGAATCCAAAATGAACAAACTTATATTTC
    ACATAGTTTTTTGGTCCAATGTGATTAACCTCAGCTTCGTTGGATTATTT
    GAGAGCATTTACGTTTACAGTGCCTTCATGGATAATAAGTTCCTGGAAGC
    AGTCACTGCGTTGTCCTACATTGGCTTCGTAACCGTAGGCATGAGCAAGA
    TGTTCTTCATCCGGTGGAAGAAAACGGCTATAACTGAACTGATTAATGAA
    TTGAAGGAGATCTATCCGAATGGTTTGATCCGAGAGGAAAGATACAATCT
    GCCGATGTATCTGGGCACCTGCTCCAGAATCAGCCTTATATATTCCTTGC
    TCTACTCTGTTCTCATCTGGACATTCAACTTGTTTTGTGTAATGGAGTAT
    TGGGTCTATGACAAGTGGCTCAACATTCGAGTGGTGGGCAAACAGTTGCC
    GTACCTCATGTACATTCCTTGGAAATGGCAGGATAACTGGTCGTACTATC
    CACTGTTATTCTCCCAGAATTTTGCAGGATACACATCTGCAGCTGGTCAA
    ATTTCAACCGATGTCTTGCTCTGCGCGGTGGCCACTCAGTTGGTAATGCA
    CTTCGACTTTCTCTCAAATAGTATGGAACGCCACGAATTGAGTGGAGATT
    GGAAGAAGGACTCCCGATTTCTGGTGGACATTGTTAGGTATCACGAACGT
    ATACTCCGCCTTTCAGATGCAGTGAACGATATATTTGGAATTCCACTACT
    ACTCAACTTCATGGTATCCTCGTTCGTCATCTGCTTCGTGGGATTCCAGA
    TGACTGTTGGAGTTCCGCCGGATATAGTTGTGAAGCTCTTCCTCTTCCTT
    GTCTCTTCGATGAGTCAGGTCTATTTGATTTGTCACTATGGTCAACTGGT
    GGCCGATGCTAGCTACGGATTTTCGGTTGCCACCTACAATCAGAAGTGGT
    ATAAAGCCGATGTGCGCTATAAACGAGCCTTGGTTATTATTATAGCTAGA
    TCGCAGAAGGTAACTTTTCTAAAGGCCACTATATTCTTGGATATTACCAG
    GTCCACTATGACAGATGTACGCAACTGTGTATTGTCAGTG
    DOR116
    (SEQ ID NO: 44)
    MELLPLAMLMYDGTRVTAMQYLIPGLPLENNYCYVVTYMIQTVTMLVQGV
    GFYSGDLFVFLGLTQILTFADMLQVKVKELNDALEQKAEYRALVRVGASI
    DGAENRQRLLLDVIRWHQLFTDYCRAINALYYELIATQVLSMALAMMLSF
    CINLSSFHMPSAIFFVVSAYSMSIYCILGTILEFAYDQVYESICNVTWYE
    LSGEQRKLFGFLLRESQYPHNIQILGVMSLSVRTALQIVKLIYSVSMMMM
    NRA
    DOR116nt
    (SEQ ID NO: 43)
    ATGGAACTCCTGCCATTGCCCATGCTAATGTACGATGGAACCCGGGTTAC
    TGCGATGCAGTATTTAATTCCGGGTCTACCGCTTGAGAACAATTATTGCT
    ACGTAGTCACGTACATGATTCAGACGGTGACAATGCTCGTGCAAGGAGTC
    GGATTCTACTCCGGTGATTTGTTCGTATTTCTCGGCTTAACGCAGATCCT
    AACTTTCGCCGATATGCTGCAGGTGAAGGTGAAAGAGCTAAACGATGCCC
    TGGAACAAAAAGCGGAATACAGAGCTCTAGTCCGAGTTGGAGCTTCTATT
    GATGGAGCGGAAAATCGTCAACGCCTTCTCTTGGATGTTATAAGATGGCA
    TCAATTATTCACGGACTACTGTCGCGCCATAAATGCCCTCTACTACGAAT
    TGATCGCCACTCAGGTTCTTTCGATGGCTTTGGCCATGATGCTCAGCTTC
    TGCATTAATTTGAGCAGCTTTCACATGCCTTCGGCTATCTTTTTCGTGGT
    TTCTGCCTACAGCATGTCCATCTATTGCATTCTGGGCACCATTCTTGAGT
    TTGCATATGACCAGGTGTACGAGAGCATCTGTAATGTGACCTGGTATGAG
    TTGAGTGGCGAACAGCGAAAGCTTTTTGGTTTTTTGTTGCGGGAATCCCA
    GTATCCGCACAATATTCAGATACTTGGAGTTATGTCGCTTTCCGTGAGAA
    CGGCTCTGCAGATTGTTAAACTAATTTATAGCGTATCCATGATGATGATG
    AATCGGGCG
    DOR117
    (SEQ ID NO: 46)
    MDLRRWFPTLYTQSKDSPVRSRDATLYLLRCVFLMGVRKPPAKFFVAYVL
    WSFALNFCSTFYQPIGFLTGYISHLSEFSPGEFLTSLQVAFNAWSCSTKV
    LIVWALVKRFDEANNLLDEMDRRITDPGERLQIHRAVSLSNRIFFFFMAV
    YMVYATNTFLSAIFIGRPPYQNYYPFLDWRSSTLHLALQAGLEYFAMAGA
    CFQDVCVDCYPVNFVLVLRAHMSIFAERLRRLGTYPYESQEQKYERLVQC
    IQDHKVILRFVDCLRPVISGTIFVQFLVVGLVLGFTLINIVLFANLGSAI
    AALSFMAAVLLETTPFCILCNYLTEDCYKLADALFQSNWIDEEKRYQKTL
    MYFLQKLQQPITFMAMNVFPISVGTNISVSRCAL
    DOR117nt
    (SEQ ID NO: 45)
    ATGGATCTGCGAAGGTGGTTTCCGACCTTGTACACCCAGTCGAAGGATTC
    GCCAGTTCGCTCCCGAGACGCGACCCTGTACCTCCTACGCTGCGTCTTCT
    TAATGGGCGTCCGCAAGCCACCTGCCAAGTTTTTCGTGGCCTACGTGCTC
    TGGTCCTTCGCACTGAATTTCTGCTCAACATTTTATCAGCCAATTGGCTT
    TCTCACAGGCTATATAAGCCATTTATCAGAGTTCTCCCCGGGAGAGTTTC
    TAACTTCGCTGCAGGTGGCCTTTAATGCTTGGTCCTGCTCTACAAAAGTC
    CTGATAGTGTGGGCACTAGTTAAGCGCTTTGACGAGGCTAATAACCTTCT
    CGACGAGATGGATAGGCGTATCACAGACCCCGGAGAGCGTCTTCAGATTC
    ATCGCGCTGTCTCCCTCAGTAACCGTATATTCTTCTTTTTCATGGCAGTC
    TACATGGTTTATGCCACTAATACGTTTCTGTCGGCGATCTTCATTGGAAG
    GCCACCGTACCAAAATTACTACCCTTTTCTGGACTGGCGATCTAGCACTC
    TGCATCTAGCTCTGCAGGCCGGTCTGGAATACTTCGCCATGGCTGGCGCC
    TGCTTCCAGGACGTTTGCGTTGATTGCTACCCAGTCAATTTCGTTTTGGT
    CCTGCGTGCCCACATGTCGATCTTCGCGGAGCGCCTTCGACGTTTGGGAA
    CTTATCCTTATGAAAGCCAGGAGCAGAAATATGAACGATTGGTTCAGTGC
    ATACAAGATCACAAAGTAATTTTGCGATTTGTTGACTGCCTGCGTCCTGT
    TATTTCTGGTACCATCTTCGTGCAATTCTTGGTTGTGGGGTTGGTGCTGG
    GCTTTACCCTAATTAACATTGTCCTGTTCGCCAACTTGGGATCGGCCATC
    GCAGCGCTCTCGTTTATGGCCGCAGTGCTTCTAGAGACGACTCCCTTCTG
    CATATTGTGCAATTATCTCACAGAAGACTGCTACAAGCTGGCCGATGCCC
    TGTTTCAGTCAAACTGGATTGATGAGGAGAAACGATACCAAAAGACACTC
    ATGTACTTCCTACAGAAACTGCAGCAGCCTATAACCTTCATGGCTATGAA
    CGTGTTTCCAATATCTGTGGGAACTAACATCAGTGTAAGCAGATGTGCCC
    TT
    DOR118
    (SEQ ID NO: 48)
    MKFIGWLPPKQGVLRYVYLTWTLMTFVWCTTYLPLGFLGSYMTQIKSFSP
    GEFLTSLQVCINAYGSSVKVAITYSMLWRLIKAKNILDQLDLRCTAMEER
    EKIHLVVARSNHAFLIFTFVYCGYAGSTYLSSVLSGRPPWQLYNPFIDWH
    DGTLKLWVASTLEYMVMSGAVLQDQLSDSYPLIYTLILPAHLDMLRERIR
    RLRSDENLSEAESYEELVKCVMDHKLILRYCAIIKPVIQGTIFTQFLLIG
    LVLGFTLINVFFFSDIWTGIASFMFVITILLQTFPFCYTCNLIMEDCESL
    THAIFQSNWVDASRRYKTTLLYFLQNVQQPIVFIAGGIFQISMSSNISVA
    KFAFSVITITKQMNIADKFKTD
    DOR118nt
    (SEQ ID NO: 47)
    ATGAAGTTTATTGGATGGCTGCCCCCCAAGCAGGGTGTGCTCCGGTATGT
    GTACCTCACCTGGACGCTAATGACGTTCGTGTGGTGTACAACGTACCTGC
    CGCTTGGCTTCCTTGGTAGCTACATGACGCAGATCAAGTCCTTCTCCCCT
    GGAGAGTTTCTCACTTCACTCCAGGTGTGCATTAATGCCTACGGCTCATC
    GGTAAAAGTTGCAATCACATACTCCATGCTCTGGCGCCTTATCAAGGCCA
    AGAACATTTTGGACCAGCTGGACCTGCGCTGCACCGCCATGGAGGAGCGC
    GAAAAGATCCACCTAGTGGTGGCCCGCAGCAACCATGCCTTTCTCATCTT
    CACCTTTGTCTACTGCGGATATGCCGGCTCCACCTACCTGAGCTCGGTTC
    TCAGCGGGCGTCCGCCCTGGCAGCTGTACAATCCCTTTATTGATTGGCAT
    GACGGCACACTCAAGCTCTGGGTGGCCTCCACGTTGGAGTACATGGTGAT
    GTCAGGCGCCGTTCTGCAGGATCAACTCTCGGACTCTTACCCATTGATCT
    ATACCCTCATCCTTCGTGCTCACTTGGACATGCTAAGGGAGCGCATCCGA
    CGCCTCCGTTCCGATGAGAACCTGAGCGAGGCCGAGAGCTATGAAGAGCT
    GGTCAAATGTGTGATGGACCACAAGCTCATTCTAAGATACTGCGCGATTA
    TTAAACCAGTAATCCAGGGGACCATCTTCACACAGTTTCTGCTGATCGGC
    CTGGTTCTGGGCTTCACGCTGATCAACGTGTTTTTCTTCTCAGACATCTG
    GACGGGCATCGCATCATTTATGTTTGTTATAACCATTTTGCTGCAGACCT
    TCCCCTTCTGCTACACATGCAACCTCATCATGGAGGACTGCGAGTCCTTG
    ACCCATGCTATTTTCCAGTCCAACTGGGTGGATGCCAGTCGTCGCTACAA
    AACAACACTACTGTATTTTCTCCAAAACGTGCAGCAGCCTATCGTTTTCA
    TTGCAGGCGGTATCTTTCAGATATCCATGAGCAGCAACATAAGTGTGGCA
    AAGTTTGCTTTCTCCGTGATAACCATTACCAAGCAAATGAATATAGCTGA
    CAAATTTAAGACGGAC
    DOR119
    (SEQ ID NO: 50)
    MAVFKLIKPAPLTEKVQSRQGNIYLYRAMWLIGWIPPKEGVLRYVYLFWT
    CVPFAFGVFYLPVGFIISYVQEFKNFTPGEFLTSLQVCINVYGASVKSTI
    TYLFLWRLRKTEILLDSLDKRLANDSDRERIHNMVARCNYAFLIYSFIYC
    GYAGSTFLSYALSGRPPWSVYNPFIDWRDGMGSLWIQAIFEYITMSFAVL
    QDQLSDTYPLMFTIMFRAHMEVLKDHVRSLRMDPERSEADNYQDLVNCVL
    DHKTILKCCDMIRPMISRTIFVQFALIGSVLGLTLVNVFFFSNFWKGVAS
    LLFVITILLQTFPFCYTCNMLIDDAQDLSNEIFQSNWVDAEPRYKATLVL
    FMHHVQQPIIFIAGGIFPISMNSNITVAKFAFSIITIVRQMNLAEQFQ
    DOR119nt
    (SEQ ID NO: 49)
    ATGGCGGTGTTCAAGCTAATCAAACCGGCTCCGTTGACCGAGAAGGTGCA
    GTCCCGCCAGGGGAATATATATCTGTACCGTGCCATGTGGCTCATCGGAT
    GGATTCCGCCGAAGGAGGGAGTCCTGCGCTACGTGTATCTCTTCTGGACC
    TGCGTGCCCTTCGCCTTCGGGGTGTTTTACCTGCCCGTGGGCTTCATCAT
    CAGCTACGTGCAGGAGTTCAAGAACTTCACGCCGGGCGAGTTCCTTACCT
    CGCTGCAGGTGTGCATCAATGTGTATGGCGCCTCGGTGAAGTCCACCATC
    ACCTACCTCTTCCTCTGGCGACTGCGCAAGACGGAGATCCTTCTGGACTC
    CCTGGACAAGAGGCTGGCGAACGACAGCGATCGCGAGAGGATCCACAATA
    TGGTGGCGCGCTGCAACTACGCCTTTCTCATCTACAGCTTCATCTACTGC
    GGATACGCGGGTTCCACTTTCCTGTCCTACGCCCTCAGTGGTCGTCCTCC
    GTGGTCCGTCTACAATCCCTTCATCGATTGGCGCGATGGCATGGGCAGCC
    TGTGGATCCAGGCCATATTCGAGTACATCACCATGTCCTTCGCCGTGCTG
    CAGGACCAGCTATCCGACACGTATCCCCTGATGTTCACCATTATGTTCCG
    GGCCCACATGGAGGTCCTCAAGGATCACGTGCGGAGCCTGCGCATGGATC
    CCGAGCGCAGTGAGGCAGACAACTATCAGGATCTGGTGAACTGCGTGCTG
    GACCACAAGACTATACTGAAATGCTGTGACATGATTCGCCCCATGATATC
    CCGCACCATCTTCGTGCAATTCGCGCTGATTGGTTCCGTTTTGGGCCTGA
    CCCTGGTGAACGTGTTCTTCTTCTCGAACTTCTGGAAGGGCGTGGCCTCG
    CTCCTGTTCGTCATCACCATCCTGCTGCAGACCTTCCCGTTCTGCTACAC
    CTGCAACATGCTGATCGACGATGCCCAGGATCTGTCCAACGAGATTTTCC
    AGTCCAACTGGGTGGACGCGGAGCCGCGCTACAAGGCGACGCTGGTGCTC
    TTCATGCACCATGTTCAGCAGCCCATAATCTTCATTGCCGGAGGCATCTT
    TCCCATCTCTATGAACAGCAACATAACCGTGGCCAAGTTCGCCTTCAGCA
    TCATTACAATAGTGCGACAAATGAATCTGGCCGAGCAGTTCCAG
    DOR120
    (SEQ ID NO: 52)
    MTKFFFKRLQTAPLDQEVSSLDASDYYYRIAFFLGWTPPKGALLRWIYSL
    WTLTTMWLGIVYLPLGLSLTYVKHFDRFTPTEFLTSLQVDINCIGNVIKS
    CVTYSQMWRFRRMNELISSLDKRCVTTTQRRIFHKMVARVNLIVILFLST
    YLGFCFLTLFTSVFAGKAPWQLYNPLVDWRKGHWQLWIASILEYCVVSIG
    TMQELMSDTYAIVFISLFRCHLAILRDRIANLRQDPKLSEMEHYEQMVAC
    IQDHRTIIQCSQIIRPILSITIFAQFMLVGIDLGLAAISILFFPNTIWTI
    MANVSFIVAICTESFPCCMLCEHLIEDSVHVSNALFHSNWITADRSYKSA
    VLYFLHRAQQPIQFTAGSTFPISVQSNIAVAKFAFTIITIVNQMNLGEKF
    FSDRSNGDINP
    DOR120nt
    (SEQ ID NO: 51)
    ATGACCAAGTTCTTCTTCAAGCGCCTGCAAACTGCTCCACTTGATCAGGA
    GGTGAGTTCCCTTGATGCCAGCGACTACTACTACCGCATCGCATTTTTCC
    TGGGCTGGACCCCGCCCAAGGGGGCTCTGCTCCGATGGATCTACTCCCTG
    TGGACTCTGACCACGATGTGGCTGGGTATCGTGTACCTGCCGCTCGGACT
    CAGCCTCACCTATGTGAAGCACTTCGATAGATTCACGCCGACGGAGTTCC
    TGACCTCCCTGCAGGTGGATATCAACTGCATCGGGAACGTGATCAAGTCA
    TGCGTAACTTATTCCCAGATGTGGCGTTTTCGCCGGATGAATGAGCTTAT
    CTCGTCCCTGGACAAGAGATGTGTGACTACGACACAGCGTCGAATTTTCC
    ATAAGATGGTGGCACGGGTTAATCTCATCGTGATTCTGTTCTTGTCCACG
    TACTTGGGCTTCTGCTTTCTAACTCTGTTCACTTCGGTTTTCGCTGGCAA
    AGCTCCTTGGCAGCTGTACAACCCACTGGTGGACTGGCGGAAAGGCCATT
    GGCAGCTATGGATTGCCTCCATCCTGGAGTACTGTGTGGTCTCCATTGGC
    ACCATGCAGGAGTTGATGTCCGACACCTACGCCATAGTGTTCATCTCCTT
    GTTCCGCTGCCACCTGGCTATTCTCAGAGATCCCATAGCTAATCTGCGGC
    AGGATCCGAAACTCAGTGAGATGGAACACTATGAGCAGATGGTGGCCTGC
    ATTCAGGATCATCGAACCATCATACAGTGCTCCCAGATTATTCGACCCAT
    CCTGTCGATCACTATCTTTGCCCAGTTCATGCTGGTTGGCATTGACTTGG
    GTCTGGCGGCCATCAGCATCCTCTTCTTTCCGAACACCATTTGGACGATC
    ATGGCAAACGTGTCGTTCATCGTGGCCATCTGTACAGAGTCCTTTCCATG
    CTGCATGCTCTGCGAGCATCTGATCGAGGACTCCGTCCATGTGACCAACG
    CCCTGTTCCACTCAAACTGGATAACCGCGGACAGGAGCTACAAGTCGGCG
    GTTCTGTATTTCCTGCACCGGGCTCAGCAACCCATTCAATTCACGGCCGG
    CTCCATATTTCCCATTTCGGTGCAGAGCAACATAGCCGTGGCCAAGTTCG
    CGTTCACAATCATCACAATCGTGAACCAAATGAATCTGGGCGAGAAGTTC
    TTCAGTGACAGGAGCAATGGCGATATAAATCCT
    DOR121
    (SEQ ID NO: 54)
    MLTDKFLRLQSALFRLLGLELLHEQDVGHRYPWRSICCILSVASFMPLTI
    AFGLQNVQNVEQLTDSLCSVLVDLLALCKIGLFLWLYKDFKFLIGQFYCV
    LQTETHTAVAEMIVTRESRRDQFISAMYAYCFITAGLSACLMSPLSMLIS
    YHEQVNCSRNFHFPVCKKKYCLISRILRYSFCRYPWDNMKLSNYIISYFW
    NVCAALGVALPTVCVDTLFCSLSHNLCALFQIARHKMMHFEGRNTKETHE
    NLKHVFQLYALCLNLGHFLNEYFRPLICQFVAASLHLCVLCYQLSANILQ
    PALLFYAAFTAAVVGQVSIYCFCGSSIHSECQLFGQAIYESSWPHLLQEN
    LQLVSSLKIAMMRSSLGCPIDGYFFEANRETLITVSKAFIKVSKKTPQVN
    D
    DOR121
    (SEQ ID NO: 53)
    ATGCTGACGGACAAGTTCCTCCGACTGCAGTCCGCTTTATTTCGCCTTCT
    CGGACTCGAATTGTTGCACGAGCAGGATGTTGGCCATCGATATCCTTGGC
    GCAGCATCTGCTGCATTCTCTCGGTGGCCAGTTTCATGCCCCTGACCATT
    GCGTTTGGCCTGCAAAACGTCCAAAATGTGGAGCAATTAACCGACTCACT
    CTGCTCGGTTCTCGTGGATTTGCTGGCCCTGTGCAAAATCGGGCTTTTCC
    TTTGGCTTTACAAGGACTTCAAGTTCCTAATAGGGCAGTTCTATTGTGTT
    TTGCAAACGGAAACCCACACCGCTGTCGCTGAAATGATAGTGACCAGGGA
    AAGTCGTCGGGATCAGTTCATCAGTGCTATGTATGCCTACTGTTTCATTA
    CGGCTGGCCTTTCGGCCTGCCTGATGTCCCCTCTATCCATGCTGATTAGC
    TACCACGAACAGGTGAATTGCAGCCGAAATTTCCATTTCCCAGTGTGTAA
    GAAAAAGTACTGCTTAATATCCAGAATATTAAGATACAGTTTCTGCAGAT
    ATCCCTGGGACAATATGAAGCTGTCCAACTACATCATTTCCTATTTCTGG
    AATGTGTGTGCTGCATTGGGCGTGGCACTGCCCACCGTTTGTGTGGACAC
    ACTGTTCTGTTCTCTGAGCCATAATCTCTGTGCCCTATTCCAGATTGCCA
    GGCACAAAATGATGCACTTTGAGGGCAGAAATACCAAAGAGACTCATGAG
    AACTTAAAGCACGTGTTTCAACTATATGCGTTGTGTTTGAACCTGGGCCA
    TTTCTTAAACGAATATTTCAGACCGCTCATCTGCCAGTTTGTGGCAGCCT
    CACTGCACTTGTGTGTCCTGTGCTACCAACTGTCTGCCAATATCCTGCAG
    CCAGCGTTACTCTTCTATGCCGCATTTACGGCAGCAGTTGTTGGCCAGGT
    GTCTATATACTGCTTCTGCGGATCGAGCATCCATTCGGAGTGTCAGCTAT
    TTGGCCAGGCCATCTACGAGTCCAGCTGGCCCCATCTGCTGCAGGAAAAC
    CTGCAGCTTGTAAGCTCCTTAAAAATTGCCATGATGCGATCGAGTTTGGG
    ATGTCCCATCGATGGTTACTTCTTCGAGGCCAATCGGGAGACGCTCATCA
    CGGTGAGTAAAGCGTTTATAAAAGTGTCCAAAAAGACACCTCAAGTGAAT
    GAT
    DOR14
    (SEQ ID NO: 56)
    MDYDRIRPVRFLTGVLKWWRLWPRKESVSTPDWTNWQAYALHVPFTFLFV
    LLLWLEAIKSRDIQHTADVLLICLTTTALGGKVINIWKYAHVAQGILSEW
    STWDLFELRSKQEVDMWRFEHRRFNRVFMFYCLCSAGVIPFIVIQPLFDI
    PNRLPFWMWTPFDWQQPVLFWYAFIYQATTIPIACACNVTMDAVNWYLML
    HLSLCLRMLGQRLSKLQHDDKDLREKFLELIHLHQRLKQQALSIEIFISK
    STFTQILVSSLIICFTIYSMQMDLPGFAAMMQYLVAMIMQVMLPTIYGNA
    VIDSANMLTDSMYNSDWPDMNCRMRRLVLMFMVYLNRPVTLKAGGFFHIG
    LPLFTKVVFSTLENPCISYLYFRP
    DOR14nt
    (SEQ ID NO: 55)
    ATGGACTACGATCGAATTCGACCGGTGCGATTTTTGACGGGAGTGCTGAA
    ATGGTGGCGTCTCTGGCCGAGGAAGGAATCGGTGTCCACACCGGACTGGA
    CTAACTGGCAGGCATATGCCTTGCACGTTCCATTTACATTCTTGTTTGTG
    TTGCTTTTGTGGTTGGAGGCAATCAAGAGCAGGGATATACAGCATACCGC
    CGATGTCCTTTTGATTTGCCTAACCACCACTGCCTTGGGAGGTAAAGTTA
    TCAATATCTGGAAGTATGCCCATGTGGCCCAAGGCATTTTGTCCGAGTGG
    AGCACGTGGGATCTTTTCGAGCTGAGGAGCAAACAGGAAGTGGATATGTG
    GCGATTCGAGCATCGACGTTTCAATCGTGTTTTTATGTTTTACTGTTTGT
    GCAGTGCTGGTGTAATCCCATTTATTGTGATTCAACCGTTGTTTGATATC
    CCAAATCGATTGCCCTTCTGGATGTGGACACCATTCGATTGGCAGCAGCC
    TGTTCTCTTCTGGTATGCATTCATCTATCAGGCCACAACCATTCCTATTG
    CCTGTGCTTGCAACGTAACCATGGACGCTGTTAATTGGTACTTGATGCTG
    CATCTGTCCTTGTGTTTGCGTATGTTGGGCCAGCGATTGAGTAAGCTTCA
    GCATGATGACAAGGATCTGAGGGAGAAGTTCCTGGAACTGATCCATCTGC
    ACCAGCGACTCAAGCAACAGGCCTTGAGCATTGAAATCTTTATTTCGAAG
    AGCACGTTCACCCAAATTCTGGTCAGTTCCCTTATCATTTGCTTCACCAT
    TTACAGCATGCAGATGGACTTGCCAGGATTTGCCGCCATGATGCAGTACC
    TAGTGGCCATGATCATGCAGGTCATGCTGCCCACCATATATGGTAACGCC
    GTCATCGATTCTGCAAATATGTTGACCGATTCCATGTACAATTCGGATTG
    GCCGGATATGAATTGCCGAATGCGTCGCCTAGTTTTAATGTTTATGGTGT
    ACTTAAATCGACCGGTGACCTTAAAAGCCGGTGGCTTTTTTCATATTGGT
    TTACCTCTGTTTACCAAGGTTGTATTTTCTACTCTGGAAAATCCTTGTAT
    AAGTTATCTTTATTTCAGACCA
    DOR16
    (SEQ ID NO: 58)
    MTDSGQPAIADHFYRIPRISGLIVGLWPQRIRGGGGRPWHAHLLFVFAFA
    MVVVGAVGEVSYGCVHLDNLVVALEAFCPGTTKAVCVLKLWVFFRSNRRW
    AELVQRLRAILWESRRQEAQRMLVGLATTANRLSLLLLSSGTATNAAFTL
    QPLIMGLYRWIVQLPGQTELPFNIILPSFAVQPGVFPLTYVLLTASGACT
    VFAFSFVDGFFICSCLYICGAFRLVQQDIRRIFADLHGDSVDVFTEEMNA
    EVRHRLAQVVERHNAIIDFCTDLTRQFTVIVLMHFLSAAFVLCSTILDIM
    LVSPFSEAFLWGGYPWVCRATGFSHRLHSAAVLKVFPCFHCLLFFPGFSS
    RSVLIRFSRFVCLLCGCGCGSLRWQFISA
    DOR16nt
    (SEQ ID NO: 57)
    ATGACTGACAGCGGGCAGCCTGCCATTGCCGACCACTTTTATCGGATTCC
    CCGCATCTCCGGCCTCATTGTCGGCCTCTGGCCGCAAAGGATAAGGGGCG
    GGGGCGGTCGTCCTTGGCACGCCCATCTGCTCTTCGTGTTCGCCTTCGCC
    ATGGTGGTGGTGGGTGCGGTGGGCGAGGTGTCGTACGGCTGTGTCCACCT
    GGACAACCTGGTGGTGGCGCTGGAGGCCTTCTGCCCCGGAACCACCAAGG
    CGGTCTGCGTTTTGAAGCTGTGGGTCTTCTTCCGCTCCAATCGCCGGTGG
    GCGGAGTTGGTCCAGCGCCTGCGGGCTATTTTGTGGGAATCGCGGCGGCA
    GGAGGCCCAGAGGATGCTGGTCGGACTGGCCACCACGGCCAACAGGCTCA
    GCCTGTTGTTGCTCAGCTCTGGCACGGCGACAAATGCCGCCTTCACCTTG
    CAACCGCTGATTATGGGTCTCTACCGCTGGATTGTGCAGCTGCCAGGTCA
    AACCGAGCTGCCCTTTAATATCATACTGCCCTCGTTTGCCGTGCAGCCAG
    GAGTCTTTCCGCTCACCTACGTGCTGCTGACCGCTTCCGGTGCCTGCACC
    GTTTTCGCCTTCAGCTTCGTGGACGGATTCTTCATTTGCTCGTGCCTCTA
    CATCTGCGGCGCTTTCCGGCTGGTGCAGCAGGACATTCGCAGGATATTTG
    CCGATTTGCATGGCGACTCAGTGGATGTGTTCACCGAGGAGATGAACGCG
    GAGGTGCGGCACAGACTGGCCCAAGTTGTCGAGCGGCACAATGCGATTAT
    CGATTTCTGCACGGACCTAACACGCCAGTTCACCGTTATCGTTTTAATGC
    ATTTCCTGTCCGCCGCCTTCGTCCTCTGCTCGACCATCCTGGACATCATG
    TTGGTGAGCCCCTTTTCAGAGGCCTTCCTTTGGGGCGGGTATCCTTGGGT
    TTGTCGCGCCACTGGCTTTTCGCATCGCCTGCATTCGGCGGCTGTTTTAA
    AAGTTTTTCCCTGTTTTCACTGTTTGCTGTTTTTCCCTGGCTTTTCCAGC
    CGCTCCGTTCTGATTCGGTTTTCCCGATTTGTTTGTTTGCTTTGTGGCTG
    CGGCTGCGGCTCTCTCCGGTGGCAATTTATAAGCGCATGA
    DOR19g
    (SEQ ID NO: 22)
    MVTEDFYKYQVWYFQILGVWQLPTWAADHQRRFQSMRFGFILVILFIMLL
    LFSFEMLNNISQVREILKVFFMFATEISCMAKLLHLKLKSRKLAGLVDAM
    LSPEFGVKSEQEMQMLELDRVAVVRMRNSYGIMSLGAASLILIVPCFDNF
    GELPLAMLEVCSIEGWICYWSQYLFHSICLLPTCVLNITYDSVAYSLLCF
    LKVQLQMLVLRLEKLGPVIEPQDNEKIAMELRECAAYYNRIVRFKDLVEL
    FIKGPGSVQLMCSVLVLVSNLYDMSTMSIANGDAIFMLKTCIYQLVMLWQ
    IFIICYASNEVTVQSSRLCHSIYSSQWTGWNRANRRIVLLMMQRFNSPML
    LSTFNPTFAFSLEAFGSVGQQKFLYISFITGYALLLSDRQLLLQLLRTAE
    ARQQLNFETPQHLKIFKPIFKSTQNVMHVH
    DOR19gnt
    (SEQ ID NO: 21)
    ATGGTTACGGAGGACTTTTATAAGTACCAGGTGTGGTACTTCCAAATCCT
    TGGTGTTTGGCAGCTCCCCACTTGGGCCGCAGACCACCAGCGTCGTTTTC
    AGTCCATGAGGTTTGGCTTCATCCTGGTCATCCTGTTCATCATGCTGCTG
    CTTTTCTCCTTCGAAATGTTGAACAACATTTCCCAAGTTAGGGAGATCCT
    AAAGGTATTCTTCATGTTCGCCACGGAAATATCCTGCATGGCCAAATTAT
    TGCATTTGAAGTTGAAGAGCCGCAAACTCGCTGGCTTGGTTGATGCGATG
    TTGTCCCCAGAGTTCGGCGTTAAAAGTGAACAGGAAATGCAGATGCTGGA
    ATTGGATAGAGTGGCGGTTGTCCGCATGAGGAACTCCTACGGCATCATGT
    CCCTGGGCGCGGCTTCCCTGATCCTTATAGTTCCCTGTTTCGACAACTTT
    GGCGAGCTACCACTGGCCATGTTGGAGGTATGCAGCATCGAGGGATGGAT
    CTGCTATTGGTCGCAGTACCTTTTCCACTCGATTTGCCTGCTGCCCACTT
    GTGTGCTGAATATAACCTACGACTCGGTGCCCTACTCGTTGCTCTGTTTC
    TTGAAGGTTCAGCTACAAATGCTGGTCCTGCGATTAGAAAAGTTGGGTCC
    TGTGATCGAACCCCAGGATAATGAGAAAATCGCAATGGAACTGCGTGAGT
    GTGCCGCCTACTACAACAGGATTGTTCGTTTCAAGGACCTGGTGGAGCTG
    TTCATAAAGGGGCCAGGATCTGTGCAGCTCATGTGTTCTGTTCTGGTGCT
    GGTGTCCAACCTGTACGACATGTCCACCATGTCCATTGCAAACGGCGATG
    CCATCTTTATGCTCAAGACCTGTATCTATCAGCTGGTGATGCTCTGGCAG
    ATCTTCATCATTTGCTACGCCTCCAACGAGGTAACTGTCCAGAGCTCTAG
    GTTGTGTCACAGCATCTACAGCTCCCAATGGACGGGATGGAACAGGGCAA
    ACCGCCGGATTGTCCTTCTCATGATGCAGCGCTTTAATTCCCCGATGCTC
    CTGAGCACCTTTAACCCCACCTTTGCTTTCAGCTTGGAGGCCTTTGGTTC
    TGTAGGGCAGCAGAAATTCCTTTATATATCATTTATTACTGGTTATGCTC
    TTCTCCTTTCAGATCGTCAACTGCTCCTACAGCTACTTCGCACTGCTGAA
    GCGCGTCAACAGTTAAATTTCGAAACACCGCAGCACCTAAAGATTTTCAA
    GCCGATTTTTAAAAGCACTCAAAACGTTATGCACGTACAT
    DOR20
    (SEQ ID NO: 60)
    MSKGVEIFYKGQKAFLNILSLWPQIERRWRIIHQVNYVHVIVFWVLLFDL
    LLVLHVMANLSYMSEVVKAIFILATSAGHTTKLLSIKANNVQMEELFRRL
    DNEEFRPRGANEELIFAAACERSRKLRDFYGALSFAALSMILIPQFALDW
    SHLPLKTYNPLGENTGSPAYWLLYCYQCLALSVSCITNIGFDSLCSSLFI
    FLKCQLDILAVRLDKIGRLITTSGGTVEQQLKENIRYHMTIVELSKTVER
    LLCKPISVQIFCSVLVLTANFYAIAVVSCEFATRRLSVCDLSGVHVDSDF
    YIVLLCRVGIPYPKCLPRPVMNFIVSEVTQRSLDLPHELYKTSWVDWDYR
    SRRIALLFMQRLHSTLRIRTLNPSLGFDLMLFSSVSSFRVLTFLCTVANF
    HNEAH
    DOR20nt
    (SEQ ID NO: 59)
    ATGAGCAAAGGAGTAGAAATCTTTTACAAGGGCCAGAAGGCATTCTTGAA
    CATCCTCTCGTTGTGGCCTCAGATAGAACGCCGGTGGAGAATCATCCACC
    AGGTGAACTATGTCCACGTAATTGTGTTTTGGGTGCTGCTCTTTGATCTC
    CTCTTGGTGCTCCATGTGATGGCTAATTTGAGCTACATGTCCGAGGTTCT
    GAAAGCCATCTTTATCCTGGCCACCAGTGCAGGGCACACCACCAAGCTGC
    TGTCCATAAAGGCGAACAATGTGCAGATGGAGGAGCTCTTTAGGAGATTG
    GATAACGAAGAGTTCCGTCCTAGAGGCGCCAACGAAGAGTTGATCTTTGC
    AGCAGCCTGTGAAAGAAGTAGGAAGCTTCGGGACTTCTATGGAGCGCTTT
    CGTTTGCCGCCTTGAGCATGATTCTCATACCCCAGTTCGCCTTGGACTGG
    TCCCACCTTCCGCTCAAAACATACAATCCGCTTGGCGAGAATACCGGCTC
    ACCTGCTTATTGGCTCCTCTACTGCTATCAGTGTCTGGCCTTGTCCGTAT
    CCTGCATCACCAACATAGGATTCGACTCACTCTGCTCCTCACTGTTCATC
    TTCCTCAAGTGCCAGCTGGACATTCTGGCCGTGCGACTGGACAAGATCGG
    TCGGTTAATCACTACTTCTGGTGGCACTGTGGAACAGCAACTTAAGGAAA
    ATATCCGCTATCACATGACCATCGTTGAACTGTCGAAAACCGTGGAGCGT
    CTACTTTGCAAGCCGATTTCGGTGCAGATCTTCTGCTCGGTTTTGGTGCT
    GACTGCCAATTTCTATGCCATTGCTGTGGTGAGCTGTGAATTCGCAACAA
    GAAGACTATCAGTATGTGACCTATCAGGCGTGCATGTTGATTCAGATTTT
    TATATTGTGCTACTATGCCGGGTGGGTATTCCATATCCGAAATGCCTCCC
    CAGGCCAGTAATGAATTTCATCGTCAGTGAGGTAACCCAGCGCAGCCTGG
    ACCTTCCGCACGAGCTGTACAAGACCTCCTGGGTGGACTGGGACTACAGG
    AGCCGAAGGATTGCGCTCCTCTTTATGCAACGCCTTCACTCGACCTTGAG
    GATTAGGACACTTAATCCAAGTCTTGGTTTTGACTTAATGCTCTTCAGCT
    CGGTGAGTTCTTTCCGTGTTTTGACTTTTTTGTGCACTGTAGCCAATTTC
    CATAATGAGGCTCAT
    DOR24
    (SEQ ID NO: 24)
    MDSFLQVQKSTIALLGFDLFSENREMWKRPYRAMNVFSIAAIFPFILAAV
    LHNWKNVLLLADAMVALLITILGLFKFSMILYLRRDFKRLIDKFRLLMSN
    EAEQGEEYAEILNAANKQDQRMCTLFRTCFLLAWALNSVLPLVRMGLSYW
    LAGHAEPELPFPCLFPWNIHIIRNYVLSFIWSAFASTGVVLPAVSLDTIF
    CSFTSNLCAFFKIAQYKVVRFKGGSLKESQATLNKVFALYQTSLDMCNDL
    NQCYQPIICAQFFISSLQLCMLGYLFSITFAQTEGVYYASFIATIIIQAY
    IYCYCGENLKTESASFEWAIYDSPWHESLGAGGASTSICRSLLISMMRAH
    RGFRITGYFFEANMEAFSSIVRTAMSYITMLRSFS
    DOR24nt
    (SEQ ID NO: 23)
    GGCACGAGCCTTGTCGACATGGACAGTTTTCTGCAAGTACAGAAGAGCAC
    CATTGCTCTTCTGGGCTTTGATCTCTTTAGTGAAAATCGAGAAATGTGGA
    AACGCCCCTATAGAGCAATGAATGTGTTTAGCATAGCTGCCATTTTTCCC
    TTTATCCTGGCAGCTGTGCTCCATAATTGGAAGAATGTATTGCTGCTGGC
    CGATGCCATGGTGGCCCTACTAATAACCATTCTGGGCCTATTCAAGTTTA
    GCATGATACTTTACTTACGTCGCGATTTCAAGCGACTGATTGACAAATTT
    CGTTTGCTCATGTCGAATGAGGCGGAACAGGGCGAGGAATACGCCGAGAT
    TCTCAACGCAGCAAACAAGCAGGATCAACGAATGTGCACTCTGTTTAGGA
    CTTGTTTCCTCCTCGCCTGGGCCTTGAATAGTGTTCTGCCCCTCGTGAGA
    ATGGGTCTCAGCTATTGGTTAGCAGGTCATGCAGAGCCCGAGTTGCCTTT
    TCCCTGTCTTTTTCCCTGGAATATCCACATCATTCGCAATTATGTTTTGA
    GCTTCATCTGGAGCGCTTTCGCCTCGACAGGTGTGGTTTTACCTGCTGTC
    AGCTTGGATACCATATTCTGTTCCTTCACCAGCAACCTGTGCGCCTTCTT
    CAAAATTGCGCAGTACAAGGTGGTTAGATTTAAGGGCGGATCCCTTAAAG
    AATCACAGGCCACATTGAACAAAGTCTTTGCCCTGTACCAGACCAGCTTG
    GATATGTGCAACGATCTGAATCAGTGCTACCAACCGATTATCTGCGCCCA
    GTTCTTCATTTCATCTCTGCAACTCTGCATGCTGGGATATCTGTTCTCCA
    TTACTTTTGCCCAGACAGAGGGCGTGTACTATGCCTCTTTCATAGCCACC
    ATCATTATACAAGCCTATATCTACTGCTACTGCGGGGAGAACCTGAAGAC
    GGAGAGTGCCAGCTTCGAGTGGGCCATCTACGACAGTCCGTGGCACGAGA
    GTTTGGGTGCTGGTGGAGCCTCTACCTCGATCTGCCGATCCTTGCTGATC
    AGCATGATGCGGGCTCATCGGGGATTCCGCATTACGGGATACTTCTTCGA
    GGCAAACATGGAGGCCTTCTCATCGATTGTTCGCACGGCTATGTCCTACA
    TCACAATGCTGAGATCATTCTCCTAAATGTGGTTTGACCACAAGGCTTTG
    GATTGATTTTTGTGCAATTTTTGTTTTATTGCTGAGCATGCGTTGCCGTA
    CGACATTTAACAATCGATCTTACGTAATTTACATATGATAATCTCACATA
    TTGTTCGTTAAGCACTAAGTAGAATGTAGAATGTGAATTGGCTGTAGAAA
    TGCACAGATGAAGCACGAAAAAAAAAAAAAAAAAAAAAAAA
    DOR25
    (SEQ ID NO: 62)
    MNDSGYQSNLSLLRVFLDEFRSVLRQESPGLIPRLAFYYVRAFLSLPLYR
    WINLFIMCNVMTIFWTMFVALPESKNVIEMGDDLVWISGMALVFTKIFYM
    HLRCDEIDELISDFEYYNRELRPHNIDEEVLGWQRLCYVIESGLYINCFC
    LVNFFSAAIFLQPLLGEGKLPFHSVYPFQWHRLDLHPYTFWFLYIWQSLT
    SQHNLMSILMVDMVGISTFLQTALNLKLLCIEIRKLGDMEVSDKRFHEEF
    CRVVRFHQHIIKLVGKANRAFNGAFNAQLMASFSLISISTFETMAAAAVD
    PKMAAKFVLLMLVAFIQLSLWCVSGTLVYTQSVEVAQAAFDINDWHTKSP
    GIQRDISFVILRAQKPLMYVAEPFLPFTLGTYMLVLKNCYRLLALMQESM
    DOR25nt
    (SEQ ID NO: 61)
    ATGAACGACTCGGGTTATCAATCAAATCTCAGCCTTCTGCGGGTTTTTCT
    CGACGAGTTCCGATCGGTTCTGCGGCAGGAAAGTCCCGGTCTCATCCCAC
    GCCTGGCTTTTTACTATGTTCCCGCCTTTCTGAGCTTGCCCCTGTACCGA
    TGGATCAACTTGTTCATCATGTGCAATGTGATGACCATTTTCTGGACCAT
    GTTCGTGGCCCTGCCCGAGTCGAAGAACGTGATCGAAATGGGCGACGACT
    TGGTTTGGATTTCGGGGATGGCACTGGTGTTCACCAAGATCTTTTACATG
    CATTTGCGTTGCGACGAGATCGATGAACTTATTTCGGATTTTGAATACTA
    CAACCGGGAGCTGAGACCCCATAATATCGATGAGGAGGTGTTGGGTTGGC
    AGAGACTGTGCTACGTGATAGAATCGGGTCTATATATCAACTGCTTTTGC
    CTGGTCAACTTCTTCAGTGCCGCTATTTTCCTGCAACCTCTGTTGGGCGA
    GGGAAAGCTGCCCTTCCACAGCGTCTATCCGTTTCAATGGCATCGCTTGG
    ATCTGCATCCCTACACGTTCTGGTTCCTCTACATCTGGCAGAGTCTGACC
    TCGCAGCACAACCTAATGAGCATTCTAATGGTGGATATGGTAGGCATTTC
    CACGTTCCTCCAGACGGCGCTCAATCTCAAGTTGCTTTGCATCGAGATAA
    GGAAACTGGGGGACATGGAGGTCAGTGATAAGAGGTTCCACGAGGAGTTT
    TGTCGTGTGGTTCGCTTCCACCAGCACATTATCAAGTTGGTGGGGAAAGC
    CAATAGAGCTTTCAATGGCGCCTTCAATGCACAATTAATGGCCAGTTTCT
    CCCTGATTTCCATATCCACTTTCGAGACCATGGCTGCAGCGGCTGTGGAT
    CCCAAAATGGCCGCCAAGTTCGTGCTTCTCATGCTGGTGGCATTCATTCA
    ACTGTCGCTTTGGTGCGTCTCTGGAACTTTGGTTTATACTCAGTCAGTGG
    AGGTGGCTCAGGCTGCTTTTGATATCAACGATTGGCACACCAAATCGCCA
    GGCATCCAGAGGGATATATCCTTTGTGATACTACGAGCCCAGAAACCCCT
    GATGTATGTGGCCGAACCATTTCTGCCCTTCACCCTGGGAACCTATATGC
    TTGTACTGAAGAACTGCTATCGTTTGCTGGCCCTGATGCAAGAATCGATG
    TAG
    DOR28
    (SEQ ID NO: 64)
    MYSPEEAAELKRRNYRSIREMIRLSYTVGFNLLDPSRCGQVLRIWTIVLS
    VSSLASLYGHWQMLARYIHDIPRIGETAGTALQFLTSIAKMWYFLFAHRQ
    IYELLRKARCHELLQKCELFERMSDLPVIKEIRQQVESTMNRYWASTRRQ
    ILIYLYSCICITTNYFINSFVINLYRYFTKPKGSYDIMLPLPSLYPAWEH
    KGLEFPYYHIQMYLETCSLYICGMCAVSFDGVFIVLCLHSVGLMRSLNQM
    VEQATSELVPPDRRVEYLRCCIYQYQRVANFATEVNNCFRHITFTQFLLS
    LFNWGLALFQMSVGLGNNSSITMIRMTMYLVAAGYQIVVYCYNGQRFATA
    SEEIANAFYQVRWYGESREFRHLIRMMLMRTNRGFRLDVSWFMQMSLPTL
    MAVSSGAEQSRGPAGPAGPAGPPPRVPSYSQFHLIDSQMVRTSGQYFLLL
    QNVNQK
    DOR28nt
    (SEQ ID NO: 63)
    ATGTACTCACCGGAAGAGGCGGCCGAACTGAAGAGGCGCAACTATCGCAG
    CATCAGGGAGATGATCCGACTCTCCTATACGGTGGGCTTCAACCTGTTGG
    ATCCTTCCCGATGCGGACAGGTGCTCAGAATCTGGACAATTGTCCTTAGC
    GTGAGTAGCTTGGCATCGCTTTATGGGCACTGGCAAATGTTAGCCAGGTA
    CATTCATGATATTCCACGCATTGGAGAGACCGCTGGAACTGCCCTGCAGT
    TCCTAACATCGATAGCAAAGATGTGGTACTTTCTGTTTGCCCATAGACAG
    ATATACGAATTGCTACGAAAGGCGCGCTGCCATGAATTACTCCAAAAGTG
    TGAGCTCTTTGAAAGGATGTCAGATCTACCTGTTATCAAAGAGATTCGCC
    AGCAGGTTGAGTCCACGATGAATCGGTACTGGGCCAGCACTCGTCGGCAA
    ATTCTTATCTATTTGTACAGCTGTATTTGTATTACTACAAACTACTTTAT
    CAACTCCTTCGTAATCAACCTCTATCGCTATTTCACTAAACCGAAAGGAT
    CCTACGACATAATGTTACCTCTGCCATCTCTGTATCCCGCCTGGGAGCAC
    AAGGGATTAGAGTTTCCCTACTATCATATACAGATGTACCTGGAAACCTG
    TTCTCTGTATATCTGCGGCATGTGTGCCGTTAGCTTTGATGGAGTCTTTA
    TTGTCCTGTGCCTTCATAGCGTGGGACTTATGAGGTCACTTAACCAAATG
    GTGGAACAAGCCACATCTGAGTTGGTTCCTCCAGATCGCAGGGTTGAATA
    CTTGCGATGCTGTATTTATCAGTACCAACGAGTGGCGAACTTTGCAACCG
    AGGTTAACAACTGCTTTCGGCACATCACTTTCACGCAGTTCCTGCTTAGC
    CTTTTCAACTGGGGCCTGGCCTTGTTCCAAATGAGCGTCGGATTGGGCAA
    CAACAGCAGCATCACCATGATCCGGATGACCATGTACCTGGTGGCAGCCG
    GCTATCAGATAGTTGTGTACTGCTACAATGGCCAGCGATTTGCGACTGCT
    AGCGAGGAGATTGCCAACGCCTTTTACCAGGTGCGATGGTACGGAGAGTC
    CAGGGAGTTCCGCCACCTCATCCGCATGATGCTGATGCGCACGAACCGGG
    GATTCAGGCTGGACGTGTCCTGGTTCATGCAAATGTCCTTGCCCACACTC
    ATGGCGGTGAGTAGCGGAGCAGAGCAGAGCAGGGGTCCTGCAGGTCCTGC
    AGGTCCTGCAGGTCCACCCCCAAGGGTCCCCTCCTACAGCCAGTTCCACT
    TGATTGATTCGCAGATGGTCCGGACAAGTGGACAGTACTTCCTGCTGCTG
    CAGAACGTCAACCAGAAA
    DOR30
    (SEQ ID NO: 66)
    MAVSTRVATKQEVPESRRAFRNLFNCFYALGMQAPDGSRPTTSSTWQRIY
    ACFSVVMYVWQLLLVPTFFVISYRYMGGMEITQVLTSAQVAIDAVILPAK
    IVALAWNLPLLRRAEHHLAALDARCREQEEFQLILDAVRFCNYLVWFYQI
    CYAIYSSSTFVCAFLLGQPPYALYLPGLDWQRSQMQFCIQAWIEFLIMNW
    TCLHQASDDVYAVIYLYVVRIQVQLLARRVEKLGTDDSGQVEIYPDERRQ
    EEHCAELQRCIVDHQTMLQLLDCISPVISRTIFVQFLITAAIMGTTMINI
    FIFANTNTKIASIIYLLAVTLQTAPCCYQATSLMLDNERLALAIFQCQWL
    GQSARFRKMLLYYLHRAQQPITLTAMKLFPINLATYFSIAKFSFSLYTLI
    KGMNLGERFNRTN
    DOR30nt
    (SEQ ID NO: 65)
    ATGGCGGTGAGCACTCGTGTGGCCACAAAGCAGGAAGTGCCCGAATCCCG
    GCGAGCGTTTAGGAATCTCTTCAATTGCTTCTATGCCCTTGGCATGCAGG
    CACCGGATGGCAGTCGACCGACCACGAGCAGCACATGGCAACGCATCTAC
    GCCTGCTTCTCGGTGGTCATGTACGTGTGGCAACTGCTGCTGGTGCCCAC
    ATTCTTTGTGATCAGCTATCGGTACATGGGCGGCATGGAGATTACCCAGG
    TGCTGACCTCCGCCCAGGTGGCCATCGATGCGGTCATTCTGCCGGCCAAG
    ATTGTGGCACTGGCGTGGAATTTGCCATTGCTGCGCAGAGCAGAGCATCA
    TCTGGCCGCCTTGGATGCGCGGTGCAGGGAACAGGAGGAGTTCCAATTGA
    TCCTCGATGCGGTGAGGTTTTGCAACTATCTGGTATGGTTCTACCAGATC
    TGCTATGCCATCTACTCCTCGTCGACATTTGTGTGCGCCTTCCTGCTGGG
    CCAACCGCCATATGCCCTCTATTTGCCTGGCCTCGATTGGCAGCGTTCCC
    AGATGCAGTTCTGCATCCAGGCCTGGATTGAGTTCCTTATCATGAACTGG
    ACGTGCCTGCACCAAGCTAGCGATGATGTGTACGCCGTTATCTATCTGTA
    TGTGGTCCGGATTCAAGTGCAATTGCTGGCCAGGCGGGTGGAGAAGCTGG
    GCACGGATGATAGTGGCCAGGTGGAGATCTATCCCGATGAGCGGCGGCAG
    GAGGAGCATTGCGCGGAACTGCAGCGCTGCATTGTAGATCACCAGACGAT
    GCTGCAGCTGCTCGACTGCATTAGTCCCGTCATCTCGCGTACCATATTCG
    TTCAGTTCCTGATCACCGCCGCCATCATGGGCACCACCATGATCAACATT
    TTCATTTTCGCCAATACGAACACGAAGATCGCATCGATCATTTACCTGCT
    GGCGGTGACCCTGCAGACGGCTCCATGTTGCTATCAGGCCACCTCGCTGA
    TGTTGGACAACGAGAGGCTGGCCCTGGCCATCTTCCAGTGCCAGTGGCTG
    GGCCAGAGTGCCCGGTTCCGTAAGATGCTGCTCTACTATCTTCATCGCGC
    CCAGCAGCCCATCACGCTGACCGCCATGAAGCTGTTTCCCATCAATCTGG
    CCACGTACTTCAGTATAGCCAAGTTCTCGTTTTCGCTCTACACGCTCATC
    AAGGGGATGAATCTCGGCGAGCGATTCAACAGGACAAAT
    DOR31
    (SEQ ID NO: 68)
    MIFKYIQEPVLGSLFRSRDSLIYLNRSIDQMGWRLPPRTKPYWWLYYIWT
    LVVIVLVFIFIPYGLIMTGIKEFKNFTTTDLFTYVQVPVNTNASIMKGII
    VLFMRRRFSRAQKMMDAMDIRCTKMEEKVQVHRAAALCNRVVVIYHCIYF
    GYLSMALTGALVIGKTPFCLYNPLVNPDDHFYLATAIESVTMAGIILANL
    ILDVYPIIYVVVLRIHMELLSERIKTLRTDVEKGDDQHYAELVECVKDHK
    LIVEYGNTLRPMISATMFIQLLSVGLLLGLAAVSMQFYNTVMERVVSGVY
    TIAILSQTFPFCYVCEQLSSDCESLTNTLFHSKWIGAERRYRTTMLYFIH
    NVQQSILFTAGGIFPICLNTNIKMAKFAFSVVTIVNEMDLAEKLRRE
    DOR31nt
    (SEQ ID NO: 67)
    ATGATTTTTAAGTACATTCAAGAGCCAGTCCTTGGATCCTTATTTCGATC
    CCGGGATTCGCTGATCTACTTAAACAGATCCATAGATCAAATGGGATGGA
    GACTGCCGCCACGAACTAAGCCGTACTGGTGGCTCTATTACATTTGGACA
    TTGGTGGTCATAGTACTCGTCTTTATCTTTATACCCTATGGACTGATAAT
    GACTGGAATAAAGGAGTTCAAGAACTTCACGACCACGGATCTGTTTACGT
    ATGTCCAGGTGCCGGTTAACACCAATGCTTCGATCATGAAGGGCATTATA
    GTGTTGTTTATGCGGCGGCGATTTTCAAGGGCTCAGAAGATGATGGACGC
    CATGGACATTCGATGCACCAAGATGGAGGAGAAAGTCCAGGTGCACCGAG
    CAGCAGCCTTATGCAATCGTGTTGTTGTGATTTACCATTGCATATACTTC
    GGCTATCTATCCATGGCCTTAACCGGAGCTCTGGTGATTGGGAAGACTCC
    ATTCTGTTTGTACAATCCACTGGTTAACCCCGACGATCATTTCTATCTGG
    CCACTGCCATTGAATCGGTCACCATGGCTGGCATTATTCTGGCCAATCTC
    ATTTTGGACGTATATCCCATCATATATGTGGTCGTTCTGCGGATCCACAT
    GGAGCTCTTGAGTGAGCGAATCAAGACGCTGCGTACTGATGTGGAAAAAG
    GCGACGATCAACATTATGCCGAGCTGGTGGAGTGTGTAAAGGATCACAAG
    CTAATTGTCGAATATGGAAACACTCTGCGTCCCATGATATCCGCCACGAT
    GTTCATCCAACTACTATCCGTTGGCTTACTTTTGGGTCTGGCAGCGGTGT
    CCATGCAGTTCTATAACACCGTAATGGAGCGTGTTGTCTCCGGGGTCTAC
    ACCATAGCCATTCTATCCCAGACCTTTCCATTTTGCTATGTCTGTGAGCA
    GCTGAGCAGCGATTGCGAATCCCTGACCAACACACTGTTCCATTCCAAGT
    GGATTGGAGCTGAGCGACGATACAGAACCACGATGTTGTACTTCATTCAC
    AATGTTCAGCAGTCGATTTTGTTCACTGCGGGCGGAATTTTCCCCATATG
    TCTAAACACCAATATAAAGATGGCCAAGTTCGCTTTCTCAGTGGTGACCA
    TTGTAAATGAGATGGACTTGGCCGAGAAATTGAGAAGGGAG
    DOR32
    (SEQ ID NO: 68)
    MEPVQYSYEDFARLPTTVFWIMGYDMLGVPKTRSRRILYWIYRFLCLASH
    GVCVGVMVFRMVEAKTIDNVSLIMRYATLVTYIINSDTKFATVLQRSAIQ
    SLNSKLAELYPKTTLDRIYHRVNDHYWTKSFVYLVIIYIGSSIMVVIGPI
    ITSIIAYFTHNVFTYMHCYPYFLYDPEKDPVWIYISIYALEWLHSTQMVI
    SNIGADIWLLYFQVQINLHFRGIIRSLADHKPSVKHDQEDRKFIAKIVDK
    QVHLVSLQNDLNGIFGKSLLLSLLTTAAVICTVAVYTLIQGPTLEGFTYV
    IFIGTSVMQVYLVCYYGQQVLDLSGEVAHAVYNHDFHDASIAYKRYLLII
    IIRAQQPVELNAMGYLSISLDTFKQLMSVSYRVITMLMQMIQ
    DOR32nt
    (SEQ ID NO: 61)
    ATGGAACCTGTGCAGTACAGCTACGAGGATTTCGCTCGATTGCCCACGAC
    GGTGTTCTGGATCATGGGCTACGACATGCTGGGCGTTCCGAAGACCCGCT
    CTCGCAGGATACTATACTGGATATATCGTTTCCTCTGTCTCGCCAGCCAT
    GGGGTCTGTGTAGGAGTCATGGTATTTCGTATGGTGGAGGCAAAGACCAT
    TGACAATGTTTCGCTGATCATGCGGTATGCCACTCTGGTCACCTATATCA
    TCAACTCGGATACGAAATTCGCAACTGTCTTACAAAGGAGTGCAATTCAA
    AGTCTAAACTCAAAACTGGCCGAACTATATCCGAAGACCACGCTGGACAG
    GATCTATCACCGGGTGAATGATCACTATTGGACCAAGTCATTTGTATATT
    TGGTTATTATCTACATTGGTTCGTCGATTATGGTTGTTATTGGACCGATT
    ATTACGTCGATTATAGCTTACTTCACGCACAACGTTTTCACCTACATGCA
    CTGCTATCCGTACTTTTTGTATGATCCTGAGAAGGATCCGGTTTGGATCT
    ACATCAGCATCTATGCTCTGGAATGGTTGCACAGCACACAGATGGTCATT
    TCGAACATTGGCGCGGATATCTGGCTGCTGTACTTTCAGGTGCAGATAAA
    TCTCCACTTCAGGGGCATTATACGATCACTGGCGGATCACAAGCCCAGTG
    TGAAGCACGACCAGGAGGACAGGAAATTCATTGCGAAAATTGTCGACAAG
    CAGGTGCACCTGGTCAGTTTGCAAAACGATCTGAATGGTATCTTTGGAAA
    ATCGCTGCTTCTAAGCCTGCTGACCACCGCAGCGGTTATCTGCACGGTGG
    CGGTGTACACTCTGATTCAGGGTCCCACCTTGGAGGGCTTCACCTATGTG
    ATCTTCATCGGGACTTCTGTGATGCAGGTCTACCTGGTGTGCTATTACGG
    TCAGCAAGTTCTCGACTTGAGCGGCGAGGTGGCCCACGCCGTGTACAATC
    ATGATTTTCACGATGCTTCTATAGCGTACAAGAGGTACCTGCTCATAATC
    ATTATCAGGGCGCAGCAGCCCGTGGAACTTAATGCCATGGGCTACCTGTC
    CATTTCGCTGGACACCTTTAAACAGCTGATGAGCGTCTCCTACCGGGTTA
    TAACCATGCTCATGCAGATGATTCAG
    DOR37
    (SEQ ID NO: 110)
    (protein sequence is incomplete)
    KVDSTRALVNHWRIFRIMGIHPPGKRTFWGRHYTAYSMVWNVTFHICIWV
    SFSVNLLQSNSLETFCESLCVTMPHTLYMLKLINVRRMRGQMISSHWLLR
    LLDKRLGCDDERQIIMAGIERAEFIFRTIFRGLACTVVLGIIYISASSEP
    TLMYPTWIPWNWRDSTSAYLATAMLHTTALMANATLVLNLSSYPGTYLIL
    VSVHTKALALRVSKLGYGAPLPAVRMQAILVGYIHDHQIILR*VSGNLIS
    QCKNF*SISGVLTFIERRMYTHFGVPNIFIVIEDYYILFLNYSLFKSLER
    SLSMTCFLQFFSTACAQCTICYFLLFGNVGIMRFMNMLFLLVILTTETLL
    LCYTAELPCKEGESLLTAVYSCNWLSQSVNFRRLLLLMIARCQIPMILVS
    GVIVPISMKTF
    DOR38
    (SEQ ID NO: 72)
    MRLIKISYSALNEVCVWLKLNGSWPLTESSRPWRSQSLLATAYIVWAWYV
    IASVGITISYQTAFLLNNLSDIIITTENCCTTFMGVLNFVRLIHLRLNQR
    KFRQLIENFSYEIWIPNSSKNNVAAECRRRMVTFSIMTSLLACLIIMYCV
    LPLVEIFFGPAFDAQNKPFPYKMIFPYDAQSSWIRYVMTYIFTSYAGICV
    VTTLFAEDTILGFFITYTCGQFHLLHQRIAGLFAGSNAELAESIQLERLK
    RIVEKHNNIISANSV
    DOR38nt
    (SEQ ID NO: 71)
    ATGCGTTTGATCAAAATTTCATATTCGGCACTTAATGAGGTGTGCGTTTG
    GCTGAAACTGAATGGTTCTTGGCCATTAACCGAATCATCGAGGCCATGGA
    GGAGCCAATCCTTATTGGCCACCGCCTACATCGTGTGGGCGTGGTACGTC
    ATTGCATCTGTGGGCATAACAATCAGCTATCAGACGGCCTTTTTGCTGAA
    CAACCTTTCGGACATTATTATCACCACGGAAAATTGTTGCACCACCTTTA
    TGGGTGTCCTGAACTTTGTCCGACTCATCCATCTTCGCCTCAATCAGAGG
    AATTCCGCCAGCTTATTGAGAACTTTTCCTACGAAAATTTGGATACCTAA
    TTCTTCCAAAAACAATGTTGCCGCCGAGTGTCGCAGACGCATGGTTACCT
    TCAGCATAATGACATCCTTGCTAGCGTGCCTGATCATAATGTATTGTGTC
    CTGCCGCTGGTGGAGATCTTCTTTGGACCCGCCTTCGATGCACAGAACAA
    GCCGTTTCCCTACAAGATGATCTTTCCGTACGATGCCCAGAGCAGTTGGA
    TCCGATATGTGATGACCTACATCTTCACCTCCTACGCGGGAATCTGTGTG
    GTCACCACCTTGTTTGCAGAGGACACCATTCTTGGCTTCTTCATAACCTA
    CACTTGTGGCCAATTTCATTTGCTACACCAACGAATCGCAGGTTTATTTG
    CGGGTTCCAATGCGGAATTGGCCGAGAGCATTCAGCTGGAGCGACTCAAA
    CGTATTGTGGAAAAACACAACAATATTATCAGCGCAAATTCTGTA
    DOR44
    (SEQ ID NO: 106)
    MKSTFKEERIKDDSKRRDLFVFVRQTMCIAAMYPFGYYVNGSGVLAVLVR
    FCDLTYELFNYFVSVHIAGLYICTIYINYGQGDLDFFVNCLIQTIIYLWT
    IAMKLYFRRFRPGLLNTILSNINDEYETRSAVGFSFVTMAGSYRMSKLWI
    KTYVYCCYIGTIFWLALPIAYRDRSLPLACWYPFDYTQPGVYEVVFLLQA
    MGQIQVAASFASSSGLHMVLCVLISGQYDVLFCSLKNVLASSYVLMGANM
    TELNQLQAEQSAADVEPGQYAYSVEEETPLQELLKVGSSMDFSSAFRLSF
    VRCIQHHRYIVAALKKIESFYSPIWFVKIGEVTFLMCLVAFVSTKSTAAN
    SFMRMVSLGQYLLLVLYELFIICYFADIVFQNSQRCGEALWRSPWQRHLK
    DVRSDYMFFMLNSRRQFQLTAGKISNLNVDRFRGVGILT
    DOR44nt
    (SEQ ID NO: 105)
    ATGAAGAGCACATTCAAGGAAGAAAGGATTAAGGACGACTCCAAGCGTCG
    CGACCTGTTTGTATTCGTGAGGCAAACCATGTGTATAGCGGCCATGTATC
    CCTTCGGTTACTACGTGAATGGATCTGGAGTCCTGGCCGTTCTGGTGCGA
    TTCTGTGACTTGACCTACGAGCTCTTTAACTACTTCGTTTCGGTACACAT
    AGCTGGCCTGTACATCTGCACCATCTACATCAACTATGGGCAAGGCGATT
    TGGACTTCTTCGTGAACTGTTTGATACAAACCATTATTTATCTGTGGACA
    ATAGCGATGAAACTCTACTTTCGGAGGTTCAGACCTGGTTTGTTGAATAC
    CATTCTGTCCAACATCAATGATGACTACGAGACACGTTCGGCTGTGGGAT
    TCAGTTTCGTCACAATGGCGGGATCCTATCGGATGTCCAAGCTATGGATC
    AAAACCTATGTGTATTGCTGCTACATAGGCACCATTTTCTGGCTGGCTCT
    TCCCATTGCCTACCGGGATAGGAGTCTTCCTCTTGCCTGCTGGTATCCCT
    TTGACTATACACAACCCGGTGTCTATGAGGTAGTGTTCCTTCTCCAGGCG
    ATGGGACAGATCCAAGTGGCCGCATCCTTTGCCTCCTCCAGTGGCCTGCA
    TATGGTGCTTTGTGTGCTGATATCAGGGCAGTACGATGTCCTCTTTTGCA
    GTCTCAAGAATGTATTAGCCAGCAGCTATGTCCTTATGGGAGCCAATATG
    ACGGAACTGAATCAATTGCAGGCTGAGCAATCTGCGGCCGATGTCGAGCC
    AGGTCAGTATGCTTACTCCGTGGAGGAGGAGACACCTTTGCAAGAACTTC
    TAAAAGTTGGGAGCTCAATGGACTTCTCCTCCGCATTCAGGCTGTCTTTT
    GTGCGGTGCATTCAGCACCATCGATACATAGTGGCGGCACTGAAGAAAAT
    TGAGAGTTTCTACAGTCCCATATGGTTCGTGAAGATTGGCGAAGTCACCT
    TTCTTATGTGCCTGGTAGCCTTCGTCTCCACGAAGAGCACCGCGGCCAAC
    TCATTCATGCGAATGGTCTCCTTGGGCCAGTACCTGCTCTTAGTTCTCTA
    CGAGCTGTTCATCATCTGCTACTTCGCGGACATCGTTTTTCAGAACAGCC
    AGCGGTGCGGTGAAGCCCTCTGGCGAAGTCCTTGGCAGCGACATTTGAAG
    GATGTTCGCAGTGATTACATGTTCTTTATGCTGAATTCCCGCAGGCAGTT
    CCAACTTACGGCCGGAAAAATAAGCAATCTAAACGTGGATCGTTTCAGAG
    GGGTGGGTATCCTTACT
    DOR46
    (SEQ ID NO: 20)
    MAEVRVDSLEFFKSHWTAWRYLGVAHFRVENWKNLYVFYSIVSNLLVTLC
    YPVHLGISLFRNRTITEDILNLTTFATCTACSVKCLLYAYNIKDVLEMER
    LLRLLDERVVGPEQRSIYGQVRVQLRNVLYVFIGIYMPCALFAELSFLFK
    EERGLMYPAWFPFDWLHSTRNYYIANAYQIVGISFQLLQNYVSDCFPAVV
    LCLISSHIKMLYNRFEEVGLDPARDAEKDLEACITDHKHILELFRRIEAF
    ISLPMLIQFTVTALNVCIGLAALVFFVSEPMARMYFIFYSLAMPLQIFPS
    CFFGTDNEYWFGRLHYAAFSCNWHTQNRSFKRKMMLFVEQSLKKSTAVAG
    GMMRIHLDTFFSTLKGAYSLFTIIIRMRK
    DOR46nt
    (SEQ ID NO: 19)
    ATGGCAGAGGTCAGAGTGGACAGTCTGGAGTTTTTCAAGAGCCATTGGAC
    CGCCTGGCGGTACTTGGGAGTGGCTCATTTTCGGGTCGAGAACTGGAAGA
    ACCTTTACGTGTTTTACAGCATTGTGTCGAATCTTCTCGTGACCCTGTGC
    TACCCCGTTCACCTGGGAATATCCCTCTTTCGCAACCGCACCATCACCGA
    GGACATCCTCAACCTGACCACCTTTGCGACCTGCACAGCCTGTTCGGTGA
    AGTGCCTGCTCTACGCCTACAACATCAAGGATGTGCTGGAGATGGAGCGG
    CTGTTGAGGCTTTTGGATGAACGCGTCGTGGGTCCGGAGCAACGCAGCAT
    CTACGGACAAGTGAGGGTCCAGCTGCGAAATGTGCTATACGTGTTCATCG
    GCATCTACATGCCGTGTGCCCTGTTCGCCGAGCTATCCTTTCTGTTCAAG
    GAGGAGCGCGGTCTGATGTATCCCGCCTGGTTTCCCTTCGACTGGCTGCA
    CTCCACCAGGAACTATTACATAGCGAACGCCTATCAGATAGTGGGCATCT
    CGTTTCAGCTGCTGCAAAACTATGTTAGCGACTGCTTTCCGGCGGTGGTG
    CTGTGCCTGATCTCATCCCACATCAAAATGTTGTACAACAGATTCGAGGA
    GGTGGGCCTGGATCCAGCCAGAGATGCGGAGAAGGACCTGGAGGCCTGCA
    TCACCGATCACAAGCATATTCTAGAGTGGGCAGGCGGCTCATTGGTTCGT
    GTTCTATTCACTTTCCAACTTTTTTCCAGACTATTCCGACGCATCGAGGC
    CTTCATTTCCCTGCCCATGCTAATTCAGTTCACAGTGACCGCCTTGAATG
    TGTGCATCGGTTTAGCAGCCCTGGTGTTTTTCGTCAGCGAGCCCATGGCA
    CGGATGTACTTCATCTTCTACTCCCTGGCCATGCCGCTGCAGATCTTTCC
    GTCCTGCTTTTTCGGCACCGACAACGAGTACTGGTTCGGACGCCTCCACT
    ACGCGGCCTTCAGTTGCAATTGGCACACACAGAACAGGAGCTTTAAGCGG
    AAAATGATGCTGTTCGTTGAGCAATCGTTGAAGAAGAGCACCGCTGTGGC
    TGGCGGAATGATGCGTATCCACCTGGACACGTTCTTTTCCACCCTAAAGG
    GGGCCTACTCCCTCTTTACCATCATTATTCGGATGAGAAAG
    DOR48
    (SEQ ID NO: 26)
    MERHYFMVPKFALSLIGFYPEQKRTVLVKLWSFFNFFILTYGCYAEAYYG
    IHYIPINIATALDALCPVASSILSLVKMVAIWWYQDELRSLIERRFYTLA
    TQLTFLLLCCGFCTSTSYSVRHLIDNILRRTHGKDWIYETPFKMMFPDLL
    LRLPLYPITYILVHWHGYITVVCFVGADGFFLGFCLYFTVLLLCLQDDVC
    DLLEVENIEKSPSEAEEARIVREMEKLVDRHNEVAELTERLSGVMVEITL
    AHFVTSSLIIGTSVVDILLFSGLGIIVYVVYTCAVGVEIFLYCLGGSHIM
    EACSNLARSTFSSHWYGHSVRVQKMTLLMVARAQRVLTIKIPFFSPSLET
    LTSILRFTGSLIALAKSVI
    DOR48nt
    (SEQ ID NO: 25)
    ATGGAGCGCCATTATTTCATGGTGCCAAAGTTTGCATTATCGCTGATTGG
    TTTTTATCCCGAACAGAAGCGAACGGTTTTGGTGAAACTTTGGAGTTTCT
    TCAACTTTTTCATCCTCACCTACGGCTGTTATGCAGAGGCTTACTATGGC
    ATACACTATATACCGATTAACATAGCCACTGCATTGGATGCCCTTTGTCC
    TGTGGCCTCCAGCATTTTGTCGCTGGTGAAAATGGTCGCCATTTGGTGGT
    ATCAAGATGAATTAAGGAGTTTGATAGAGCGGGTAAGATTTTTAACAGAG
    CAACAGAAGTCCAAGAGGAAACTGGGCTATAAGAAGAGGTTCTATACACT
    GGCAACGCAACTAACATTCCTGCTACTATGCTGTGGATTTTGCACCAGTA
    CTTCCTATTCCGTCAGACATTTGATTGATAATATCCTGAGACGCACCCAT
    GGCAAGGACTGGATCTACGAGACTCCGTTCAAGATGATGTAAGGAAAGGG
    AAGAATGGTTTATATATACTTTTGGAACGAAATAATGATGTGATCTAAAC
    AAGATGCACTTTTTTTTAGGTTCCCCGATCTTCTCCTGCGTTTGCCACTC
    TATCCCATCACCTATATACTCGTGCATTGGCATGGCTACATTACTGTGGT
    TTGTTTTGTCGGCGCGGATGGTTTCTTCCTGGGGTTCTGTTTGTACTTCA
    CTGTTTTGCTGCTCTGTCTGCAGGACGATGTTTGTGATTTACTAGAGGTT
    GAAAACATCGAGAAGAGTCCCTCCGAAGCGGAGGAAGCTCGCATAGTTCG
    GGAAATGGAAAAACTGGTGGACCGGCATAACGAGGTGGCCGAGCTGACAG
    AAAGATTGTCGGGTGTTATGGTGGAAATAACACTGGCCCACTTTGTTACT
    TCGAGTTTGATAATCGGAACCAGCGTGGTGGATATTTTATTAGTGGGTAT
    TTACATTTGATTAGATCCTTTCGATATATGTTCTTAAATTCTAGTTTTCC
    GGCCTGGGAATCATTGTGTATGTGGTCTACACTTGTGCCGTAGGTGTGGA
    AATATTTCTATACTGTTTAGGAGGATCTCATATTATGGAAGCGGTATATT
    CATAAGAAACTACTATAAAGTTACTTTTAAATTCATTGCATTTCTTAGTG
    TTCCAATCTAGCGCGCTCCACATTTTCCAGCCACTGGTATGGCCACAGTG
    TTCGGGTCCAAAAGATGACCCTTTTGATGGTAGCTCGTGCTCAACGAGTT
    CTCACAATTAAAATTCCTTTCTTTTCCCCATCATTAGAGACTCTAACTTC
    GGTAAGCTTATGCGAAAATGTTATGGTACACACAAGTCTACATTTCTATG
    AGGTCTTGTAGATTTTGCGCTTCACTGGATCTCTGATTGCCCTGGCAAAG
    TCGGTTATA
    DOR53
    (SEQ ID NO: 8)
    MLSKFFPHIKEKPLSERVKSRDAFIYLDRVMWSFGWTEPENKRWILPYKL
    WLAFVNIVMLILLPISISIEYLHRFKTFSAGEFLSSLEIGVNMYGSSFKC
    AFTLIGFKKRQEAKVLLDQLDKRCLSDKERSTVHRYVAMGNFFDILYHIF
    YSTFVVMNFPYFLLERRHAWRMYFPYIDSDEQFYISSIAECFLMTEAIYM
    DLCTDVCPLISMLMARCHISLLKQRLRNLRSKPGRTEDEYLEELTECIRD
    HRLLLDYVDALRPVFSGTIFVQFLLIGTVLGLSMINLMFFSTFWTGVATC
    LFMFDVSMETFPFCYLCNMIIDDCQEMSNCLFQSDWTSADRRYKSTLVYF
    LHNLQQPITLTAGGVFPISMQTNLAMVKLAFSVVTVIKQFNLAERFQ
    DOR53nt
    (SEQ ID NO: 7)
    TCAAACAAAGCCACGGACAAGATGTTAAGCAAGTTTTTTCCCCACATAAA
    AGAAAAGCCATTGAGCGAGCGGGTTAAGTCCCGAGATGCCTTCATTTACT
    TGGATCGGGTGATGTGGTCCTTTGGCTGGACAGAGCCTGAAAACAAAAGG
    TGGATCCTTCCTTATAAACTGTGGTTAGCGTTCGTGAACATAGTAATGCT
    CATCCTTCTGCCGATCTCGATAAGCATCGAGTACCTCCACCGATTTAAAA
    CCTTCTCGGCGGGGGAGTTCCTTAGTTCCCTCGAGATTGGAGTCAACATG
    TACGGAAGCTCTTTTAAGTGCGCCTTCACCTTGATTGGATTCAAGAAAAG
    ACAGGAAGCTAAGGTTTTACTGGATCAGCTGGACAAGAGATGCCTTAGCG
    ATAAGGAGAGGTCCACTGTTCATCGCTATGTCGCCATGGGAAACTTTTTC
    GATATTTTGTATCACATTTTTTACTCCACCTTCGTGGTAATGAACTTCCC
    GTATTTTCTGCTTGAGAGACGCCATGCTTGGCGCATGTACTTTCCATATA
    TCGATTCCGACGAACAGTTTTACATCTCCAGCATCGCCGAGTGTTTTCTG
    ATGACGGAGGCCATCTACATGGATCTCTGTACGGACGTGTGTCCCTTGAT
    CTCCATGCTTATGGCTCGATGCCACATCAGCCTCCTGAAACAGCGACTGA
    GAAATCTCCGATCGAAGCCAGGAAGGACCGAAGATGAGTACTTGGAGGAG
    CTCACCGAGTGCATTCGGGATCATCGATTGCTATTGGACTATGTTGACGC
    ATTGCGACCCGTCTTTTCGGGAACCATTTTTGTGCAGTTCCTCCTGATCG
    GTACTGTACTGGGTCTCTCAATGATAAATCTAATGTTCTTCTCGACATTT
    TGGACTGGTGTCGCCACTTGCCTTTTTATGTTCGACGTGTCCATGGAGAC
    GTTCCCCTTTTGCTATTTGTGCAACATGATTATCGATGACTGCCAGGAAA
    TGTCCAATTGCCTCTTTCAATCGGACTGGACCTCTGCCGATCGTCGCTAC
    AAATCCACTTTGGTATACTTTCTTCACAATCTTCAGCAACCCATTACTCT
    CACGGCTGGTGGAGTGTTTCCTATTTCCATGCAAACAAATTTGGCTATGG
    TGAAGCTGGCATTTTCTGTGGTTACGGTAATTAAGCAATTTAACTTGGCC
    GAAAGGTTTCAATAAGTTGAGAGGGACGAGCTCTGCTACTATTATATTAT
    ATATTATATTATATTATATATATATTATTTTATATTATATATTGCTGTAC
    CCTAATAAATATTTAGTAATAAAAAAAAAAAAAAAAAA
    DOR56
    (SEQ ID NO: 76)
    MDPVEMPIFGSTLKLMKFWSYLFVHNWRRYVAMTPYIIINCTQYVDIYLS
    TESLDFIIRNVYLAVLFTNTVVRGVLLCVQRFSYERFINILKSFYIELLV
    STERLSQKCILHKWAVLPYGMYLPTIDEYKYASPYYEIFFVIQAIMAPMG
    CCMYIPYTNMVVTFTLFAILMCRVLQHKLRSLEKLKNEQVRGEIAQTIAQ
    TVIVIAYMVMIFANSVVLYYVANELYFQSFDIAIAAYESNWMDFDVDTQK
    TLKFLIMRSQKPLASLVGGTYPMNLKMLQSLLNAIYSFFTLLRRVYG
    DOR56nt
    (SEQ ID NO: 75)
    ATGGATCCGGTGGAGATGCCCATTTTTGGTAGCACTCTGAAGCTAATGAA
    GTTCTGGTCATATCTGTTTGTTCACAACTGGCGCCGCTATGTCGCAATGA
    CTCCGTACATCATTATCAACTGTACTCAGTATGTGGATATATATCTGAGC
    ACCGAATCCTTGGACTTTATCATCAGAAATGTATACCTGGCTGTATTGTT
    TACCAACACGGTGGTCAGAGGTGTATTGTTATGCGTACAGCGGTTTAGCT
    ACGAGCGTTTCATTAATATTTTGAAAAGCTTTTACATTGAGTTGTTGGTG
    AGTACCGAAAGATTATCTCAAAAATGCATATTGCATAAATGGGCAGTTCT
    GCCATATGGCATGTATTTGCCCACTATTGATGAATACAAATACGCATCAC
    CTTACTACGAGATTTTCTTTGTGATTCAAGCCATTATGGCTCCAATGGGG
    TGTTGCATGTACATACCATACACAAACATGGTAGTGACATTTACCCTTTT
    CGCCATTCTCATGTGTCGAGTGTTGCAACATAAGTTGAGAAGCCTAGAAA
    AGCTGAAAAATGAACAAGTACGTGGTGAAATCGCTCAAACAATTGCTCAG
    ACCGTCATAGTCATCGCATACATGGTAATGATATTTGCCAACAGTGTAGT
    CCTTTACTACGTGGCCAATGAGCTATACTTTCAAAGCTTTGATATTGCCA
    TTGCTGCCTATGAGAGCAATTGGATGGACTTTGATGTGGACACACAAAAG
    ACTTTGAAGTTCCTCATCATGCGCTCGCAAAAGCCCTTGGCGAGTCTGGT
    GGGTGGCACATATCCCATGAACTTGAAAATGCTTCAGTCACTACTAAATG
    CCATTTACTCCTTCTTCACCCTTCTGCGTCGCGTTTACGGC
    DOR58
    (SEQ ID NO: 78)
    MDASYFAVQRRALEIVGFDPSTPQLSLKHPIWAGILILSLISHNWPMVVY
    ALQDLSDLTRLTDNFAVFMQGSQSTFKFLVMMAKRRRIGSLIHRLHKLNQ
    AASATPNHLEKIERENQLDRYVARSFRNAAYGVICASAIAPMLLGLWGYV
    ETGVFTPTTPMEFNFWLDERKPHFYWPIYVWGVLGVAAAAWLAIATDTLF
    SWLTHNVVIQFQLLELVLEEKDLNGGDSRLTGFVSRHRIALDLAKELSSI
    FGEIVFVKYMLSYLQLCMLAFRFSRSGWSAQVPFRATFLVAIIIQLSSYC
    YGGEYIKQQSLAIAQAVYGQINWPEMTPKKRRLWQMVIMRAQRPAKIFGF
    MFVVDLPLLLWVIRTAGSFLAMLRTFER
    DOR58nt
    (SEQ ID NO: 77)
    ATGGACGCCAGCTACTTTGCCGTCCAGAGAAGAGCTCTGGAAATAGTTGG
    ATTCGATCCCAGTACTCCGCAACTGAGTCTGAAACATCCCATCTGGGCCG
    GGATTCTCATCCTGTCCTTGATCTCTCACAACTGGCCCATGGTAGTCTAT
    GCCCTGCAGGATCTCTCCGACTTGACCCGTCTGACGGACAACTTTGCGGT
    GTTTATGCAAGGATCACAGAGCACCTTCAAGTTCCTGGTCATGATGGCGA
    AACGAAGGCGCATTGGATCGTTGATTCACCGTTTGCATAAGCTAAACCAG
    GCGGCCAGTGCCACGCCCAATCACCTGGAGAAGATCGAGAGGGAAAACCA
    ACTGGATAGGTATGTCGCCAGGTCCTTTAGAAATGCCGCCTACGGAGTGA
    TTTGTGCCTCGGCCATAGCGCCCATGTTGCTTGGCCTGTGGGGATATGTG
    GAGACGGGTGTATTTACCCCCACCACACCCATGGAGTTCAACTTCTGGCT
    GGACGAGCGAAAGCCTCACTTTTATTGGCCCATCTACGTTTGGGGCGTAC
    TGGGCGTGGCAGCTGCCGCCTGGTTGGCCATTGCAACGGACACCCTGTTC
    TCCTGGCTGACTCACAATGTGGTGATTCAGTTCCAACTACTGGAGCTTGT
    TCTCGAAGAGAAGGATCTGAATGGCGGAGACTCTCGCCTGACCGGGTTTG
    TTAGTCGTCATCGTATAGCTCTGGATTTGGCCAAGGAACTAAGTTCGATT
    TTCGGGGAGATCGTCTTTGTGAAATACATGCTCAGTTACCTGCAACTCTG
    CATGTTGGCCTTTCGCTTCAGCCGCAGTGGCTGGAGTGCCCAGGTGCCAT
    TTAGAGCCACCTTCCTAGTGGCCATCATCATCCAACTGAGTTCGTATTGC
    TATGGAGGCGAGTATATAAAGCAGCAAAGTTTGGCCATCGCACAAGCCGT
    TTATGGTCAAATCAATTGGCCAGAAATGACGCCAAAGAAAAGAAGACTCT
    GGCAAATGGTGATCATGAGGGCGCAGCGACCGGCTAAGATTTTTGGATTC
    ATGTTCGTTGTGGACTTGCCACTGCTGCTTTGGGTCATCAGAACTGCGGG
    CTCATTTCTGGCCATGCTTAGGACTTTCGAGCGT
    DOR59
    (SEQ ID NO: 80)
    MHEADNREMELLVATQAYTRTITLLIWIPSVIAGLMAYSDCIYRSLFLPK
    SVFNVPAVRRGEEHPILLFQLFPFGELCDNFVVGYLGPWYALGLGITAIP
    LWHTFITCLMKYVNLKLQILNKRVEEMDITRLNSKLVIGRLTASELTFWQ
    MQLFKEFVKEQLRIRKFVQELQYLICVPVMADFIIFSVLICFLFFALTVG
    HDELSLAYFSCGWYNFEMPLQKMLVFMMMHAQRPMKMRALLVDLNLRTFI
    DIGRGAYSYFNLLRSSHLY
    DOR59nt
    (SEQ ID NO: 79)
    ATGCACGAAGCAGATAATCGGGAGATGGAACTTTTGGTCGCCACTCAGGC
    TTATACACGAACCATTACCCTGTTGATCTGGATACCATCGGTTATTGCTG
    GCCTAATGGCCTATTCAGACTGCATCTACAGGAGTCTGTTTCTGCCGAAA
    TCGGTTTTCAATGTGCCAGCTGTGCGACGTGGTGAGGAGCATCCCATTCT
    GCTATTTCAGCTGTTTCCCTTCGGAGAACTTTGCGATAACTTCGTTGTTG
    GATACTTGGGACCTTGGTATGCTCTGGGCCTGGGAATCACGGCTATCCCA
    TTGTGGCACACCTTTATCACTTGCCTCATGAAGTACGTAAATCTCAAGCT
    GCAAATACTCAACAAGCGAGTGGAGGAGATGGATATTACCCGACTTAATT
    CCAAATTGGTAATTGGTCGCCTAACTGCCAGTGAGTTAACCTTCTGGCAA
    ATGCAACTCTTCAAGGAATTTGTAAAGGAACAGCTGAGGATTCGAAAATT
    TGTCCAGGAACTACAGTATCTGATTTGCGTGCCTGTGATGGCAGATTTCA
    TTATCTTCTCGGTTCTCATTTGCTTTCTCTTTTTTGCCTTGACAGTTGGC
    CACGATGAACTGAGCCTTGCTTACTTTTCTTGCGGATGGTACAACTTCGA
    AATGCCTTTGCAGAAAATGCTGGTTTTTATGATGATGCATGCCCAAAGGC
    CGATGAAGATGCGCGCCCTGCTGGTCGATTTGAATCTGAGGACCTTCATA
    GACATTGGCCGTGGAGCCTACAGCTACTTCAATTTGCTGCGTAGCTCCCA
    CTTGTAT
    DOR61
    (SEQ ID NO: 108)
    MGHKDDMDSTDSTALSLKHISSLIFVISAQYPLISYVAYNRNDMEKVTAC
    LSVVFTNMLTVIKISTFLANRKDFWEMIHRFRKMHEQCKYREGLDYVAEA
    NKLASFLGRAYCVSCGLTGLYFMLGPIVKIGVCRWHGTTCDKELPMPMKF
    PFNDLESPGYEVCFLYTVLVTVVVVAYASAVDGLFISFAINLRAHFQTLQ
    RQIENWEFPSSEPDTQIRLKSIVEYHVLLLSLSRKLRSIYTPTVMGQFVI
    TSLQVGVIIYQLVTNMDSVMDLLLYASFFGSIMLQLFIYCYGGEIIKAES
    LQVDTAVRLSNWHLASPKTRTSLSLIILQSQKEVLIRAGFFVASLANFPY
    RLITLIKSIDSIC
    DOR62
    (SEQ ID NO: 2)
    MEKQEDFKLNTHSAVYYHWRVWELTGLMRPPGVSSLLYVVYSITVNLVVT
    VLFPLSLLARLLFTTNMAGLCENLTITITDIVANLKFANVYMVRKQLHEI
    RSLLRLMDARARLVGDPEEISALRKEVNIAQGTFRTFASIFVFGTTLSCV
    RVVVRPDRELLYPAWFGVDWMHSTRNYVLINIYQLFGLIVQAIQNCASDS
    YPPAFLCLLTGHMRALELRVRRIGCRTEKSNKGQTYEAWREEVYQELIEC
    IRDLARVHRLREIIQRVLSVPCMAQFVCSAAVQCTVAMHFLYVADDHDHT
    AMIISIVFFSAVTLEVFVICYFGDRMRTQSEALCDAFYDCNWIEQLPKFK
    RELLFTLARTQRPSLIYAGNYIALSLETFEQVMRFTYSVFTLLLRAK
    DOR62nt
    (SEQ ID NO: 1)
    ATGGAGAAGCAAGAGGATTTCAAACTGAACACCCACAGTGCTGTGTACTA
    CCACTGGCGCGTTTGGGAGCTCACTGGCCTGATGCGTCCTCCGGGCGTTT
    CAAGCCTGCTTTACGTGGTATACTCCATTACGGTCAACTTGGTGGTCACC
    GTGCTGTTTCCCTTGAGCTTGCTGGCCAGGCTGCTGTTCACCACCAACAT
    GGCCGGATTGTGCGAGAACCTGACCATAACTATTACCGATATTGTGGCCA
    ATTTGAAGTTTGCGAATGTGTACATGGTGAGGAAGCAGCTCCATGAGATT
    CGCTCTCTCCTAAGGCTCATGGACGCTAGAGCCCGGCTGGTGGGCGATCC
    CGAGGAGATTTCTGCCTTGAGGAAGGAAGTGAATATCGCACAGGGCACTT
    TCCGCACCTTTGCCAGTATTTTCGTATTTGGCACTACTTTGAGTTGCGTC
    CGCGTGGTCGTTCGCCCGGATCGAGAGCTCCTGTATCCGGCCTGGTTCGG
    CGTTGACTGGATGCACTCCACCAGAAACTATGTGCTCATCAATATCTACC
    AGCTCTTCGGCTTGATAGTGCAGGCTATACAGAACTGCGCTAGTGACTCC
    TATCCGCCTGCGTTTCTCTGCCTGCTCACGGGTCATATGCGTGCTTTGGA
    GCTGAGGGTGCGGCGGATTGGCTGCAGGACGGAAAAGTCCAATAAAGGGC
    AGACATATGAAGCCTGGCGGGAGGAGGTGTACCAGGAACTCATCGAGTGC
    ATCCGCGATCTGGCGCGGGTCCATCGGCTGAGGGAGATCATTCAGCGGGT
    CCTTTCAGTGCCCTGCATGGCCCAGTTCGTCTGCTCCGCCGCCGTCCAGT
    GTACCGTCGCCATGCACTTCCTGTACGTAGCGGATGACCACGACCACACC
    GCCATGATCATCTCGATTGTATTTTTCTCGGCCGTCACCTTGGAGGTGTT
    TGTAATCTGCTATTTTGGGGACAGGATGCGGACACAGAGCGAGGCGCTGT
    GCGATGCCTTCTACGATTGCAACTGGATAGAACAGCTGCCCAAGTTCAAG
    CGCGAACTGCTCTTCACCCTGGCCAGGACGCAGCGGCCTTCTCTTATTTA
    CGCAGGCAACTACATCGCACTCTCGCTGGAGACCTTCGAGCAGGTCATGA
    GGTTCACATACTCTGTTTTCACACTCTTGCTGAGGGCCAAGTAAGAACTT
    TATAATCTCTTTTTGGGGAGAAAAATTTTAAAGCACAATAGCAGAAAAAT
    ATATCAGATAATATAACAAAAAAAAAAAAAAAAAA
    DOR64
    (SEQ ID NO: 12)
    MKLSETLKIDYFRVQLNAWRICGALDLSEGRYWSWSMLLCILVYLPTPML
    LRGVYSFEDPVENNFSLSLTVTSLSNLMKFCMYVAQLTKMVEVQSLIGQL
    DARVSGESQSERHRNMTEHLLRMSKLFQITYAVVFIIAAVPFVFETELSL
    PMPMWFPFDWKNSMVAYIGALVFQEIGYVFQIMQCFAADSFPPLVLYLIS
    EQCQLLILRISEIGYGYKTLEENEQDLVNCIRDQNALYRLLDVTKSLVSY
    PMMVQFMVIGINIAITLFVLIFYVETLYDRIYYLCFLLGITVQTYPLCYY
    GTMVQESFAELHYAVFCSNWVDQSASYRGHMLILAERTKRMQLLLAGNLV
    PIHLSTYVACWKGAYSFFTLMADRDGLGS
    DOR64nt
    (SEQ ID NO: 11)
    GGCACGAGCCAAGAATTCAAAATGAAACTCAGCGAAACCCTAAAAATCGA
    CTATTTTCGAGTCCAGTTGAATGCCTGGCGAATTTGTGGTGCCTTGGATC
    TCAGCGAGGGTAGGTACTGGAGTTGGTCGATGCTATTGTGCATCTTGGTG
    TACCTGCCGACACCCATGCTACTGAGAGGAGTATACAGTTTCGAGGATCC
    GGTGGAAAATAATTTCAGCTTGAGCCTGACGGTCACATCGCTGTCCAATC
    TCATGAAGTTCTGCATGTACGTGGCCCAACTAACAAAGATGGTCGAGGTC
    CAGAGTCTTATTGGTCAGCTGGATGCCCGGGTTTCTGGCGAGAGCCAGTC
    TGAGCGTCATAGAAATATGACCGAGCACCTGCTAAGGATGTCCAAGCTGT
    TCCAGATCACCTACGCTGTAGTCTTCATCATTGCTGCAGTTCCCTTCGTT
    TTCGAAACTGAGCTAAGCTTACCCATGCCCATGTGGTTTCCCTTCGACTG
    GAAGAACTCGATGGTGGCCTACATCGGAGCTCTGGTTTTCCAGGAGATTG
    GCTATGTCTTTCAAATTATGCAATGCTTTCCAGCTGACTCGTTTCCCCCG
    CTCGTACTGTACCTGATCTCCGAGCAATGTCAATTGCTGATCCTGAGAAT
    CTCTGAAATCGGATATGGTTACAAGACTCTGGAGGAGAACGAACAGGATC
    TGGTCAACTGCATCAGGGATCAAAACGCGCTGTATAGATTACTCGATGTG
    ACCAAGAGTCTCGTTTCGTATCCCATGATGGTGCAGTTTATGGTTATTGG
    CATCAACATCGCCATCACCCTATTTGTCCTGATATTTTACGTGGAGACCT
    TGTACGATCGCATCTATTATCTTTGCTTTCTCTTGGGCATCACCGTGCAG
    ACATATCCATTGTGCTACTATGGAACCATGGTGCAGGAGAGTTTTGCTGA
    GCTTCACTATGCGGTATTCTGCAGCAACTGGGTGGATCAAAGTGCCAGCT
    ATCGTGGGCACATGCTCATCCTGGCGGAGCGCACTAAGCGGATGCAGCTT
    CTCCTCGCCGGCAACCTGGTGCCCATCCACCTGAGCACCTACGTGGCCTG
    TTGGAAGGGAGCCTACTCCTTCTTCACCCTGATGGCCGATCGAGATGGCC
    TGGGTTCTTAGTAGCCCAGTCATTTCACTCACATTCTACATCAAGTAGTA
    CTACCACTGAACACGAACACGAATATTTCAAAAGTAAACACATAATATTC
    ACAATAGTGTATCACTTTAATAAAATTTTTGGTTACCATGAAAAAAAAAA
    AAAAAAAA
    DOR67
    (SEQ ID NO: 10)
    MLSQFFPHIKEKPLSERVKSRDAFVYLDRVMWSFGWTVPENKRWDLHYKL
    WSTFVTLVIFILLPISVSVEYIQRFKTFSAGEFLSSIQIGVNMYGSSFKS
    YLTMMGYKKRQEAKMSLDELDKRCVCDEERTIVHRHVALGNFCYIFYHIA
    YTSFLISNFLSFIMKRIHAWRMYFPYVDPEKQFYISSIAEVILRGWAVFM
    DLCTDVCPLISMVIARCHITLLKQRLRNLRSEPGRTEDEYLKELADCVRD
    HRLILDYVDALRSVFSGTIFVQFLLIGIVLGLSMINIMFFSTLSTGVAVV
    LFMSCVSMQTFPFCYLCNMIMDDCQEMADSLFQSDWTSADRRYKSTLVYF
    LHNLQQPIILTAGGVFPISMQTNLNMVKLAFTVVTIVKQFNLAEKFQ
    DOR67nt
    (SEQ ID NO: 9)
    GGCACGAGGAAATGTTAAGCCAGTTCTTTCCCCACATTAAAGAAAAGCCA
    TTGAGCGAGCGGGTTAAGTCCCGAGATGCCTTCGTTTACTTAGATCGGGT
    GATGTGGTCCTTTGGCTGGACAGTGCCTGAAAACAAAAGGTGGGATCTAC
    ATTACAAACTGTGGTCAACTTTCGTGACATTGGTGATATTTATCCTTCTG
    CCGATATCGGTAAGCGTTGAGTATATTCAGCGGTTCAAGACCTTCTCGGC
    GGGTGAGTTTCTTAGCTCAATCCAGATTGGCGTTAACATGTACGGAAGCA
    GCTTTAAAAGTTATTTGACCATGATGGGATATAAGAAGAGACAGGAGGCT
    AAGATGTCACTGGATGAGCTGGACAAGAGATGCGTTTGTGATGAGGAGAG
    GACCATTGTACATCGACATGTCGCCCTGGGAAACTTTTGCTATATTTTCT
    ATCACATTGCGTACACTAGCTTTTTGATTTCAAACTTTTTGTCATTTATA
    ATGAAGAGAATCCATGCCTGGCGCATGTACTTTCCCTACGTCGACCCCGA
    AAAGCAATTTTACATCTCTAGCATCGCCGAAGTCATTCTTAGGGGGTGGG
    CCGTCTTCATGGATCTCTGCACGGATGTGTGTCCTTTGATCTCCATGGTA
    ATAGCACGATGCCACATCACCCTTCTGAAACAGCGCCTGCGAAATCTACG
    ATCGGAACCAGGAAGGACGGAAGATGAGTACTTGAAGGAGCTCGCCGACT
    GCGTTCGAGATCACCGCTTGATATTGGACTATGTCGACGCATTGCGATCC
    GTCTTTTCGGGGACAATTTTTGTGCAGTTCCTCTTGATCGGTATTGTACT
    GGGTCTGTCAATGATAAATATAATGTTTTTCTCAACACTTTCGACTGGTG
    TCGCCGTTGTCCTTTTTATGTCCTGCGTATCTATGCAGACGTTCCCCTTT
    TGCTATTTGTGTAACATGATTATGGATGACTGCCAAGAGATGGCCGACTC
    CCTTTTTCAATCGGACTGGACATCTGCCGATCGTCGCTACAAATCCACTT
    TGGTATACTTTCTTCACAATCTTCAGCAGCCCATTATTCTTACGGCTGGT
    GGAGTCTTTCCTATTTCCATGCAAACAAATTTAAATATGGTGAAGCTGGC
    CTTTACTGTGGTTACAATAGTGAAACAATTTAACTTGGCAGAAAAGTTTC
    AATAAGTTAAGATATGCAAGCTCTGCTATTATAAACCTACACTCGAGAAA
    ATATTTCTTCACATTAATAAACCTTCAGTACTTACTGCTTGTGGCGCCCC
    CGGAAAAAAAAAAAAAAAAAA
    DOR68
    (SEQ ID NO: 82)
    MSKLIEVFLGNLWTQRFTFARMGLDLQPDKKGNVLRSPLLYCIMCLTTSF
    ELCTVCAFMVQNRNQIVLCSEALMHGLQMVSSLLKMAIFLAKSHDLVDLI
    QQIQSPFTEEDLVGTEWRSQNQRGQLMAAIYFMMCAGTSVSFLLMPVALT
    MLKYHSTGEFAPVSSFRVLLPYDVTQPHVYAMDCCLMVFVLSFFCCSTTG
    VDTLYGWCALGVSLQYRRLGQQLKRIPSCFNPSRSDFGLSGIFVEHARLL
    KIVQHFNYSFMEIAFVEVVIICGLYCSVICQYIMPHTNQNFAFLGFFSLV
    VTTQLCIYLFGAEQVRLEAERFSRLLYEVIPWQNLPPKHRKLFLFPIERA
    QRETVLGAYFFELGRPLLVWVSIFLFIVLLF
    DOR68nt
    (SEQ ID NO: 81)
    ATGTCAAAGCTAATCGAGGTGTTTCTGGGTAATCTGTGGACCCAGCGTTT
    TACCTTCGCCCGAATGGGTTTGGATTTGCAGCCCGATAAAAAGGGCAATG
    TTTTGCGATCTCCGCTTCTTTATTGTATTATGTGTCTGACAACAAGCTTT
    GAGCTCTGCACCGTGTGCGCCTTTATGGTCCAAAATCGCAACCAAATCGT
    GCTTTGTTCCGAGGCCCTGATGCACGGACTACAGATGGTCTCCTCGCTAC
    TGAAGATGGCTATATTCTTGGCCAAATCTCACGACCTGGTGGACCTAATT
    CAACAGATTCAGTCGCCTTTTACAGAGGAGGATCTTGTAGGTACAGAGTG
    GAGATCCCAAAATCAAAGGGGACAACTAATGGCTGCCATTTACTTTATGA
    TGTGTGCCGGTACGAGTGTGTCATTTCTGTTGATGCCAGTGGCTTTGACC
    ATGCTTAAGTACCATTCCACTGGGGAATTCGCGCCTGTCAGCTCGTTCCG
    GGTTCTGCTTCCATACGATGTGACACAACCGCATGTTTATGCCATGGACT
    GCTGCTTGATGGTATTTGTGTTAAGTTTTTTTTGCTGCTCCACCACCGGA
    GTGGATACCTTATATGGATGGTGTGCTTTAGGCGTGAGTTTACAATACCG
    TCGCCTCGGTCAACAACTTAAAAGGATACCCTCCTGTTTCAATCCATCTC
    GGTCTGACTTTGGATTAAGTGGGATTTTTGTGGAGCATGCTCGTCTGCTT
    AAAATAGTCCAACATTTTAATTATAGTTTTATGGAGATCGCATTTGTGGA
    GGTTGTTATAATCTGTGGACTCTATTGCTCAGTAATTTGTCAGTATATAA
    TGCCACACACCAACCAAAACTTCGCCTTTCTGGGTTTCTTTTCATTGGTA
    GTTACCACACAGCTGTGCATCTATCTTTTCGGTGCCGAACAGGTCCGTTT
    GGAGGCTGAGCGATTTTCCCGGCTGCTATACGAAGTAATTCCTTGGCAAA
    ACCTTCCTCCTAAACACCGGAAACTTTTCCTTTTTCCAATTGAGCGCGCC
    CAACGAGAAACTGTTCTCGGTGCTTATTTCTTCGAACTAGGCAGACCTCT
    TCTTGTTTGGGTAAGCATATTCCTTTTTATTGTATTATTATTT
    DOR71g
    (SEQ ID NO: 14)
    MVIIDSLSFYRPFWICMRLLVPTFFKDSSRPVQLYVVLLHILVTLWFPLH
    LLLHLLLLPSTAEFFKNLTMSLTCVACSLKHVAHLYHLPQIVEIESLIEQ
    LDTFIASEQEHRYYRDHVHCHARRFTRCLYISFGMIYALFLFGVFVQVIS
    GNWELLYPAYFPFDLESNRFLGAVALGYQVFSMLVEGFQGLGNDTYTPLT
    LCLLAGHVHLWSIRMGQLGYFDDETVVNHQRLLDYIEQHKLLVRFHNLVS
    RTISEVQLVQLGGCGATLCIIVSYMLFFVGDTISLVYYLVFFGVVCVQLF
    PSCYFASEVAEELERLPYAIFSSRWYDQSRDHRFDLLIFTQLTLGNRGWI
    IKAGGLIELNLNAFFATLKMAYSLFAVVHRETGNPLQREH
    DOR71gnt
    (SEQ ID NO: 13)
    ATGGTCATTATCGACAGTCTTAGTTTTTATCGTCCATTCTGGATCTGCAT
    GCGATTGCTGGTACCGACTTTCTTCAAGGATTCCTCACGTCCTGTCCAGC
    TGTACGTGGTGTTGCTGCACATCCTGGTCACCTTGTGGTTTCCACTGCAT
    CTGCTGCTGCATCTTCTGCTACTTCCATCTACCGCTGAGTTCTTTAAGAA
    CCTGACCATGTCTCTGACTTGTGTGGCCTGCAGTCTGAAGCATGTGGCCC
    ACTTGTATCACTTGCCGCAGATTGTGGAAATCGAATCACTGATCGAGCAA
    TTAGACACATTTATTGCCAGCGAACAGGAGCATCGTTACTATCGGGATCA
    CGTACATTGCCATGCTAGGCGCTTTACAAGATGTCTCTATATTAGCTTTG
    GCATGATCTATGCGCTTTTCCTGTTCGGCGTCTTCGTTCAGGTTATTAGC
    GGAAATTGGGAACTTCTCTATCCAGCCTATTTCCCATTCGACTTGGAGAG
    CAATCGCTTTCTCGGCGCAGTAGCCTTGGGCTATCAGGTATTCAGCATGT
    TAGTTGAAGGCTTCCAGGGGCTGGGCAACGATACCTATACCCCACTGACC
    CTATGCCTTCTGGCCGGACATGTCCATTTGTGGTCCATACGAATGGGTCA
    ACTGGGATACTTCGATGACGAGACGGTGGTGAATCATCAGCGTTTGCTGG
    ATTACATTGAGCAGCATAAACTCTTGGTGCGGTTCCACAACCTGGTGAGC
    CGGACCATCAGCGAAGTGCAACTGGTGCAGCTGGGCGGATGTGGAGCCAC
    TCTGTGCATCATTGTCTCCTACATGCTCTTCTTTGTGGGCGACACAATCT
    CGCTGGTCTACTACTTGGTGTTCTTTGGAGTGGTCTGCGTGCAGCTCTTT
    CCCAGCTGCTATTTTGCCAGCGAAGTAGCCGAGGAGTTGGAACGGCTGCC
    ATATGCGATCTTCTCCAGCAGATGGTACGATCAATCGCGGGATCATCGAT
    TCGATTTGCTCATCTTTACACAATTAACACTGGGAAACCGGGGGTGGATC
    ATCAAGGCAGGAGGTCTTATCGAGCTGAATTTGAATGCCTTTTTCGCCAC
    CCTGAAGATGGCCTATTCCCTTTTTGCAGTTGTGGTGCGGGCAAAGGGTA
    TA
    DOR72g
    (SEQ ID NO: 16)
    MDLKPRVIRSEDIYRTYWLYWHLLGLESNFFLNRLLDLVITIFVTIWYPI
    HLILGLFMERSLGDVCKGLPITAACFFASFKFICFRFKLSEIKEIEILFK
    ELDQRALSREECEFFNQNTRREANFIWKSFIVAYGLSNISAIASVLFGGG
    HKLLYPAWFPYDVQATELIFWLSVTYQIAGVSLAILQNLANDSYPPMTFC
    VVAGHVRLLAMRLSRIGQGPEETIYLTGKQLIESIEDHRKLMKIVELLRS
    TMNISQLGQFISSGVNISITLVNILFFADNNFAITYYGVYFLSMVLELFP
    CCYYGTLISVEMNQLTYAIYSSNWMSMNRSYSRILLIFMQLTLAEVQIKA
    GGMIGIGMNAFFATVRLAYSFFTLAMSLR
    DOR72gnt
    (SEQ ID NO: 15)
    ATGGACTTAAAACCGCGAGTCATTCGAAGTGAAGATATCTACAGAACCTA
    TTGGTTATATTGGCATCTTTTGGGCCTGGAAAGCAATTTCTTTCTGAATC
    GCTTGTTGGATTTGGTGATTACAATTTTCGTAACCATTTGGTATCCAATT
    CACCTGATTCTGGGACTGTTTATGGAAAGATCTTTGGGGGATGTCTGCAA
    GGGTCTACCAATTACGGCAGCATGCTTTTTCGCCAGCTTTAAATTTATTT
    GTTTTCGCTTCAAGCTATCTGAAATTAAAGAAATCGAAATATTATTTAAA
    GAGCTGGATCAGCGAGCTTTAAGTCGAGAGGAATGCGAGTTTTTCAATCA
    AAATACGAGACGTGAGGCGAATTTCATTTGGAAAAGTTTCATTGTGGCCT
    ATGGACTGTCGAATATCTCGGCTATTGCATCAGTTCTTTTCGGCGGTGGA
    CATAAGCTATTATATCCCGCCTGGTTTCCATACGATGTGCAGGCCACGGA
    ACTAATATTTTGGCTAAGTGTAACATACCAAATTGCCGGAGTAAGTTTGG
    CCATACTTCAGAATTTGGCCAATGATTCCTATCCACCGATGACATTTTGC
    GTGGTTGCCGGTCATGTAAGACTTTTGGCGATGCGCTTGAGTAGAATTGG
    CCAAGGTCCAGAGGAAACAATATACTTAACCGGAAAGCAATTAATCGAAA
    GCATCGAGGATCACCGAAAACTAATGAAGATAGTGGAATTACTGCGCAGC
    ACCATGAATATTTCGCAGCTCGGCCAGTTTATTTCAAGTGGTGTTAATAT
    TTCCATAACACTAGTCAACATTCTCTTCTTTGCGGATAATAATTTCGCTA
    TAACCTACTACGGAGTGTACTTCCTATCGATGGTGTTGGAATTATTCCCG
    TGCTGCTATTACGGCACCCTGATATCCGTGGAGATGAACCAGCTGACCTA
    TGCGATTTACTCAAGTAACTGGATGAGTATGAATCGGAGCTACAGCCGCA
    TCCTACTGATCTTCATGCAACTCACCCTGGCGGAAGTGCAGATCAAGGCC
    GGTGGGATGATTGGCATCGGAATGAACGCCTTCTTTGCCACCGTGCGATT
    GGCCTACTCCTTCTTCACTTTGGCCATGTCGCTGCGT
    DOR73g
    (SEQ ID NO: 18)
    MDSRRKVRSENLYKTYWLYWRLLGVEGDYPFRRLVDFTITSFITILFPVH
    LILGMYKKPQIQVFRSLHFTSECLFCSYKFFCFRWKLKEIKTIEGLLQDL
    DSRVESEEERNYFNQNPSRVARMLSKSYLVAAISAIITATVAGLFSTGRN
    LMYLGWFPYDFQATAAIYWISFSYQAIGSSLLILENLANDSYPPITFCVV
    SGHVRLLIMRLSRIGHDVKLSSSENTRKLIEGIQDHRKLMKIIRLLRSTL
    HLSQLGQFLSSGINISITLINILFFAENNFAMLYYAVFFAAMLIELFPSC
    YYGILMTMEFDKLPYAIFSSNWLKMDKRYNRSLIILMQLTLVPVNIKAGG
    IVGIDMSAFFATVRMAYSFYTLALSFRV
    DOR73gnt
    (SEQ ID NO: 17)
    ATGGATTCAAGAAGGAAAGTCCGAAGTGAAAATCTTTACAAAACCTATTG
    GCTTTACTGGCGACTTCTGGGAGTCGAGGGCGATTATCCTTTTCGACGGC
    TAGTGGATTTTACAATCACGTCTTTCATTACGATTTTATTTCCCGTGCAT
    CTTATACTGGGAATGTATAAAAAGCCCCAGATTCAAGTCTTCAGGAGTCT
    GCATTTCACATCGGAATGCCTTTTCTGCAGCTATAAGTTTTTCTGTTTTC
    GTTGGAAACTTAAAGAAATAAAGACCATCGAAGGATTGCTCCAGGATCTC
    GATAGTCGAGTTGAAAGTGAAGAAGAACGCAACTACTTTAATCAAAATCC
    AAGTCGTGTGGCTCGAATGCTTTCGAAAAGTTACTTGGTAGCTGCTATAT
    CGGCCATAATCACTGCAACTGTAGCTGGTTTATTTAGTACTGGTCGAAAT
    TTAATGTATCTGGGTTGGTTTCCCTACGATTTTCAAGCAACCGCCGCAAT
    CTATTGGATTAGTTTTTCCTATCAGGCGATTGGCTCTAGTCTGTTGATTC
    TGGAAAATCTGGCCAACGATTCATATCCGCCGATTACATTTTGTGTGGTC
    TCTGGACATGTGAGACTATTGATAATGCGTTTAAGTCGAATTGGTCACGA
    TGTAAAATTATCAAGTTCGGAAAATACCAGAAAACTCATCGAAGGTATCC
    AGGATCACAGGAAACTAATGAAGATAATACGCCTACTTCGCAGCACTTTA
    CATCTTAGCCAACTGGGCCAGTTCCTTTCTAGTGGAATCAACATTTCCAT
    AACACTCATCAACATCCTGTTCTTTGCGGAAAACAACTTTGCAATGCTTT
    ATTATGCGGTGTTCTTTGCTGCAATGTTAATAGAACTATTTCCAAGTTGT
    TACTATGGAATTCTGATGACAATGGAGTTTGATAAGCTACCATATGCCAT
    CTTCTCCAGCAACTGGCTTAAAATGGATAAAAGATACAATCGATCCTTGA
    TAATTCTGATGCAACTAACACTGGTTCCAGTGAATATAAAAGCAGGTGGT
    ATTGTTGGCATCGATATGAGTGCATTTTTTGCCACAGTTCGGATGGCATA
    TTCCTTTTACACTTTAGCCTTGTCATTTCGAGTA
    DOR77
    (SEQ ID NO: 84)
    MELMRVPVQFYRTIGEDIYAHRSTNPLKSLLFKIYLYAGFINFNLLVTGE
    LVFFYNSIQDFETIRLAIAVAPCIGFSLVADFKQAAMIRGKKTLIMLLDD
    LENMHPKTLAKQMEYKLPDFEKTMKRVINIFTFLCLAYTTTFSFYPAIKA
    SVKFNFLGYDTFDRNFGFLIWFPFDATRNNLIYWIMYWDIAHGAYLAAFQ
    VTESTVEVIIIYCIFLMTSMVQVFMVCYYGDTLIAASLKVGDAAYNQKWF
    QCSKSYCTMLKLLIMRSQKPASIRPPTFPPISLVTYMKNPFNNLPKHSSS
    LQINANRYI
    DOR77nt
    (SEQ ID NO: 83)
    ATGGAATTGATGCGAGTGCCAGTACAGTTTTACAGAACGATTGGAGAGGA
    TATCTACGCCCATCGATCCACGAATCCCCTAAAATCGCTTCTCTTCAAGA
    TCTATCTATATGCGGGATTCATAAATTTTAATCTGTTGGTAATCGGTGAA
    CTGGTGTTCTTCTACAACTCAATTCAGGACTTTGAAACCATTCGATTGGC
    CATCGCGGTGGCTCCATGTATCGGATTTTCTCTGGTTGCTGATTTTAAAC
    AAGCTGCCATGATTAGAGGCAAGAAAACACTAATTATGCTACTCGATGAT
    TTGGAGAACATGCATCCGAAAACCCTGGCAAAGCAAATGGAATACAAATT
    GCCGGACTTTGAAAAGACCATGAAACGTGTGATCAATATATTCACCTTTC
    TCTGCTTGGCCTATACGACTACGTTCTCCTTTTATCCGGCCATCAAGGCA
    TCCGTGAAATTTAATTTCTTGGGCTACGACACCTTTGATCGAAATTTTGG
    TTTCCTCATCTGGTTTCCCTTCGATGCAACAAGGAATAATTTGATATACT
    GGATCATGTACTGGGACATAGCCCATGGGGCCTATCTAGCGGCCTTTCAG
    GTCACCGAATCAACAGTGGAAGTGATTATTATTTACTGCATTTTTTTGAT
    GACCTCGATGGTTCAGGTATTTATGGTGTGCTACTATGGGGATACTTTAA
    TTGCCGCGAGCTTGAAAGTGGGCGATGCCGCTTACAACCAAAAGTGGTTT
    CAGTGCAGCAAATCCTATTGCACCATGTTGAAGTTGCTAATCATGAGGAG
    TCAGAAACCAGCTTCAATAAGACCGCCGACTTTTCCCCCCATATCCTTGG
    TTACCTATATGAAGAATCCCTTCAACAATCTACCCAAACACAGCTCTTCC
    CTGCAAATCAACGCCAATCGCTATATC
    DOR78
    (SEQ ID NO: 86)
    MKFMKYAVFFYTSVGIEPYTIDSRSKKASLWSRLLFWANVINLSVIVFGE
    ILYLGVAYSDGKFIDAVTVLSYIGFVIVGMSKMFFIWWKKTDLSDLVKEL
    EHIYPNGKAEEEMYRLDRYLRSCSRISITYALLYSVLIWTFNLFSIMQFL
    VYEKLLKIRVVGQTLPYLMYFPWNWHENWTYYVLLFCQNFAGHTSASGQI
    STDLLLCAVATQVVMHFDYLARVVEKQVLDRDWSENSRFLAKTVQYHQRI
    LRLMDVLNDIFGIPLLLNFMVSTFVICFVGFQMTVGVPPDIMIKLFLFLF
    SSLSQVYLICHYGQLIADAVRDFRSSSLSISAYKQNWQNADIRYRRALVF
    FIARPQRTTYLKATIFMNITRATMTDVRYNLKCH
    DOR78nt
    (SEQ ID NO: 85)
    ATGAAGTTCATGAAGTACGCAGTTTTCTTTTACACATCGGTGGGCATTGA
    GCCGTATACGATTGACTCGCGGTCCAAAAAAGCGAGCCTATGGTCACATC
    TTCTCTTCTGGGCCAATGTGATCAATTTAAGTGTCATTGTTTTCGGAGAG
    ATCCTCTATCTGGGAGTGGCCTATTCCGATGGAAAGTTCATTGATGCCGT
    CACTGTACTGTCATATATCGGATTCGTAATCGTGGGCATGAGCAAGATGT
    TCTTCATATGGTGGAAGAAGACCGATCTAAGCGATTTGGTTAAGGAATTG
    GAGCACATCTATCCAAATGGCAAAGCTGAGGAGGAGATGTATCGGTTGGA
    TAGGTATCTGCGATCTTGTTCACGAATTAGCATTACCTATGCACTACTCT
    ACTCCGTACTCATCTGGACCTTCAATCTGTTCAGTATCATGCAATTCCTT
    GTCTATGAAAAGTTGCTTAAAATCCGAGTGGTCGGCCAAACGCTGCCATA
    TTTGATGTACTTTCCCTGGAACTGGCATGAAAACTGGACGTATTATGTGC
    TGCTGTTCTGTCAAAACTTCGCAGGACATACTTCGGCATCGGGACAGATC
    TCTACGGATCTTTTGCTTTGTGCTGTTGCTACCCAGGTGGTAATGCACTT
    CGATTACTTGGCCAGAGTGGTGGAAAAACAAGTGTTAGATCGCGATTGGA
    GCGAAAACTCCAGATTTTTGGCAAAAACTGTACAATATCATCAGCGCATT
    CTTCGGCTAATGGACGTTCTCAACGATATATTCGGGATACCGCTACTGCT
    TAACTTTATGGTCTCCACATTTGTCATCTGCTTTGTGGGATTCCAAATGA
    CCGTGGGTGTCCCGCCGGACATCATGATTAAGCTCTTCTTGTTCCTGTTC
    TCGTCCTTGTCGCAAGTGTACTTGATATGCCACTACGGCCAGCTGATTGC
    CGATGCGGTAAGAGACTTTCGAAGCTCTAGCTTATCGATTTCTGCATATA
    AGCAGAATTGGCAAAATGCTGACATTCGCTATCGTCGGGCTCTGGTATTC
    TTTATAGCTCGACCTCAGAGGACAACTTATCTAAAAGCTACAATTTTCAT
    GAATATAACAAGGGCCACCATGACGGACGTAAGATACAATTTGAAATGTC
    AT
    DOR81
    (SEQ ID NO: 88)
    MMETLRNSGLNLKNDFGIGRKIWRVFSFTYNMVILPVSFPINYVIHLAEF
    PPELLLQSLQLCLNTWCFALKFFTLIVYTHRLELANKHFDELDKYCVKPA
    EKRKVRDMVATITRLYLTFVVVYVLYATSTLLDGLLHHRVPYNTYYPFIN
    WRVDRTQMYIQSFLEYFTVGYAIYVATATDSYPVIYVAALRTHILLLKDR
    IIYLGDPSNEGSSDPSYMFKSLVDCIKAHRTMLNFCDAIQPIISGTIFAQ
    FIICGSILGIIMINMVLFADQSTRFGIVIYVMAVLLQTFPLCFYCNAIVD
    DCKELAHALFHSAWWVQDKRYQRTVIQFLQKLQQPMTFTAMNIFNINLAT
    NINVSPLLSVRTGKEAKSELQSLQVAKFAFTVYAIASGMNLDQKLSIKE
    DOR81nt
    (SEQ ID NO: 87)
    ATGATGGAGACGCTGCGAAATTCGGGCTTGAATTTGAAGAACGATTTCGG
    TATAGGCCGCAAGATTTGGAGGGTGTTTTCGTTCACCTACAATATGGTGA
    TACTTCCCGTAAGTTTCCCAATCAACTATGTGATACATCTGGCGGAGTTC
    CCGCCGGAGCTGCTGCTGCAATCCCTGCAACTGTGCCTCAACACTTGGTG
    CTTCGCTCTGAAGTTCTTCACTCTGATCGTCTATACGCACCGCTTGGAGC
    TGGCCAACAAGCACTTTGACGAATTGGATAAGTACTGCGTGAAGCCGGCG
    GAGAAGCGCAAGGTTCGCGACATGGTGGCCACTATTACAAGACTGTACCT
    GACCTTCGTCGTGGTCTACGTCCTCTACGCCACCTCCACGCTACTGGACG
    GACTACTGCACCACCGTGTTCCCTACAATACGTACTATCCGTTCATAAAC
    TGGCGAGTCGATCGGACCCAGATGTACATCCAGAGTTTTCTGGAGTACTT
    CACCGTGGGTTATGCCATATATGTGGCCACCGCCACCGATTCCTACCCTG
    TGATTTACGTGGCAGCCCTGCGAACTCATATTCTCTTGCTCAAGGACCGT
    ATCATTTACTTGGGCGATCCCAGCAACGAGGGTAGCAGCGACCCGAGCTA
    CATGTTTAAATCGTTGGTGGATTGTATCAAGGCACACAGAACCATGCTAA
    AGTGCAGTTTTTGTGATGCCATTCAACCAATCATCTCTGGCACGATATTT
    GCCCAATTCATCATATGCGGATCGATCCTGGGCATAATTATGATCAACAT
    GGTATTGTTCGCTGATCAATCGACCCGATTCGGCATACTCATCTACGTTA
    TGGCCGTCCTTCTGCAGACTTTTCCGCTTTGCTTCTACTGCAACGCCATC
    GTGGACGACTGCAAAGAACTGGCCCACGCACTTTTCCATTCCGCCTGGTG
    GGTGCAGGACAAGCGATACCAGCGGACTGTCATCCAGTTCCTGCAGAAAC
    TGCAGCAGCCCATGACCTTCACCGCCATGAACATATTTAACATTAATTTG
    GCCACTAACATCAATGTAAGTCCACTGCTCTCGGTTAGAACGGGGAAGGA
    AGCAAAGTCCGAACTTCAATCCTTGCAGGTAGCCAAGTTCGCCTTCACCG
    TGTACGCCATCGCGAGCGGTATGAACCTGGACCAAAAGTTAAGCATTAAG
    GAA
    DOR82
    (SEQ ID NO: 90)
    MACIPRYQWKGRPTERQFYASEQRIVFLLGTICQIFQITGVLIYWYCNGR
    LATETGTFVAQLSEMCSSFCLTFVGFCNVYAISTNRNQIETLLEELHQIY
    PRYRKNHYRCQHYFDMAMTIMRIEFLFYMILYVYYNSAPLWVLLWEHLHE
    EYDLSFKTQTNTWFPWKVHGSALGFGMAVLSITVGSFVGVGFSIVTQNLI
    CLLTFQLKLHYDGISSQLVSLDCRRPGAHKELSILIAHHSRILQLGDQVN
    DIMNFVFGSSLVGATIAICMSSVSIMLLDLASAFKYASGLVAFVLYNFVI
    CYMGTEVTLAVKIGSYMDGRRWIPKDSLLRSQRLQVLVAVGFFNICVLSN
    RRPKIEILLRYYYHIMFYSFKLYFSLRKGSLWKILSSFTLLRI
    DOR82nt
    (SEQ ID NO: 89)
    ATGGCATGCATACCAAGATATCAATGGAAAGGACGCCCTACTGAAAGACA
    GTTCTACGCTTCGGAGCAAAGGATAGTGTTCCTTCTTGGAACCATTTGCC
    AGATATTCCAGATTACTGGAGTGCTTATCTATTGGTATTGCAATGGCCGT
    CTTGCCACGGAAACGGGCACCTTTGTGGCACAATTATCTGAAATGTGCAG
    TTCTTTTTGTCTAACATTTGTGGGATTCTGTAACGTTTATGCGATCTCTA
    CAAACCGCAATCAAATTGAAACATTACTCGAGGAGCTTCATCAGATATAT
    CCGAGATACAGGAAAAATCACTATCGCTGCCAGCATTATTTTGACATGGC
    CATGACAATAATGAGAATTGAGTTTCTTTTCTATATGATCTTGTACGTGT
    ACTACAATAGTGCACCATTATGGGTGCTTCTTTGGGAACACTTGCACGAG
    GAATATGATCTTAGCTTCAAGACGCAGACCAACACTTGGTTTCCATGGAA
    AGTCCATGGGTCGGCACTTGGATTTGGTATGGCTGTACTAAGCATAACCG
    TGGGATCCTTTGTGGGCGTAGGTTTCAGTATTGTCACCCAGAATCTTATC
    TGTTTGTTAACCTTCCAACTAAAGTTGCACTACGATGGAATATCCAGTCA
    GTTAGTATCTCTCGATTGCCGTCGTCCTGGAGCTCATAAGGAGTTGAGCA
    TCCTCATCGCCCACCACAGCCGAATCCTTCAGCTGGGCGACCAAGTCAAT
    GACATAATGAACTTTGTATTCGGCTCTAGCCTAGTAGGTGCCACTATTGC
    CATTTGTATGTCAAGTGTTTCTATAATGCTACTGGACTTAGCATCTGCCT
    TCAAATATGCCAGTGGTCTAGTGGCATTCGTCCTCTACAACTTTGTCATC
    TGCTACATGGGAACCGAGGTCACTTTAGCTGTGAAGATTCGTTCATATAT
    GGACGGAAGGCGGTGGATACCCAAAGATTCGTTGCTGAGATCTCAGAGGC
    TACAGGTGCTCGTCGCAGTTGGATTTTTTAATATATGTGTCCTCTCGAAT
    CGTCGTCCTAAAATTGAAATTTTGCTTAGATATTATTACCATATTATGTT
    TTATTCATTTAAATTATATTTTTCTTTAAGGAAAGGTAGCCTTTGGAAAA
    TCTTGTCTTCTTTCACCTTATTGAGGATC
    DOR83
    (SEQ ID NO: 92)
    MQLEDFMRYPDLVCQAAQLPRYTWNGRRSLEVKRNLAKRIIFWLGAVNLV
    YHNIGCVMYGYFGDGRTKDPIAYLAELASVASMLGFTIVGTLNLWKMLSL
    KTHFENLLNEFEELFQLIKHRAYRIHHYQEKYTRHIRNTFIFHTSAVVYY
    NSLPILLMIREHFSNSQQLGYRIQSNTWYPWQVQGSIPGFFAAVACQIFS
    CQTNMCVNMFIQFLINFFGIQLEIHFDGLARQLETIDARNPHAKDQLKYL
    IVYHTKLLNLADRVNRSFNFTFLISLSVSMISNCFLAFSMTMFDFGTSLK
    HLLGLLLFITYNFSMCRSGTHLILTSGKVLPAAFYNNWYEGDLVYRRMLL
    ILMMRATKPYMWKTYKLAPVSITTYMAECKTKEAHEQRHFRRHERQKPRV
    ARI
    DOR83nt
    (SEQ ID NO: 91)
    ATGCAGTTGGAGGACTTTATGCGGTACCCGGACCTCGTGTGTCAAGCGGC
    CCAACTTCCCAGATACACGTGGAATGGCAGACGATCCTTGGAAGTTAAAC
    GCAACTTGGCAAAACGCATTATCTTCTGGCTTGGAGCAGTAAATTTGGTT
    TATCACAATATTGGCTGCGTCATGTATGGCTATTTCGGTGATGGAAGAAC
    AAAGGATCCAATTGCGTATTTAGCTGAATTGGCATCTGTGGCCAGCATGC
    TTGGTTTCACCATTGTGGGCACCCTCAACTTGTGGAAGATGCTGAGCCTT
    AAGACCCATTTTGAGAACCTACTAAATGAATTCGAGGAATTATTTCAACT
    AATCAAGCACAGGGCGTATCGCATACACCACTATCAAGAAAAGTATACGC
    GTCATATACGAAATACATTTATTTTCCATACCTCTGCCGTTGTCTACTAC
    AACTCACTACCAATTCTTCTAATGATTCGGGAACATTTCTCGAACTCACA
    GCAGTTGGGCTATAGAATTCAGAGTAATACCTGGTATCCCTGGCAGGTTC
    AGGGATCAATTCCTGGATTTTTTGCTGCAGTCGCCTGTCAAATCTTTTCG
    TGCCAAACCAATATGTGCGTCAATATGTTTATCCAGTTTCTGATCAACTT
    TTTTGGTATCCAGCTAGAAATACACTTCGATGGTTTGGCCAGGCAGCTGG
    AGACCATCGATGCCCGCAATCCCCATGCCAAGGATCAATTGAAGTATCTG
    ATTGTATATCACACAAAATTGCTTAATCTAGCCGACAGAGTTAATCGATC
    GTTTAACTTTACGTTTCTCATAAGTCTGTCGGTATCCATGATATCCAACT
    GTTTTCTGGCATTTTCCATGACCATGTTCGACTTTGGCACCTCTCTAAAA
    CATTTACTCGGACTTTTGCTATTCATCACATATAATTTTTCAATGTGCCG
    CAGTGGTACGCACTTGATTTTAACGAGTGGCAAAGTATTGCCAGCGGCCT
    TTTATAACAATTGGTATGAAGGCGATCTTGTTTATCGAAGGATGCTCCTC
    ATCCTGATGATGCGTGCTACGAAACCTTATATGTGGAAAACCTACAAGCT
    GGCACCTGTATCCATAACTACATATATGGCAGAATGCAAAACAAAAGAAG
    CCCATGAACAACGCCATTTTAGACGCCATGAAAGACAAAAACCTCGGGTT
    GCACGAATA
    DOR84
    (SEQ ID NO: 94)
    MVFSFYAEVATLVDRLRDNENFLESCILLSYVSFVVMGLSKIGAVMKKKP
    KMTALVRQLETCFPSPSAKVQEEYAVKSWLKRCHIYTKGFGGLFMIMYFA
    HALIPLFIYFIQRVLLHYPDAKQIMPFYQLEPWEFRDSWLFYPSYFHQSS
    AGYTATCGSIAGDLMIFAVVLQVIMHYERLAKVLREFKIQAHNAPNGAKE
    DIRKLQSLVANHIDILRLTDLMNEVFGIPLLLNFIASALLVCLVGVQLTI
    ALSPEYFCKQMLFLISVLLEVYLLCSFSQRLIDAVC
    DOR84nt
    (SEQ ID NO: 93)
    ATGGTGTTTAGTTTTTATGCCGAGGTAGCGACTCTGGTGGACAGGTTACG
    CGATAATGAAAATTTTCTCGAGAGCTGCATCTTACTGAGCTACGTGTCCT
    TTGTGGTCATGGGCCTCTCCAAGATAGGTGCTGTAATGAAAAAAAAGCCA
    AAAATGACAGCTTTGGTCAGGCAATTGGAGACCTGCTTTCCGTCGCCAAG
    TGCAAAGGTTCAAGAGGAATATGCTGTGAAGTCCTGGCTGAAACGCTGCC
    ATATATACACAAAGGGATTTGGTGGTCTCTTCATGATCATGTATTTCGCT
    CACGCTCTGATTCCCTTATTCATATACTTCATTCAAAGAGTGCTGCTCCA
    CTATCCGGATGCCAAGCAGATTATGCCGTTTTACCAACTCGAACCTTGGG
    AATTTCGCGACTCCTGGTTGTTTTATCCAAGCTATTTTCACCAGTCGTCG
    GCCGGATATACGGCTACATGTGGATCCATTGCCGGTGACCTAATGATCTT
    CGCTGTGGTCCTGCAGGTCATCATGCACTACGAAAGACTGGCCAAGGTTC
    TTAGGGAGTTTAAGATTCAAGCCCATAACGCACCCAATGGAGCTAAGGAG
    GATATAAGGAAGTTGCAGTCCCTAGTCGCCAATCACATTGATATACTTCG
    ACTCACTGATCTGATGAACGAGGTCTTTGGAATTCCCTTGTTGCTAAACT
    TTATTGCATCTGCGCTGCTGGTCTGCCTGGTGGGAGTTCAATTAACCATC
    GCTTTAAGTCCAGAGTATTTTTGCAAGCAGATGCTATTTCTGATTTCCGT
    ACTGCTTGAGGTCTATCTCCTTTGCTCCTTCAGCCAGAGGTTAATAGATG
    CTGTATGT
    DOR87
    (SEQ ID NO: 6)
    MTIEDIGLVGINVRNWRHLAVLYPTPGSSWRKFAFVLPVTAMNLMQFVYL
    LRMWGDLPAFILNMFFFSAIFNALMRTWLVIIKRRQFEEFLGQLATLFHS
    ILDSTDEWGRGILRRAEREARNLAILNLSASFLDIVGALVSPLFREERAH
    PFGVALPGVSMTSSPVYEVIYLAQLPTPLLLSMMYMPFVSLFAGLAIFGK
    AMLQILVHRLGQIGGEEQSEEERFQRLASCIAYHTQVMRYVWQLNKLVAN
    IVAVEAIIFGSIICSLLFCLNIITSPTQVISIVMYILTMLYVLFTYYNRA
    NEICLENNRVAEAVYNVPWYEAGTRFRKTLLIFLMQTQHPMEIRVGNVYP
    MTLAMFQSLLNASYSYFTMLRGVTGK
    DOR87nt
    (SEQ ID NO: 5)
    GGCACGAGGCTTATAGAAAGTGCCGAGCAATGACAATCGAGGATATCGGC
    CTGGTGGGCATCAACGTGCGGATGTGGCGACACTTGGCCGTGCTGTACCC
    CACTCCGGGCTCCAGCTGGCGCAAGTTCGCCTTCGTGCTGCCGGTGACTG
    CGATGAATCTGATGCAGTTCGTCTACCTGCTGCGGATGTGGGGCGACCTG
    CCCGCCTTCATTCTGAACATGTTCTTCTTCTCGGCCATTTTCAACGCCCT
    GATGCGCACGTGGCTGGTCATAATCAAGCGGCGCCAGTTCGAGGAGTTTC
    TCGGCCAACTGGCCACTCTGTTCCATTCGATTCTCGACTCCACCGACGAG
    TGGGGGCGTGGCATCCTGCGGAGGGCGGAACGGGAGGCTCGGAACCTGGC
    CATCCTTAATTTGAGTGCCTCCTTCCTGGACATTGTCGGTGCTCTGGTAT
    CGCCGCTTTTCAGGGAGGAGAGAGCTCATCCCTTCGGCGTAGCTCTACCA
    GGAGTGAGCATGACCAGTTCACCCGTCTACGAGGTTATCTACTTGCCCCA
    ACTGCCTACGCCCCTGCTGCTGTCCATGATGTACATGCCTTTCGTCAGCC
    TTTTTGCCGGCCTGGCCATCTTTGGGAAGGCCATGCTGCAGATCCTGGTA
    CACAGGCTGGGCCAGATTGGCGGAGAAGAGCAGTCGGAGGAGGAGCGCTT
    CCAAAGGCTGGCCTCCTGCATTGCGTACCACACGCAGGTGATGCGCTATG
    TGTGGCAGCTCAACAAACTGGTGGCCAACATTGTGGCGGTGGAAGCAATT
    ATTTTTGGCTCGATAATCTGCTCACTGCTCTTCTGTCTGAATATTATAAC
    CTCACCCACCCAGGTGATCTCGATAGTGATGTACATTCTGACCATGCTGT
    ACGTTCTCTTCACCTACTACAATCGGGCCAATGAAATATGCCTCGAGAAC
    AACCGGGTGGCGGAGGCTGTTTACAATGTGCCCTGGTACGAGGCAGGAAC
    TCGGTTTCGCAAAACCCTCCTGATCTTCTTGATGCAAACACAACACCCGA
    TGGAGATAAGAGTCGGCAACGTTTACCCCATGACATTGGCCATGTTCCAG
    AGTCTGTTGAATGCGTCCTACTCCTACTTTACCATGCTGCGTGGCGTCAC
    CGGCAAATGAGCTGAAAGACCGAAAAAACCGGAGTATCCCCTTCCATATT
    CCCCCTGCTCCTTTATTTTCCTTTCCTTTTCCCTTTCCGTTTTCCCATTC
    GCTTTTCCAGCAATCCGGGTAATGCAAAAAGTTGTTGCTGGCTGTGGTCC
    TGGCTGCTTGTTTGGCATTTGCATATGCTTGTCGTTTGAAAGGATTTAAT
    CGGACTGCTGGCACGGAGTCGGCATCCTGGCTCCTGGATCCTGGCATGCA
    AATAGTTGGCTTCTTAGATTGTTACACAAAATAGATTGTAGATTGCAGCT
    GAATGTTGTGCTTGGAATAAAGTCAAAAGGATGTGGAGTCGGCCCAAGGC
    TCTGCCCATTCTGTTTGCTCGGGATGCCCGAAAGTATGAAAAAAAAAAAA
    AAAAAA
    DOR91
    (SEQ ID NO: 96)
    MVRYVPRFADGQKVKLAWPLAVFRLNHIFWPLDPSTGKWGRYLDKVLAVA
    MSLVFMQHNDAELRYLRFEASNRNLDAFLTGMPTYLILVEAQFRSLHILL
    HFEKLQKFLEIFYANIYIDPRKEPEMFRKVDGKMIINRLVSAMYGAVISL
    YLIAPVFSIINQSKDFLYSMIFPFDSDPLYIFVPLLLTNVWVGIVIDTMM
    FGETNLLCELIVHLNGSYMLLKRDLQLAIEKILVARDRPHMAKQLKVLIT
    KTLRKNVALNQFGQQLEAQYTVRVFIMFAFAAGLLCALSFKAYTTDSLST
    MYYLTHWEQILQYSTNPSENLRLLKLINLAIEMNSKPFYVTGLKYFRVSL
    QAGLKRQKFLRSASSSTLSTADVLAFAFAFTRWLL
    DOR91nt
    (SEQ ID NO: 95)
    ATGGTTCGTTACGTGCCCCGGTTCGCTGATGGTCAGAAAGTAAAGTTGGC
    TTGGCCCTTGGCGGTTTTTCGGTTAAATCACATATTCTGGCCATTGGATC
    CGAGCACAGGGAAATGGGGCCGATATCTGGACAAGGTTCTAGCTGTTGCG
    ATGTCCTTGGTTTTTATGCAACACAACGATGCAGAGCTGAGGTACTTGCG
    CTTCGAGGCAAGTAATCGGAATTTGGATGCCTTTCTCACAGGAATGCCAA
    CGTATTTAATCCTCGTGGAGGCTCAATTTAGAAGTCTTCACATTCTACTG
    CACTTCGAGAAGCTTCAGAAGTTTTTAGAAATATTCTACGCAAATATTTA
    TATTGATCCCCGTAAGGAACCCGAAATGTTTCGAAAAGTGGATGGAAAGA
    TGATAATTAACAGATTAGTTTCGGCCATGTACGGTGCAGTTATCTCTCTG
    TATCTAATCGCACCCGTTTTTTCCATCATTAACCAAAGCAAAGATTTTCT
    ATACTCTATGATCTTTCCGTTCGATTCGGATCCCTTGTACATATTTGTGC
    CACTGCTTTTGACAAACGTATGGGTTGGCATTGTAATAGATACCATGATG
    TTCGGGGAGACGAATTTGTTGTGTGAACTAATTGTCCACCTAAATGGTAG
    TTATATGTTGCTCAAGAGGGACTTGCAGTTGGCCATTGAAAAGATATTAG
    TTGCAAGGGACCGTCCGCATATGGCCAAACAGCTAAAGGTTTTAATTACA
    AAAACTCTCCGAAAGAATGTGGCTCTAAATCAGTTTGGCCAGCAGCTGGA
    GGCTCAGTATACTGTGCGGGTTTTTATTATGTTTGCATTCGCTGCGGGCC
    TTTTATGTGCTCTTTCTTTTAAGGCTTATACGACGGATTCCCTCAGCACA
    ATGTACTACCTTACCCATTGGGAGCAAATCCTGCAGTACTCTACAAATCC
    CAGCGAAAATCTGCGATTACTAAAGCTCATTAACTTGGCCATTGAGATGA
    ACAGCAAGCCCTTCTATGTGACAGGGCTAAAATATTTTCGCGTTAGTCTG
    CAGGCTGGCTTAAAACGTCAAAAGTTTCTGCGGTCTGCCAGCTCATCCAC
    CCTTAGCACCGCTGATGTGTTGGCATTTGCTTTTGCTTTTACTCGCTGGC
    TGCTT
    DOR92
    (SEQ ID NO: 98)
    MSEWLRFLKRDQQLDVYFFAVPRLSLDIMGYWPGKTGDTWPWRSLIHFAI
    LAIGVATELHAGMCFLDRQQITLALETLCPAGTSAVTLLKYFLMLRFRQD
    LSIMWNRLRGLLFDPNWERPEQRDIRLKHSAMAARINFWPLSAGFFTCTT
    YNLKPILIAMILYLQNRYEDFVWFTPFNMTMPKVLLNYPFFPLTYIFIAY
    TGYVTIFMFGGCDGFYFEFCAHLSALFEVLQAEIESMFRPYTDHLELSPV
    QLYILEQKMRSVIIRHNAIIDLTRFFRDRYTIITLAHFVSAAMVIGFSMV
    NLLTLGNNGLGAMLYVAYTVAALSQLLVYCYGGTLVAESSTGLCRAMFSC
    PWQLFKPKQRRLVQLLILRSQRPVSMAVPFFSPSLATFAAILQTSGSIIA
    LVKSFQ
    DOR92nt
    (SEQ ID NO: 97)
    ATGTCCGAGTGGTTACGCTTTCTGAAACGCGATCAACAGCTGGATGTGTA
    CTTTTTTGCAGTGCCCCGCTTGAGTTTAGACATAATGGGCTATTGGCCGG
    GCAAAACTGGTGATACATGGCCCTGGAGATCCCTGATTCACTTCGCAATC
    CTGGCCATTGGCGTGGCCACCGAACTGCATGCTGGCATGTGTTTTCTAGA
    CCGACAGCAGATTACCTTGGCACTGGAGACCCTCTGTCCAGCTGGCACAT
    CGGCGGTCACGCTGCTCAAGATGTTCCTAATGCTGCGCTTTCGTCAGGAT
    CTCTCCATTATGTGGAACCGCCTGAGGGGCCTGCTCTTCGATCCCAACTG
    GGAGCGACCCGAGCAGCGGGACATCCGGCTAAAGCACTCGGCCATGGCGG
    CTCGCATCAATTTCTGGCCCCTGTCAGCCGGATTCTTCACATGCACCACC
    TACAACCTAAAGCCGATACTGATCGCAATGATATTGTATCTCCAGAATCG
    TTACGAGGACTTCGTTTGGTTTACACCCTTCAATATGACTATGCCCAAAG
    TTCTGCTAAACTATCCATTTTTTCCCCTGACCTACATATTTATTGCCTAT
    ACGGGCTATGTGACCATCTTTATGTTCGGCGGCTGTGATGGTTTTTATTT
    CGAGTTCTGTGCCCACCTATCAGCTCTTTTCGAAGTGCTCCAGGCGGAGA
    TAGAATCAATGTTTAGACCCTACACTGATCACTTGGAACTGTCGCCAGTG
    CAGCTTTACATTTTAGAGCAAAAGATGCGATCAGTAATCATTAGGCACAA
    TGCCATCATCGATTTGACCAGATTTTTTCGTGATCGCTATACCATTATTA
    CCCTGGCCCATTTTGTGTCCGCCGCCATGGTGATTGGATTCAGCATGGTT
    AATCTCCTGACATTGGGCAATAATGGTCTGGGCGCAATGCTCTATGTGGC
    CTACACGGTTGCCGCTTTGAGCCAACTGCTGGTTTATTGCTATGGCGGAA
    CTCTGGTGGCCGAAAGTAGCACTGGTCTGTGCCGAGCCATGTTCTCCTGT
    CCGTGGCAGCTTTTTAAGCCTAAACAACGTCGACTCGTTCAGCTTTTGAT
    TCTCAGATCGCAGCGTCCTGTTTCCATGGCAGTGCCATTCTTTTCGCCAT
    CGTTGGCTACCTTTGCTGCGATTCTTCAAACTTCGGGTTCCATAATTGCG
    CTGGTTAAGTCCTTTCAG
    DOR95
    (SEQ ID NO: 100)
    MSDKVKGKKQEEKDQSLRVQILVYRCMGIDLWSPTMANDRPWLTFVTMGP
    LFLFMVPMFLAAHEYITQVSLLSDTLGSTFASMLTLVKFLLFCYHRKEFV
    GLIYHIRAILAKEIEVWPDAREIIEVENQSDQMLSLTYTRCFGLAGIFAA
    LKPFVGIILSSIRGDEIHLELPHNGVYPYDLQVVMFYVPTYLWNVMASYS
    AVTMALCVDSLLFFFTYNVCAIFKIAKHRMIHLPAVGGKEELEGLVQVLL
    LHQKGLQIADHIADKYRPLIFLQFFLSALQICFIGFQVADLFPNPQSLYF
    IAFVGSLLIALFIYSKCGENIKSASLDFGNGLYETNWTDFSPPTKRALLI
    AAMRAQRPCQMKGYFFEASMATFSTIVRSAVSYIMMLRSFNA
    DOR95nt
    (SEQ ID NO: 99)
    ATGAGCGACAAGGTGAAGGGAAAAAAGCAGGAGGAAAAGGATCAATCCTT
    GCGGGTGCAAATTCTCGTTTATCGCTGCATGGGCATCGATTTGTGGAGCC
    CCACGATGGCGAATGACCGCCCGTGGCTGACCTTTGTCACAATGGGACCA
    CTTTTCCTGTTTATGGTGCCCATGTTCCTGGCCGCCCACGAGTACATCAC
    CCAGGTGAGCCTGCTCTCCGACACCCTGGGCTCCACCTTCGCCAGCATGC
    TCACCCTGGTCAAATTCCTGCTCTTCTGCTATCATCGCAAGGAGTTCGTC
    GGCCTGATCTACCACATCAGGGCCATTCTGGCTAAAGAAATCGAAGTGTG
    GCCTGATGCGCGGGAAATCATCGAGGTGGAGAACCAAAGTGACCAAATGC
    TCAGTCTTACGTACACTCGCTGTTTTGGACTGGCTGGAATCTTTGCGGCC
    CTGAAGCCCTTTGTGGGCATCATACTCTCCTCGATTCGCGGCGACGAGAT
    TCACCTGGAGCTGCCCCACAACGGCGTTTACCCGTACGATCTCCAGGTGG
    TCATGTTTTATGTGCCCACCTATCTGTGGAATGTGATGGCCAGCTATAGT
    GCTGTAACCATGGCACTCTGCGTGGACTCGCTGCTCTTCTTTTTCACCTA
    CAACGTGTGCGCCATTTTCAAGATCGCCAAGCACCGGATGATCCATCTGC
    CGGCGGTGGGCGGAAAGGAGGAGCTGGAGGGGCTCGTCCAGGTGCTGCTG
    CTGCACCAGAAGGGCCTCCAGATCGCCGATCACATTGCGGACAAGTACCG
    GCCGCTGATCTTTTTGCAGTTCTTTCTGTCCGCCTTGCAGATCTGCTTCA
    TTGGATTCCAGGTGGCTGATCTGTTTCCCAATCCGCAGAGTCTCTACTTT
    ATCGCCTTTGTGGGCTCGCTGCTCATCGCACTGTTCATCTACTCGAAGTG
    CGGCGAAAATATCAAGAGTGCCAGCCTGGATTTCGGAAACGGGCTGTACG
    AGACCAACTGGACCGACTTCTCGCCACCCACTAAAAGAGCCCTCCTCATT
    GCCGCCATGCGCGCCCAGCGACCTTGCCAGATGAAGGGCTACTTTTTCGA
    GGCCAGCATGGCCACCTTCTCGACGATTGTTCGCTCTGCCGTGTCGTACA
    TCATGATGTTGCGCTCCTTTAATGCC
    DOR99
    (SEQ ID NO: 102)
    MEEFLRPQMFQEVAQMVHFQWRRNPVDNSMVNASMVPFCLSAFLNVLFFG
    CNGWDIIGHFWLGHPANQNPPVLSITIYFSIRGLMLYLKRKEIVEFVNDL
    DRECPRDLVSQLDMQMDETYRNFWQRYRFIRIYSHLGGPMFCVVPLALFL
    LTHEGKDTPVAQHEQLLGGWLPCGVRKDPNFYLLVWSFDLMCTTCGVSFF
    VTFDNLFNVMQGHLVMHLGHLARQFSAIDPRQSLTDEKRFFVDLRLLVQR
    QQLLNGLCRKYNDIFKVAFLVSNFVGAGSLCFYLFMLSETSDVLIIAQYI
    LPTLVLVGFTFEICLRGTQLEKASEGLESSLRSQEWYLGSRRYRKFYLLW
    TQYCQRTQQLGAFGLIQVNMVHFTEIMQLAYRLFTFLKSH
    DOR99nt
    (SEQ ID NO: 101)
    ATGGAGGAGTTTCTGCGTCCGCAGATGTTCCAGGAGGTGGCTCAGATGGT
    GCATTTCCAGTGGCGGAGAAATCCGGTGGACAACAGCATGGTGAACGCAT
    CCATGGTCCCCTTCTGCTTGTCGGCGTTTCTTAATGTCCTGTTTTTCGGC
    TGCAATGGTTGGGACATCATAGGACATTTTTGGCTGGGACATCCTGCCAA
    CCAGAATCCGCCCGTGCTTAGCATCACCATTTACTTCTCGATCAGGGGAT
    TGATGCTATACCTGAAACGAAAGGAAATCGTTGAGTTTGTTAACGACTTG
    GATCGGGAGTGTCCGCGGGACTTGGTCAGCCAGTTGGACATGCAAATGGA
    TGAGACGTACCGAAACTTTTGGCAGCGCTATCGCTTCATCCGTATCTACT
    CCCATTTGGGTGGTCCGATGTTCTGCGTTGTGCCATTAGCTCTATTCCTC
    CTGACCCACGAGGGTAAAGATACTCCTGTTGCCCAGCACGAGCAGCTCCT
    TGGAGGATGGCTGCCATGCGGTGTGCGAAAGGACCCAAATTTCTACCTTT
    TAGTCTGGTCCTTCGACCTGATGTGCACCACTTGCGGCGTCTCCTTTTTC
    GTTACCTTCGACAACCTATTCAATGTGATGCAGGGACATTTGGTCATGCA
    TTTGGGCCATCTTGCTCGCCAGTTTTCGGCCATCGATCCTCGACAGAGTT
    TGACCGATGAGAAGCGATTCTTTGTGGATCTTAGGTTATTAGTTCAGAGG
    CAGCAGCTTCTTAATGGATTGTGCAGAAAATACAACGACATCTTTAAAGT
    GGCCTTCCTGGTGAGCAATTTTGTAGGCGCCGGTTCCCTCTGCTTCTACC
    TCTTTATGCTCTCGGAGACATCAGATGTCCTTATCATCGCCCAGTATATA
    TTACCCACTTTGGTCCTGGTGGGCTTCACATTTGAGATTTGTCTACGGGG
    AACCCAACTGGAAAAGGCGTCGGAGGGACTGGAATCGTCGTTGCGAAGCC
    AGGAATGGTATTTGGGAAGTAGGCGGTACCGGAAGTTCTATTTGCTCTGG
    ACGCAATATTGCCAGCGAACACAGCAACTGGGCGCCTTTGGGCTAATCCA
    AGTCAATATGGTGCACTTCACTGAAATAATGCAGCTGGCCTATAGACTCT
    TCACTTTTCTCAAATCTCAT
    DORA45
    (SEQ ID NO: 104)
    MTTSMQPSKYTGLVADLMPNIRAMKYSGLFMHNFTGGSAFMKKVYSSVHL
    VFLLMQFTFILVNMALNAEEVNELSGNTITTLFFTHCITKFIYLAVNQKN
    FYRTLNIWNQVNTHPLFAESDARYHSIALAKMRKLFFLVMLTTVASATAW
    TTITFFGDSVKMVVDHETNSSIPVEIPRLPIKSFYPWNASHGMFYMISFA
    FQIYYVLFSMIHSNLCDVMFCSWLIFACEQLQHLKGIMKPLMELSASLDT
    YRPNSAALFRSLSANSKSELIHNEEKDPGTDMDMSGIYSSKADWGAQFRA
    PSTLQSFGGNGGGGNGLVNGANPNGLTKKQEMMVRSAIKYWVERHKHVVR
    LVAAIGDTYGAALLLHMLTSTIKLTLLAYQATKINGVNVYAFTVVGYLGY
    ALAQVFHFCIFGNRLIEESSSVMEAAYSCHWYDGSEEAKTFVQIVCQQCQ
    KAMSISGAKFFTVSLDLFASVLGAVVTYFMVLVQLK
    DORA45nt
    (SEQ ID NO: 103)
    GGCACGAGCTGGTTCCGGAAAGCCTCATATCTCGTATCTTAAAGTATCCC
    GGTTAAGCCTTAAAGAGTGAAATGATTGCCTAGACGATTGCTGCATTACT
    GGCACTCAATTAACCCAAGTGTACCAGACAACAATTACATTTGTATTTTT
    AAAGTTCAATAGCAAGGATGACAACCTCGATGCAGCCGAGCAAGTACACG
    GGCCTGGTCGCCGACCTGATGCCCAACATCCGGGCGATGAAGTACTCCGG
    CCTGTTCATGCACAACTTCACGGGCGGCAGTGCCTTCATGAAGAAGGTGT
    ACTCCTCCGTGCACCTGGTGTTCCTCCTCATGCAGTTCACCTTCATCCTG
    GTCAACATGGCCCTGAACGCCGAGGAGGTCAACGAGCTGTCGGGCAACAC
    GATCACGACCCTCTTCTTCACCCACTGCATCACGAAGTTTATCTACCTGG
    CTGTTAACCAGAAGAATTTCTACAGAACATTGAATATATGGAACCAGGTG
    AACACGCATCCCTTGTTCGCCGAGTCGGATGCTCGTTACCATTCGATCGC
    ACTGGCGAAGATGAGGAAGCTGTTCTTTCTGGTGATGCTGACCACAGTCG
    CCTCGGCCACCGCCTGGACCACGATCACCTTCTTTGGCGACAGCGTAAAA
    ATGGTGGTGGACCATGAGACGAACTCCAGCATCCCGGTGGAGATACCCCG
    GCTGCCGATTAAGTCCTTCTACCCGTGGAACGCCAGCCACGGCATGTTCT
    ACATGATCAGCTTTGCCTTTCAGATCTACTACGTGCTCTTCTCGATGATC
    CACTCCAATCTATGCGACGTGATGTTCTGCTCTTGGCTGATATTCGCCTG
    CGAGCAGCTGCAGCACTTGAAGGGCATCATGAAGCCGCTGATGGAGCTGT
    CCGCCTCGCTGGACACCTACAGGCCCAACTCGGCGGCCCTCTTCAGGTCC
    CTGTCGGCCAACTCCAAGTCGGAGCTAATTCATAATGAAGAAAAGGATCC
    CGGCACCGACATGGACATGTCCGGCATCTACAGCTCGAAAGCGGATTGGG
    GCGCTCAGTTTCGAGCACCCTCGACACTGCAGTCCTTTGGCGGGAACGGG
    GGCGGAGGCAACGGGTTGGTGAACGGCGCTAATCCCAACGGGCTGACCAA
    AAAGCAGGAGATGATGGTGCGCAGTGCCATCAAGTACTGGGTCGAGCGGC
    ACAAGCACGTGGTGCGACTGGTGGCTGCCATCGGCGATACTTACGGAGCC
    GCCCTCCTCCTCCACATGCTGACCTCGACCATCAAGCTCACCCTGCTGGC
    ATACCAGGCCACCAAAATCAACGGAGTGAATGTCTACGCCTTCACAGTCG
    TCGGATACCTAGGATACGCGCTGGCCCAGGTGTTCCACTTTTGCATCTTT
    GGCAATCGTCTGATTGAAGAGAGTTCATCCGTCATGGAGGCCGCCTACTC
    GTGCCACTGGTACGATGGCTCCGAGGAGGCCAAGACCTTCGTCCAGATCG
    TGTGCCAGCAGTGCCAGAAGGCGATGAGCATATCGGGAGCGAAATTCTTC
    ACCGTCTCCCTGGATTTGTTTGCTTCGGTTCTGGGTGCCGTCGTCACCTA
    CTTTATGGTGCTGGTGCAGCTCAAGTAAGTTGCTGCGAAGCTGATGGATT
    TTTGTACCAGAAAAGCGAATGCCAAGAAGCCACCTACCGCCCCTTGCCCC
    CTCCGCACTGTGCAACCAGCAATATCACAGAGCAATTATAACGCAAATTA
    TATATTTTATACCTGCGACGAGCGAGCCTCGTGGGGCATAATGGAGACAT
    TCTGGGGCACATAGAAGCCTGCAAATACTTATCGATTTTGTACACGCGTA
    GAGCTTTTAATGTAAACTCAAGATGCAAACTAAATAAATGTGTAGTGAAA
    AAAAAAAAAAAAAAAAA

    Genbank Accession Numbers
  • The accession numbers for the sequences reported in this paper are AF127921-AF127926.
  • REFERENCES
    • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
    • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
    • Amrein, H., Gorman, M., and Nothiger, R. (1988) The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein [published erratum appears in Cell 1989 Jul. 28; 58(2):following 419]. Cell 55, 1025-1035.
    • Ayer, R. K., Jr., and Carlson, J. (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J. Neurobiol. 23, 965-982.
    • Bargmann, C. I., and Kaplan, J. M. (1998) Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci 21, 279-308.
    • Bargmann, C. I., Hartwieg, E., and Horvitz, H. R. (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527.
    • Bargmann, C. I., and Horvitz, H. R. (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742.
    • Ben-Arie, N., Lancet, D., Taylor, C., Khen, M., Walker, N., Ledbetter, D. H., Carrozzo, R., Patel, K., Sheer, D., Lehrach, H., and et al. (1994) Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum. Mol. Genet. 3, 229-235.
    • Buck, L. B. (1996) Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517-44.
    • Buck, L., and Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187.
    • Burge, C., and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
    • Carlson, J. R. (1996) Olfaction in Drosophila: from odor to behavior. Trends Genet. 12, 175-180.
    • Chess, A., Simon, I., Cedar, H., and Axel, R. (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823-834.
    • Colbert, H. A., and Bargmann, C. I. (1995) Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron 14, 803-812.
    • Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Prediction of transmembrane-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673-676.
    • Doe, C. Q., and Skeath, J. B. (1996) Neurogenesis in the insect central nervous system. Curr. Opin. Neurobiol. 6, 18-24.
    • Dulac, C., and Axel, R. (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195-206.
  • Faber, T., Joerges, J., and Menzel, R. (1998) Associative learning modifies neural representations of odors in the insect brain. Nature Neurosci. 2, 74-78.
    • Friedrich, R. W., and Korsching, S. I. (1997) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737-752.
    • Grillenzoni, N., van Helden, J., Dambly-Chaudiere, C., and Ghysen, A. (1998) The Iroquois complex controls the somatotopy of Drosophila notum mechanosensory projections. Development 125, 3563-9.
    • Hartl, D. L., Nurminsky, D. I., Jones, R. W., and Lozovskaya, E. R. (1994) Genome structure and evolution in Drosophila: applications of the framework P1 map. Proc. Natl. Acad. Sci. USA 91, 6824-6829.
    • Herrada, G., and Dulac, C. (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763-773.
    • Imamura, K., Mataga, N., and Mori, K. (1992) Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. J. Neurophysiol. 68, 1986-2002.
    • Joerges, J., Kuttner, A., Galizia, C. G., and Menzel, R. (1997) Presentations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285-288.
    • Katoh, K., Koshimoto, H., Tani, A., and Mori, K. (1993) Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J. Neurophysiol. 70, 2161-2175.
    • Kauer, J. S., Senseman, D. M., and Cohen, L. B. (1987) Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 418, 255-261.
    • Kim, M. S., Repp, A., and Smith, D. P. (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150, 711-21.
    • Kimmerly, W., Stultz, K., Lewis, S., Lewis, K., Lustre, V., Romero, R., Benke, J., Sun, D., Shirley, G., Martin, C., and Palazzolo, M. (1996) A P1-based physical map of the Drosophila euchromatic genome. Genome Res. 6, 414-430.
    • Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.
    • Laissue, P. P., Reiter, C., Hiesinger, P. R., Halter, S., Fischbach, K. F., and Stocker, R. F. (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543-552.
    • Lancet, D., Greer, C. A., Kauer, J. S., and Shepherd, G. M. (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. Proc. Natl. Acad. Sci. USA 79, 670-674.
    • Levy, N. S., Bakalyar, H. A., and Reed, R. R. (1991) Signal transduction in olfactory neurons. J. Steroid Biochem. Mol. Biol. 39, 633-637.
    • Lin, D. M., and Goodman, C. S. (1994) Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-523.
    • Matsunami, H., and Buck, L. B. (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775-84.
    • McKenna, M. P., Hekmat-Scafe, D. S., Gaines, P., and Carlson, J. R. (1994) Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J. Biol. Chem. 269, 16340-16347.
    • McLatchie, L. M., Fraser, N. J., Main, M. J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M. G., and Foord, S. M. (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333-9.
    • Merritt, D. J., and Whitington, P. M. (1995) Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. J. Neurosci. 15, 1755-67.
    • Mitchell, R., McCulloch, D., Lutz, E., Johnson, M., MacKenzie, C., Fennell, M., Fink, G., Zhou, W., and Sealfon, S. C. (1998) Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 392, 411-4.
    • Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996). Visualizing an olfactory sensory map. Cell 87, 675-686.
    • Mori, K., Mataga, N., and Imamura, K. (1992) Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. J. Neurophysiol. 67, 786-789.
    • Ngai, J., Chess, A., Dowling, M. M., Necles, N., Macagno, E. R., and Axel, R. (1993) Coding of olfactory information: topography of odorant receptor expression in the catfish olfactory epithelium. Cell 72, 667-680.
    • Parmentier, M., Libert, F., Schurmans, S., Schiffmann, S., Lefort, A., Eggericks, D., Ledent, C., Molleareau, C., Gerard, D., and et al. (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453-455.
    • Pelosi, P. (1994) Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol. 29, 199-228.
    • Persson, B., and Argos, P. (1994) Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237, 182-192.
    • Pikielny, C. W., Hasan, G., Rouyer, F., and Rosbash, M. (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12, 35-49.
    • Ray, K., and Rodrigues, V. (1995) Cellular events during development of the olfactory sense organs in Drosophila melanogaster. Dev. Biol. 167, 426-38.
    • Reddy, G. V., Gupta, B., Ray, K., and Rodrigues, V. (1997) Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage. Development 124, 703-712.
    • Ressler, K. J., Sullivan, S. L., and Buck, L. B. (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597-609.
    • Ressler, K. J., Sullivan, S. L., and Buck, L. B. (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245-1255.
    • Robertson, H. M. (1998) Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res. 8, 449-463.
    • Robinow, S. and White, K. (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev. Biol. 126, 294-303.
    • Rodrigues, V. (1988) Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res. 453, 299-307.
    • Ryba, N. J., and Tirindelli, R. (1997) A new multigene family of putative pheromone receptors. Neuron 19, 371-379.
    • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).
    • Schaeren-Wiemers, N., and Gerfin-Moser, A. (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431-440.
    • Sengupta, P., Chou, J. H., and Bargmann, C. I. (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899-909.
    • Siddiqi, O. (1987) Neurogenetics of olfaction in Drosophila melanogaster. Trends Genet. 3, 137-142.
    • Siden-Kiamos, I., Saunders, R. D., Spanos, L., Majerus, T., Treanear, J., Savakis, C., Louis, C., Glover, D. M., Ashburner, M., and Kafatos, F. C. (1990) Towards a physical map of the Drosophila melanogaster genome: mapping of cosmid clones within defined genomic divisions. Nucleic Acids Res. 18, 6261-6270.
    • Singh, R. N., and Nayak, S. (1985) Fine structure and primary sensory projections of sensilla on the maxillary palp of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 14, 291-306.
    • Stewart, W. B., Kauer, J. S., and Shepherd, G. M. (1979) Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715-734.
    • Stocker, R. F. (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3-26.
    • Stocker, R. F., Lienhard, M. C., Borst, A., and Fischbach, K. F. (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 262, 9-34.
    • Stocker, R. F., Singh, R. N., Schorderet, M., and Siddiqi, O. (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res. 232, 237-248.
    • Thummel, C. S., Boulet, A. M., and Lipshitz, H. D. (1988) Vectors for Drosophila melanogaster P-element-mediated transformation and tissue culture transfection. Gene 74, 771-784.
    • Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A., and Bargmann, C. I. (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207-218.
    • Troemel, E. R., Kimmel, B. E., and Bargmann, C. I. (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161-169.
    • Vassar, R., Chao, S. K., Sitcheran, R., Nufiez, J. M., Vosshall, L. B., and Axel, R. (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981-991.
    • Vassar, R., Ngai, J., and Axel, R. (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309-318.
    • Venkatesh, S., and Singh, R. N. (1984) Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 13, 51-63.
    • Wang, F., Nemes, A., Mendelsohn, M., and Axel, R. (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93, 47-60.

Claims (26)

1-4. (canceled)
5. An isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the polypeptide is selected from the group consisting of polypeptides comprising consecutive amino acids the sequence of which is one of the following:
(a) SEQ ID NO: 2,
(b) SEQ ID NO: 4,
(c) SEQ ID NO: 6,
(d) SEQ ID NO: 8,
(e) SEQ ID NO: 10,
(f) SEQ ID NO: 12,
(g) SEQ ID NO: 14,
(h) SEQ ID NO: 16,
(i) SEQ ID NO: 18,
(j) SEQ ID NO: 20,
(k) SEQ ID NO: 22,
(l) SEQ ID NO: 24,
(m) SEQ ID NO: 26,
(n) SEQ ID NO: 28,
(o) SEQ ID NO: 30,
(p) SEQ ID NO: 32,
(q) SEQ ID NO: 34,
(r) SEQ ID NO: 36,
(s) SEQ ID NO: 38,
(t) SEQ ID NO: 40,
(u) SEQ ID NO: 42,
(v) SEQ ID NO: 44,
(w) SEQ ID NO: 46,
(x) SEQ ID NO: 48,
(y) SEQ ID NO: 50,
(z) SEQ ID NO: 52,
(aa) SEQ ID NO: 54,
(bb) SEQ ID NO: 56,
(cc) SEQ ID NO: 58,
(dd) SEQ ID NO: 60,
(ee) SEQ ID NO: 62,
(ff) SEQ ID NO: 64,
(gg) SEQ ID NO: 66,
(hh) SEQ ID NO: 68,
(ii) SEQ ID NO: 70,
(jj) SEQ ID NO: 72,
(kk) SEQ ID NO: 74,
(ll) SEQ ID NO: 76,
(mm) SEQ ID NO: 78,
(nn) SEQ ID NO: 80,
(oo) SEQ ID NO: 82,
(pp) SEQ ID NO: 84,
(qq) SEQ ID NO: 86,
(rr) SEQ ID NO: 88,
(ss) SEQ ID NO: 90,
(tt) SEQ ID NO: 92,
(uu) SEQ ID NO: 94,
(vv) SEQ ID NO: 96,
(ww) SEQ ID NO: 98,
(xx) SEQ ID NO: 100,
(yy) SEQ ID NO: 102,
(zz)
SEQ ID NO: 106, or
(aaa) a polypeptide which shares greater than 25% amino acid identity with any one of the polypeptides of (a)-(aaa), and comprises a transmembrane domain and an adjoining C-terminal domain which together comprise consecutive amino acids the sequence of which is as follows:
—(F, Y, L, A, T, S or C)—(P, I, M, V, T, L, Q, S or H)—(F, Y, I, S, L, C, M or V)—(C, Y, T, S, L or A)-(Y, N, F, M, I, L, K, S, H or T)-(X)20—W— (SEQ ID NO: 107);
wherein each X in (X) 20 represents an amino acid and the identity of each X is independent of the identity of any other X.
6-10. (canceled)
11. An isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid hybridizes under high stringency to a complement of a nucleic acid of claim 5.
12. (canceled)
13. An isolated nucleic acid encoding a polypeptide present in an insect odorant receptor, wherein the nucleic acid comprises:
(a) a nucleic acid sequence given in any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105; or
(b) a nucleic acid sequence degenerate to a sequence of (a) as a result of the genetic code.
14. The isolated nucleic acid of claim 13, wherein the insect odorant receptor comprises seven transmembrane domains.
15. The isolated nucleic acid of claim 5, wherein the nucleic acid is DNA or RNA.
16. The isolated nucleic acid of claim 15, wherein the DNA is cDNA, genomic DNA, or synthetic DNA.
17. The isolated nucleic acid of claim 5, wherein the nucleic acid encodes a Drosophila odorant receptor.
18-19. (canceled)
20. A vector which comprises the isolated nucleic acid of claim 5.
21-34. (canceled)
35. A method of transforming a cell which comprises transfecting a host cell with the vector of claim 20.
36. A transformed cell produced by the method of claim 35.
37. The transformed cell of claim 36, wherein prior to being transfected with the vector the host cell does not express an insect odorant receptor.
38. The transformed cell of claim 36, wherein prior to being transfected with the vector the host cell does express an insect odorant receptor.
39-54. (canceled)
55. The isolated nucleic acid of claim 11, wherein the nucleic acid is DNA or RNA.
56. The isolated nucleic acid of claim 11, wherein the DNA is cDNA, genomic DNA, or synthetic DNA.
57. The isolated nucleic acid of claim 11, wherein the nucleic acid encodes a Drosophila odorant receptor.
58. A vector which comprises the isolated nucleic acid of claim 11.
59. The isolated nucleic acid of claim 13, wherein the nucleic acid is DNA or RNA.
60. The isolated nucleic acid of claim 13, wherein the DNA is cDNA, genomic DNA, or synthetic DNA.
61. The isolated nucleic acid of claim 13, wherein the nucleic acid encodes a Drosophila odorant receptor.
62. A vector which comprises the isolated nucleic acid of claim 13.
US11/825,626 1999-02-25 2007-07-06 Genes encoding insect odorant receptors and uses thereof Abandoned US20080009065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/825,626 US20080009065A1 (en) 1999-02-25 2007-07-06 Genes encoding insect odorant receptors and uses thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25770699A 1999-02-25 1999-02-25
PCT/US2000/004995 WO2000050566A2 (en) 1999-02-25 2000-02-25 Genes encoding insect odorant receptors and uses thereof
US09/932,227 US20030186359A1 (en) 1999-02-25 2001-08-17 Genes encoding insect odorant receptors and uses thereof
US10/183,708 US7241881B2 (en) 1999-02-25 2002-06-25 Genes encoding insect odorant receptors and uses thereof
US11/825,626 US20080009065A1 (en) 1999-02-25 2007-07-06 Genes encoding insect odorant receptors and uses thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/183,708 Division US7241881B2 (en) 1999-02-25 2002-06-25 Genes encoding insect odorant receptors and uses thereof

Publications (1)

Publication Number Publication Date
US20080009065A1 true US20080009065A1 (en) 2008-01-10

Family

ID=22977414

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/932,227 Abandoned US20030186359A1 (en) 1999-02-25 2001-08-17 Genes encoding insect odorant receptors and uses thereof
US10/183,708 Expired - Fee Related US7241881B2 (en) 1999-02-25 2002-06-25 Genes encoding insect odorant receptors and uses thereof
US11/825,626 Abandoned US20080009065A1 (en) 1999-02-25 2007-07-06 Genes encoding insect odorant receptors and uses thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/932,227 Abandoned US20030186359A1 (en) 1999-02-25 2001-08-17 Genes encoding insect odorant receptors and uses thereof
US10/183,708 Expired - Fee Related US7241881B2 (en) 1999-02-25 2002-06-25 Genes encoding insect odorant receptors and uses thereof

Country Status (11)

Country Link
US (3) US20030186359A1 (en)
EP (2) EP1208111B1 (en)
JP (1) JP2003525022A (en)
AT (1) ATE409704T1 (en)
AU (1) AU778993B2 (en)
CA (1) CA2364966A1 (en)
DE (1) DE60040395D1 (en)
DK (1) DK1208111T3 (en)
ES (1) ES2315227T3 (en)
PT (1) PT1208111E (en)
WO (1) WO2000050566A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364966A1 (en) * 1999-02-25 2000-08-31 The Trustees Of Columbia University In The City Of New York Genes encoding insect odorant receptors and uses thereof
US7314723B2 (en) * 2001-01-26 2008-01-01 Vanderbilt University Method of identifying chemical agents which stimulate odorant receptors of sensory neurons
US7141649B2 (en) * 2001-01-26 2006-11-28 Vanderbilt University Mosquito arrestin 2 polypeptides
US7166699B2 (en) * 2001-01-26 2007-01-23 Vanderbilt University Mosquito arrestin 1 polypeptides
WO2002068473A1 (en) 2001-02-08 2002-09-06 Temple University-Of The Commonwealth System Of Higher Education Biosensor for detecting chemical agents
DE60232141D1 (en) * 2001-03-27 2009-06-10 Inscent Inc EFFICIENT METHODS FOR ISOLATING FUNCTIONAL G-PROTEIN-COUPLED RECEPTORS AND IDENTIFYING ACTIVE EFFECTORS AND EFFICIENT METHODS FOR ISOLATING THE ODOR PROTECTION OF PROTEINS INVOLVED, AND EFFICIENT METHODS FOR ISOLATING AND IDENTIFYING ACTIVE EFFECTORS
US20100248268A1 (en) * 2001-03-27 2010-09-30 Woods Daniel F Methods to utilize invertebrate chemosensory proteins for industrial and commercial uses
US20070003980A1 (en) * 2001-03-27 2007-01-04 Woods Daniel F Efficient methods to isolate effectors of proteins involved in olfactory or chemosensory pathways and efficient methods to use these effectors to alter organism olfaction, chemosensation, or behavior
EP2354793B1 (en) 2001-08-14 2016-06-22 Sentigen Biosciences, Inc. Nucleic acids and proteins of insect OR83B odorant receptor genes and uses thereof
US7622269B2 (en) 2004-03-19 2009-11-24 Tyratech, Inc. Methods of screening tyramine- and octopamine-expressing cells for compounds and compositions having potential insect control activity
JP2007502860A (en) 2003-04-24 2007-02-15 ヴァンダービルト ユニバースィティ Compositions and methods for controlling insects
CN1882689A (en) * 2003-11-21 2006-12-20 艾尼纳制药公司 Methods for producing olfactory GPCRs
JP5030594B2 (en) * 2003-12-23 2012-09-19 アルボー ビータ コーポレーション Antibodies against oncogenic strains of HPV and methods for their use
CN101478984B (en) 2006-06-27 2013-02-20 蒂拉德克公司 Compositions and methods for treating parasitic infections
MX2009000548A (en) 2006-07-17 2009-05-28 Tyratech Inc Compositions and methods for controlling insects.
US8945595B2 (en) * 2009-03-04 2015-02-03 The Regents Of The University Of California Insect repellent and attractants
US20180044722A1 (en) * 2016-08-12 2018-02-15 Agilent Technologies, Inc. Tri-color probes for detecting multiple gene rearrangements in a fish assay
JP6875815B2 (en) * 2016-09-29 2021-05-26 住友化学株式会社 Olfactory receptor co-receptor
WO2018116186A1 (en) 2016-12-21 2018-06-28 The New Zealand Institute For Plant And Food Research Sensor device and methods
JP2020510417A (en) 2017-02-17 2020-04-09 コニク インコーポレイテッド System for detection
US12251991B2 (en) 2020-08-20 2025-03-18 Denso International America, Inc. Humidity control for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12269315B2 (en) 2020-08-20 2025-04-08 Denso International America, Inc. Systems and methods for measuring and managing odor brought into rental vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143679A1 (en) * 1999-02-25 2003-07-31 Vosshall Leslie B. Genes encoding insect odorant receptors and uses thereof
US6610511B1 (en) * 1999-01-25 2003-08-26 Yale University Drosophila odorant receptors
US20050208558A1 (en) * 1999-10-19 2005-09-22 Applera Corporation Detection kits, such as nucleic acid arrays, for detecting the expression or 10,000 or more Drosophila genes and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610511B1 (en) * 1999-01-25 2003-08-26 Yale University Drosophila odorant receptors
US20030143679A1 (en) * 1999-02-25 2003-07-31 Vosshall Leslie B. Genes encoding insect odorant receptors and uses thereof
US20030186359A1 (en) * 1999-02-25 2003-10-02 Vosshall Leslie B. Genes encoding insect odorant receptors and uses thereof
US20050208558A1 (en) * 1999-10-19 2005-09-22 Applera Corporation Detection kits, such as nucleic acid arrays, for detecting the expression or 10,000 or more Drosophila genes and uses thereof

Also Published As

Publication number Publication date
EP1208111A4 (en) 2005-08-10
WO2000050566A3 (en) 2002-02-28
CA2364966A1 (en) 2000-08-31
AU778993B2 (en) 2004-12-23
EP1208111A2 (en) 2002-05-29
EP1208111B1 (en) 2008-10-01
ES2315227T3 (en) 2009-04-01
WO2000050566A2 (en) 2000-08-31
US20030143679A1 (en) 2003-07-31
DE60040395D1 (en) 2008-11-13
AU3709300A (en) 2000-09-14
PT1208111E (en) 2009-01-12
DK1208111T3 (en) 2009-02-09
EP2058327A2 (en) 2009-05-13
JP2003525022A (en) 2003-08-26
US7241881B2 (en) 2007-07-10
EP2058327A3 (en) 2010-08-25
US20030186359A1 (en) 2003-10-02
ATE409704T1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US7241881B2 (en) Genes encoding insect odorant receptors and uses thereof
Vosshall et al. A spatial map of olfactory receptor expression in the Drosophila antenna
Mosley-Bishop et al. Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye
Brand et al. The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system
Fambrough et al. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points
Hinz et al. The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes
Li et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons
Sink et al. sidestep encodes a target-derived attractant essential for motor axon guidance in Drosophila
Fares et al. Localization and possible functions of Drosophila septins.
Musacchio et al. TheDrosophila kekkonGenes: Novel Members of both the Leucine-Rich Repeat and Immunoglobulin Superfamilies Expressed in the CNS
Hasan et al. Drosophila homologs of two mammalian intracellular Ca2+-release channels: identification and expression patterns of the inositol 1, 4, 5-triphosphate and the ryanodine receptor genes
Zheng et al. Drosophila Ten-m and filamin affect motor neuron growth cone guidance
Mori Relation of chemical structure to specificity of response in olfactory glomeruli
Stroumbakis et al. A homolog of human transcription factor NF-X1 encoded by the Drosophila shuttle craft gene is required in the embryonic central nervous system
US20110201051A1 (en) Chemosensory gene family encoding gustatory and olfactory receptors and uses thereof
Pielage et al. The Drosophila transmembrane protein Fear-of-intimacy controls glial cell migration
Eberle et al. Wide distribution of the cysteine string proteins in Drosophila tissues revealed by targeted mutagenesis
EP0858505B1 (en) Cloning of vertebrate pheromone receptors and uses thereof
Devaud et al. Blocking sensory inputs to identified antennal glomeruli selectively modifies odorant perception in Drosophila
US5831019A (en) Associative learning and the linotte gene
Shankar et al. Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system
Lehmann et al. Astrocyte-dependent local neurite pruning in Beat-Va neurons
US20040048261A1 (en) Invertebrate choline transporter nucleic acids, polypeptides and uses thereof
Zhang et al. Investigating the role of axonal localization of sex peptide receptor in post-mating responses of female Drosophila melanogaster
Lee A molecular genetic analysis of target selection in Drosophila melanogaster: Visualizing axons, identifying genes, and understanding the role of the protocadherin flamingo

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:COLUMBIA UNIV NEW YORK MORNINGSIDE;REEL/FRAME:024921/0496

Effective date: 20100820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK;REEL/FRAME:042757/0384

Effective date: 20100820

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载