US20070231761A1 - Integration of oxy-fuel and air-fuel combustion - Google Patents
Integration of oxy-fuel and air-fuel combustion Download PDFInfo
- Publication number
- US20070231761A1 US20070231761A1 US11/395,141 US39514106A US2007231761A1 US 20070231761 A1 US20070231761 A1 US 20070231761A1 US 39514106 A US39514106 A US 39514106A US 2007231761 A1 US2007231761 A1 US 2007231761A1
- Authority
- US
- United States
- Prior art keywords
- fuel
- oxidant
- burner
- conduit
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/007—Supplying oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C5/00—Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/235—Heating the glass
- C03B5/2353—Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/02—Disposition of air supply not passing through burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/32—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2211/00—Heating processes for glass melting in glass melting furnaces
- C03B2211/40—Heating processes for glass melting in glass melting furnaces using oxy-fuel burners
- C03B2211/60—Heating processes for glass melting in glass melting furnaces using oxy-fuel burners oxy-fuel burner construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07021—Details of lances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
Definitions
- the present invention relates to combustion of fuel in a furnace, and especially in a furnace used to heat solid and liquid materials and/or to melt solid materials, as the materials are held in or passing through the furnace.
- the heat is applied to the material in a furnace in which the material has been placed, or through which the material is passed.
- the heat is obtained by combustion within the furnace, at one or more burners where fuel is burned to produce heat of combustion.
- the burner or burners In many furnaces the burner or burners combust fuel with air, which of course contains the oxygen needed for the combustion. Such combustion is termed “air-fuel combustion” and burners at which air-fuel combustion occurs are termed “air-fuel burners”. In many other applications the burner or burners combust fuel with a gaseous oxidant that contains oxygen in a concentration higher than that of air, ranging from 25 vol. % to 99 vol. % depending on the application and other considerations such as (but not limited to) economics, the higher temperature at which the combustion (termed “oxy-fuel combustion”) occurs, and the opportunity to generate a smaller amount of nitrogen oxides. Oxy-fuel combustion often requires the use of burners (termed “oxy-fuel burners”) that are adapted for oxy-fuel combustion, in particular in their ability to withstand the higher combustion temperatures obtained in oxy-fuel combustion.
- Some applications attempt to use both air-fuel combustion and oxy-fuel combustion.
- One example occurs in steel reheating furnaces, in which a piece (slab, bloom or billet) of steel is passed through a furnace wherein the piece is heated first by the heat provided from one or more air-fuel burners and then (as it continues its passage through the furnace) by heat provided from one or more oxy-fuel burners.
- the advantages of oxy-fuel combustion have led operators to remove air-fuel burners and replace them with oxy-fuel burners or add additional zones composed of oxy-fuel burners.
- the present invention in one aspect, is combustion apparatus comprising
- control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
- oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
- Another aspect of the present invention is a burner apparatus comprising
- control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
- oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
- Another aspect of the present invention is a method for retrofitting an air-fired furnace, comprising
- FIG. 1 is a cross-sectional view of a burner with which the present invention can be practiced.
- FIG. 2 is a cross-sectional view of one embodiment of the present invention.
- FIG. 3 is a plan view of a wall of a furnace showing the embodiment of the invention that is shown in FIG. 2 .
- FIG. 4 is a plan view of a wall of a furnace showing another embodiment of the present invention.
- FIG. 5 is a plan view of a wall of a furnace showing yet another embodiment of the present invention.
- FIG. 6 is a plan view of a wall of a furnace showing another embodiment of the present invention.
- FIG. 7 is a schematic representation of combustion in one embodiment of the invention.
- FIG. 8 is a schematic representation of combustion in another embodiment of the invention.
- the invention can be practiced in any furnace of conventional design, which will typically comprise an enclosure within which combustion at high temperature takes place.
- the enclosure is typically lined with material such as refractory furnace brick or the equivalent that can withstand temperatures of several thousand degrees which are generated within the furnace enclosure.
- the floor, all sides, and the roof of the furnace are all lined with such material.
- furnaces with which this invention can be practiced include steel reheating furnaces and other furnaces through which solid material is passed to be heated, as well as glass melting furnaces and other furnaces in which material fed to the furnace is to be melted or to be maintained in a molten state.
- FIG. 1 depicts one typical burner currently employed to combust fuel and air to establish the high temperature within a furnace.
- Burner 1 is located so that it opens through wall 2 of the furnace toward combustion zone 3 .
- Burner 1 includes fuel passage 4 and air passages 5 .
- Fuel is fed through fuel passage 4 into combustion zone 3 inside the furnace and combusts with the oxygen contained in air that is fed through air passages 5 , thereby establishing a flame and providing heat of combustion to combustion zone 3 and throughout the interior of the furnace.
- Suitable fuels for this air-fuel combustion include gaseous hydrocarbons, such as natural gas and methane, byproduct gases produced in steel mills, such as coke oven gas and blast furnace gas, mixtures of these gaseous fuels, as well as liquid fuels such as atomized fuel oil, and solid fuels such as pulverized coal.
- gaseous hydrocarbons such as natural gas and methane
- byproduct gases produced in steel mills such as coke oven gas and blast furnace gas
- liquid fuels such as atomized fuel oil
- solid fuels such as pulverized coal.
- Apparatus indicated schematically as 13 in FIGS. 1 and 2 , regulates the flow rate of fuel into and through fuel passage 4 , and regulates whether fuel is permitted to flow into and through fuel passage 4 .
- Other apparatus indicated schematically as 16 in FIGS. 1 and 2 , regulates the flow rate of combustion air into and through air passages 5 .
- the present invention can add to burners that combust fuel in an air-fuel mode of combustion the capability to selectively combust fuel in an oxy-fuel mode of combustion.
- This capability can be added by, among other things, providing a way to feed oxidant having a higher oxygen content than the oxygen content of air into combustion zone 3 .
- the oxygen has an oxygen concentration of at least 25 vol. %, and more preferably at least 90 vol. %.
- FIG. 2 depicts oxidant lance 14 that has been situated in an air passage 5 .
- Oxidant lance 14 is fed by suitable apparatus, indicated schematically as 15 in FIG. 2 , which supplies the oxidant and can controllably regulate the flow rate of oxidant into and through lance 14 and can also controllably regulate whether or not oxidant is even permitted to flow into and through oxidant lance 14 .
- the present invention can be operated so that in the oxy-fuel combustion mode the fuel that is combusted is the same as the fuel that is combusted in the air-fuel combustion mode. In such cases, the fuel can be supplied through fuel passage 4 .
- the fuel for oxy-fuel combustion is fed through a second fuel conduit.
- One such second fuel conduit is shown in FIG.
- fuel lance 11 which is situated within fuel passage 4 so that the orifice of lance 11 is sufficiently close to the opening of fuel passage 4 that a flame formed upon combustion of fuel that is fed from the end of fuel lance 11 is well supported and extends into combustion zone 3 .
- Fuel is fed into fuel lance 11 from a source, indicated schematically as 12 in FIG. 2 , which also controls the flow rate of fuel into and through fuel lance 11 and controls whether or not fuel can flow into and through fuel lance 11 as well as the ratio of fuel flow through fuel lance 11 and through fuel passage 4 .
- the second fuel conduit will be required that is capable of feeding the fuel into the combustion zone 3 at the requisite higher velocity. If NOx formation from combustion in the furnace is not an issue, then the existing fuel conduit can be employed with the oxidant conduit described herein. If NOx formation is an issue, then the second fuel conduit could be integrated into the air-fuel burner through its fuel conduit if it is suitably sized, or through a hole leading into the combustion air conduit, or outside the burner through a hole in the wall of the furnace as shown in FIG. 5 .
- FIG. 3 is a view of the front of the burner depicted in FIG. 2 seen from inside the furnace enclosure. There it can be seen that fuel lance 11 is located within fuel passage 4 , and oxidant lance 14 is located within air passage 5 .
- FIG. 4 depicts one such alternative embodiment, wherein the burner and the fuel lance 11 serving as the second fuel conduit are as described with respect to FIGS. 2 and 3 , but the oxidant is supplied through lance 14 which discharges oxidant into combustion zone 3 within the furnace from a point adjacent to the burner but outside the burner (meaning not within the space bounded by the external surface of the burner where it opens toward combustion zone 3 .
- FIG. 5 depicts another alternative embodiment, wherein the oxidant is supplied to the combustion zone through lance 14 which is located in air conduit 5 , and fuel lance 11 serving as the second fuel conduit discharges fuel into combustion zone 3 within the furnace from a point adjacent to the burner but outside the burner.
- FIG. 6 depicts another alternative embodiment, wherein both the oxidant lance 14 and the lance 11 serving as the second fuel conduit are located in air conduit 5 .
- the lance or other apparatus by which fuel is to be fed into combustion zone 3 in the oxy-fuel mode of operation, and the lance or other device through which oxidant is fed in to combustion zone 3 or the oxy-fuel mode of operation, must be oriented with respect to each other so that the oxidant mixing zone, into which the oxidant is fed as described hereinbelow, and the fuel reaction zone, into which the fuel is to be fed, are segregated (i.e., physically distinct from each other) within combustion zone 3 .
- the feeding of the oxygen and fuel, and the operation of the burner when it is in the oxy-fuel mode of operation should be carried out in accordance with the description contained in U.S. Pat. No.
- the oxidant is injected into combustion zone 3 with velocity sufficient to entrain or mix furnace gases that are in combustion zone 3 with the injected oxidant.
- the furnace gases comprise ambient gases which infiltrate into the combustion zone, and gases from the oxidant mixture and fuel reaction mixture.
- the velocity of the oxidant will be at least 200 feet per second and preferably is within the range of 250 to sonic velocity (1,070 feet per second at 70° F.).
- the velocity of the oxidant is such that sufficient furnace gases mix with the injected oxidant to dilute the oxygen concentration of the injected oxidant so that an oxidant mixture is produced within the oxidant mixing zone having an oxygen concentration of not more than 10 vol. % and preferably not more than 5 vol. %.
- oxygen concentration not more than 10 vol. % and preferably not more than 5 vol. %.
- the furnace gases mix with or are entrained into the oxidant due to the turbulence or the aspiration effect caused by the high velocity of the oxidant stream being fed into the oxidant mixing zone.
- the resulting oxidant mixture containing a significantly lower concentration of oxygen than was present in the injected oxidant, flows out from the oxidant mixing zone and serves to form part of the atmosphere within combustion zone 3 . That is, the oxidant mixture provides additional furnace gases to combustion zone 3 .
- furnace gases from the atmosphere within combustion zone 3 flow into and mix with the fuel stream due to the turbulence caused by the fuel stream injection, and the oxygen within the furnace gases combusts with the fuel in the fuel reaction zone.
- a small amount of fuel may react with the air supplied via air conduit 5 in a combustion zone of the furnace prior to the main combustion zone 3 .
- the temperature within the combustion zone 3 should exceed 1400° F. as temperatures below 1400° F. can result in flame instabilities.
- the fuel reacts with oxygen molecules in the furnace gases spontaneously, as the temperature of the furnace gas is above the auto-ignition temperature of the fuel and oxygen.
- the flame temperature is kept relatively low due to the presence of large amounts of non-reacting molecules such as carbon dioxide, water vapor, and molecular nitrogen in the fuel reaction zone.
- the combustion under these conditions in the fuel reaction zone produces heat of combustion and combustion reaction products such as carbon dioxide and water vapor but produces very little nitrogen oxides.
- the actual amount of nitrogen oxides produced varies with each particular situation and will depend on factors such as the furnace gas temperature, nitrogen concentration in the combustion zone and the residence time.
- the resulting fuel mixture including the combustion reaction products flows out of the fuel reaction mixture and serves to form part of the atmosphere within combustion zone 3 thus providing additional furnace gases to the combustion zone.
- the fuel undergoes substantially complete combustion so that there is no significant amount of uncombusted or incompletely combusted fuel in the combustion zone outside of the fuel reaction zone.
- the oxidant mixing zone and the fuel reaction zone can be maintained segregated as desired, by positioning the injection points (that is, the ends of lances 11 and 14 , for example) and orienting the injection directions, of the fuel and oxidant so as to avoid integration and overlap thereof prior to the requisite dilution of the oxidant within the oxidant mixing zone and the requisite substantially complete combustion of the fuel within the fuel reaction zone.
- the fuel and the oxidant are fed into the combustion zone 3 in a manner to achieve sufficient mixing within combustion zone 3 so that the combustion zone atmosphere outside of the oxidant mixing zone and of the fuel reaction zone is substantially homogeneous.
- the fuel and the oxidant are injected into combustion zone 3 in a manner to promote a recirculating pattern of furnace gases within combustion zone 3 . This recirculating pattern contributes to improved temperature distribution and gas homogeneity within the combustion zone 3 and improves the mixing within the oxidant mixing zone and within the fuel reaction zone, resulting in smoother combustion and retarding formation of NOx.
- the composition of the flue gas taken out of the combustion zone is substantially the same as the composition of the atmosphere at points within combustion zone 3 outside of the oxidant mixing zone and fuel reaction zone.
- This recirculation pattern also promotes the entrainment of the furnace gases downstream of the fuel reaction zone into the oxidant stream and the entrainment of the furnace gases downstream of the oxidant mixing zone into the fuel stream.
- the ratio of the fuel stream momentum flux to the oxidant stream momentum flux should be within 1:5 to 5:1 when injected from relatively close proximity, such as in the embodiments depicted in FIGS. 3-6 .
- FIGS. 7 and 8 illustrate two embodiments of the oxy-fuel mode of combustion that can be practiced.
- the letter “O” designates an oxidant mixing zone and the letter “F” designates the fuel mixing zone.
- the arrows pointed toward oxidant mixing zone “O” depict furnace gases being drawn toward and into the oxidant mixing zone, and the arrows pointed toward fuel reaction zone “F” depict furnace gases flowing toward and into the fuel reaction zone.
- an air-fuel burner into a burner which is capable of selectively carrying out air-fuel combustion and oxy-fuel combustion is aided by providing suitable controls so that the operator can controllably switch between an air-fuel combustion mode and an oxy-fuel combustion mode at the same burner.
- Providing this capability requires controls which can controllably minimize or in the limit, shut off or turn on, the flow of air through the air passages, and which can controllably shut off or turn on the flow of oxidant through the oxidant lance or other unit by which oxidant is fed to combustion zone 3 .
- the controls also permit regulation of the flow rates of the combustion air, and the flow rate of oxidant, through their respective conduits.
- control mechanism can comprise simply a regulating valve controlling the flow of oxidant to combustion zone 3 , and a regulating valve controlling the flow of air to the air passages of the burner. In most embodiments, one will desire to shut off one such flow completely when the other such flow is to be turned on.
- Commercially available oxygen supply equipment typically has double block valves (for safety), flow measurement devices, pressure switches and other instrumentation with which this level of control can be facilitated.
- the oxy-fuel mode usually requires a higher velocity fuel flow rate. Accordingly, the fuel supplied from the fuel delivery and metering system that is in place for supplying fuel to the fuel conduit for feeding fuel to the air-fuel burner for air-fuel combustion (e.g. typically, low velocity fuel supply) is switched to the second fuel conduit that is used for feeding fuel for oxy-fuel combustion (i.e. to the burner, or to a conduit 11 , or to a separate opening 11 as shown for instance in FIG. 5 ) This provides the benefit that the existing fuel supply and metering system is maintained and simply switched between conduits.
- the fuel supplied from the fuel delivery and metering system that is in place for supplying fuel to the fuel conduit for feeding fuel to the air-fuel burner for air-fuel combustion (e.g. typically, low velocity fuel supply) is switched to the second fuel conduit that is used for feeding fuel for oxy-fuel combustion (i.e. to the burner, or to a conduit 11 , or to a separate opening 11 as shown for instance in FIG. 5 )
- the controls preferably permit a base flow of air through the air conduit, even in the oxy-fuel combustion mode wherein oxidant is being fed and combusted.
- the controls give the operator the ability to gradually, controllably increase the ratio of the oxidant flow rate to the air flow rate until the desired combustion conditions are established.
- the resultant apparatus and its capability provide several significant advantages to the operator.
- One such advantage is that energy efficiency can be improved. That is, fuel consumed for a given amount of furnace output is improved, and the fuel costs can be reduced even taking into account the cost of the oxygen in the oxidant that is consumed.
- Another advantage is that productivity, in the sense of the amount of furnace output (such as the amount of steel that is reheated) in a given unit of time), is improved.
- this improvement can be attributed to the fact that combustion with oxidant having an elevated oxygen content relative to air can overcome the furnace's limitations in the amount of combustion air that it could be fed in the air-fuel combustion mode, and/or to the reduction in the volume of flue gas that must be discharged through the flue (since this flue gas will contain less nitrogen than flue gas generated in air-fuel combustion).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
A furnace is heated by a burner that can be selectively operated by either air-fuel or oxy-fuel combustion. The burner comprises a conduit for fuel, a conduit for air, a conduit for oxidant, and control means for regulating flow through the air and oxidant conduits. An air-fuel fired furnace can be modified by addition of the oxidant and fuel conduits and the control means for regulating flow through air and oxidant conduits.
Description
- The present invention relates to combustion of fuel in a furnace, and especially in a furnace used to heat solid and liquid materials and/or to melt solid materials, as the materials are held in or passing through the furnace.
- Many industrial processes require heating material to elevated temperatures, on the order of 1000° F. or higher. Examples are numerous but include heating or reheating steel prior to its being worked in a mill, and melting glassmaking materials to form a glassmelt from which glass products are formed.
- In many of these applications the heat is applied to the material in a furnace in which the material has been placed, or through which the material is passed. The heat is obtained by combustion within the furnace, at one or more burners where fuel is burned to produce heat of combustion.
- In many furnaces the burner or burners combust fuel with air, which of course contains the oxygen needed for the combustion. Such combustion is termed “air-fuel combustion” and burners at which air-fuel combustion occurs are termed “air-fuel burners”. In many other applications the burner or burners combust fuel with a gaseous oxidant that contains oxygen in a concentration higher than that of air, ranging from 25 vol. % to 99 vol. % depending on the application and other considerations such as (but not limited to) economics, the higher temperature at which the combustion (termed “oxy-fuel combustion”) occurs, and the opportunity to generate a smaller amount of nitrogen oxides. Oxy-fuel combustion often requires the use of burners (termed “oxy-fuel burners”) that are adapted for oxy-fuel combustion, in particular in their ability to withstand the higher combustion temperatures obtained in oxy-fuel combustion.
- Some applications attempt to use both air-fuel combustion and oxy-fuel combustion. One example occurs in steel reheating furnaces, in which a piece (slab, bloom or billet) of steel is passed through a furnace wherein the piece is heated first by the heat provided from one or more air-fuel burners and then (as it continues its passage through the furnace) by heat provided from one or more oxy-fuel burners. In addition, in some industrial heating processes the advantages of oxy-fuel combustion have led operators to remove air-fuel burners and replace them with oxy-fuel burners or add additional zones composed of oxy-fuel burners.
- There remains a need, however, to be able to selectively and alternatingly obtain the benefits of air-fuel combustion and oxy-fuel combustion, without having to undergo the expense and lost time that would be encountered in repeatedly removing air-fuel burners, replacing them with oxy-fuel burners, and then replacing the oxy-fuel burners with air-fuel burners, and continuing to repeat the cycle.
- The present invention, in one aspect, is combustion apparatus comprising
- (a) a furnace enclosing a combustion zone and having at least one burner through a wall of the furnace to which air is fed through an air conduit and fuel is fed through a burner fuel conduit from outside the furnace to be combusted at the burner within the combustion zone;
- (b) an oxidant conduit through which oxidant can be fed into the furnace from outside the furnace; and
- (c) control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
- wherein the oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
- Another aspect of the present invention is a burner apparatus comprising
- (a) a burner to which air is fed through an air conduit and fuel is fed through a burner fuel conduit to be combusted at the burner;
- (b) an oxidant conduit through which oxidant can be fed to the burner; and
- (c) control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
- wherein the oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
- Another aspect of the present invention is a method for retrofitting an air-fired furnace, comprising
- (a) providing a furnace enclosing a combustion zone and having at least one burner through a wall of the furnace to which air is fed through an air conduit and fuel is fed through a burner fuel conduit from outside the furnace to be combusted at the burner within the combustion zone;
- (b) providing an oxidant conduit through which oxidant can be fed into the furnace from outside the furnace;
- (c) providing control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled; and
- (d) orienting the oxidant conduit with respect to the burner fuel conduit so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
-
FIG. 1 is a cross-sectional view of a burner with which the present invention can be practiced. -
FIG. 2 is a cross-sectional view of one embodiment of the present invention. -
FIG. 3 is a plan view of a wall of a furnace showing the embodiment of the invention that is shown inFIG. 2 . -
FIG. 4 is a plan view of a wall of a furnace showing another embodiment of the present invention. -
FIG. 5 is a plan view of a wall of a furnace showing yet another embodiment of the present invention. -
FIG. 6 is a plan view of a wall of a furnace showing another embodiment of the present invention. -
FIG. 7 is a schematic representation of combustion in one embodiment of the invention. -
FIG. 8 is a schematic representation of combustion in another embodiment of the invention. - The invention can be practiced in any furnace of conventional design, which will typically comprise an enclosure within which combustion at high temperature takes place. The enclosure is typically lined with material such as refractory furnace brick or the equivalent that can withstand temperatures of several thousand degrees which are generated within the furnace enclosure. Preferably, the floor, all sides, and the roof of the furnace are all lined with such material. Examples of furnaces with which this invention can be practiced include steel reheating furnaces and other furnaces through which solid material is passed to be heated, as well as glass melting furnaces and other furnaces in which material fed to the furnace is to be melted or to be maintained in a molten state.
- The desired high temperature is established within the furnace by combustion carried out at one or more burners.
FIG. 1 depicts one typical burner currently employed to combust fuel and air to establish the high temperature within a furnace. Burner 1 is located so that it opens throughwall 2 of the furnace towardcombustion zone 3. Burner 1 includesfuel passage 4 andair passages 5. Fuel is fed throughfuel passage 4 intocombustion zone 3 inside the furnace and combusts with the oxygen contained in air that is fed throughair passages 5, thereby establishing a flame and providing heat of combustion tocombustion zone 3 and throughout the interior of the furnace. - Suitable fuels for this air-fuel combustion include gaseous hydrocarbons, such as natural gas and methane, byproduct gases produced in steel mills, such as coke oven gas and blast furnace gas, mixtures of these gaseous fuels, as well as liquid fuels such as atomized fuel oil, and solid fuels such as pulverized coal. The fuel and the air are supplied through their
respective passages - Apparatus, indicated schematically as 13 in
FIGS. 1 and 2 , regulates the flow rate of fuel into and throughfuel passage 4, and regulates whether fuel is permitted to flow into and throughfuel passage 4. Other apparatus, indicated schematically as 16 inFIGS. 1 and 2 , regulates the flow rate of combustion air into and throughair passages 5. - The present invention can add to burners that combust fuel in an air-fuel mode of combustion the capability to selectively combust fuel in an oxy-fuel mode of combustion. This capability can be added by, among other things, providing a way to feed oxidant having a higher oxygen content than the oxygen content of air into
combustion zone 3. Preferably, the oxygen has an oxygen concentration of at least 25 vol. %, and more preferably at least 90 vol. %. A preferred manner of carrying out this feeding is shown inFIG. 2 , which depictsoxidant lance 14 that has been situated in anair passage 5.Oxidant lance 14 is fed by suitable apparatus, indicated schematically as 15 inFIG. 2 , which supplies the oxidant and can controllably regulate the flow rate of oxidant into and throughlance 14 and can also controllably regulate whether or not oxidant is even permitted to flow into and throughoxidant lance 14. - The present invention can be operated so that in the oxy-fuel combustion mode the fuel that is combusted is the same as the fuel that is combusted in the air-fuel combustion mode. In such cases, the fuel can be supplied through
fuel passage 4. Alternatively, such as when the fuel that is combusted in the oxy-fuel combustion mode is different from the fuel that is combusted in the air-fuel combustion mode, or when the fuel fed in the oxy-fuel combustion mode must be fed at a higher flow rate, the fuel for oxy-fuel combustion is fed through a second fuel conduit. One such second fuel conduit is shown inFIG. 2 asfuel lance 11, which is situated withinfuel passage 4 so that the orifice oflance 11 is sufficiently close to the opening offuel passage 4 that a flame formed upon combustion of fuel that is fed from the end offuel lance 11 is well supported and extends intocombustion zone 3. Fuel is fed intofuel lance 11 from a source, indicated schematically as 12 inFIG. 2 , which also controls the flow rate of fuel into and throughfuel lance 11 and controls whether or not fuel can flow into and throughfuel lance 11 as well as the ratio of fuel flow throughfuel lance 11 and throughfuel passage 4. - As is described further below, in the oxy-fuel combustion mode the relative momentum of the fuel flow and the oxidant flow needs to be managed. In most cases where the oxidant conduit is within the burner, the second fuel conduit will be required that is capable of feeding the fuel into the
combustion zone 3 at the requisite higher velocity. If NOx formation from combustion in the furnace is not an issue, then the existing fuel conduit can be employed with the oxidant conduit described herein. If NOx formation is an issue, then the second fuel conduit could be integrated into the air-fuel burner through its fuel conduit if it is suitably sized, or through a hole leading into the combustion air conduit, or outside the burner through a hole in the wall of the furnace as shown inFIG. 5 . -
FIG. 3 is a view of the front of the burner depicted inFIG. 2 seen from inside the furnace enclosure. There it can be seen thatfuel lance 11 is located withinfuel passage 4, andoxidant lance 14 is located withinair passage 5. - Other embodiments that accomplish the same objectives of the invention can also be employed. Indeed, depending on the configuration of the air-fuel burner, and depending on the available space in the immediate area outside the burner, other configurations may be preferable for ease of construction and operation.
-
FIG. 4 depicts one such alternative embodiment, wherein the burner and thefuel lance 11 serving as the second fuel conduit are as described with respect toFIGS. 2 and 3 , but the oxidant is supplied throughlance 14 which discharges oxidant intocombustion zone 3 within the furnace from a point adjacent to the burner but outside the burner (meaning not within the space bounded by the external surface of the burner where it opens towardcombustion zone 3. -
FIG. 5 depicts another alternative embodiment, wherein the oxidant is supplied to the combustion zone throughlance 14 which is located inair conduit 5, andfuel lance 11 serving as the second fuel conduit discharges fuel intocombustion zone 3 within the furnace from a point adjacent to the burner but outside the burner. -
FIG. 6 depicts another alternative embodiment, wherein both theoxidant lance 14 and thelance 11 serving as the second fuel conduit are located inair conduit 5. - The lance or other apparatus by which fuel is to be fed into
combustion zone 3 in the oxy-fuel mode of operation, and the lance or other device through which oxidant is fed in tocombustion zone 3 or the oxy-fuel mode of operation, must be oriented with respect to each other so that the oxidant mixing zone, into which the oxidant is fed as described hereinbelow, and the fuel reaction zone, into which the fuel is to be fed, are segregated (i.e., physically distinct from each other) withincombustion zone 3. The feeding of the oxygen and fuel, and the operation of the burner when it is in the oxy-fuel mode of operation, should be carried out in accordance with the description contained in U.S. Pat. No. 5,076,779, the entire content of which is hereby incorporated herein by reference. In particular, the oxidant is injected intocombustion zone 3 with velocity sufficient to entrain or mix furnace gases that are incombustion zone 3 with the injected oxidant. The furnace gases comprise ambient gases which infiltrate into the combustion zone, and gases from the oxidant mixture and fuel reaction mixture. Generally the velocity of the oxidant will be at least 200 feet per second and preferably is within the range of 250 to sonic velocity (1,070 feet per second at 70° F.). The velocity of the oxidant is such that sufficient furnace gases mix with the injected oxidant to dilute the oxygen concentration of the injected oxidant so that an oxidant mixture is produced within the oxidant mixing zone having an oxygen concentration of not more than 10 vol. % and preferably not more than 5 vol. %. When pure oxygen or oxygen-enriched air is used as the oxidant, higher entrainment of the furnace gas is required to reduce the oxygen concentration to the desired lower levels. No combustion reaction takes place in this zone because the furnace atmosphere entrained into the oxidant jet is substantially free of fuel. - The furnace gases mix with or are entrained into the oxidant due to the turbulence or the aspiration effect caused by the high velocity of the oxidant stream being fed into the oxidant mixing zone. The resulting oxidant mixture, containing a significantly lower concentration of oxygen than was present in the injected oxidant, flows out from the oxidant mixing zone and serves to form part of the atmosphere within
combustion zone 3. That is, the oxidant mixture provides additional furnace gases tocombustion zone 3. - When fuel is injected into
combustion zone 3 during the oxy-fuel mode of operation of the invention, furnace gases from the atmosphere withincombustion zone 3 flow into and mix with the fuel stream due to the turbulence caused by the fuel stream injection, and the oxygen within the furnace gases combusts with the fuel in the fuel reaction zone. Depending on the amount of air delivered throughair conduit 5 and the relative location offuel lance 11, a small amount of fuel may react with the air supplied viaair conduit 5 in a combustion zone of the furnace prior to themain combustion zone 3. - The temperature within the
combustion zone 3 should exceed 1400° F. as temperatures below 1400° F. can result in flame instabilities. The fuel reacts with oxygen molecules in the furnace gases spontaneously, as the temperature of the furnace gas is above the auto-ignition temperature of the fuel and oxygen. However, since the oxygen concentration is relatively low, the flame temperature is kept relatively low due to the presence of large amounts of non-reacting molecules such as carbon dioxide, water vapor, and molecular nitrogen in the fuel reaction zone. The combustion under these conditions in the fuel reaction zone produces heat of combustion and combustion reaction products such as carbon dioxide and water vapor but produces very little nitrogen oxides. The actual amount of nitrogen oxides produced varies with each particular situation and will depend on factors such as the furnace gas temperature, nitrogen concentration in the combustion zone and the residence time. - The resulting fuel mixture including the combustion reaction products flows out of the fuel reaction mixture and serves to form part of the atmosphere within
combustion zone 3 thus providing additional furnace gases to the combustion zone. Within the fuel reaction zone, the fuel undergoes substantially complete combustion so that there is no significant amount of uncombusted or incompletely combusted fuel in the combustion zone outside of the fuel reaction zone. - It is important in the practice of the oxy-fuel combustion mode of this invention that the oxidant mixing zone and the fuel reaction zone are maintained separate from each other (or “segregated”) within
combustion zone 3. In this way, combustion is restricted primarily to the fuel reaction zone and under conditions which dampen formation of nitrogen oxides (“NOx”). Although various steps of this mode of combustion are described in sequence, those skilled in the art will appreciate that the steps of this method are conducted simultaneously and continuously. - The oxidant mixing zone and the fuel reaction zone can be maintained segregated as desired, by positioning the injection points (that is, the ends of
lances - The fuel and the oxidant are fed into the
combustion zone 3 in a manner to achieve sufficient mixing withincombustion zone 3 so that the combustion zone atmosphere outside of the oxidant mixing zone and of the fuel reaction zone is substantially homogeneous. In a particularly preferred embodiment, the fuel and the oxidant are injected intocombustion zone 3 in a manner to promote a recirculating pattern of furnace gases withincombustion zone 3. This recirculating pattern contributes to improved temperature distribution and gas homogeneity within thecombustion zone 3 and improves the mixing within the oxidant mixing zone and within the fuel reaction zone, resulting in smoother combustion and retarding formation of NOx. With optimum furnace gas recirculation withincombustion zone 3, the composition of the flue gas taken out of the combustion zone is substantially the same as the composition of the atmosphere at points withincombustion zone 3 outside of the oxidant mixing zone and fuel reaction zone. This recirculation pattern also promotes the entrainment of the furnace gases downstream of the fuel reaction zone into the oxidant stream and the entrainment of the furnace gases downstream of the oxidant mixing zone into the fuel stream. - It is particularly preferred to feed the oxidant stream and the fuel stream, in the oxy-fuel combustion mode of operation of the invention, at high velocities and away from each other so that the oxidant mixing zone and the fuel reaction zone do not overlap. Preferably, the ratio of the fuel stream momentum flux to the oxidant stream momentum flux should be within 1:5 to 5:1 when injected from relatively close proximity, such as in the embodiments depicted in
FIGS. 3-6 . -
FIGS. 7 and 8 illustrate two embodiments of the oxy-fuel mode of combustion that can be practiced. The letter “O” designates an oxidant mixing zone and the letter “F” designates the fuel mixing zone. The arrows pointed toward oxidant mixing zone “O” depict furnace gases being drawn toward and into the oxidant mixing zone, and the arrows pointed toward fuel reaction zone “F” depict furnace gases flowing toward and into the fuel reaction zone. - The adaptation of an air-fuel burner into a burner which is capable of selectively carrying out air-fuel combustion and oxy-fuel combustion is aided by providing suitable controls so that the operator can controllably switch between an air-fuel combustion mode and an oxy-fuel combustion mode at the same burner. Providing this capability requires controls which can controllably minimize or in the limit, shut off or turn on, the flow of air through the air passages, and which can controllably shut off or turn on the flow of oxidant through the oxidant lance or other unit by which oxidant is fed to
combustion zone 3. Preferably, the controls also permit regulation of the flow rates of the combustion air, and the flow rate of oxidant, through their respective conduits. In its simplest mode, the control mechanism can comprise simply a regulating valve controlling the flow of oxidant tocombustion zone 3, and a regulating valve controlling the flow of air to the air passages of the burner. In most embodiments, one will desire to shut off one such flow completely when the other such flow is to be turned on. Commercially available oxygen supply equipment typically has double block valves (for safety), flow measurement devices, pressure switches and other instrumentation with which this level of control can be facilitated. - In addition, in those embodiments in which the same fuel is used whether the combustion is air-fuel or oxy-fuel, no additional controls need to be provided so long as controls were already present to regulate the flow rate of fuel through the burner into
combustion zone 3. However, in those embodiments wherein a different fuel, or a different fuel feed conduit, is provided depending on whether the combustion is air-fuel or oxy-fuel, then controls should be provided that permit the operator to shut off the flow of fuel associated with the air-fuel combustion when the oxy-fuel combustion mode is to be operated, and to shut off the flow of fuel associated with the oxy-fuel combustion when the air-fuel combustion mode is to be operated. However, even when the same fuel is combusted in the air-fuel and oxy-fuel modes, the oxy-fuel mode usually requires a higher velocity fuel flow rate. Accordingly, the fuel supplied from the fuel delivery and metering system that is in place for supplying fuel to the fuel conduit for feeding fuel to the air-fuel burner for air-fuel combustion (e.g. typically, low velocity fuel supply) is switched to the second fuel conduit that is used for feeding fuel for oxy-fuel combustion (i.e. to the burner, or to aconduit 11, or to aseparate opening 11 as shown for instance inFIG. 5 ) This provides the benefit that the existing fuel supply and metering system is maintained and simply switched between conduits. - The controls preferably permit a base flow of air through the air conduit, even in the oxy-fuel combustion mode wherein oxidant is being fed and combusted. The controls give the operator the ability to gradually, controllably increase the ratio of the oxidant flow rate to the air flow rate until the desired combustion conditions are established.
- When the air-fuel burner has been fitted as described herein, to provide the capability to controllably carry out oxy-fuel combustion and air-fuel combustion at the same burner, and to controllably alternate as desired between air-fuel combustion and oxy-fuel combustion at the same burner, the resultant apparatus and its capability provide several significant advantages to the operator. One such advantage is that energy efficiency can be improved. That is, fuel consumed for a given amount of furnace output is improved, and the fuel costs can be reduced even taking into account the cost of the oxygen in the oxidant that is consumed. Another advantage is that productivity, in the sense of the amount of furnace output (such as the amount of steel that is reheated) in a given unit of time), is improved. Depending on the characteristics of the furnace before retrofitting as described herein, this improvement can be attributed to the fact that combustion with oxidant having an elevated oxygen content relative to air can overcome the furnace's limitations in the amount of combustion air that it could be fed in the air-fuel combustion mode, and/or to the reduction in the volume of flue gas that must be discharged through the flue (since this flue gas will contain less nitrogen than flue gas generated in air-fuel combustion).
Claims (30)
1. Combustion apparatus comprising
(a) a furnace enclosing a combustion zone and having at least one burner through a wall of the furnace to which air is fed through an air conduit and fuel is fed through a burner fuel conduit from outside the furnace to be combusted at the burner within the combustion zone;
(b) an oxidant conduit through which oxidant can be fed into the furnace from outside the furnace; and
(c) control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
wherein the oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
2. Combustion apparatus according to claim 1 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
3. Combustion apparatus according to claim 1 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
4. Combustion apparatus according to claim 1 further comprising a second fuel conduit through which fuel is fed from outside the furnace to be combusted within the combustion zone.
5. Combustion apparatus according to claim 4 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
6. Combustion apparatus according to claim 5 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
7. Combustion apparatus according to claim 5 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
8. Combustion apparatus according to claim 4 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
9. Combustion apparatus according to claim 8 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
10. Combustion apparatus according to claim 8 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
11. Burner apparatus comprising
(a) a burner to which air is fed through an air conduit and fuel is fed through a burner fuel conduit to be combusted in a combustion zone at the burner;
(b) an oxidant conduit through which oxidant can be fed to the burner; and
(c) control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
wherein the oxidant conduit and the burner fuel conduit are oriented with respect to each other so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
12. Burner apparatus according to claim 1 1 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
13. Burner apparatus according to claim 11 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
14. Burner apparatus according to claim 11 further comprising a second fuel conduit through which fuel is fed to be combusted at the burner.
15. Burner apparatus according to claim 14 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
16. Burner apparatus according to claim 15 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
17. Burner apparatus according to claim 15 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
18. Burner apparatus according to claim 14 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
19. Burner apparatus according to claim 18 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
20. Burner apparatus according to claim 18 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
21. A method for retrofitting an air-fired furnace, comprising
(a) providing a furnace enclosing a combustion zone and having at least one burner through a wall of the furnace to which air is fed through an air conduit and fuel is fed through a burner fuel conduit from outside the furnace to be combusted at the burner within the combustion zone;
(b) providing an oxidant conduit through which oxidant can be fed into the furnace from outside the furnace;
(c) providing control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled; and
(d) orienting the oxidant conduit with respect to the burner fuel conduit so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and the burner fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
22. A method according to claim 21 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
23. A method according to claim 21 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
24. A method for retrofitting an air-fired furnace, comprising
(a) providing a furnace enclosing a combustion zone and having at least one burner through a wall of the furnace to which air is fed through an air conduit and fuel is fed through a burner fuel conduit from outside the furnace to be combusted at the burner within the combustion zone;
(b) providing an oxidant conduit through which oxidant can be fed into the furnace from outside the furnace;
(c) providing control means that regulates the flow of oxidant through the oxidant conduit and the flow of air through the air conduit such that the ratio of air flow to oxidant flow can be controlled;
(d) providing a second fuel conduit through which fuel is fed from outside the furnace to be combusted within the combustion zone, and
(e) orienting the oxidant conduit with respect to at least one of the burner fuel conduit and the second fuel conduit so that the oxidant conduit feeds oxidant into an oxidant mixing zone in the combustion zone and said fuel conduit feeds fuel into a fuel reaction zone in the combustion zone which is segregated from the oxidant mixing zone.
25. A method according to claim 24 wherein the oxidant conduit feeds oxidant into the furnace from within the burner.
26. A method according to claim 25 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
27. A method according to claim 25 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
28. A method according to claim 24 wherein the oxidant conduit feeds oxidant into the furnace from an opening that is not within a burner.
29. A method according to claim 28 wherein the second fuel conduit feeds fuel into the furnace from within the burner.
30. A method according to claim 28 wherein the second fuel conduit feeds fuel into the furnace from an opening that is not within a burner.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/395,141 US20070231761A1 (en) | 2006-04-03 | 2006-04-03 | Integration of oxy-fuel and air-fuel combustion |
KR1020087026745A KR20090005352A (en) | 2006-04-03 | 2007-03-28 | Integration of Oxygen Fuel Combustion and Air Fuel Combustion |
BRPI0709901-0A BRPI0709901A2 (en) | 2006-04-03 | 2007-03-28 | combustion apparatus and method for retrofitting an air oven |
JP2009504209A JP2009532661A (en) | 2006-04-03 | 2007-03-28 | Integration of oxyfuel combustion and air fuel combustion |
CNA2007800116487A CN101415993A (en) | 2006-04-03 | 2007-03-28 | Integration of oxy-fuel and air-fuel combustion |
PCT/US2007/007801 WO2007126980A2 (en) | 2006-04-03 | 2007-03-28 | Integration of oxy-fuel and air-fuel combustion |
CA002648081A CA2648081A1 (en) | 2006-04-03 | 2007-03-28 | Integration of oxy-fuel and air-fuel combustion |
EP07754335A EP2002180A2 (en) | 2006-04-03 | 2007-03-28 | Integration of oxy-fuel and air-fuel combustion |
MX2008012823A MX2008012823A (en) | 2006-04-03 | 2007-03-28 | Integration of oxy-fuel and air-fuel combustion. |
NO20084165A NO20084165L (en) | 2006-04-03 | 2008-10-03 | Integration of combustion with pure oxygen and with air |
US12/261,100 US20090061366A1 (en) | 2006-04-03 | 2008-10-30 | Integration of oxy-fuel and air-fuel combustion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/395,141 US20070231761A1 (en) | 2006-04-03 | 2006-04-03 | Integration of oxy-fuel and air-fuel combustion |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/261,100 Continuation US20090061366A1 (en) | 2006-04-03 | 2008-10-30 | Integration of oxy-fuel and air-fuel combustion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070231761A1 true US20070231761A1 (en) | 2007-10-04 |
Family
ID=38559527
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/395,141 Abandoned US20070231761A1 (en) | 2006-04-03 | 2006-04-03 | Integration of oxy-fuel and air-fuel combustion |
US12/261,100 Abandoned US20090061366A1 (en) | 2006-04-03 | 2008-10-30 | Integration of oxy-fuel and air-fuel combustion |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/261,100 Abandoned US20090061366A1 (en) | 2006-04-03 | 2008-10-30 | Integration of oxy-fuel and air-fuel combustion |
Country Status (10)
Country | Link |
---|---|
US (2) | US20070231761A1 (en) |
EP (1) | EP2002180A2 (en) |
JP (1) | JP2009532661A (en) |
KR (1) | KR20090005352A (en) |
CN (1) | CN101415993A (en) |
BR (1) | BRPI0709901A2 (en) |
CA (1) | CA2648081A1 (en) |
MX (1) | MX2008012823A (en) |
NO (1) | NO20084165L (en) |
WO (1) | WO2007126980A2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080286707A1 (en) * | 2007-05-15 | 2008-11-20 | Panesar Raghbir S | Combustion apparatus |
US20090263752A1 (en) * | 2008-04-22 | 2009-10-22 | Aga Ab | Method and device for combustion of solid phase fuel |
US20100050912A1 (en) * | 2006-12-22 | 2010-03-04 | Khd Humboldt Wedag Gmbh | Method for controlling the operation of a rotary furnace burner |
US20100304314A1 (en) * | 2007-05-10 | 2010-12-02 | Saint-Gobain Emballage | Low nox mixed injector |
US20110126780A1 (en) * | 2008-03-06 | 2011-06-02 | Ihi Corporation | Pulverized coal burner for oxyfuel combustion boiler |
US20110294077A1 (en) * | 2010-05-28 | 2011-12-01 | Foster Wheeler North America Corp. | Method of Controlling a Boiler Plant During Switchover From Air-Combustion to Oxygen-Combustion |
US20120129111A1 (en) * | 2010-05-21 | 2012-05-24 | Fives North America Combustion, Inc. | Premix for non-gaseous fuel delivery |
US20150010871A1 (en) * | 2013-07-02 | 2015-01-08 | Haldor Topsoe A/S | Mixing of recycle gas with fuel gas to a burner |
US20170284659A1 (en) * | 2014-09-02 | 2017-10-05 | Linde Aktiengesellschaft | LOW-NOx-BURNER |
US10113742B2 (en) | 2014-03-20 | 2018-10-30 | Webasto SE | Evaporator burner |
US10234136B2 (en) * | 2014-03-20 | 2019-03-19 | Webasto SE | Evaporator burner for a mobile heating unit operated using liquid fuel |
US10302298B2 (en) | 2014-03-20 | 2019-05-28 | Webasto SE | Evaporator burner arrangement for a mobile heater operated with liquid fuel |
US10544935B2 (en) | 2014-03-20 | 2020-01-28 | Webasto SE | Evaporator burner for a mobile heating device operated with liquid fuel |
CN111121002A (en) * | 2018-11-01 | 2020-05-08 | 中国科学院工程热物理研究所 | Pulverized coal fired boiler with bottom burner and control method thereof |
US20200299168A1 (en) * | 2016-08-19 | 2020-09-24 | Jushi Group Co., Ltd. | Method for heating liquid glass channel of glass fiber tank furnace |
US11041621B2 (en) | 2016-07-26 | 2021-06-22 | Jfe Steel Corporation | Auxiliary burner for electric furnace |
US11306915B2 (en) * | 2018-09-26 | 2022-04-19 | Taiheiyo Cement Corporation | Cement kiln burner device and method for operating the same |
JP2023061674A (en) * | 2021-10-20 | 2023-05-02 | 中外炉工業株式会社 | Burner |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1889816A1 (en) * | 2006-08-15 | 2008-02-20 | Rockwool International A/S | Process and apparatus for making mineral fibres |
FR2927327B1 (en) * | 2008-02-08 | 2010-11-19 | Saint Gobain | FURNACE LOW NOX WITH HIGH HEAT TRANSFER |
SE533967C2 (en) | 2009-03-20 | 2011-03-15 | Aga Ab | Process for homogenizing the heat distribution and reducing the amount of NOx in combustion |
CN107090530A (en) * | 2009-11-26 | 2017-08-25 | 林德股份公司 | The method of heating furnace hot-blast stove |
CN101975394A (en) * | 2010-11-10 | 2011-02-16 | 郑州锅炉股份有限公司 | Engine-boiler integrated tube nest type combustion engine and device thereof for recovering three wastes |
DE102010053068A1 (en) * | 2010-12-01 | 2012-06-06 | Linde Ag | Method and apparatus for diluted combustion |
US9863013B2 (en) * | 2011-02-22 | 2018-01-09 | Linde Aktiengesellschaft | Apparatus and method for heating a blast furnace stove |
US9151492B2 (en) * | 2011-02-22 | 2015-10-06 | Linde Aktiengesellschaft | Heating apparatus |
PL2527772T3 (en) * | 2011-05-25 | 2018-04-30 | Linde Aktiengesellschaft | Heating apparatus |
WO2014168383A1 (en) * | 2013-04-08 | 2014-10-16 | 국민대학교산학협력단 | Flameless combustion industrial furnace using reverse air injection technique, reverse gas recirculation system, and fuel cell system applying catalyst-free fuel reformer using high-speed reverse air injection technique |
JP6592025B2 (en) * | 2017-03-13 | 2019-10-16 | 大陽日酸株式会社 | Method and apparatus for heating object to be heated |
CN110325794B (en) * | 2017-03-27 | 2021-07-20 | 杰富意钢铁株式会社 | Heating device and heating method |
JP2019039590A (en) * | 2017-08-24 | 2019-03-14 | トヨタ自動車株式会社 | Nozzle for hydrogen gas combustion |
US11060792B2 (en) | 2018-03-23 | 2021-07-13 | Air Products And Chemicals, Inc. | Oxy-fuel combustion system and method for melting a pelleted charge material |
Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3115851A (en) * | 1960-05-11 | 1963-12-31 | Foster Wheeler Corp | Multi-fuel burner |
USRE28679E (en) * | 1970-05-13 | 1976-01-13 | International Industries Ltd. | Burners |
US4257762A (en) * | 1978-09-05 | 1981-03-24 | John Zink Company | Multi-fuel gas burner using preheated forced draft air |
US4258544A (en) * | 1978-09-15 | 1981-03-31 | Caterpillar Tractor Co. | Dual fluid fuel nozzle |
US4347052A (en) * | 1978-06-19 | 1982-08-31 | John Zink Company | Low NOX burner |
US4357134A (en) * | 1978-07-11 | 1982-11-02 | Nippon Steel Corporation | Fuel combustion method and burner for furnace use |
US4566268A (en) * | 1983-05-10 | 1986-01-28 | Bbc Aktiengesellschaft Brown, Boveri & Cie | Multifuel burner |
US4622007A (en) * | 1984-08-17 | 1986-11-11 | American Combustion, Inc. | Variable heat generating method and apparatus |
US4629413A (en) * | 1984-09-10 | 1986-12-16 | Exxon Research & Engineering Co. | Low NOx premix burner |
US4969814A (en) * | 1989-05-08 | 1990-11-13 | Union Carbide Corporation | Multiple oxidant jet combustion method and apparatus |
US5022332A (en) * | 1990-08-15 | 1991-06-11 | Union Carbide Industrial Gases Technology Corporation | Combustion method for improved endothermic dissociation |
US5076779A (en) * | 1991-04-12 | 1991-12-31 | Union Carbide Industrial Gases Technology Corporation | Segregated zoning combustion |
US5267850A (en) * | 1992-06-04 | 1993-12-07 | Praxair Technology, Inc. | Fuel jet burner |
US5387100A (en) * | 1994-02-17 | 1995-02-07 | Praxair Technology, Inc. | Super off-stoichiometric combustion method |
US5413476A (en) * | 1993-04-13 | 1995-05-09 | Gas Research Institute | Reduction of nitrogen oxides in oxygen-enriched combustion processes |
US5417564A (en) * | 1994-01-27 | 1995-05-23 | Riley Stoker Corporation | Method and apparatus for altering the firing pattern of an existing furnace |
US5601425A (en) * | 1994-06-13 | 1997-02-11 | Praxair Technology, Inc. | Staged combustion for reducing nitrogen oxides |
US5694869A (en) * | 1994-12-29 | 1997-12-09 | Duquesne Light Company And Energy Systems Associates | Reducing NOX emissions from a roof-fired furnace using separated parallel flow overfire air |
US5724897A (en) * | 1994-12-20 | 1998-03-10 | Duquesne Light Company | Split flame burner for reducing NOx formation |
US5743723A (en) * | 1995-09-15 | 1998-04-28 | American Air Liquide, Inc. | Oxy-fuel burner having coaxial fuel and oxidant outlets |
US5772421A (en) * | 1995-05-26 | 1998-06-30 | Canadian Gas Research Institute | Low nox burner |
US5904475A (en) * | 1997-05-08 | 1999-05-18 | Praxair Technology, Inc. | Dual oxidant combustion system |
US6007326A (en) * | 1997-08-04 | 1999-12-28 | Praxair Technology, Inc. | Low NOx combustion process |
US6190158B1 (en) * | 1998-12-30 | 2001-02-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combustion process and its uses for the production of glass and metal |
US6241510B1 (en) * | 2000-02-02 | 2001-06-05 | Praxair Technology, Inc. | System for providing proximate turbulent and coherent gas jets |
US6283747B1 (en) * | 1998-09-22 | 2001-09-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for heating a furnace |
US6402059B1 (en) * | 1999-02-15 | 2002-06-11 | Alstom (Switzerland) Ltd | Fuel lance for spraying liquid and/or gaseous fuels into a combustion chamber, and method of operating such a fuel lance |
US6540508B1 (en) * | 2000-09-18 | 2003-04-01 | The Boc Group, Inc. | Process of installing roof mounted oxygen-fuel burners in a glass melting furnace |
US6652681B2 (en) * | 2000-09-08 | 2003-11-25 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method of reheating metallurgical products |
US6699029B2 (en) * | 2001-01-11 | 2004-03-02 | Praxair Technology, Inc. | Oxygen enhanced switching to combustion of lower rank fuels |
US6699031B2 (en) * | 2001-01-11 | 2004-03-02 | Praxair Technology, Inc. | NOx reduction in combustion with concentrated coal streams and oxygen injection |
US6702569B2 (en) * | 2001-01-11 | 2004-03-09 | Praxair Technology, Inc. | Enhancing SNCR-aided combustion with oxygen addition |
US6702571B2 (en) * | 2001-09-05 | 2004-03-09 | Gas Technology Institute | Flex-flame burner and self-optimizing combustion system |
US6705117B2 (en) * | 1999-08-16 | 2004-03-16 | The Boc Group, Inc. | Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner |
US6752620B2 (en) * | 2002-01-31 | 2004-06-22 | Air Products And Chemicals, Inc. | Large scale vortex devices for improved burner operation |
US6813902B2 (en) * | 2000-11-01 | 2004-11-09 | American Air Liquide, Inc. | Systems and methods for increasing production of spheroidal glass particles in vertical glass furnaces |
US6910879B2 (en) * | 2001-04-06 | 2005-06-28 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Combustion method comprising separate injections of fuel and oxidant and burner assembly therefor |
US7074034B2 (en) * | 2004-06-07 | 2006-07-11 | Air Products And Chemicals, Inc. | Burner and process for combustion of a gas capable of reacting to form solid products |
US7225746B2 (en) * | 2002-05-15 | 2007-06-05 | Praxair Technology, Inc. | Low NOx combustion |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1274637A (en) * | 1969-03-27 | 1972-05-17 | Zink Co John | Process for disposal of oxides of nitrogen |
US4408982A (en) * | 1982-01-05 | 1983-10-11 | Union Carbide Corporation | Process for firing a furnace |
USRE34298E (en) * | 1984-08-17 | 1993-06-29 | American Combustion, Inc. | Method for waste disposal |
US5000102A (en) * | 1989-12-21 | 1991-03-19 | Union Carbide Industrial Gases Technology Corporation | Method for combusting wet waste |
JPH05172312A (en) * | 1991-12-24 | 1993-07-09 | Tokyo Gas Co Ltd | Nitrogen oxide low generating burner |
US5201650A (en) * | 1992-04-09 | 1993-04-13 | Shell Oil Company | Premixed/high-velocity fuel jet low no burner |
US5242296A (en) * | 1992-12-08 | 1993-09-07 | Praxair Technology, Inc. | Hybrid oxidant combustion method |
US5516279A (en) * | 1994-07-06 | 1996-05-14 | The Boc Group, Inc. | Oxy-fuel burner system designed for alternate fuel usage |
US5725367A (en) * | 1994-12-30 | 1998-03-10 | Combustion Tec, Inc. | Method and apparatus for dispersing fuel and oxidant from a burner |
US5755818A (en) * | 1995-06-13 | 1998-05-26 | Praxair Technology, Inc. | Staged combustion method |
US5924858A (en) * | 1995-06-13 | 1999-07-20 | Praxair Technology, Inc. | Staged combustion method |
ES2220965T3 (en) * | 1995-07-17 | 2004-12-16 | L'air Liquide, S.A. A Directoire Et Conseil De Surv. Pour L'etude Et L'exploitat. Procedes G. Claude | COMBUSTION AND APPARATUS PROCESS FOR THE SAME WITH SEPARATE INJECTION OF THE FUEL AND OXIDIZING CURRENTS. |
JPH1182941A (en) * | 1997-08-29 | 1999-03-26 | Tokyo Gas Co Ltd | Oxygen burner |
JP3738141B2 (en) * | 1998-11-10 | 2006-01-25 | 岩谷産業株式会社 | Variable oxygen enrichment burner |
US6113389A (en) * | 1999-06-01 | 2000-09-05 | American Air Liquide, Inc. | Method and system for increasing the efficiency and productivity of a high temperature furnace |
US6519973B1 (en) * | 2000-03-23 | 2003-02-18 | Air Products And Chemicals, Inc. | Glass melting process and furnace therefor with oxy-fuel combustion over melting zone and air-fuel combustion over fining zone |
US6398546B1 (en) * | 2000-06-21 | 2002-06-04 | Praxair Technology, Inc. | Combustion in a porous wall furnace |
SK287642B6 (en) * | 2000-08-04 | 2011-05-06 | Babcock-Hitachi Kabushiki Kaisha | Solid fuel burner and combustion method using solid fuel burner |
JP2003329240A (en) * | 2002-05-07 | 2003-11-19 | Osaka Gas Co Ltd | Heating furnace |
AU2003269127A1 (en) * | 2002-05-15 | 2003-12-02 | Praxair Technology, Inc. | Combustion with reduced carbon in the ash |
US6638061B1 (en) * | 2002-08-13 | 2003-10-28 | North American Manufacturing Company | Low NOx combustion method and apparatus |
WO2004065849A1 (en) * | 2003-01-21 | 2004-08-05 | L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for oxigen enrichment in fuel conveying gases |
US7153129B2 (en) * | 2004-01-15 | 2006-12-26 | John Zink Company, Llc | Remote staged furnace burner configurations and methods |
US7402038B2 (en) * | 2005-04-22 | 2008-07-22 | The North American Manufacturing Company, Ltd. | Combustion method and apparatus |
-
2006
- 2006-04-03 US US11/395,141 patent/US20070231761A1/en not_active Abandoned
-
2007
- 2007-03-28 EP EP07754335A patent/EP2002180A2/en not_active Withdrawn
- 2007-03-28 CA CA002648081A patent/CA2648081A1/en not_active Abandoned
- 2007-03-28 BR BRPI0709901-0A patent/BRPI0709901A2/en not_active Application Discontinuation
- 2007-03-28 WO PCT/US2007/007801 patent/WO2007126980A2/en active Application Filing
- 2007-03-28 MX MX2008012823A patent/MX2008012823A/en not_active Application Discontinuation
- 2007-03-28 CN CNA2007800116487A patent/CN101415993A/en active Pending
- 2007-03-28 JP JP2009504209A patent/JP2009532661A/en active Pending
- 2007-03-28 KR KR1020087026745A patent/KR20090005352A/en not_active Application Discontinuation
-
2008
- 2008-10-03 NO NO20084165A patent/NO20084165L/en not_active Application Discontinuation
- 2008-10-30 US US12/261,100 patent/US20090061366A1/en not_active Abandoned
Patent Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3115851A (en) * | 1960-05-11 | 1963-12-31 | Foster Wheeler Corp | Multi-fuel burner |
USRE28679E (en) * | 1970-05-13 | 1976-01-13 | International Industries Ltd. | Burners |
US4347052A (en) * | 1978-06-19 | 1982-08-31 | John Zink Company | Low NOX burner |
US4357134A (en) * | 1978-07-11 | 1982-11-02 | Nippon Steel Corporation | Fuel combustion method and burner for furnace use |
US4257762A (en) * | 1978-09-05 | 1981-03-24 | John Zink Company | Multi-fuel gas burner using preheated forced draft air |
US4258544A (en) * | 1978-09-15 | 1981-03-31 | Caterpillar Tractor Co. | Dual fluid fuel nozzle |
US4566268A (en) * | 1983-05-10 | 1986-01-28 | Bbc Aktiengesellschaft Brown, Boveri & Cie | Multifuel burner |
US4622007A (en) * | 1984-08-17 | 1986-11-11 | American Combustion, Inc. | Variable heat generating method and apparatus |
US4629413A (en) * | 1984-09-10 | 1986-12-16 | Exxon Research & Engineering Co. | Low NOx premix burner |
US4969814A (en) * | 1989-05-08 | 1990-11-13 | Union Carbide Corporation | Multiple oxidant jet combustion method and apparatus |
US5022332A (en) * | 1990-08-15 | 1991-06-11 | Union Carbide Industrial Gases Technology Corporation | Combustion method for improved endothermic dissociation |
US5076779A (en) * | 1991-04-12 | 1991-12-31 | Union Carbide Industrial Gases Technology Corporation | Segregated zoning combustion |
US5267850A (en) * | 1992-06-04 | 1993-12-07 | Praxair Technology, Inc. | Fuel jet burner |
US5411395A (en) * | 1992-06-04 | 1995-05-02 | Praxair Technology, Inc. | Fuel jet burner |
US5413476A (en) * | 1993-04-13 | 1995-05-09 | Gas Research Institute | Reduction of nitrogen oxides in oxygen-enriched combustion processes |
US5417564A (en) * | 1994-01-27 | 1995-05-23 | Riley Stoker Corporation | Method and apparatus for altering the firing pattern of an existing furnace |
US5387100A (en) * | 1994-02-17 | 1995-02-07 | Praxair Technology, Inc. | Super off-stoichiometric combustion method |
US5601425A (en) * | 1994-06-13 | 1997-02-11 | Praxair Technology, Inc. | Staged combustion for reducing nitrogen oxides |
US5724897A (en) * | 1994-12-20 | 1998-03-10 | Duquesne Light Company | Split flame burner for reducing NOx formation |
US5694869A (en) * | 1994-12-29 | 1997-12-09 | Duquesne Light Company And Energy Systems Associates | Reducing NOX emissions from a roof-fired furnace using separated parallel flow overfire air |
US5772421A (en) * | 1995-05-26 | 1998-06-30 | Canadian Gas Research Institute | Low nox burner |
US5743723A (en) * | 1995-09-15 | 1998-04-28 | American Air Liquide, Inc. | Oxy-fuel burner having coaxial fuel and oxidant outlets |
US5904475A (en) * | 1997-05-08 | 1999-05-18 | Praxair Technology, Inc. | Dual oxidant combustion system |
US6007326A (en) * | 1997-08-04 | 1999-12-28 | Praxair Technology, Inc. | Low NOx combustion process |
US6283747B1 (en) * | 1998-09-22 | 2001-09-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for heating a furnace |
US6190158B1 (en) * | 1998-12-30 | 2001-02-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combustion process and its uses for the production of glass and metal |
US6402059B1 (en) * | 1999-02-15 | 2002-06-11 | Alstom (Switzerland) Ltd | Fuel lance for spraying liquid and/or gaseous fuels into a combustion chamber, and method of operating such a fuel lance |
US6705117B2 (en) * | 1999-08-16 | 2004-03-16 | The Boc Group, Inc. | Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner |
US6241510B1 (en) * | 2000-02-02 | 2001-06-05 | Praxair Technology, Inc. | System for providing proximate turbulent and coherent gas jets |
US6652681B2 (en) * | 2000-09-08 | 2003-11-25 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method of reheating metallurgical products |
US6540508B1 (en) * | 2000-09-18 | 2003-04-01 | The Boc Group, Inc. | Process of installing roof mounted oxygen-fuel burners in a glass melting furnace |
US6813902B2 (en) * | 2000-11-01 | 2004-11-09 | American Air Liquide, Inc. | Systems and methods for increasing production of spheroidal glass particles in vertical glass furnaces |
US6699029B2 (en) * | 2001-01-11 | 2004-03-02 | Praxair Technology, Inc. | Oxygen enhanced switching to combustion of lower rank fuels |
US6699031B2 (en) * | 2001-01-11 | 2004-03-02 | Praxair Technology, Inc. | NOx reduction in combustion with concentrated coal streams and oxygen injection |
US6702569B2 (en) * | 2001-01-11 | 2004-03-09 | Praxair Technology, Inc. | Enhancing SNCR-aided combustion with oxygen addition |
US6910879B2 (en) * | 2001-04-06 | 2005-06-28 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Combustion method comprising separate injections of fuel and oxidant and burner assembly therefor |
US6702571B2 (en) * | 2001-09-05 | 2004-03-09 | Gas Technology Institute | Flex-flame burner and self-optimizing combustion system |
US6752620B2 (en) * | 2002-01-31 | 2004-06-22 | Air Products And Chemicals, Inc. | Large scale vortex devices for improved burner operation |
US7225746B2 (en) * | 2002-05-15 | 2007-06-05 | Praxair Technology, Inc. | Low NOx combustion |
US7074034B2 (en) * | 2004-06-07 | 2006-07-11 | Air Products And Chemicals, Inc. | Burner and process for combustion of a gas capable of reacting to form solid products |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100050912A1 (en) * | 2006-12-22 | 2010-03-04 | Khd Humboldt Wedag Gmbh | Method for controlling the operation of a rotary furnace burner |
US20100304314A1 (en) * | 2007-05-10 | 2010-12-02 | Saint-Gobain Emballage | Low nox mixed injector |
US9169148B2 (en) * | 2007-05-10 | 2015-10-27 | Saint-Gobain Emballage | Low NOx mixed injector |
US9651253B2 (en) * | 2007-05-15 | 2017-05-16 | Doosan Power Systems Americas, Llc | Combustion apparatus |
US20080286707A1 (en) * | 2007-05-15 | 2008-11-20 | Panesar Raghbir S | Combustion apparatus |
US9810425B2 (en) * | 2008-03-06 | 2017-11-07 | Ihi Corporation | Pulverized coal burner for oxyfuel combustion boiler |
US20110126780A1 (en) * | 2008-03-06 | 2011-06-02 | Ihi Corporation | Pulverized coal burner for oxyfuel combustion boiler |
US8382468B2 (en) * | 2008-04-22 | 2013-02-26 | Aga Ab | Method and device for combustion of solid phase fuel |
EP2112434A3 (en) * | 2008-04-22 | 2015-11-18 | Aga Ab | Method and device for combustion of solid phase fuel. |
US20090263752A1 (en) * | 2008-04-22 | 2009-10-22 | Aga Ab | Method and device for combustion of solid phase fuel |
US20120129111A1 (en) * | 2010-05-21 | 2012-05-24 | Fives North America Combustion, Inc. | Premix for non-gaseous fuel delivery |
US8550810B2 (en) * | 2010-05-28 | 2013-10-08 | Foster Wheeler North America Corp. | Method of controlling a boiler plant during switchover from air-combustion to oxygen-combustion |
US20110294077A1 (en) * | 2010-05-28 | 2011-12-01 | Foster Wheeler North America Corp. | Method of Controlling a Boiler Plant During Switchover From Air-Combustion to Oxygen-Combustion |
US9404652B2 (en) * | 2013-07-02 | 2016-08-02 | Haldor Topsoe A/S | Mixing of recycle gas with fuel gas to a burner |
US20150010871A1 (en) * | 2013-07-02 | 2015-01-08 | Haldor Topsoe A/S | Mixing of recycle gas with fuel gas to a burner |
US10544935B2 (en) | 2014-03-20 | 2020-01-28 | Webasto SE | Evaporator burner for a mobile heating device operated with liquid fuel |
US10113742B2 (en) | 2014-03-20 | 2018-10-30 | Webasto SE | Evaporator burner |
US10234136B2 (en) * | 2014-03-20 | 2019-03-19 | Webasto SE | Evaporator burner for a mobile heating unit operated using liquid fuel |
US10302298B2 (en) | 2014-03-20 | 2019-05-28 | Webasto SE | Evaporator burner arrangement for a mobile heater operated with liquid fuel |
US11092333B2 (en) * | 2014-09-02 | 2021-08-17 | Messer Industries Usa, Inc. | Low-NOx-burner |
US20170284659A1 (en) * | 2014-09-02 | 2017-10-05 | Linde Aktiengesellschaft | LOW-NOx-BURNER |
US11041621B2 (en) | 2016-07-26 | 2021-06-22 | Jfe Steel Corporation | Auxiliary burner for electric furnace |
US20200299168A1 (en) * | 2016-08-19 | 2020-09-24 | Jushi Group Co., Ltd. | Method for heating liquid glass channel of glass fiber tank furnace |
US11306915B2 (en) * | 2018-09-26 | 2022-04-19 | Taiheiyo Cement Corporation | Cement kiln burner device and method for operating the same |
CN111121002A (en) * | 2018-11-01 | 2020-05-08 | 中国科学院工程热物理研究所 | Pulverized coal fired boiler with bottom burner and control method thereof |
JP2023061674A (en) * | 2021-10-20 | 2023-05-02 | 中外炉工業株式会社 | Burner |
JP7389778B2 (en) | 2021-10-20 | 2023-11-30 | 中外炉工業株式会社 | Burna |
Also Published As
Publication number | Publication date |
---|---|
JP2009532661A (en) | 2009-09-10 |
MX2008012823A (en) | 2008-11-14 |
US20090061366A1 (en) | 2009-03-05 |
EP2002180A2 (en) | 2008-12-17 |
BRPI0709901A2 (en) | 2011-07-26 |
KR20090005352A (en) | 2009-01-13 |
WO2007126980A2 (en) | 2007-11-08 |
CA2648081A1 (en) | 2007-11-08 |
CN101415993A (en) | 2009-04-22 |
NO20084165L (en) | 2008-12-23 |
WO2007126980A3 (en) | 2008-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070231761A1 (en) | Integration of oxy-fuel and air-fuel combustion | |
EP0590572B1 (en) | Thermal nozzle combustion method | |
EP0877203A1 (en) | Dual oxidant combustion system | |
US9651248B2 (en) | Method for generating combustion by means of a burner assembly and burner assembly therefore | |
CA2472210C (en) | Method of the pyrometallurgical treatment of metals, metal melts and/or slags and injection device | |
US4909727A (en) | Oxygen enriched continuous combustion in a regenerative furance | |
CN102439363A (en) | Combustion system with precombustor for recycled flue gas | |
CN101233377B (en) | Method for calcination of a material with low NOx emissions | |
US20120216730A1 (en) | Method of Combusting Particulate Solid Fuel with a Burner | |
KR101879895B1 (en) | Apparatus and method for heating a blast furnace stove | |
RU2525422C2 (en) | Method of homogenisation of heat distribution, as well as reduction of amount of nitrogen oxides (nox) | |
AU2002225689B2 (en) | Air injection for nitrogen oxide reduction and improved product quality | |
CN101566338B (en) | Method and device for combustion of solid phase fuel | |
KR20120092999A (en) | Burning system of improved efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PRAXAIR TECHNOLOGY, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSEN, LEE;RILEY, MICHAEL F.;KOBAYASHI, HISASHI;REEL/FRAME:018192/0485;SIGNING DATES FROM 20060727 TO 20060818 |
|
AS | Assignment |
Owner name: PRAXAIR TECHNOLOGY, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERMEL, CURTIS L.;REEL/FRAME:018192/0794 Effective date: 20060818 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |