US20070219521A1 - Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article - Google Patents
Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article Download PDFInfo
- Publication number
- US20070219521A1 US20070219521A1 US11/724,341 US72434107A US2007219521A1 US 20070219521 A1 US20070219521 A1 US 20070219521A1 US 72434107 A US72434107 A US 72434107A US 2007219521 A1 US2007219521 A1 US 2007219521A1
- Authority
- US
- United States
- Prior art keywords
- absorbent article
- polymer
- polyolefin
- intermediate compound
- absorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03D—WATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
- E03D1/00—Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
- E03D1/30—Valves for high or low level cisterns; Their arrangement ; Flushing mechanisms in the cistern, optionally with provisions for a pre-or a post- flushing and for cutting off the flushing mechanism in case of leakage
- E03D1/34—Flushing valves for outlets; Arrangement of outlet valves
- E03D1/35—Flushing valves having buoyancy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15203—Properties of the article, e.g. stiffness or absorbency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15617—Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/551—Packaging before or after use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/84—Accessories, not otherwise provided for, for absorbent pads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/40—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof, e.g. plant or animal extracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2203/00—Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
Definitions
- the present invention relates to an absorbent article which comprises synthetic polymeric materials derived from renewable resources, where the materials have specific performance characteristics making them particularly useful in said absorbent article.
- absorbent articles such as disposable diapers, adult incontinence pads and briefs, and catamenial products such as sanitary napkins
- absorbent articles such as disposable diapers, adult incontinence pads and briefs, and catamenial products such as sanitary napkins
- materials used in their construction.
- materials include films, fibers, nonwovens, laminates, superabsorbent polymers, foams, elastomers, adhesives, and the like.
- components such as the topsheet, backsheet, and cuffs are made from polyolefins such as polyethylene and polypropylene. These polymers are derived from olefinic monomers such as ethylene and propylene which are obtained directly from petroleum via cracking and refining processes. Propylene derived from petroleum is also used to make acrylic acid via a catalytic oxidation process. Acrylic acid derived from petroleum is the major feedstock used in the manufacture of modern superabsorbent polymers utilized in absorbent cores of current commercial absorbent articles.
- PCT application WO 99/33420 discloses a superabsorbent material comprising a renewable and/or biodegradable raw material.
- these diapers and materials tend to have significantly lower performance and/or higher cost than materials derived from petrochemicals.
- the superabsorbent materials disclosed in WO 99/33420 show a low absorption capacity under load and a low gel strength.
- a superabsorbent material with low gel strength tends to deform upon swelling and reduce interstitial spaces between the superabsorbent particles. This phenomenon is known as gel-blocking. Once gel-blocking occurs, further liquid uptake or distribution takes place via a very slow diffusion process. In practical terms, gel-blocking increases the susceptibility of the absorbent article to leakage.
- an absorbent article which comprises a polymer derived from renewable resources, where the polymer has specific performance characteristics making the polymer particularly useful in the absorbent article.
- a consumer product including a plurality of absorbent articles comprising said polymer derived from renewable resources and a communication of a related environmental message.
- the present invention relates to an absorbent article having opposing longitudinal edges, the absorbent article comprising a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, and a synthetic polymer derived from a first renewable resource via at least one monomeric intermediate compound.
- the polymer is disposed in or incorporated into one or more elements of the absorbent article.
- the elements are selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
- the present invention further relates to an absorbent article having a body-facing surface, and a garment-facing surface.
- the article comprises a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, a pair of barrier cuffs, and a synthetic polyolefin.
- the synthetic polyolefin is derived from a first renewable resource via at least one intermediate compound.
- the synthetic polyolefin is either polypropylene or polyethylene.
- the topsheet, backsheet, or cuff substrate comprises the polyolefin.
- the present invention also relates to a method for making an absorbent article comprising the steps of providing a renewable resource, deriving an intermediate monomeric compound from the renewable resource, polymerizing the monomeric compound to form a synthetic polymer, and disposing or incorporating the polymer into one or more elements of the absorbent article.
- the elements are selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
- FIG. 1A is a plan view of an exemplary absorbent article in the form of a diaper in a flat, uncontracted state.
- FIG. 1B is a cross-sectional view of the diaper of FIG. 1A taken along the lateral centerline.
- FIGS. 2A-B are perspective views of a package comprising an absorbent article.
- FIGS. 3A-F are illustrations of several suitable embodiments of icons communicating reduced petrochemical dependence and/or environmental friendliness.
- FIG. 4 is a partial cross-sectional side view of a suitable permeability measurement system for conducting the Saline Flow Conductivity Test.
- FIG. 5 is a cross-sectional side view of a piston/cylinder assembly for use in conducting the Saline Flow Conductivity Test.
- FIG. 6 is a top view of a piston head suitable for use in the piston/cylinder assembly shown in FIG. 5 .
- FIG. 7 is a cross-sectional side view of the piston/cylinder assembly of FIG. 5 placed on a fritted disc for the swelling phase.
- the present invention relates to an absorbent article comprising a synthetic polymer derived from a renewable resource where the polymer has specific performance characteristics.
- the synthetic polymer derived from a renewable resource is in the form of a superabsorbent polymer, it exhibits an Absorption against Pressure (AAP) value of at least about 15.0 g saline per gram polymer and/or a saline flow conductivity (SFC) of at least about 30 ⁇ 10 ⁇ 7 cm 3 sec/g.
- AAP Absorption against Pressure
- SFC saline flow conductivity
- the polymer is a polyolefin nonwoven suitable for use as a topsheet, it may exhibit a Liquid Strike Through value of less than about 4 seconds.
- the polymer When the polymer is a polyolefin nonwoven suitable for use as a barrier leg cuff, it may exhibit a hydrohead of at least about 5 mbar. When the polymer is a breathable polyolefin film suitable for use as a backsheet, it may exhibit a Moisture Vapor Transmission Rate of at least about 2000 g/m 2 /24 hr. When the polymer is a polyolefin film suitable for use as a backsheet, it may have an MD tensile strength of at least about 0.5 N/cm.
- the absorbent article comprises a synthetic polymer derived from a renewable resource wherein the polymer has a 14 C/C ratio of about 1.0 ⁇ 10 ⁇ 14 or greater
- the present invention further relates to a package comprising at least one absorbent article comprising a synthetic polymer derived from a renewable resource and an overwrap securing the absorbent article(s).
- the absorbent article comprises a synthetic polymer derived from a renewable resource.
- the package may further comprise a communication of a related environmental message.
- the present invention further relates to a method for making absorbent articles comprising a synthetic polymer derived from a renewable resource.
- the method comprises the following steps: providing a renewable resource; deriving at least one intermediate compound from the renewable resource, wherein the intermediate compound comprises a monomeric compound; polymerizing the monomeric compound to form at least one polymer, wherein the at least one polymer exhibits the requisite performance for use in an absorbent article; and incorporating the at least one polymer into an absorbent article. Additional steps, as described herein, may be incorporated into the method. Optionally the at least one polymer may be modified after the polymerization step.
- Disposable refers to items that are intended to be discarded after a limited number of uses, frequently a single use (i.e., the original absorbent article as a whole is not intended to be laundered or reused as an absorbent article, although certain materials or portions of the absorbent article may be recycled, reused, or composted). For example, certain disposable absorbent articles may be temporarily restored to substantially full functionality through the use of removable/replaceable components but the article is nevertheless considered to be disposable because the entire article is intended to be discarded after a limited number of uses.
- “Absorbent article” refers to devices which absorb and contain body exudates and, more specifically, refers to devices which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body.
- Exemplary absorbent articles include diapers, training pants, pull-on pant-type diapers (i.e., a diaper having a pre-formed waist opening and leg openings such as illustrated in U.S. Pat. No. 6,120,487), refastenable diapers or pant-type diapers, incontinence briefs and undergarments, diaper holders and liners, feminine hygiene garments such as panty liners (e.g. such as disclosed in U.S. Pat. Nos. 4,425,130; 4,687,478; 5,267,992; and 5,733,274), absorbent inserts, and the like.
- Absorbent articles may be disposable or may contain portions that can be reused or restored.
- Proximal and distal refer, respectively, to the location of an element relatively near to or far from the longitudinal or lateral centerline of a structure (e.g., the proximal edge of a longitudinally extending element is located nearer to the longitudinal centerline than the distal edge of the same element is located relative to the same longitudinal centerline).
- Body-facing and “garment-facing” refer respectively to the relative location of an element or a surface of an element or group of elements. “Body-facing” implies the element or surface is nearer to the wearer during wear than some other element or surface. “Garment-facing” implies the element or surface is more remote from the wearer during wear than some other element or surface (i.e., element or surface is proximate to the wearer's garments that may be worn over the absorbent article).
- Superabsorbent refers to a material capable of absorbing at least ten times its dry weight of a 0.9% saline solution at 25° C. Superabsorbent polymers absorb fluid via an osmotic mechanism to form a gel, often referred to as, and used interchangeably with the term “hydrogel”.
- Longitudinal refers to a direction running substantially perpendicular from a waist edge to an opposing waist edge of the article and generally parallel to the maximum linear dimension of the article. Directions within 45 degrees of the longitudinal direction are considered to be “longitudinal”
- Lateral refers to a direction running from a longitudinal edge to an opposing longitudinal edge of the article and generally at a right angle to the longitudinal direction. Directions within 45 degrees of the lateral direction are considered to be “lateral.”
- Disposed refers to an element being located in a particular place or position.
- “Joined” refers to configurations whereby an element is directly secured to another element by affixing the element directly to the other element and to configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
- Film refers to a sheet-like material wherein the length and width of the material far exceed the thickness of the material. Typically, films have a thickness of about 0.5 mm or less.
- “Impermeable” generally refers to articles and/or elements that are not penetrative by fluid through the entire Z-directional thickness of the article under pressure of 0.14 lb/in 2 or less.
- the impermeable article or element is not penetrative by fluid under pressures of 0.5 lb/in 2 or less. More preferably, the impermeable article or element is not penetrative by fluid under pressures of 1.0 lb/in 2 or less.
- the test method for determining impermeability conforms to Edana 120.1-18 or INDA IST 80.6.
- Extendibility and “extensible” mean that the width or length of the component in a relaxed state can be extended or increased by at least about 10% without breaking or rupturing when subjected to a tensile force.
- Elastic refers to a material which generally is able to extend to a strain of at least 50% without breaking or rupturing, and is able to recover substantially to its original dimensions after the deforming force has been removed.
- Elastomeric material is a material exhibiting elastic properties. Elastomeric materials may include elastomeric films, scrims, nonwovens, and other sheet-like structures.
- Outboard and inboard refer respectively to the location of an element disposed relatively far from or near to the longitudinal centerline of the diaper with respect to a second element. For example, if element A is outboard of element B, then element A is farther from the longitudinal centerline than is element B.
- Pant refers to an absorbent article having a pre-formed waist and leg openings. A pant may be donned by inserting a wearer's legs into the leg openings and sliding the pant into position about the wearer's lower torso. Pants are also commonly referred to as “closed diapers”, “prefastened diapers”, “pull-on diapers”, “training pants” and “diaper-pants.”
- Petroleum refers to an organic compound derived from petroleum, natural gas, or coal.
- Crude oil refers to crude oil and its components of paraffinic, cycloparaffinic, and aromatic hydrocarbons. Crude oil may be obtained from tar sands, bitumen fields, and oil shale.
- “Renewable resource” refers to a natural resource that can be replenished within a 100 year time frame.
- the resource may be replenished naturally, or via agricultural techniques.
- Renewable resources include plants, animals, fish, bacteria, fungi, and forestry products. They may be naturally occurring, hybrids, or genetically engineered organisms. Natural resources such as crude oil, coal, and peat which take longer than 100 years to form are not considered to be renewable resources
- Agricultural product refers to a renewable resource resulting from the cultivation of land (e.g. a crop) or the husbandry of animals (including fish).
- “Monomeric compound” refers to an intermediate compound that may be polymerized to yield a polymer.
- Polymer refers to a macromolecule comprising repeat units where the macromolecule has a molecular weight of at least 1000 Daltons.
- the polymer may be a homopolymer, copolymer, terpoymer etc.
- the polymer may be produced via fee-radical, condensation, anionic, cationic, Ziegler-Natta, metallocene, or ring-opening mechanisms.
- the polymer may be linear, branched and/or crosslinked.
- Synthetic polymer refers to a polymer which is produced from at least one monomer by a chemical process. A synthetic polymer is not produced directly by a living organism.
- Polyethylene and “polypropylene” refer to polymers prepared from ethylene and propylene, respectively.
- the polymer may be a homopolymer, or may contain up to about 10 mol % of re peat units from a co-monomer.
- Communication refers to a medium or means by which information, teachings, or messages are transmitted.
- “Related environmental message” refers to a message that conveys the benefits or advantages of the absorbent article comprising a polymer derived from a renewable resource. Such benefits include being more environmentally friendly, having reduced petroleum dependence, being derived from renewable resources, and the like.
- a number of renewable resources contain polymers that are suitable for use in an absorbent article (i.e., the polymer is obtained from the renewable resource without intermediates). Suitable extraction and/or purification steps may be necessary, but no intermediate compound is required.
- Such polymers derived directly from renewable resources include cellulose (e.g. pulp fibers), starch, chitin, polypeptides, poly(lactic acid), polyhydroxyalkanoates, and the like. These polymers may be subsequently chemically modified to improve end use characteristics (e.g., conversion of cellulose to yield carboxycellulose or conversion of chitin to yield chitosan). However, in such cases, the resulting polymer is a structural analog of the starting polymer.
- Polymers derived directly from renewable resources (i.e., with no intermediate compounds) and their derivatives are known and these materials are not within the scope of the present invention.
- the synthetic polymers of the present invention are derived from a renewable resource via an indirect route involving one or more intermediate compounds.
- Suitable intermediate compounds derived from renewable resources include sugars.
- Suitable sugars include monosaccharides, disaccharides, trisaccharides, and oligosaccharides.
- Sugars such as sucrose, glucose, fructose, maltose may be readily produced from renewable resources such as sugar cane and sugar beets.
- Sugars may also be derived (e.g., via enzymatic cleavage) from other agricultural products such as starch or cellulose. For example, glucose may be prepared on a commercial scale by enzymatic hydrolysis of corn starch.
- Wheat, buckwheat, arracaha, potato, barley, kudzu, cassaya, sorghum, sweet potato, yam, arrowroot, sago, and other like starchy fruit, seeds, or tubers are may also be used in the preparation of glucose.
- Suitable intermediate compounds derived from renewable resources include monofunctional alcohols such as methanol or ethanol and polyfunctional alcohols such as glycerol.
- Ethanol may be derived from many of the same renewable resources as glucose.
- cornstarch may be enzymatically hydrolysized to yield glucose and/or other sugars. The resultant sugars can be converted into ethanol by fermentation.
- corn is an ideal renewable resource in North America; however, other crops may be substituted.
- Methanol may be produced from fermentation of biomass.
- Glycerol is commonly derived via hydrolysis of triglycerides present in natural fats or oils, which may be obtained from renewable resources such as animals or plants.
- Other intermediate compounds derived from renewable resources include organic acids (e.g., citric acid, lactic acid, alginic acid, amino acids etc.), aldehydes (e.g., acetaldehyde), and esters (e.g., cetyl palmitate, methyl stearate, methyl oleate, etc.).
- organic acids e.g., citric acid, lactic acid, alginic acid, amino acids etc.
- aldehydes e.g., acetaldehyde
- esters e.g., cetyl palmitate, methyl stearate, methyl oleate, etc.
- Additional intermediate compounds such as methane and carbon monoxide may also be derived from renewable resources by fermentation and/or oxidation processes.
- Intermediate compounds derived from renewable resources may be converted into polymers (e.g., glycerol to polyglycerol) or they may be converted into other intermediate compounds in a reaction pathway which ultimately leads to a polymer useful in an absorbent article.
- An intermediate compound may be capable of producing more than one secondary intermediate compound.
- a specific intermediate compound may be derived from a number of different precursors, depending upon the reaction pathways utilized.
- Particularly desirable intermediates include (meth)acrylic acids and their esters and salts; and olefins.
- the intermediate compound may be acrylic acid, ethylene, or propylene.
- acrylic acid is a monomeric compound that may be derived from renewable resources via a number of suitable routes. Examples of such routes are provided below.
- Glycerol derived from a renewable resource may be converted into acrylic acid according to a two-step process.
- the glycerol may be dehydrated to yield acrolein.
- a particularly suitable conversion process involves subjecting glycerol in a gaseous state to an acidic solid catalyst such as H 3 PO 4 on an aluminum oxide carrier (which is often referred to as solid phosphoric acid) to yield acrolien.
- an acidic solid catalyst such as H 3 PO 4 on an aluminum oxide carrier (which is often referred to as solid phosphoric acid) to yield acrolien.
- the acrolein is oxidized to form acrylic acid.
- a particularly suitable process involves a gas phase interaction of acrolein and oxygen in the presence of a metal oxide catalyst.
- a molybdenum and vanadium oxide catalyst may be used. Specifics relating to oxidation of acrolein to yield acrylic acid are disclosed, for instance, in U.S. Pat. No. 4,092,354.
- Glucose derived from a renewable resource may be converted into acrylic acid via a two step process with lactic acid as an intermediate product.
- glucose may be biofermented to yield lactic acid.
- Any suitable microorganism capable of fermenting glucose to yield lactic acid may be used including members from the genus Lactobacillus such as Lactobacillus lactis as well as those identified in U.S. Pat. Nos. 5,464,760 and 5,252,473.
- the lactic acid may be dehydrated to produce acrylic acid by use of an acidic dehydration catalyst such as an inert metal oxide carrier which has been impregnated with a phosphate salt.
- Another suitable reaction pathway for converting glucose into acrylic acid involves a two step process with 3-hydroxypropionic acid as an intermediate compound.
- glucose may be biofermented to yield 3-hydroxypropionic acid.
- Microorganisms capable of fermenting glucose to yield 3-hydroxypropionic acid have been genetically engineered to express the requisite enzymes for the conversion.
- a recombinant microorganism expressing the dhaB gene from Klebsiella pneumoniae and the gene for an aldehyde dehydrogenase has been shown to be capable of converting glucose to 3-hydroxypropionic acid. Specifics regarding the production of the recombinant organism may be found in U.S. Pat. No. 6,852,517.
- the 3-hydroxypropionic acid may be dehydrated to produce acrylic acid.
- Glucose derived from a renewable resource may be converted into acrylic acid by a multistep reaction pathway.
- Glucose may be fermented to yield ethanol.
- Ethanol may be dehydrated to yield ethylene.
- ethylene may be polymerized to form polyethylene.
- ethylene may be converted into propionaldehyde by hydroformylation of ethylene using carbon monoxide and hydrogen in the presence of a catalyst such as cobalt octacarbonyl or a rhodium complex.
- Propan-1-ol may be formed by catalytic hydrogenation of propionaldehyde in the presence of a catalyst such as sodium borohydride and lithium aluminum hydride. Propan-1-ol may be dehydrated in an acid catalyzed reaction to yield propylene. At this point, propylene may be polymerized to form polypropylene. However, propylene may be converted into acrolein by catalytic vapor phase oxidation. Acrolein may then be catalytically oxidized to form acrylic acid in the presence of a molybdenum-vanadium catalyst.
- a catalyst such as sodium borohydride and lithium aluminum hydride.
- Propan-1-ol may be dehydrated in an acid catalyzed reaction to yield propylene. At this point, propylene may be polymerized to form polypropylene. However, propylene may be converted into acrolein by catalytic vapor phase oxidation. Acrolein may then be catalytically oxidized to form acrylic
- acrylic acid may be readily converted into an ester (e.g., methyl acrylate, ethyl acrylate, etc.) or salt.
- ester e.g., methyl acrylate, ethyl acrylate, etc.
- Olefins such as ethylene and propylene may also be derived from renewable resources.
- methanol derived from fermentation of biomass may be converted to ethylene and or propylene, which are both suitable monomeric compounds, as described in U.S. Pat. Nos. 4,296,266 and 4,083,889.
- Ethanol derived from fermentation of a renewable resource may be converted into monomeric compound of ethylene via dehydration as described in U.S. Pat. No. 4,423,270.
- propanol or isopropanol derived from a renewable resource can be dehydrated to yield the monomeric compound of propylene as exemplified in U.S. Pat. No. 5,475,183.
- Propanol is a major constituent of fusel oil, a by-product formed from certain amino acids when potatoes or grains are fermented to produce ethanol.
- Charcoal derived from biomass can be used to create syngas (i.e., CO+H 2 ) from which hydrocarbons such as ethane and propane can be prepared (Fischer-Tropsch Process). Ethane and propane can be dehydrogenated to yield the monomeric compounds of ethylene and propylene.
- syngas i.e., CO+H 2
- hydrocarbons such as ethane and propane
- propane can be dehydrogenated to yield the monomeric compounds of ethylene and propylene.
- A. Superabsorbent Polymers Certain compounds derived from renewable resources may be polymerized to yield suitable synthetic superabsorbent polymers. For example, acrylic acid derived from soybean oil via the glycerol/acrolein route described above may be polymerized under the appropriate conditions to yield a superabsorbent polymer comprising poly(acrylic acid).
- the absorbent polymers useful in the present invention can be formed by any polymerization and/or crosslinking techniques capable of achieving the desired properties. Typical methods for producing these polymers are described in Reissue U.S. Pat. No. 32,649 to Brandt et al.; U.S. Pat. Nos.
- the polymer may be prepared in the neutralized, partially neutralized, or un-neutralized form.
- the absorbent polymer may be formed from acrylic acid that is from about 50 mole % to about 95 mole % neutralized.
- the absorbent polymer may be prepared using a homogeneous solution polymerization process, or by multi-phase polymerization techniques such as inverse emulsion or suspension polymerization procedures.
- the polymerization reaction will generally occur in the presence of a relatively small amount of di- or poly-functional monomers such as N,N′-methylene bisacrylamide, trimethylolpropane triacrylate, ethylene glycol di(meth)acrylate, triallylamine, and methacrylate analogs of the aforementioned acrylates.
- the di- or poly-functional monomer compounds serve to lightly cross-link the polymer chains thereby rendering them water-insoluble, yet water-swellable.
- the synthetic superabsorbent polymer comprising acrylic acid derived from renewable resources may be formed from starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, crosslinked polymers of polyacrylic acid, and crosslinked polymers of partially neutralized polyacrylic acid. Preparation of these materials is disclosed in U.S. Pat. Nos. 3,661,875; 4,076,663; 4,093,776; 4,666,983; and 4,734,478.
- the synthetic superabsorbent polymers particles can be surface-crosslinked after polymerization by reaction with a suitable reactive crosslinking agents.
- Surface-crosslinking of the initially formed superabsorbent polymers particles derived from renewable resources provides superabsorbent polymers having relatively high absorbent capacity and relatively high permeability to fluid in the swollen state, as described below.
- a number of processes for introducing surface crosslinks are disclosed in the art. Suitable methods for surface crosslinking are disclosed in U.S. Pat. Nos.
- Suitable crosslinking agents include di- or poly-functional crosslinking reagents such as di/poly-haloalkanes, di/poly-epoxides, di/poly-acid chlorides, di/poly-tosyl alkanes, di/poly-aldehydes, di/poly-alcohols, and the like.
- An important characteristic of the synthetic superabsorbent polymers of the present invention is the permeability or flow conductivity of a zone or layer of the polymer particles when swollen with body fluids.
- This permeability or flow conductivity is defined herein in terms of the Saline Flow Conductivity (SFC) value of the superabsorbent polymer.
- SFC measures the ability of the swollen hydrogel zone or layer to transport or distribute body fluids under usage pressures. It is believed that when a superabsorbent polymer is present at high concentrations in an absorbent member and then swells to form a hydrogel under usage pressures, the boundaries of the hydrogel come into contact, and interstitial voids in this high-concentration region become generally bounded by hydrogel.
- the permeability or flow conductivity properties of this region are generally reflective of the permeability or flow conductivity properties of a hydrogel zone or layer formed from the superabsorbent polymer alone. It is further believed that increasing the permeability of these swollen high-concentration regions to levels that approach or even exceed conventional acquisition/distribution materials, such as wood-pulp fluff, can provide superior fluid handling properties for the absorbent member and absorbent core, thus decreasing incidents of leakage, especially at high fluid loadings. Higher SFC values also are reflective of the ability of the formed hydrogel to acquire body fluids under normal usage conditions.
- the SFC value of the synthetic superabsorbent polymers derived from renewable resources useful in the present invention is at least about 30 ⁇ 10 ⁇ 7 cm 3 sec/g. In other embodiments, the SFC value of the superabsorbent polymers useful in the present invention is at least about 50 ⁇ 10 ⁇ 7 cm 3 sec/g. In other embodiments, the SFC value of the superabsorbent polymers useful in the present invention is at least about 100 ⁇ 10 ⁇ 7 cm 3 sec/g. Typically, these SFC values are in the range of from about 30 ⁇ 10 ⁇ 7 to about 1000 ⁇ 10 ⁇ 7 cm 3 sec/g.
- SFC values may range from about 50 ⁇ 10 ⁇ 7 to about 500 ⁇ 10 ⁇ 7 cm 3 sec/g or from about 50 ⁇ 10 ⁇ 7 to about 350 ⁇ 10 ⁇ 7 cm 3 sec/g.
- a method for determining the SFC value of the superabsorbent polymers is provided hereafter in the Test Methods Section.
- the superabsorbent polymers of the present invention Another important characteristic of the superabsorbent polymers of the present invention is their ability to swell against a load. This capacity versus a load is defined in terms of the superabsorbent polymer's Absorption against Pressure (AAP) capacity.
- AAP Absorption against Pressure
- Usage pressures exerted on the superabsorbent polymers used within absorbent article include both mechanical pressures (e.g., exerted by the weight and motions of a wearer, taping forces, etc.) and capillary pressures (e.g., resulting from the acquisition component(s) in the absorbent core that temporarily hold fluid before it is absorbed by the superabsorbent polymer).
- the AAP capacity of absorbent polymer of the useful in the present invention is generally at least about 15 g/g. In certain embodiments, the AAP capacity of absorbent polymer is generally at least about 20 g/g. Typically, AAP values range from about 15 to about 25 g/g. However, AAP values may range from about 17 to about 23 g/g or from about 20 to about 23 g/g. A method for determining the AAP capacity value of these absorbent polymers is provided hereafter in the Test Methods Section.
- Polyolefins Olefins derived from renewable resources may be polymerized to yield polyolefins.
- Ethylene derived from renewable resources may be polymerized under the appropriate conditions to prepare polyethylene having desired characteristics for use in a particular component of an absorbent article or in the packaging for said article.
- the polyethylene may be high density, medium density, low density, or linear-low density.
- Polyethylene and/or polypropylene may be produced via free-radical polymerization techniques, or by using Ziegler-Natta catalysis or Metallocene catalysts.
- the polyolefin may be processed according to methods known in the art into a form suitable for the end use of the polymer.
- Suitable forms for polyolefins include a film, an apertured film, a microporous film, a fiber, a filament, a nonwoven, or a laminate.
- Suitable nonwoven forms include spunbond webs, meltblown webs, and combinations thereof (e.g., spunbond-meltblown webs (SM), spunbond-meltblown-spunbond webs (SMS), etc.).
- the polyolefin may comprise mixtures or blends with other polymers such as polyolefins derived from petrochemicals.
- the polyolefin may comprise other compounds such as inorganic compounds, fillers, pigments, dyes, antioxidants, UV-stabilizers, binders, surfactants, wetting agents, and the like.
- a polyolefin film may be impregnated with inorganic compound such as calcium carbonate, titanium dioxide, clays, silicas, zeolites, kaolin, mica, carbon, and mixtures thereof.
- inorganic compound such as calcium carbonate, titanium dioxide, clays, silicas, zeolites, kaolin, mica, carbon, and mixtures thereof.
- Such compounds may serve as pore forming agents which, upon straining the film, may improve the breathability of the film. This process is described further in U.S. Pat. No. 6,605,172.
- a binder may be used with a polyolefin fibers, filaments, or nonwoven web.
- a suitable binder is a styrene-butadiene latex binder available under the trade name GENFLOTM 3160 from OMNOVA Solutions Inc.; Akron, Ohio.
- the resulting binder/polyolefin web may be used as an acquisition layer, which may be associated with the absorbent core.
- the polyolefin materials and particularly polyolefin fibers, filaments, and nonwoven webs may treated with a surfactant or wetting agent such as IrgasurfTM available from Ciba Specialty Chemicals of Tarrytown, N.Y.
- Polyolefin nonwovens useful in an absorbent article may have a basis weight between about 1 g/m 2 and about 50 g/m 2 or between about 5 g/m 2 and about 30 g/m 2 , as measured according to the Basis Weight. Test provided below.
- Polyolefin nonwovens suitable for use as a topsheet may have an average liquid strike-through time of less than about 4 seconds, as measured according to the Liquid Strike-Through Test provided below. In other embodiments the polyolefin nonwoven may have an average strike-through time of less than about 3 seconds or less than about 2 seconds.
- Polyolefin nonwoven useful as a barrier leg cuff may have a hydrohead of greater than about 5 mbar or about 6 mbar and less than about 10 mbar or about 8 mbar, as measured according to the Hydrohead test provided below.
- Polyolefin films suitable for use as a backsheet may have an MD tensile strength of greater than about 0.5 N/cm or about 1 N/cm and less than about 6 N/cm or about 5 N/cm, as measured according to the Tensile Test as provided below.
- the film may have a Moisture Vapor Transmission Rate (MVTR) of at least about 2000 g/m 2 /hr, preferably greater than about 2400 g/m 2 /hr, and even more preferably, greater than about 3000 g/m 2 /hr, as measured by the Moisture Vapor Transmission Rate test provided below. It should be recognized that non-breathable backsheets, which are also useful in diapers, would exhibit an MVTR value of about 0 g/m 2 /hr.
- MVTR Moisture Vapor Transmission Rate
- any of the aforementioned synthetic polymers may be formed by using a combination of monomers derived from renewable resources and monomers derived from non-renewable (e.g., petroleum) resources.
- the superabsorbent polymer of poly(acrylic acid) may be polymerized from a combination of acrylic acid derived form renewable resources and acrylic acid derived from non-renewable resources.
- the monomer derived from a renewable resource may comprise at least about 5% by weight [weight of renewable resource monomer/weight of resulting polymer x 100], at least about 10% by weight, at least about 20% by weight, at least about 30% by weight, at least about 40% by weight, or at least about 50% by weight of the superabsorbent polymer.
- the present invention relates to an absorbent article comprising a synthetic polymer derived from a renewable resource.
- the polymer has specific performance characteristics.
- the polymers derived from a renewable resource may be in any suitable form such as a film, nonwoven, superabsorbent, and the like.
- FIG. 1A is a plan view of an exemplary, non-limiting embodiment of an absorbent article in the form of a diaper 20 in a flat, uncontracted state (i.e., without elastic induced contraction).
- the garment-facing surface 120 of the diaper 20 is facing the viewer and the body-facing surface 130 is opposite the viewer.
- the diaper 20 includes a longitudinal centerline 100 and a lateral centerline 110 .
- FIG. 1B is a cross-sectional view of the diaper 20 of FIG. 1A taken along the lateral centerline 110 .
- the diaper 20 may comprise a chassis 22 .
- the diaper 20 and chassis 22 are shown to have a front waist region 36 , a rear waist region 38 opposed to the front waist region 36 , and a crotch region 37 located between the front waist region 36 and the rear waist region 38 .
- the waist regions 36 and 38 generally comprise those portions of the diaper 20 which, when worn, encircle the waist of the wearer.
- the waist regions 36 and 38 may include elastic elements such that they gather about the waist of the wearer to provide improved fit and containment.
- the crotch region 37 is that portion of the diaper 20 which, when the diaper 20 is worn, is generally positioned between the legs of the wearer.
- the outer periphery of diaper 20 and/or chassis 22 is defined by longitudinal edges 12 and lateral edges 14 .
- the chassis 22 may have opposing longitudinal edges 12 that are oriented generally parallel to the longitudinal centerline 100 .
- longitudinal edges 12 may be curved or angled to produce, for example, an “hourglass” shape diaper when viewed in a plan view.
- the chassis 22 may have opposing lateral edges 14 that are oriented generally parallel to the lateral centerline 110 .
- the chassis 22 may comprises a liquid permeable topsheet 24 , a backsheet 26 , and an absorbent core 28 between the topsheet 24 and the backsheet 26 .
- the absorbent core 28 may have a body-facing surface and a garment facing-surface.
- the topsheet 24 may be joined to the core 28 and/or the backsheet 26 .
- the backsheet 26 may be joined to the core 28 and/or the topsheet 24 . It should be recognized that other structures, elements, or substrates may be positioned between the core 28 and the topsheet 24 and/or backsheet 26 .
- the chassis 22 comprises the main structure of the diaper 20 and other features may added to form the composite diaper structure.
- topsheet 24 , the backsheet 26 , and the absorbent core 28 may be assembled in a variety of well-known configurations as described generally in U.S. Pat. Nos. 3,860,003; 5,151,092; 5,221,274; 5,554,145; 5,569,234; 5,580,411; and 6,004,306.
- the absorbent core 28 may comprise the superabsorbent polymer derived from a renewable resource of the present invention as well as a wide variety of other liquid-absorbent materials commonly used in diapers and other absorbent articles.
- suitable absorbent materials include comminuted wood pulp, which is generally referred to as air felt; chemically stiffened, modified or cross-linked cellulosic fibers; superabsorbent polymers or absorbent gelling materials; melt blown polymers, including co-form, biosoluble vitreous microfibers; tissue, including tissue wraps and tissue laminates; absorbent foams; absorbent sponges; and any other known absorbent material or combinations of materials.
- Exemplary absorbent structures for use as the absorbent core 28 are described in U.S. Pat. Nos.
- absorbent structures may include non-removable absorbent core components and removable absorbent core components. Such structures are described in U.S. Publication 2004/0039361A1; 2004/0024379A1; 2004/0030314A1; 2003/0199844A1; and 2005/0228356A1.
- the absorbent core 28 may be comprised entirely of materials derived from renewable resources; however, the absorbent core 28 may comprise materials derived from non-renewable resources.
- the absorbent core 28 may comprise a fluid acquisition component, a fluid distribution component, and a fluid storage component.
- a suitable absorbent core 28 comprising an acquisition layer, a distribution layer, and a storage layer is described in U.S. Pat. No. 6,590,136.
- absorbent core construction where the superabsorbent polymer of the present invention may be used is described in U.S. Publication No. 2004/0167486 to Busam et al.
- the absorbent core of the aforementioned publication uses no or, in the alternative, minimal amounts of absorbent fibrous material within the core.
- the absorbent core may include no more than about 20% weight percent of absorbent fibrous material (i.e., [weight of fibrous material/total weight of the absorbent core] ⁇ 100).
- the topsheet 24 is generally a portion of the diaper 20 that may be positioned at least in partial contact or close proximity to a wearer. Suitable topsheets 24 may be manufactured from a wide range of materials such as woven or nonwoven webs of natural fibers (e.g., wood or cotton fibers), synthetic fibers (e.g., polyester or polypropylene fibers), or a combination of natural and synthetic fibers; apertured plastic films; porous foams or reticulated foams.
- the topsheet 24 is generally supple, soft feeling, and non-irritating to a wearer's skin. Generally, at least a portion of the topsheet 24 is liquid pervious, permitting liquid to readily penetrate through the thickness of the topsheet 24 .
- the topsheet 24 comprises a polymer (e.g. polyethylene) derived from a renewable resource.
- a suitable topsheet 24 is available from BBA Fiberweb, Brentwood, Tenn. as supplier code 055SLPV09U.
- topsheet 24 may be coated with a lotion as is known in the art.
- suitable lotions include those described in U.S. Pat. Nos. 5,607,760; 5,609,587; 5,635,191; and 5,643,588.
- the topsheet 24 may be fully or partially elasticized or may be foreshortened so as to provide a void space between the topsheet 24 and the core 28 .
- Exemplary structures including elasticized or foreshortened topsheets are described in more detail in U.S. Pat. Nos. 4,892,536; 4,990,147; 5,037,416; and 5,269,775.
- the backsheet 26 is generally positioned such that it may be at least a portion of the garment-facing surface 120 of the diaper 20 .
- Backsheet 26 may be designed to prevent the exudates absorbed by and contained within the diaper 20 from soiling articles that may contact the diaper 20 , such as bed sheets and undergarments.
- the backsheet 26 is substantially water-impermeable; however, the backsheet 26 may be made breathable so as to permit vapors to escape while preventing liquid exudates from escaping.
- the polyethylene film may be made breathable by inclusion of inorganic particulate material and subsequent tensioning of the film.
- Breathable backsheets may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, and microporous films.
- the backsheet 26 comprises a polymer such (e.g. polyethylene) derived from a renewable resource as disclosed above.
- Alternative backsheets 26 derived from non-renewable resources include films manufactured by Tredegar Industries Inc. of Terre Haute, Ind. and sold under the trade names X15306, X10962, and X10964; and microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by EXXON Chemical Co., of Bay City, Tex., under the designation EXXAIRE.
- Other alternative breathable backsheets 26 are described in U.S. Pat. Nos. 5,865,823, 5,571,096, and 6,107,537.
- Backsheet 26 may also consist of more than one layer.
- the backsheet 26 may comprise an outer cover and an inner layer or may comprise two outer layers with an inner layer disposed therebetween.
- the outer cover may have longitudinal edges and the inner layer may have longitudinal edges.
- the outer cover may be made of a soft, non-woven material.
- the inner layer may be made of a substantially water-impermeable film.
- the outer cover and an inner layer may be joined together by adhesive or any other suitable material or method.
- the nonwoven outer cover and the water-impermeable film comprise polymers (e.g., polyethylene) may be derived from renewable resources.
- a suitable outer cover and inner layer derived from non-renewable resources are available, respectively, as supplier code A18AH0 from Corovin GmbH, Peine, Germany and as supplier code PGBR4WPR from RKW Gronau GmbH, Gronau, Germany. While a variety of backsheet configurations are contemplated herein, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention.
- the diaper 20 may include a fastening system 50 .
- the fastening system 50 interconnects the front waist region 36 and the rear waist region 38 .
- the diaper 20 contains a circumscribing waist opening and two circumscribing leg openings.
- the fastening system 50 may comprise an engaging member 52 and a receiving member 54 .
- the engaging member 52 may comprise hooks, loops, an adhesive, a cohesive, a tab, or other fastening mechanism.
- the receiving member 54 may comprise hooks, loops, a slot, an adhesive, a cohesive, or other fastening mechanism that can receive the engaging member 52 .
- Suitable engaging member 52 and receiving member 54 combinations are well known in the art and include but are not limited to hooks/loop, hooks/hooks, adhesive/polymeric film, cohesive/cohesive, adhesive/adhesive, tab/slot, and button/button hole.
- the fastening system 50 may comprise a polymer (e.g., polyethylene film or a polyethylene nonwoven) derived from a renewable resource.
- the diaper 20 may include front ears (not shown) and/or back ears 42 .
- the front and/or back ears 42 may be unitary elements of the diaper 20 (i.e., they are not separately manipulative elements secured to the diaper 20 , but rather are formed from and are extensions of one or more of the various layers of the diaper).
- the front and/or back ears 42 may be discrete elements that are joined to the chassis 22 , as shown in FIG. 1A .
- Discrete front and/or back ears 42 may be joined to the chassis 22 by any bonding method known in the art such as adhesive bonding, pressure bonding, heat bonding, and the like.
- the front and/or back ears 42 may comprise a discrete element joined to the chassis 22 with the chassis 22 having a layer, element, or substrate that extends over the front and/or back ear 42 .
- the front ears and back ears 42 may be extensible, inextensible, elastic, or inelastic.
- the front ears and back ears 42 may be formed from nonwoven webs, woven webs, knitted fabrics, polymeric and elastomeric films, apertured films, sponges, foams, scrims, and combinations and laminates thereof.
- the front ears and back ears 42 may be formed of a stretch laminate comprising a first nonwoven 42 a , elastomeric material 42 b , and, optionally, a second nonwoven 42 c or other like laminates.
- the first and second nonwoven 42 a , 42 c may comprise a synthetic polymer (e.g., polyethylene) derived from a renewable resource.
- a suitable elastomeric material 42 b may comprise a natural elastomer such as natural rubber or may comprise a synthetic elastomer such as the elastomeric film available from Tredegar Corp, Richmond, Va., as supplier code X25007.
- An alternate stretch laminate may be formed from the Tredegar X25007 elastomer disposed between two nonwoven layers (available from BBA Fiberweb, Brentwood, Tenn. as supplier code FPN332).
- the diaper 20 may further include leg cuffs 32 a , 32 b which provide improved containment of liquids and other body exudates.
- Leg cuffs 32 a , 32 b may also be referred to as gasketing cuffs, outer leg cuffs, leg bands, side flaps, elastic cuffs, barrier cuffs, second cuffs, inner leg cuffs, or “stand-up” elasticized flaps.
- U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (i.e., a gasketing cuff).
- FIGS. 1A-B shows the diaper 20 having dual cuffs: gasketing cuff 32 a and barrier cuff 32 b .
- the barrier cuff 32 b may include one or more barrier elastic members 33 b .
- the barrier elastic members 33 b may be joined to a barrier cuff substrate 34 .
- the barrier cuff substrate 34 may comprise a polymer derived from a renewable resource. In certain embodiments, the barrier cuff substrate 34 may be a polymeric film or nonwoven.
- the barrier cuff 32 b may be disposed on the body-facing surface of the chassis 22 .
- the barrier cuff substrate 34 may extend laterally from the longitudinal edge 12 of the chassis 22 to a point inboard of the longitudinal edge 122 .
- the barrier cuff 32 b generally extends longitudinally at least through the crotch region 37 .
- the barrier elastic members 33 b allow a portion of the barrier cuff 32 b to be spaced away from the body-facing surface of the diaper
- the gasketing cuff 32 a may include one or more gasketing elastic members 33 a .
- the gasketing elastic member 33 a may be joined to one or more of the existing elements or substrates of the diaper 20 (e.g., topsheet 24 , backsheet 26 , barrier cuff substrate 34 , etc.). In some embodiments, it may be desirable to treat all or a portion of the leg cuffs 32 with a hydrophilic surface coasting such as is described in U.S. Patent Publication 2005/0177123A1.
- Suitable gasketing and barrier elastic members 33 a , 33 b include natural rubber, synthetic rubbers, and other elastomers.
- the diaper 20 may be preformed by the manufacturer to create a pant.
- a pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.).
- the diaper 20 of FIG. 1A may be manufactured with the fastening system 50 engaged (i.e., the engaging member 52 is joined to the receiving member 54 ).
- the diaper 20 of FIG. 1A may be manufactured with the front ears 40 joined to the back ears 42 by way of a bond such as an adhesive bond, a mechanical bond, or some other bonding technique known in the art.
- Suitable pants are disclosed in U.S. Pat. Nos. 5,246,433; 5,569,234; 6,120,487; 6,120,489; 4,940,464; 5,092,861; 5,897,545; and 5,957,908.
- One or more absorbent articles (e.g., diapers) 220 may be provided as a package 200 , as shown in FIGS. 2A-B .
- the package 200 allows for a quantity of absorbent articles 220 to be delivered to and purchased by a consumer while economizing space and simplifying transport and storage.
- the package 200 includes at least one absorbent article 220 secured by an overwrap 250 .
- the overwrap 250 may partially or fully cover the absorbent article(s), which may be compressed or uncompressed.
- FIG. 2A depicts an overwrap 250 that completely covers and encases a plurality of absorbent articles 220 .
- the overwrap 250 may comprise a variety of materials including, but not limited to, thermoplastic films, nonwovens, wovens, foils, fabrics, papers, cardboard, elastics, cords, straps, and combinations thereof. Other suitable package structures and overwraps are described in U.S. Pat. Nos. 4,846,587; 4,934,535; 4,966,286; 5,036,978; 5,050,742; and 5,054,619.
- the overwrap 250 comprises a synthetic polymer (e.g., a polyolefin) derived form a renewable resource.
- the package 200 is not limited in shape, it may be desirable for the package 200 to have the shape of a parallelepiped or substantially similar to a parallelepiped (e.g., a solid at least a substantially planar base and four substantially planar sides). Such a shape is ideal for packaging, stacking, and transport.
- the package 200 is not limited in size; however, in certain embodiments, the size of the package 200 should be no greater than is required to contain the absorbent articles 220 .
- the package 200 may have a handle 240 .
- the handle 240 may be a discrete element such as a strap that may be affixed to the overwrap 250 .
- the handle 240 is integral to the overwrap 250 .
- the handle 240 may comprise an extension 252 from the overwrap 250 .
- the extension 252 may have an aperture 254 there through.
- the aperture 254 ideally sized to permit entry by one or more digits of an adult hand.
- An opening device 260 may be provided in the overwrap 250 .
- the opening device 260 may comprise a line of weakness 262 (e.g., perforations) in an overwrap 250 made from paper, cardboard, or film.
- the opening device 260 allows for partial or full removal of a flap 256 which is a portion of the overwrap 250 . Partial of full removal of the flap 256 may allow for improved access to the absorbent articles 220 .
- the opening device 260 and flap 256 are shown in a closed configuration in FIG. 2A and in an open configuration in FIG. 2B .
- An exemplary opening device 260 is presented in U.S. Pat. App. No. 5,036,978.
- the package 200 may contain multiple overwraps 250 .
- a plurality of absorbent articles may be secured with a first overwrap such as a thermoplastic film and then a plurality of film wrapped absorbent articles may be secured in a second overwrap such as a cardboard box or another thermoplastic film.
- the present invention may further comprise a related environmental message or may further comprise a step of communicating a related environmental message to a consumer.
- the related environmental message may convey the benefits or advantages of the absorbent article comprising a polymer derived from a renewable resource.
- the related environmental message may identify the absorbent articles as: being environmentally friendly or Earth friendly; having reduced petroleum (or oil) dependence or content; having reduced foreign petroleum (or oil) dependence or content; having reduced petrochemicals or having components that are petrochemical free; and/or being made from renewable resources or having components made from renewable resources.
- This communication is of importance to consumers that may have an aversion to petrochemical use (e.g., consumers concerned about depletion of natural resources or consumers who find petrochemical based products unnatural or not environmentally friendly) and to consumers that are environmentally conscious. Without such a communication, the benefit of the present invention may be lost on some consumers.
- the communication may be effected in a variety of communication forms. Suitable communication forms include store displays, posters, billboard, computer programs, brochures, package literature, shelf information, videos, advertisements, internet web sites, pictograms, iconography, or any other suitable form of communication. The information could be available at stores, on television, in a computer-accessible form, in advertisements, or any other appropriate venue. Ideally, multiple communication forms may be employed to disseminate the related environmental message.
- the communication may be written, spoken, or delivered by way of one or more pictures, graphics, or icons.
- a television or internet based-advertisement may have narration, a voice-over, or other audible conveyance of the related environmental message.
- the related environmental message may be conveyed in a written form using any of the suitable communication forms listed above.
- the communication form may be one or more icons.
- FIGS. 3A-F depict several suitable embodiments of a communication in the form of icon 310 .
- One or more icons 310 may be used to convey the related environmental message of reduced petrochemical usage.
- Suitable icons 310 communicating the related environmental message of reduced petroleum usage are shown in FIGS. 3A-B .
- Icons communicating the related environmental message of environmental friendliness or renewable resource usage are shown in FIGS. 3C-F .
- the icons 310 may be located on the package 200 (as shown in FIGS. 2A-B ) containing the absorbent articles, on the absorbent article, on an insert adjoining the package or the articles, or in combination with any of the other forms of the communication listed above.
- the related environmental message may also include a message of petrochemical equivalence.
- a message of petroleum equivalence may be necessary to educate consumers that the polymers derived from renewable resources, as described above, exhibit equivalent or better performance characteristics as compared to petroleum derived polymers.
- a suitable petrochemical equivalence message can include comparison to an absorbent article that does not have a polymer derived from a renewable resource.
- a suitable combined message may be, “Diaper Brand A with an environmentally friendly absorbent material is just as absorbent as Diaper Brand B.” This message conveys both the related environmental message and the message of petrochemical equivalence.
- the present invention further relates to a method for making an absorbent article comprising a superabsorbent polymer derived from a renewable resource.
- the method comprises the steps of providing a renewable resource; deriving a monomer from the renewable resource; polymerizing the monomer to form a synthetic superabsorbent polymer having a Saline Flow Conductivity value of at least about 30 ⁇ 10 ⁇ 7 cm 3 sec/g and an Absorption against Pressure value of at least about 15 g/g; and incorporating said superabsorbent polymer into an absorbent article.
- the present invention further relates to providing one or more of the absorbent articles to a consumer and communicating reduced petrochemical usage to the consumer.
- the polymer derived from renewable resources may undergo additional process steps prior to incorporation into the absorbent article. Such process steps include drying, sieving, surface crosslinking, and the like.
- the present invention further relates to a method for making an absorbent article comprising a synthetic polyolefin derived from a renewable resource.
- the method comprises the steps of providing a renewable resource; deriving an olefin monomer from the renewable resource; polymerizing the monomer to form a synthetic polyolefin having a 14 C/C ratio of about 1.0 ⁇ 10 ⁇ 14 or greater; and incorporating said polyolefin into an absorbent article.
- the synthetic polyolefin exhibits one or more of the above referenced performance characteristics.
- the present invention further relates to providing one or more of the absorbent articles to a consumer and communicating reduced petrochemical usage to the consumer.
- the polymer derived from renewable resources may undergo additional process steps prior to incorporation into the absorbent article. Such process steps include, film formation, fiber formation, ring rolling, and the like.
- a suitable validation technique is through 14 C analysis.
- a common analysis technique in carbon-14 dating is measuring the ratio of 14 C to total carbon within a sample ( 14 C/C).
- Research has noted that fossil fuels and petrochemicals generally have a 14 C/C ratio of less than about 1 ⁇ 10 ⁇ 15 .
- polymers derived entirely from renewable resources typically have a 14 C/C ratio of about 1.2 ⁇ 10 ⁇ 12 .
- Polymers useful in the present invention have a 14 C/C ratio of about 1.0 ⁇ 10 ⁇ 14 or greater.
- the petrochemical equivalent polymers of the present invention may have a 14 C/C ratio of about 1.0 ⁇ 10 ⁇ 13 or greater or a 14 C/C ratio of about 1.0 ⁇ 10 ⁇ 12 or greater.
- Suitable techniques for 14 C analysis are known in the art and include accelerator mass spectrometry, liquid scintillation counting, and isotope mass spectrometry. These techniques are described in U.S. Pat. Nos. 3,885,155, 4,427,884, 4,973,841, 5,438,194, and 5,661,299.
- the method to determine the permeability of a swollen hydrogel layer 718 is the “Saline Flow Conductivity” also known as “Gel Layer Permeability” and is described in several references, including, EP A 640 330, filed on Dec. 1, 1993, U.S. Ser. No. 11/349,696, filed on Feb. 3, 2004, U.S. Ser. No. 11/347,406, filed on Feb. 3, 2006, U.S. Ser. No. 06/682,483, filed on Sep. 30, 1982, and U.S. Pat. No. 4,469,710, filed on Oct. 14, 1982. The equipment used for this method is described below.
- FIG. 4 shows permeability measurement system 400 set-up with the constant hydrostatic head reservoir 414 , open-ended tube for air admittance 410 , stoppered vent for refilling 412 , laboratory jack 416 , delivery tube 418 , stopcock 420 , ring stand support 422 , receiving vessel 424 , balance 426 and piston/cylinder assembly 428 .
- FIG. 5 shows the piston/cylinder assembly 428 comprising a metal weight 512 , piston shaft 514 , piston head 518 , lid 516 , and cylinder 520 .
- the bottom 548 of the cylinder 520 is faced with a US. Standard 400 mesh stainless-steel screen cloth (not shown) that is bi-axially stretched to tautness prior to attachment to the bottom 548 of the cylinder 520 .
- the piston shaft 514 is made of transparent polycarbonate (e.g., Lexan®) and has an overall length q of approximately 127 mm.
- a middle portion 526 of the piston shaft 514 has a diameter r of 21.15 mm.
- An upper portion 528 of the piston shaft 514 has a diameter s of 15.8 mm, forming a shoulder 524 .
- a lower portion 546 of the piston shaft 514 has a diameter t of approximately 5 ⁇ 8 inch and is threaded to screw firmly into the center hole 618 (see FIG. 6 ) of the piston head 518 .
- the piston head 518 is perforated, made of transparent polycarbonate (e.g., Lexan®), and is also screened with a stretched US.
- the weight 512 is stainless steel, has a center bore 530 , slides onto the upper portion 528 of piston shaft 514 and rests on the shoulder 524 .
- the combined weight of the piston head 518 , piston shaft 514 and weight 512 is 596 g ( ⁇ 6 g ), which corresponds to 0.30 psi over the area of the cylinder 520 .
- the combined weight may be adjusted by drilling a blind hole down a central axis 532 of the piston shaft 514 to remove material and/or provide a cavity to add weight.
- the cylinder lid 516 has a first lid opening 534 in its center for vertically aligning the piston shaft 514 and a second lid opening 536 near the edge 538 for introducing fluid from the constant hydrostatic head reservoir 414 into the cylinder 520 .
- a first linear index mark (not shown) is scribed radially along the upper surface 552 of the weight 512 , the first linear index mark being transverse to the central axis 532 of the piston shaft 514 .
- a corresponding second linear index mark (not shown) is scribed radially along the top surface 560 of the piston shaft 514 , the second linear index mark being transverse to the central axis 532 of the piston shaft 514 .
- a corresponding third linear index mark (not shown) is scribed along the middle portion 526 of the piston shaft 514 , the third linear index mark being parallel with the central axis 532 of the piston shaft 514 .
- a corresponding fourth linear index mark (not shown) is scribed radially along the upper surface 540 of the cylinder lid 516 , the fourth linear index mark being transverse to the central axis 532 of the piston shaft 514 . Further, a corresponding fifth linear index mark (not shown) is scribed along a lip 554 of the cylinder lid 516 , the fifth linear index mark being parallel with the central axis 532 of the piston shaft 514 . A corresponding sixth linear index mark (not shown) is scribed along the outer cylinder wall 542 , the sixth linear index mark being parallel with the central axis 532 of the piston shaft 514 .
- Alignment of the first, second, third, fourth, fifth, and sixth linear index marks allows for the weight 512 , piston shaft 514 , cylinder lid 516 , and cylinder 520 to be re-positioned with the same orientation relative to one another for each measurement.
- the cylinder 520 specification details are:
- the cylinder lid 516 specification details are:
- the weight 512 specification details are:
- the stainless steel screens (not shown) of the piston head 518 and cylinder 520 should be inspected for clogging, holes or over-stretching and replaced when necessary.
- An SFC apparatus with damaged screen can deliver erroneous SFC results, and must not be used until the screen has been replaced.
- a 5.00 cm mark 556 is scribed on the cylinder 520 at a height k of 5.00 cm ( ⁇ 0.05 cm) above the screen (not shown) attached to the bottom 548 of the cylinder 520 . This marks the fluid level to be maintained during the analysis. Maintenance of correct and constant fluid level (hydrostatic pressure) is critical for measurement accuracy.
- a constant hydrostatic head reservoir 414 is used to deliver salt solution 432 to the cylinder 520 and to maintain the level of salt solution 432 at a height k of 5.00 cm above the screen (not shown) attached to the bottom 548 of the cylinder 520 .
- the bottom 434 of the air-intake tube 410 is positioned so as to maintain the salt solution 432 level in the cylinder 520 at the required 5.00 cm height k during the measurement, i.e., bottom 434 of the air tube 410 is in approximately same plane 438 as the 5.00 cm mark 556 on the cylinder 520 as it sits on the support screen (not shown) on the ring stand 440 above the receiving vessel 424 .
- a suitable reservoir 414 consists of a jar 430 containing: a horizontally oriented L-shaped delivery tube 418 for fluid delivery, a vertically oriented open-ended tube 410 for admitting air at a fixed height within the constant hydrostatic head reservoir 414 , and a stoppered vent 412 for re-filling the constant hydrostatic head reservoir 414 .
- Tube 410 has an internal diameter of xx mm.
- the delivery tube 418 positioned near the bottom 442 of the constant hydrostatic head reservoir 414 , contains a stopcock 420 for starting/stopping the delivery of salt solution 432 .
- the outlet 444 of the delivery tube 418 is dimensioned to be inserted through the second lid opening 536 in the cylinder lid 516 , with its end positioned below the surface of the salt solution 432 in the cylinder 520 (after the 5.00 cm height of the salt solution 432 is attained in the cylinder 520 ).
- the air-intake tube 410 is held in place with an o-ring collar (not shown).
- the constant hydrostatic head reservoir 414 can be positioned on a laboratory jack 416 in order to adjust its height relative to that of the cylinder 520 .
- the components of the constant hydrostatic head reservoir 414 are sized so as to rapidly fill the cylinder 520 to the required height (i.e., hydrostatic head) and maintain this height for the duration of the measurement.
- the constant hydrostatic head reservoir 414 must be capable of delivering salt solution 432 at a flow rate of at least 3 g/sec for at least 10 minutes.
- the piston/cylinder assembly 428 is positioned on a 16 mesh rigid stainless steel support screen (not shown) (or equivalent) which is supported on a ring stand 440 or suitable alternative rigid stand.
- This support screen (not shown) is sufficiently permeable so as to not impede salt solution 432 flow and rigid enough to support the stainless steel mesh cloth (not shown) preventing stretching.
- the support screen (not shown) should be flat and level to avoid tilting the piston/cylinder assembly 428 during the test.
- the salt solution 432 passing through the support screen (not shown) is collected in a receiving vessel 424 , positioned below (but not supporting) the support screen (not shown).
- the receiving vessel 424 is positioned on the balance 426 which is accurate to at least 0.01 g.
- the digital output of the balance 426 is connected to a computerized data acquisition system (not shown).
- Jayco Synthetic Urine (JSU) 712 (see FIG. 7 ) is used for a swelling phase (see SFC Procedure below) and 0.118 M Sodium Chloride (NaCl) Solution is used for a flow phase (see SFC Procedure below).
- JSU Jayco Synthetic Urine
- NaCl Sodium Chloride
- JSU A 1 L volumetric flask is filled with distilled water to 80% of its volume, and a magnetic stir bar is placed in the flask. Separately, using a weighing paper or beaker the following amounts of dry ingredients are weighed to within ⁇ 0.01 g using an analytical balance and are added quantitatively to the volumetric flask in the same order as listed below. The solution is stirred on a suitable stir plate until all the solids are dissolved, the stir bar is removed, and the solution diluted to 1 L volume with distilled water. A stir bar is again inserted, and the solution stirred on a stirring plate for a few minutes more.
- each salt is completely dissolved before adding the next one.
- Jayco synthetic urine may be stored in a clean glass container for 2 weeks. The solution should not be used if it becomes cloudy. Shelf life in a clean plastic container is 10 days.
- Sodium Chloride (NaCl) Solution 0.118 M Sodium Chloride is used as salt solution 432 .
- Using a weighing paper or beaker 6.90 g ( ⁇ 0.01 g) of sodium chloride is weighed and quantitatively transferred into a 1 L volumetric flask; and the flask is filled to volume with distilled water. A stir bar is added and the solution is mixed on a stirring plate until all the solids are dissolved.
- a caliper gauge (e.g., Mitotoyo Digimatic Height Gage) is set to read zero. This operation is conveniently performed on a smooth and level bench top 446 .
- the piston/cylinder assembly 428 without superabsorbent is positioned under the caliper gauge (not shown) and a reading, L 1 , is recorded to the nearest 0.01 mm.
- the constant hydrostatic head reservoir 414 is filled with salt solution 432 .
- the bottom 434 of the air-intake tube 410 is positioned so as to maintain the top part (not shown) of the liquid meniscus (not shown) in the cylinder 520 at the 5.00 cm mark 556 during the measurement. Proper height alignment of the air-intake tube 410 at the 5.00 cm mark 556 on the cylinder 520 is critical to the analysis.
- the receiving vessel 424 is placed on the balance 426 and the digital output of the balance 426 is connected to a computerized data acquisition system (not shown).
- the ring stand 440 with a 16 mesh rigid stainless steel support screen (not shown) is positioned above the receiving vessel 424 .
- the 16 mesh screen (not shown) should be sufficiently rigid to support the piston/cylinder assembly 428 during the measurement.
- the support screen (not shown) must be flat and level.
- 0.9 g ( ⁇ 0.05 g) of superabsorbent is weighed onto a suitable weighing paper using an analytical balance.
- 0.9 g ( ⁇ 0.05 g) of superabsorbent is weighed onto a suitable weighing paper using an analytical balance.
- the moisture content of the superabsorbent is measured according to the Edana Moisture Content Test Method 430.1-99 (“Superabsorbent materials—Polyacrylate superabsorbent powders—MOISTURE CONTENT—WEIGHT LOSS UPON HEATING” (February 99)). If the moisture content of the polymer is greater than 5%, then the polymer weight should be corrected for moisture (i.e., the added polymer should be 0.9 g on a dry-weight basis).
- the empty cylinder 520 is placed on a level benchtop 446 and the superabsorbent is quantitatively transferred into the cylinder 520 .
- the superabsorbent particles are evenly dispersed on the screen (not shown) attached to the bottom 548 of the cylinder 520 by gently shaking, rotating, and/or tapping the cylinder 520 . It is important to have an even distribution of particles on the screen (not shown) attached to the bottom 548 of the cylinder 520 to obtain the highest precision result. After the superabsorbent has been evenly distributed on the screen (not shown) attached to the bottom 548 of the cylinder 520 particles must not adhere to the inner cylinder walls 550 .
- the piston shaft 514 is inserted through the first lid opening 534 , with the lip 554 of the lid 516 facing towards the piston head 518 .
- the piston head 518 is carefully inserted into the cylinder 520 to a depth of a few centimeters.
- the lid 516 is then placed onto the upper rim 544 of the cylinder 520 while taking care to keep the piston head 518 away from the superabsorbent.
- the lid 516 and piston shaft 526 are then carefully rotated so as to align the third, fourth, fifth, and sixth linear index marks are then aligned.
- the piston head 518 (via the piston shaft 514 ) is then gently lowered to rest on the dry superabsorbent.
- the weight 512 is positioned on the upper portion 528 of the piston shaft 514 so that it rests on the shoulder 524 such that the first and second linear index marks are aligned. Proper seating of the lid 516 prevents binding and assures an even distribution of the weight on the hydrogel layer 718 .
- Swelling Phase An 8 cm diameter fritted disc (7 mm thick; e.g. Chemglass Inc. # CG 201-51, coarse porosity) 710 is saturated by adding excess JSU 712 to the fritted disc 710 until the fritted disc 710 is saturated.
- the saturated fritted disc 710 is placed in a wide flat-bottomed Petri dish 714 and JSU 712 is added until it reaches the top surface 716 of the fritted disc 710 .
- the JSU height must not exceed the height of the fitted disc 710 .
- the screen (not shown) attached to the bottom 548 of the cylinder 520 is easily stretched. To prevent stretching, a sideways pressure is applied on the piston shaft 514 , just above the lid 516 , with the index finger while grasping the cylinder 520 of the piston/cylinder assembly 428 . This “locks” the piston shaft 514 in place against the lid 516 so that the piston/cylinder assembly 428 can be lifted without undue force being exerted on the screen (not shown).
- JSU 712 from the Petri dish 714 passes through the fritted disc 710 and is absorbed by the superabsorbent polymer (not shown) to form a hydrogel layer 718 .
- the JSU 712 available in the Petri dish 714 should be enough for all the swelling phase. If needed, more JSU 712 may be added to the Petri dish 714 during the hydration period to keep the JSU 712 level at the top surface 716 of the fritted disc 710 .
- the piston/cylinder assembly 428 is removed from the fritted disc 710 , taking care to lock the piston shaft 514 against the lid 516 as described above and ensure the hydrogel layer 718 does not lose JSU 712 or take in air during this procedure.
- the piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and a reading, L 2 , is recorded to the nearest 0.01 mm. If the reading changes with time, only the initial value is recorded.
- the thickness of the hydrogel layer 718 , L 0 is determined from L 2 -L 1 to the nearest 0.1 mm.
- the entire piston/cylinder assembly 428 is lifted in this the fashion described above and placed on the support screen (not shown) attached to the ring stand 440 . Care should be taken so that the hydrogel layer 718 does not lose JSU 712 or take in air during this procedure.
- the JSU 712 available in the Petri dish 714 should be enough for all the swelling phase. If needed, more JSU 712 may be added to the Petri dish 714 during the hydration period to keep the JSU 712 level at the 5.00 cm mark 556 . After a period of 60 minutes, the piston/cylinder assembly 428 is removed, taking care to lock the piston shaft 514 against the lid 516 as described above.
- the piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and the caliper (not shown) is measured as L 2 to the nearest 0.01 mm.
- the thickness of the hydrogel layer 718 , L 0 is determined from L 2 -L 1 to the nearest 0.1 mm. If the reading changes with time, only the initial value is recorded.
- the piston/cylinder assembly 428 is transferred to the support screen (not shown) attached to the ring support stand 440 taking care to lock the piston shaft 514 in place against the lid 516 .
- the constant hydrostatic head reservoir 414 is positioned such that the delivery tube 418 is placed through the second lid opening 536 .
- the measurement is initiated in the following sequence:
- the quantity of salt solution 432 passing through the hydrogel layer 718 is recorded at intervals of 20 seconds for a time
- JSU 712 from the Petri dish 714 passes through the fritted disc 710 and is absorbed by the superabsorbent polymer (not shown) to form a hydrogel layer 718 .
- the JSU 712 available in the Petri dish 714 should be enough for all the swelling phase. If needed, more JSU 712 may be added to the Petri dish 714 during the hydration period to keep the JSU 712 level at the top surface 716 of the fritted disc 710 .
- the piston/cylinder assembly 428 is removed from the fritted disc 710 , taking care to lock the piston shaft 514 against the lid 516 as described above and ensure the hydrogel layer 718 does not lose JSU 712 or take in air during this procedure.
- the piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and a reading, L 2 , is recorded to the nearest 0.01 mm. If the reading changes with time, only the initial value is recorded.
- the thickness of the hydrogel layer 718 , L 0 is determined from L 2 -L 1 to the nearest 0.1 mm.
- the entire piston/cylinder assembly 428 is lifted in this the fashion described above and placed on the support screen (not shown) attached to the ring stand 440 . Care should be taken so that the hydrogel layer 718 does not lose JSU 712 or take in air during this procedure.
- the JSU 712 available in the Petri dish 714 should be enough for all the swelling phase. If needed, more JSU 712 may be added to the Petri dish 714 during the hydration period to keep the JSU 712 level at the 5.00 cm mark 556 . After a period of 60 minutes, the piston/cylinder assembly 428 is removed, taking care to lock the piston shaft 514 against the lid 516 as described above.
- the piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and the caliper (not shown) is measured as L 2 to the nearest 0.01 mm.
- the thickness of the hydrogel layer 718 , L 0 is determined from L 2 -L 1 to the nearest 0.1 mm. If the reading changes with time, only the initial value is recorded.
- the piston/cylinder assembly 428 is transferred to the support screen (not shown) attached to the ring support stand 440 taking care to lock the piston shaft 514 in place against the lid 516 .
- the constant hydrostatic head reservoir 414 is positioned such that the delivery tube 418 is placed through the second lid opening 536 .
- the measurement is initiated in the following sequence:
- the flow rate F s (in g/s) is the slope of a linear least-squares fit to a graph of the weight of salt solution 432 collected (in grams) as a function of time (in seconds) from 60 seconds to 600 seconds.
- F g ( F a ⁇ F s )/( F a ⁇ F s )
- the Saline Flow Conductivity (K) of the hydrogel layer 718 is calculated using the following equation:
- F g is the flow rate in g/sec determined from regression analysis of the flow rate results and any correction due to permeability measurement system 400 flow resistance
- L 0 is the initial thickness of the hydrogel layer 718 in cm
- ⁇ is the density of the salt solution 432 in gm/cm 3 .
- A (from the equation above) is the area of the hydrogel layer 718 in cm 2
- ⁇ P is the hydrostatic pressure in dyne/cm 2
- K is in units of cm sec/gm. The average of three determinations should be reported.
- a permeability coefficient ( ⁇ ) can be calculated from the saline flow conductivity using the following equation:
- ⁇ is the viscosity of the salt solution 432 in poise and the permeability coefficient, ⁇ , is in units of cm 2 .
- flow rate need not be constant.
- This test measures the peak load exhibited by a substrate.
- a preferred piece of equipment to do the test is a tensile tester such as a MTS Synergie100 or a MTS Alliance, fitted with a computer interface and Testworks 4 software, available from MTS Systems Corporation 14000 Technology Drive, Eden Prairie, Minn., USA.
- This instrument measures the Constant Rate of Extension in which the pulling grip moves at a uniform rate and the force measuring mechanism moves a negligible distance (less than 0.13 mm) with increasing force.
- the load cell is selected such that the measured loads (e.g., force) of the tested samples will be between 10 and 90% of the capacity of the load cell (typically a 25 N or 50 N load cell).
- a 1 ⁇ 1 inch (2.5 ⁇ 2.5 cm) sample is die-cut from the substrate using an anvil hydraulic press die to cut the film with the die into individual samples.
- a minimum of three samples are created which are substantially free of visible defects such as air bubbles, holes, inclusions, and cuts. Each sample must have smooth and substantially defect-free edges.
- Testing is performed in a conditioned room having a temperature of 23° C. ( ⁇ 1° C.) and a relative humidity of 50% ( ⁇ 2%) for at least 2 hours. Samples are allowed to equilibrate in the conditioned room for at least 2 hours prior to testing.
- Pneumatic jaws of the tensile tester fitted with flat 2.54 cm-square rubber-faced grips, are set to give a gauge length of 2.54 cm.
- the sample is loaded with sufficient tension to eliminate observable slack, but less than 0.05N.
- the sample is extended at a constant crosshead speed of 25.4 cm/min until the specimen completely breaks. If the sample breaks at the grip interface or slippage within the grips is detected, then the data is disregarded and the test is repeated with a new sample and the grip pressure is appropriately adjusted. Samples are run at least in triplicate to account for film variability.
- Peak load is defined as the maximum stress measured as a specimen is taken to break, and is reported in Newtons per centimeter width (as measured parallel to the grips) of the sample.
- the peak load for a given substrate is the average of the respective values of each sample from the substrate.
- the MVTR test method measures the amount of water vapor that is transmitted through a film under specific temperature and humidity.
- the transmitted vapor is absorbed by CaCl2 desiccant and determined gravimetrically.
- Samples are evaluated in triplicate, along with a reference film sample of established permeability (e.g., Exxon Exxaire microporous material #XBF-110W) that is used as a positive control.
- established permeability e.g., Exxon Exxaire microporous material #XBF-110W
- the height of the cup is 55 mm with an inner diameter of 30 mm and an outer diameter of 45 mm.
- the cup is fitted with a silicone gasket and lid containing 3 holes for thumb screws to completely seal the cup.
- the cup is filled with CaCl 2 to within 1 cm of the top.
- the cup is tapped on the counter 10 times, and the CaCl 2 surface is leveled.
- the amount of CaCl 2 is adjusted until the headspace between the film surface and the top of the CaCl2 is 1.0 cm.
- the film is placed on top of the cup across the opening (30 mm) and is secured using the silicone gasket, retaining ring, and thumb screws. Properly installed, the specimen should not be wrinkled or stretched.
- the film must completely cover the cup opening, A, which is 0.0007065 m 2 .
- the sample assembly is weighed with an analytical balance and recorded to ⁇ 0.001 g.
- the assembly is placed in a constant temperature (40 ⁇ 3° C.) and humidity (75 ⁇ 3% RH) chamber for 5.0 hr ⁇ 5 min.
- the sample assembly is removed, covered with Saran Wraps and is secured with a rubber band.
- the sample is equilibrated to room temperature for 30 min, the plastic wrap removed, and the assembly is reweighed and the weight is recorded to ⁇ 0.001 g.
- the absorbed moisture M a is the difference in initial and final assembly weights.
- MVTR in g/m 2 /24 hr (g/m 2 /24 hours), is calculated as:
- Replicate results are averaged and rounded to the nearest 100 g/m 2 /24 hr, e.g., 2865 g/m 2 /24 hours is herein given as 2900 g/m 2 /24 hours and 275 g/m 2 /24 hours is given as 300 g/m 2 /24 hours.
- the Hydrohead test method measures the resistance of substrates (e.g., particularly nonwovens) to the penetration of water.
- WW Strategic Partners (WSP) test method 80.6 (05) entitled “Standard Test Method for Evaluation of Water Resistance (Hydrostatic Pressure) Test” is used.
- WSP methods are harmonized test methods formulated by EDANA and the Association of the Nonwoven Fabrics Industry (INDA). The test is to be run with an incoming water supply rate of 10 ⁇ 0.5 cm water/minute.
- a suitable polyolefin may be created according to the following method.
- An exemplary renewable resource is corn.
- the corn is cleaned and may be degerminated.
- the corn is milled to produce a fine powder (e.g., cornmeal) suitable for enzymatic treatment.
- the hydrolysis e.g., liquification and saccharification
- a suitable preparation pathway is disclosed in U.S. Pat. No. 4,407,955.
- a slurry of dry milled corn is created by adding water to the milled corn and an aqueous solution of sulfuric acid (98% acid by weight).
- Sufficient sulfuric acid should be added to provide a slurry pH of about 1.0 to about 2.5.
- the slurry is heated to about 140° C. to about 220° C. and pressurized to at least about 50 psig; however, pressures from about 100 psig to about 1,000 psig may result in greater conversion of the starch to fermentable sugars.
- the slurry is maintained at the aforementioned temperature and pressure for a few seconds up to about 10 minutes.
- the slurry may be conveyed through one or more pressure reduction vessels which reduce the pressure and temperature of hydrolyzed slurry.
- the slurry is subjected to standard separation techniques such as by centrifuge to yield a fermentable sugar liquor.
- the liquor typically has a dextrose equivalent of at least 75.
- the resulting sugar liquor is fermented according to processes well know to a skilled artisan using a suitable strain of yeast (e.g., genus of Saccharomyces ).
- the resulting ethanol may be separated from the aqueous solution by standard isolation techniques such as evaporation or distillation.
- Ethanol is dehydrated to form ethylene by heating the ethanol with an excess of concentrated sulfuric acid to a temperature of about 170° C.
- Ethylene may also be formed by passing ethanol vapor over heated aluminum oxide powder.
- the resulting ethylene is polymerized using any of the well known polymerization techniques such as free radical polymerization, Ziegler-Natta polymerization, or metallocene catalyst polymerization.
- Low density branched polyethylene LDPE
- LLDPE Linear low density polyethylene
- the resulting polyethylene or blends thereof may be processed to yield a desired end product such as a film, fiber, or filament.
- a linear low density polyethylene is made by copolymerizing ethylene with other longer chain olefins to result in a polymer having a density of about 0.915 g/cm 3 to about 0.925 g/cm 3 .
- a 49 grams/meter 2 (gsm) cast extruded film is made comprising the linear low density polyethylene and about 35% by weight to about 45% by weight calcium carbonate (available from English China Clay of America, Inc. under the designation SupercoatTM).
- the film may be made porous via several routes. The film may be warmed and elongated to 500% of the film's original length using well known elongation methods and machinery.
- the resulting microporous film is capable of exhibiting a MVTR of at least 2000 g/m 2 /24 hours.
- the film may be incrementally stretched according to the method disclosed in U.S. Pat. No. 6,605,172.
- the resulting microporous film should exhibit a MVTR of at least 2000 g/m 2 /24 hours.
- a nonwoven spunbond web may be formed according to methods well known in the art such as evidenced by U.S. Pat. Nos. 4,405,297 and 4,340,563.
- the web is formed to have a basis weight of about 5 gsm to about 35 gsm.
- the individual filaments can have an average denier of about 5 or less.
- the individual filaments may have a variety of cross-sectional shapes.
- a suitable cross-sectional shape is a bilobal shape disclosed in U.S. Pat. No. 4,753,834.
- the resultant nonwoven may be made more hydrophilic by incorporating a surfactant in the nonwoven as described in U.S. Statutory Invention Registration No. H1670.
- the nonwoven treated to be more hydrophilic is suitable for use as a topsheet in an absorbent article.
- the nonwoven should exhibit a Liquid Strike-Through Time of less than about 4 seconds.
- the resultant nonwoven may be made more hydrophobic by use of a surface coating as described in U.S. Publication No. 2005/0177123A1.
- the nonwoven treated to be more hydrophobic is suitable for use a cuff substrate in an absorbent article.
- the treated nonwoven should exhibit a hydrohead of at least about 5 mbar.
- Canola oil is obtained by expressing from canola seeds. Approximately 27.5 kg of canola oil, 5.3 kg methanol and 400 g sodium methoxide are charged to a 50 L round-bottomed flask equipped with a heating mantle, thermometer, nitrogen inlet, mechanical stirrer, and reflux condenser. A glass eduction tube (dip tube) is situated so that liquid can be removed from the bottom of the flask by means of a peristaltic pump. The flask is purged with nitrogen and the mixture in the flask is heated to 65° C. with stirring. The mixture is allowed to reflux for 2.5 hours, then the heat is turned off, agitation is stopped and the mixture allowed to settle for 20 minutes.
- a glass eduction tube dip tube
- the bottom layer is pumped out of the flask and kept for further use (Fraction 1). Approximately 1.4 kg methanol and 230 g sodium methoxide are added to the flask, agitation is resumed, and the mixture refluxed at 65° C. for another 2 hours. The heat is turned off, approximately 2.8 L of water are added to the flask and the mixture is stirred for 1 minute. The stirrer is turned off and the mixture allowed to settle for 20 minutes. The bottom layer is then pumped out of the flask and kept for further use (Fraction 2). Approximately 1.6 L of water is added to the flask, and the mixture is stirred for 1 minute. The stirrer is turned off and the mixture allowed to settle for 20 minutes.
- Fraction 3 The bottom layer is then pumped out of the flask and kept for further use (Fraction 3).
- Fractions 1, 2 and 3 are combined in a suitable flask equipped with a magnetic stirrer. The combined fractions are stirred to form a homogeneous mixture and heated to 82° C. Sodium hydroxide solution (50%) is added slowly until the pH of the mixture is 11-13 and the temperature is maintained at 82° C. for a further 10 minutes. The pH is checked and more NaOH solution added if ⁇ 11. The solution is concentrated at 115° C. under a vacuum of approximately 40 mm Hg until bubbling ceases (water content ⁇ 5%).
- the solution is transferred to a round bottomed flask and the glycerol is vacuum distilled using a rotary evaporator with the oil bath temperature at 170° C. and the condenser at 130-140° C.
- the vacuum is controlled to achieve a moderate distillation rate.
- a center cut of distilled glycerol is collected.
- An inert carrier gas such as helium is optionally utilized to help transport the vapor through the column.
- the vapors emanating from the column outlet are condensed and collected.
- Acrolein is isolated from the condensate by fractional distillation or other suitable methods known to those skilled in the art.
- a Pyrex glass reactor approximately 12 cm ⁇ 2.5 cm OD equipped with a thermowell is packed with 31 g (30 mL bulk volume) of a catalyst containing 2 wt % palladium and 0.5 wt % copper supported on alumina.
- the reactor is heated in an oil bath at 152° C.
- the reaction mixture is then passed through two water scrubbers connected in series held at 0° C.
- the aqueous solutions collected are combined and acrylic acid separated from the mixture by fractional distillation.
- L-Ascorbic Acid (0.2081 g, 1.18 mmol) is added to a 100 mL volumetric flask and is dissolved in distilled water (approximately 50 mL). After approximately ten minutes the solution is diluted to the 100 mL mark on the volumetric flask with distilled water and the flask was inverted and agitated to ensure a homogeneous solution.
- TMPTA 0.261 g, 0.881 mmol
- acrylic acid 296.40 g, 4.11 mol
- distilled water 250 g
- Water is circulated through the jacket of the resin kettle by means of a circulating water bath kept at 25° C.
- standard 5N sodium hydroxide solution 576 mL, 2.88 mol.
- the resin kettle is capped with a lid having several ports.
- An overhead mechanical stirrer is set up using an air-tight bushing in the central port.
- a thermometer is inserted through a seal in another port so that the bulb of the thermometer is immersed in the mixture throughout the reaction.
- the solution is stirred using the overhead mechanical stirrer and purged with nitrogen using a fritted gas dispersion tube for approximately fifteen minutes. Nitrogen is vented from the kettle via an 18-gauge syringe needle inserted through a septum in the lid.
- the fritted gas dispersion tube is raised above the surface of the monomer solution and nitrogen was kept flowing through the headspace of the kettle.
- the mechanical stirrer is stopped when the vortex in the polymer solution disappears due to the increase in viscosity of the solution (a few seconds after adding the L-ascorbic acid solution).
- the polymerization reaction proceeds with the circulating bath at 25° C. for 30 minutes. After 30 minutes the temperature of the water bath is increased to 40° C. and held for an additional 30 minutes. The temperature of the water bath is then increased to 50° C. and held for another hour.
- the peak temperature of the static polymerization is approximately 70° C.
- the circulating water bath is turned off.
- the resin kettle is opened; the polyacrylate gel is removed and broken into chunks approximately 2 cm in diameter. These are chopped into smaller particles using a food grinder attachment with 4.6 mm holes on a Kitchen-Aid mixer (Proline Model KSM5). Distilled water is added periodically from a squirt bottle to the infeed portion of the grinder to facilitate passage of the bulk gel through the grinder. Approximately 200 g of distilled water is used for this purpose.
- the chopped gel is spread into thin layers on two separate polyester mesh screens each measuring approximately 56 cm ⁇ 48 cm and dried at 150° C. for 90 minutes in a vented oven in a fashion which allows passage of air through the mesh.
- the dried gel is then milled through a Laboratory Wiley Mill using a 20-mesh screen. Care is taken to ensure that the screen does not become clogged during the grinding process.
- the milled dried gel is sieved to obtain a fraction with particles which pass through a No. 20 USA Standard Testing Sieve and are retained on a No. 270 USA Standard Testing Sieve. The ‘on 20’ and ‘through 270’ fractions are discarded.
- the resultant free-flowing powder fraction ‘through 20’ and ‘on 270’ is dried under vacuum at room temperature until further use.
- a 50% solution of ethylene carbonate (1,3-dioxolan-2-one) is prepared by dissolving 10.0 grams of ethylene carbonate in 10.0 grams of distilled water.
- the mixture is stirred for approximately thirty seconds to help ensure an even coating.
- the resultant mixture is quite homogeneous with no obvious large clumps of material or residual dry powder.
- the mixture is then immediately transferred to a Teflon lined 20 cm ⁇ 35 cm metal tray, spread into a thin layer and placed into a vented oven at 185° C. for one hour.
- the mixture is removed from the oven and allowed to cool for approximately one minute. After cooling the powder is placed in a 12 cm diameter mortar and any agglomerated pieces are gently broken apart with a pestle. The resultant powder is sieved to obtain a fraction which passes through a No. 20 US standard screen, but is retained on a No. 270 US standard screen.
- the resultant ‘through 20’ and ‘on 270’ superabsorbent polymer particles are stored under vacuum at room temperature until further use.
- the AAP value for this material is measured according to the EDANA test method 442.2-02, and the SFC value is measured according to the SFC Test Method described above.
- the AAP value is found to be about 21 g/g, and the SFC value is found to be about 50 ⁇ 10 ⁇ 7 cm 3 ⁇ sec/g
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Botany (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Dispersion Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Laminated Bodies (AREA)
Abstract
An absorbent article is disclosed having a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, and a synthetic superabsorbent polymer derived from a first renewable resource via at least one intermediate compound, wherein said superabsorbent polymer exhibits a defined Saline Flow Conductivity value and Absorption Against Pressure value. Alternately, an absorbent article is disclosed having a synthetic polyolefin derived from a first renewable resource via at least one intermediate compound. The synthetic polyolefin exhibits defined performance characteristics making the polyolefin particularly useful in certain components of the absorbent article. Methods for making the aforementioned absorbent articles are also disclosed.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/783,274, filed Mar. 17, 2006, the substance of which is incorporated herein by reference.
- The present invention relates to an absorbent article which comprises synthetic polymeric materials derived from renewable resources, where the materials have specific performance characteristics making them particularly useful in said absorbent article.
- The development of absorbent articles such as disposable diapers, adult incontinence pads and briefs, and catamenial products such as sanitary napkins, is the subject of substantial commercial interest. There is a great deal of art relating to the design of absorbent articles, the processes for manufacturing such articles, and the materials used in their construction. In particular, a great deal of effort has been spent in the development of materials exhibiting optimal performance characteristics for use in absorbent articles. Such materials include films, fibers, nonwovens, laminates, superabsorbent polymers, foams, elastomers, adhesives, and the like.
- Most of the materials used in current commercial absorbent articles are derived from non-renewable resources, especially petroleum. Typically, components such as the topsheet, backsheet, and cuffs are made from polyolefins such as polyethylene and polypropylene. These polymers are derived from olefinic monomers such as ethylene and propylene which are obtained directly from petroleum via cracking and refining processes. Propylene derived from petroleum is also used to make acrylic acid via a catalytic oxidation process. Acrylic acid derived from petroleum is the major feedstock used in the manufacture of modern superabsorbent polymers utilized in absorbent cores of current commercial absorbent articles.
- Thus, the price and availability of the petroleum feedstock ultimately has a significant impact on the price of absorbent articles which utilize materials derived from petroleum. As the worldwide price of petroleum escalates, so does the price of absorbent articles.
- Furthermore, many consumers display an aversion to purchasing products that are derived from petrochemicals. In some instances, consumers are hesitant to purchase products made from limited non-renewable resources such as petroleum and coal. Other consumers may have adverse perceptions about products derived from petrochemicals being “unnatural” or not environmentally friendly.
- Certain alternative materials which are derived from non-petrochemical or renewable resources have been disclosed for use in absorbent articles. For example, U.S. Pat. No. 5,889,072 to Chao describes a process for preparing a cross-linked polyaspartate superabsorbent material. U.S. Pat. Nos. 6,713,460 and 6,444,653, both to Huppe et al., describe a superabsorbent material comprising glass-like polysaccharides. Furthermore, diapers having varying degrees of biodegradability have been disclosed. U.S. Pat. No. 5,783,504 to Ehret et al. describes a composite structure, which is suitable for use in diapers, comprising a nonwoven manufactured from a polymer derived from lactic acid and a film manufactured from a biodegradable aliphatic polyester polymer. PCT application WO 99/33420 discloses a superabsorbent material comprising a renewable and/or biodegradable raw material. However, these diapers and materials tend to have significantly lower performance and/or higher cost than materials derived from petrochemicals. For example, the superabsorbent materials disclosed in WO 99/33420 show a low absorption capacity under load and a low gel strength. A superabsorbent material with low gel strength tends to deform upon swelling and reduce interstitial spaces between the superabsorbent particles. This phenomenon is known as gel-blocking. Once gel-blocking occurs, further liquid uptake or distribution takes place via a very slow diffusion process. In practical terms, gel-blocking increases the susceptibility of the absorbent article to leakage.
- Accordingly, it would be desirable to provide an absorbent article which comprises a polymer derived from renewable resources, where the polymer has specific performance characteristics making the polymer particularly useful in the absorbent article. Ideally, it would be desirable to provide a consumer product including a plurality of absorbent articles comprising said polymer derived from renewable resources and a communication of a related environmental message.
- The present invention relates to an absorbent article having opposing longitudinal edges, the absorbent article comprising a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, and a synthetic polymer derived from a first renewable resource via at least one monomeric intermediate compound. The polymer is disposed in or incorporated into one or more elements of the absorbent article. The elements are selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
- The present invention further relates to an absorbent article having a body-facing surface, and a garment-facing surface. The article comprises a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, a pair of barrier cuffs, and a synthetic polyolefin. The synthetic polyolefin is derived from a first renewable resource via at least one intermediate compound. The synthetic polyolefin is either polypropylene or polyethylene. The topsheet, backsheet, or cuff substrate comprises the polyolefin.
- The present invention also relates to a method for making an absorbent article comprising the steps of providing a renewable resource, deriving an intermediate monomeric compound from the renewable resource, polymerizing the monomeric compound to form a synthetic polymer, and disposing or incorporating the polymer into one or more elements of the absorbent article. The elements are selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
-
FIG. 1A is a plan view of an exemplary absorbent article in the form of a diaper in a flat, uncontracted state. -
FIG. 1B is a cross-sectional view of the diaper ofFIG. 1A taken along the lateral centerline. -
FIGS. 2A-B are perspective views of a package comprising an absorbent article. -
FIGS. 3A-F are illustrations of several suitable embodiments of icons communicating reduced petrochemical dependence and/or environmental friendliness. -
FIG. 4 is a partial cross-sectional side view of a suitable permeability measurement system for conducting the Saline Flow Conductivity Test. -
FIG. 5 is a cross-sectional side view of a piston/cylinder assembly for use in conducting the Saline Flow Conductivity Test. -
FIG. 6 is a top view of a piston head suitable for use in the piston/cylinder assembly shown inFIG. 5 . -
FIG. 7 is a cross-sectional side view of the piston/cylinder assembly ofFIG. 5 placed on a fritted disc for the swelling phase. - The present invention relates to an absorbent article comprising a synthetic polymer derived from a renewable resource where the polymer has specific performance characteristics. When the synthetic polymer derived from a renewable resource is in the form of a superabsorbent polymer, it exhibits an Absorption Against Pressure (AAP) value of at least about 15.0 g saline per gram polymer and/or a saline flow conductivity (SFC) of at least about 30×10−7 cm3 sec/g. When the polymer is a polyolefin nonwoven suitable for use as a topsheet, it may exhibit a Liquid Strike Through value of less than about 4 seconds. When the polymer is a polyolefin nonwoven suitable for use as a barrier leg cuff, it may exhibit a hydrohead of at least about 5 mbar. When the polymer is a breathable polyolefin film suitable for use as a backsheet, it may exhibit a Moisture Vapor Transmission Rate of at least about 2000 g/m2/24 hr. When the polymer is a polyolefin film suitable for use as a backsheet, it may have an MD tensile strength of at least about 0.5 N/cm.
- In another aspect, the absorbent article comprises a synthetic polymer derived from a renewable resource wherein the polymer has a 14C/C ratio of about 1.0×10−14 or greater The present invention further relates to a package comprising at least one absorbent article comprising a synthetic polymer derived from a renewable resource and an overwrap securing the absorbent article(s). The absorbent article comprises a synthetic polymer derived from a renewable resource. The package may further comprise a communication of a related environmental message.
- The present invention further relates to a method for making absorbent articles comprising a synthetic polymer derived from a renewable resource. The method comprises the following steps: providing a renewable resource; deriving at least one intermediate compound from the renewable resource, wherein the intermediate compound comprises a monomeric compound; polymerizing the monomeric compound to form at least one polymer, wherein the at least one polymer exhibits the requisite performance for use in an absorbent article; and incorporating the at least one polymer into an absorbent article. Additional steps, as described herein, may be incorporated into the method. Optionally the at least one polymer may be modified after the polymerization step.
- As used herein, the following terms shall have the meaning specified thereafter:
- “Disposable” refers to items that are intended to be discarded after a limited number of uses, frequently a single use (i.e., the original absorbent article as a whole is not intended to be laundered or reused as an absorbent article, although certain materials or portions of the absorbent article may be recycled, reused, or composted). For example, certain disposable absorbent articles may be temporarily restored to substantially full functionality through the use of removable/replaceable components but the article is nevertheless considered to be disposable because the entire article is intended to be discarded after a limited number of uses.
- “Absorbent article” refers to devices which absorb and contain body exudates and, more specifically, refers to devices which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Exemplary absorbent articles include diapers, training pants, pull-on pant-type diapers (i.e., a diaper having a pre-formed waist opening and leg openings such as illustrated in U.S. Pat. No. 6,120,487), refastenable diapers or pant-type diapers, incontinence briefs and undergarments, diaper holders and liners, feminine hygiene garments such as panty liners (e.g. such as disclosed in U.S. Pat. Nos. 4,425,130; 4,687,478; 5,267,992; and 5,733,274), absorbent inserts, and the like. Absorbent articles may be disposable or may contain portions that can be reused or restored.
- “Proximal” and “Distal” refer, respectively, to the location of an element relatively near to or far from the longitudinal or lateral centerline of a structure (e.g., the proximal edge of a longitudinally extending element is located nearer to the longitudinal centerline than the distal edge of the same element is located relative to the same longitudinal centerline).
- “Body-facing” and “garment-facing” refer respectively to the relative location of an element or a surface of an element or group of elements. “Body-facing” implies the element or surface is nearer to the wearer during wear than some other element or surface. “Garment-facing” implies the element or surface is more remote from the wearer during wear than some other element or surface (i.e., element or surface is proximate to the wearer's garments that may be worn over the absorbent article).
- “Superabsorbent” refers to a material capable of absorbing at least ten times its dry weight of a 0.9% saline solution at 25° C. Superabsorbent polymers absorb fluid via an osmotic mechanism to form a gel, often referred to as, and used interchangeably with the term “hydrogel”.
- “Longitudinal” refers to a direction running substantially perpendicular from a waist edge to an opposing waist edge of the article and generally parallel to the maximum linear dimension of the article. Directions within 45 degrees of the longitudinal direction are considered to be “longitudinal”
- “Lateral” refers to a direction running from a longitudinal edge to an opposing longitudinal edge of the article and generally at a right angle to the longitudinal direction. Directions within 45 degrees of the lateral direction are considered to be “lateral.”
- “Disposed” refers to an element being located in a particular place or position.
- “Joined” refers to configurations whereby an element is directly secured to another element by affixing the element directly to the other element and to configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
- “Film” refers to a sheet-like material wherein the length and width of the material far exceed the thickness of the material. Typically, films have a thickness of about 0.5 mm or less.
- “Impermeable” generally refers to articles and/or elements that are not penetrative by fluid through the entire Z-directional thickness of the article under pressure of 0.14 lb/in2 or less. Preferably, the impermeable article or element is not penetrative by fluid under pressures of 0.5 lb/in2 or less. More preferably, the impermeable article or element is not penetrative by fluid under pressures of 1.0 lb/in2 or less. The test method for determining impermeability conforms to Edana 120.1-18 or INDA IST 80.6.
- “Extendibility” and “extensible” mean that the width or length of the component in a relaxed state can be extended or increased by at least about 10% without breaking or rupturing when subjected to a tensile force.
- “Elastic,” “elastomer,” and “elastomeric” refer to a material which generally is able to extend to a strain of at least 50% without breaking or rupturing, and is able to recover substantially to its original dimensions after the deforming force has been removed.
- “Elastomeric material” is a material exhibiting elastic properties. Elastomeric materials may include elastomeric films, scrims, nonwovens, and other sheet-like structures.
- “Outboard” and “inboard” refer respectively to the location of an element disposed relatively far from or near to the longitudinal centerline of the diaper with respect to a second element. For example, if element A is outboard of element B, then element A is farther from the longitudinal centerline than is element B.
- “Pant” refers to an absorbent article having a pre-formed waist and leg openings. A pant may be donned by inserting a wearer's legs into the leg openings and sliding the pant into position about the wearer's lower torso. Pants are also commonly referred to as “closed diapers”, “prefastened diapers”, “pull-on diapers”, “training pants” and “diaper-pants.”
- “Petrochemical” refers to an organic compound derived from petroleum, natural gas, or coal.
- “Petroleum” refers to crude oil and its components of paraffinic, cycloparaffinic, and aromatic hydrocarbons. Crude oil may be obtained from tar sands, bitumen fields, and oil shale.
- “Renewable resource” refers to a natural resource that can be replenished within a 100 year time frame. The resource may be replenished naturally, or via agricultural techniques. Renewable resources include plants, animals, fish, bacteria, fungi, and forestry products. They may be naturally occurring, hybrids, or genetically engineered organisms. Natural resources such as crude oil, coal, and peat which take longer than 100 years to form are not considered to be renewable resources
- “Agricultural product” refers to a renewable resource resulting from the cultivation of land (e.g. a crop) or the husbandry of animals (including fish).
- “Monomeric compound” refers to an intermediate compound that may be polymerized to yield a polymer.
- “Polymer” refers to a macromolecule comprising repeat units where the macromolecule has a molecular weight of at least 1000 Daltons. The polymer may be a homopolymer, copolymer, terpoymer etc. The polymer may be produced via fee-radical, condensation, anionic, cationic, Ziegler-Natta, metallocene, or ring-opening mechanisms. The polymer may be linear, branched and/or crosslinked.
- “Synthetic polymer” refers to a polymer which is produced from at least one monomer by a chemical process. A synthetic polymer is not produced directly by a living organism.
- “Polyethylene” and “polypropylene” refer to polymers prepared from ethylene and propylene, respectively. The polymer may be a homopolymer, or may contain up to about 10 mol % of re peat units from a co-monomer.
- “Communication” refers to a medium or means by which information, teachings, or messages are transmitted.
- “Related environmental message” refers to a message that conveys the benefits or advantages of the absorbent article comprising a polymer derived from a renewable resource. Such benefits include being more environmentally friendly, having reduced petroleum dependence, being derived from renewable resources, and the like.
- All percentages herein are by weight unless specified otherwise.
- A number of renewable resources contain polymers that are suitable for use in an absorbent article (i.e., the polymer is obtained from the renewable resource without intermediates). Suitable extraction and/or purification steps may be necessary, but no intermediate compound is required. Such polymers derived directly from renewable resources include cellulose (e.g. pulp fibers), starch, chitin, polypeptides, poly(lactic acid), polyhydroxyalkanoates, and the like. These polymers may be subsequently chemically modified to improve end use characteristics (e.g., conversion of cellulose to yield carboxycellulose or conversion of chitin to yield chitosan). However, in such cases, the resulting polymer is a structural analog of the starting polymer. Polymers derived directly from renewable resources (i.e., with no intermediate compounds) and their derivatives are known and these materials are not within the scope of the present invention.
- The synthetic polymers of the present invention are derived from a renewable resource via an indirect route involving one or more intermediate compounds. Suitable intermediate compounds derived from renewable resources include sugars. Suitable sugars include monosaccharides, disaccharides, trisaccharides, and oligosaccharides. Sugars such as sucrose, glucose, fructose, maltose may be readily produced from renewable resources such as sugar cane and sugar beets. Sugars may also be derived (e.g., via enzymatic cleavage) from other agricultural products such as starch or cellulose. For example, glucose may be prepared on a commercial scale by enzymatic hydrolysis of corn starch. While corn is a renewable resource in North America, other common agricultural crops may be used as the base starch for conversion into glucose. Wheat, buckwheat, arracaha, potato, barley, kudzu, cassaya, sorghum, sweet potato, yam, arrowroot, sago, and other like starchy fruit, seeds, or tubers are may also be used in the preparation of glucose.
- Other suitable intermediate compounds derived from renewable resources include monofunctional alcohols such as methanol or ethanol and polyfunctional alcohols such as glycerol. Ethanol may be derived from many of the same renewable resources as glucose. For example, cornstarch may be enzymatically hydrolysized to yield glucose and/or other sugars. The resultant sugars can be converted into ethanol by fermentation. As with glucose production, corn is an ideal renewable resource in North America; however, other crops may be substituted. Methanol may be produced from fermentation of biomass. Glycerol is commonly derived via hydrolysis of triglycerides present in natural fats or oils, which may be obtained from renewable resources such as animals or plants.
- Other intermediate compounds derived from renewable resources include organic acids (e.g., citric acid, lactic acid, alginic acid, amino acids etc.), aldehydes (e.g., acetaldehyde), and esters (e.g., cetyl palmitate, methyl stearate, methyl oleate, etc.).
- Additional intermediate compounds such as methane and carbon monoxide may also be derived from renewable resources by fermentation and/or oxidation processes.
- Intermediate compounds derived from renewable resources may be converted into polymers (e.g., glycerol to polyglycerol) or they may be converted into other intermediate compounds in a reaction pathway which ultimately leads to a polymer useful in an absorbent article. An intermediate compound may be capable of producing more than one secondary intermediate compound. Similarly, a specific intermediate compound may be derived from a number of different precursors, depending upon the reaction pathways utilized.
- Particularly desirable intermediates include (meth)acrylic acids and their esters and salts; and olefins. In particular embodiments, the intermediate compound may be acrylic acid, ethylene, or propylene.
- For example, acrylic acid is a monomeric compound that may be derived from renewable resources via a number of suitable routes. Examples of such routes are provided below.
- Glycerol derived from a renewable resource (e.g., via hydrolysis of soybean oil and other triglyceride oils) may be converted into acrylic acid according to a two-step process. In a first step, the glycerol may be dehydrated to yield acrolein. A particularly suitable conversion process involves subjecting glycerol in a gaseous state to an acidic solid catalyst such as H3PO4 on an aluminum oxide carrier (which is often referred to as solid phosphoric acid) to yield acrolien. Specifics relating to dehydration of glycerol to yield acrolein are disclosed, for instance, in U.S. Pat. Nos. 2,042,224 and 5,387,720. In a second step, the acrolein is oxidized to form acrylic acid. A particularly suitable process involves a gas phase interaction of acrolein and oxygen in the presence of a metal oxide catalyst. A molybdenum and vanadium oxide catalyst may be used. Specifics relating to oxidation of acrolein to yield acrylic acid are disclosed, for instance, in U.S. Pat. No. 4,092,354.
- Glucose derived from a renewable resource (e.g., via enzmatic hydrolysis of corn starch) may be converted into acrylic acid via a two step process with lactic acid as an intermediate product. In the first step, glucose may be biofermented to yield lactic acid. Any suitable microorganism capable of fermenting glucose to yield lactic acid may be used including members from the genus Lactobacillus such as Lactobacillus lactis as well as those identified in U.S. Pat. Nos. 5,464,760 and 5,252,473. In the second step, the lactic acid may be dehydrated to produce acrylic acid by use of an acidic dehydration catalyst such as an inert metal oxide carrier which has been impregnated with a phosphate salt. This acidic dehydration catalyzed method is described in further detail in U.S. Pat. No. 4,729,978. In an alternate suitable second step, the lactic acid may be converted to acrylic acid by reaction with a catalyst comprising solid aluminum phosphate. This catalyzed dehydration method is described in further detail in U.S. Pat. No. 4,786,756.
- Another suitable reaction pathway for converting glucose into acrylic acid involves a two step process with 3-hydroxypropionic acid as an intermediate compound. In the first step, glucose may be biofermented to yield 3-hydroxypropionic acid. Microorganisms capable of fermenting glucose to yield 3-hydroxypropionic acid have been genetically engineered to express the requisite enzymes for the conversion. For example, a recombinant microorganism expressing the dhaB gene from Klebsiella pneumoniae and the gene for an aldehyde dehydrogenase has been shown to be capable of converting glucose to 3-hydroxypropionic acid. Specifics regarding the production of the recombinant organism may be found in U.S. Pat. No. 6,852,517. In the second step, the 3-hydroxypropionic acid may be dehydrated to produce acrylic acid.
- Glucose derived from a renewable resource (e.g., via enzymatic hydrolysis of corn starch obtained from the renewable resource of corn) may be converted into acrylic acid by a multistep reaction pathway. Glucose may be fermented to yield ethanol. Ethanol may be dehydrated to yield ethylene. At this point, ethylene may be polymerized to form polyethylene. However, ethylene may be converted into propionaldehyde by hydroformylation of ethylene using carbon monoxide and hydrogen in the presence of a catalyst such as cobalt octacarbonyl or a rhodium complex. Propan-1-ol may be formed by catalytic hydrogenation of propionaldehyde in the presence of a catalyst such as sodium borohydride and lithium aluminum hydride. Propan-1-ol may be dehydrated in an acid catalyzed reaction to yield propylene. At this point, propylene may be polymerized to form polypropylene. However, propylene may be converted into acrolein by catalytic vapor phase oxidation. Acrolein may then be catalytically oxidized to form acrylic acid in the presence of a molybdenum-vanadium catalyst.
- While the above reaction pathways yield acrylic acid, a skilled artisan will appreciate that acrylic acid may be readily converted into an ester (e.g., methyl acrylate, ethyl acrylate, etc.) or salt.
- Olefins such as ethylene and propylene may also be derived from renewable resources. For example, methanol derived from fermentation of biomass may be converted to ethylene and or propylene, which are both suitable monomeric compounds, as described in U.S. Pat. Nos. 4,296,266 and 4,083,889. Ethanol derived from fermentation of a renewable resource may be converted into monomeric compound of ethylene via dehydration as described in U.S. Pat. No. 4,423,270. Similarly, propanol or isopropanol derived from a renewable resource can be dehydrated to yield the monomeric compound of propylene as exemplified in U.S. Pat. No. 5,475,183. Propanol is a major constituent of fusel oil, a by-product formed from certain amino acids when potatoes or grains are fermented to produce ethanol.
- Charcoal derived from biomass can be used to create syngas (i.e., CO+H2) from which hydrocarbons such as ethane and propane can be prepared (Fischer-Tropsch Process). Ethane and propane can be dehydrogenated to yield the monomeric compounds of ethylene and propylene.
- A. Superabsorbent Polymers—Certain compounds derived from renewable resources may be polymerized to yield suitable synthetic superabsorbent polymers. For example, acrylic acid derived from soybean oil via the glycerol/acrolein route described above may be polymerized under the appropriate conditions to yield a superabsorbent polymer comprising poly(acrylic acid). The absorbent polymers useful in the present invention can be formed by any polymerization and/or crosslinking techniques capable of achieving the desired properties. Typical methods for producing these polymers are described in Reissue U.S. Pat. No. 32,649 to Brandt et al.; U.S. Pat. Nos. 4,666,983, 4,625,001, 5,408,019; and published German patent application 4,020,780 to Dahmen. The processing (i.e., drying, milling, sieving, etc.) of the resulting superabsorbent polymer to yield a usable form is well known in the art.
- The polymer may be prepared in the neutralized, partially neutralized, or un-neutralized form. In certain embodiments, the absorbent polymer may be formed from acrylic acid that is from about 50 mole % to about 95 mole % neutralized. The absorbent polymer may be prepared using a homogeneous solution polymerization process, or by multi-phase polymerization techniques such as inverse emulsion or suspension polymerization procedures. The polymerization reaction will generally occur in the presence of a relatively small amount of di- or poly-functional monomers such as N,N′-methylene bisacrylamide, trimethylolpropane triacrylate, ethylene glycol di(meth)acrylate, triallylamine, and methacrylate analogs of the aforementioned acrylates. The di- or poly-functional monomer compounds serve to lightly cross-link the polymer chains thereby rendering them water-insoluble, yet water-swellable.
- In certain embodiments, the synthetic superabsorbent polymer comprising acrylic acid derived from renewable resources may be formed from starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, crosslinked polymers of polyacrylic acid, and crosslinked polymers of partially neutralized polyacrylic acid. Preparation of these materials is disclosed in U.S. Pat. Nos. 3,661,875; 4,076,663; 4,093,776; 4,666,983; and 4,734,478.
- The synthetic superabsorbent polymers particles can be surface-crosslinked after polymerization by reaction with a suitable reactive crosslinking agents. Surface-crosslinking of the initially formed superabsorbent polymers particles derived from renewable resources provides superabsorbent polymers having relatively high absorbent capacity and relatively high permeability to fluid in the swollen state, as described below. A number of processes for introducing surface crosslinks are disclosed in the art. Suitable methods for surface crosslinking are disclosed in U.S. Pat. Nos. 4,541,871, 4,824,901, 4,789,861, 4,587,308, 4,734,478, and 5,164,459; published PCT applications WO92/16565, WO90/08789, and WO93/05080; published German patent application 4,020,780 to Dahmen; and published European patent application 509,708 to Gartner. Suitable crosslinking agents include di- or poly-functional crosslinking reagents such as di/poly-haloalkanes, di/poly-epoxides, di/poly-acid chlorides, di/poly-tosyl alkanes, di/poly-aldehydes, di/poly-alcohols, and the like.
- An important characteristic of the synthetic superabsorbent polymers of the present invention is the permeability or flow conductivity of a zone or layer of the polymer particles when swollen with body fluids. This permeability or flow conductivity is defined herein in terms of the Saline Flow Conductivity (SFC) value of the superabsorbent polymer. SFC measures the ability of the swollen hydrogel zone or layer to transport or distribute body fluids under usage pressures. It is believed that when a superabsorbent polymer is present at high concentrations in an absorbent member and then swells to form a hydrogel under usage pressures, the boundaries of the hydrogel come into contact, and interstitial voids in this high-concentration region become generally bounded by hydrogel. When this occurs, it is believed the permeability or flow conductivity properties of this region are generally reflective of the permeability or flow conductivity properties of a hydrogel zone or layer formed from the superabsorbent polymer alone. It is further believed that increasing the permeability of these swollen high-concentration regions to levels that approach or even exceed conventional acquisition/distribution materials, such as wood-pulp fluff, can provide superior fluid handling properties for the absorbent member and absorbent core, thus decreasing incidents of leakage, especially at high fluid loadings. Higher SFC values also are reflective of the ability of the formed hydrogel to acquire body fluids under normal usage conditions.
- The SFC value of the synthetic superabsorbent polymers derived from renewable resources useful in the present invention is at least about 30×10−7 cm3 sec/g. In other embodiments, the SFC value of the superabsorbent polymers useful in the present invention is at least about 50×10−7 cm3 sec/g. In other embodiments, the SFC value of the superabsorbent polymers useful in the present invention is at least about 100×10−7 cm3 sec/g. Typically, these SFC values are in the range of from about 30×10−7 to about 1000×10−7 cm3 sec/g. However, SFC values may range from about 50×10−7 to about 500×10−7 cm3 sec/g or from about 50×10−7 to about 350×10−7 cm3 sec/g. A method for determining the SFC value of the superabsorbent polymers is provided hereafter in the Test Methods Section.
- Another important characteristic of the superabsorbent polymers of the present invention is their ability to swell against a load. This capacity versus a load is defined in terms of the superabsorbent polymer's Absorption Against Pressure (AAP) capacity. When a superabsorbent polymer is incorporated into an absorbent member at high concentrations, the polymer needs to be capable of absorbing large quantities of body fluids in a reasonable time period under usage pressures. Usage pressures exerted on the superabsorbent polymers used within absorbent article include both mechanical pressures (e.g., exerted by the weight and motions of a wearer, taping forces, etc.) and capillary pressures (e.g., resulting from the acquisition component(s) in the absorbent core that temporarily hold fluid before it is absorbed by the superabsorbent polymer).
- The AAP capacity of absorbent polymer of the useful in the present invention is generally at least about 15 g/g. In certain embodiments, the AAP capacity of absorbent polymer is generally at least about 20 g/g. Typically, AAP values range from about 15 to about 25 g/g. However, AAP values may range from about 17 to about 23 g/g or from about 20 to about 23 g/g. A method for determining the AAP capacity value of these absorbent polymers is provided hereafter in the Test Methods Section.
- B. Polyolefins—Olefins derived from renewable resources may be polymerized to yield polyolefins. Ethylene derived from renewable resources may be polymerized under the appropriate conditions to prepare polyethylene having desired characteristics for use in a particular component of an absorbent article or in the packaging for said article. The polyethylene may be high density, medium density, low density, or linear-low density. Polyethylene and/or polypropylene may be produced via free-radical polymerization techniques, or by using Ziegler-Natta catalysis or Metallocene catalysts.
- The polyolefin may be processed according to methods known in the art into a form suitable for the end use of the polymer. Suitable forms for polyolefins include a film, an apertured film, a microporous film, a fiber, a filament, a nonwoven, or a laminate. Suitable nonwoven forms include spunbond webs, meltblown webs, and combinations thereof (e.g., spunbond-meltblown webs (SM), spunbond-meltblown-spunbond webs (SMS), etc.). The polyolefin may comprise mixtures or blends with other polymers such as polyolefins derived from petrochemicals. Depending on the end use and form, the polyolefin may comprise other compounds such as inorganic compounds, fillers, pigments, dyes, antioxidants, UV-stabilizers, binders, surfactants, wetting agents, and the like. For example, a polyolefin film may be impregnated with inorganic compound such as calcium carbonate, titanium dioxide, clays, silicas, zeolites, kaolin, mica, carbon, and mixtures thereof. Such compounds may serve as pore forming agents which, upon straining the film, may improve the breathability of the film. This process is described further in U.S. Pat. No. 6,605,172. A binder may be used with a polyolefin fibers, filaments, or nonwoven web. A suitable binder is a styrene-butadiene latex binder available under the trade name GENFLO™ 3160 from OMNOVA Solutions Inc.; Akron, Ohio. The resulting binder/polyolefin web may be used as an acquisition layer, which may be associated with the absorbent core. The polyolefin materials and particularly polyolefin fibers, filaments, and nonwoven webs may treated with a surfactant or wetting agent such as Irgasurf™ available from Ciba Specialty Chemicals of Tarrytown, N.Y.
- Polyolefin nonwovens useful in an absorbent article may have a basis weight between about 1 g/m2 and about 50 g/m2 or between about 5 g/m2 and about 30 g/m2, as measured according to the Basis Weight. Test provided below. Polyolefin nonwovens suitable for use as a topsheet may have an average liquid strike-through time of less than about 4 seconds, as measured according to the Liquid Strike-Through Test provided below. In other embodiments the polyolefin nonwoven may have an average strike-through time of less than about 3 seconds or less than about 2 seconds.
- Polyolefin nonwoven useful as a barrier leg cuff may have a hydrohead of greater than about 5 mbar or about 6 mbar and less than about 10 mbar or about 8 mbar, as measured according to the Hydrohead test provided below.
- Polyolefin films suitable for use as a backsheet may have an MD tensile strength of greater than about 0.5 N/cm or about 1 N/cm and less than about 6 N/cm or about 5 N/cm, as measured according to the Tensile Test as provided below. For breathable polyolefin films suitable for use as a backsheet, the film may have a Moisture Vapor Transmission Rate (MVTR) of at least about 2000 g/m2/hr, preferably greater than about 2400 g/m2/hr, and even more preferably, greater than about 3000 g/m2/hr, as measured by the Moisture Vapor Transmission Rate test provided below. It should be recognized that non-breathable backsheets, which are also useful in diapers, would exhibit an MVTR value of about 0 g/m2/hr.
- C. Other Polymers—It should be recognized that any of the aforementioned synthetic polymers may be formed by using a combination of monomers derived from renewable resources and monomers derived from non-renewable (e.g., petroleum) resources. For example, the superabsorbent polymer of poly(acrylic acid) may be polymerized from a combination of acrylic acid derived form renewable resources and acrylic acid derived from non-renewable resources. The monomer derived from a renewable resource may comprise at least about 5% by weight [weight of renewable resource monomer/weight of resulting polymer x 100], at least about 10% by weight, at least about 20% by weight, at least about 30% by weight, at least about 40% by weight, or at least about 50% by weight of the superabsorbent polymer.
- The present invention relates to an absorbent article comprising a synthetic polymer derived from a renewable resource. The polymer has specific performance characteristics. The polymers derived from a renewable resource may be in any suitable form such as a film, nonwoven, superabsorbent, and the like.
-
FIG. 1A is a plan view of an exemplary, non-limiting embodiment of an absorbent article in the form of adiaper 20 in a flat, uncontracted state (i.e., without elastic induced contraction). The garment-facingsurface 120 of thediaper 20 is facing the viewer and the body-facingsurface 130 is opposite the viewer. Thediaper 20 includes alongitudinal centerline 100 and alateral centerline 110.FIG. 1B is a cross-sectional view of thediaper 20 ofFIG. 1A taken along thelateral centerline 110. Thediaper 20 may comprise achassis 22. Thediaper 20 andchassis 22 are shown to have afront waist region 36, arear waist region 38 opposed to thefront waist region 36, and acrotch region 37 located between thefront waist region 36 and therear waist region 38. Thewaist regions diaper 20 which, when worn, encircle the waist of the wearer. Thewaist regions crotch region 37 is that portion of thediaper 20 which, when thediaper 20 is worn, is generally positioned between the legs of the wearer. - The outer periphery of
diaper 20 and/orchassis 22 is defined bylongitudinal edges 12 and lateral edges 14. Thechassis 22 may have opposinglongitudinal edges 12 that are oriented generally parallel to thelongitudinal centerline 100. However, for better fit,longitudinal edges 12 may be curved or angled to produce, for example, an “hourglass” shape diaper when viewed in a plan view. Thechassis 22 may have opposinglateral edges 14 that are oriented generally parallel to thelateral centerline 110. - The
chassis 22 may comprises a liquidpermeable topsheet 24, abacksheet 26, and anabsorbent core 28 between thetopsheet 24 and thebacksheet 26. Theabsorbent core 28 may have a body-facing surface and a garment facing-surface. Thetopsheet 24 may be joined to thecore 28 and/or thebacksheet 26. Thebacksheet 26 may be joined to thecore 28 and/or thetopsheet 24. It should be recognized that other structures, elements, or substrates may be positioned between the core 28 and thetopsheet 24 and/orbacksheet 26. In certain embodiments, thechassis 22 comprises the main structure of thediaper 20 and other features may added to form the composite diaper structure. Thetopsheet 24, thebacksheet 26, and theabsorbent core 28 may be assembled in a variety of well-known configurations as described generally in U.S. Pat. Nos. 3,860,003; 5,151,092; 5,221,274; 5,554,145; 5,569,234; 5,580,411; and 6,004,306. - The
absorbent core 28 may comprise the superabsorbent polymer derived from a renewable resource of the present invention as well as a wide variety of other liquid-absorbent materials commonly used in diapers and other absorbent articles. Examples of suitable absorbent materials include comminuted wood pulp, which is generally referred to as air felt; chemically stiffened, modified or cross-linked cellulosic fibers; superabsorbent polymers or absorbent gelling materials; melt blown polymers, including co-form, biosoluble vitreous microfibers; tissue, including tissue wraps and tissue laminates; absorbent foams; absorbent sponges; and any other known absorbent material or combinations of materials. Exemplary absorbent structures for use as theabsorbent core 28 are described in U.S. Pat. Nos. 4,610,678; 4,673,402; 4,834,735; 4,888,231; 5,137,537; 5,147,345; 5,342,338; 5,260,345; 5,387,207; 5,397,316; 5,625,222; and 6,932,800. Further exemplary absorbent structures may include non-removable absorbent core components and removable absorbent core components. Such structures are described in U.S. Publication 2004/0039361A1; 2004/0024379A1; 2004/0030314A1; 2003/0199844A1; and 2005/0228356A1. Ideally, theabsorbent core 28 may be comprised entirely of materials derived from renewable resources; however, theabsorbent core 28 may comprise materials derived from non-renewable resources. - The
absorbent core 28 may comprise a fluid acquisition component, a fluid distribution component, and a fluid storage component. A suitableabsorbent core 28 comprising an acquisition layer, a distribution layer, and a storage layer is described in U.S. Pat. No. 6,590,136. - Another suitable absorbent core construction where the superabsorbent polymer of the present invention may be used is described in U.S. Publication No. 2004/0167486 to Busam et al. The absorbent core of the aforementioned publication uses no or, in the alternative, minimal amounts of absorbent fibrous material within the core. Generally, the absorbent core may include no more than about 20% weight percent of absorbent fibrous material (i.e., [weight of fibrous material/total weight of the absorbent core]×100).
- The
topsheet 24 is generally a portion of thediaper 20 that may be positioned at least in partial contact or close proximity to a wearer.Suitable topsheets 24 may be manufactured from a wide range of materials such as woven or nonwoven webs of natural fibers (e.g., wood or cotton fibers), synthetic fibers (e.g., polyester or polypropylene fibers), or a combination of natural and synthetic fibers; apertured plastic films; porous foams or reticulated foams. Thetopsheet 24 is generally supple, soft feeling, and non-irritating to a wearer's skin. Generally, at least a portion of thetopsheet 24 is liquid pervious, permitting liquid to readily penetrate through the thickness of thetopsheet 24. Suitably, thetopsheet 24 comprises a polymer (e.g. polyethylene) derived from a renewable resource. Alternately, asuitable topsheet 24 is available from BBA Fiberweb, Brentwood, Tenn. as supplier code 055SLPV09U. - Any portion of the
topsheet 24 may be coated with a lotion as is known in the art. Examples of suitable lotions include those described in U.S. Pat. Nos. 5,607,760; 5,609,587; 5,635,191; and 5,643,588. Thetopsheet 24 may be fully or partially elasticized or may be foreshortened so as to provide a void space between thetopsheet 24 and thecore 28. Exemplary structures including elasticized or foreshortened topsheets are described in more detail in U.S. Pat. Nos. 4,892,536; 4,990,147; 5,037,416; and 5,269,775. - The
backsheet 26 is generally positioned such that it may be at least a portion of the garment-facingsurface 120 of thediaper 20.Backsheet 26 may be designed to prevent the exudates absorbed by and contained within thediaper 20 from soiling articles that may contact thediaper 20, such as bed sheets and undergarments. In certain embodiments, thebacksheet 26 is substantially water-impermeable; however, thebacksheet 26 may be made breathable so as to permit vapors to escape while preventing liquid exudates from escaping. The polyethylene film may be made breathable by inclusion of inorganic particulate material and subsequent tensioning of the film. Breathable backsheets may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, and microporous films. Suitably, thebacksheet 26 comprises a polymer such (e.g. polyethylene) derived from a renewable resource as disclosed above.Alternative backsheets 26 derived from non-renewable resources include films manufactured by Tredegar Industries Inc. of Terre Haute, Ind. and sold under the trade names X15306, X10962, and X10964; and microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by EXXON Chemical Co., of Bay City, Tex., under the designation EXXAIRE. Other alternativebreathable backsheets 26 are described in U.S. Pat. Nos. 5,865,823, 5,571,096, and 6,107,537. -
Backsheet 26 may also consist of more than one layer. For example, thebacksheet 26 may comprise an outer cover and an inner layer or may comprise two outer layers with an inner layer disposed therebetween. The outer cover may have longitudinal edges and the inner layer may have longitudinal edges. The outer cover may be made of a soft, non-woven material. The inner layer may be made of a substantially water-impermeable film. The outer cover and an inner layer may be joined together by adhesive or any other suitable material or method. Suitably, the nonwoven outer cover and the water-impermeable film comprise polymers (e.g., polyethylene) may be derived from renewable resources. Alternatively, a suitable outer cover and inner layer derived from non-renewable resources are available, respectively, as supplier code A18AH0 from Corovin GmbH, Peine, Germany and as supplier code PGBR4WPR from RKW Gronau GmbH, Gronau, Germany. While a variety of backsheet configurations are contemplated herein, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. - The
diaper 20 may include afastening system 50. When fastened, thefastening system 50 interconnects thefront waist region 36 and therear waist region 38. When fastened, thediaper 20 contains a circumscribing waist opening and two circumscribing leg openings. Thefastening system 50 may comprise an engagingmember 52 and a receivingmember 54. The engagingmember 52 may comprise hooks, loops, an adhesive, a cohesive, a tab, or other fastening mechanism. The receivingmember 54 may comprise hooks, loops, a slot, an adhesive, a cohesive, or other fastening mechanism that can receive the engagingmember 52. Suitable engagingmember 52 and receivingmember 54 combinations are well known in the art and include but are not limited to hooks/loop, hooks/hooks, adhesive/polymeric film, cohesive/cohesive, adhesive/adhesive, tab/slot, and button/button hole. Suitably, thefastening system 50 may comprise a polymer (e.g., polyethylene film or a polyethylene nonwoven) derived from a renewable resource. - The
diaper 20 may include front ears (not shown) and/orback ears 42. The front and/orback ears 42 may be unitary elements of the diaper 20 (i.e., they are not separately manipulative elements secured to thediaper 20, but rather are formed from and are extensions of one or more of the various layers of the diaper). In certain embodiments, the front and/orback ears 42 may be discrete elements that are joined to thechassis 22, as shown inFIG. 1A . Discrete front and/orback ears 42 may be joined to thechassis 22 by any bonding method known in the art such as adhesive bonding, pressure bonding, heat bonding, and the like. In other embodiments, the front and/orback ears 42 may comprise a discrete element joined to thechassis 22 with thechassis 22 having a layer, element, or substrate that extends over the front and/or backear 42. The front ears andback ears 42 may be extensible, inextensible, elastic, or inelastic. The front ears andback ears 42 may be formed from nonwoven webs, woven webs, knitted fabrics, polymeric and elastomeric films, apertured films, sponges, foams, scrims, and combinations and laminates thereof. In certain embodiments the front ears andback ears 42 may be formed of a stretch laminate comprising a first nonwoven 42 a,elastomeric material 42 b, and, optionally, a second nonwoven 42 c or other like laminates. The first and second nonwoven 42 a, 42 c may comprise a synthetic polymer (e.g., polyethylene) derived from a renewable resource. A suitableelastomeric material 42 b may comprise a natural elastomer such as natural rubber or may comprise a synthetic elastomer such as the elastomeric film available from Tredegar Corp, Richmond, Va., as supplier code X25007. An alternate stretch laminate may be formed from the Tredegar X25007 elastomer disposed between two nonwoven layers (available from BBA Fiberweb, Brentwood, Tenn. as supplier code FPN332). - The
diaper 20 may further include leg cuffs 32 a, 32 b which provide improved containment of liquids and other body exudates. Leg cuffs 32 a, 32 b may also be referred to as gasketing cuffs, outer leg cuffs, leg bands, side flaps, elastic cuffs, barrier cuffs, second cuffs, inner leg cuffs, or “stand-up” elasticized flaps. U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (i.e., a gasketing cuff). U.S. Pat. Nos. 4,808,178 and 4,909,803 describe disposable diapers having “stand-up” elasticized flaps (i.e., barrier cuffs) which improve the containment of the leg regions. U.S. Pat. Nos. 4,695,278 and 4,795,454 describe disposable diapers having dual cuffs, including gasketing cuffs and barrier cuffs. -
FIGS. 1A-B shows thediaper 20 having dual cuffs:gasketing cuff 32 a andbarrier cuff 32 b. Thebarrier cuff 32 b may include one or more barrierelastic members 33 b. The barrierelastic members 33 b may be joined to abarrier cuff substrate 34. Thebarrier cuff substrate 34 may comprise a polymer derived from a renewable resource. In certain embodiments, thebarrier cuff substrate 34 may be a polymeric film or nonwoven. Thebarrier cuff 32 b may be disposed on the body-facing surface of thechassis 22. Thebarrier cuff substrate 34 may extend laterally from thelongitudinal edge 12 of thechassis 22 to a point inboard of the longitudinal edge 122. Thebarrier cuff 32 b generally extends longitudinally at least through thecrotch region 37. The barrierelastic members 33 b allow a portion of thebarrier cuff 32 b to be spaced away from the body-facing surface of thediaper 20. - The
gasketing cuff 32 a may include one or more gasketingelastic members 33 a. The gasketingelastic member 33 a may be joined to one or more of the existing elements or substrates of the diaper 20 (e.g., topsheet 24,backsheet 26,barrier cuff substrate 34, etc.). In some embodiments, it may be desirable to treat all or a portion of the leg cuffs 32 with a hydrophilic surface coasting such as is described in U.S. Patent Publication 2005/0177123A1. Suitable gasketing and barrierelastic members - In other suitable embodiments, the
diaper 20 may be preformed by the manufacturer to create a pant. A pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.). For example, thediaper 20 ofFIG. 1A may be manufactured with thefastening system 50 engaged (i.e., the engagingmember 52 is joined to the receiving member 54). As an additional example, thediaper 20 ofFIG. 1A may be manufactured with the front ears 40 joined to theback ears 42 by way of a bond such as an adhesive bond, a mechanical bond, or some other bonding technique known in the art. Suitable pants are disclosed in U.S. Pat. Nos. 5,246,433; 5,569,234; 6,120,487; 6,120,489; 4,940,464; 5,092,861; 5,897,545; and 5,957,908. - One or more absorbent articles (e.g., diapers) 220 may be provided as a
package 200, as shown inFIGS. 2A-B . Generally, thepackage 200 allows for a quantity ofabsorbent articles 220 to be delivered to and purchased by a consumer while economizing space and simplifying transport and storage. Thepackage 200 includes at least oneabsorbent article 220 secured by anoverwrap 250. Theoverwrap 250 may partially or fully cover the absorbent article(s), which may be compressed or uncompressed.FIG. 2A depicts anoverwrap 250 that completely covers and encases a plurality ofabsorbent articles 220. Theoverwrap 250 may comprise a variety of materials including, but not limited to, thermoplastic films, nonwovens, wovens, foils, fabrics, papers, cardboard, elastics, cords, straps, and combinations thereof. Other suitable package structures and overwraps are described in U.S. Pat. Nos. 4,846,587; 4,934,535; 4,966,286; 5,036,978; 5,050,742; and 5,054,619. In certain embodiments, theoverwrap 250 comprises a synthetic polymer (e.g., a polyolefin) derived form a renewable resource. While thepackage 200 is not limited in shape, it may be desirable for thepackage 200 to have the shape of a parallelepiped or substantially similar to a parallelepiped (e.g., a solid at least a substantially planar base and four substantially planar sides). Such a shape is ideal for packaging, stacking, and transport. Thepackage 200 is not limited in size; however, in certain embodiments, the size of thepackage 200 should be no greater than is required to contain theabsorbent articles 220. - The
package 200 may have ahandle 240. In certain embodiments, thehandle 240 may be a discrete element such as a strap that may be affixed to theoverwrap 250. In the embodiment shown inFIGS. 2A-B , thehandle 240 is integral to theoverwrap 250. For this embodiment, thehandle 240 may comprise anextension 252 from theoverwrap 250. Theextension 252 may have anaperture 254 there through. Theaperture 254 ideally sized to permit entry by one or more digits of an adult hand. - An
opening device 260 may be provided in theoverwrap 250. For example, theopening device 260 may comprise a line of weakness 262 (e.g., perforations) in anoverwrap 250 made from paper, cardboard, or film. Theopening device 260 allows for partial or full removal of aflap 256 which is a portion of theoverwrap 250. Partial of full removal of theflap 256 may allow for improved access to theabsorbent articles 220. Theopening device 260 andflap 256 are shown in a closed configuration inFIG. 2A and in an open configuration inFIG. 2B . Anexemplary opening device 260 is presented in U.S. Pat. App. No. 5,036,978. - The
package 200 may containmultiple overwraps 250. For example, a plurality of absorbent articles may be secured with a first overwrap such as a thermoplastic film and then a plurality of film wrapped absorbent articles may be secured in a second overwrap such as a cardboard box or another thermoplastic film. - The present invention may further comprise a related environmental message or may further comprise a step of communicating a related environmental message to a consumer. The related environmental message may convey the benefits or advantages of the absorbent article comprising a polymer derived from a renewable resource. The related environmental message may identify the absorbent articles as: being environmentally friendly or Earth friendly; having reduced petroleum (or oil) dependence or content; having reduced foreign petroleum (or oil) dependence or content; having reduced petrochemicals or having components that are petrochemical free; and/or being made from renewable resources or having components made from renewable resources. This communication is of importance to consumers that may have an aversion to petrochemical use (e.g., consumers concerned about depletion of natural resources or consumers who find petrochemical based products unnatural or not environmentally friendly) and to consumers that are environmentally conscious. Without such a communication, the benefit of the present invention may be lost on some consumers.
- The communication may be effected in a variety of communication forms. Suitable communication forms include store displays, posters, billboard, computer programs, brochures, package literature, shelf information, videos, advertisements, internet web sites, pictograms, iconography, or any other suitable form of communication. The information could be available at stores, on television, in a computer-accessible form, in advertisements, or any other appropriate venue. Ideally, multiple communication forms may be employed to disseminate the related environmental message.
- The communication may be written, spoken, or delivered by way of one or more pictures, graphics, or icons. For example, a television or internet based-advertisement may have narration, a voice-over, or other audible conveyance of the related environmental message. Likewise, the related environmental message may be conveyed in a written form using any of the suitable communication forms listed above. In certain embodiments, it may be desirable to quantify the reduction of petrochemical usage of the present absorbent article compared to absorbent articles that are presently commercially available.
- In other embodiments, the communication form may be one or more icons.
FIGS. 3A-F depict several suitable embodiments of a communication in the form of icon 310. One or more icons 310 may be used to convey the related environmental message of reduced petrochemical usage. Suitable icons 310 communicating the related environmental message of reduced petroleum usage are shown inFIGS. 3A-B . Icons communicating the related environmental message of environmental friendliness or renewable resource usage are shown inFIGS. 3C-F . In certain embodiments, the icons 310 may be located on the package 200 (as shown inFIGS. 2A-B ) containing the absorbent articles, on the absorbent article, on an insert adjoining the package or the articles, or in combination with any of the other forms of the communication listed above. - The related environmental message may also include a message of petrochemical equivalence. As presented in the Background, many renewable, naturally occurring, or non-petroleum derived polymers have been disclosed. However, these polymers often lack the performance characteristics that consumers have come to expect when used in absorbent articles. Therefore, a message of petroleum equivalence may be necessary to educate consumers that the polymers derived from renewable resources, as described above, exhibit equivalent or better performance characteristics as compared to petroleum derived polymers. A suitable petrochemical equivalence message can include comparison to an absorbent article that does not have a polymer derived from a renewable resource. For example, a suitable combined message may be, “Diaper Brand A with an environmentally friendly absorbent material is just as absorbent as Diaper Brand B.” This message conveys both the related environmental message and the message of petrochemical equivalence.
- The present invention further relates to a method for making an absorbent article comprising a superabsorbent polymer derived from a renewable resource. The method comprises the steps of providing a renewable resource; deriving a monomer from the renewable resource; polymerizing the monomer to form a synthetic superabsorbent polymer having a Saline Flow Conductivity value of at least about 30×10−7 cm3 sec/g and an Absorption Against Pressure value of at least about 15 g/g; and incorporating said superabsorbent polymer into an absorbent article. The present invention further relates to providing one or more of the absorbent articles to a consumer and communicating reduced petrochemical usage to the consumer. The polymer derived from renewable resources may undergo additional process steps prior to incorporation into the absorbent article. Such process steps include drying, sieving, surface crosslinking, and the like.
- The present invention further relates to a method for making an absorbent article comprising a synthetic polyolefin derived from a renewable resource. The method comprises the steps of providing a renewable resource; deriving an olefin monomer from the renewable resource; polymerizing the monomer to form a synthetic polyolefin having a 14C/C ratio of about 1.0×10−14 or greater; and incorporating said polyolefin into an absorbent article. The synthetic polyolefin exhibits one or more of the above referenced performance characteristics. The present invention further relates to providing one or more of the absorbent articles to a consumer and communicating reduced petrochemical usage to the consumer. The polymer derived from renewable resources may undergo additional process steps prior to incorporation into the absorbent article. Such process steps include, film formation, fiber formation, ring rolling, and the like.
- A suitable validation technique is through 14C analysis. A common analysis technique in carbon-14 dating is measuring the ratio of 14C to total carbon within a sample (14C/C). Research has noted that fossil fuels and petrochemicals generally have a 14C/C ratio of less than about 1×10−15. However, polymers derived entirely from renewable resources typically have a 14C/C ratio of about 1.2×10−12. When compared, the polymers derived from renewable resources may have a 14C/C ratio three orders of magnitude (103=1,000) greater than the 14C/C ratio of polymers derived from petrochemicals. Polymers useful in the present invention have a 14C/C ratio of about 1.0×10−14 or greater. In other embodiments, the petrochemical equivalent polymers of the present invention may have a 14C/C ratio of about 1.0×10−13 or greater or a 14C/C ratio of about 1.0×10−12 or greater. Suitable techniques for 14C analysis are known in the art and include accelerator mass spectrometry, liquid scintillation counting, and isotope mass spectrometry. These techniques are described in U.S. Pat. Nos. 3,885,155, 4,427,884, 4,973,841, 5,438,194, and 5,661,299.
- The method to determine the permeability of a
swollen hydrogel layer 718 is the “Saline Flow Conductivity” also known as “Gel Layer Permeability” and is described in several references, including, EP A 640 330, filed on Dec. 1, 1993, U.S. Ser. No. 11/349,696, filed on Feb. 3, 2004, U.S. Ser. No. 11/347,406, filed on Feb. 3, 2006, U.S. Ser. No. 06/682,483, filed on Sep. 30, 1982, and U.S. Pat. No. 4,469,710, filed on Oct. 14, 1982. The equipment used for this method is described below. - Permeability Measurement System
-
FIG. 4 showspermeability measurement system 400 set-up with the constant hydrostatic head reservoir 414, open-ended tube forair admittance 410, stoppered vent for refilling 412,laboratory jack 416,delivery tube 418,stopcock 420,ring stand support 422, receivingvessel 424,balance 426 and piston/cylinder assembly 428. -
FIG. 5 shows the piston/cylinder assembly 428 comprising ametal weight 512,piston shaft 514,piston head 518,lid 516, andcylinder 520. Thecylinder 520 is made of transparent polycarbonate (e.g., Lexan®) and has an inner diameter p of 6.00 cm (area=28.27 cm2) withinner cylinder walls 550 which are smooth. Thebottom 548 of thecylinder 520 is faced with a US.Standard 400 mesh stainless-steel screen cloth (not shown) that is bi-axially stretched to tautness prior to attachment to thebottom 548 of thecylinder 520. Thepiston shaft 514 is made of transparent polycarbonate (e.g., Lexan®) and has an overall length q of approximately 127 mm. Amiddle portion 526 of thepiston shaft 514 has a diameter r of 21.15 mm. Anupper portion 528 of thepiston shaft 514 has a diameter s of 15.8 mm, forming ashoulder 524. Alower portion 546 of thepiston shaft 514 has a diameter t of approximately ⅝ inch and is threaded to screw firmly into the center hole 618 (seeFIG. 6 ) of thepiston head 518. Thepiston head 518 is perforated, made of transparent polycarbonate (e.g., Lexan®), and is also screened with a stretched US.Standard 400 mesh stainless-steel screen cloth (not shown). Theweight 512 is stainless steel, has a center bore 530, slides onto theupper portion 528 ofpiston shaft 514 and rests on theshoulder 524. The combined weight of thepiston head 518,piston shaft 514 andweight 512 is 596 g (±6 g), which corresponds to 0.30 psi over the area of thecylinder 520. The combined weight may be adjusted by drilling a blind hole down acentral axis 532 of thepiston shaft 514 to remove material and/or provide a cavity to add weight. Thecylinder lid 516 has a first lid opening 534 in its center for vertically aligning thepiston shaft 514 and a second lid opening 536 near theedge 538 for introducing fluid from the constant hydrostatic head reservoir 414 into thecylinder 520. - A first linear index mark (not shown) is scribed radially along the
upper surface 552 of theweight 512, the first linear index mark being transverse to thecentral axis 532 of thepiston shaft 514. A corresponding second linear index mark (not shown) is scribed radially along thetop surface 560 of thepiston shaft 514, the second linear index mark being transverse to thecentral axis 532 of thepiston shaft 514. A corresponding third linear index mark (not shown) is scribed along themiddle portion 526 of thepiston shaft 514, the third linear index mark being parallel with thecentral axis 532 of thepiston shaft 514. A corresponding fourth linear index mark (not shown) is scribed radially along theupper surface 540 of thecylinder lid 516, the fourth linear index mark being transverse to thecentral axis 532 of thepiston shaft 514. Further, a corresponding fifth linear index mark (not shown) is scribed along alip 554 of thecylinder lid 516, the fifth linear index mark being parallel with thecentral axis 532 of thepiston shaft 514. A corresponding sixth linear index mark (not shown) is scribed along theouter cylinder wall 542, the sixth linear index mark being parallel with thecentral axis 532 of thepiston shaft 514. Alignment of the first, second, third, fourth, fifth, and sixth linear index marks allows for theweight 512,piston shaft 514,cylinder lid 516, andcylinder 520 to be re-positioned with the same orientation relative to one another for each measurement. - The
cylinder 520 specification details are: -
- Outer diameter u of the Cylinder 520: 70.35 mm
- Inner diameter p of the Cylinder 520: 60.0 mm
- Height v of the Cylinder 520: 60.5 mm
- The
cylinder lid 516 specification details are: -
- Outer diameter w of cylinder lid 516: 76.05 mm
- Inner diameter x of cylinder lid 516: 70.5 mm
- Thickness y of
cylinder lid 516 including lip 554: 12.7 mm - Thickness z of
cylinder lid 516 without lip: 6.35 mm - Diameter a of first lid opening 534: 22.25 mm
- Diameter b of second lid opening 536: 12.7 mm
- Distance between centers of first and
second lid openings 534 and 536: 23.5 mm
- The
weight 512 specification details are: -
- Outer diameter c: 50.0 mm
- Diameter d of center bore 530: 16.0 mm
- Height e: 39.0 mm
- The
piston head 518 specification details are -
- Diameter f: 59.7 mm
- Height g: 16.5 mm
- Outer holes 614 (14 total) with a 9.65 mm diameter h,
outer holes 614 equally spaced with centers being 47.8 mm from the center of center hole 618 - Inner holes 616 (7 total) with a 9.65 mm diameter i, inner holes 616 equally spaced with centers being 26.7 mm from the center of center hole 618
- Center hole 618 has a diameter j of ⅝ inches and is threaded to accept a
lower portion 546 ofpiston shaft 514.
- Prior to use, the stainless steel screens (not shown) of the
piston head 518 andcylinder 520 should be inspected for clogging, holes or over-stretching and replaced when necessary. An SFC apparatus with damaged screen can deliver erroneous SFC results, and must not be used until the screen has been replaced. - A 5.00
cm mark 556 is scribed on thecylinder 520 at a height k of 5.00 cm (±0.05 cm) above the screen (not shown) attached to thebottom 548 of thecylinder 520. This marks the fluid level to be maintained during the analysis. Maintenance of correct and constant fluid level (hydrostatic pressure) is critical for measurement accuracy. - A constant hydrostatic head reservoir 414 is used to deliver
salt solution 432 to thecylinder 520 and to maintain the level ofsalt solution 432 at a height k of 5.00 cm above the screen (not shown) attached to thebottom 548 of thecylinder 520. Thebottom 434 of the air-intake tube 410 is positioned so as to maintain thesalt solution 432 level in thecylinder 520 at the required 5.00 cm height k during the measurement, i.e.,bottom 434 of theair tube 410 is in approximatelysame plane 438 as the 5.00cm mark 556 on thecylinder 520 as it sits on the support screen (not shown) on thering stand 440 above the receivingvessel 424. Proper height alignment of the air-intake tube 410 and the 5.00cm mark 556 on thecylinder 520 is critical to the analysis. A suitable reservoir 414 consists of ajar 430 containing: a horizontally oriented L-shapeddelivery tube 418 for fluid delivery, a vertically oriented open-endedtube 410 for admitting air at a fixed height within the constant hydrostatic head reservoir 414, and astoppered vent 412 for re-filling the constant hydrostatic head reservoir 414.Tube 410 has an internal diameter of xx mm. Thedelivery tube 418, positioned near thebottom 442 of the constant hydrostatic head reservoir 414, contains astopcock 420 for starting/stopping the delivery ofsalt solution 432. Theoutlet 444 of thedelivery tube 418 is dimensioned to be inserted through the second lid opening 536 in thecylinder lid 516, with its end positioned below the surface of thesalt solution 432 in the cylinder 520 (after the 5.00 cm height of thesalt solution 432 is attained in the cylinder 520). The air-intake tube 410 is held in place with an o-ring collar (not shown). The constant hydrostatic head reservoir 414 can be positioned on alaboratory jack 416 in order to adjust its height relative to that of thecylinder 520. The components of the constant hydrostatic head reservoir 414 are sized so as to rapidly fill thecylinder 520 to the required height (i.e., hydrostatic head) and maintain this height for the duration of the measurement. The constant hydrostatic head reservoir 414 must be capable of deliveringsalt solution 432 at a flow rate of at least 3 g/sec for at least 10 minutes. - The piston/
cylinder assembly 428 is positioned on a 16 mesh rigid stainless steel support screen (not shown) (or equivalent) which is supported on aring stand 440 or suitable alternative rigid stand. This support screen (not shown) is sufficiently permeable so as to not impedesalt solution 432 flow and rigid enough to support the stainless steel mesh cloth (not shown) preventing stretching. The support screen (not shown) should be flat and level to avoid tilting the piston/cylinder assembly 428 during the test. Thesalt solution 432 passing through the support screen (not shown) is collected in a receivingvessel 424, positioned below (but not supporting) the support screen (not shown). The receivingvessel 424 is positioned on thebalance 426 which is accurate to at least 0.01 g. The digital output of thebalance 426 is connected to a computerized data acquisition system (not shown). - Preparation of Reagents (not Illustrated)
- Jayco Synthetic Urine (JSU) 712 (see
FIG. 7 ) is used for a swelling phase (see SFC Procedure below) and 0.118 M Sodium Chloride (NaCl) Solution is used for a flow phase (see SFC Procedure below). The following preparations are referred to a standard 1 liter volume. For preparation of volumes other than 1 liter, all quantities are scaled accordingly. - JSU: A 1 L volumetric flask is filled with distilled water to 80% of its volume, and a magnetic stir bar is placed in the flask. Separately, using a weighing paper or beaker the following amounts of dry ingredients are weighed to within ±0.01 g using an analytical balance and are added quantitatively to the volumetric flask in the same order as listed below. The solution is stirred on a suitable stir plate until all the solids are dissolved, the stir bar is removed, and the solution diluted to 1 L volume with distilled water. A stir bar is again inserted, and the solution stirred on a stirring plate for a few minutes more.
- Quantities of salts to make 1 liter of Jayco Synthetic Urine:
-
- Potassium Chloride (KCl) 2.00 g
- Sodium Sulfate (Na2SO4) 2.00 g
- Ammonium dihydrogen phosphate (NH4H2PO4) 0.85 g
- Ammonium phosphate, dibasic ((NH4)2HPO4) 0.15 g
- Calcium Chloride (CaCl2) 0.19 g —[or hydrated calcium chloride (CaCl2) 0.2H2O) 0.25 g]
- Magnesium chloride (MgCl2) 0.23 g —[or hydrated magnesium chloride (MgCl2.0.6H2O) 0.50 g]
- To make the preparation faster, each salt is completely dissolved before adding the next one. Jayco synthetic urine may be stored in a clean glass container for 2 weeks. The solution should not be used if it becomes cloudy. Shelf life in a clean plastic container is 10 days.
- 0.118 M Sodium Chloride (NaCl) Solution: 0.118 M Sodium Chloride is used as
salt solution 432. Using a weighing paper or beaker 6.90 g (±0.01 g) of sodium chloride is weighed and quantitatively transferred into a 1 L volumetric flask; and the flask is filled to volume with distilled water. A stir bar is added and the solution is mixed on a stirring plate until all the solids are dissolved. - Test Preparation
- Using a solid reference cylinder weight (not shown) (40 mm diameter; 140 mm height), a caliper gauge (not shown) (e.g., Mitotoyo Digimatic Height Gage) is set to read zero. This operation is conveniently performed on a smooth and
level bench top 446. The piston/cylinder assembly 428 without superabsorbent is positioned under the caliper gauge (not shown) and a reading, L1, is recorded to the nearest 0.01 mm. - The constant hydrostatic head reservoir 414 is filled with
salt solution 432. Thebottom 434 of the air-intake tube 410 is positioned so as to maintain the top part (not shown) of the liquid meniscus (not shown) in thecylinder 520 at the 5.00cm mark 556 during the measurement. Proper height alignment of the air-intake tube 410 at the 5.00cm mark 556 on thecylinder 520 is critical to the analysis. - The receiving
vessel 424 is placed on thebalance 426 and the digital output of thebalance 426 is connected to a computerized data acquisition system (not shown). Thering stand 440 with a 16 mesh rigid stainless steel support screen (not shown) is positioned above the receivingvessel 424. The 16 mesh screen (not shown) should be sufficiently rigid to support the piston/cylinder assembly 428 during the measurement. The support screen (not shown) must be flat and level. - SFC Procedure
- 0.9 g (±0.05 g) of superabsorbent is weighed onto a suitable weighing paper using an analytical balance. 0.9 g (±0.05 g) of superabsorbent is weighed onto a suitable weighing paper using an analytical balance. The moisture content of the superabsorbent is measured according to the Edana Moisture Content Test Method 430.1-99 (“Superabsorbent materials—Polyacrylate superabsorbent powders—MOISTURE CONTENT—WEIGHT LOSS UPON HEATING” (February 99)). If the moisture content of the polymer is greater than 5%, then the polymer weight should be corrected for moisture (i.e., the added polymer should be 0.9 g on a dry-weight basis).
- The
empty cylinder 520 is placed on alevel benchtop 446 and the superabsorbent is quantitatively transferred into thecylinder 520. The superabsorbent particles are evenly dispersed on the screen (not shown) attached to thebottom 548 of thecylinder 520 by gently shaking, rotating, and/or tapping thecylinder 520. It is important to have an even distribution of particles on the screen (not shown) attached to thebottom 548 of thecylinder 520 to obtain the highest precision result. After the superabsorbent has been evenly distributed on the screen (not shown) attached to thebottom 548 of thecylinder 520 particles must not adhere to theinner cylinder walls 550. Thepiston shaft 514 is inserted through thefirst lid opening 534, with thelip 554 of thelid 516 facing towards thepiston head 518. Thepiston head 518 is carefully inserted into thecylinder 520 to a depth of a few centimeters. Thelid 516 is then placed onto theupper rim 544 of thecylinder 520 while taking care to keep thepiston head 518 away from the superabsorbent. Thelid 516 andpiston shaft 526 are then carefully rotated so as to align the third, fourth, fifth, and sixth linear index marks are then aligned. The piston head 518 (via the piston shaft 514) is then gently lowered to rest on the dry superabsorbent. Theweight 512 is positioned on theupper portion 528 of thepiston shaft 514 so that it rests on theshoulder 524 such that the first and second linear index marks are aligned. Proper seating of thelid 516 prevents binding and assures an even distribution of the weight on thehydrogel layer 718. - Swelling Phase: An 8 cm diameter fritted disc (7 mm thick; e.g. Chemglass Inc. # CG 201-51, coarse porosity) 710 is saturated by adding
excess JSU 712 to the fritteddisc 710 until the fritteddisc 710 is saturated. The saturated fritteddisc 710 is placed in a wide flat-bottomedPetri dish 714 andJSU 712 is added until it reaches thetop surface 716 of the fritteddisc 710. The JSU height must not exceed the height of the fitteddisc 710. - The screen (not shown) attached to the
bottom 548 of thecylinder 520 is easily stretched. To prevent stretching, a sideways pressure is applied on thepiston shaft 514, just above thelid 516, with the index finger while grasping thecylinder 520 of the piston/cylinder assembly 428. This “locks” thepiston shaft 514 in place against thelid 516 so that the piston/cylinder assembly 428 can be lifted without undue force being exerted on the screen (not shown). - The entire piston/
cylinder assembly 428 is lifted in this fashion and placed on the fritteddisc 710 in thePetri dish 714.JSU 712 from thePetri dish 714 passes through the fritteddisc 710 and is absorbed by the superabsorbent polymer (not shown) to form ahydrogel layer 718. TheJSU 712 available in thePetri dish 714 should be enough for all the swelling phase. If needed,more JSU 712 may be added to thePetri dish 714 during the hydration period to keep theJSU 712 level at thetop surface 716 of the fritteddisc 710. After a period of 60 minutes, the piston/cylinder assembly 428 is removed from the fritteddisc 710, taking care to lock thepiston shaft 514 against thelid 516 as described above and ensure thehydrogel layer 718 does not loseJSU 712 or take in air during this procedure. The piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and a reading, L2, is recorded to the nearest 0.01 mm. If the reading changes with time, only the initial value is recorded. The thickness of thehydrogel layer 718, L0 is determined from L2-L1 to the nearest 0.1 mm. - The entire piston/
cylinder assembly 428 is lifted in this the fashion described above and placed on the support screen (not shown) attached to thering stand 440. Care should be taken so that thehydrogel layer 718 does not loseJSU 712 or take in air during this procedure. TheJSU 712 available in thePetri dish 714 should be enough for all the swelling phase. If needed,more JSU 712 may be added to thePetri dish 714 during the hydration period to keep theJSU 712 level at the 5.00cm mark 556. After a period of 60 minutes, the piston/cylinder assembly 428 is removed, taking care to lock thepiston shaft 514 against thelid 516 as described above. The piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and the caliper (not shown) is measured as L2 to the nearest 0.01 mm. The thickness of thehydrogel layer 718, L0 is determined from L2-L1 to the nearest 0.1 mm. If the reading changes with time, only the initial value is recorded. - The piston/
cylinder assembly 428 is transferred to the support screen (not shown) attached to the ring support stand 440 taking care to lock thepiston shaft 514 in place against thelid 516. The constant hydrostatic head reservoir 414 is positioned such that thedelivery tube 418 is placed through thesecond lid opening 536. The measurement is initiated in the following sequence: - a) The
stopcock 420 of the constanthydrostatic head reservoir 410 is opened to permit thesalt solution 432 to reach the 5.00cm mark 556 on thecylinder 520. Thissalt solution 432 level should be obtained within 10 seconds of opening thestopcock 420. - b) Once 5.00 cm of
salt solution 432 is attained, the data collection program is initiated. - The entire piston/
cylinder assembly 428 is lifted in this fashion and placed on the fritteddisc 710 in thePetri dish 714.JSU 712 from thePetri dish 714 passes through the fritteddisc 710 and is absorbed by the superabsorbent polymer (not shown) to form ahydrogel layer 718. TheJSU 712 available in thePetri dish 714 should be enough for all the swelling phase. If needed,more JSU 712 may be added to thePetri dish 714 during the hydration period to keep theJSU 712 level at thetop surface 716 of the fritteddisc 710. After a period of 60 minutes, the piston/cylinder assembly 428 is removed from the fritteddisc 710, taking care to lock thepiston shaft 514 against thelid 516 as described above and ensure thehydrogel layer 718 does not loseJSU 712 or take in air during this procedure. The piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and a reading, L2, is recorded to the nearest 0.01 mm. If the reading changes with time, only the initial value is recorded. The thickness of thehydrogel layer 718, L0 is determined from L2-L1 to the nearest 0.1 mm. - The entire piston/
cylinder assembly 428 is lifted in this the fashion described above and placed on the support screen (not shown) attached to thering stand 440. Care should be taken so that thehydrogel layer 718 does not loseJSU 712 or take in air during this procedure. TheJSU 712 available in thePetri dish 714 should be enough for all the swelling phase. If needed,more JSU 712 may be added to thePetri dish 714 during the hydration period to keep theJSU 712 level at the 5.00cm mark 556. After a period of 60 minutes, the piston/cylinder assembly 428 is removed, taking care to lock thepiston shaft 514 against thelid 516 as described above. The piston/cylinder assembly 428 is placed under the caliper gauge (not shown) and the caliper (not shown) is measured as L2 to the nearest 0.01 mm. The thickness of thehydrogel layer 718, L0 is determined from L2-L1 to the nearest 0.1 mm. If the reading changes with time, only the initial value is recorded. - The piston/
cylinder assembly 428 is transferred to the support screen (not shown) attached to the ring support stand 440 taking care to lock thepiston shaft 514 in place against thelid 516. The constant hydrostatic head reservoir 414 is positioned such that thedelivery tube 418 is placed through thesecond lid opening 536. The measurement is initiated in the following sequence: - a) The
stopcock 420 of the constanthydrostatic head reservoir 410 is opened to permit thesalt solution 432 to reach the 5.00cm mark 556 on thecylinder 520. Thissalt solution 432 level should be obtained within 10 seconds of opening thestopcock 420. - b) Once 5.00 cm of
salt solution 432 is attained, the data collection program is initiated.
With the aid of a computer (not shown) attached to thebalance 426, the quantity ofsalt solution 432 passing through thehydrogel layer 718 is recorded at intervals of 20 seconds for a time period of 10 minutes. At the end of 10 minutes, thestopcock 420 on the constanthydrostatic head reservoir 410 is closed. The piston/cylinder assembly 428 is removed immediately, placed under the caliper gauge (not shown) and a reading, L3, is recorded to the nearest 0.01 mm. The final thickness of thehydrogel layer 718, Lf is determined from L3-L1 to the nearest 0.1 mm, as described above. The percent change in thickness of thehydrogel layer 718 is determined from (Lf/L0)×100. Generally the change in thickness of thehydrogel layer 718 is within about ±10%. - The data from 60 seconds to the end of the experiment are used in the SFC calculation. The data collected prior to 60 seconds are not included in the calculation. The flow rate Fs (in g/s) is the slope of a linear least-squares fit to a graph of the weight of
salt solution 432 collected (in grams) as a function of time (in seconds) from 60 seconds to 600 seconds. - In a separate measurement, the flow rate through the permeability measurement system 400 (Fa) is measured as described above, except that no
hydrogel layer 718 is present. If Fa is much greater than the flow rate through thepermeability measurement system 400 when thehydrogel layer 718 is present, Fs, then no correction for the flow resistance of the permeability measurement system 400 (including the piston/cylinder assembly 428) is necessary. In this limit, Fg=Fs, where Fg is the contribution of thehydrogel layer 718 to the flow rate of thepermeability measurement system 400. However if this requirement is not satisfied, then the following correction is used to calculate the value of Fg from the values of Fs and Fa: -
F g=(F a ×F s)/(F a −F s) - The Saline Flow Conductivity (K) of the
hydrogel layer 718 is calculated using the following equation: -
K=[F g(t=0)×L 0 ]/[ρ×A×ΔP], - where Fg is the flow rate in g/sec determined from regression analysis of the flow rate results and any correction due to
permeability measurement system 400 flow resistance, L0 is the initial thickness of thehydrogel layer 718 in cm, ρ is the density of thesalt solution 432 in gm/cm3. A (from the equation above) is the area of thehydrogel layer 718 in cm2, ΔP is the hydrostatic pressure in dyne/cm2, and the saline flow conductivity, K, is in units of cm sec/gm. The average of three determinations should be reported. - For
hydrogel layers 718 where the flow rate is substantially constant, a permeability coefficient (κ) can be calculated from the saline flow conductivity using the following equation: -
κ=Kη - where η is the viscosity of the
salt solution 432 in poise and the permeability coefficient, κ, is in units of cm2. - In general, flow rate need not be constant. The time-dependent flow rate through the system, FS (t) is determined, in units of g/sec, by dividing the incremental weight of
salt solution 432 passing through the permeability measurement system 400 (in grams) by incremental time (in seconds). Only data collected for times between 60 seconds and 10 minutes is used for flow rate calculations. Flow rate results between 60 seconds and 10 minutes are used to calculate a value for Fs (t=0), the initial flow rate through thehydrogel layer 718. Fs (t=0) is calculated by extrapolating the results of a least-squares fit of FS (t) versus time to t=0. - This test measures the amount of a 0.90% saline solution absorbed by superabsorbent polymers that are laterally confined in a piston/cylinder assembly under a confining pressure for a period of one hour. European Disposables and Nonwovens Association (EDANA) test method 442.2-02 entitled “Absorption Under Pressure” is used.
- This test measures the mass per unit area for a substrate. European Disposables and Nonwovens Association (EDANA) test method 40.3-90 entitled “Mass Per Unit Area” is used.
- This test measures the time it takes for a known volume of liquid applied to the surface of a substrate to pass through the substrate to an underlying absorbent pad. European Disposables and Nonwovens Association (EDANA) test method 150.4-99 entitled “Liquid Strike-Through Time” is used.
- This test measures the peak load exhibited by a substrate. A preferred piece of equipment to do the test is a tensile tester such as a MTS Synergie100 or a MTS Alliance, fitted with a computer interface and Testworks 4 software, available from MTS Systems Corporation 14000 Technology Drive, Eden Prairie, Minn., USA. This instrument measures the Constant Rate of Extension in which the pulling grip moves at a uniform rate and the force measuring mechanism moves a negligible distance (less than 0.13 mm) with increasing force. The load cell is selected such that the measured loads (e.g., force) of the tested samples will be between 10 and 90% of the capacity of the load cell (typically a 25 N or 50 N load cell).
- A 1×1 inch (2.5×2.5 cm) sample is die-cut from the substrate using an anvil hydraulic press die to cut the film with the die into individual samples. A minimum of three samples are created which are substantially free of visible defects such as air bubbles, holes, inclusions, and cuts. Each sample must have smooth and substantially defect-free edges. Testing is performed in a conditioned room having a temperature of 23° C. (±1° C.) and a relative humidity of 50% (±2%) for at least 2 hours. Samples are allowed to equilibrate in the conditioned room for at least 2 hours prior to testing.
- Pneumatic jaws of the tensile tester, fitted with flat 2.54 cm-square rubber-faced grips, are set to give a gauge length of 2.54 cm. The sample is loaded with sufficient tension to eliminate observable slack, but less than 0.05N. The sample is extended at a constant crosshead speed of 25.4 cm/min until the specimen completely breaks. If the sample breaks at the grip interface or slippage within the grips is detected, then the data is disregarded and the test is repeated with a new sample and the grip pressure is appropriately adjusted. Samples are run at least in triplicate to account for film variability.
- The resulting tensile force-displacement data are converted to stress-strain curves. Peak load is defined as the maximum stress measured as a specimen is taken to break, and is reported in Newtons per centimeter width (as measured parallel to the grips) of the sample. The peak load for a given substrate is the average of the respective values of each sample from the substrate.
- The MVTR test method measures the amount of water vapor that is transmitted through a film under specific temperature and humidity. The transmitted vapor is absorbed by CaCl2 desiccant and determined gravimetrically. Samples are evaluated in triplicate, along with a reference film sample of established permeability (e.g., Exxon Exxaire microporous material #XBF-110W) that is used as a positive control.
- This test uses a flanged cup machined from Delrin (McMaster-Carr Catalog #8572K34) and anhydrous CaCl2 (Wako Pure Chemical Industries, Richmond, Va.; Catalog 030-00525).
- The height of the cup is 55 mm with an inner diameter of 30 mm and an outer diameter of 45 mm. The cup is fitted with a silicone gasket and lid containing 3 holes for thumb screws to completely seal the cup.
- The cup is filled with CaCl2 to within 1 cm of the top. The cup is tapped on the counter 10 times, and the CaCl2 surface is leveled. The amount of CaCl2 is adjusted until the headspace between the film surface and the top of the CaCl2 is 1.0 cm. The film is placed on top of the cup across the opening (30 mm) and is secured using the silicone gasket, retaining ring, and thumb screws. Properly installed, the specimen should not be wrinkled or stretched.
- The film must completely cover the cup opening, A, which is 0.0007065 m2.
- The sample assembly is weighed with an analytical balance and recorded to ±0.001 g. The assembly is placed in a constant temperature (40±3° C.) and humidity (75±3% RH) chamber for 5.0 hr±5 min. The sample assembly is removed, covered with Saran Wraps and is secured with a rubber band. The sample is equilibrated to room temperature for 30 min, the plastic wrap removed, and the assembly is reweighed and the weight is recorded to ±0.001 g. The absorbed moisture Ma is the difference in initial and final assembly weights. MVTR, in g/m2/24 hr (g/m2/24 hours), is calculated as:
-
- The Hydrohead test method measures the resistance of substrates (e.g., particularly nonwovens) to the penetration of water. World Strategic Partners (WSP) test method 80.6 (05) entitled “Standard Test Method for Evaluation of Water Resistance (Hydrostatic Pressure) Test” is used. WSP methods are harmonized test methods formulated by EDANA and the Association of the Nonwoven Fabrics Industry (INDA). The test is to be run with an incoming water supply rate of 10±0.5 cm water/minute.
- A suitable polyolefin may be created according to the following method. An exemplary renewable resource is corn. The corn is cleaned and may be degerminated. The corn is milled to produce a fine powder (e.g., cornmeal) suitable for enzymatic treatment. The hydrolysis (e.g., liquification and saccharification) of the corn feedstock to yield fermentable sugars is well known in the agricultural and biofermentation arts. A suitable preparation pathway is disclosed in U.S. Pat. No. 4,407,955. A slurry of dry milled corn is created by adding water to the milled corn and an aqueous solution of sulfuric acid (98% acid by weight). Sufficient sulfuric acid should be added to provide a slurry pH of about 1.0 to about 2.5. The slurry is heated to about 140° C. to about 220° C. and pressurized to at least about 50 psig; however, pressures from about 100 psig to about 1,000 psig may result in greater conversion of the starch to fermentable sugars. The slurry is maintained at the aforementioned temperature and pressure for a few seconds up to about 10 minutes. The slurry may be conveyed through one or more pressure reduction vessels which reduce the pressure and temperature of hydrolyzed slurry. The slurry is subjected to standard separation techniques such as by centrifuge to yield a fermentable sugar liquor. The liquor typically has a dextrose equivalent of at least 75. The resulting sugar liquor is fermented according to processes well know to a skilled artisan using a suitable strain of yeast (e.g., genus of Saccharomyces). The resulting ethanol may be separated from the aqueous solution by standard isolation techniques such as evaporation or distillation.
- Ethanol is dehydrated to form ethylene by heating the ethanol with an excess of concentrated sulfuric acid to a temperature of about 170° C. Ethylene may also be formed by passing ethanol vapor over heated aluminum oxide powder.
- The resulting ethylene is polymerized using any of the well known polymerization techniques such as free radical polymerization, Ziegler-Natta polymerization, or metallocene catalyst polymerization. Low density branched polyethylene (LDPE) is often made by free radical vinyl polymerization. Linear low density polyethylene (LLDPE) is made by a more complicated procedure called Ziegler-Natta polymerization. The resulting polyethylene or blends thereof may be processed to yield a desired end product such as a film, fiber, or filament.
- As an example, a linear low density polyethylene is made by copolymerizing ethylene with other longer chain olefins to result in a polymer having a density of about 0.915 g/cm3 to about 0.925 g/cm3. A 49 grams/meter2 (gsm) cast extruded film is made comprising the linear low density polyethylene and about 35% by weight to about 45% by weight calcium carbonate (available from English China Clay of America, Inc. under the designation Supercoat™). The film may be made porous via several routes. The film may be warmed and elongated to 500% of the film's original length using well known elongation methods and machinery. The resulting microporous film is capable of exhibiting a MVTR of at least 2000 g/m2/24 hours. Alternately, the film may be incrementally stretched according to the method disclosed in U.S. Pat. No. 6,605,172. The resulting microporous film should exhibit a MVTR of at least 2000 g/m2/24 hours.
- A nonwoven spunbond web may be formed according to methods well known in the art such as evidenced by U.S. Pat. Nos. 4,405,297 and 4,340,563. The web is formed to have a basis weight of about 5 gsm to about 35 gsm. The individual filaments can have an average denier of about 5 or less. The individual filaments may have a variety of cross-sectional shapes. A suitable cross-sectional shape is a bilobal shape disclosed in U.S. Pat. No. 4,753,834. The resultant nonwoven may be made more hydrophilic by incorporating a surfactant in the nonwoven as described in U.S. Statutory Invention Registration No. H1670. The nonwoven treated to be more hydrophilic is suitable for use as a topsheet in an absorbent article. The nonwoven should exhibit a Liquid Strike-Through Time of less than about 4 seconds. The resultant nonwoven may be made more hydrophobic by use of a surface coating as described in U.S. Publication No. 2005/0177123A1. The nonwoven treated to be more hydrophobic is suitable for use a cuff substrate in an absorbent article. The treated nonwoven should exhibit a hydrohead of at least about 5 mbar.
- Preparation of Glycerol
- Canola oil is obtained by expressing from canola seeds. Approximately 27.5 kg of canola oil, 5.3 kg methanol and 400 g sodium methoxide are charged to a 50 L round-bottomed flask equipped with a heating mantle, thermometer, nitrogen inlet, mechanical stirrer, and reflux condenser. A glass eduction tube (dip tube) is situated so that liquid can be removed from the bottom of the flask by means of a peristaltic pump. The flask is purged with nitrogen and the mixture in the flask is heated to 65° C. with stirring. The mixture is allowed to reflux for 2.5 hours, then the heat is turned off, agitation is stopped and the mixture allowed to settle for 20 minutes. The bottom layer is pumped out of the flask and kept for further use (Fraction 1). Approximately 1.4 kg methanol and 230 g sodium methoxide are added to the flask, agitation is resumed, and the mixture refluxed at 65° C. for another 2 hours. The heat is turned off, approximately 2.8 L of water are added to the flask and the mixture is stirred for 1 minute. The stirrer is turned off and the mixture allowed to settle for 20 minutes. The bottom layer is then pumped out of the flask and kept for further use (Fraction 2). Approximately 1.6 L of water is added to the flask, and the mixture is stirred for 1 minute. The stirrer is turned off and the mixture allowed to settle for 20 minutes. The bottom layer is then pumped out of the flask and kept for further use (Fraction 3). Fractions 1, 2 and 3 are combined in a suitable flask equipped with a magnetic stirrer. The combined fractions are stirred to form a homogeneous mixture and heated to 82° C. Sodium hydroxide solution (50%) is added slowly until the pH of the mixture is 11-13 and the temperature is maintained at 82° C. for a further 10 minutes. The pH is checked and more NaOH solution added if <11. The solution is concentrated at 115° C. under a vacuum of approximately 40 mm Hg until bubbling ceases (water content<5%). The solution is transferred to a round bottomed flask and the glycerol is vacuum distilled using a rotary evaporator with the oil bath temperature at 170° C. and the condenser at 130-140° C. The vacuum is controlled to achieve a moderate distillation rate. A center cut of distilled glycerol is collected.
- Preparation of Acrolien
- Approximately 200 g of fused aluminum oxide, 6-12 US standard mesh, primarily α-phase, is mixed with 50 g of a 20% solution of phosphoric acid for one hour. The mixture is dried under vacuum by means of a rotary evaporator with the oil bath temperature at 80° C. A stainless steel tube (chromatography column) with an internal diameter of approximately 15 mm and contour length approximately 60 cm is packed with the dried particles. The column is installed in a gas chromatogram instrument with the inlet connected to the injector port, and the outlet connected to a condenser and collection vessel. The column and injector port are heated to 300° C. and a 20% aqueous solution of glycerol derived from canola oil is injected at a rate of 40 mL/h. An inert carrier gas such as helium is optionally utilized to help transport the vapor through the column. The vapors emanating from the column outlet are condensed and collected. Acrolein is isolated from the condensate by fractional distillation or other suitable methods known to those skilled in the art.
- Preparation of Acrylic Acid
- A Pyrex glass reactor approximately 12 cm×2.5 cm OD equipped with a thermowell is packed with 31 g (30 mL bulk volume) of a catalyst containing 2 wt % palladium and 0.5 wt % copper supported on alumina. The reactor is heated in an oil bath at 152° C. A gaseous stream consisting of 3.4% acrolien, 14.8% oxygen, 22.9% steam, and 58.5% nitrogen by volume, is passed through the heated catalyst at such a rate that the superficial contact time was about 5 seconds. The reaction mixture is then passed through two water scrubbers connected in series held at 0° C. The aqueous solutions collected are combined and acrylic acid separated from the mixture by fractional distillation.
- Preparation of Superabsorbent Polymer
- L-Ascorbic Acid (0.2081 g, 1.18 mmol) is added to a 100 mL volumetric flask and is dissolved in distilled water (approximately 50 mL). After approximately ten minutes the solution is diluted to the 100 mL mark on the volumetric flask with distilled water and the flask was inverted and agitated to ensure a homogeneous solution.
- To a 3 L jacketed resin kettle is added TMPTA (0.261 g, 0.881 mmol), acrylic acid (296.40 g, 4.11 mol), and distilled water (250 g). Water is circulated through the jacket of the resin kettle by means of a circulating water bath kept at 25° C. To the monomer solution is added standard 5N sodium hydroxide solution (576 mL, 2.88 mol). The resin kettle is capped with a lid having several ports. An overhead mechanical stirrer is set up using an air-tight bushing in the central port. A thermometer is inserted through a seal in another port so that the bulb of the thermometer is immersed in the mixture throughout the reaction. The solution is stirred using the overhead mechanical stirrer and purged with nitrogen using a fritted gas dispersion tube for approximately fifteen minutes. Nitrogen is vented from the kettle via an 18-gauge syringe needle inserted through a septum in the lid.
- After approximately fifteen minutes the fritted gas dispersion tube is raised above the surface of the monomer solution and nitrogen was kept flowing through the headspace of the kettle. A solution of sodium persulfate (0.4906 g, 2.06 mmol) in distilled water (5 mL), and then a small aliquot of the L-ascorbic acid solution (1 mL, 1.18 mmol) is added via syringe. The mechanical stirrer is stopped when the vortex in the polymer solution disappears due to the increase in viscosity of the solution (a few seconds after adding the L-ascorbic acid solution). The polymerization reaction proceeds with the circulating bath at 25° C. for 30 minutes. After 30 minutes the temperature of the water bath is increased to 40° C. and held for an additional 30 minutes. The temperature of the water bath is then increased to 50° C. and held for another hour. The peak temperature of the static polymerization is approximately 70° C.
- After one hour at 50° C. the circulating water bath is turned off. The resin kettle is opened; the polyacrylate gel is removed and broken into chunks approximately 2 cm in diameter. These are chopped into smaller particles using a food grinder attachment with 4.6 mm holes on a Kitchen-Aid mixer (Proline Model KSM5). Distilled water is added periodically from a squirt bottle to the infeed portion of the grinder to facilitate passage of the bulk gel through the grinder. Approximately 200 g of distilled water is used for this purpose. The chopped gel is spread into thin layers on two separate polyester mesh screens each measuring approximately 56 cm×48 cm and dried at 150° C. for 90 minutes in a vented oven in a fashion which allows passage of air through the mesh.
- The dried gel is then milled through a Laboratory Wiley Mill using a 20-mesh screen. Care is taken to ensure that the screen does not become clogged during the grinding process. The milled dried gel is sieved to obtain a fraction with particles which pass through a No. 20 USA Standard Testing Sieve and are retained on a No. 270 USA Standard Testing Sieve. The ‘on 20’ and ‘through 270’ fractions are discarded.
- The resultant free-flowing powder fraction ‘through 20’ and ‘on 270’ is dried under vacuum at room temperature until further use.
- A 50% solution of ethylene carbonate (1,3-dioxolan-2-one) is prepared by dissolving 10.0 grams of ethylene carbonate in 10.0 grams of distilled water.
- 100.00 grams of the dried ‘through 20’ and ‘on 270’ powder above are added to a stainless steel mixing bowl (approximately 4 L) of a Kitchen Aid mixer (Proline Model KSM5) equipped with a stainless steel wire whisk. The height of the mixing bowl is adjusted until the wire whisk just contacts the bowl. The whisk is started and adjusted to a speed setting of ‘6’ to stir the particles. Immediately thereafter, 15 grams of the above 50 wt % ethylene carbonate solution is added to the stirred AGM via a 10 mL plastic syringe equipped with a four inch 22-gauge needle. The solution is added directly onto the stirred particles over a period of several seconds. The syringe is weighed before and after the addition of solution to determine the amount added to the particles. After the solution is added, the mixture is stirred for approximately thirty seconds to help ensure an even coating. The resultant mixture is quite homogeneous with no obvious large clumps of material or residual dry powder. The mixture is then immediately transferred to a Teflon lined 20 cm×35 cm metal tray, spread into a thin layer and placed into a vented oven at 185° C. for one hour.
- After one hour, the mixture is removed from the oven and allowed to cool for approximately one minute. After cooling the powder is placed in a 12 cm diameter mortar and any agglomerated pieces are gently broken apart with a pestle. The resultant powder is sieved to obtain a fraction which passes through a No. 20 US standard screen, but is retained on a No. 270 US standard screen.
- The resultant ‘through 20’ and ‘on 270’ superabsorbent polymer particles are stored under vacuum at room temperature until further use. The AAP value for this material is measured according to the EDANA test method 442.2-02, and the SFC value is measured according to the SFC Test Method described above. The AAP value is found to be about 21 g/g, and the SFC value is found to be about 50×10−7 cm3·sec/g
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
- All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any definition or meaning of a term in this written document conflicts with any definition or meaning of the term in a document incorporated by reference, the definition or meaning assigned to the term in this document shall govern.
- While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It should be apparent that combinations of such embodiments and features are possible and can result in executions within the scope of this invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (20)
1. An absorbent article having opposing longitudinal edges, the absorbent article comprising:
a) a topsheet,
b) a backsheet joined with the topsheet,
c) an absorbent core disposed between the topsheet and the backsheet, and
d) a first polymer derived from a first renewable resource via at least one first intermediate compound, wherein the first polymer is synthetic, and wherein the first intermediate compound is monomeric, and wherein the first polymer is disposed in or incorporated into one or more elements of the absorbent article, the elements selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
2. The absorbent article of claim 1 , wherein the first polymer is a superabsorbent and is disposed in the absorbent core, the first polymer exhibiting:
i) a Saline Flow Conductivity value of at least about 30×10−7 cm3 ·sec/g; and
ii) an Absorption Against Pressure value of at least about 15 g/g.
3. The absorbent article of claim 2 , wherein the first polymer comprises lightly crosslinked polyacrylic acid neutralized from about 50 to about 100 mol %.
4. The absorbent article of claim 1 , wherein the first polymer exhibits a 14C/C ratio of about 1.0×10−14 or greater.
5. The absorbent article of claim 1 , wherein the first intermediate compound is selected from a group consisting of organic acids, sugars, monofunctional alcohols, polyfunctional alcohols, organic aldehydes, and organic esters.
6. The absorbent article of claim 2 , wherein the first polymer is derived from the first renewable resource via the first intermediate compound, a second intermediate compound, and a third intermediate compound; wherein said the first intermediate compound is glycerol, the second intermediate compound is acrolein, and the third intermediate compound is acrylic acid.
7. The absorbent article of claim 2 , wherein the first polymer is derived from the first renewable resource via the first intermediate compound, a second intermediate compound, and a third intermediate compound; wherein the first intermediate compound is glucose, the second intermediate compound is lactic acid, and the third intermediate compound is acrylic acid.
8. The absorbent article of claim 1 , further comprising a second polymer derived from a second renewable resource via at least one second intermediate compound, wherein the second polymer is disposed in or incorporated into one or more elements of the absorbent article, the elements selected from a group consisting of the absorbent core, the topsheet, the backsheet, and the barrier leg cuff.
9. The absorbent article of claim 1 , further comprising a pair of barrier cuffs longitudinally disposed on a body-facing surface of the absorbent article, each barrier cuff comprising a cuff substrate and an elastic member joined to the cuff substrate and capable of spacing a portion of the barrier cuff away from the body-facing surface of the article during wear; wherein the first polymer is a polyolefin, wherein the polyolefin is polypropylene or polyethylene, and wherein the topsheet, backsheet, or cuff substrate comprises the polyolefin.
10. The absorbent article of claim 1 , wherein the first polymer is a polyolefin, and wherein the topsheet comprises the polyolefin, wherein the topsheet exhibits a Liquid Strike-Through Time of less than about 4 seconds.
11. The absorbent article of claim 1 , wherein the first polymer is a polyolefin, and wherein the backsheet comprises the polyolefin, the polyolefin being in the form of a film, wherein the film exhibits an MD tensile strength of at least about 0.5 N/cm.
12. The absorbent article of claim 1 , wherein the first polymer is a polyolefin, and wherein the backsheet comprises the polyolefin, the polyolefin being in the form of a breathable film, wherein said breathable film exhibits a Moisture Vapor Transmission Rate of at least about 2000 g/m2/24 hours.
13. The absorbent article of claim 1 , wherein the first polymer is a polyolefin, and wherein the barrier leg cuff comprises a cuff substrate, and wherein the cuff substrate comprises the polyolefin, and wherein the cuff substrate exhibits a hydrohead of at least about 5 mbar.
14. The absorbent article of claim 1 , wherein the first polymer exhibits a 14C/C ratio of about 1.0×10−13 or greater.
15. The absorbent article of claim 1 , wherein the first polymer exhibits a 14C/C ratio of about 1.0×10−12 or greater.
16. A package comprising at least one absorbent article of claim 1 and an overwrap, wherein the overwrap at least partially covers the absorbent article.
17. The package of claim 16 , further comprising a communication of a related environmental message to a consumer.
18. A method for making an absorbent article comprising the steps of:
a) providing a renewable resource;
b) deriving an intermediate monomeric compound from the renewable resource;
c) polymerizing the monomeric compound to form a synthetic polymer,
d) disposing or incorporating the polymer into one or more elements of the absorbent article, the elements selected from a group consisting of the absorbent core, the topsheet, the backsheet, and a barrier leg cuff.
19. The method of claim 18 , wherein the method comprises the further steps of:
a) forming a package which at least partially overwraps at least one absorbent article; and
b) communicating a related environmental message to a consumer.
20. The method of claim 19 , wherein the step of communicating a related environmental message to a consumer comprises a communication form selected from a group consisting of store displays, posters, billboards, computer programs, brochures, package literature, shelf information, videos, advertisements, internet web sites, pictograms, icons, and combinations thereof.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/724,341 US20070219521A1 (en) | 2006-03-17 | 2007-03-15 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US12/975,914 US20110139658A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,838 US20110139657A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,973 US20110152812A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,043 US20110139662A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,101 US20110139659A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US13/959,841 US20130313149A1 (en) | 2006-03-17 | 2013-08-06 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US15/011,930 US10166312B2 (en) | 2006-03-17 | 2016-02-01 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/194,670 US10501920B2 (en) | 2006-03-17 | 2018-11-19 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,955 US10822783B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,960 US10815653B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,969 US10920407B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/144,484 US11186976B2 (en) | 2006-03-17 | 2021-01-08 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/203,870 US12054928B2 (en) | 2006-03-17 | 2021-03-17 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/679,408 US20220178124A1 (en) | 2006-03-17 | 2022-02-24 | Absorbent Article Comprising A Synthetic Polymer Derived from A Renewable Resource and Methods of Producing Said Article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78327406P | 2006-03-17 | 2006-03-17 | |
US11/724,341 US20070219521A1 (en) | 2006-03-17 | 2007-03-15 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/975,914 Continuation US20110139658A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,043 Continuation US20110139662A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,101 Continuation US20110139659A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,973 Continuation US20110152812A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,838 Continuation US20110139657A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070219521A1 true US20070219521A1 (en) | 2007-09-20 |
Family
ID=38421562
Family Applications (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/724,341 Abandoned US20070219521A1 (en) | 2006-03-17 | 2007-03-15 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US12/975,973 Abandoned US20110152812A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,838 Abandoned US20110139657A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,043 Abandoned US20110139662A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,101 Abandoned US20110139659A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,914 Abandoned US20110139658A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US13/959,841 Abandoned US20130313149A1 (en) | 2006-03-17 | 2013-08-06 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US15/011,930 Active 2028-10-20 US10166312B2 (en) | 2006-03-17 | 2016-02-01 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/194,670 Active US10501920B2 (en) | 2006-03-17 | 2018-11-19 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,960 Active US10815653B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,955 Active US10822783B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,969 Active US10920407B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/144,484 Active US11186976B2 (en) | 2006-03-17 | 2021-01-08 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/203,870 Active 2029-06-05 US12054928B2 (en) | 2006-03-17 | 2021-03-17 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/679,408 Pending US20220178124A1 (en) | 2006-03-17 | 2022-02-24 | Absorbent Article Comprising A Synthetic Polymer Derived from A Renewable Resource and Methods of Producing Said Article |
Family Applications After (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/975,973 Abandoned US20110152812A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,838 Abandoned US20110139657A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,043 Abandoned US20110139662A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/976,101 Abandoned US20110139659A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US12/975,914 Abandoned US20110139658A1 (en) | 2006-03-17 | 2010-12-22 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US13/959,841 Abandoned US20130313149A1 (en) | 2006-03-17 | 2013-08-06 | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US15/011,930 Active 2028-10-20 US10166312B2 (en) | 2006-03-17 | 2016-02-01 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/194,670 Active US10501920B2 (en) | 2006-03-17 | 2018-11-19 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,960 Active US10815653B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,955 Active US10822783B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US16/667,969 Active US10920407B2 (en) | 2006-03-17 | 2019-10-30 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/144,484 Active US11186976B2 (en) | 2006-03-17 | 2021-01-08 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/203,870 Active 2029-06-05 US12054928B2 (en) | 2006-03-17 | 2021-03-17 | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US17/679,408 Pending US20220178124A1 (en) | 2006-03-17 | 2022-02-24 | Absorbent Article Comprising A Synthetic Polymer Derived from A Renewable Resource and Methods of Producing Said Article |
Country Status (4)
Country | Link |
---|---|
US (15) | US20070219521A1 (en) |
CN (1) | CN101442965B (en) |
CA (1) | CA2647293A1 (en) |
WO (1) | WO2007109128A2 (en) |
Cited By (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040162536A1 (en) * | 2003-02-12 | 2004-08-19 | Becker Uwe Jurgen | Comfortable diaper |
US20040167486A1 (en) * | 2003-02-12 | 2004-08-26 | Ludwig Busam | Thin and dry diaper |
US20080312619A1 (en) * | 2007-06-18 | 2008-12-18 | Gregory Ashton | Better Fitting Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312617A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material And Method |
US20080312625A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Enhanced Absorption Properties With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312620A1 (en) * | 2007-06-18 | 2008-12-18 | Gregory Ashton | Better Fitting Disposable Absorbent Article With Absorbent Particulate Polymer Material |
US20080312618A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Sealed Absorbent Core With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312621A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312628A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Sealed Absorbent Core With Absorbent Particulate Polymer Material |
US20080312622A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System |
US20080312624A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Tri-Folded Disposable Absorbent Article, Packaged Absorbent Article, And Array of Packaged Absorbent Articles With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312623A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Enhanced Absorption Properties |
US20090246842A1 (en) * | 2008-02-15 | 2009-10-01 | Gevo, Inc. | Engineered microorganisms for producing propanol |
WO2010012946A2 (en) * | 2008-07-29 | 2010-02-04 | Arkema France | Production of grafted polyethylene from renewable materials the obtained polyethylene and uses thereof |
WO2010090324A1 (en) | 2009-02-06 | 2010-08-12 | 株式会社日本触媒 | Polyacrylic acid (salt) type water-absorbent resin and process for production of same |
WO2011010036A1 (en) * | 2009-07-22 | 2011-01-27 | Arkema France | Method for producing bioresourced acrylic acid from glycerol |
WO2011010035A1 (en) * | 2009-07-22 | 2011-01-27 | Arkema France | Method for producing bioresourced acrylic acid from glycerol |
EP2285929A1 (en) | 2008-04-14 | 2011-02-23 | 3M Innovative Properties Company | 2-octyl (meth)acrylate adhesive composition |
US20110120902A1 (en) * | 2011-01-25 | 2011-05-26 | The Procter & Gamble Company | Sustainable Packaging for Consumer Products |
US20110139658A1 (en) * | 2006-03-17 | 2011-06-16 | Bryn Hird | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
WO2011136238A1 (en) | 2010-04-26 | 2011-11-03 | 株式会社日本触媒 | Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same |
WO2011136237A1 (en) | 2010-04-26 | 2011-11-03 | 株式会社日本触媒 | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US20120108692A1 (en) * | 2010-10-27 | 2012-05-03 | John Collins Dyer | Preparation of foam materials derived from renewable resources |
WO2012112828A1 (en) | 2011-02-17 | 2012-08-23 | The Procter & Gamble Company | Bio-based linear alkylphenyl sulfonates |
WO2012131103A1 (en) | 2011-04-01 | 2012-10-04 | Karl Thews | Hygienic swab |
WO2012138423A1 (en) | 2011-02-17 | 2012-10-11 | The Procter & Gamble Company | Compositions comprising mixtures of c10-c13 alkylphenyl sulfonates |
WO2013009929A2 (en) | 2011-07-13 | 2013-01-17 | The Procter & Gamble Company | Lotions derived from renewable resources and absorbent articles comprising same |
US20130071630A1 (en) * | 2011-09-19 | 2013-03-21 | Paul Thomas Weisman | Fibrous structures derived from renewable resources |
WO2013049458A1 (en) | 2011-09-29 | 2013-04-04 | The Procter & Gamble Company | Stabilized adhesives and use thereof |
EP2644174A1 (en) | 2012-03-29 | 2013-10-02 | The Procter and Gamble Company | Method and apparatus for making personal hygiene absorbent articles |
WO2013180912A1 (en) | 2012-05-31 | 2013-12-05 | The Procter & Gamble Company | Highly flexible absorbent article having stiffened landing zone |
WO2013180913A1 (en) | 2012-05-31 | 2013-12-05 | The Procter & Gamble Company | Highly flexible absorbent article having stiffened landing zone |
WO2014004937A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method for attaching elastic components to absorbent articles |
WO2014004802A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Disposable absorbent insert for two-piece wearable absorbent article |
WO2014004938A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method for making a layered elastic substrate having gathers |
WO2014005027A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Rotary drum apparatus reconfigurable for various size substrates |
WO2014005005A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method and apparatus for attaching components to absorbent articles |
WO2014004941A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Apparatus and method for making a layered elastic substrate |
WO2014004940A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Methods and apparatuses for consolidating elastic substrates |
WO2014036287A1 (en) | 2012-08-31 | 2014-03-06 | The Procter & Gamble Company | Process and apprataus for printing assembled absorbent articles with custom graphics |
WO2014066780A1 (en) | 2012-10-25 | 2014-05-01 | The Procter & Gamble Company | Shaped fastening systems for use with absorbent articles |
WO2014066277A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for changing the orientation of an absorbent article |
WO2014066228A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for advancing an absorbent article |
WO2014066227A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for positioning a cutting apparatus |
WO2014066278A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for cutting a substrate |
WO2014085119A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Absorbent articles with substrates having patterned slot coated adhesives |
WO2014085063A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
WO2014085064A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Methods and apparatus for making elastic laminates |
WO2014085117A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Method and apparatus for applying an elastic material to a moving substrate in a curved path |
WO2014110096A1 (en) | 2013-01-11 | 2014-07-17 | The Procter & Gamble Company | Lotions comprising emollients of a renewable resource and an immobilizing agent |
WO2014120561A1 (en) | 2013-01-31 | 2014-08-07 | The Procter & Gamble Company | One-way projection snare apparatus and method for isolating a broken elastic strand |
WO2014127174A1 (en) | 2013-02-15 | 2014-08-21 | The Procter & Gamble Company | Fastening systems for use with absorbent articles |
WO2014126693A1 (en) | 2013-02-13 | 2014-08-21 | The Procter & Gamble Company | One-way snare apparatus for isolating a broken elastic strand |
EP2778270A1 (en) | 2013-03-15 | 2014-09-17 | Fibertex Personal Care A/S | Nonwoven substrates having fibrils |
WO2014150316A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Wipes with improved properties |
WO2014151480A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Methods for forming absorbent articles with nonwoven substrates |
WO2014150434A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Nonwoven substrates |
WO2014150105A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Method and apparatus for assembling refastenable absorbent articles |
WO2014150303A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Absorbent articles with nonwoven substrates having fibrils |
KR20140125420A (en) | 2012-02-17 | 2014-10-28 | 가부시키가이샤 닛폰 쇼쿠바이 | Polyacrylic acid (salt) water-absorbing resin and manufacturing method therefor |
WO2014190103A1 (en) | 2013-05-22 | 2014-11-27 | The Procter & Gamble Company | Package with integrally formed handle and a method of making the same |
WO2014193925A2 (en) | 2013-05-31 | 2014-12-04 | The Procter & Gamble Company | Absorbent articles comprising a fragrance accord |
WO2015013355A1 (en) | 2013-07-24 | 2015-01-29 | The Procter & Gamble Company | Carrier member having a resilient member |
US8979815B2 (en) | 2012-12-10 | 2015-03-17 | The Procter & Gamble Company | Absorbent articles with channels |
US20150080822A1 (en) * | 2011-06-17 | 2015-03-19 | The Procter & Gamble Company | Absorbent article having improved absorption properties |
WO2015047894A1 (en) | 2013-09-24 | 2015-04-02 | The Procter & Gamble Company | Apparatus for positioning an advancing web |
WO2015047805A1 (en) | 2013-09-27 | 2015-04-02 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
US20150100034A1 (en) * | 2007-02-13 | 2015-04-09 | The Procter & Gamble Company | Absorbent Article With Barrier Sheet |
US9029596B2 (en) | 2010-12-28 | 2015-05-12 | Nippon Shokubai Co., Ltd. | Methods for producing acrylic acid and/or ester thereof and polymer of the acrylic acid and/or ester thereof |
US9044359B2 (en) | 2008-04-29 | 2015-06-02 | The Procter & Gamble Company | Disposable absorbent article with absorbent particulate polymer material distributed for improved isolation of body exudates |
US9066838B2 (en) | 2011-06-10 | 2015-06-30 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US9115467B2 (en) | 2010-08-01 | 2015-08-25 | Virdia, Inc. | Methods and systems for solvent purification |
WO2015171583A1 (en) | 2014-05-05 | 2015-11-12 | The Procter & Gamble Company | Heterogeneous mass containing foam |
WO2015179750A1 (en) | 2014-05-22 | 2015-11-26 | The Procter & Gamble Company | Heterogeneous mass containing foam |
WO2015187755A1 (en) | 2014-06-05 | 2015-12-10 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels |
US9216118B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
EP2959922A1 (en) | 2014-06-27 | 2015-12-30 | The Procter and Gamble Company | Open cell foam associated with a second open cell foam |
WO2015200735A1 (en) | 2014-06-27 | 2015-12-30 | The Procter & Gamble Company | High internal phase emulsion foam associated with polyurethane foam |
WO2015200777A1 (en) | 2014-06-27 | 2015-12-30 | The Procter & Gamble Company | Heterogeneous mass containing foam |
US9326896B2 (en) | 2008-04-29 | 2016-05-03 | The Procter & Gamble Company | Process for making an absorbent core with strain resistant core cover |
US9333120B2 (en) | 2005-05-20 | 2016-05-10 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US9340363B2 (en) | 2009-12-02 | 2016-05-17 | The Procter & Gamble Company | Apparatus and method for transferring particulate material |
US20160175169A1 (en) * | 2014-12-23 | 2016-06-23 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and channels |
US9375358B2 (en) | 2012-12-10 | 2016-06-28 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9375354B2 (en) | 2012-09-14 | 2016-06-28 | The Procter & Gamble Company | Methods and apparatuses for conveying absorbent articles in a converting line |
US9410216B2 (en) | 2010-06-26 | 2016-08-09 | Virdia, Inc. | Sugar mixtures and methods for production and use thereof |
WO2016160900A1 (en) | 2015-03-31 | 2016-10-06 | The Procter & Gamble Company | Heterogeneous mass containing foam |
US9468566B2 (en) | 2011-06-10 | 2016-10-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9476106B2 (en) | 2010-06-28 | 2016-10-25 | Virdia, Inc. | Methods and systems for processing a sucrose crop and sugar mixtures |
US9492328B2 (en) | 2011-06-10 | 2016-11-15 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US9512495B2 (en) | 2011-04-07 | 2016-12-06 | Virdia, Inc. | Lignocellulose conversion processes and products |
US9532910B2 (en) | 2012-11-13 | 2017-01-03 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US9572728B2 (en) | 2008-07-02 | 2017-02-21 | The Procter & Gamble Company | Disposable absorbent article with varied distribution of absorbent particulate polymer material and method of making same |
US20170056253A1 (en) * | 2015-08-28 | 2017-03-02 | Fitesa Nonwoven, Inc. | Absorbent Article Having A High Content Of Bio-Based Materials |
US9617608B2 (en) | 2011-10-10 | 2017-04-11 | Virdia, Inc. | Sugar compositions |
US9663836B2 (en) | 2010-09-02 | 2017-05-30 | Virdia, Inc. | Methods and systems for processing sugar mixtures and resultant compositions |
US9668926B2 (en) | 2011-06-10 | 2017-06-06 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US9713556B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content |
US9713557B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US20170281423A1 (en) * | 2016-03-30 | 2017-10-05 | Basf Se | Fluid-Absorbent Article |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US9789011B2 (en) | 2013-08-27 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles with channels |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
EP3315428A1 (en) | 2016-10-28 | 2018-05-02 | The Procter and Gamble Company | Reclosable package and a method of making the same |
EP3315427A1 (en) | 2016-10-28 | 2018-05-02 | The Procter and Gamble Company | Reclosable package and a method of making the same |
US9974699B2 (en) | 2011-06-10 | 2018-05-22 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels |
US10052242B2 (en) | 2014-05-27 | 2018-08-21 | The Procter & Gamble Company | Absorbent core with absorbent material pattern |
US10059553B2 (en) | 2012-06-29 | 2018-08-28 | The Procter & Gamble Company | System and method for high-speed continuous application of a strip material to a moving sheet-like substrate material |
US10071002B2 (en) | 2013-06-14 | 2018-09-11 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US10130527B2 (en) | 2013-09-19 | 2018-11-20 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10137039B2 (en) | 2013-12-19 | 2018-11-27 | The Procter & Gamble Company | Absorbent cores having channel-forming areas and C-wrap seals |
US10149788B2 (en) | 2011-06-10 | 2018-12-11 | The Procter & Gamble Company | Disposable diapers |
WO2019060515A1 (en) | 2017-09-21 | 2019-03-28 | The Procter & Gamble Company | Absorbent article |
US10292875B2 (en) | 2013-09-16 | 2019-05-21 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US10322040B2 (en) | 2015-03-16 | 2019-06-18 | The Procter & Gamble Company | Absorbent articles with improved cores |
EP3498247A1 (en) | 2017-12-12 | 2019-06-19 | The Procter & Gamble Company | Recycle friendly and sustainable absorbent articles |
US10441481B2 (en) | 2014-05-27 | 2019-10-15 | The Proctre & Gamble Company | Absorbent core with absorbent material pattern |
US10507144B2 (en) | 2015-03-16 | 2019-12-17 | The Procter & Gamble Company | Absorbent articles with improved strength |
US10543129B2 (en) | 2015-05-29 | 2020-01-28 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US10561546B2 (en) | 2011-06-10 | 2020-02-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
WO2020041534A1 (en) | 2018-08-22 | 2020-02-27 | The Procter & Gamble Company | Disposable absorbent article |
WO2020068523A1 (en) | 2018-09-27 | 2020-04-02 | The Procter & Gamble Company | Garment-like absorbent articles |
WO2020076906A1 (en) | 2018-10-09 | 2020-04-16 | The Procter & Gamble Company | Absorbent article comprising a lotion resistant polymeric filler composition |
US10632029B2 (en) | 2015-11-16 | 2020-04-28 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10639215B2 (en) | 2012-12-10 | 2020-05-05 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
US10736795B2 (en) | 2015-05-12 | 2020-08-11 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US10842690B2 (en) | 2016-04-29 | 2020-11-24 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
WO2020242714A1 (en) | 2019-05-31 | 2020-12-03 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
WO2020247980A1 (en) | 2019-06-06 | 2020-12-10 | The Procter & Gamble Company | Skin care compositions derived from renewable resources and absorbent articles comprising same |
WO2021003493A1 (en) | 2019-07-01 | 2021-01-07 | The Procter & Gamble Company | Absorbent article with ear portion |
US10952910B2 (en) | 2017-03-27 | 2021-03-23 | The Procter & Gamble Company | Elastomeric laminate with soft noncrimped spunbond fiber webs |
US10959887B2 (en) | 2016-08-12 | 2021-03-30 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
WO2021068544A1 (en) | 2019-10-08 | 2021-04-15 | The Procter & Gamble Company | Ring-like elastic belt and method of making thereof |
WO2021072950A1 (en) | 2019-10-15 | 2021-04-22 | The Procter & Gamble Company | Absorbent articles |
WO2021092607A1 (en) | 2019-11-04 | 2021-05-14 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
WO2021097477A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Tape-type absorbent article with belt structure |
WO2021097472A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Method for providing successive individual combination belt structures |
WO2021097479A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Absorbent article having fastening system |
EP3834791A1 (en) | 2019-12-11 | 2021-06-16 | The Procter & Gamble Company | Absorbnet article comprising a lower acquisition and distribution system |
WO2021118897A1 (en) | 2019-12-10 | 2021-06-17 | The Procter & Gamble Company | Nonwoven webs with visually discernible patterns and improved texture perception |
WO2021142775A1 (en) | 2020-01-17 | 2021-07-22 | The Procter & Gamble Company | Absorbent articles comprising semi-hydrophilic compositions |
US11078548B2 (en) | 2015-01-07 | 2021-08-03 | Virdia, Llc | Method for producing xylitol by fermentation |
US11090199B2 (en) | 2014-02-11 | 2021-08-17 | The Procter & Gamble Company | Method and apparatus for making an absorbent structure comprising channels |
WO2021163256A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163255A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163258A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163868A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Three-dimensional substrate and absorbent articles comprising the same |
WO2021163869A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Apertured substrate and absorbent articles thereof |
WO2021163867A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Absorbent article with three-dimensional substrate |
US11104486B2 (en) | 2019-03-27 | 2021-08-31 | The Procter & Gamble Company | Reclosable package and a method of making the same |
US11123240B2 (en) | 2016-04-29 | 2021-09-21 | The Procter & Gamble Company | Absorbent core with transversal folding lines |
US11135100B2 (en) | 2013-05-03 | 2021-10-05 | The Procter & Gamble Company | Absorbent articles comprising stretch laminates |
EP3892246A1 (en) | 2020-04-08 | 2021-10-13 | The Procter & Gamble Company | Method for applying a polymeric composition and absorbent articles comprising such composition |
WO2021212348A1 (en) | 2020-04-22 | 2021-10-28 | The Procter & Gamble Company | Absorbent articles having nonwoven materials with natural fibers |
WO2021225832A1 (en) | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Absorbent articles including front and back waist panels with different stretch characteristics |
WO2021226034A1 (en) | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Absorbent articles including improved elastic panels |
WO2021236494A1 (en) | 2020-05-21 | 2021-11-25 | The Procter & Gamble Company | Absorbent article with foldable insert |
WO2021236700A1 (en) | 2020-05-22 | 2021-11-25 | The Procter & Gamble Company | Absorbent articles with waistbands and waistband covers |
EP3915533A1 (en) | 2020-05-28 | 2021-12-01 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
WO2021242592A1 (en) | 2020-05-28 | 2021-12-02 | The Procter & Gamble Company | Absorbent articles having laminates exhibiting vibrant graphics perception |
WO2021242593A2 (en) | 2020-05-28 | 2021-12-02 | The Procter & Gamble Company | Absorbent articles having laminates exhibiting highly recognizable patterns and vibrant graphics |
EP3919033A1 (en) | 2020-06-03 | 2021-12-08 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution system and a wetness indicator |
WO2021252824A1 (en) | 2020-06-12 | 2021-12-16 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021252442A1 (en) | 2020-06-09 | 2021-12-16 | The Procter & Gamble Company | Article having a bond pattern |
WO2021257930A1 (en) | 2020-06-18 | 2021-12-23 | The Procter & Gamble Company | Absorbent article sensor replacement system |
WO2021257931A1 (en) | 2020-06-18 | 2021-12-23 | The Procter & Gamble Company | Unique optical signals for sensor detection in absorbent articles |
US11207220B2 (en) | 2013-09-16 | 2021-12-28 | The Procter & Gamble Company | Absorbent articles with channels and signals |
WO2021263066A1 (en) | 2020-06-25 | 2021-12-30 | The Procter & Gamble Company | Absorbent article with elastic laminate |
EP3944845A1 (en) | 2020-07-30 | 2022-02-02 | The Procter & Gamble Company | Absorbent article with a channel-forming area and a masking layer |
WO2022026283A1 (en) | 2020-07-30 | 2022-02-03 | The Procter & Gamble Company | Absorbent article with a lower intermediate layer partially bonded to the absorbent core |
WO2022061375A1 (en) | 2020-09-21 | 2022-03-24 | The Procter & Gamble Company | Two piece absorbent article |
WO2022067310A1 (en) | 2020-09-22 | 2022-03-31 | The Procter & Gamble Company | Absorbent articles with patterned front ears |
WO2022132875A1 (en) | 2020-12-18 | 2022-06-23 | The Procter & Gamble Company | Absorbent articles including waist panels |
WO2022165742A1 (en) | 2021-02-05 | 2022-08-11 | The Procter & Gamble Company | Three dimensional nonwoven and absorbent articles having the same |
US11446186B2 (en) | 2016-08-12 | 2022-09-20 | The Procter & Gamble Company | Absorbent article with ear portion |
WO2022203988A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent articles with leg cuffs |
WO2022203989A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent article |
WO2022203987A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent articles and arrays thereof |
WO2022231892A1 (en) | 2021-04-30 | 2022-11-03 | The Procter & Gamble Company | Packaged absorbent articles |
EP4088704A1 (en) | 2021-05-10 | 2022-11-16 | The Procter & Gamble Company | Absorbent core with nonwoven web(s) comprising superabsorbent fibers |
USD970725S1 (en) | 2019-11-15 | 2022-11-22 | The Procter & Gamble Company | Absorbent article component |
WO2022252116A1 (en) | 2021-06-01 | 2022-12-08 | The Procter & Gamble Company | Absorbent article comprising an intermediate layer |
WO2022252117A1 (en) | 2021-06-01 | 2022-12-08 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution layer |
WO2022260862A1 (en) | 2021-06-08 | 2022-12-15 | The Procter & Gamble Company | Absorbent articles including a waist panel with a frangible bond |
EP4129259A1 (en) | 2021-08-04 | 2023-02-08 | The Procter & Gamble Company | Absorbent article with urease inhibitor and use of the article |
WO2023049738A1 (en) | 2021-09-22 | 2023-03-30 | The Procter & Gamble Company | Fibrous substrates containing fibers with fiber additives |
WO2023056237A1 (en) | 2021-09-30 | 2023-04-06 | The Procter & Gamble Company | Absorbent article with laminate bond pattern |
US11642248B2 (en) | 2016-08-12 | 2023-05-09 | The Procter & Gamble Company | Absorbent article with an ear portion |
WO2023088179A1 (en) | 2021-11-19 | 2023-05-25 | The Procter & Gamble Company | Absorbent article with front and/or back waist regions having a high-stretch zone and a low-stretch zone and methods for making |
WO2023115513A1 (en) | 2021-12-24 | 2023-06-29 | The Procter & Gamble Company | Taped absorbent article with front and back elastic waistbands |
WO2023147446A1 (en) | 2022-01-31 | 2023-08-03 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2023168616A1 (en) | 2022-03-09 | 2023-09-14 | The Procter & Gamble Company | Absorbent article with high permeability sap |
WO2023196768A1 (en) | 2022-04-04 | 2023-10-12 | The Procter & Gamble Company | Absorbent articles including a waist panel |
EP4279050A1 (en) | 2022-05-16 | 2023-11-22 | The Procter & Gamble Company | Absorbent article |
EP4279049A1 (en) | 2022-05-16 | 2023-11-22 | The Procter & Gamble Company | Method for making an absorbent article and absorbent article |
WO2023225238A1 (en) | 2022-05-20 | 2023-11-23 | The Procter & Gamble Company | Absorbent article with laminate bond pattern |
WO2023250479A1 (en) | 2022-06-24 | 2023-12-28 | The Procter & Gamble Company | Absorbent articles containing wetness indicating compositions and methods for manufacture |
WO2024006721A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways with simultaneously propagating tear zones |
WO2024026286A1 (en) | 2022-07-28 | 2024-02-01 | The Procter & Gamble Company | Absorbent articles with disposal fasteners having integral hook fasteners |
EP4364708A1 (en) | 2022-11-07 | 2024-05-08 | The Procter & Gamble Company | Array of absorbent articles having waist gasketing elements |
EP4364707A1 (en) | 2022-11-04 | 2024-05-08 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
WO2024097529A1 (en) | 2022-11-01 | 2024-05-10 | The Procter & Gamble Company | Array of absorbent articles with ultrasonically bonded stretch laminates |
WO2024159065A1 (en) | 2023-01-27 | 2024-08-02 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024159066A1 (en) | 2023-01-27 | 2024-08-02 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024168207A1 (en) | 2023-02-10 | 2024-08-15 | The Procter & Gamble Company | Absorbent articles with barrier leg cuffs having a backfolded inner cuff |
US12064327B2 (en) | 2018-08-14 | 2024-08-20 | The Procter & Gamble Company | Shaped fastening members and absorbent articles having the same |
WO2024197692A1 (en) | 2023-03-30 | 2024-10-03 | The Procter & Gamble Company | Nonwoven substrate and absorbent articles comprising the same |
EP4442232A1 (en) | 2023-04-04 | 2024-10-09 | The Procter & Gamble Company | Absorbent article and method for making an absorbent article |
WO2024233851A1 (en) | 2023-05-11 | 2024-11-14 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024234131A1 (en) | 2023-05-12 | 2024-11-21 | The Procter & Gamble Company | Absorbent article |
EP4483853A1 (en) | 2023-06-29 | 2025-01-01 | The Procter & Gamble Company | Method for manufacturing a joined resealable absorbent article |
WO2025015584A1 (en) | 2023-07-20 | 2025-01-23 | The Procter & Gamble Company | Absorbent core and absorbent article comprisng the same |
US12207995B2 (en) | 2017-03-27 | 2025-01-28 | The Procter & Gamble Company | Elastomeric laminate with soft noncrimped spunbond fiber webs |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2491905C2 (en) * | 2008-11-07 | 2013-09-10 | Ска Хайджин Продактс Аб | Absorbent product wrapper |
WO2011025013A1 (en) | 2009-08-28 | 2011-03-03 | 株式会社日本触媒 | Process for production of water-absorbable resin |
CN102549028B (en) | 2009-09-30 | 2016-03-02 | 株式会社日本触媒 | Polyacrylic acid (salt) is water-absorbing resin and manufacture method thereof |
EP2527391B1 (en) | 2010-01-20 | 2023-08-09 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent resin |
CN102712763B (en) | 2010-01-20 | 2014-07-30 | 株式会社日本触媒 | Method for producing water absorbent resin |
EP3124236A1 (en) | 2011-06-17 | 2017-02-01 | Fiberweb, Inc. | Vapor permeable, substantially water impermeable multilayer article |
WO2012178027A2 (en) | 2011-06-23 | 2012-12-27 | Fiberweb, Inc. | Vapor-permeable, substantially water-impermeable multilayer article |
ES2643697T3 (en) | 2011-06-23 | 2017-11-23 | Fiberweb, Llc | Multilayer article permeable to steam and practically impervious to water |
WO2012178011A2 (en) | 2011-06-24 | 2012-12-27 | Fiberweb, Inc. | Vapor-permeable, substantially water-impermeable multilayer article |
US10435229B2 (en) | 2012-12-20 | 2019-10-08 | Kimberly-Clark Worldwide, Inc. | Slip-resistant dispensing container for stacked moist wipes |
US9889963B2 (en) * | 2012-12-20 | 2018-02-13 | Kimberly-Clark Worldwide, Inc. | Refillable dispensing container for stacked moist wipes |
US9125532B2 (en) | 2012-12-20 | 2015-09-08 | Kimberly-Clark Worldwide, Inc. | Storing and dispensing container for wipes |
US20150144649A1 (en) * | 2013-11-25 | 2015-05-28 | Kimberly-Clark Worldwide, Inc. | Wet Wipe Refill Container Indicator |
US12059334B2 (en) | 2014-06-02 | 2024-08-13 | Tethis, Inc. | Absorbent articles with biocompostable properties |
EP3034055B1 (en) * | 2014-12-15 | 2019-08-07 | The Procter and Gamble Company | Absorbent articles with thinner backsheet |
CN106377358A (en) * | 2016-08-29 | 2017-02-08 | 中天(中国)工业有限公司 | Low-sensitized absorptive article containing enzymes |
US10500104B2 (en) * | 2016-12-06 | 2019-12-10 | Novomer, Inc. | Biodegradable sanitary articles with higher biobased content |
WO2020114612A1 (en) | 2018-12-07 | 2020-06-11 | Essity Hygiene And Health Aktiebolag | Incontinence pad with varying thickness profile |
JP2022511079A (en) * | 2018-12-07 | 2022-01-28 | エシティ・ハイジーン・アンド・ヘルス・アクチエボラグ | Incontinence pad with variable thickness profile |
US11766366B2 (en) | 2019-11-01 | 2023-09-26 | Tethis, Inc. | Absorbent hygienic articles with sensors and biocompostable elements |
WO2021126034A1 (en) * | 2019-12-20 | 2021-06-24 | Essity Hygiene And Health Aktiebolag | An absorbent hygienic article for absorbing body fluids |
EP4228577B1 (en) * | 2020-10-16 | 2024-12-04 | The Procter & Gamble Company | Method of producing absorbent hygiene product comprising superabsorbent polymer partly derived from a recycled resource |
WO2024163005A1 (en) | 2023-01-30 | 2024-08-08 | The Procter & Gamble Company | Aerosol dispenser containing a hairspray composition and a nitrogen propellant |
Citations (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2042224A (en) * | 1934-06-27 | 1936-05-26 | Shell Dev | Process of converting a polyhydric alcohol to a carbonyl compound |
US3661875A (en) * | 1970-01-27 | 1972-05-09 | Du Pont | 1-(1-alkenyl)bicyclo(1.1.0)butanes and their polymers |
US3860003A (en) * | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US3885155A (en) * | 1973-11-01 | 1975-05-20 | Stanford Research Inst | Mass spectrometric determination of carbon 14 |
US4020780A (en) * | 1969-11-05 | 1977-05-03 | The United States Of America As Represented By The Secretary Of The Navy | Mooring cable cutting system |
US4076663A (en) * | 1975-03-27 | 1978-02-28 | Sanyo Chemical Industries, Ltd. | Water absorbing starch resins |
US4083889A (en) * | 1977-05-26 | 1978-04-11 | Mobil Oil Corporation | Process for manufacturing ethylene |
US4092354A (en) * | 1973-03-30 | 1978-05-30 | Sumitomo Chemical Company, Limited | Process for production of acrylic acid |
US4093776A (en) * | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4296266A (en) * | 1979-07-18 | 1981-10-20 | Hoechst Aktiengesellschaft | Process for the manufacture of lower olefins from methanol/water mixtures |
US4340563A (en) * | 1980-05-05 | 1982-07-20 | Kimberly-Clark Corporation | Method for forming nonwoven webs |
US4405297A (en) * | 1980-05-05 | 1983-09-20 | Kimberly-Clark Corporation | Apparatus for forming nonwoven webs |
US4407955A (en) * | 1981-11-12 | 1983-10-04 | National Distillers And Chemical Corporation | Fermentable sugar from the hydrolysis of starch derived from dry milled cereal grains |
US4423270A (en) * | 1981-09-28 | 1983-12-27 | Pearson Donald E | Process for catalytic dehydration of ethanol vapor to ethylene |
US4425130A (en) * | 1981-06-12 | 1984-01-10 | The Procter & Gamble Company | Compound sanitary napkin |
US4427884A (en) * | 1982-01-25 | 1984-01-24 | The Research Foundation Of State University Of New York | Method for detecting and quantifying carbon isotopes |
US4469710A (en) * | 1982-10-14 | 1984-09-04 | The Procter & Gamble Company | Pourable solid shortening |
US4541871A (en) * | 1981-12-30 | 1985-09-17 | Seitetsu Kagaku Co., Ltd. | Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same |
US4587308A (en) * | 1984-02-04 | 1986-05-06 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Method for producing improved water-absorbent resins |
US4610678A (en) * | 1983-06-24 | 1986-09-09 | Weisman Paul T | High-density absorbent structures |
US4625001A (en) * | 1984-09-25 | 1986-11-25 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for continuous production of cross-linked polymer |
US4666983A (en) * | 1982-04-19 | 1987-05-19 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Absorbent article |
US4673402A (en) * | 1985-05-15 | 1987-06-16 | The Procter & Gamble Company | Absorbent articles with dual-layered cores |
US4687478A (en) * | 1984-03-20 | 1987-08-18 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US4695278A (en) * | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4729978A (en) * | 1987-05-04 | 1988-03-08 | Texaco Inc. | Catalyst for dehydration of lactic acid to acrylic acid |
US4734478A (en) * | 1984-07-02 | 1988-03-29 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Water absorbing agent |
USRE32649E (en) * | 1985-06-18 | 1988-04-19 | The Procter & Gamble Company | Hydrogel-forming polymer compositions for use in absorbent structures |
US4753834A (en) * | 1985-10-07 | 1988-06-28 | Kimberly-Clark Corporation | Nonwoven web with improved softness |
US4786756A (en) * | 1984-11-05 | 1988-11-22 | The Standard Oil Company | Catalytic conversion of lactic acid and ammonium lactate to acrylic acid |
US4789861A (en) * | 1987-02-09 | 1988-12-06 | Hughes Aircraft Company | Method and apparatus for detecting an out of beam condition in a monopulse radar receiver |
US4795454A (en) * | 1986-10-10 | 1989-01-03 | The Procter & Gamble Company | Absorbent article having leakage-resistant dual cuffs |
US4808178A (en) * | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4824901A (en) * | 1986-06-10 | 1989-04-25 | American Colloid Company | Surface treated absorbent polymers |
US4834735A (en) * | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4846587A (en) * | 1988-09-30 | 1989-07-11 | The Proctor & Gamble Company | Flaccid bag having improved integrally formed carrying handle |
US4888231A (en) * | 1986-05-28 | 1989-12-19 | The Procter & Gamble Company | Absorbent core having a dusting layer |
US4892536A (en) * | 1988-09-02 | 1990-01-09 | The Procter & Gamble Company | Absorbent article having elastic strands |
US4909803A (en) * | 1983-06-30 | 1990-03-20 | The Procter And Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4934535A (en) * | 1989-04-04 | 1990-06-19 | The Procter & Gamble Company | Easy open flexible bag filled with compressed flexible articles and method and apparatus for making same |
US4940464A (en) * | 1987-12-16 | 1990-07-10 | Kimberly-Clark Corporation | Disposable incontinence garment or training pant |
US4966286A (en) * | 1989-06-26 | 1990-10-30 | The Procter & Gamble Company | Easy open flexible bag |
US4973841A (en) * | 1990-02-02 | 1990-11-27 | Genus, Inc. | Precision ultra-sensitive trace detector for carbon-14 when it is at concentration close to that present in recent organic materials |
US4990147A (en) * | 1988-09-02 | 1991-02-05 | The Procter & Gamble Company | Absorbent article with elastic liner for waste material isolation |
US5037416A (en) * | 1989-03-09 | 1991-08-06 | The Procter & Gamble Company | Disposable absorbent article having elastically extensible topsheet |
US5036978A (en) * | 1988-06-28 | 1991-08-06 | The Procter & Gamble Company | Opening device for flexible bags filled with compressed flexible articles |
US5050742A (en) * | 1990-11-02 | 1991-09-24 | The Procter & Gamble Company | Easy opening package containing compressed flexible articles |
US5054619A (en) * | 1989-12-15 | 1991-10-08 | The Procter & Gamble Company | Side opening flexible bag with longitudinally oriented carrying handle secured to side panels |
US5092861A (en) * | 1989-12-22 | 1992-03-03 | Uni-Charm Corporation | Disposable garments |
US5137537A (en) * | 1989-11-07 | 1992-08-11 | The Procter & Gamble Cellulose Company | Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers |
US5147345A (en) * | 1991-08-12 | 1992-09-15 | The Procter & Gamble Company | High efficiency absorbent articles for incontinence management |
US5151092A (en) * | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5164459A (en) * | 1990-04-02 | 1992-11-17 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for treating the surface of an absorbent resin |
US5221274A (en) * | 1991-06-13 | 1993-06-22 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5246433A (en) * | 1991-11-21 | 1993-09-21 | The Procter & Gamble Company | Elasticized disposable training pant and method of making the same |
US5252473A (en) * | 1990-01-23 | 1993-10-12 | Battelle Memorial Institute | Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid |
US5260345A (en) * | 1991-08-12 | 1993-11-09 | The Procter & Gamble Company | Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials |
US5267992A (en) * | 1984-03-20 | 1993-12-07 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US5269775A (en) * | 1992-06-12 | 1993-12-14 | The Procter & Gamble Company | Trisection topsheets for disposable absorbent articles and disposable absorbent articles having such trisection topsheets |
US5342338A (en) * | 1993-06-11 | 1994-08-30 | The Procter & Gamble Company | Disposable absorbent article for low-viscosity fecal material |
US5387720A (en) * | 1992-11-14 | 1995-02-07 | Degussa Aktiengesellschaft | Process for the production of acrolein |
US5387207A (en) * | 1991-08-12 | 1995-02-07 | The Procter & Gamble Company | Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same |
US5397316A (en) * | 1993-06-25 | 1995-03-14 | The Procter & Gamble Company | Slitted absorbent members for aqueous body fluids formed of expandable absorbent materials |
US5408019A (en) * | 1990-05-11 | 1995-04-18 | Chemische Fabrik Stockhausen Gmbh | Cross-linked, water-absorbing polymer and its use in the production of hygiene items |
US5409771A (en) * | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
US5438194A (en) * | 1993-07-30 | 1995-08-01 | High Voltage Engineering Europa B.V. | Ultra-sensitive molecular identifier |
US5454145A (en) * | 1991-06-28 | 1995-10-03 | Asselin (Societe Anonyme) | Method for manufacturing a nonwoven product, a nonwoven product obtained in particular by said method and an installation for the manufacture of said nonwoven product |
US5464760A (en) * | 1990-04-04 | 1995-11-07 | University Of Chicago | Fermentation and recovery process for lactic acid production |
US5475183A (en) * | 1991-02-04 | 1995-12-12 | Mitsui Petrochemical Industries, Ltd. | Process for producing lower olefins |
US5562646A (en) * | 1994-03-29 | 1996-10-08 | The Proctor & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity |
US5569234A (en) * | 1995-04-03 | 1996-10-29 | The Procter & Gamble Company | Disposable pull-on pant |
US5571096A (en) * | 1995-09-19 | 1996-11-05 | The Procter & Gamble Company | Absorbent article having breathable side panels |
US5580411A (en) * | 1995-02-10 | 1996-12-03 | The Procter & Gamble Company | Zero scrap method for manufacturing side panels for absorbent articles |
US5607760A (en) * | 1995-08-03 | 1997-03-04 | The Procter & Gamble Company | Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent |
US5609587A (en) * | 1995-08-03 | 1997-03-11 | The Procter & Gamble Company | Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent |
US5625222A (en) * | 1993-11-18 | 1997-04-29 | Fujitsu Limited | Semiconductor device in a resin package housed in a frame having high thermal conductivity |
US5635191A (en) * | 1994-11-28 | 1997-06-03 | The Procter & Gamble Company | Diaper having a lotioned topsheet containing a polysiloxane emollient |
US5643588A (en) * | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
USH1670H (en) * | 1991-11-19 | 1997-07-01 | Aziz; Mohammed Iqbal | Absorbent article having a nonwoven and apertured film coversheet |
US5661299A (en) * | 1996-06-25 | 1997-08-26 | High Voltage Engineering Europa B.V. | Miniature AMS detector for ultrasensitive detection of individual carbon-14 and tritium atoms |
US5836929A (en) * | 1993-06-30 | 1998-11-17 | The Procter & Gamble Company | Absorbent articles |
US20030153885A1 (en) * | 1997-06-25 | 2003-08-14 | The Procter & Gamble Company | Disposable absorbent articles maintaining low vapour phase moisture content |
US20030199844A1 (en) * | 1997-03-27 | 2003-10-23 | Lavon Gary Dean | Disposable absorbent articles having multiple absorbent core components including replaceable components |
US6713460B2 (en) * | 1999-05-11 | 2004-03-30 | Groupe Lysac Inc. | Glass-like polysaccharide useful as absorbent for liquids |
US20040097897A1 (en) * | 2000-12-12 | 2004-05-20 | Ronn Karl P. | Array of disposable absorbent article configurations and packaging |
US20040167486A1 (en) * | 2003-02-12 | 2004-08-26 | Ludwig Busam | Thin and dry diaper |
US20050177123A1 (en) * | 2004-02-11 | 2005-08-11 | Catalan Kemal V. | Hydrophobic surface coated absorbent articles and associated methods |
US6932800B2 (en) * | 1997-03-27 | 2005-08-23 | The Procter & Gamble Company | Absorbent articles comprising a material having a high vertical wicking capacity |
US20060177647A1 (en) * | 2005-02-04 | 2006-08-10 | Mattias Schmidt | Absorbent structure with improved water-swellable material |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US280218A (en) * | 1883-06-26 | Peter mure ay | ||
US219521A (en) * | 1879-09-09 | Improvement in miter-boxes | ||
US311179A (en) * | 1885-01-27 | eberhardt | ||
US727211A (en) * | 1903-01-05 | 1903-05-05 | George W Schweer | Combined stamp, stationery, and cash box. |
CA1090027A (en) * | 1977-06-20 | 1980-11-18 | Austin H. Young | Water-absorbent starch copolymerizates |
US5733274A (en) * | 1988-03-31 | 1998-03-31 | The Procter & Gamble Company | Sanitary napkin having stiffened center |
WO1990008789A1 (en) | 1989-01-24 | 1990-08-09 | The Dow Chemical Company | Aggregates or clusters of water-swellable polymers having increased hydration rate over unassociated water-swellable polymers |
US5214117A (en) * | 1990-12-20 | 1993-05-25 | Phillips Petroleum Company | Grafted copolymers highly absorbent to aqueous electrolyte solutions |
DE69225354T2 (en) | 1991-03-19 | 1998-12-03 | The Dow Chemical Co., Midland, Mich. | Wrinkled absorbent particles with a large effective surface and high absorption speed |
GB9107952D0 (en) | 1991-04-15 | 1991-05-29 | Dow Rheinmuenster | Surface crosslinked and surfactant coated absorbent resin particles and method of preparation |
JPH06510557A (en) | 1991-09-09 | 1994-11-24 | ザ・ダウ・ケミカル・カンパニー | Superabsorbent polymers and methods of making them |
US5342207A (en) * | 1992-12-14 | 1994-08-30 | Hughes Aircraft Company | Electrical interconnection method and apparatus utilizing raised connecting means |
CZ286283B6 (en) | 1993-11-19 | 2000-03-15 | The Procter & Gamble Company | Absorption article |
US5554145A (en) * | 1994-02-28 | 1996-09-10 | The Procter & Gamble Company | Absorbent article with multiple zone structural elastic-like film web extensible waist feature |
US5438771A (en) * | 1994-05-10 | 1995-08-08 | Caterpillar Inc. | Method and apparatus for determining the location and orientation of a work machine |
US5714156A (en) * | 1994-07-05 | 1998-02-03 | The Procter & Gamble Company | Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same |
US6107538A (en) * | 1995-01-10 | 2000-08-22 | The Procter & Gamble Company | Absorbent members for absorbing body liquids |
FR2733520B1 (en) * | 1995-04-26 | 1997-06-06 | Fiberweb Sodoca | NONWOVEN / FILM BIODEGRADABLE COMPOSITE STRUCTURE |
US5614459A (en) * | 1995-06-07 | 1997-03-25 | Universidad De Antioquia | Process for making activated charcoal |
US5783274A (en) * | 1995-07-07 | 1998-07-21 | Morgan Adhesives Company | Pressure sensitive adhesive closure system for foam insulation |
US6120489A (en) * | 1995-10-10 | 2000-09-19 | The Procter & Gamble Company | Flangeless seam for use in disposable articles |
US5897545A (en) * | 1996-04-02 | 1999-04-27 | The Procter & Gamble Company | Elastomeric side panel for use with convertible absorbent articles |
US6120487A (en) * | 1996-04-03 | 2000-09-19 | The Procter & Gamble Company | Disposable pull-on pant |
US7307031B2 (en) * | 1997-05-29 | 2007-12-11 | The Procter & Gamble Company | Breathable composite sheet structure and absorbent articles utilizing same |
US5865823A (en) * | 1996-11-06 | 1999-02-02 | The Procter & Gamble Company | Absorbent article having a breathable, fluid impervious backsheet |
SE507535C2 (en) * | 1996-10-28 | 1998-06-15 | Moelnlycke Ab | Absorbent structure with improved absorption properties |
US5889072A (en) * | 1997-02-24 | 1999-03-30 | Solutia Inc. | Process for preparing superabsorbing crosslinked polyaspartate salt |
US7601145B2 (en) * | 1997-03-27 | 2009-10-13 | The Procter & Gamble Company | Disposable absorbent articles having multiple absorbent core components including replaceable components |
US6989005B1 (en) * | 1997-03-27 | 2006-01-24 | The Procter & Gamble Company | Absorbent articles having removable components |
US7291137B2 (en) | 1997-03-27 | 2007-11-06 | The Procter & Gamble Company | Disposable absorbent articles having multiple absorbent core components including replaceable components |
US6383431B1 (en) * | 1997-04-04 | 2002-05-07 | The Procter & Gamble Company | Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article |
SE512766C2 (en) * | 1997-05-26 | 2000-05-08 | Sca Hygiene Prod Ab | Absorbent product and way to form a barrier between a top layer and an absorbent body in such a product |
US6383609B1 (en) * | 1997-06-24 | 2002-05-07 | Sca Hygiene Products Ab | Absorbent structure comprising a highly absorbent polymer, and an absorbent article comprising the absorbent structure |
US6143561A (en) * | 1997-06-30 | 2000-11-07 | The Curators Of The University Of Missouri | DNA encoding plastid pyruvate dehydrogenase and branched chain oxoacid dehydrogenase components |
US6107537A (en) * | 1997-09-10 | 2000-08-22 | The Procter & Gamble Company | Disposable absorbent articles providing a skin condition benefit |
SE514710C2 (en) | 1997-12-29 | 2001-04-02 | Sca Hygiene Prod Ab | Absorbent articles containing superabsorbent material |
TW438673B (en) * | 1998-05-01 | 2001-06-07 | Dow Chemical Co | Method of making a breathable, barrier meltblown nonwoven |
US6569136B1 (en) * | 1998-05-28 | 2003-05-27 | The Procter & Gamble Company | Clothlike, breathable backsheet with multicolored graphics for disposable absorbent article |
SE512292C2 (en) | 1998-07-02 | 2000-02-28 | Sca Hygiene Prod Ab | Use of a material containing polyethylene made from renewable raw material as a component of an absorbent article, and the absorbent article |
SE517866C2 (en) * | 1998-07-06 | 2002-07-23 | Sca Hygiene Prod Ab | Diaper with weldable fasteners |
US7507854B2 (en) * | 1998-09-01 | 2009-03-24 | Materia, Inc. | Impurity reduction in Olefin metathesis reactions |
SE513227C2 (en) * | 1998-12-03 | 2000-08-07 | Sca Hygiene Prod Ab | Material structure for use in absorbent articles, and an absorbent article comprising such material structure |
US6852517B1 (en) * | 1999-08-30 | 2005-02-08 | Wisconsin Alumni Research Foundation | Production of 3-hydroxypropionic acid in recombinant organisms |
US6605172B1 (en) * | 1999-09-30 | 2003-08-12 | The Procter & Gamble Company | Method of making a breathable and liquid impermeable web |
BR0015442A (en) * | 1999-11-09 | 2002-12-24 | Kimberly Clark Co | Biodegradable non-woven polylactides with fluid management properties and disposable absorbent products containing the same |
BR0110964A (en) * | 2000-05-19 | 2003-12-30 | Kimberly Clark Co | Intake Systems for Personal Care Products |
CA2440544A1 (en) * | 2001-03-27 | 2002-10-03 | The Procter & Gamble Company | Polyhydroxyalkanoate copolymer and polylactic acid polymer compositions for laminates and films |
US7727211B2 (en) * | 2001-07-23 | 2010-06-01 | The Procter & Gamble Company | Absorbent article having a replaceable absorbent core component having an insertion pocket |
US20030163115A1 (en) | 2002-02-26 | 2003-08-28 | Gershowitz Arthur D. | Retrograde cannula having automatically inflatable balloon |
AU2003242560B2 (en) * | 2002-05-30 | 2009-04-30 | Basf Se | Stabilized articles |
US8323435B2 (en) * | 2002-07-31 | 2012-12-04 | Kimberly-Clark Worldwide, Inc. | Mechanical fastening system for an article |
ES2256794T3 (en) * | 2002-08-23 | 2006-07-16 | Basf Aktiengesellschaft | SUPERABSORBENT POLYMERS AND METHOD FOR THEIR PRODUCTION. |
US20040254555A1 (en) * | 2003-06-10 | 2004-12-16 | Wang James Hongxue | Absorbent articles having a heterogeneous absorbent core for fecal fluid and urine containment |
DE60335456D1 (en) * | 2003-06-30 | 2011-02-03 | Procter & Gamble | Absorbent articles containing coated superabsorbent particles |
JP2005288265A (en) * | 2004-03-31 | 2005-10-20 | Procter & Gamble Co | Aqueous liquid absorbent and its manufacturing method |
WO2005095320A1 (en) * | 2004-04-02 | 2005-10-13 | Ciba Specialty Chemicals Water Treatments Limited | Preparation of acrylic acid derivatives from alpha or beta-hydroxy carboxylic acids |
US8246594B2 (en) * | 2004-04-30 | 2012-08-21 | Kimberly-Clark Worldwide, Inc. | Absorbent article having an absorbent structure configured for improved donning and lateral stretch distribution |
TWI529181B (en) | 2005-02-28 | 2016-04-11 | 贏創德固賽有限責任公司 | Water-absorbing polymer structures based upon renewable raw materials and process for their production |
US7723461B1 (en) | 2005-12-22 | 2010-05-25 | Tetramer Technologies, Llc | Polymeric materials from renewable resources |
US7806883B2 (en) * | 2006-01-17 | 2010-10-05 | The Procter & Gamble Company | Absorbent articles having a breathable stretch laminate |
US7902264B2 (en) * | 2006-01-27 | 2011-03-08 | Sabic Innovative Plastics Ip B.V. | Polytrimethylene terephthalate (PTT) derived from polyethylene terephthalate (PET) and containing PET residues |
US20070207113A1 (en) * | 2006-02-10 | 2007-09-06 | Melissa Joerger | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US20070219521A1 (en) * | 2006-03-17 | 2007-09-20 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
WO2010013153A1 (en) * | 2008-07-30 | 2010-02-04 | Koninklijke Philips Electronics, N.V. | A method for discovering paths with sufficient medium time in wireless mesh networks |
US20100311179A1 (en) | 2009-06-03 | 2010-12-09 | Sarah Coulter | Method of Using 14C Measurements to Determine the Percent Natural of Cleaning Compositions |
-
2007
- 2007-03-15 US US11/724,341 patent/US20070219521A1/en not_active Abandoned
- 2007-03-16 WO PCT/US2007/006626 patent/WO2007109128A2/en active Application Filing
- 2007-03-16 CA CA002647293A patent/CA2647293A1/en not_active Abandoned
- 2007-03-16 CN CN2007800177141A patent/CN101442965B/en not_active Expired - Fee Related
-
2010
- 2010-12-22 US US12/975,973 patent/US20110152812A1/en not_active Abandoned
- 2010-12-22 US US12/975,838 patent/US20110139657A1/en not_active Abandoned
- 2010-12-22 US US12/976,043 patent/US20110139662A1/en not_active Abandoned
- 2010-12-22 US US12/976,101 patent/US20110139659A1/en not_active Abandoned
- 2010-12-22 US US12/975,914 patent/US20110139658A1/en not_active Abandoned
-
2013
- 2013-08-06 US US13/959,841 patent/US20130313149A1/en not_active Abandoned
-
2016
- 2016-02-01 US US15/011,930 patent/US10166312B2/en active Active
-
2018
- 2018-11-19 US US16/194,670 patent/US10501920B2/en active Active
-
2019
- 2019-10-30 US US16/667,960 patent/US10815653B2/en active Active
- 2019-10-30 US US16/667,955 patent/US10822783B2/en active Active
- 2019-10-30 US US16/667,969 patent/US10920407B2/en active Active
-
2021
- 2021-01-08 US US17/144,484 patent/US11186976B2/en active Active
- 2021-03-17 US US17/203,870 patent/US12054928B2/en active Active
-
2022
- 2022-02-24 US US17/679,408 patent/US20220178124A1/en active Pending
Patent Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2042224A (en) * | 1934-06-27 | 1936-05-26 | Shell Dev | Process of converting a polyhydric alcohol to a carbonyl compound |
US4020780A (en) * | 1969-11-05 | 1977-05-03 | The United States Of America As Represented By The Secretary Of The Navy | Mooring cable cutting system |
US3661875A (en) * | 1970-01-27 | 1972-05-09 | Du Pont | 1-(1-alkenyl)bicyclo(1.1.0)butanes and their polymers |
US4092354A (en) * | 1973-03-30 | 1978-05-30 | Sumitomo Chemical Company, Limited | Process for production of acrylic acid |
US3885155A (en) * | 1973-11-01 | 1975-05-20 | Stanford Research Inst | Mass spectrometric determination of carbon 14 |
US3860003B1 (en) * | 1973-11-21 | 1989-04-18 | ||
US3860003A (en) * | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US3860003B2 (en) * | 1973-11-21 | 1990-06-19 | Contractable side portions for disposable diaper | |
US4076663A (en) * | 1975-03-27 | 1978-02-28 | Sanyo Chemical Industries, Ltd. | Water absorbing starch resins |
US4093776A (en) * | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4083889A (en) * | 1977-05-26 | 1978-04-11 | Mobil Oil Corporation | Process for manufacturing ethylene |
US4296266A (en) * | 1979-07-18 | 1981-10-20 | Hoechst Aktiengesellschaft | Process for the manufacture of lower olefins from methanol/water mixtures |
US4405297A (en) * | 1980-05-05 | 1983-09-20 | Kimberly-Clark Corporation | Apparatus for forming nonwoven webs |
US4340563A (en) * | 1980-05-05 | 1982-07-20 | Kimberly-Clark Corporation | Method for forming nonwoven webs |
US4425130A (en) * | 1981-06-12 | 1984-01-10 | The Procter & Gamble Company | Compound sanitary napkin |
US4808178A (en) * | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4423270A (en) * | 1981-09-28 | 1983-12-27 | Pearson Donald E | Process for catalytic dehydration of ethanol vapor to ethylene |
US4407955A (en) * | 1981-11-12 | 1983-10-04 | National Distillers And Chemical Corporation | Fermentable sugar from the hydrolysis of starch derived from dry milled cereal grains |
US4541871A (en) * | 1981-12-30 | 1985-09-17 | Seitetsu Kagaku Co., Ltd. | Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same |
US4427884A (en) * | 1982-01-25 | 1984-01-24 | The Research Foundation Of State University Of New York | Method for detecting and quantifying carbon isotopes |
US4666983A (en) * | 1982-04-19 | 1987-05-19 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Absorbent article |
US4469710A (en) * | 1982-10-14 | 1984-09-04 | The Procter & Gamble Company | Pourable solid shortening |
US4610678A (en) * | 1983-06-24 | 1986-09-09 | Weisman Paul T | High-density absorbent structures |
US4909803A (en) * | 1983-06-30 | 1990-03-20 | The Procter And Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4587308A (en) * | 1984-02-04 | 1986-05-06 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Method for producing improved water-absorbent resins |
US4687478A (en) * | 1984-03-20 | 1987-08-18 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US5267992A (en) * | 1984-03-20 | 1993-12-07 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US4734478A (en) * | 1984-07-02 | 1988-03-29 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Water absorbing agent |
US4625001A (en) * | 1984-09-25 | 1986-11-25 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for continuous production of cross-linked polymer |
US4786756A (en) * | 1984-11-05 | 1988-11-22 | The Standard Oil Company | Catalytic conversion of lactic acid and ammonium lactate to acrylic acid |
US4673402A (en) * | 1985-05-15 | 1987-06-16 | The Procter & Gamble Company | Absorbent articles with dual-layered cores |
USRE32649E (en) * | 1985-06-18 | 1988-04-19 | The Procter & Gamble Company | Hydrogel-forming polymer compositions for use in absorbent structures |
US4753834A (en) * | 1985-10-07 | 1988-06-28 | Kimberly-Clark Corporation | Nonwoven web with improved softness |
US4695278A (en) * | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4888231A (en) * | 1986-05-28 | 1989-12-19 | The Procter & Gamble Company | Absorbent core having a dusting layer |
US4824901A (en) * | 1986-06-10 | 1989-04-25 | American Colloid Company | Surface treated absorbent polymers |
US4834735A (en) * | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4795454C1 (en) * | 1986-10-10 | 2001-06-26 | Procter & Gamble | Absorbent article having leakage resistant dual cuffs |
US4795454A (en) * | 1986-10-10 | 1989-01-03 | The Procter & Gamble Company | Absorbent article having leakage-resistant dual cuffs |
US4789861A (en) * | 1987-02-09 | 1988-12-06 | Hughes Aircraft Company | Method and apparatus for detecting an out of beam condition in a monopulse radar receiver |
US4729978A (en) * | 1987-05-04 | 1988-03-08 | Texaco Inc. | Catalyst for dehydration of lactic acid to acrylic acid |
US4940464A (en) * | 1987-12-16 | 1990-07-10 | Kimberly-Clark Corporation | Disposable incontinence garment or training pant |
US5036978A (en) * | 1988-06-28 | 1991-08-06 | The Procter & Gamble Company | Opening device for flexible bags filled with compressed flexible articles |
US4990147A (en) * | 1988-09-02 | 1991-02-05 | The Procter & Gamble Company | Absorbent article with elastic liner for waste material isolation |
US4892536A (en) * | 1988-09-02 | 1990-01-09 | The Procter & Gamble Company | Absorbent article having elastic strands |
US4846587A (en) * | 1988-09-30 | 1989-07-11 | The Proctor & Gamble Company | Flaccid bag having improved integrally formed carrying handle |
US5037416A (en) * | 1989-03-09 | 1991-08-06 | The Procter & Gamble Company | Disposable absorbent article having elastically extensible topsheet |
US4934535A (en) * | 1989-04-04 | 1990-06-19 | The Procter & Gamble Company | Easy open flexible bag filled with compressed flexible articles and method and apparatus for making same |
US4966286A (en) * | 1989-06-26 | 1990-10-30 | The Procter & Gamble Company | Easy open flexible bag |
US5137537A (en) * | 1989-11-07 | 1992-08-11 | The Procter & Gamble Cellulose Company | Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers |
US5054619A (en) * | 1989-12-15 | 1991-10-08 | The Procter & Gamble Company | Side opening flexible bag with longitudinally oriented carrying handle secured to side panels |
US5092861A (en) * | 1989-12-22 | 1992-03-03 | Uni-Charm Corporation | Disposable garments |
US5252473A (en) * | 1990-01-23 | 1993-10-12 | Battelle Memorial Institute | Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid |
US4973841A (en) * | 1990-02-02 | 1990-11-27 | Genus, Inc. | Precision ultra-sensitive trace detector for carbon-14 when it is at concentration close to that present in recent organic materials |
US5164459A (en) * | 1990-04-02 | 1992-11-17 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for treating the surface of an absorbent resin |
US5464760A (en) * | 1990-04-04 | 1995-11-07 | University Of Chicago | Fermentation and recovery process for lactic acid production |
US5408019A (en) * | 1990-05-11 | 1995-04-18 | Chemische Fabrik Stockhausen Gmbh | Cross-linked, water-absorbing polymer and its use in the production of hygiene items |
US5409771A (en) * | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
US5050742A (en) * | 1990-11-02 | 1991-09-24 | The Procter & Gamble Company | Easy opening package containing compressed flexible articles |
US5475183A (en) * | 1991-02-04 | 1995-12-12 | Mitsui Petrochemical Industries, Ltd. | Process for producing lower olefins |
US5221274A (en) * | 1991-06-13 | 1993-06-22 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5151092A (en) * | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5454145A (en) * | 1991-06-28 | 1995-10-03 | Asselin (Societe Anonyme) | Method for manufacturing a nonwoven product, a nonwoven product obtained in particular by said method and an installation for the manufacture of said nonwoven product |
US5260345A (en) * | 1991-08-12 | 1993-11-09 | The Procter & Gamble Company | Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials |
US5147345A (en) * | 1991-08-12 | 1992-09-15 | The Procter & Gamble Company | High efficiency absorbent articles for incontinence management |
US5387207A (en) * | 1991-08-12 | 1995-02-07 | The Procter & Gamble Company | Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same |
USH1670H (en) * | 1991-11-19 | 1997-07-01 | Aziz; Mohammed Iqbal | Absorbent article having a nonwoven and apertured film coversheet |
US5246433A (en) * | 1991-11-21 | 1993-09-21 | The Procter & Gamble Company | Elasticized disposable training pant and method of making the same |
US5269775A (en) * | 1992-06-12 | 1993-12-14 | The Procter & Gamble Company | Trisection topsheets for disposable absorbent articles and disposable absorbent articles having such trisection topsheets |
US5387720A (en) * | 1992-11-14 | 1995-02-07 | Degussa Aktiengesellschaft | Process for the production of acrolein |
US5342338A (en) * | 1993-06-11 | 1994-08-30 | The Procter & Gamble Company | Disposable absorbent article for low-viscosity fecal material |
US5397316A (en) * | 1993-06-25 | 1995-03-14 | The Procter & Gamble Company | Slitted absorbent members for aqueous body fluids formed of expandable absorbent materials |
US5836929A (en) * | 1993-06-30 | 1998-11-17 | The Procter & Gamble Company | Absorbent articles |
US5438194A (en) * | 1993-07-30 | 1995-08-01 | High Voltage Engineering Europa B.V. | Ultra-sensitive molecular identifier |
US5625222A (en) * | 1993-11-18 | 1997-04-29 | Fujitsu Limited | Semiconductor device in a resin package housed in a frame having high thermal conductivity |
US5562646A (en) * | 1994-03-29 | 1996-10-08 | The Proctor & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity |
US5635191A (en) * | 1994-11-28 | 1997-06-03 | The Procter & Gamble Company | Diaper having a lotioned topsheet containing a polysiloxane emollient |
US5643588A (en) * | 1994-11-28 | 1997-07-01 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
US5580411A (en) * | 1995-02-10 | 1996-12-03 | The Procter & Gamble Company | Zero scrap method for manufacturing side panels for absorbent articles |
US5569234A (en) * | 1995-04-03 | 1996-10-29 | The Procter & Gamble Company | Disposable pull-on pant |
US5607760A (en) * | 1995-08-03 | 1997-03-04 | The Procter & Gamble Company | Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent |
US5609587A (en) * | 1995-08-03 | 1997-03-11 | The Procter & Gamble Company | Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent |
US5571096A (en) * | 1995-09-19 | 1996-11-05 | The Procter & Gamble Company | Absorbent article having breathable side panels |
US5661299A (en) * | 1996-06-25 | 1997-08-26 | High Voltage Engineering Europa B.V. | Miniature AMS detector for ultrasensitive detection of individual carbon-14 and tritium atoms |
US20030199844A1 (en) * | 1997-03-27 | 2003-10-23 | Lavon Gary Dean | Disposable absorbent articles having multiple absorbent core components including replaceable components |
US6932800B2 (en) * | 1997-03-27 | 2005-08-23 | The Procter & Gamble Company | Absorbent articles comprising a material having a high vertical wicking capacity |
US20030153885A1 (en) * | 1997-06-25 | 2003-08-14 | The Procter & Gamble Company | Disposable absorbent articles maintaining low vapour phase moisture content |
US6713460B2 (en) * | 1999-05-11 | 2004-03-30 | Groupe Lysac Inc. | Glass-like polysaccharide useful as absorbent for liquids |
US20040097897A1 (en) * | 2000-12-12 | 2004-05-20 | Ronn Karl P. | Array of disposable absorbent article configurations and packaging |
US20040167486A1 (en) * | 2003-02-12 | 2004-08-26 | Ludwig Busam | Thin and dry diaper |
US20050177123A1 (en) * | 2004-02-11 | 2005-08-11 | Catalan Kemal V. | Hydrophobic surface coated absorbent articles and associated methods |
US20060177647A1 (en) * | 2005-02-04 | 2006-08-10 | Mattias Schmidt | Absorbent structure with improved water-swellable material |
Cited By (443)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11135096B2 (en) | 2003-02-12 | 2021-10-05 | The Procter & Gamble Company | Comfortable diaper |
US7744576B2 (en) | 2003-02-12 | 2010-06-29 | The Procter & Gamble Company | Thin and dry diaper |
US20070156108A1 (en) * | 2003-02-12 | 2007-07-05 | Becker Uwe J | Comfortable diaper |
US20070167928A1 (en) * | 2003-02-12 | 2007-07-19 | Becker Uwe J | Comfortable diaper |
US20080125735A1 (en) * | 2003-02-12 | 2008-05-29 | Ludwig Busam | Thin and dry diaper |
US8674170B2 (en) | 2003-02-12 | 2014-03-18 | The Procter & Gamble Company | Thin and dry diaper |
US11793682B2 (en) | 2003-02-12 | 2023-10-24 | The Procter & Gamble Company | Thin and dry diaper |
US7851667B2 (en) | 2003-02-12 | 2010-12-14 | The Procter & Gamble Company | Comfortable diaper |
US8766031B2 (en) | 2003-02-12 | 2014-07-01 | The Procter & Gamble Company | Comfortable diaper |
US8791318B2 (en) | 2003-02-12 | 2014-07-29 | The Procter & Gamble Company | Comfortable diaper |
US8319005B2 (en) | 2003-02-12 | 2012-11-27 | The Procter & Gamble Company | Comfortable diaper |
US11234868B2 (en) | 2003-02-12 | 2022-02-01 | The Procter & Gamble Company | Comfortable diaper |
US20040167486A1 (en) * | 2003-02-12 | 2004-08-26 | Ludwig Busam | Thin and dry diaper |
US10470948B2 (en) | 2003-02-12 | 2019-11-12 | The Procter & Gamble Company | Thin and dry diaper |
US20040162536A1 (en) * | 2003-02-12 | 2004-08-19 | Becker Uwe Jurgen | Comfortable diaper |
US10660800B2 (en) | 2003-02-12 | 2020-05-26 | The Procter & Gamble Company | Comfortable diaper |
US9763835B2 (en) | 2003-02-12 | 2017-09-19 | The Procter & Gamble Company | Comfortable diaper |
US20100228210A1 (en) * | 2003-02-12 | 2010-09-09 | Ludwig Busam | Thin And Dry Diaper |
US7750203B2 (en) | 2003-02-12 | 2010-07-06 | The Procter & Gamble Company | Comfortable diaper |
US8187240B2 (en) | 2003-02-12 | 2012-05-29 | The Procter & Gamble Company | Thin and dry diaper |
US10039676B2 (en) | 2005-05-20 | 2018-08-07 | The Procter & Gamble Company | Disposable absorbent article comprising pockets |
US11096839B2 (en) | 2005-05-20 | 2021-08-24 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US9974697B2 (en) | 2005-05-20 | 2018-05-22 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US11779495B2 (en) | 2005-05-20 | 2023-10-10 | The Procter And Gamble Company | Disposable absorbent article having breathable side flaps |
US9333120B2 (en) | 2005-05-20 | 2016-05-10 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US10822783B2 (en) | 2006-03-17 | 2020-11-03 | The Proctor & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US10166312B2 (en) | 2006-03-17 | 2019-01-01 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US12054928B2 (en) | 2006-03-17 | 2024-08-06 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US10501920B2 (en) | 2006-03-17 | 2019-12-10 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US20110139658A1 (en) * | 2006-03-17 | 2011-06-16 | Bryn Hird | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US11186976B2 (en) | 2006-03-17 | 2021-11-30 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US20110152812A1 (en) * | 2006-03-17 | 2011-06-23 | Bryn Hird | Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article |
US10920407B2 (en) | 2006-03-17 | 2021-02-16 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US10815653B2 (en) | 2006-03-17 | 2020-10-27 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US20150100034A1 (en) * | 2007-02-13 | 2015-04-09 | The Procter & Gamble Company | Absorbent Article With Barrier Sheet |
US8552252B2 (en) | 2007-06-18 | 2013-10-08 | Harald Hermann Hundorf | Disposable absorbent article with enhanced absorption properties |
US20080312628A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Sealed Absorbent Core With Absorbent Particulate Polymer Material |
US9072634B2 (en) | 2007-06-18 | 2015-07-07 | The Procter & Gamble Company | Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method |
US9241845B2 (en) | 2007-06-18 | 2016-01-26 | The Procter & Gamble Company | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material |
US20080312623A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Enhanced Absorption Properties |
US8017827B2 (en) | 2007-06-18 | 2011-09-13 | The Procter & Gamble Company | Disposable absorbent article with enhanced absorption properties |
US20080312624A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Tri-Folded Disposable Absorbent Article, Packaged Absorbent Article, And Array of Packaged Absorbent Articles With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312622A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System |
US8496637B2 (en) | 2007-06-18 | 2013-07-30 | The Procter & Gamble Company | Tri-folded disposable absorbent article, packaged absorbent article, and array of packaged absorbent articles with substantially continuously distributed absorbent particulate polymer material |
US9060904B2 (en) | 2007-06-18 | 2015-06-23 | The Procter & Gamble Company | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material |
US20080312621A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Improved Acquisition System With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312618A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Sealed Absorbent Core With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312620A1 (en) * | 2007-06-18 | 2008-12-18 | Gregory Ashton | Better Fitting Disposable Absorbent Article With Absorbent Particulate Polymer Material |
US20080312625A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Enhanced Absorption Properties With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20080312617A1 (en) * | 2007-06-18 | 2008-12-18 | Harald Hermann Hundorf | Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material And Method |
US20080312619A1 (en) * | 2007-06-18 | 2008-12-18 | Gregory Ashton | Better Fitting Disposable Absorbent Article With Substantially Continuously Distributed Absorbent Particulate Polymer Material |
US20090246842A1 (en) * | 2008-02-15 | 2009-10-01 | Gevo, Inc. | Engineered microorganisms for producing propanol |
EP2285929A1 (en) | 2008-04-14 | 2011-02-23 | 3M Innovative Properties Company | 2-octyl (meth)acrylate adhesive composition |
US10434018B2 (en) | 2008-04-29 | 2019-10-08 | The Procter & Gamble Company | Disposable absorbent article with absorbent particulate polymer material distributed for improved isolation of body exudates |
US9326896B2 (en) | 2008-04-29 | 2016-05-03 | The Procter & Gamble Company | Process for making an absorbent core with strain resistant core cover |
US11083645B2 (en) | 2008-04-29 | 2021-08-10 | The Procter & Gamble Company | Disposable absorbent article |
US11083644B2 (en) | 2008-04-29 | 2021-08-10 | The Procter & Gamble Company | Disposable absorbent article |
US9044359B2 (en) | 2008-04-29 | 2015-06-02 | The Procter & Gamble Company | Disposable absorbent article with absorbent particulate polymer material distributed for improved isolation of body exudates |
US9572728B2 (en) | 2008-07-02 | 2017-02-21 | The Procter & Gamble Company | Disposable absorbent article with varied distribution of absorbent particulate polymer material and method of making same |
US9045577B2 (en) | 2008-07-29 | 2015-06-02 | Arkema France | Production of grafted polyethylene from renewable materials, the obtained polyethylene and uses thereof |
FR2934599A1 (en) * | 2008-07-29 | 2010-02-05 | Arkema France | MANUFACTURE OF POLYETHYLENE FROM RENEWABLE MATERIALS, POLYETHYLENE OBTAINED AND USES |
US20110152454A1 (en) * | 2008-07-29 | 2011-06-23 | Arkema France | Production of grafted polyethylene from renew able materials, the obtained polyethylene and uses thereof |
WO2010012946A3 (en) * | 2008-07-29 | 2010-03-25 | Arkema France | Production of grafted polyethylene from renewable materials the obtained polyethylene and uses thereof |
WO2010012946A2 (en) * | 2008-07-29 | 2010-02-04 | Arkema France | Production of grafted polyethylene from renewable materials the obtained polyethylene and uses thereof |
JP2011529522A (en) * | 2008-07-29 | 2011-12-08 | アルケマ フランス | Production of grafted polyethylene from renewable materials, resulting polyethylene, and uses thereof |
WO2010090324A1 (en) | 2009-02-06 | 2010-08-12 | 株式会社日本触媒 | Polyacrylic acid (salt) type water-absorbent resin and process for production of same |
US9518133B2 (en) | 2009-02-06 | 2016-12-13 | Nippon Shokubai Co., Ltd. | Hydrophilic polyacrylic acid (salt) resin and manufacturing method thereof |
US8648161B2 (en) | 2009-02-06 | 2014-02-11 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) -based water-absorbent resin and a method for producing it |
FR2948365A1 (en) * | 2009-07-22 | 2011-01-28 | Arkema France | PROCESS FOR PRODUCING BIO-RESOURCE ACRYLIC ACID FROM GLYCEROL |
WO2011010035A1 (en) * | 2009-07-22 | 2011-01-27 | Arkema France | Method for producing bioresourced acrylic acid from glycerol |
FR2948366A1 (en) * | 2009-07-22 | 2011-01-28 | Arkema France | PROCESS FOR PRODUCING BIO-RESOURCE ACRYLIC ACID FROM GLYCEROL |
US9371261B2 (en) | 2009-07-22 | 2016-06-21 | Arkema France | Method for producing bioresourced acrylic acid from glycerol |
WO2011010036A1 (en) * | 2009-07-22 | 2011-01-27 | Arkema France | Method for producing bioresourced acrylic acid from glycerol |
US9340363B2 (en) | 2009-12-02 | 2016-05-17 | The Procter & Gamble Company | Apparatus and method for transferring particulate material |
US10004647B2 (en) | 2009-12-02 | 2018-06-26 | The Procter & Gamble Company | Apparatus and method for transferring particulate material |
EP2565211A4 (en) * | 2010-04-26 | 2014-06-25 | Nippon Catalytic Chem Ind | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US10640588B2 (en) * | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
WO2011136238A1 (en) | 2010-04-26 | 2011-11-03 | 株式会社日本触媒 | Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same |
EP2565212A4 (en) * | 2010-04-26 | 2016-06-01 | Nippon Catalytic Chem Ind | Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same |
EP2565211A1 (en) * | 2010-04-26 | 2013-03-06 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US20130043384A1 (en) * | 2010-04-26 | 2013-02-21 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US20170158791A1 (en) * | 2010-04-26 | 2017-06-08 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US20130037708A1 (en) * | 2010-04-26 | 2013-02-14 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US10640593B2 (en) * | 2010-04-26 | 2020-05-05 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
WO2011136237A1 (en) | 2010-04-26 | 2011-11-03 | 株式会社日本触媒 | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US20170166670A1 (en) * | 2010-04-26 | 2017-06-15 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same |
US9963673B2 (en) | 2010-06-26 | 2018-05-08 | Virdia, Inc. | Sugar mixtures and methods for production and use thereof |
US10752878B2 (en) | 2010-06-26 | 2020-08-25 | Virdia, Inc. | Sugar mixtures and methods for production and use thereof |
US9410216B2 (en) | 2010-06-26 | 2016-08-09 | Virdia, Inc. | Sugar mixtures and methods for production and use thereof |
US9476106B2 (en) | 2010-06-28 | 2016-10-25 | Virdia, Inc. | Methods and systems for processing a sucrose crop and sugar mixtures |
US10760138B2 (en) | 2010-06-28 | 2020-09-01 | Virdia, Inc. | Methods and systems for processing a sucrose crop and sugar mixtures |
US11242650B2 (en) | 2010-08-01 | 2022-02-08 | Virdia, Llc | Methods and systems for solvent purification |
US9115467B2 (en) | 2010-08-01 | 2015-08-25 | Virdia, Inc. | Methods and systems for solvent purification |
US10240217B2 (en) | 2010-09-02 | 2019-03-26 | Virdia, Inc. | Methods and systems for processing sugar mixtures and resultant compositions |
US9663836B2 (en) | 2010-09-02 | 2017-05-30 | Virdia, Inc. | Methods and systems for processing sugar mixtures and resultant compositions |
US20120108692A1 (en) * | 2010-10-27 | 2012-05-03 | John Collins Dyer | Preparation of foam materials derived from renewable resources |
EP2632977A1 (en) * | 2010-10-27 | 2013-09-04 | The Procter and Gamble Company | Preparation of foam materials derived from renewable resources |
US9029596B2 (en) | 2010-12-28 | 2015-05-12 | Nippon Shokubai Co., Ltd. | Methods for producing acrylic acid and/or ester thereof and polymer of the acrylic acid and/or ester thereof |
US8083064B2 (en) | 2011-01-25 | 2011-12-27 | The Procter & Gamble Company | Sustainable packaging for consumer products |
WO2012102778A1 (en) | 2011-01-25 | 2012-08-02 | The Procter & Gamble Company | Sustainable packaging for consumer products |
CN103328334A (en) * | 2011-01-25 | 2013-09-25 | 宝洁公司 | Sustainable packaging for consumer products |
US20110120902A1 (en) * | 2011-01-25 | 2011-05-26 | The Procter & Gamble Company | Sustainable Packaging for Consumer Products |
US9193937B2 (en) | 2011-02-17 | 2015-11-24 | The Procter & Gamble Company | Mixtures of C10-C13 alkylphenyl sulfonates |
WO2012112828A1 (en) | 2011-02-17 | 2012-08-23 | The Procter & Gamble Company | Bio-based linear alkylphenyl sulfonates |
WO2012138423A1 (en) | 2011-02-17 | 2012-10-11 | The Procter & Gamble Company | Compositions comprising mixtures of c10-c13 alkylphenyl sulfonates |
WO2012131103A1 (en) | 2011-04-01 | 2012-10-04 | Karl Thews | Hygienic swab |
DE102011015889A1 (en) * | 2011-04-01 | 2012-10-04 | Karl Thews | absorbent article |
EP2694002A1 (en) * | 2011-04-01 | 2014-02-12 | Karl Thews | Hygienic swab |
US10876178B2 (en) | 2011-04-07 | 2020-12-29 | Virdia, Inc. | Lignocellulosic conversion processes and products |
US9512495B2 (en) | 2011-04-07 | 2016-12-06 | Virdia, Inc. | Lignocellulose conversion processes and products |
US11667981B2 (en) | 2011-04-07 | 2023-06-06 | Virdia, Llc | Lignocellulosic conversion processes and products |
US9173784B2 (en) | 2011-06-10 | 2015-11-03 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US11135105B2 (en) | 2011-06-10 | 2021-10-05 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9974699B2 (en) | 2011-06-10 | 2018-05-22 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
US10245188B2 (en) | 2011-06-10 | 2019-04-02 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US9066838B2 (en) | 2011-06-10 | 2015-06-30 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US10149788B2 (en) | 2011-06-10 | 2018-12-11 | The Procter & Gamble Company | Disposable diapers |
US9668926B2 (en) | 2011-06-10 | 2017-06-06 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US10893987B2 (en) | 2011-06-10 | 2021-01-19 | The Procter & Gamble Company | Disposable diapers with main channels and secondary channels |
US11000422B2 (en) | 2011-06-10 | 2021-05-11 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US10130525B2 (en) | 2011-06-10 | 2018-11-20 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9649232B2 (en) | 2011-06-10 | 2017-05-16 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US11110011B2 (en) | 2011-06-10 | 2021-09-07 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10813794B2 (en) | 2011-06-10 | 2020-10-27 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US11911250B2 (en) | 2011-06-10 | 2024-02-27 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10561546B2 (en) | 2011-06-10 | 2020-02-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10517777B2 (en) | 2011-06-10 | 2019-12-31 | The Procter & Gamble Company | Disposable diaper having first and second absorbent structures and channels |
US11602467B2 (en) | 2011-06-10 | 2023-03-14 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9468566B2 (en) | 2011-06-10 | 2016-10-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9492328B2 (en) | 2011-06-10 | 2016-11-15 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material |
US11000430B2 (en) | 2011-06-17 | 2021-05-11 | The Procter & Gamble Company | Absorbent article having improved absorption properties |
US20150080822A1 (en) * | 2011-06-17 | 2015-03-19 | The Procter & Gamble Company | Absorbent article having improved absorption properties |
US10028867B2 (en) | 2011-06-17 | 2018-07-24 | The Procter & Gamble Company | Absorbent article having improved absorption properties |
US9345624B2 (en) * | 2011-06-17 | 2016-05-24 | The Procter & Gamble Company | Absorbent article having improved absorption properties |
WO2013009929A2 (en) | 2011-07-13 | 2013-01-17 | The Procter & Gamble Company | Lotions derived from renewable resources and absorbent articles comprising same |
US20130071630A1 (en) * | 2011-09-19 | 2013-03-21 | Paul Thomas Weisman | Fibrous structures derived from renewable resources |
WO2013049458A1 (en) | 2011-09-29 | 2013-04-04 | The Procter & Gamble Company | Stabilized adhesives and use thereof |
US10041138B1 (en) | 2011-10-10 | 2018-08-07 | Virdia, Inc. | Sugar compositions |
US9845514B2 (en) | 2011-10-10 | 2017-12-19 | Virdia, Inc. | Sugar compositions |
US9976194B2 (en) | 2011-10-10 | 2018-05-22 | Virdia, Inc. | Sugar compositions |
US9617608B2 (en) | 2011-10-10 | 2017-04-11 | Virdia, Inc. | Sugar compositions |
US9320822B2 (en) | 2012-02-17 | 2016-04-26 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water-absorbing resin and manufacturing method therefor |
KR20140125420A (en) | 2012-02-17 | 2014-10-28 | 가부시키가이샤 닛폰 쇼쿠바이 | Polyacrylic acid (salt) water-absorbing resin and manufacturing method therefor |
EP2644174A1 (en) | 2012-03-29 | 2013-10-02 | The Procter and Gamble Company | Method and apparatus for making personal hygiene absorbent articles |
WO2013148539A1 (en) | 2012-03-29 | 2013-10-03 | The Procter & Gamble Company | Method and apparatus for making personal hygiene absorbent articles |
US9693909B2 (en) | 2012-03-29 | 2017-07-04 | The Procter & Gamble Company | Method and apparatus for making personal hygiene absorbent articles |
EP2749260A1 (en) | 2012-03-29 | 2014-07-02 | The Procter and Gamble Company | Method and apparatus for making personal hygiene absorbent articles |
WO2013180912A1 (en) | 2012-05-31 | 2013-12-05 | The Procter & Gamble Company | Highly flexible absorbent article having stiffened landing zone |
WO2013180913A1 (en) | 2012-05-31 | 2013-12-05 | The Procter & Gamble Company | Highly flexible absorbent article having stiffened landing zone |
US9289941B2 (en) | 2012-06-29 | 2016-03-22 | The Procter & Gamble Company | Apparatus and method for making a layered elastic substrate |
WO2014005005A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method and apparatus for attaching components to absorbent articles |
WO2014004937A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method for attaching elastic components to absorbent articles |
US9226858B2 (en) | 2012-06-29 | 2016-01-05 | The Procter & Gamble Company | Apparatus and method for making a layered elastic substrate |
WO2014004940A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Methods and apparatuses for consolidating elastic substrates |
WO2014004941A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Apparatus and method for making a layered elastic substrate |
US9868606B2 (en) | 2012-06-29 | 2018-01-16 | The Proctor & Gamble Company | Rotary drum apparatus reconfigurable for various size substrates |
US10059553B2 (en) | 2012-06-29 | 2018-08-28 | The Procter & Gamble Company | System and method for high-speed continuous application of a strip material to a moving sheet-like substrate material |
US9895271B2 (en) | 2012-06-29 | 2018-02-20 | The Procter & Gamble Company | Method and apparatus for attaching components to absorbent articles |
WO2014004802A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Disposable absorbent insert for two-piece wearable absorbent article |
US9168182B2 (en) | 2012-06-29 | 2015-10-27 | The Procter & Gamble Company | Method and apparatus for attaching elastic components to absorbent articles |
US9295588B2 (en) | 2012-06-29 | 2016-03-29 | The Procter & Gamble Company | Method and apparatus for attaching components to absorbent articles |
US9221195B2 (en) | 2012-06-29 | 2015-12-29 | The Procter & Gamble Company | Methods and apparatuses for consolidating elastic substrates |
WO2014005027A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Rotary drum apparatus reconfigurable for various size substrates |
WO2014004938A1 (en) | 2012-06-29 | 2014-01-03 | The Procter & Gamble Company | Method for making a layered elastic substrate having gathers |
WO2014036287A1 (en) | 2012-08-31 | 2014-03-06 | The Procter & Gamble Company | Process and apprataus for printing assembled absorbent articles with custom graphics |
US9375354B2 (en) | 2012-09-14 | 2016-06-28 | The Procter & Gamble Company | Methods and apparatuses for conveying absorbent articles in a converting line |
US9572723B2 (en) | 2012-10-23 | 2017-02-21 | The Procter & Gamble Plaza | Method and apparatus for changing the orientation of an absorbent article |
US10059015B2 (en) | 2012-10-23 | 2018-08-28 | The Procter & Gamble Company | Method and apparatus for positioning a cutting apparatus |
WO2014066277A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for changing the orientation of an absorbent article |
US9150321B2 (en) | 2012-10-23 | 2015-10-06 | The Procter & Gamble Company | Method and apparatus for changing the orientation of an absorbent article |
WO2014066228A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for advancing an absorbent article |
US9764905B2 (en) | 2012-10-23 | 2017-09-19 | The Procter & Gamble Plaza | Method and apparatus for advancing an absorbent article |
WO2014066227A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for positioning a cutting apparatus |
WO2014066278A1 (en) | 2012-10-23 | 2014-05-01 | The Procter & Gamble Company | Method and apparatus for cutting a substrate |
US9517573B2 (en) | 2012-10-23 | 2016-12-13 | The Procter & Gamble Company | Method and apparatus for cutting a substrate |
US9185950B2 (en) | 2012-10-25 | 2015-11-17 | The Procter & Gamble Company | Shaped fastening systems for use with absorbent articles |
WO2014066780A1 (en) | 2012-10-25 | 2014-05-01 | The Procter & Gamble Company | Shaped fastening systems for use with absorbent articles |
WO2014066782A1 (en) | 2012-10-25 | 2014-05-01 | The Procter & Gamble Company | Shaped fastening systems for use with absorbent articles |
US9370224B2 (en) | 2012-10-25 | 2016-06-21 | The Procter & Gamble Company | Shaped fastening systems for use with absorbent articles |
US10449097B2 (en) | 2012-11-13 | 2019-10-22 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US9532910B2 (en) | 2012-11-13 | 2017-01-03 | The Procter & Gamble Company | Absorbent articles with channels and signals |
WO2014085119A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Absorbent articles with substrates having patterned slot coated adhesives |
WO2014085064A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Methods and apparatus for making elastic laminates |
US9295590B2 (en) | 2012-11-27 | 2016-03-29 | The Procter & Gamble Company | Method and apparatus for applying an elastic material to a moving substrate in a curved path |
US9265672B2 (en) | 2012-11-27 | 2016-02-23 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
WO2014085063A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
US9248054B2 (en) | 2012-11-27 | 2016-02-02 | The Procter & Gamble Company | Methods and apparatus for making elastic laminates |
US10729593B2 (en) | 2012-11-27 | 2020-08-04 | The Procter & Gamble Company | Methods and apparatus for making elastic laminates |
US9730839B2 (en) | 2012-11-27 | 2017-08-15 | The Procter & Gamble Company | Method and apparatus for applying an elastic material to a moving substrate in a curved path |
WO2014085117A1 (en) | 2012-11-27 | 2014-06-05 | The Procter & Gamble Company | Method and apparatus for applying an elastic material to a moving substrate in a curved path |
US9808827B2 (en) | 2012-11-27 | 2017-11-07 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
US10022280B2 (en) | 2012-12-10 | 2018-07-17 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9713557B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US10639215B2 (en) | 2012-12-10 | 2020-05-05 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
US9216118B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
US9713556B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content |
US9375358B2 (en) | 2012-12-10 | 2016-06-28 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US12016761B2 (en) | 2012-12-10 | 2024-06-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US8979815B2 (en) | 2012-12-10 | 2015-03-17 | The Procter & Gamble Company | Absorbent articles with channels |
US10966885B2 (en) | 2012-12-10 | 2021-04-06 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels |
WO2014110096A1 (en) | 2013-01-11 | 2014-07-17 | The Procter & Gamble Company | Lotions comprising emollients of a renewable resource and an immobilizing agent |
US9701510B2 (en) | 2013-01-31 | 2017-07-11 | The Procter & Gamble Company | One-way projection snare apparatus and method for isolating a broken elastic strand |
WO2014120561A1 (en) | 2013-01-31 | 2014-08-07 | The Procter & Gamble Company | One-way projection snare apparatus and method for isolating a broken elastic strand |
WO2014126693A1 (en) | 2013-02-13 | 2014-08-21 | The Procter & Gamble Company | One-way snare apparatus for isolating a broken elastic strand |
US10053328B2 (en) | 2013-02-13 | 2018-08-21 | The Procter & Gamble Company | One-way snare apparatus and method for isolating a broken elastic strand |
US9637344B2 (en) | 2013-02-13 | 2017-05-02 | The Procter & Gamble Company | One-way snare apparatus and method for isolating a broken elastic strand |
WO2014127175A1 (en) | 2013-02-15 | 2014-08-21 | The Procter & Gamble Company | Fastening systems for use with absorbent articles |
WO2014127174A1 (en) | 2013-02-15 | 2014-08-21 | The Procter & Gamble Company | Fastening systems for use with absorbent articles |
US10085897B2 (en) | 2013-02-15 | 2018-10-02 | The Procter & Gamble Company | Fastening systems for use with absorbent articles |
WO2014150303A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Absorbent articles with nonwoven substrates having fibrils |
EP2778270A1 (en) | 2013-03-15 | 2014-09-17 | Fibertex Personal Care A/S | Nonwoven substrates having fibrils |
WO2014151480A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Methods for forming absorbent articles with nonwoven substrates |
WO2014150105A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Method and apparatus for assembling refastenable absorbent articles |
WO2014150316A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Wipes with improved properties |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
US9636263B2 (en) | 2013-03-15 | 2017-05-02 | The Procter & Gamble Company | Methods and apparatus for assembling refastenable absorbent articles |
WO2014150434A1 (en) | 2013-03-15 | 2014-09-25 | The Procter & Gamble Company | Nonwoven substrates |
US11179278B2 (en) | 2013-05-03 | 2021-11-23 | The Procter & Gamble Company | Absorbent articles comprising stretch laminates |
US11135100B2 (en) | 2013-05-03 | 2021-10-05 | The Procter & Gamble Company | Absorbent articles comprising stretch laminates |
US11590033B2 (en) | 2013-05-03 | 2023-02-28 | The Procter & Gamble Company | Absorbent articles comprising stretch laminates |
WO2014190103A1 (en) | 2013-05-22 | 2014-11-27 | The Procter & Gamble Company | Package with integrally formed handle and a method of making the same |
US9932149B2 (en) | 2013-05-22 | 2018-04-03 | The Procter & Gamble Company | Package with integrally formed handle and method of making the same |
WO2014193925A2 (en) | 2013-05-31 | 2014-12-04 | The Procter & Gamble Company | Absorbent articles comprising a fragrance accord |
US11273086B2 (en) | 2013-06-14 | 2022-03-15 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US10071002B2 (en) | 2013-06-14 | 2018-09-11 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
WO2015013355A1 (en) | 2013-07-24 | 2015-01-29 | The Procter & Gamble Company | Carrier member having a resilient member |
US9090404B2 (en) | 2013-07-24 | 2015-07-28 | The Procter & Gamble Company | Carrier member having a resilient member |
US10335324B2 (en) | 2013-08-27 | 2019-07-02 | The Procter & Gamble Company | Absorbent articles with channels |
US11406544B2 (en) | 2013-08-27 | 2022-08-09 | The Procter & Gamble Company | Absorbent articles with channels |
US11612523B2 (en) | 2013-08-27 | 2023-03-28 | The Procter & Gamble Company | Absorbent articles with channels |
US9789011B2 (en) | 2013-08-27 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles with channels |
US11759376B2 (en) | 2013-08-27 | 2023-09-19 | The Procter & Gamble Company | Absorbent articles with channels |
US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels |
US10765567B2 (en) | 2013-08-27 | 2020-09-08 | The Procter & Gamble Company | Absorbent articles with channels |
US10736794B2 (en) | 2013-08-27 | 2020-08-11 | The Procter & Gamble Company | Absorbent articles with channels |
US10292875B2 (en) | 2013-09-16 | 2019-05-21 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US11207220B2 (en) | 2013-09-16 | 2021-12-28 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US11957551B2 (en) | 2013-09-16 | 2024-04-16 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US11944526B2 (en) | 2013-09-19 | 2024-04-02 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10130527B2 (en) | 2013-09-19 | 2018-11-20 | The Procter & Gamble Company | Absorbent cores having material free areas |
US11154437B2 (en) | 2013-09-19 | 2021-10-26 | The Procter & Gamble Company | Absorbent cores having material free areas |
WO2015047894A1 (en) | 2013-09-24 | 2015-04-02 | The Procter & Gamble Company | Apparatus for positioning an advancing web |
US9463942B2 (en) | 2013-09-24 | 2016-10-11 | The Procter & Gamble Company | Apparatus for positioning an advancing web |
WO2015047805A1 (en) | 2013-09-27 | 2015-04-02 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
US10730715B2 (en) | 2013-09-27 | 2020-08-04 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
US9758339B2 (en) | 2013-09-27 | 2017-09-12 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
US10556770B2 (en) | 2013-09-27 | 2020-02-11 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US10137039B2 (en) | 2013-12-19 | 2018-11-27 | The Procter & Gamble Company | Absorbent cores having channel-forming areas and C-wrap seals |
US10828206B2 (en) | 2013-12-19 | 2020-11-10 | Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US10675187B2 (en) | 2013-12-19 | 2020-06-09 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US12226292B2 (en) | 2013-12-19 | 2025-02-18 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US11191679B2 (en) | 2013-12-19 | 2021-12-07 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US11090199B2 (en) | 2014-02-11 | 2021-08-17 | The Procter & Gamble Company | Method and apparatus for making an absorbent structure comprising channels |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
WO2015171583A1 (en) | 2014-05-05 | 2015-11-12 | The Procter & Gamble Company | Heterogeneous mass containing foam |
WO2015179750A1 (en) | 2014-05-22 | 2015-11-26 | The Procter & Gamble Company | Heterogeneous mass containing foam |
US10441481B2 (en) | 2014-05-27 | 2019-10-15 | The Proctre & Gamble Company | Absorbent core with absorbent material pattern |
US10052242B2 (en) | 2014-05-27 | 2018-08-21 | The Procter & Gamble Company | Absorbent core with absorbent material pattern |
WO2015187755A1 (en) | 2014-06-05 | 2015-12-10 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
WO2015200734A1 (en) | 2014-06-27 | 2015-12-30 | The Procter & Gamble Company | Open cell foam associated with a second open cell foam |
EP2959967A1 (en) | 2014-06-27 | 2015-12-30 | The Procter and Gamble Company | High internal phase emulision foam associated with polyurethane foam |
WO2015200735A1 (en) | 2014-06-27 | 2015-12-30 | The Procter & Gamble Company | High internal phase emulsion foam associated with polyurethane foam |
WO2015200777A1 (en) | 2014-06-27 | 2015-12-30 | The Procter & Gamble Company | Heterogeneous mass containing foam |
EP2959922A1 (en) | 2014-06-27 | 2015-12-30 | The Procter and Gamble Company | Open cell foam associated with a second open cell foam |
US12053358B2 (en) | 2014-12-23 | 2024-08-06 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and channels |
US20160175169A1 (en) * | 2014-12-23 | 2016-06-23 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and channels |
US11110014B2 (en) * | 2014-12-23 | 2021-09-07 | The Procter & Gamble Company | Absorbent core comprising a high loft central layer and channels |
US11078548B2 (en) | 2015-01-07 | 2021-08-03 | Virdia, Llc | Method for producing xylitol by fermentation |
US10322040B2 (en) | 2015-03-16 | 2019-06-18 | The Procter & Gamble Company | Absorbent articles with improved cores |
US10507144B2 (en) | 2015-03-16 | 2019-12-17 | The Procter & Gamble Company | Absorbent articles with improved strength |
WO2016160900A1 (en) | 2015-03-31 | 2016-10-06 | The Procter & Gamble Company | Heterogeneous mass containing foam |
US11918445B2 (en) | 2015-05-12 | 2024-03-05 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US10736795B2 (en) | 2015-05-12 | 2020-08-11 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US11497657B2 (en) | 2015-05-29 | 2022-11-15 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US10543129B2 (en) | 2015-05-29 | 2020-01-28 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US20170056253A1 (en) * | 2015-08-28 | 2017-03-02 | Fitesa Nonwoven, Inc. | Absorbent Article Having A High Content Of Bio-Based Materials |
US10632029B2 (en) | 2015-11-16 | 2020-04-28 | The Procter & Gamble Company | Absorbent cores having material free areas |
US20170281423A1 (en) * | 2016-03-30 | 2017-10-05 | Basf Se | Fluid-Absorbent Article |
US10881555B2 (en) * | 2016-03-30 | 2021-01-05 | Basf Se | Fluid-absorbent article |
US10842690B2 (en) | 2016-04-29 | 2020-11-24 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
US11123240B2 (en) | 2016-04-29 | 2021-09-21 | The Procter & Gamble Company | Absorbent core with transversal folding lines |
US11642250B2 (en) | 2016-08-12 | 2023-05-09 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US10966876B2 (en) | 2016-08-12 | 2021-04-06 | The Procter & Gamble Company | Methods and apparatuses for assembling elastic laminates with different bond densities for absorbent articles |
US11071654B2 (en) | 2016-08-12 | 2021-07-27 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US12070378B2 (en) | 2016-08-12 | 2024-08-27 | The Procter And Gamble Company | Elastic laminates and methods for assembling elastic laminates for absorbent articles |
US11877914B2 (en) | 2016-08-12 | 2024-01-23 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US11331223B2 (en) | 2016-08-12 | 2022-05-17 | The Procter & Gamble Company | Methods and apparatuses for assembling elastic laminates with different bond densities for absorbent articles |
US11642248B2 (en) | 2016-08-12 | 2023-05-09 | The Procter & Gamble Company | Absorbent article with an ear portion |
US11446186B2 (en) | 2016-08-12 | 2022-09-20 | The Procter & Gamble Company | Absorbent article with ear portion |
US11266543B2 (en) | 2016-08-12 | 2022-03-08 | The Procter & Gamble Company | Methods and apparatuses for assembling elastic laminates with different bond densities for absorbent articles |
US11617687B2 (en) | 2016-08-12 | 2023-04-04 | The Procter & Gamble Company | Methods and apparatuses for assembling elastic laminates with different bond densities for absorbent articles |
US11382798B2 (en) | 2016-08-12 | 2022-07-12 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US11872113B2 (en) | 2016-08-12 | 2024-01-16 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US11596557B2 (en) | 2016-08-12 | 2023-03-07 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
US11083633B2 (en) | 2016-08-12 | 2021-08-10 | The Procter & Gamble Company | Elastic laminates and methods for assembling elastic laminates for absorbent articles |
US10959887B2 (en) | 2016-08-12 | 2021-03-30 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
EP3315428A1 (en) | 2016-10-28 | 2018-05-02 | The Procter and Gamble Company | Reclosable package and a method of making the same |
US10220998B2 (en) | 2016-10-28 | 2019-03-05 | The Procter & Gamble Company | Reclosable package and a method of making the same |
WO2018081335A1 (en) | 2016-10-28 | 2018-05-03 | The Procter & Gamble Company | Reclosable package and a method of making the same |
EP3315427A1 (en) | 2016-10-28 | 2018-05-02 | The Procter and Gamble Company | Reclosable package and a method of making the same |
WO2018081334A1 (en) | 2016-10-28 | 2018-05-03 | The Procter & Gamble Company | Reclosable package and a method of making the same |
US11833018B2 (en) | 2017-03-27 | 2023-12-05 | The Procter & Gamble Company | Elastomeric laminate with soft noncrimped spunbond fiber webs |
US11278458B2 (en) | 2017-03-27 | 2022-03-22 | The Procter & Gamble Company | Crimped fiber spunbond nonwoven webs/laminates |
US10952910B2 (en) | 2017-03-27 | 2021-03-23 | The Procter & Gamble Company | Elastomeric laminate with soft noncrimped spunbond fiber webs |
US12207995B2 (en) | 2017-03-27 | 2025-01-28 | The Procter & Gamble Company | Elastomeric laminate with soft noncrimped spunbond fiber webs |
WO2019060515A1 (en) | 2017-09-21 | 2019-03-28 | The Procter & Gamble Company | Absorbent article |
US20200093653A1 (en) * | 2017-09-21 | 2020-03-26 | The Procter & Gamble Company | Packages of absorbent articles |
JP2020533155A (en) * | 2017-09-21 | 2020-11-19 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Absorbent article |
EP3498247A1 (en) | 2017-12-12 | 2019-06-19 | The Procter & Gamble Company | Recycle friendly and sustainable absorbent articles |
EP4292616A2 (en) | 2017-12-12 | 2023-12-20 | The Procter & Gamble Company | Recycle friendly and sustainable absorbent articles |
US11433158B2 (en) | 2017-12-12 | 2022-09-06 | The Procter & Gamble Company | Recycle friendly and sustainable absorbent articles |
US12064327B2 (en) | 2018-08-14 | 2024-08-20 | The Procter & Gamble Company | Shaped fastening members and absorbent articles having the same |
WO2020041534A1 (en) | 2018-08-22 | 2020-02-27 | The Procter & Gamble Company | Disposable absorbent article |
WO2020068524A1 (en) | 2018-09-27 | 2020-04-02 | The Procter & Gamble Company | Nonwoven webs with visually discernible patterns |
WO2020068523A1 (en) | 2018-09-27 | 2020-04-02 | The Procter & Gamble Company | Garment-like absorbent articles |
WO2020068522A1 (en) | 2018-09-27 | 2020-04-02 | The Procter & Gamble Company | Garment-like absorbent articles |
WO2020076906A1 (en) | 2018-10-09 | 2020-04-16 | The Procter & Gamble Company | Absorbent article comprising a lotion resistant polymeric filler composition |
US12233170B2 (en) | 2018-10-09 | 2025-02-25 | The Procter & Gamble Company | Absorbent article comprising a lotion resistant polymeric filler composition |
US11707548B2 (en) | 2018-10-09 | 2023-07-25 | The Procter & Gamble Company | Absorbent article comprising a lotion resistant polymeric filler composition |
US11104486B2 (en) | 2019-03-27 | 2021-08-31 | The Procter & Gamble Company | Reclosable package and a method of making the same |
WO2020242714A1 (en) | 2019-05-31 | 2020-12-03 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
US11938004B2 (en) | 2019-05-31 | 2024-03-26 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
US12115042B2 (en) | 2019-05-31 | 2024-10-15 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
WO2020242715A1 (en) | 2019-05-31 | 2020-12-03 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
US11801169B2 (en) | 2019-05-31 | 2023-10-31 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
WO2020247980A1 (en) | 2019-06-06 | 2020-12-10 | The Procter & Gamble Company | Skin care compositions derived from renewable resources and absorbent articles comprising same |
US11944522B2 (en) | 2019-07-01 | 2024-04-02 | The Procter & Gamble Company | Absorbent article with ear portion |
WO2021003493A1 (en) | 2019-07-01 | 2021-01-07 | The Procter & Gamble Company | Absorbent article with ear portion |
WO2021068544A1 (en) | 2019-10-08 | 2021-04-15 | The Procter & Gamble Company | Ring-like elastic belt and method of making thereof |
WO2021072950A1 (en) | 2019-10-15 | 2021-04-22 | The Procter & Gamble Company | Absorbent articles |
EP4279045A2 (en) | 2019-11-04 | 2023-11-22 | The Procter & Gamble Company | Method for bonding elastic parts under tension to an advancing carrier |
WO2021092606A1 (en) | 2019-11-04 | 2021-05-14 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
WO2021092607A1 (en) | 2019-11-04 | 2021-05-14 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
US12121426B2 (en) | 2019-11-04 | 2024-10-22 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
US11793685B2 (en) | 2019-11-15 | 2023-10-24 | The Procter And Gamble Company | Absorbent article having fastening system |
US12064328B2 (en) | 2019-11-15 | 2024-08-20 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021097478A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021097480A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Absorbent article having fastening system |
US12102518B2 (en) | 2019-11-15 | 2024-10-01 | The Procter & Gamble Company | Absorbent article having fastening system |
USD970725S1 (en) | 2019-11-15 | 2022-11-22 | The Procter & Gamble Company | Absorbent article component |
WO2021097479A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Absorbent article having fastening system |
US11801168B2 (en) | 2019-11-15 | 2023-10-31 | The Procter And Gamble Company | Tape-type absorbent article with belt structure |
WO2021097472A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Method for providing successive individual combination belt structures |
WO2021097477A1 (en) | 2019-11-15 | 2021-05-20 | The Procter & Gamble Company | Tape-type absorbent article with belt structure |
GB2594115A (en) | 2019-12-10 | 2021-10-20 | Procter & Gamble | Nonwoven webs with visually discernible patterns and improved texture perception |
WO2021118897A1 (en) | 2019-12-10 | 2021-06-17 | The Procter & Gamble Company | Nonwoven webs with visually discernible patterns and improved texture perception |
EP3834791A1 (en) | 2019-12-11 | 2021-06-16 | The Procter & Gamble Company | Absorbnet article comprising a lower acquisition and distribution system |
WO2021118904A1 (en) | 2019-12-11 | 2021-06-17 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution system |
US12194162B2 (en) | 2020-01-17 | 2025-01-14 | The Procter & Gamble Company | Absorbent articles comprising semi-hydrophilic compositions |
WO2021142775A1 (en) | 2020-01-17 | 2021-07-22 | The Procter & Gamble Company | Absorbent articles comprising semi-hydrophilic compositions |
WO2021163256A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163258A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163255A1 (en) | 2020-02-13 | 2021-08-19 | The Procter & Gamble Company | Absorbent article with fastening system |
US12150846B2 (en) | 2020-02-13 | 2024-11-26 | The Procter & Gamble Company | Absorbent article with fastening system |
WO2021163869A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Apertured substrate and absorbent articles thereof |
WO2021163867A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Absorbent article with three-dimensional substrate |
WO2021163868A1 (en) | 2020-02-18 | 2021-08-26 | The Procter & Gamble Company | Three-dimensional substrate and absorbent articles comprising the same |
EP3892246A1 (en) | 2020-04-08 | 2021-10-13 | The Procter & Gamble Company | Method for applying a polymeric composition and absorbent articles comprising such composition |
WO2021212348A1 (en) | 2020-04-22 | 2021-10-28 | The Procter & Gamble Company | Absorbent articles having nonwoven materials with natural fibers |
US11931233B2 (en) | 2020-05-05 | 2024-03-19 | The Procter & Gamble Company | Absorbent articles including improved elastic panels |
WO2021225832A1 (en) | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Absorbent articles including front and back waist panels with different stretch characteristics |
WO2021226034A1 (en) | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Absorbent articles including improved elastic panels |
WO2021236494A1 (en) | 2020-05-21 | 2021-11-25 | The Procter & Gamble Company | Absorbent article with foldable insert |
WO2021236700A1 (en) | 2020-05-22 | 2021-11-25 | The Procter & Gamble Company | Absorbent articles with waistbands and waistband covers |
WO2021242592A1 (en) | 2020-05-28 | 2021-12-02 | The Procter & Gamble Company | Absorbent articles having laminates exhibiting vibrant graphics perception |
DE112021003009T5 (en) | 2020-05-28 | 2023-03-23 | The Procter & Gamble Company | Absorbent articles having laminates that enable the perception of eye-catching graphics |
EP3915533A1 (en) | 2020-05-28 | 2021-12-01 | The Procter & Gamble Company | Absorbent article having a waist gasketing element |
DE112021003008T5 (en) | 2020-05-28 | 2023-03-23 | The Procter & Gamble Company | Absorbent articles, featuring laminates with highly recognizable patterns and bright graphics |
WO2021242593A2 (en) | 2020-05-28 | 2021-12-02 | The Procter & Gamble Company | Absorbent articles having laminates exhibiting highly recognizable patterns and vibrant graphics |
EP3919033A1 (en) | 2020-06-03 | 2021-12-08 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution system and a wetness indicator |
WO2021247471A1 (en) | 2020-06-03 | 2021-12-09 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution system and a wetness indicator |
WO2021252442A1 (en) | 2020-06-09 | 2021-12-16 | The Procter & Gamble Company | Article having a bond pattern |
US12090035B2 (en) | 2020-06-12 | 2024-09-17 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021252825A1 (en) | 2020-06-12 | 2021-12-16 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021252824A1 (en) | 2020-06-12 | 2021-12-16 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2021257931A1 (en) | 2020-06-18 | 2021-12-23 | The Procter & Gamble Company | Unique optical signals for sensor detection in absorbent articles |
WO2021257930A1 (en) | 2020-06-18 | 2021-12-23 | The Procter & Gamble Company | Absorbent article sensor replacement system |
EP4470516A2 (en) | 2020-06-25 | 2024-12-04 | The Procter & Gamble Company | Absorbent article with elastic laminate |
WO2021263066A1 (en) | 2020-06-25 | 2021-12-30 | The Procter & Gamble Company | Absorbent article with elastic laminate |
WO2022026283A1 (en) | 2020-07-30 | 2022-02-03 | The Procter & Gamble Company | Absorbent article with a lower intermediate layer partially bonded to the absorbent core |
EP3944845A1 (en) | 2020-07-30 | 2022-02-02 | The Procter & Gamble Company | Absorbent article with a channel-forming area and a masking layer |
WO2022026284A1 (en) | 2020-07-30 | 2022-02-03 | The Procter & Gamble Company | Absorbent article with a channel-forming area and a masking layer |
WO2022061375A1 (en) | 2020-09-21 | 2022-03-24 | The Procter & Gamble Company | Two piece absorbent article |
WO2022067310A1 (en) | 2020-09-22 | 2022-03-31 | The Procter & Gamble Company | Absorbent articles with patterned front ears |
WO2022132875A1 (en) | 2020-12-18 | 2022-06-23 | The Procter & Gamble Company | Absorbent articles including waist panels |
WO2022165742A1 (en) | 2021-02-05 | 2022-08-11 | The Procter & Gamble Company | Three dimensional nonwoven and absorbent articles having the same |
WO2022203988A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent articles with leg cuffs |
WO2022203987A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent articles and arrays thereof |
WO2022203989A1 (en) | 2021-03-23 | 2022-09-29 | The Procter & Gamble Company | Multi-piece absorbent article |
WO2022231892A1 (en) | 2021-04-30 | 2022-11-03 | The Procter & Gamble Company | Packaged absorbent articles |
EP4088704A1 (en) | 2021-05-10 | 2022-11-16 | The Procter & Gamble Company | Absorbent core with nonwoven web(s) comprising superabsorbent fibers |
WO2022240708A1 (en) | 2021-05-10 | 2022-11-17 | The Procter & Gamble Company | Absorbent core with nonwoven web(s) comprising superabsorbent fibers |
WO2022252116A1 (en) | 2021-06-01 | 2022-12-08 | The Procter & Gamble Company | Absorbent article comprising an intermediate layer |
WO2022252117A1 (en) | 2021-06-01 | 2022-12-08 | The Procter & Gamble Company | Absorbent article comprising a lower acquisition and distribution layer |
WO2022260862A1 (en) | 2021-06-08 | 2022-12-15 | The Procter & Gamble Company | Absorbent articles including a waist panel with a frangible bond |
WO2023014692A1 (en) | 2021-08-04 | 2023-02-09 | The Procter & Gamble Company | Absorbent article with urease inhibitor and use of the article |
EP4129259A1 (en) | 2021-08-04 | 2023-02-08 | The Procter & Gamble Company | Absorbent article with urease inhibitor and use of the article |
WO2023049736A1 (en) | 2021-09-22 | 2023-03-30 | The Procter & Gamble Company | Patterned fibrous substrates |
WO2023049738A1 (en) | 2021-09-22 | 2023-03-30 | The Procter & Gamble Company | Fibrous substrates containing fibers with fiber additives |
WO2023049739A1 (en) | 2021-09-22 | 2023-03-30 | The Procter & Gamble Company | Fluid permeable patterned fibrous substrates |
WO2023056237A1 (en) | 2021-09-30 | 2023-04-06 | The Procter & Gamble Company | Absorbent article with laminate bond pattern |
WO2023088179A1 (en) | 2021-11-19 | 2023-05-25 | The Procter & Gamble Company | Absorbent article with front and/or back waist regions having a high-stretch zone and a low-stretch zone and methods for making |
WO2023115513A1 (en) | 2021-12-24 | 2023-06-29 | The Procter & Gamble Company | Taped absorbent article with front and back elastic waistbands |
WO2023147446A1 (en) | 2022-01-31 | 2023-08-03 | The Procter & Gamble Company | Absorbent article having fastening system |
WO2023168616A1 (en) | 2022-03-09 | 2023-09-14 | The Procter & Gamble Company | Absorbent article with high permeability sap |
WO2023196768A1 (en) | 2022-04-04 | 2023-10-12 | The Procter & Gamble Company | Absorbent articles including a waist panel |
EP4279050A1 (en) | 2022-05-16 | 2023-11-22 | The Procter & Gamble Company | Absorbent article |
EP4279049A1 (en) | 2022-05-16 | 2023-11-22 | The Procter & Gamble Company | Method for making an absorbent article and absorbent article |
WO2023224831A1 (en) | 2022-05-16 | 2023-11-23 | The Procter & Gamble Company | Absorbent article |
WO2023224752A1 (en) | 2022-05-16 | 2023-11-23 | The Procter & Gamble Company | Method for making an absorbent article and absorbent article |
WO2023225238A1 (en) | 2022-05-20 | 2023-11-23 | The Procter & Gamble Company | Absorbent article with laminate bond pattern |
WO2023250479A1 (en) | 2022-06-24 | 2023-12-28 | The Procter & Gamble Company | Absorbent articles containing wetness indicating compositions and methods for manufacture |
WO2024006721A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways with simultaneously propagating tear zones |
WO2024006719A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways and concealed disposal fastener components |
WO2024006720A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways and disposal features |
WO2024006718A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways with opening facilitation features |
WO2024006716A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with absorbent chassis and belt bonding arrangements and frangible pathways |
WO2024006717A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with absorbent chassis and belt elastic arrangements and frangible pathways |
WO2024006723A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways |
WO2024006724A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles and methods for making absorbent articles with frangible pathways |
WO2024006727A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways having tear zones |
WO2024006715A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways |
WO2024006722A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways adapted for tear propagation between regions of laminates having different numbers of layers of substrates |
WO2024006728A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with frangible pathways having tear zones |
WO2024026286A1 (en) | 2022-07-28 | 2024-02-01 | The Procter & Gamble Company | Absorbent articles with disposal fasteners having integral hook fasteners |
WO2024097529A1 (en) | 2022-11-01 | 2024-05-10 | The Procter & Gamble Company | Array of absorbent articles with ultrasonically bonded stretch laminates |
EP4364707A1 (en) | 2022-11-04 | 2024-05-08 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
WO2024097646A1 (en) | 2022-11-04 | 2024-05-10 | The Procter & Gamble Company | Method and apparatus for bonding elastic parts under tension to an advancing carrier |
EP4364708A1 (en) | 2022-11-07 | 2024-05-08 | The Procter & Gamble Company | Array of absorbent articles having waist gasketing elements |
WO2024102589A1 (en) | 2022-11-07 | 2024-05-16 | The Procter & Gamble Company | Array of absorbent articles having waist gasketing elements |
WO2024159066A1 (en) | 2023-01-27 | 2024-08-02 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024159065A1 (en) | 2023-01-27 | 2024-08-02 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024168207A1 (en) | 2023-02-10 | 2024-08-15 | The Procter & Gamble Company | Absorbent articles with barrier leg cuffs having a backfolded inner cuff |
WO2024197692A1 (en) | 2023-03-30 | 2024-10-03 | The Procter & Gamble Company | Nonwoven substrate and absorbent articles comprising the same |
WO2024211340A1 (en) | 2023-04-04 | 2024-10-10 | The Procter & Gamble Company | Absorbent article and method for making an absorbent article |
EP4442232A1 (en) | 2023-04-04 | 2024-10-09 | The Procter & Gamble Company | Absorbent article and method for making an absorbent article |
WO2024233851A1 (en) | 2023-05-11 | 2024-11-14 | The Procter & Gamble Company | Absorbent articles with bonded stretch laminates |
WO2024234131A1 (en) | 2023-05-12 | 2024-11-21 | The Procter & Gamble Company | Absorbent article |
WO2024234892A1 (en) | 2023-05-12 | 2024-11-21 | The Procter & Gamble Company | Absorbent articles |
EP4483853A1 (en) | 2023-06-29 | 2025-01-01 | The Procter & Gamble Company | Method for manufacturing a joined resealable absorbent article |
WO2025015584A1 (en) | 2023-07-20 | 2025-01-23 | The Procter & Gamble Company | Absorbent core and absorbent article comprisng the same |
Also Published As
Publication number | Publication date |
---|---|
US20110139657A1 (en) | 2011-06-16 |
US10822783B2 (en) | 2020-11-03 |
US20200063416A1 (en) | 2020-02-27 |
US20220178124A1 (en) | 2022-06-09 |
US20200063415A1 (en) | 2020-02-27 |
US20110152812A1 (en) | 2011-06-23 |
US20190085543A1 (en) | 2019-03-21 |
US10166312B2 (en) | 2019-01-01 |
US20160206774A1 (en) | 2016-07-21 |
US20110139658A1 (en) | 2011-06-16 |
US12054928B2 (en) | 2024-08-06 |
US20200063417A1 (en) | 2020-02-27 |
US20210131086A1 (en) | 2021-05-06 |
CA2647293A1 (en) | 2007-09-27 |
US20110139659A1 (en) | 2011-06-16 |
US10920407B2 (en) | 2021-02-16 |
WO2007109128A3 (en) | 2007-11-22 |
US10815653B2 (en) | 2020-10-27 |
US20110139662A1 (en) | 2011-06-16 |
CN101442965A (en) | 2009-05-27 |
US20130313149A1 (en) | 2013-11-28 |
US10501920B2 (en) | 2019-12-10 |
CN101442965B (en) | 2013-06-19 |
US11186976B2 (en) | 2021-11-30 |
US20210198881A1 (en) | 2021-07-01 |
WO2007109128A2 (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11186976B2 (en) | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article | |
EP3544557B1 (en) | Absorbent article having natural fibers | |
EP4228577B1 (en) | Method of producing absorbent hygiene product comprising superabsorbent polymer partly derived from a recycled resource | |
CA2637633C (en) | Absorbent articles having a breathable stretch laminate | |
JP6490694B2 (en) | Absorbent core with areas free of material | |
US20110319849A1 (en) | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article | |
EP1795211A2 (en) | Water-absorbing agent and its production process and use | |
EP3175832B1 (en) | Absorbent article with improved core | |
EP3205318A1 (en) | Absorbent article with high absorbent capacity | |
US8766032B2 (en) | Recycled superabsorbent polymer particles | |
EP4442232A1 (en) | Absorbent article and method for making an absorbent article | |
EP3251648A1 (en) | Absorbent article with improved fluid distribution | |
EP3278782A1 (en) | Absorbent article with improved fluid storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRD, BRYN;ADDINGTON, ERIC TED;REEL/FRAME:019115/0703 Effective date: 20070313 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |