US20080006377A1 - Stabilised Aluminosilicate Slurries - Google Patents
Stabilised Aluminosilicate Slurries Download PDFInfo
- Publication number
- US20080006377A1 US20080006377A1 US11/568,903 US56890305A US2008006377A1 US 20080006377 A1 US20080006377 A1 US 20080006377A1 US 56890305 A US56890305 A US 56890305A US 2008006377 A1 US2008006377 A1 US 2008006377A1
- Authority
- US
- United States
- Prior art keywords
- silica
- aqueous slurry
- crystalline aluminosilicate
- slurry according
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 239000002002 slurry Substances 0.000 title claims abstract description 52
- 229910000323 aluminium silicate Inorganic materials 0.000 title claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 38
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 239000011707 mineral Substances 0.000 claims abstract description 10
- 150000007524 organic acids Chemical class 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 7
- 239000010457 zeolite Substances 0.000 claims description 26
- 229910021536 Zeolite Inorganic materials 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 239000001117 sulphuric acid Substances 0.000 claims description 4
- 235000011149 sulphuric acid Nutrition 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 150000007522 mineralic acids Chemical class 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 241001441571 Hiodontidae Species 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/40—Compounds of aluminium
- C09C1/42—Clays
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/14—Type A
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/22—Type X
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/40—Compounds of aluminium
- C09C1/405—Compounds of aluminium containing combined silica, e.g. mica
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Definitions
- This invention relates to aqueous slurries of crystalline aluminosilicates and in particular to crystalline aluminosilicate slurries having controlled rheological properties.
- Crystalline aluminosilicates, or zeolites have found use as fillers in such applications as the manufacture of paper. For such use, it is convenient to transport the zeolite in bulk in the form of an aqueous slurry.
- Particularly useful aqueous zeolite slurries having a relatively low pH value and containing a multivalent salt in addition to the zeolite are described in PCT application published as WO 01/94512. These slurries are stable and do not settle on standing but, because they have a lightly gelled structure, they can sometimes be difficult to fully discharge fully from a vessel.
- An object of this invention is to provide a modified version of such a slurry having a structure which is resistant to settling but is readily capable of being discharged from a vessel.
- an aqueous slurry comprises
- M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
- the silica has a BET surface area greater than 500 m 2 /g and a pore volume, as measured by nitrogen manometry of less than 2.1 cm 3 /g.
- the first metal M can be any metal capable of forming a crystalline aluminosilicate structure having the above empirical formula.
- M is an alkali metal and the preferred alkali metal is sodium.
- the crystalline aluminosilicates used in the invention are usually known as zeolites and can have the structure of any of the known zeolites.
- the structure and characteristics of many zeolites are described in the standard work “Zeolite Molecular Sieves” by Donald W. Breck, published by Robert E. Krieger Publishing Company.
- x in the above empirical formula is in the range 1.5 to 10.
- Zeolites useful in this invention may be based on naturally-occurring or synthetic aluminosilicates and the preferred forms of zeolite have the structure known as zeolite P, zeolite X or zeolite A.
- Particularly preferred forms of zeolite are those disclosed in EP-A-0 384 070, EP-A-0 565 364, EP-A-0 697 010, EP-A-0 742 780, WO-A-96/14270, WO-A-96/34828 and WO-A-97/06102, the entire contents of which are incorporated herein by this reference.
- the zeolite P described in EP-A-0 384 070 has the empirical formula given above in which M represents an alkali metal and x has a value up to 2.66, preferably in the range 1.8 to 2.66, and has a structure which is particularly useful in the present invention.
- Slurries useful in the paper industry preferably have an approximately neutral pH.
- Particularly useful slurries of this invention contain an amount of the mineral or organic acid which is sufficient to produce a slurry having a pH in the range 6 to 9, preferably in the range 7 to 9.
- the particle size of the crystalline aluminosilicates used in the slurries of this invention is adjusted to suit the intended use.
- the volume average particle size will be greater than 0.1 ⁇ m and, usually, less than 20 ⁇ m. More preferably, the crystalline aluminosilicates will have a volume average particle size in the range 0.5 to 10 ⁇ m.
- the crystalline aluminosilicate preferably has a volume average particle size in the range 1 to 5 ⁇ m.
- a size distribution is obtained by light scattering from particles dispersed by ultrasound in demineralised water using a Malvern Mastersizer®.
- the volume average particle size is the average particle size at 50 percent cumulative volume as determined from the distribution.
- the amount of crystalline aluminosilicate, expressed as dry weight of aluminosilicate present in the slurry is usually above 20 percent by weight and often above 30 percent by weight.
- the upper practical limit on the amount of aluminosilicate in the slurry will depend upon the viscosity of the slurry, which is likely to be too high for use in many applications when more than 65 percent dry weight of aluminosilicate is present.
- the amount of crystalline aluminosilicate, expressed as dry weight of aluminosilicate present in the slurry is in the range 43 to 60 percent by weight, more preferably 43 to 55 percent by weight, most preferably 43 to 52 percent by weight.
- dry aluminosilicate is considered to be aluminosilicate which has been heated at 105° C. to constant weight.
- Suitable mineral acids include sulphuric acid, hydrochloric acid and nitric acid.
- An example of a suitable organic acid is acetic acid.
- the slurry can also contain silica having a BET surface area greater than 500 m 2 /g.
- the silica has a BET surface area greater than 550 m 2 /g, more preferably greater than 600 m 2 /g.
- the surface area is less than 1200 m 2 /g.
- the silica can also have a pore volume as measured by nitrogen manometry of less than 2.1 cm 3 /g.
- the pore volume is less than 1.2 cm 3 /g, more preferably the pore volume is less than 0.5 cm 3 /g.
- the silica is silica gel or a precipitated silica.
- the silica preferably has a volume average particle size in the range 0.5 to 30 ⁇ m, as measured by Malvern Mastersizer®. More preferably, the volume average particle size of the silica is in the range 2 to 15 ⁇ m.
- the silica is preferably present in the slurry in an amount in the range 0.2 to 40 percent by weight with respect to the dry weight of crystalline aluminosilicate. More preferably, the amount of silica present is in the range 0.5 to 15 percent by weight with respect to dry weight of crystalline aluminosilicate and frequently, the amount of silica used is in the range 0.2 to 5.0 percent by weight with respect to dry weight of crystalline aluminosilicate.
- the crystalline aluminosilicate used in the invention can be prepared by a conventional process.
- a zeolite of type A can be prepared by mixing together sodium aluminate and sodium silicate at a temperature within the range of ambient temperature up to boiling point to form a gel, ageing the gel with stirring at a temperature usually in the range 70 to 95° C., separating the crystalline sodium aluminosilicate thus formed, washing, generally at a pH in the range 10 to 12.5, and drying.
- Zeolite of type P can be prepared by a similar process but zeolite type P formation is induced by the addition of type P seeds to the mixture of sodium aluminate and sodium silicate.
- M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
- the slurry of the invention can be prepared in a number of ways.
- the crystalline aluminosilicate, mineral or organic acid and water can be mixed in any order. Therefore, according to yet another aspect of the invention there is provided a method of making an aqueous slurry comprising mixing
- M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
- a preferred method comprises forming a precursor slurry containing the acid and the crystalline aluminosilicate and subsequently adding the silica.
- the volume average particle size of the silica is determined using a Malvern Mastersizer® model S, with a 300 RF lens and MS17 sample presentation unit.
- This instrument made by Malvern Instruments, Malvern, Worcestershire uses the principle of Fraunhofer diffraction, utilising a low power He/Ne laser. Before measurement the sample is dispersed ultrasonically at 25 W ultrasound power in demineralised water for 5 minutes to form an aqueous suspension.
- the Malvern Mastersizer® measures the volume particle size distribution of the silica.
- the volume average particle size (d 50 ) or 50 percentile is easily obtained from the data generated by the instrument. Other percentiles, such as the 90 percentile (d 90 ), are readily obtained.
- Zeolite A24 is a P type zeolite sold by INEOS Silicas Limited under the trade mark Doucil A24. It had a volume average particle size as measured by Malvern Mastersizer® of 1.5 ⁇ m.
- the silica was a silica gel sold by INEOS Silicas Limited under the Trade Name Sorbosil AC30. It had a volume average particle size of 7.9 ⁇ m, a pore volume to nitrogen of 0.39 cm 3 g ⁇ 1 and BET surface area of 725 m 2 g ⁇ 1 .
- Sulphuric acid was received at 40 weight percent and diluted with demineralised water to 10 weight percent before being added to the mixtures.
- the amount of acid added is expressed at 100 weight percent in Table 1.
- the rheological properties of the slurries were determined immediately after the slurries were prepared using a Mettler Toledo RM 180 Rheomat rheometer, at 22 ⁇ 1° C., with a Mooney cup and bob geometry. The samples were shaken by hand prior to measurement but were not sheared vigorously. The rheometer programme consisted of shearing the sample at a set shear rate for 30 seconds, after which a shear stress measurement was taken at that shear rate. Measurements were taken at 10, 20, 30, 40, 60, 100, 200, 350 and 500 s ⁇ 1 . The Brookfield viscosity measurements were also carried out at 22 ⁇ 1° C., with the viscosity being recorded after 1 minute of shearing at 20 rpm. The spindle chosen for each sample is indicated in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Paper (AREA)
Abstract
Description
- This invention relates to aqueous slurries of crystalline aluminosilicates and in particular to crystalline aluminosilicate slurries having controlled rheological properties.
- Crystalline aluminosilicates, or zeolites, have found use as fillers in such applications as the manufacture of paper. For such use, it is convenient to transport the zeolite in bulk in the form of an aqueous slurry. Particularly useful aqueous zeolite slurries having a relatively low pH value and containing a multivalent salt in addition to the zeolite are described in PCT application published as WO 01/94512. These slurries are stable and do not settle on standing but, because they have a lightly gelled structure, they can sometimes be difficult to fully discharge fully from a vessel.
- An object of this invention is to provide a modified version of such a slurry having a structure which is resistant to settling but is readily capable of being discharged from a vessel.
- According to the invention, an aqueous slurry comprises
-
- (a) a crystalline aluminosilicate represented by the empirical formula
M2/nO.Al2O3.xSiO2.yH2O
- (a) a crystalline aluminosilicate represented by the empirical formula
- wherein M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
-
- (b) a mineral or organic acid, and
- (c) particulate silica.
- Generally, the silica has a BET surface area greater than 500 m2/g and a pore volume, as measured by nitrogen manometry of less than 2.1 cm3/g.
- The above form of empirical formula is used for simplicity in expressing the molar ratios of the components, but it can be seen that the ratio of Si atoms to Al atoms in this formula is equal to x/2 and the ratio of water molecules to Al atoms is equal to y/2.
- The first metal M can be any metal capable of forming a crystalline aluminosilicate structure having the above empirical formula. Preferably, M is an alkali metal and the preferred alkali metal is sodium.
- The crystalline aluminosilicates used in the invention are usually known as zeolites and can have the structure of any of the known zeolites. The structure and characteristics of many zeolites are described in the standard work “Zeolite Molecular Sieves” by Donald W. Breck, published by Robert E. Krieger Publishing Company. Usually, the value of x in the above empirical formula is in the range 1.5 to 10. The value of y, which represents the amount of water contained in the voids of the zeolite, can vary widely. In anhydrous material y=0 and, in fully hydrated zeolites, y is typically up to 5.
- Zeolites useful in this invention may be based on naturally-occurring or synthetic aluminosilicates and the preferred forms of zeolite have the structure known as zeolite P, zeolite X or zeolite A. Particularly preferred forms of zeolite are those disclosed in EP-A-0 384 070, EP-A-0 565 364, EP-A-0 697 010, EP-A-0 742 780, WO-A-96/14270, WO-A-96/34828 and WO-A-97/06102, the entire contents of which are incorporated herein by this reference. The zeolite P described in EP-A-0 384 070 has the empirical formula given above in which M represents an alkali metal and x has a value up to 2.66, preferably in the range 1.8 to 2.66, and has a structure which is particularly useful in the present invention.
- Slurries useful in the paper industry preferably have an approximately neutral pH. Particularly useful slurries of this invention contain an amount of the mineral or organic acid which is sufficient to produce a slurry having a pH in the range 6 to 9, preferably in the range 7 to 9.
- The particle size of the crystalline aluminosilicates used in the slurries of this invention is adjusted to suit the intended use. Typically, the volume average particle size will be greater than 0.1 μm and, usually, less than 20 μm. More preferably, the crystalline aluminosilicates will have a volume average particle size in the range 0.5 to 10 μm. For use as a filler for papers, the crystalline aluminosilicate preferably has a volume average particle size in the range 1 to 5 μm.
- Various methods of assessing particle size are known and all give slightly different results. In the present invention, a size distribution is obtained by light scattering from particles dispersed by ultrasound in demineralised water using a Malvern Mastersizer®. The volume average particle size is the average particle size at 50 percent cumulative volume as determined from the distribution.
- The amount of crystalline aluminosilicate, expressed as dry weight of aluminosilicate present in the slurry is usually above 20 percent by weight and often above 30 percent by weight. The upper practical limit on the amount of aluminosilicate in the slurry will depend upon the viscosity of the slurry, which is likely to be too high for use in many applications when more than 65 percent dry weight of aluminosilicate is present. Preferably, the amount of crystalline aluminosilicate, expressed as dry weight of aluminosilicate present in the slurry, is in the range 43 to 60 percent by weight, more preferably 43 to 55 percent by weight, most preferably 43 to 52 percent by weight. For the purposes of this invention dry aluminosilicate is considered to be aluminosilicate which has been heated at 105° C. to constant weight.
- Examples of suitable mineral acids include sulphuric acid, hydrochloric acid and nitric acid. An example of a suitable organic acid is acetic acid.
- The slurry can also contain silica having a BET surface area greater than 500 m2/g. Preferably the silica has a BET surface area greater than 550 m2/g, more preferably greater than 600 m2/g. Usually the surface area is less than 1200 m2/g.
- The silica can also have a pore volume as measured by nitrogen manometry of less than 2.1 cm3/g. Preferably, the pore volume is less than 1.2 cm3/g, more preferably the pore volume is less than 0.5 cm3/g.
- Preferably, the silica is silica gel or a precipitated silica.
- The silica preferably has a volume average particle size in the range 0.5 to 30 μm, as measured by Malvern Mastersizer®. More preferably, the volume average particle size of the silica is in the range 2 to 15 μm.
- The silica is preferably present in the slurry in an amount in the range 0.2 to 40 percent by weight with respect to the dry weight of crystalline aluminosilicate. More preferably, the amount of silica present is in the range 0.5 to 15 percent by weight with respect to dry weight of crystalline aluminosilicate and frequently, the amount of silica used is in the range 0.2 to 5.0 percent by weight with respect to dry weight of crystalline aluminosilicate.
- The crystalline aluminosilicate used in the invention can be prepared by a conventional process. For example, a zeolite of type A can be prepared by mixing together sodium aluminate and sodium silicate at a temperature within the range of ambient temperature up to boiling point to form a gel, ageing the gel with stirring at a temperature usually in the range 70 to 95° C., separating the crystalline sodium aluminosilicate thus formed, washing, generally at a pH in the range 10 to 12.5, and drying. Zeolite of type P can be prepared by a similar process but zeolite type P formation is induced by the addition of type P seeds to the mixture of sodium aluminate and sodium silicate.
- According to another aspect of the invention there is provided the use, in the manufacture of paper, of an aqueous slurry comprising
-
- (a) a crystalline aluminosilicate represented by the empirical formula
M2/nO.Al2O3.xSiO2.yH2O
- (a) a crystalline aluminosilicate represented by the empirical formula
- wherein M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
-
- (b) a mineral or organic acid, and
- (c) particulate silica.
- The slurry of the invention can be prepared in a number of ways. The crystalline aluminosilicate, mineral or organic acid and water can be mixed in any order. Therefore, according to yet another aspect of the invention there is provided a method of making an aqueous slurry comprising mixing
-
- (a) a crystalline aluminosilicate represented by the empirical formula
M2/nO.Al2O3.xSiO2.yH2O
- (a) a crystalline aluminosilicate represented by the empirical formula
- wherein M represents a first metal moiety, said first metal having a valency of n, x is the molar ratio of silica to alumina and y indicates the molar ratio of water to alumina,
-
- (b) a mineral or organic acid,
- (c) particulate silica, and
- (d) water
- together to produce a slurry. A preferred method, however, comprises forming a precursor slurry containing the acid and the crystalline aluminosilicate and subsequently adding the silica.
- The following tests have been used in this invention.
- BET Surface Area and Pore Volume
- Surface area of the silicas were measured using standard nitrogen adsorption methods of Brunauer, Emmett and Teller (BET) using a multi-point method with an ASAP 2400 apparatus supplied by Micromeritics of USA. The method is consistent with the paper by S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938). The pore volume was determined by a single point method as described in the operation manual for the ASAP 2400 apparatus. Samples are outgassed under vacuum at 270° C. for 1 hour before measurement at about −196° C.
- Volume Average Particle Size
- The volume average particle size of the silica is determined using a Malvern Mastersizer® model S, with a 300 RF lens and MS17 sample presentation unit. This instrument, made by Malvern Instruments, Malvern, Worcestershire uses the principle of Fraunhofer diffraction, utilising a low power He/Ne laser. Before measurement the sample is dispersed ultrasonically at 25 W ultrasound power in demineralised water for 5 minutes to form an aqueous suspension. The Malvern Mastersizer® measures the volume particle size distribution of the silica. The volume average particle size (d50) or 50 percentile is easily obtained from the data generated by the instrument. Other percentiles, such as the 90 percentile (d90), are readily obtained.
- The invention is illustrated by the following non-limiting examples.
- Three slurries were prepared with the compositions given in Table 1 below.
TABLE 1 Sample A B C Demineralised Water/wt. % 47.8 49.3 48.6 Al2(SO4)3•14 H2O/wt % 1.5 0 0 Zeolite A24 (water content 7.03% 50 50 50 by drying at 105° C.)/wt. % Silica/wt. % 0.7 0 0.7 Sulphuric acid (100%)/wt. % 0 0.7 0.7 Sample size/g 1000 200 250 pH 7.64 8.12 8.05 Dry solids (loss at 105)/wt. % 46.6 48.6 Brookfield viscosity at 20 rpm/cps 3850 3700 955 (spindle 4) (spindle 5) (spindle 3) Mettler viscosity at 20 sec − 1/Pa s 0.819 0.609 0.284 - The amounts given above are parts by weight.
- Zeolite A24 is a P type zeolite sold by INEOS Silicas Limited under the trade mark Doucil A24. It had a volume average particle size as measured by Malvern Mastersizer® of 1.5 μm.
- The silica was a silica gel sold by INEOS Silicas Limited under the Trade Name Sorbosil AC30. It had a volume average particle size of 7.9 μm, a pore volume to nitrogen of 0.39 cm3g−1 and BET surface area of 725 m2g−1.
- Sulphuric acid was received at 40 weight percent and diluted with demineralised water to 10 weight percent before being added to the mixtures. The amount of acid added is expressed at 100 weight percent in Table 1.
- The rheological properties of the slurries were determined immediately after the slurries were prepared using a Mettler Toledo RM 180 Rheomat rheometer, at 22±1° C., with a Mooney cup and bob geometry. The samples were shaken by hand prior to measurement but were not sheared vigorously. The rheometer programme consisted of shearing the sample at a set shear rate for 30 seconds, after which a shear stress measurement was taken at that shear rate. Measurements were taken at 10, 20, 30, 40, 60, 100, 200, 350 and 500 s−1. The Brookfield viscosity measurements were also carried out at 22±1° C., with the viscosity being recorded after 1 minute of shearing at 20 rpm. The spindle chosen for each sample is indicated in Table 1.
Claims (19)
M2/nO.Al2O3.xSiO2.yH2O
M2/nO.Al2O3.xSiO2.yH2O
M2/nO.Al2O3.xSiO2.yH2O
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0410697.7A GB0410697D0 (en) | 2004-05-13 | 2004-05-13 | Stabilised aluminosilicate slurries |
GB0410697.7 | 2004-05-13 | ||
PCT/GB2005/001728 WO2005110920A1 (en) | 2004-05-13 | 2005-05-06 | Stabilised aluminosilicate slurries |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080006377A1 true US20080006377A1 (en) | 2008-01-10 |
Family
ID=32526988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/568,903 Abandoned US20080006377A1 (en) | 2004-05-13 | 2005-05-06 | Stabilised Aluminosilicate Slurries |
Country Status (16)
Country | Link |
---|---|
US (1) | US20080006377A1 (en) |
EP (1) | EP1744989B1 (en) |
KR (1) | KR20070014197A (en) |
CN (1) | CN1997592B (en) |
AT (1) | ATE427912T1 (en) |
AU (1) | AU2005243854B2 (en) |
BR (1) | BRPI0511042A (en) |
CA (1) | CA2565696A1 (en) |
DE (1) | DE602005013762D1 (en) |
ES (1) | ES2324881T3 (en) |
GB (1) | GB0410697D0 (en) |
MY (1) | MY142271A (en) |
PL (1) | PL1744989T3 (en) |
SI (1) | SI1744989T1 (en) |
WO (1) | WO2005110920A1 (en) |
ZA (1) | ZA200609334B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10815358B2 (en) | 2016-09-09 | 2020-10-27 | Lg Chem, Ltd. | Reinforcing material for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same |
US10875980B2 (en) | 2016-09-09 | 2020-12-29 | Lg Chem, Ltd. | Reinforcing material for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4405484A (en) * | 1980-08-12 | 1983-09-20 | Toyo Soda Manufacturing Co., Ltd. | Zeolite powder having high flowability, process for preparing same and detergent composition containing same |
US4405483A (en) * | 1982-04-27 | 1983-09-20 | The Procter & Gamble Company | Stable liquid detergents containing aluminosilicate ion exchange material |
US4622166A (en) * | 1982-03-17 | 1986-11-11 | Mizusawa Kagaku Kogyo Kabushiki Kaisha | Process for preparation of zeolite slurry excellent in static stability and dynamic stability |
US5206195A (en) * | 1990-05-31 | 1993-04-27 | Kanebo Ltd. | Stablized synthetic zeolite and a process for the preparation thereof |
US6670311B1 (en) * | 1998-08-28 | 2003-12-30 | Quest International Bv | Granular compositions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6197499A (en) * | 1984-10-09 | 1986-05-15 | 旭硝子株式会社 | Production of paper filler |
GB0225177D0 (en) * | 2002-10-30 | 2002-12-11 | Ineos Silicas Ltd | Stabilised aluminosilicate slurries |
-
2004
- 2004-05-13 GB GBGB0410697.7A patent/GB0410697D0/en not_active Ceased
-
2005
- 2005-05-06 CA CA002565696A patent/CA2565696A1/en not_active Abandoned
- 2005-05-06 BR BRPI0511042-4A patent/BRPI0511042A/en not_active IP Right Cessation
- 2005-05-06 AU AU2005243854A patent/AU2005243854B2/en not_active Ceased
- 2005-05-06 CN CN2005800148563A patent/CN1997592B/en not_active Expired - Fee Related
- 2005-05-06 WO PCT/GB2005/001728 patent/WO2005110920A1/en active Application Filing
- 2005-05-06 PL PL05740370T patent/PL1744989T3/en unknown
- 2005-05-06 ES ES05740370T patent/ES2324881T3/en not_active Expired - Lifetime
- 2005-05-06 DE DE602005013762T patent/DE602005013762D1/en not_active Expired - Lifetime
- 2005-05-06 AT AT05740370T patent/ATE427912T1/en active
- 2005-05-06 SI SI200530716T patent/SI1744989T1/en unknown
- 2005-05-06 EP EP05740370A patent/EP1744989B1/en not_active Expired - Lifetime
- 2005-05-06 KR KR1020067026122A patent/KR20070014197A/en not_active Withdrawn
- 2005-05-06 US US11/568,903 patent/US20080006377A1/en not_active Abandoned
- 2005-05-12 MY MYPI20052157A patent/MY142271A/en unknown
-
2006
- 2006-11-09 ZA ZA200609334A patent/ZA200609334B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4405484A (en) * | 1980-08-12 | 1983-09-20 | Toyo Soda Manufacturing Co., Ltd. | Zeolite powder having high flowability, process for preparing same and detergent composition containing same |
US4622166A (en) * | 1982-03-17 | 1986-11-11 | Mizusawa Kagaku Kogyo Kabushiki Kaisha | Process for preparation of zeolite slurry excellent in static stability and dynamic stability |
US4405483A (en) * | 1982-04-27 | 1983-09-20 | The Procter & Gamble Company | Stable liquid detergents containing aluminosilicate ion exchange material |
US5206195A (en) * | 1990-05-31 | 1993-04-27 | Kanebo Ltd. | Stablized synthetic zeolite and a process for the preparation thereof |
US6670311B1 (en) * | 1998-08-28 | 2003-12-30 | Quest International Bv | Granular compositions |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10815358B2 (en) | 2016-09-09 | 2020-10-27 | Lg Chem, Ltd. | Reinforcing material for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same |
US10875980B2 (en) | 2016-09-09 | 2020-12-29 | Lg Chem, Ltd. | Reinforcing material for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same |
Also Published As
Publication number | Publication date |
---|---|
AU2005243854B2 (en) | 2011-01-20 |
CN1997592A (en) | 2007-07-11 |
SI1744989T1 (en) | 2009-12-31 |
AU2005243854A1 (en) | 2005-11-24 |
EP1744989A1 (en) | 2007-01-24 |
CA2565696A1 (en) | 2005-11-24 |
BRPI0511042A (en) | 2007-11-27 |
DE602005013762D1 (en) | 2009-05-20 |
EP1744989B1 (en) | 2009-04-08 |
GB0410697D0 (en) | 2004-06-16 |
ZA200609334B (en) | 2008-06-25 |
CN1997592B (en) | 2011-03-30 |
MY142271A (en) | 2010-11-15 |
ATE427912T1 (en) | 2009-04-15 |
PL1744989T3 (en) | 2009-10-30 |
ES2324881T3 (en) | 2009-08-18 |
WO2005110920A1 (en) | 2005-11-24 |
KR20070014197A (en) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2679638B1 (en) | High solids aqueous mineral and/or filler and/or pigment suspension in acidic pH environment | |
CN108699352A (en) | Material calciferous is wrapped in alkoxy silane processing | |
US20110037023A1 (en) | Stabilised Aluminosilicate Slurries | |
WO1994011302A1 (en) | Silicas | |
US9903072B2 (en) | Compositions comprising kaolin treated with a styrene-based polymer and related methods | |
AU754703B2 (en) | Low abrasion calcined kaolin pigments and enhanced filtration method | |
US20080006377A1 (en) | Stabilised Aluminosilicate Slurries | |
JP2020513058A (en) | Pigment composition containing surface-modified calcium carbonate and ground natural calcium carbonate | |
JP2019511586A (en) | Production process of white pigment containing product | |
US20060275203A1 (en) | Calco-magnesian aqueous suspension and method for the production thereof | |
JP5096028B2 (en) | Slurry containing light calcium carbonate-silica composite and aluminum-based water-soluble inorganic compound | |
TW202341960A (en) | Precipitated silica and methods thereof | |
JP6942715B2 (en) | Manufacturing process of white pigment-containing product | |
CA2592518C (en) | Process for preparing amorphous silica from kimberlite tailing | |
KR20210153658A (en) | Method for producing surface-reacted calcium carbonate | |
NZ222713A (en) | A structured kaolin pigment having enhanced light scattering and opacifying properties and process of preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INEOS SILICAS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEBBING, SIMON RICHARD;ELLISON, STEPHEN GEORGE;TOFT, ALEXIS JOHN;REEL/FRAME:018726/0316 Effective date: 20061213 |
|
AS | Assignment |
Owner name: PQ SILICAS UK LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF U.S. PATENTS;ASSIGNOR:INEOS SILICAS LIMITED;REEL/FRAME:021301/0001 Effective date: 20080626 Owner name: PQ SILICAS UK LIMITED,UNITED KINGDOM Free format text: ASSIGNMENT OF U.S. PATENTS;ASSIGNOR:INEOS SILICAS LIMITED;REEL/FRAME:021301/0001 Effective date: 20080626 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |