US20070212334A1 - Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases - Google Patents
Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases Download PDFInfo
- Publication number
- US20070212334A1 US20070212334A1 US11/650,479 US65047907A US2007212334A1 US 20070212334 A1 US20070212334 A1 US 20070212334A1 US 65047907 A US65047907 A US 65047907A US 2007212334 A1 US2007212334 A1 US 2007212334A1
- Authority
- US
- United States
- Prior art keywords
- seq
- vector
- gutless
- sequence
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010079274 Thrombomodulin Proteins 0.000 title claims description 72
- 238000001727 in vivo Methods 0.000 title abstract description 18
- 208000024172 Cardiovascular disease Diseases 0.000 title abstract description 6
- 208000018262 Peripheral vascular disease Diseases 0.000 title abstract description 6
- 230000002526 effect on cardiovascular system Effects 0.000 title abstract description 3
- 230000014509 gene expression Effects 0.000 title description 45
- 239000013598 vector Substances 0.000 claims abstract description 74
- 241000701161 unidentified adenovirus Species 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 47
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 208000019553 vascular disease Diseases 0.000 claims abstract description 9
- 102000012607 Thrombomodulin Human genes 0.000 claims description 69
- 241000700605 Viruses Species 0.000 claims description 30
- 230000003612 virological effect Effects 0.000 claims description 30
- 150000001413 amino acids Chemical group 0.000 claims description 20
- 125000003729 nucleotide group Chemical group 0.000 claims description 19
- 230000001105 regulatory effect Effects 0.000 claims description 19
- 239000002773 nucleotide Substances 0.000 claims description 18
- 239000013612 plasmid Substances 0.000 claims description 14
- 102000040430 polynucleotide Human genes 0.000 claims description 13
- 108091033319 polynucleotide Proteins 0.000 claims description 13
- 239000002157 polynucleotide Substances 0.000 claims description 13
- 206010020718 hyperplasia Diseases 0.000 claims description 10
- 208000015181 infectious disease Diseases 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 6
- 239000002609 medium Substances 0.000 claims description 6
- 108010054147 Hemoglobins Proteins 0.000 claims description 5
- 102000001554 Hemoglobins Human genes 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 claims description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 2
- 229930182816 L-glutamine Natural products 0.000 claims description 2
- 239000002543 antimycotic Substances 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 66
- 102000004169 proteins and genes Human genes 0.000 abstract description 31
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 20
- 238000001476 gene delivery Methods 0.000 abstract description 8
- 108700019146 Transgenes Proteins 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 63
- 108020004414 DNA Proteins 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 26
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 25
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 102000004196 processed proteins & peptides Human genes 0.000 description 18
- 210000003462 vein Anatomy 0.000 description 18
- 102000051206 human THBD Human genes 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 239000013615 primer Substances 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 102000039446 nucleic acids Human genes 0.000 description 15
- 108020004707 nucleic acids Proteins 0.000 description 15
- 229920001184 polypeptide Polymers 0.000 description 14
- 241000701022 Cytomegalovirus Species 0.000 description 13
- 230000027455 binding Effects 0.000 description 13
- 239000013605 shuttle vector Substances 0.000 description 13
- 235000001014 amino acid Nutrition 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 11
- 239000012083 RIPA buffer Substances 0.000 description 9
- -1 bile acid salts Chemical class 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 8
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 8
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000006166 lysate Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 101150084279 TM gene Proteins 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 239000013603 viral vector Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101000938391 Homo sapiens Transmembrane protein Proteins 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 230000000120 cytopathologic effect Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 230000004568 DNA-binding Effects 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 5
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 5
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 5
- 238000002399 angioplasty Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 210000004351 coronary vessel Anatomy 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 102000000905 Cadherin Human genes 0.000 description 3
- 108050007957 Cadherin Proteins 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 3
- 102100039556 Galectin-4 Human genes 0.000 description 3
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 3
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 3
- 108010027179 Tacrolimus Binding Proteins Proteins 0.000 description 3
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 3
- 208000007536 Thrombosis Diseases 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 3
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 208000020832 chronic kidney disease Diseases 0.000 description 3
- 230000035602 clotting Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 3
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 3
- 201000000523 end stage renal failure Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 102000003998 progesterone receptors Human genes 0.000 description 3
- 108090000468 progesterone receptors Proteins 0.000 description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 229960002930 sirolimus Drugs 0.000 description 3
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 102000016736 Cyclin Human genes 0.000 description 2
- 108050006400 Cyclin Proteins 0.000 description 2
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 2
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 2
- 101800004937 Protein C Proteins 0.000 description 2
- 102000017975 Protein C Human genes 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 101800001700 Saposin-D Proteins 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229960003964 deoxycholic acid Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000002376 fluorescence recovery after photobleaching Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000005734 heterodimerization reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000012160 loading buffer Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001991 pathophysiological effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229960000856 protein c Drugs 0.000 description 2
- 102000016914 ras Proteins Human genes 0.000 description 2
- 108010014186 ras Proteins Proteins 0.000 description 2
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 230000005026 transcription initiation Effects 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- SOFPIAMTOZWXKT-UHFFFAOYSA-N 2h-1,2,4-triazine-3-thione Chemical compound SC1=NC=CN=N1 SOFPIAMTOZWXKT-UHFFFAOYSA-N 0.000 description 1
- LQGNCUXDDPRDJH-UHFFFAOYSA-N 3'-GMP Natural products C1C(O)C(O)CC2(C)C(C(O)CC3(C(C(C)(O)C(O)CCC(C)C)CCC33O)C)C3=CC(=O)C21 LQGNCUXDDPRDJH-UHFFFAOYSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- 102100027398 A disintegrin and metalloproteinase with thrombospondin motifs 1 Human genes 0.000 description 1
- 102100032635 A disintegrin and metalloproteinase with thrombospondin motifs 8 Human genes 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 108091005666 ADAMTS8 Proteins 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 1
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 1
- 101100449747 Aneurinibacillus migulanus gsp gene Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 1
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 1
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010073466 Bombesin Receptors Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 108091007914 CDKs Proteins 0.000 description 1
- 102400000113 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 101710205660 Calcium-transporting ATPase Proteins 0.000 description 1
- 101710134161 Calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101100422412 Catharanthus roseus SSRP1 gene Proteins 0.000 description 1
- 102000004171 Cathepsin K Human genes 0.000 description 1
- 108090000625 Cathepsin K Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 108010066551 Cholestenone 5 alpha-Reductase Proteins 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000006311 Cyclin D1 Human genes 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 102000003909 Cyclin E Human genes 0.000 description 1
- 108090000257 Cyclin E Proteins 0.000 description 1
- 229940083347 Cyclin-dependent kinase 4 inhibitor Drugs 0.000 description 1
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000003849 Cytochrome P450 Human genes 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101100347633 Drosophila melanogaster Mhc gene Proteins 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101100125311 Escherichia coli (strain K12) hyi gene Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 108091008794 FGF receptors Proteins 0.000 description 1
- 101710104441 FK506-binding protein 1 Proteins 0.000 description 1
- 101710132880 FK506-binding protein 1A Proteins 0.000 description 1
- 101710132879 FK506-binding protein 1B Proteins 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 102000007317 Farnesyltranstransferase Human genes 0.000 description 1
- 108010007508 Farnesyltranstransferase Proteins 0.000 description 1
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 description 1
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 1
- 108010005551 GABA Receptors Proteins 0.000 description 1
- 102000005915 GABA Receptors Human genes 0.000 description 1
- 101150039312 GIP gene Proteins 0.000 description 1
- 108700012941 GNRH1 Proteins 0.000 description 1
- 101150000435 GSS gene Proteins 0.000 description 1
- 102100030708 GTPase KRas Human genes 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 1
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 1
- 101150004167 HMG gene Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100024025 Heparanase Human genes 0.000 description 1
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 1
- 102100021628 Histatin-3 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000936405 Homo sapiens A disintegrin and metalloproteinase with thrombospondin motifs 1 Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000944380 Homo sapiens Cyclin-dependent kinase inhibitor 1 Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 1
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 1
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000000743 Interleukin-5 Human genes 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 102100020880 Kit ligand Human genes 0.000 description 1
- 101710177504 Kit ligand Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000011965 Lipoprotein Receptors Human genes 0.000 description 1
- 108010061306 Lipoprotein Receptors Proteins 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 102100021339 Multidrug resistance-associated protein 1 Human genes 0.000 description 1
- LRJUYAVTHIEHAI-UHFFFAOYSA-N Muristeron A Natural products C1C(O)C(O)CC2(C)C(C(O)CC3(C(C(C)(O)C(O)CCC(C)C)CCC33O)C)C3=CC(=O)C21O LRJUYAVTHIEHAI-UHFFFAOYSA-N 0.000 description 1
- LRJUYAVTHIEHAI-LHBNDURVSA-N Muristerone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H]([C@H](O)C[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)C)CC[C@]33O)C)C3=CC(=O)[C@@]21O LRJUYAVTHIEHAI-LHBNDURVSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 101710202061 N-acetyltransferase Proteins 0.000 description 1
- 108050000637 N-cadherin Proteins 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 1
- 102000048238 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 102000002002 Neurokinin-1 Receptors Human genes 0.000 description 1
- 108010040718 Neurokinin-1 Receptors Proteins 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 1
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108090000630 Oncostatin M Proteins 0.000 description 1
- 102100031942 Oncostatin-M Human genes 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102100026408 Peptidyl-prolyl cis-trans isomerase FKBP2 Human genes 0.000 description 1
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 1
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101710098940 Pro-epidermal growth factor Proteins 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 101710111620 Protein C activator Proteins 0.000 description 1
- 102000006270 Proton Pumps Human genes 0.000 description 1
- 108010083204 Proton Pumps Proteins 0.000 description 1
- 101100131297 Rattus norvegicus Abcc2 gene Proteins 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102100022831 Somatoliberin Human genes 0.000 description 1
- 101710142969 Somatoliberin Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 102000007451 Steroid Receptors Human genes 0.000 description 1
- 108010085012 Steroid Receptors Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000003790 Thrombin receptors Human genes 0.000 description 1
- 108090000166 Thrombin receptors Proteins 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 206010060872 Transplant failure Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000010516 arginylation Effects 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 208000028208 end stage renal disease Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 description 1
- 101150042777 flp gene Proteins 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 108010037536 heparanase Proteins 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 102000027410 heterodimeric nuclear receptors Human genes 0.000 description 1
- 108091008587 heterodimeric nuclear receptors Proteins 0.000 description 1
- 210000004090 human X chromosome Anatomy 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 108010093036 interleukin receptors Proteins 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229940065725 leukotriene receptor antagonists for obstructive airway diseases Drugs 0.000 description 1
- 239000003199 leukotriene receptor blocking agent Substances 0.000 description 1
- 102000003835 leukotriene receptors Human genes 0.000 description 1
- 108090000146 leukotriene receptors Proteins 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012317 liver biopsy Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960003248 mifepristone Drugs 0.000 description 1
- 238000009126 molecular therapy Methods 0.000 description 1
- 108010066052 multidrug resistance-associated protein 1 Proteins 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 108010058605 myotrophin Proteins 0.000 description 1
- 102000006392 myotrophin Human genes 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000018341 negative regulation of fibrinolysis Effects 0.000 description 1
- 210000000929 nociceptor Anatomy 0.000 description 1
- 230000025308 nuclear transport Effects 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000044 progesterone antagonist Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108090000064 retinoic acid receptors Proteins 0.000 description 1
- 102000003702 retinoic acid receptors Human genes 0.000 description 1
- 102000027483 retinoid hormone receptors Human genes 0.000 description 1
- 108091008679 retinoid hormone receptors Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 101150024821 tetO gene Proteins 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 108700020534 tetracycline resistance-encoding transposon repressor Proteins 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000013151 thrombectomy Methods 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 102000004217 thyroid hormone receptors Human genes 0.000 description 1
- 108090000721 thyroid hormone receptors Proteins 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/36—Blood coagulation or fibrinolysis factors
- A61K38/366—Thrombomodulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/008—Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/42—Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
Definitions
- the present invention is directed to methods and compositions for the treatment of cardiovascular and peripheral vascular diseases, and in particular, is directed to methods and compositions for ex vivo and in vivo expression of the thrombomodulin gene using gutless adenovirus vector.
- Atherosclerosis is one of the chief causes of morbidity and mortality in the United States and many other countries of the world. (Zuckerbraun et al., Arch Surg. 137:854-861 [2002]; Kibbe et al., Circ Res. 86:829-33 [2000]). This process can result in limiting the flow of blood to the heart, kidneys and the peripheral vessels, to name a few.
- Current approaches to the treatment of lesions in the arteries include coronary artery by-pass graft (CABG) surgery and angioplasty with or without the placement of a stent. The latter may serve as a vehicle for drug delivery, as is currently being tested in clinical trials.
- CABG coronary artery by-pass graft
- Cardiovascular diseases are the result of complex pathophysiologic processes that involve the expression of many proteins and molecules that can adversely affect the grafted vessel (Shears et al., J. Am Coll Surg., 187(3):295-306 [1998]; Ross et al., Nature, 362:801-9 [1993]). Approximately 15-30% of patients receiving vein grafts for coronary or peripheral vascular disease require follow-up treatment, either in the form of angioplasty or new grafts.
- Thrombomodulin is an integral membrane glycoprotein expressed on the surface of endothelial cells (Sadler et al., Trhomb Haemost., 78:392-95 [1997]). It is a high affinity thrombin receptor that converts thrombin into a protein C activator. Activated protein C then functions as an anticoagulant by inactivating two regulatory proteins of the clotting system, namely factors Va and VI [I]a (Esmon et al., Faseb J., 9:946-55 [1995]). The latter two proteins are essential for the function of two of the coagulation proteases, namely factors IXa and Xa. TM thus plays an active role in blood clot formation in vivo and can function as a direct or indirect anticoagulant.
- Nitric oxide synthase an enzyme expressed by endothelial cells has been shown in animal models to inhibit intimal hyperplasia, especially the inducible enzyme (iNOS) (Salmaa et al., Lancet, 353:1729-34 [1999]; Palmer et al., Nature, 327:524-26 [1987]; Kubes et al., PNAS USA., 88:4651-5 [1991]).
- iNOS inducible enzyme
- VEGF Vascular endothelial growth factor
- bFGF basic fibroblast growth factor
- PDGF platelet derived growth factor
- VEGF vascular endothelial growth factor
- the method comprises the steps of: infecting a segment of blood vessel in vitro using a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, and grafting the virus-treated blood vessel in the mammal, wherein the thrombomodulin protein or its variant is expressed in a amount sufficient to reduce re-occlusion or intimal hyperplasia in the grafted blood vessel, and wherein the gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- the method comprises the steps of: evacuating a clot from a blood vessel in the mammal, isolating a segment of the blood vessel around the evacuation site, and infecting the segment of blood vessel in vivo using a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, wherein the thrombomodulin protein or its variant is expressed in a amount sufficient to reduce re-occlusion or intimal hyperplasia in the infected blood vessel, and wherein said gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- the method comprises the step of administering a therapeutically effective amount of a gutless adenovirus vector into a segment of a blood vessel in vivo using a stent, wherein the gutless adenovirus vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15, and is capable of expressing a thrombomodulin protein or a variant of the thrombomodulin protein.
- the method comprises the step of administering intravenously an effective amount of a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, wherein the gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Another aspect of the present invention pertains to a gutless adenovirus vector comprising the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Another aspect of the present invention pertains to a gutless adenovirus vector comprising a polynucleotide encoding a thrombomodulin protein having the amino acid sequence of SEQ ID NO:2, a regulatory element operably linked to the polynucleotide sequence; and a stuffer comprising the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Yet another aspect of the present invention pertains to a pharmaceutical composition for treating a vascular disease, comprising the gutless adenovirus vector described above and a pharmaceutically acceptable carrier.
- FIG. 1 is a schematic drawing of an embodiment of the backbone shuttle vector pShuttle-ITR-HPRT.
- FIG. 2 is a schematic drawing of an embodiment of the full length backbone vector pTM-final.
- FIG. 3 is a picture of a Western blot showing hTM expression in HEK 293 cells transfected with pTM-final (the full size backbone of gutless Ad.hTM). Lanes 1-3: lysate from control cells; Lanes 4-6, lysate from pTM-final transfected cells.
- FIG. 4 is a picture of a Western slot blot showing hTM expression in 293FLP cells (passage number 2 (P2) during viral amplification).
- Row 1 lane 1-3: TM detection using 5 ul cell lysate of P2.
- Row 2 lane 1-3: TM detection using 30 ul cell lysate of P2.
- Row 3 lane 1-3: negative control cells.
- FIG. 5 is a picture of a Western blot showing hTM expression in rat vena cava infected with gutless TM virus.
- FIG. 6 is a picture of a Western bolt showing TM expression in CRE cells at passage number 1-6 (P1-P6).
- FIG. 7 is a composite of images showing gutless adenovirus-mediated luciferase expression in rat tail vein.
- the primary object of the present invention is to provide methods for treating vascular diseases using gene delivery technologies.
- One aspect of the present invention relates to a method for treating a vascular disease by introducing a DNA sequence encoding a TM protein or its variant into a segment of a blood vessel in vitro using a gutless adenovirus vector and grafting the virus-treated vessel in a patient affected by a vascular disease.
- the virus-mediated TM expression reduces re-occlusion and intimal hyperplasia in the grafted vessel. This ex vivo approach eliminates the need to inject a large quantity of virus into a patient and hence significantly reduces the viral-related toxicity.
- the method is used for a coronary artery bypass. In another embodiment, the method is used for the treatment of peripheral vascular diseases. In yet another embodiment, the method is used for the maintenance of vein access in renal dialysis patients.
- Another object of the present invention is to provide a method to deliver a gutless adenovirus vector carrying a DNA sequence encoding a TM protein or its variant using a stent.
- the viral vector is embedded in the stent and is released only at a treatment site. Since the viral infection is restricted at the treatment site and the surrounding area, only a small amount of the virus is needed and the virus-related toxicity is reduced.
- gutless adenovirus carrying a TM gene.
- the gutless adenovirus which contains a regulatory element operably linked to a DNA sequence encoding a TM protein or its variant and a polyA sequence, is produced using a novel shuttle vector containing a pBR322 replication origin, a selection marker, an adenovirus left inverted terminal repeat, an adenovirus encapsidation signal, a stuffer sequence, and an adenovirus left inverted terminal repeat.
- the regulatory element is a constitutive promoter such a CMV promoter and RSV promoter. In another embodiment, the regulatory element is an inducible promoter.
- the forth object of the present invention is to provide a pharmaceutical composition which comprises an effective amount of gutless adenovirus carrying a TM gene of the present invention and a pharmaceutically acceptable carrier.
- Such compositions may be liquids or lyophilized or otherwise dried formulations and may further include diluents of various buffer content, (e.g., Tris-HCl, acetate, phosphate) pH and ionic strength, additives such as albumin and gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycerol); anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g. Thimerosal, benzyl alcohol, parabens).
- buffer content e.g., Tris-HCl, acetate, phosphate
- additives such as
- Gene transfer or “gene delivery” refers to methods or systems for reliably introducing a particular nucleotide sequence (e.g., DNA) into targeted cells.
- the introduced nucleotide sequences may persist in vivo in episomal forms or integrate into the genome of the target cells.
- Gene transfer provides a unique approach for the treatment of acquired and inherited diseases, and a number of systems have been developed in the art for gene transfer into mammalian cells. See, e.g., U.S. Pat. No. 5,399,346.
- the term “effective amount” refers to a level of infection which brings about at least partially a desired therapeutic or prophylactic effect in an organ or tissue infected by the method of the present invention.
- the infection with an effective amount of the vector carrying genetic material of interest can then result in the modification of the cellular activities, e.g., a change in phenotype, in an organ or a tissue that has been infected by the method of the present invention.
- the infection with an effective amount of the vector carrying genetic material of interest results in modulation of cellular activity in a significant number of cells of an infected organ or a tissue.
- a gene transfer “vector” refers to any agent, such as a plasmid, phage, transposon, cosmid, chromosome, liposome, DNA-viral conjugates, RNA/DNA oligonucleotides, virus, bacteria, etc., which is capable of transferring gene sequences into cells.
- the term includes cloning and expression vehicles including “naked” expression vectors, as well as viral and non-viral vectors.
- a vector may be targeted to specific cells by linking a target molecule to the vector.
- a targeting molecule is any agent that is specific for a cell or tissue type of interest, including for example, a ligand, antibody, sugar, receptor, or other binding molecule.
- the invention is also intended to include such other forms of vectors which serve equivalent functions and which become known in the art subsequently hereto.
- control element refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (“IRES”), enhancers, and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell.
- promoter is used herein in its ordinary sense to refer to a, DNA regulatory sequence that is sufficient for RNA polymerase recognition, binding and transcription initiation. Additionally, a promoter includes sequences that modulate the recognition, binding and transcription initiation activity of RNA polymerase. Such sequences may be cis acting or may be responsive to trans acting factors. Depending upon the nature of the regulation, promoters may be constitutive or regulated.
- promoters examples include SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, phosphoglycerate kinase (PGK) promoter, muscle creatine kinase (MCK) promoter, myosin promoter, ( ⁇ -actin promoter) and the like.
- CMV cytomegalovirus
- MMTV mouse mammary tumor virus
- PGK phosphoglycerate kinase
- MCK muscle creatine kinase
- myosin promoter myosin promoter
- ⁇ -actin promoter ⁇ -actin promoter
- transduction denotes the delivery of a DNA molecule to a recipient cell either in vivo or in vitro, via a replication-defective viral vector, such as via a recombinant adenovirus.
- “Operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function.
- control elements operably linked to a coding sequence are capable of effecting the expression of the coding sequence.
- the control elements need not be contiguous with the coding sequence, so long as the function to direct the expression thereof.
- intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
- primer refers to an oligonucleotide which is capable of acting as a point of initiation of synthesis when placed under conditions in which primer extension is initiated.
- An oligonucleotide “primer” may occur naturally, as in a purified restriction digest or may be produced synthetically.
- a primer is selected to be “substantially” complementary to a strand of specific sequence of the template.
- a primer must be sufficiently complementary to hybridize with a template strand for primer elongation to occur.
- a primer sequence need not reflect the exact sequence of the template.
- a non-complementary nucleotide fragment may be attached to the 5′ end of the primer, with the remainder of the primer sequence being substantially complementary to the strand.
- Non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementarity with the sequence of the template to hybridize and thereby form a template primer complex for synthesis of the extension product of the primer.
- Hybridization methods involve the annealing of a complementary sequence to the target nucleic acid (the sequence to be detected). The ability of two polymers of nucleic acid containing complementary sequences to find each other and anneal through base pairing interaction is a well-recognized phenomenon.
- the initial observations of the “hybridization” process by Marmur and Lane, PNAS USA 46:453 (1960) and Doty et al., PNAS USA 46:461 (1960) have been followed by the refinement of this process into an essential tool of modern biology.
- nucleic acid sequence refers to an oligonucleotide which, when aligned with the nucleic acid sequence such that the 5′ end of one sequence is paired with the 3′ end of the other, is in “antiparallel association.”
- Certain bases not commonly found in natural nucleic acids may be included in the nucleic acids of the present invention and include, for example, inosine and 7-deazaguanine. Complementarity need not be perfect; stable duplexes may contain mismatched base pairs or unmatched bases.
- nucleic acid technology can determine duplex stability empirically considering a number of variables including, for example, the length of the oligonucleotide, base composition and sequence of the oligonucleotide, ionic strength and incidence of mismatched base pairs.
- Tm melting temperature
- Two DNA sequences are “substantially homologous” when at least about 75% (preferably at least about 80%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data bands, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. Suitable conditions include those characterized by a hybridization buffer comprising 0.9M sodium citrate (“SSC”) buffer at a temperature of about 37° C. and washing in SSC buffer at a temperature of about 37° C.; and preferably in a hybridization buffer comprising 20% formamide in 0.9M SSC buffer at a temperature of about 42° C.
- SSC sodium citrate
- Stringency conditions can be further varied by modifying the temperature and/or salt content of the buffer, or by modifying the length of the hybridization probe as is known to those of skill in the art. Defining appropriate hybridization conditions is within the skill of the art. See e.g., Sambrook, J. Fritsch, E. J., & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, N.Y.).
- probe refers to a labeled oligonucleotide which forms a duplex structure with a sequence in another nucleic acid, due to complementarity of at least one sequence in the probe with a sequence in the other nucleic acid.
- label refers to any atom or molecule which can be used to provide a detectable (preferably quantifiable) signal, and which can be attached to a nucleic acid or protein. Labels may provide signals detectable by fluorescence, radioactivity, colorimetry, gravimetry, X-ray diffraction or absorption, magnetism, enzymatic activity, and the like.
- nucleic acid substrate and nucleic acid template are used herein interchangeably and refer to a nucleic acid molecule which may comprise single- or double-stranded DNA or RNA.
- Oligonucleotide primers matching or complementary to a gene sequence refers to oligonucleotide primers capable of facilitating the template-dependent synthesis of single or double-stranded nucleic acids. Oligonucleotide primers matching or complementary to a gene sequence may be used in PCRs, RT-PCRs and the like.
- a “consensus gene sequence” refers to a gene sequence which is derived by comparison of two or more gene sequences and which describes the nucleotides most often present in a given segment of the genes; the consensus sequence is the canonical sequence.
- native thrombomodulin refers to both the natural protein and soluble peptides having the same characteristic biological activity of membrane-bound or detergent solubilized (natural) thrombomodulin. These soluble peptides are also referred to as “wild-type” or “non-mutant” analog peptides.
- Biological activity is the ability to act as a receptor for thrombin, increase the activation of protein C, or other biological activity associated with native thrombomodulin.
- Oxidation resistant TM analogs are these soluble peptides that in addition to being soluble contain a specific artificially induced mutation in their amino acid sequence.
- thrombomodulin variant is a polypeptide that differs from a native thrombomodulin polypeptide in one or more substitutions, deletions, additions and/or insertions, such that the bioactivity of the native thrombomodulin polypeptide is not substantially diminished or enhanced.
- the bioactivity of a thrombomodulin variant may be enhanced or diminished by, less than 50%, and preferably less than 20%, relative to the native protein.
- Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed.
- Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the—and/or C-terminal of the mature protein.
- a thrombomodulin variant contains conservative substitutions.
- a “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
- Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues.
- negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine.
- a variant may also, or alternatively, contain nonconservative changes.
- variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer.
- Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the bioactivity, secondary structure and hydropathic nature of the polypeptide.
- Thrombomodulin variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% sequence homology to the original thrombomodulin polypeptide.
- a thrombomodulin variant also includes a thrombomodulin polypeptides that is modified from the original thrombomodulin polypeptides by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications.
- Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
- Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross links, formation of cysteine, formation of pyroglutamate, formulation, gammacarboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
- Adenovirus Vectors :
- adenovirus The genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lyric viral life cycle (Curie D T, Ann NY Acad Sci 886, 158-171 [1991]).
- Suitable adenoidal vectors derived from the adenovirus strain Ad type 5 dl324 or other strains of adenovirus are well known to those skilled in the art.
- Recombinant adenoviruses are advantageous in that they do not require dividing cells to be effective gene delivery vehicles and can be used to infect a wide variety of cell types, including airway epithelium, endothelial cells and muscle cells. Additionally, introduced adenoidal DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA). Moreover, the carrying capacity of the adenoidal genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Haj-Ahmand et al. J. Virol.
- Adenovirus vectors have been successfully tested in a number of animal models (Ragot et al. Nature 361, 647-650 [1993]; Howell et al. Hum Gene Ther 9, 629-634 [1998]). Nonetheless, the toxicity and immunogenicity remain major hurdles to overcome before the adenovirus vectors can be safely used in humans.
- Ad Adenoviruses
- the adenovirus genome is complex and contains over 50 open reading frames (ORFs). These ORFs are overlapping and genes encoding one protein are often embedded within genes coding for other Ad proteins.
- Expression of Ad genes is divided into an early and a late phase.
- the early genes comprise E1a, E1b, E2a, E2b, E3 and E4, which are transcribed prior to replication of the viral genome.
- the late genes e.g., L1-5) are transcribed after replication of the viral genome.
- the products of the late genes are predominantly components of the virion, as well as proteins involved in the assembly of virions.
- gutless rAd vectors contain a minimal amount of adenovirus DNA and are incapable of expressing any adenovirus antigens (hence the term “gutless”).
- the gutless rAd vectors provide the significant advantage of accommodating large inserts of foreign DNA while completely eliminating the problem of expressing adenoviral genes that result in an immunological response to viral proteins when a gutless rAd vector is used in gene therapy.
- Methods for producing gutless rAd vectors have been described, for example, in U.S. Pat. No. 5,981,225 to Kochanek et al., and U.S. Pat. Nos. 6,063,622 and 6,451,596 to Chamberlain et al; Parks et al., PNAS 93:13565 (1996) and Lieber et al., J. Virol. 70:8944-8960 (1996).
- the “inverted terminal repeats (ITRs) of adenovirus” are short elements located at the 5′ and 3′ termini of the linear adenoviral genome, respectively and are required for replication of the viral DNA.
- the left ITR is located between 1-130 bp in the Ad genome (also referred to as 0-0.5 mu).
- the right ITR is located from about 3,7500 bp to the end of the genome (also referred to as 99.5-100 mu).
- the two ITRs are inverted repeats of each other. For clarity, the left ITR or 5′ end is used to define the 5′ and 3′ ends of the ITRs.
- the 5′ end of the left ITR is located at the extreme 5′ end of the linear adenoviral genome; picturing the left ITR as an arrow extending from the 5′ end of the genome, the tail of the 5′ ITR is located at mu 0 and the head of the left ITR is located at about 0.5 mu (further the tail of the left ITR is referred to as the 5′ end of the left ITR and the head of the left ITR is referred to as the 3′ end of the left ITR).
- the tail of the right or 3′ ITR is located at mu 100 and the head of the right ITR is located at about mu 99.5; the head of the right ITR is referred to as the 5′ end of the right ITR and the tail of the right ITR is referred to as the 3′ end of the right ITR.
- the ITRs face each other with the head of each ITR pointing inward toward the bulk of the genome.
- the tails of each ITR (which comprise the 5′ end of the left ITR and the 3′ end of the right ITR) are located in proximity to one another while the heads of each ITR are separated and face outward.
- the “encapsidation signal of adenovirus” or “adenovirus packaging sequence” refers to the ⁇ sequence which comprises five (AI-AV) packaging signals and is required for encapsidation of the mature linear genome; the packaging signals are located from about 194 to 358 bp in the Ad genome (about 0.5-1.0 m ⁇ ).
- the viral backbone shuttle vector of the present invention contains a left and a right inverted terminal repeats of adenovirus, an encapsidation signal ( ⁇ ) of adenovirus, a pBR322 replication origin, a kanamycin resistance gene, and a stuffer sequence, which is the hypoxanthine phosphoribosyltransferase (HPRT) intron fragment with an approximately 10 kb. (SEQ ID NO: 1).
- HPRT hypoxanthine phosphoribosyltransferase
- the viral backbone shuttle vector of the present invention contains multiple restriction endonuclease sites for the insertion of a foreign DNA sequence of interest.
- the viral backbone shuttle vector contains seven unique cloning sites where the foreign DNA sequence can be inserted by molecular cloning techniques that are well known in the DNA cloning art.
- the foreign DNA sequence of interest typically comprises cDNA or genomic fragments that are of interest to transfer into mammalian cells.
- Foreign DNA sequence of interest may include any naturally occurring or synthetic DNA sequence.
- the foreign DNA may be identical in sequence to naturally-occurring DNA or may be mutated relative to the naturally occurring sequence.
- the foreign DNA need not be characterized as to sequence or function.
- the size of foreign DNA that may be included in the shuttle vector will depend upon the size of the rest of the vector. If necessary, the stuffer sequence may be removed to adapt large size foreign DNA fragment.
- the total size of foreign DNA may vary from 1 kb to 35 kb. Preferably, the total size of foreign DNA is from 15 kb to 35 kb.
- the foreign DNA may encode protein, or contain regulatory sites, including but not limited to, transcription factor binding sites, promoters, enhancers, silencers, ribosome binding sequences, recombination sites, origins of replication, sequences which regulate RNA stability and polyadenylation signals.
- the promoters used may vary in their nature, origin and properties. The choice of promoter depends in fact on the desired use and on the gene of interest, in particular. Thus, the promoter may be constitutive or regulated, strong or weak, ubiquitous or tissue/cell-specific, or even specific of physiological or pathophysiological states (activity dependent on the state of cell differentiation or the step in the cell cycle).
- the promoter may be of eukaryotic, prokaryotic, viral, animal, plant, artificial or human, etc., origin. Specific examples of promoters are the promoters of the genes PGK, TK, GH, ⁇ -EF1, APO, CMV, RSV etc. or artificial promoters, such as those for p53, E2F or
- the viral backbone shuttle vector of the present invention comprises at least 15 contiguous bases of SEQ ID NO: 1, preferably comprises at least 90 contiguous bases of SEQ ID NO: 1, more preferably comprises at least 300 contiguous bases of SEQ ID NO: 1, and most preferably comprises 3000 or more contiguous bases of SEQ ID NO: 1.
- One aspect of the present invention relates to a gutless adenoviral vector that carries a DNA sequence encoding a native TM protein or a variant of a TM protein.
- the native TM protein is a human TM protein having the amino acid sequence recited in SEQ ID NO:2.
- Another aspect of the present invention also relates to a gutless adenoviral vector that carries other transgenes.
- transgenes may include, but are not limited to, those coding for cytokines such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17 and other interleukins; hematopoetic growth factors such as erythropoietin; colony stimulating factors such as G-CSF, GM-CSF, M-CSF, SCF and thrombopoietin; growth factors such as BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2; KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF- ⁇ , TGF- ⁇ and VEGF; antiviral cytokines such as interferons, antiviral proteins induced by interferons
- the DNA sequence is controlled by a regulatory element.
- the regulatory element is a constitutive promoter such as the CMV promoter or RSV promoter.
- the DNA sequence is controlled by a regulatable expression system. Systems to regulate expression of therapeutic genes have been developed and incorporated into the current viral gene delivery vectors. These systems are briefly described below:
- Tet-onloff system The Tet-system is based on two regulatory elements derived from the tetracycline-resistance operon of the E. coli Tn 10 transposon: the tet repressor protein (TetR) and the Tet operator DNA sequence (tetO) to which TetR binds.
- the system consists of two components, a “regulator” and a “reporter” plasmid.
- the “regulator” plasmid encodes a hybrid protein containing a mutated Tet repression (tetr) fused to the VP 16 activation domain of herpes simplex virus.
- the “reporter” plasmid contains a tet-responsive element (TRE), which controls the “reporter” gene of choice.
- TRE tet-responsive element
- the tetr-VP 16 fusion protein can only bind to the TRE, therefore activate the transcription of the “reporter” gene, in the presence of tetracycline.
- the system has been incorporated into a number of viral vectors including retrovirus, adenovirus (Gossen and Bujard, PNAS USA 89: 5547-5551, [1992]; Gossen et al., Science 268: 1766-1769, [1995]; Kistner et al., PNAS USA 93: 10933-10938, [1996]).
- Ecdysone system The Ecdysone system is based on the molting induction system found in Drosophila, but modified for inducible expression in mammalian cells.
- the system uses an analog of the drosophila steroid hormone ecdysone, muristerone A, to activate expression of the gene of interest via a heterodimeric nuclear receptor. Expression levels have been reported to exceed 200-fold over basal levels with no effect on mammalian cell physiology (No et al., PNAS USA 93: 3346-3351, [1996]).
- the progesterone receptor is normally stimulated to bind to a specific DNA sequence and to activate transcription through an interaction with its hormone ligand.
- the progesterone antagonist mifepristone (RU486) is able to block hormone-induced nuclear transport and subsequent DNA binding.
- a mutant form of the progesterone receptor that can be stimulated to bind through an interaction with RU486 has been generated.
- the RU486-binding domain of the progesterone receptor has been fused to the DNA-binding domain of the yeast transcription factor GAL4 and the transactivation domain of the HSV protein VP16.
- the chimeric factor is inactive in the absence of RU486.
- Rapamycin-system Immunosuppressive agents, such as FK506 and rapamycin, act by binding to specific cellular proteins and facilitating their dimerization. For example, the binding of rapamycin to FK506-binding protein (FKBP) results in its heterodimerization with another rapamycin binding protein FRAP, which can be reversed by removal of the drug. The ability to bring two proteins together by addition of a drug potentiates the regulation of a number of biological processes, including transcription. A chimeric DNA-binding domain has been fused to the FKBP, which enables binding of the fusion protein to a specific DNA-binding sequence. A transcriptional activation domain also has been used to FRAP.
- FKBP FK506-binding protein
- a fully functional transcription factor can be formed by heterodimerization mediated by addition of rapamycin.
- the dimerized chimeric transcription factor can then bind to a synthetic promoter sequence containing copies of the synthetic DNA-binding sequence.
- This system has been successfully integrated into adenoviral vectors. Long-term regulatable gene expression has been achieved in both mice and baboons (Magari et al., J. Clin. Invest. 100: 2865-2872, [1997]; Ye et al., Science 283:88-91, [1999]).
- the instant invention uses a gutless adenovirus vector to express a native thrombomodulin protein or a variant of the thrombomodulin protein at a vessel graft or angioplasty site to prevent or reduce re-occlusion and intimal hyperplasia.
- the amino acid sequence of human thrombomodulin (SEQ ID NO: 2) and the DNA sequence encoding human thrombomodulin (SEQ ID NO: 3) have been reported (Suzuki et al. EMBO J. 6:1891-1897, [1987]).
- the in vivo expression of thrombomodulin or a thrombomodulin variant is used for the treatment of atherosclerotic cardiovascular disease (CVD).
- CVD atherosclerotic cardiovascular disease
- venous grafts can be used for bypass surgeries, the veins eventually, become occluded by thrombosis resulting the recurrence of the diseases.
- TM gene delivery is used in coronary artery bypass grafting, and vascular graft prostheses to block thrombosis.
- TM gene is introduced into a segment of blood vessel in vitro using a gene transfer vector.
- TM gene delivery can be also used for the reduction of no-intima formation, for the prevention of atherosclerosis; for the prevention of myocardial infarction and for the inhibition of fibrinolysis in hemophilic plasma.
- TM gene transfer at the site of thrombus formation is potent approach to reverse these vascular diseases.
- in vivo TM expression is achieved by embedding a gene transfer vector in a stent which is placed at the treatment site following percutaneous transluminal coronary angioplasty, peripheral artery angioplasty, thrombectomy, or an intravascular stenting procedure.
- the in vivo expression of thrombomodulin, or a thrombomodulin variant is used for the treatment of end stage renal failure (ESRD).
- ESRD patients often exhibit decreased antithrombotic activity due to low TM levels.
- enhanced in vivo TM gene expression can be potentially very useful.
- the in vivo TM expression is achieved by administering a gene transfer vector to a mammal intravenously (i.v.), intramuscularly (i.m.), intraperitoneally (i.p.) or subcutaneously.
- a gene transfer vector to a mammal intravenously (i.v.), intramuscularly (i.m.), intraperitoneally (i.p.) or subcutaneously.
- intravenous administration often lead to viral infection of hepatocytes and transgene expression in the liver.
- FIG. 1 An embodiment of a gutless viral backbone shuttle vector pShuttle-ITR-HPRT is shown in FIG. 1 .
- Sequence portion containing R-ITR, PBR322 ori, Kan, L-ITR, and encapsidation signal was obtained from the pAdEasy® system from STRATEGENE®.
- PCR primers were designed to include the BamHI site and then were to create an EcoRI site at the end of the R-ITR.
- the R-ITR was PCR replicated and then digested with BamHI and EcoRI to create sticky ends.
- the viral backbone was then cut with both BamHI and EcoRI.
- the backbone portion of the plasmid was then gel purified and the PCR replicated R-ITR was recloned into position. This essentially puts the L-ITR, encapsidation signal, MCS, and R-ITR all in close proximity to each other.
- Insertion of the HPRT introns was a two step cloning process.
- the viral backbone pShuttle-ITR was digested with EcoRI and XbaI, both enzyme sites are in the MCS.
- the HPRT source was also digested with EcoRI and XbaI yielding a 7477 bp fragment that was cloned into the EcoRI/XbaI digested viral backbone.
- the HPRT source was digested with only XbaI yielding a 2715 bp fragment.
- One of the XbaI sites in this cut is the same XbaI site that was cut from the EcoRL/XbaI double digest in step 1.
- the viral backbone was cut with only XbaI and the 2715 bp fragment was inserted.
- the HPRT stuffer sequence is inserted into the viral backbone in reverse orientation, hence intron 5, then 4, then 3.
- the 2715 bp fragment was inserted and checked to follow the original source sequence.
- the new plasmid is designated as pShuttle-ITR-HPRT (SEQ ID NO:1)
- the insertion of hTM into the gutless adenovirus backbone first required the creation of a CMV-hTM expression cassette.
- the intermediate vector used was pcDNA3.1/Zeo(+) (Invitrogen).
- a CMV promoter is available commercially and a CMV promoter was cloned into the multiple cloning sites (MCS) at the XbaI/EcoRV restriction enzyme site locations.
- MCS multiple cloning sites
- pcDNA3.1/Zeo(+) was cleaved inside the MCS using both XbaI and EcoRV as well.
- the CMV promoter was then ligated.
- the CMV promoter (SEQ ID NO:4) was inserted in a backwards orientation relative to the pcDNA3.1/Zeo (+) plasmid.
- the human TM cDNA (SEQ ID NO:5) was obtained from Dr. Sadler (Dittman et al., Biochemistry, 26(14):4350-4357 [1987]) which the sequence was also submitted to ATCC and to GenBank.
- the human TM gene was removed from the plasmid using EcoRI and inserted into pcDNA3.1/Zeo(+), also in the reverse orientation to pcDNA3.1/Zeo(+) downstream of the inserted CMV promoter.
- the expression cassette in pCMV-hTM was removed by digesting with PmeI.
- the gutless adenovirus backbone pshuttle-ITR-HPRT was linearized using SmaI which cuts the plasmid at bp 381.
- the CMV-hTM cassette was ligated to the gutless virus in the forwards orientation. Sequence of the expression cassette (from PmeI site to PmeI site) is shown in SEQ ID NO:6.
- the new plasmid is designated as pShuttle-ITR-HPRT-CMV-TM.
- Amplification of a human DNA sample resulted in the amplification of a 18524 bp DNA fragment (stuffer 1, SEQ ID NO: 12).
- Stuffer 1 was cut with the restriction enzymes BstEII and SfiI and the resulting fragment of approximately 18371 bp was inserted into the BsteII and SfiI sites of pTMadap, resulting in pTMadap-stuffer 1.
- pTMadap-stuffer1 was digested with SanDI and BstEII and the resulting DNA ends were modified by a fill-in reaction with Klenow. Re-ligation resulted in the 25207 bp vector pTMadap-stuffer1-short.
- the sequence of stuffer1-short fragment is shown in SEQ ID NO:13.
- the plasmid p2-2 (SEQ ID NO: 14, obtained from GenBank) was cut with NotI and the resulting fragment of approximately 5954 bp (stuffer 2, SEQ ID NO: 15) was inserted into the NotI site of pTMadap-stuffer1 short, resulting in pTMadap-stuffer1-short-stuffer2.
- Plasmid pTMadap-stuffer1-short-stuffer2 was cut with AclI and BsiW1.
- the resulting 28790 bp fragment was isolated from gel.
- pShuttle-ITR-HPRT (SEQ ID NO:1) was cut with AclI and Acc65I.
- the resulting 1966 bp fragment was ligated into the isolated 28790 bp fragment, resulting in the full length backbone vector pTM-final ( FIG. 2 and SEQ ID NO: 16).
- LacZ also required creation of an intermediate vector to create the expression cassette.
- pcDNA3.1/Zeo (+) was again used.
- the LacZ gene was inserted into the vector MCS using NotI/Xbal.
- the gutless Ad.hTM was prepared according to the following protocol:
- 293FLP cells grown in a 60 mm dish at about 80% confluence with about 5 ⁇ g of PacI-digested pTM-final using lipofectamine.
- 293FLP cells are 293 cells engineered to express the flp gene product, which recognizes the FRS flanking the encapsidation signal and cleaves out the encapsidation signal thereby not allowing helper-viral DNA to be packaged.
- CsCl was prepared to density 1.33 g/ml.
- Two fresh ultra-clear tubes were placed 8 mL of CsCl and overlay the band just recovered after the first spin. (To equilibrate the tubes, measure before the volume of the recovered band and divide equally in the 2 tubes). Samples were centrifuged at the conditions above for 18 hours. The opalescent band was recovered and collected in a sterile eppendorf tube. (From this moment, keep the tube always on ice).
- BioRad protein estimation kit was used with 1:5 diluting, and placing 1 ml in each disposable cuvette. Standards were set up at 0, 1, 2, 5 10, and 15 ⁇ g/ml. (BSA is fine). Sample cuvettes were prepared using 1-10 ⁇ l of sample, depending on estimate of titer. (Sample OD must be within the linear range of the standard line.) OD was taken at 595 ⁇ and formula of the line was calculated from standards. The protein concentration of the samples was calculated using this formula. The following formula was used to convert protein concentration to titer: [12.956+224.15 ( ⁇ g/ml)] ⁇ 10 8 .
- HEK 293 cells were cultured in a 6 well cluster and transfected with 1 ⁇ g of pTM-final. After 24 hours, the cells were washed with PBS and lysed in 125 ⁇ l RIPA buffer with protease inbitors Protein samples (16 ⁇ l) were separated on 7.5% polyacrylamide/SDS gel and transferred to nitrocellulose membrane.
- Primary antibody TM c-17
- secondary antibody Polyclonal Rabbit Anti-Goat Immunoglobulins/HRP (1:4000, DakoCytomation
- the RIPA buffer was prepared according the following recipe: mixing 100 ⁇ l Igepal ca-630, 50 mg sodium deoxycholate, 500 ⁇ l 20% SDS, 10 mM ⁇ -mercapto ethanol, and 1 ml 10 ⁇ PBS, and add water to a final volume of 10 ml at room temperature.
- a cocktail of protease inhibitors containing 11.5 ⁇ l PMSF (from 34.8 mg/ml in isopropanol, 64 ⁇ l Benzamidine (from 15.6 mg/ml stock), 100 ⁇ l sodium orthovanadate (100 mM), 5 ⁇ l pepstadine (from 1 mg/ml stock), 1 ⁇ l leupeptine (from 5 mg/ml stock), and 1 ⁇ l aprotin (from 5 mg/ml stock) was added to the RIPA buffer immediately before use.
- the P2 lysate was generated as described in Example 3. After CPE was observed, 293FLP cells were detached from the bottom of the culture flask by repeated tapping of the flask. 1 ml of the total of 10 ml of cell suspension was used for the detection of TM expression. The cells in the 1 ml cell suspension were collected by centrifugation for 10 min at 300 ⁇ g and lysed in 250 ⁇ l RIPA buffer. 7 ul of 5 ⁇ loading buffer was added to 35 ⁇ l of the lysed cells and the resulting solution was immersed in boiling water for 3 minutes.
- the 5 ⁇ loading buffer was prepared by mixing 20.0 ml 30% SDS, 11.5 ml 2M sucrose, 6.5 ml 2M Tris-HCL pH 6.8, 2.0 ml beta-mercaptoethanol and bromophenolblue.
- the RIPA buffer was prepared as described in Example 4(A).
- Vena cava was excised from rats and cut into six segments of approximately 3 mm long. The segments were incubated for 30 minutes in medium containing gutless luc or TM virus. After incubation, the segments were washed three times and transferred to a 24-well plate containing DMEM. The segments were incubated overnight in an atmosphere of 95% O 2 and 5% CO 2 with gentle shaking. After 24 hours of incubation the segments were frozen. The frozen sections were thawed in lysis buffer and loaded onto a 7.5% SDS acrylamide gel. After blotting, the blot was probed with an antibody against human TM.
- the Western blot clearly shows that within 24 hours TM expression can be detected ( FIG. 5 ).
- HUVEC cells will be infected the gutless adenovirus expressing LacZ. These cells will subsequently be stained with X-gal to look for blue cells. This will demonstrate the viability of the gutless adenovirus backbone itself.
- the TM-vector backbone was released by digestion with PacI.
- HEK 293 cells were cultured in a 6 well cluster and transfected with 200 ⁇ l of TM gutless virus of passage 1-6. After 24 hours, the cells were washed with PBS and lysed in 125 ⁇ l RIPA buffer. Protein samples (16 ⁇ l) were separated on a 7.5% polyacrylamide/SDS gel and transferred to nitrocellulose membrane. Primary antibody TM (c-17) (1:2000, Santa Cruz) and secondary antibody Polyclonal Rabbit Anti-Goat Immunoglobulins/HRP (1:4000, DakoCytomation) were used to detect the proteins. As shown in FIG. 6 , TM expression is higher in cells infected with virus of higher passage numbers, indicating successful amplification of TM gutless virus in 293 CRE cells.
- the RIPA buffer (10 ml) was prepared as follows: 100 ⁇ l Igepal ca-630, 50 mg sodium deoxycholate, 500 ⁇ l 20% SDS, 10 mM ⁇ -mercapto ethanol, 1 ml 10 ⁇ PBS, add water to make up 10 ml.
- protease inhibitors were added to the RIPA buffer: 115 ⁇ l PMSF (from 34, 8 mg/ml in isopropanol), 64 ⁇ l Benzamidine (from 15,6 mg/ml stock), 100 ⁇ l sodium orthovanadate (100 mM), 5 ⁇ l pepstatin (from 1 mg/ml stock), 1 ⁇ l leupeptin (from 5 mg/ml stock), 1 ⁇ l aprotin (from 5 mg/ml stock).
- composition of The Complete Viral Delivery System (CVDS)
- the Complete Viral Delivery System composes of 1:1 mixture of Ham's F12 medium and DMEM, an effective amount of a gutless virus vector carrying a polynucleotide encoding a thrombomodulin protein or a variant of a thrombomodulin protein, and an a cellular oxygen carrier.
- Preferred oxygen carrier includes: unmodified or chemically modified hemoglobin in the range of 3 g/dl to 10 g/dl and perfluorochemical emulsions.
- the CVDS may optionally contain 1 mM L-glutamine (Sigma), 1.5 g/L sodium bicarbonate (Sigma), 1 ⁇ antibiotic-antimycotic (GIBCO® 15240). The CVDM maintains tissue viability during the viral treatment of blood vessel.
- a vein segment is harvested from the leg and is stored in Ham's F12 medium.
- Gutless adenovirus suspended in CVDM is then injected into the isolated vein segment and incubated for 10 to 40 minutes depending on the desired level of transfection.
- the infection may be performed under pressure to enhance efficiency.
- the vein segment is washed several times to eliminate all viral particles that have not entered the endothelial cells of the vein segment, and is then grafted into the desired treatment site.
- the thorough rinse avoids the spread of the viral vector to other organs of the body following in situ grafting, and any systemic immune response to the viral vector.
- the vein in the leg is treated following evacuation of the clot.
- a catheter is inserted in the leg vein and both the proximal and distal balloons are inflated to isolate the vein segment to be transfected.
- the segment is evacuated of all blood, rinsed with physiologic saline.
- the segment is then filled with the CVDS described above, under pressure.
- the isolated vein segment is exposed to the CVDS for a period of 10 to 45 minutes, depending upon the desired transfection efficiency.
- the vein in the kidney is treated following evacuation of the clot.
- a catheter is inserted in the kidney vein and both the proximal and distal balloons are inflated to isolate the vein segment to be transfected.
- the segment is evacuated of all blood, rinsed with physiologic saline; it is then filled with the CVDS described above, under pressure.
- the isolated vein segment is exposed to the CVDS for a period of 10 to 45 minutes, depending upon the desired transfection efficiency.
- a virus-coated stent is placed at a treatment site after angioplasty.
- the virus is a gutless adenovirus carrying a polynucleotide encoding a thrombomodulin protein or a variant of a thrombomodulin protein.
- the virus may be embedded in the stent and is releases gradually through a time-releasing mechanism well-known to one skilled in the art.
- the tail vein of experimental rats was flushed with a solution containing a gutless adenoviral vector carrying a luciferase transgene.
- the expression of luciferase was still very strong in the tail vein eight days after viral infection.
- TM expression in liver will be analyzed by the rate of blood coagulation (APTT) and by Western blot of liver biopsy samples.
- APTT blood coagulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This application is a continuation-in-part application of U.S. Ser. No. 10/725,013, filed Dec. 2, 2003 which claims priority from U.S. Provisional Application Ser. No. 60/430,099 filed Dec. 2, 2002. The entirety of all of the aforementioned applications is incorporated herein by reference.
- The present invention is directed to methods and compositions for the treatment of cardiovascular and peripheral vascular diseases, and in particular, is directed to methods and compositions for ex vivo and in vivo expression of the thrombomodulin gene using gutless adenovirus vector.
- Atherosclerosis is one of the chief causes of morbidity and mortality in the United States and many other countries of the world. (Zuckerbraun et al., Arch Surg. 137:854-861 [2002]; Kibbe et al., Circ Res. 86:829-33 [2000]). This process can result in limiting the flow of blood to the heart, kidneys and the peripheral vessels, to name a few. Current approaches to the treatment of lesions in the arteries include coronary artery by-pass graft (CABG) surgery and angioplasty with or without the placement of a stent. The latter may serve as a vehicle for drug delivery, as is currently being tested in clinical trials. A number of pharmacological agents that affect platelet function or provide anticoagulant properties have so far failed to reduce re-occlusion or intimal hyperplasia. (Kibbe et al., Circ Res. 86:829-33 [2000]).
- Cardiovascular diseases, however, are the result of complex pathophysiologic processes that involve the expression of many proteins and molecules that can adversely affect the grafted vessel (Shears et al., J. Am Coll Surg., 187(3):295-306 [1998]; Ross et al., Nature, 362:801-9 [1993]). Approximately 15-30% of patients receiving vein grafts for coronary or peripheral vascular disease require follow-up treatment, either in the form of angioplasty or new grafts.
- Thrombomodulin (TM) is an integral membrane glycoprotein expressed on the surface of endothelial cells (Sadler et al., Trhomb Haemost., 78:392-95 [1997]). It is a high affinity thrombin receptor that converts thrombin into a protein C activator. Activated protein C then functions as an anticoagulant by inactivating two regulatory proteins of the clotting system, namely factors Va and VI [I]a (Esmon et al., Faseb J., 9:946-55 [1995]). The latter two proteins are essential for the function of two of the coagulation proteases, namely factors IXa and Xa. TM thus plays an active role in blood clot formation in vivo and can function as a direct or indirect anticoagulant.
- There are several other proteins or enzymes that have shown to reduce the process of intimal hyperplasia, whose evolution is the cause of late graft failure. For instance, Nitric oxide synthase, an enzyme expressed by endothelial cells has been shown in animal models to inhibit intimal hyperplasia, especially the inducible enzyme (iNOS) (Salmaa et al., Lancet, 353:1729-34 [1999]; Palmer et al., Nature, 327:524-26 [1987]; Kubes et al., PNAS USA., 88:4651-5 [1991]).
- Animal studies shown that cytoxic gene transfection utilizing the Herpes Simplex Virus thymydine kinase gene delivered via an adenoviral vector was able to inhibit intimal hyperplasia (Steg et al., Circulation, 96:408-11 [1997]). Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and platelet derived growth factor (PDGF) have all been shown to promote reendothelization and enhance the healing of vascular injury and help limit intimal hyperplasia. (Ban Bellle et al., Biochem Biophs Res Commun., 235:311-16 [1997]; Salyapongse et al., Tissue Engineering 26(4):663-76 [1999]).
- A gene therapy approach is currently under clinical investigation. It involves the injection, directly into heart muscles, of an adenoviral vector delivery system containing the gene for the expression of vascular endothelial growth factor (VEGF). This is being tested in patients whose coronary vessels are not amenable to standard grafting procedures. However, some recent adverse clinical events demonstrated that injection of large quantities of adenovirus vectors is associated with significant risks. Accordingly, there still exists a need for a method to effectively introduce therapeutic genes, such as TM, into vascular tissues.
- One aspect of the present invention relates to methods for treating a vascular disease in a mammal. In one embodiment, the method comprises the steps of: infecting a segment of blood vessel in vitro using a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, and grafting the virus-treated blood vessel in the mammal, wherein the thrombomodulin protein or its variant is expressed in a amount sufficient to reduce re-occlusion or intimal hyperplasia in the grafted blood vessel, and wherein the gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- In another embodiment, the method comprises the steps of: evacuating a clot from a blood vessel in the mammal, isolating a segment of the blood vessel around the evacuation site, and infecting the segment of blood vessel in vivo using a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, wherein the thrombomodulin protein or its variant is expressed in a amount sufficient to reduce re-occlusion or intimal hyperplasia in the infected blood vessel, and wherein said gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- In another embodiment, the method comprises the step of administering a therapeutically effective amount of a gutless adenovirus vector into a segment of a blood vessel in vivo using a stent, wherein the gutless adenovirus vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15, and is capable of expressing a thrombomodulin protein or a variant of the thrombomodulin protein.
- In another embodiment, the method comprises the step of administering intravenously an effective amount of a gutless adenoviral vector comprising a polynucleotide encoding a thrombomodulin protein or its variant, wherein the gutless adenoviral vector comprises the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Another aspect of the present invention pertains to a gutless adenovirus vector comprising the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Another aspect of the present invention pertains to a gutless adenovirus vector comprising a polynucleotide encoding a thrombomodulin protein having the amino acid sequence of SEQ ID NO:2, a regulatory element operably linked to the polynucleotide sequence; and a stuffer comprising the nucleotide sequence of SEQ ID NO:13 or SEQ ID NO:15.
- Yet another aspect of the present invention pertains to a pharmaceutical composition for treating a vascular disease, comprising the gutless adenovirus vector described above and a pharmaceutically acceptable carrier.
-
FIG. 1 is a schematic drawing of an embodiment of the backbone shuttle vector pShuttle-ITR-HPRT. -
FIG. 2 is a schematic drawing of an embodiment of the full length backbone vector pTM-final. -
FIG. 3 is a picture of a Western blot showing hTM expression in HEK 293 cells transfected with pTM-final (the full size backbone of gutless Ad.hTM). Lanes 1-3: lysate from control cells; Lanes 4-6, lysate from pTM-final transfected cells. -
FIG. 4 is a picture of a Western slot blot showing hTM expression in 293FLP cells (passage number 2 (P2) during viral amplification).Row 1, lane 1-3: TM detection using 5 ul cell lysate of P2.Row 2, lane 1-3: TM detection using 30 ul cell lysate of P2.Row 3, lane 1-3: negative control cells. -
FIG. 5 is a picture of a Western blot showing hTM expression in rat vena cava infected with gutless TM virus. -
FIG. 6 is a picture of a Western bolt showing TM expression in CRE cells at passage number 1-6 (P1-P6). -
FIG. 7 is a composite of images showing gutless adenovirus-mediated luciferase expression in rat tail vein. - The practice of the present invention will employ, unless otherwise indicated, conventional methods of histology, virology, microbiology, immunology, and molecular biology within the skill of the art. Such techniques are explained fully in the literature. All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
- The primary object of the present invention is to provide methods for treating vascular diseases using gene delivery technologies. One aspect of the present invention relates to a method for treating a vascular disease by introducing a DNA sequence encoding a TM protein or its variant into a segment of a blood vessel in vitro using a gutless adenovirus vector and grafting the virus-treated vessel in a patient affected by a vascular disease. The virus-mediated TM expression reduces re-occlusion and intimal hyperplasia in the grafted vessel. This ex vivo approach eliminates the need to inject a large quantity of virus into a patient and hence significantly reduces the viral-related toxicity.
- In one embodiment, the method is used for a coronary artery bypass. In another embodiment, the method is used for the treatment of peripheral vascular diseases. In yet another embodiment, the method is used for the maintenance of vein access in renal dialysis patients.
- Another object of the present invention is to provide a method to deliver a gutless adenovirus vector carrying a DNA sequence encoding a TM protein or its variant using a stent. The viral vector is embedded in the stent and is released only at a treatment site. Since the viral infection is restricted at the treatment site and the surrounding area, only a small amount of the virus is needed and the virus-related toxicity is reduced.
- Yet another object of the present invention pertains to a gutless adenovirus carrying a TM gene. In one embodiment, the gutless adenovirus, which contains a regulatory element operably linked to a DNA sequence encoding a TM protein or its variant and a polyA sequence, is produced using a novel shuttle vector containing a pBR322 replication origin, a selection marker, an adenovirus left inverted terminal repeat, an adenovirus encapsidation signal, a stuffer sequence, and an adenovirus left inverted terminal repeat.
- In one embodiment, the regulatory element is a constitutive promoter such a CMV promoter and RSV promoter. In another embodiment, the regulatory element is an inducible promoter.
- The forth object of the present invention is to provide a pharmaceutical composition which comprises an effective amount of gutless adenovirus carrying a TM gene of the present invention and a pharmaceutically acceptable carrier. Such compositions may be liquids or lyophilized or otherwise dried formulations and may further include diluents of various buffer content, (e.g., Tris-HCl, acetate, phosphate) pH and ionic strength, additives such as albumin and gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycerol); anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g. Thimerosal, benzyl alcohol, parabens).
- In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.
- “Gene transfer” or “gene delivery” refers to methods or systems for reliably introducing a particular nucleotide sequence (e.g., DNA) into targeted cells. The introduced nucleotide sequences may persist in vivo in episomal forms or integrate into the genome of the target cells. Gene transfer provides a unique approach for the treatment of acquired and inherited diseases, and a number of systems have been developed in the art for gene transfer into mammalian cells. See, e.g., U.S. Pat. No. 5,399,346.
- As used herein, the term “effective amount” refers to a level of infection which brings about at least partially a desired therapeutic or prophylactic effect in an organ or tissue infected by the method of the present invention. The infection with an effective amount of the vector carrying genetic material of interest can then result in the modification of the cellular activities, e.g., a change in phenotype, in an organ or a tissue that has been infected by the method of the present invention. In a preferred embodiment, the infection with an effective amount of the vector carrying genetic material of interest results in modulation of cellular activity in a significant number of cells of an infected organ or a tissue.
- A gene transfer “vector” refers to any agent, such as a plasmid, phage, transposon, cosmid, chromosome, liposome, DNA-viral conjugates, RNA/DNA oligonucleotides, virus, bacteria, etc., which is capable of transferring gene sequences into cells. Thus, the term includes cloning and expression vehicles including “naked” expression vectors, as well as viral and non-viral vectors. A vector may be targeted to specific cells by linking a target molecule to the vector. A targeting molecule is any agent that is specific for a cell or tissue type of interest, including for example, a ligand, antibody, sugar, receptor, or other binding molecule. The invention is also intended to include such other forms of vectors which serve equivalent functions and which become known in the art subsequently hereto.
- The term “expression control element” or “regulatory element” refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites (“IRES”), enhancers, and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell.
- The term “promoter” is used herein in its ordinary sense to refer to a, DNA regulatory sequence that is sufficient for RNA polymerase recognition, binding and transcription initiation. Additionally, a promoter includes sequences that modulate the recognition, binding and transcription initiation activity of RNA polymerase. Such sequences may be cis acting or may be responsive to trans acting factors. Depending upon the nature of the regulation, promoters may be constitutive or regulated. Examples of promoters are SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, phosphoglycerate kinase (PGK) promoter, muscle creatine kinase (MCK) promoter, myosin promoter, (α-actin promoter) and the like.
- The term “transduction” denotes the delivery of a DNA molecule to a recipient cell either in vivo or in vitro, via a replication-defective viral vector, such as via a recombinant adenovirus.
- “Operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, control elements operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The control elements need not be contiguous with the coding sequence, so long as the function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
- The term “primer” refers to an oligonucleotide which is capable of acting as a point of initiation of synthesis when placed under conditions in which primer extension is initiated. An oligonucleotide “primer” may occur naturally, as in a purified restriction digest or may be produced synthetically.
- A primer is selected to be “substantially” complementary to a strand of specific sequence of the template. A primer must be sufficiently complementary to hybridize with a template strand for primer elongation to occur. A primer sequence need not reflect the exact sequence of the template. For example, a non-complementary nucleotide fragment may be attached to the 5′ end of the primer, with the remainder of the primer sequence being substantially complementary to the strand. Non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementarity with the sequence of the template to hybridize and thereby form a template primer complex for synthesis of the extension product of the primer.
- “Hybridization” methods involve the annealing of a complementary sequence to the target nucleic acid (the sequence to be detected). The ability of two polymers of nucleic acid containing complementary sequences to find each other and anneal through base pairing interaction is a well-recognized phenomenon. The initial observations of the “hybridization” process by Marmur and Lane, PNAS USA 46:453 (1960) and Doty et al., PNAS USA 46:461 (1960) have been followed by the refinement of this process into an essential tool of modern biology.
- The complement of a nucleic acid sequence as used herein refers to an oligonucleotide which, when aligned with the nucleic acid sequence such that the 5′ end of one sequence is paired with the 3′ end of the other, is in “antiparallel association.” Certain bases not commonly found in natural nucleic acids may be included in the nucleic acids of the present invention and include, for example, inosine and 7-deazaguanine. Complementarity need not be perfect; stable duplexes may contain mismatched base pairs or unmatched bases. Those skilled in the art of nucleic acid technology can determine duplex stability empirically considering a number of variables including, for example, the length of the oligonucleotide, base composition and sequence of the oligonucleotide, ionic strength and incidence of mismatched base pairs.
- Stability of a nucleic acid duplex is measured by the melting temperature, or “Tm.” The Tm. of a particular nucleic acid duplex under specified conditions is the temperature at which on average half of the base pairs have disassociated. The equation for calculating the Tm. of nucleic acids is well known in the art.
- Two DNA sequences are “substantially homologous” when at least about 75% (preferably at least about 80%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data bands, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. Suitable conditions include those characterized by a hybridization buffer comprising 0.9M sodium citrate (“SSC”) buffer at a temperature of about 37° C. and washing in SSC buffer at a temperature of about 37° C.; and preferably in a hybridization buffer comprising 20% formamide in 0.9M SSC buffer at a temperature of about 42° C. and washing in 0.2×SSC buffer at about 42° C. Stringency conditions can be further varied by modifying the temperature and/or salt content of the buffer, or by modifying the length of the hybridization probe as is known to those of skill in the art. Defining appropriate hybridization conditions is within the skill of the art. See e.g., Sambrook, J. Fritsch, E. J., & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, N.Y.).
- The term “probe” as used herein refers to a labeled oligonucleotide which forms a duplex structure with a sequence in another nucleic acid, due to complementarity of at least one sequence in the probe with a sequence in the other nucleic acid.
- The term “label” as used herein refers to any atom or molecule which can be used to provide a detectable (preferably quantifiable) signal, and which can be attached to a nucleic acid or protein. Labels may provide signals detectable by fluorescence, radioactivity, colorimetry, gravimetry, X-ray diffraction or absorption, magnetism, enzymatic activity, and the like.
- The terms “nucleic acid substrate” and nucleic acid template” are used herein interchangeably and refer to a nucleic acid molecule which may comprise single- or double-stranded DNA or RNA.
- “Oligonucleotide primers matching or complementary to a gene sequence” refers to oligonucleotide primers capable of facilitating the template-dependent synthesis of single or double-stranded nucleic acids. Oligonucleotide primers matching or complementary to a gene sequence may be used in PCRs, RT-PCRs and the like.
- A “consensus gene sequence” refers to a gene sequence which is derived by comparison of two or more gene sequences and which describes the nucleotides most often present in a given segment of the genes; the consensus sequence is the canonical sequence.
- The term “native thrombomodulin” refers to both the natural protein and soluble peptides having the same characteristic biological activity of membrane-bound or detergent solubilized (natural) thrombomodulin. These soluble peptides are also referred to as “wild-type” or “non-mutant” analog peptides. Biological activity is the ability to act as a receptor for thrombin, increase the activation of protein C, or other biological activity associated with native thrombomodulin. Oxidation resistant TM analogs are these soluble peptides that in addition to being soluble contain a specific artificially induced mutation in their amino acid sequence.
- The term “thrombomodulin variant” is a polypeptide that differs from a native thrombomodulin polypeptide in one or more substitutions, deletions, additions and/or insertions, such that the bioactivity of the native thrombomodulin polypeptide is not substantially diminished or enhanced. In other words, the bioactivity of a thrombomodulin variant may be enhanced or diminished by, less than 50%, and preferably less than 20%, relative to the native protein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the—and/or C-terminal of the mature protein.
- Preferably, a thrombomodulin variant contains conservative substitutions. A “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the bioactivity, secondary structure and hydropathic nature of the polypeptide.
- Thrombomodulin variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% sequence homology to the original thrombomodulin polypeptide.
- A thrombomodulin variant also includes a thrombomodulin polypeptides that is modified from the original thrombomodulin polypeptides by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross links, formation of cysteine, formation of pyroglutamate, formulation, gammacarboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
- Adenovirus Vectors:
- The genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lyric viral life cycle (Curie D T, Ann NY Acad Sci 886, 158-171 [1991]). Suitable adenoidal vectors derived from the adenovirus
strain Ad type 5 dl324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are well known to those skilled in the art. Recombinant adenoviruses are advantageous in that they do not require dividing cells to be effective gene delivery vehicles and can be used to infect a wide variety of cell types, including airway epithelium, endothelial cells and muscle cells. Additionally, introduced adenoidal DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA). Moreover, the carrying capacity of the adenoidal genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Haj-Ahmand et al. J. Virol. 57, 267-273 [1986]). Most replication-defective adenoidal vectors currently in use are deleted for all or parts of the viral E1 and E3 genes but retain as much as 80% of the adenoidal genetic material. Adenoidal vectors deleted for all viral coding regions are also described by Kochanek et al. and Chamberlain et al. (U.S. Pat. No. 5,985,846 and U.S. Pat. No. 6,083,750). - Adenovirus vectors have been successfully tested in a number of animal models (Ragot et al. Nature 361, 647-650 [1993]; Howell et al. Hum Gene Ther 9, 629-634 [1998]). Nonetheless, the toxicity and immunogenicity remain major hurdles to overcome before the adenovirus vectors can be safely used in humans.
- Adenoviruses (Ad) are double-stranded DNA viruses with a linear genome of about 36 kb. The adenovirus genome is complex and contains over 50 open reading frames (ORFs). These ORFs are overlapping and genes encoding one protein are often embedded within genes coding for other Ad proteins. Expression of Ad genes is divided into an early and a late phase. The early genes comprise E1a, E1b, E2a, E2b, E3 and E4, which are transcribed prior to replication of the viral genome. The late genes (e.g., L1-5) are transcribed after replication of the viral genome. The products of the late genes are predominantly components of the virion, as well as proteins involved in the assembly of virions.
- The so-called “gutless” rAd vectors contain a minimal amount of adenovirus DNA and are incapable of expressing any adenovirus antigens (hence the term “gutless”). The gutless rAd vectors provide the significant advantage of accommodating large inserts of foreign DNA while completely eliminating the problem of expressing adenoviral genes that result in an immunological response to viral proteins when a gutless rAd vector is used in gene therapy. Methods for producing gutless rAd vectors have been described, for example, in U.S. Pat. No. 5,981,225 to Kochanek et al., and U.S. Pat. Nos. 6,063,622 and 6,451,596 to Chamberlain et al; Parks et al., PNAS 93:13565 (1996) and Lieber et al., J. Virol. 70:8944-8960 (1996).
- The “inverted terminal repeats (ITRs) of adenovirus” are short elements located at the 5′ and 3′ termini of the linear adenoviral genome, respectively and are required for replication of the viral DNA. The left ITR is located between 1-130 bp in the Ad genome (also referred to as 0-0.5 mu). The right ITR is located from about 3,7500 bp to the end of the genome (also referred to as 99.5-100 mu). The two ITRs are inverted repeats of each other. For clarity, the left ITR or 5′ end is used to define the 5′ and 3′ ends of the ITRs. The 5′ end of the left ITR is located at the extreme 5′ end of the linear adenoviral genome; picturing the left ITR as an arrow extending from the 5′ end of the genome, the tail of the 5′ ITR is located at mu 0 and the head of the left ITR is located at about 0.5 mu (further the tail of the left ITR is referred to as the 5′ end of the left ITR and the head of the left ITR is referred to as the 3′ end of the left ITR). The tail of the right or 3′ ITR is located at
mu 100 and the head of the right ITR is located at about mu 99.5; the head of the right ITR is referred to as the 5′ end of the right ITR and the tail of the right ITR is referred to as the 3′ end of the right ITR. In the linear adenoviral genome, the ITRs face each other with the head of each ITR pointing inward toward the bulk of the genome. When arranged in a “tail to tail orientation” the tails of each ITR (which comprise the 5′ end of the left ITR and the 3′ end of the right ITR) are located in proximity to one another while the heads of each ITR are separated and face outward. - The “encapsidation signal of adenovirus” or “adenovirus packaging sequence” refers to the ψ sequence which comprises five (AI-AV) packaging signals and is required for encapsidation of the mature linear genome; the packaging signals are located from about 194 to 358 bp in the Ad genome (about 0.5-1.0 mμ).
- One aspect of the present invention relates to a viral backbone shuttle vector for the construction of gutless rAd vectors. In one embodiment, the viral backbone shuttle vector of the present invention contains a left and a right inverted terminal repeats of adenovirus, an encapsidation signal (ψ) of adenovirus, a pBR322 replication origin, a kanamycin resistance gene, and a stuffer sequence, which is the hypoxanthine phosphoribosyltransferase (HPRT) intron fragment with an approximately 10 kb. (SEQ ID NO: 1).
- The viral backbone shuttle vector of the present invention contains multiple restriction endonuclease sites for the insertion of a foreign DNA sequence of interest. In one embodiment, the viral backbone shuttle vector contains seven unique cloning sites where the foreign DNA sequence can be inserted by molecular cloning techniques that are well known in the DNA cloning art. The foreign DNA sequence of interest typically comprises cDNA or genomic fragments that are of interest to transfer into mammalian cells. Foreign DNA sequence of interest may include any naturally occurring or synthetic DNA sequence. The foreign DNA may be identical in sequence to naturally-occurring DNA or may be mutated relative to the naturally occurring sequence. The foreign DNA need not be characterized as to sequence or function.
- The size of foreign DNA that may be included in the shuttle vector will depend upon the size of the rest of the vector. If necessary, the stuffer sequence may be removed to adapt large size foreign DNA fragment. The total size of foreign DNA may vary from 1 kb to 35 kb. Preferably, the total size of foreign DNA is from 15 kb to 35 kb.
- The foreign DNA may encode protein, or contain regulatory sites, including but not limited to, transcription factor binding sites, promoters, enhancers, silencers, ribosome binding sequences, recombination sites, origins of replication, sequences which regulate RNA stability and polyadenylation signals. The promoters used may vary in their nature, origin and properties. The choice of promoter depends in fact on the desired use and on the gene of interest, in particular. Thus, the promoter may be constitutive or regulated, strong or weak, ubiquitous or tissue/cell-specific, or even specific of physiological or pathophysiological states (activity dependent on the state of cell differentiation or the step in the cell cycle). The promoter may be of eukaryotic, prokaryotic, viral, animal, plant, artificial or human, etc., origin. Specific examples of promoters are the promoters of the genes PGK, TK, GH, α-EF1, APO, CMV, RSV etc. or artificial promoters, such as those for p53, E2F or cAMP.
- In one embodiment, the viral backbone shuttle vector of the present invention comprises at least 15 contiguous bases of SEQ ID NO: 1, preferably comprises at least 90 contiguous bases of SEQ ID NO: 1, more preferably comprises at least 300 contiguous bases of SEQ ID NO: 1, and most preferably comprises 3000 or more contiguous bases of SEQ ID NO: 1.
- One aspect of the present invention relates to a gutless adenoviral vector that carries a DNA sequence encoding a native TM protein or a variant of a TM protein. In one embodiment, the native TM protein is a human TM protein having the amino acid sequence recited in SEQ ID NO:2. Another aspect of the present invention also relates to a gutless adenoviral vector that carries other transgenes. These transgenes may include, but are not limited to, those coding for cytokines such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17 and other interleukins; hematopoetic growth factors such as erythropoietin; colony stimulating factors such as G-CSF, GM-CSF, M-CSF, SCF and thrombopoietin; growth factors such as BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2; KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF-β, TGF-α and VEGF; antiviral cytokines such as interferons, antiviral proteins induced by interferons, TNF-α, and TNF-β; amyloid protein and amyloid precursor protein; anti-angiogenic proteins such as angiostatin, endostatin, METH-1 and METH-2; clotting factors such as Factor IX, Factor VIII, and others in the clotting cascade; collagens; cyclins and cyclin inhibitors, such as cyclin dependent kinases, cyclin D1, cyclin E, WAF1, cdk4 inhibitor, and MTS1; cystic fibrosis transmembrane conductance regulator gene (CFTR); enzymes such as cathepsin K, cytochrome p-450 and other cytochromes, farnesyl transferase, glutathione-s transferases, heparanase, HMG CoA synthetase, n-acetyltransferase, phenylalanine hydroxylase, phosphodiesterase, ras carboxyl-terminal protease, telomerase and TNF converting enzyme; glycoproteins such as cadherins, e.g., N-cadherin and E-cadherin; cell adhesion molecules; selectins; transmembrane glycoproteins such as CD40; heat shock proteins; hormones such as 5-α reductase, atrial natriuretic factor, calcitonin, corticotrophin releasing factor, diuretic hormones, glucagon, gonadotropin, gonadotropin releasing hormone, growth hormone, growth hormone releasing factor, somatotropin, insulin, leptin, luteinizing hormone, luteinizing hormone releasing hormone, parathyroid hormone, thyroid hormone, and thyroid stimulating hormone; proteins involved in immune responses, including antibodies, CTLA4, hemagglutinin, MHC proteins, VLA-4, and kallikrein-kininogen-kinin system; ligands such as CD4; oncogene products such as sis, hst, protein tyrosine kinase receptors, ras, abl, mos, myc, fos, jun, H-ras, ki-ras, c-fns, bcl-2, L-myc, c-myc, gip, gsp, and HER-2; receptors such as bombesin receptor, estrogen receptor, GABA receptors, growth factor receptors including EGFR, PDGFR, FGFR, and NGFR, GTP-binding regulatory proteins, interleukin receptors, ion channel receptors, leukotriene receptor antagonists, lipoprotein receptors, opioid pain receptors, substance P receptors, retinoic acid and retinoid receptors, steroid receptors, T-cell receptors, thyroid hormone receptors, TNF receptors; tissue plasminogen activator; transmembrane receptors; transmembrane transporting systems, such as calcium pump, proton pump, Na/Ca exchanger, MRP1, MRP2, P170, LRP, and cMOAT; transferrin; and tumor suppressor gene products such as APC, brca1, brca2, DCC, MCC, MTS1, NF1, NF2, nm23, p53 and Rb.
- In one embodiment, the DNA sequence is controlled by a regulatory element. In on embodiment, the regulatory element is a constitutive promoter such as the CMV promoter or RSV promoter. In another embodiment, the DNA sequence is controlled by a regulatable expression system. Systems to regulate expression of therapeutic genes have been developed and incorporated into the current viral gene delivery vectors. These systems are briefly described below:
- Tet-onloff system. The Tet-system is based on two regulatory elements derived from the tetracycline-resistance operon of the E. coli Tn 10 transposon: the tet repressor protein (TetR) and the Tet operator DNA sequence (tetO) to which TetR binds. The system consists of two components, a “regulator” and a “reporter” plasmid. The “regulator” plasmid encodes a hybrid protein containing a mutated Tet repression (tetr) fused to the VP 16 activation domain of herpes simplex virus. The “reporter” plasmid contains a tet-responsive element (TRE), which controls the “reporter” gene of choice. The tetr-VP 16 fusion protein can only bind to the TRE, therefore activate the transcription of the “reporter” gene, in the presence of tetracycline. The system has been incorporated into a number of viral vectors including retrovirus, adenovirus (Gossen and Bujard, PNAS USA 89: 5547-5551, [1992]; Gossen et al., Science 268: 1766-1769, [1995]; Kistner et al., PNAS USA 93: 10933-10938, [1996]).
- Ecdysone system. The Ecdysone system is based on the molting induction system found in Drosophila, but modified for inducible expression in mammalian cells. The system uses an analog of the drosophila steroid hormone ecdysone, muristerone A, to activate expression of the gene of interest via a heterodimeric nuclear receptor. Expression levels have been reported to exceed 200-fold over basal levels with no effect on mammalian cell physiology (No et al., PNAS USA 93: 3346-3351, [1996]).
- Progesterone-system. The progesterone receptor is normally stimulated to bind to a specific DNA sequence and to activate transcription through an interaction with its hormone ligand. Conversely, the progesterone antagonist mifepristone (RU486) is able to block hormone-induced nuclear transport and subsequent DNA binding. A mutant form of the progesterone receptor that can be stimulated to bind through an interaction with RU486 has been generated. To generate a specific, regulatable transcription factor, the RU486-binding domain of the progesterone receptor has been fused to the DNA-binding domain of the yeast transcription factor GAL4 and the transactivation domain of the HSV protein VP16. The chimeric factor is inactive in the absence of RU486. The addition of hormone, however, induces a conformational change in the chimeric protein, and this change allows binding to a GAL4-binding site and the activation of transcription from promoters containing the GAL4-binding site (Wang et al., PNAS USA 93: 8180-8184, [1994]; Wang et al., Nat. Biotech 15: 239-243, [1997]).
- Rapamycin-system. Immunosuppressive agents, such as FK506 and rapamycin, act by binding to specific cellular proteins and facilitating their dimerization. For example, the binding of rapamycin to FK506-binding protein (FKBP) results in its heterodimerization with another rapamycin binding protein FRAP, which can be reversed by removal of the drug. The ability to bring two proteins together by addition of a drug potentiates the regulation of a number of biological processes, including transcription. A chimeric DNA-binding domain has been fused to the FKBP, which enables binding of the fusion protein to a specific DNA-binding sequence. A transcriptional activation domain also has been used to FRAP. When these two fusion proteins are co-expressed in the same cell, a fully functional transcription factor can be formed by heterodimerization mediated by addition of rapamycin. The dimerized chimeric transcription factor can then bind to a synthetic promoter sequence containing copies of the synthetic DNA-binding sequence. This system has been successfully integrated into adenoviral vectors. Long-term regulatable gene expression has been achieved in both mice and baboons (Magari et al., J. Clin. Invest. 100: 2865-2872, [1997]; Ye et al., Science 283:88-91, [1999]).
- Ex Vivo and In Vivo Thrombomodulin Gene Transfer
- The instant invention uses a gutless adenovirus vector to express a native thrombomodulin protein or a variant of the thrombomodulin protein at a vessel graft or angioplasty site to prevent or reduce re-occlusion and intimal hyperplasia. The amino acid sequence of human thrombomodulin (SEQ ID NO: 2) and the DNA sequence encoding human thrombomodulin (SEQ ID NO: 3) have been reported (Suzuki et al. EMBO J. 6:1891-1897, [1987]).
- In one embodiment, the in vivo expression of thrombomodulin or a thrombomodulin variant is used for the treatment of atherosclerotic cardiovascular disease (CVD). Though venous grafts can be used for bypass surgeries, the veins eventually, become occluded by thrombosis resulting the recurrence of the diseases. In this embodiment, TM gene delivery is used in coronary artery bypass grafting, and vascular graft prostheses to block thrombosis. Specifically, TM gene is introduced into a segment of blood vessel in vitro using a gene transfer vector.
- TM gene delivery can be also used for the reduction of no-intima formation, for the prevention of atherosclerosis; for the prevention of myocardial infarction and for the inhibition of fibrinolysis in hemophilic plasma. TM gene transfer at the site of thrombus formation is potent approach to reverse these vascular diseases.
- In another embodiment, in vivo TM expression is achieved by embedding a gene transfer vector in a stent which is placed at the treatment site following percutaneous transluminal coronary angioplasty, peripheral artery angioplasty, thrombectomy, or an intravascular stenting procedure.
- In another embodiment, the in vivo expression of thrombomodulin, or a thrombomodulin variant is used for the treatment of end stage renal failure (ESRD). ESRD patients often exhibit decreased antithrombotic activity due to low TM levels. In such patients, enhanced in vivo TM gene expression can be potentially very useful.
- In another embodiment, the in vivo TM expression is achieved by administering a gene transfer vector to a mammal intravenously (i.v.), intramuscularly (i.m.), intraperitoneally (i.p.) or subcutaneously. For adenoviral and AAV vectors, intravenous administration often lead to viral infection of hepatocytes and transgene expression in the liver.
- The present invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and Tables are incorporated herein by reference.
- 1.1 Creation of pShuttle-ITR
- An embodiment of a gutless viral backbone shuttle vector pShuttle-ITR-HPRT is shown in
FIG. 1 . Sequence portion containing R-ITR, PBR322 ori, Kan, L-ITR, and encapsidation signal was obtained from the pAdEasy® system from STRATEGENE®. At bp 3667 of the original pShuttle sequence, there is a BamHI site just beyond the R-ITR. PCR primers were designed to include the BamHI site and then were to create an EcoRI site at the end of the R-ITR. The R-ITR was PCR replicated and then digested with BamHI and EcoRI to create sticky ends. The viral backbone was then cut with both BamHI and EcoRI. The BamHI cut the backbone at bp 3667 and there was also an EcoRI site inside the MCS at bp 377. The backbone portion of the plasmid was then gel purified and the PCR replicated R-ITR was recloned into position. This essentially puts the L-ITR, encapsidation signal, MCS, and R-ITR all in close proximity to each other. - 1.2 Creation of pShuttle-ITR-HPRT
- Insertion of the HPRT introns was a two step cloning process. First, the viral backbone pShuttle-ITR was digested with EcoRI and XbaI, both enzyme sites are in the MCS. The HPRT source was also digested with EcoRI and XbaI yielding a 7477 bp fragment that was cloned into the EcoRI/XbaI digested viral backbone. Then the HPRT source was digested with only XbaI yielding a 2715 bp fragment. One of the XbaI sites in this cut is the same XbaI site that was cut from the EcoRL/XbaI double digest in
step 1. The viral backbone was cut with only XbaI and the 2715 bp fragment was inserted. - Overall, from the HPRT source, the HPRT stuffer sequence is inserted into the viral backbone in reverse orientation, hence
intron 5, then 4, then 3. The 2715 bp fragment was inserted and checked to follow the original source sequence. The new plasmid is designated as pShuttle-ITR-HPRT (SEQ ID NO:1) - 2(a) Construction and Preparation of Gutless Viral Shuttle Vector Carrying Human Thrombomodulin Gene
- 2(a)-1 Creation of pCMV-hTM
- The insertion of hTM into the gutless adenovirus backbone first required the creation of a CMV-hTM expression cassette. The intermediate vector used was pcDNA3.1/Zeo(+) (Invitrogen). A CMV promoter is available commercially and a CMV promoter was cloned into the multiple cloning sites (MCS) at the XbaI/EcoRV restriction enzyme site locations. The CMV from ps5 was removed using XbaI/EcoRV. pcDNA3.1/Zeo(+) was cleaved inside the MCS using both XbaI and EcoRV as well. The CMV promoter was then ligated. Due to the location of the enzyme sites in the MCS, the CMV promoter (SEQ ID NO:4) was inserted in a backwards orientation relative to the pcDNA3.1/Zeo (+) plasmid. The human TM cDNA (SEQ ID NO:5) was obtained from Dr. Sadler (Dittman et al., Biochemistry, 26(14):4350-4357 [1987]) which the sequence was also submitted to ATCC and to GenBank. The human TM gene was removed from the plasmid using EcoRI and inserted into pcDNA3.1/Zeo(+), also in the reverse orientation to pcDNA3.1/Zeo(+) downstream of the inserted CMV promoter.
- 2(a)-2 Creation of pShuttle-ITR-HPRT-CMV-TM
- The expression cassette in pCMV-hTM was removed by digesting with PmeI. The gutless adenovirus backbone pshuttle-ITR-HPRT was linearized using SmaI which cuts the plasmid at bp 381. The CMV-hTM cassette was ligated to the gutless virus in the forwards orientation. Sequence of the expression cassette (from PmeI site to PmeI site) is shown in SEQ ID NO:6. The new plasmid is designated as pShuttle-ITR-HPRT-CMV-TM.
- 2(a)-3 Creation of pTMadap
- The following linker containing a BstEII and SfiI site was inserted into the BstEII and Bsu36I sites of pShuttle-ITR-HPRT-CMV-TM, resulting in the vector pTMadap (SEQ ID NO:7).
(SEQ ID NO:8) 5′-gtaacactgg cccaggaggc ctttctggtg acccc-3′ (SEQ ID NO:9) 3′-tgacc gggtcctccg gaaagaccac tggggatt-5′ - Creation of pTMadap—
stuffer 1 - Based on the published sequence HSU71148 of the human X chromosome region q28 the following PCR primers were synthesized:
(SEQ ID NO:10) Forward: 5′ TAGTTCCTTCTGCCTGGAATAC 3′(SEQ ID NO:11) Reverse: 5′ CAAGTCACAAGGATGGACTACA 3′ - Amplification of a human DNA sample resulted in the amplification of a 18524 bp DNA fragment (
stuffer 1, SEQ ID NO: 12).Stuffer 1 was cut with the restriction enzymes BstEII and SfiI and the resulting fragment of approximately 18371 bp was inserted into the BsteII and SfiI sites of pTMadap, resulting in pTMadap-stuffer 1. - 2(a)- 4 Creation of pTMadap-stuffer1-short
- To reduce the size of the
stuffer 1 fragment in pTMadap-stuffer1, pTMadap-stuffer1 was digested with SanDI and BstEII and the resulting DNA ends were modified by a fill-in reaction with Klenow. Re-ligation resulted in the 25207 bp vector pTMadap-stuffer1-short. The sequence of stuffer1-short fragment is shown in SEQ ID NO:13. - 2(a)-5 Creation of pTMadap-stuffer1-short-stuffer2
- The plasmid p2-2 (SEQ ID NO: 14, obtained from GenBank) was cut with NotI and the resulting fragment of approximately 5954 bp (
stuffer 2, SEQ ID NO: 15) was inserted into the NotI site of pTMadap-stuffer1 short, resulting in pTMadap-stuffer1-short-stuffer2. - 2(a)-6 Removal of PacI Site from pTMadap-stuffer1short-stuffer2
- Plasmid pTMadap-stuffer1-short-stuffer2 was cut with AclI and BsiW1. The resulting 28790 bp fragment was isolated from gel. pShuttle-ITR-HPRT (SEQ ID NO:1) was cut with AclI and Acc65I. The resulting 1966 bp fragment was ligated into the isolated 28790 bp fragment, resulting in the full length backbone vector pTM-final (
FIG. 2 and SEQ ID NO: 16). - 2(b) Construction and Preparation of Gutless Viral Shuttle Vector Carrying LacZ Gene
- The insertion of LacZ also required creation of an intermediate vector to create the expression cassette. pcDNA3.1/Zeo (+) was again used. First, a portion of the vector from the end of the MCS, restriction enzyme site Apal, to the beginning of the SV40 poly A, restriction site Nael, was removed and the vector relegated to itself. Then the LacZ gene was inserted into the vector MCS using NotI/Xbal. The expression cassette, containing CMV promoter, LacZ gene, and SV40 poly A, was removed using Nrul/Sall retraction enzymes and blunt-end cloned into the gutless adenovirus at the Smal restriction enzyme site.
- The gutless Ad.hTM was prepared according to the following protocol:
- 1. Linearize pTM-final by digestion with PacI. The completeness of the digestion is confirmed by electrophoresis using a small aliquot of the digestion product. It's not necessary to gel purify the digested pTM-final for transfection described in step 2).
- 2. Transfect 293FLP cells grown in a 60 mm dish at about 80% confluence with about 5 μg of PacI-digested pTM-final using lipofectamine. 293FLP cells are 293 cells engineered to express the flp gene product, which recognizes the FRS flanking the encapsidation signal and cleaves out the encapsidation signal thereby not allowing helper-viral DNA to be packaged. (Beauchamp et al., Molecular Therapy, 3(5):809-815 [2001]; Umana et al., Nature Biotechnology, 19:582-585 [2001]).
- 3. Twenty-four hours after the transfection, infect the cells with helpervirus H10 in 2% DMEM-F12 at a multiplicity of infection (MOI) of 10.
- 4. Remove the cells from the plate (preferably with a cell scraper) after the appearance of cytopathic effect (CPE), place the cells in a sterile 15 ml tube, and lyse the cells by three freeze-and-thaw cycles. Precipitate the cell debris by spinning the lysate for 5 minutes at 4000 rpm and harvest the supernatant. The supernantant is designated as P0 (passage number 0) supernantant.
- 5. Infect 293FLP cells in two T75 flask at 80% confluency with 4 ml of P0 supernatant and with the helpervirus at MOI of 1.
- 6. Continue passaging virus in the manner described in
steps passage 6 and confirm that helpervirus is added at an MOI of 1 at each passage. - 7. Add the P6 supernatant to 8 T500 flasks containing 293FLP cells at 80% confluency and infect the cells with the helpervirus at a MOI of 1.
- 8. Following CPE, harvest the cells into 500ml sterile tubes. Centrifuge the cell suspension at 4500 rpm, 4° C. for 10 minutes.
- 9. Resuspend the cell pellet in 2% DMEM-F12 (the pellet can be stored at −80° C. at this stage).
- 10. Freeze-thaw the resuspended cell pellet three times. Spin down the cell debris by centrifugation at 4000 rpm, 4° C. for 10 minutes.
- 11. Transfer the supernatant, which contains the released virus, to a fresh sterile culture tube and subject the supernatant to a second round of centrifugation to further remove cell debris.
- 12. Transfer the supernatant to a fresh sterile tube. The virus is ready for CsCl-purification.
- 13. To purify the virus, ultra-clear SW41 (Beckman) tubes were prepared by soaking in Ultra Pure Water, then 70% ETOH. Cotton swabs (one swab for each tube) were used to completely dry out the tube, and two tubes were used per sample.
- 14. Preparation of the first gradient: 2.5 mL CsCl—Density 1.25, and 2.5 mL CsCl—Density 1.40. Place the 1.25 density CsCl into the Beckman tubes first. Underlay slowly the high density, 1.40 CsCl using a sterile pasteur pipette, and overlay an equal amount (in mL) of CVL, about 4.25 ml/tube. Samples were centrifuged in a SW41 rotor with speed: 35,000 rpm at 20° C. for 1 hour and with acceleration: 1 and deceleration: 4. The lower opalescent band was collected using 1 or 3 mL syringe with green cap needles.
- Preparation of second gradient: CsCl was prepared to density 1.33 g/ml. Two fresh ultra-clear tubes were placed 8 mL of CsCl and overlay the band just recovered after the first spin. (To equilibrate the tubes, measure before the volume of the recovered band and divide equally in the 2 tubes). Samples were centrifuged at the conditions above for 18 hours. The opalescent band was recovered and collected in a sterile eppendorf tube. (From this moment, keep the tube always on ice). Samples were dialyze with dialysis buffer: (1) 10× Dialysis Buffer: 100 mM Tris—pH 7.4, 10 mM MgCl2; (2) 1× Dialysis Buffer (2 Liters): 400 mL Glycerol, 200 mL 10× Dialysis Buffer 140 mL, and Ultra Pure Water. The dialyzed samples were immediately stored at −70° C.
- (c) Determination of Virus Titer
- BioRad protein estimation kit was used with 1:5 diluting, and placing 1 ml in each disposable cuvette. Standards were set up at 0, 1, 2, 5 10, and 15 μg/ml. (BSA is fine). Sample cuvettes were prepared using 1-10 μl of sample, depending on estimate of titer. (Sample OD must be within the linear range of the standard line.) OD was taken at 595 λ and formula of the line was calculated from standards. The protein concentration of the samples was calculated using this formula. The following formula was used to convert protein concentration to titer: [12.956+224.15 (μg/ml)]×108.
- (A) Expression of hTM in HEK 293 Cells Transfected with pTM-final
- HEK 293 cells were cultured in a 6 well cluster and transfected with 1 μg of pTM-final. After 24 hours, the cells were washed with PBS and lysed in 125 μl RIPA buffer with protease inbitors Protein samples (16 μl) were separated on 7.5% polyacrylamide/SDS gel and transferred to nitrocellulose membrane. Primary antibody TM (c-17) (1:2000, Santa Cruz) and secondary antibody Polyclonal Rabbit Anti-Goat Immunoglobulins/HRP (1:4000, DakoCytomation) was used to detect the proteins. As shown in
FIG. 3 , hTM expression was detectable in cells transfected with pTM-final. - The RIPA buffer was prepared according the following recipe: mixing 100 μl Igepal ca-630, 50 mg sodium deoxycholate, 500 μl 20% SDS, 10 mM β-mercapto ethanol, and 1 ml 10× PBS, and add water to a final volume of 10 ml at room temperature. A cocktail of protease inhibitors containing 11.5 μl PMSF (from 34.8 mg/ml in isopropanol, 64 μl Benzamidine (from 15.6 mg/ml stock), 100 μl sodium orthovanadate (100 mM), 5 μl pepstadine (from 1 mg/ml stock), 1 μl leupeptine (from 5 mg/ml stock), and 1 μl aprotin (from 5 mg/ml stock) was added to the RIPA buffer immediately before use.
- (B) Expression of hTM in P2 Lysate of 293FLP Cells
- The P2 lysate was generated as described in Example 3. After CPE was observed, 293FLP cells were detached from the bottom of the culture flask by repeated tapping of the flask. 1 ml of the total of 10 ml of cell suspension was used for the detection of TM expression. The cells in the 1 ml cell suspension were collected by centrifugation for 10 min at 300×g and lysed in 250 μl RIPA buffer. 7 ul of 5× loading buffer was added to 35 μl of the lysed cells and the resulting solution was immersed in boiling water for 3 minutes. 5 and 30 ul of boiled cell lysate were diluted with 250 ul TBS (137 mM sodium chloride, 10 mM Tris, pH is 7.4 at +25° C.) and transferred to a nitrocellulose membrane using a slotblot device (Bio-Dot SF, Biorad). Primary antibody (goat anti-hTM (c-17) 1:2000 dilution, Santa Cruz) and secondary antibody (polyclonal rabbit anti-goat immunoglobulins/HRP, 1:4000 dilution, DakoCytomation)) were used to detect the proteins. As shown in
FIG. 4 , hTM was detectable in the P2 lysate. - The 5× loading buffer was prepared by mixing 20.0 ml 30% SDS, 11.5 ml 2M sucrose, 6.5 ml 2M Tris-HCL pH 6.8, 2.0 ml beta-mercaptoethanol and bromophenolblue. The RIPA buffer was prepared as described in Example 4(A). A cocktail of protease inhibitors containing 11, 5 μl PMSF (from 34, 8 mg/ml in isopropanol, 64 μl Benzamidine (from 15, 6 mg/ml stock), 100 μl sodium orthovanadate (100 mM), 5 μl pepstadine (from 1 mg/ml stock), 1 μl leupeptine (from 5 mg/ml stock), and 1 μl aprotin (from 5 mg/ml stock) was added to the RIPA buffer immediately before use.
- (C) Expression of TM in Virus Infected Vena Cava
- Vena cava was excised from rats and cut into six segments of approximately 3 mm long. The segments were incubated for 30 minutes in medium containing gutless luc or TM virus. After incubation, the segments were washed three times and transferred to a 24-well plate containing DMEM. The segments were incubated overnight in an atmosphere of 95% O2 and 5% CO2 with gentle shaking. After 24 hours of incubation the segments were frozen. The frozen sections were thawed in lysis buffer and loaded onto a 7.5% SDS acrylamide gel. After blotting, the blot was probed with an antibody against human TM.
- The Western blot clearly shows that within 24 hours TM expression can be detected (
FIG. 5 ). - As a control, the same HUVEC cells will be infected the gutless adenovirus expressing LacZ. These cells will subsequently be stained with X-gal to look for blue cells. This will demonstrate the viability of the gutless adenovirus backbone itself.
- (D) TM Expression in HEK 293 Cells Infected with TM Gutless Virus Passage 1-6
- The TM-vector backbone was released by digestion with PacI. 293CRE cells were cultured in a 60 mm dish at 80% confluency. Cells were transfected with 5 μg of PacI digested TM-vector backbone. After 24 hours, 2% DMEM-F12 containing helper virus with a MOI of 10 was added. Following CPE, cells were removed from the dish and medium and cells were collected a in a sterile 15 ml tube. Cells went through three freeze/ thaw cycles and the resulting suspension was centrifuged for 5 minutes at 4000 rpm. The cleared lysate was collected and name P=0.
- 4 ml of P=0 supernatant was added to 2 T75 dish containing 293CRE cells at 80% confluence. Cells were subsequently infected with helpervirus at MOI of 1. Following CPE, cells were removed from the dish and medium and cells were collected a in a sterile 15 ml tube. Cells went through three freeze/thaw cycles and the resulting suspension was centrifuged for 5 minutes at 4000 rpm. The cleared lysate was collected and name P=1. This procedure was repeated until P=6.
- HEK 293 cells were cultured in a 6 well cluster and transfected with 200 μl of TM gutless virus of passage 1-6. After 24 hours, the cells were washed with PBS and lysed in 125 μl RIPA buffer. Protein samples (16 μl) were separated on a 7.5% polyacrylamide/SDS gel and transferred to nitrocellulose membrane. Primary antibody TM (c-17) (1:2000, Santa Cruz) and secondary antibody Polyclonal Rabbit Anti-Goat Immunoglobulins/HRP (1:4000, DakoCytomation) were used to detect the proteins. As shown in
FIG. 6 , TM expression is higher in cells infected with virus of higher passage numbers, indicating successful amplification of TM gutless virus in 293 CRE cells. - The RIPA buffer (10 ml) was prepared as follows: 100 μl Igepal ca-630, 50 mg sodium deoxycholate, 500 μl 20% SDS, 10 mM β-mercapto ethanol, 1 ml 10× PBS, add water to make up 10 ml. Immediately before use, the following protease inhibitors were added to the RIPA buffer: 115 μl PMSF (from 34, 8 mg/ml in isopropanol), 64 μl Benzamidine (from 15,6 mg/ml stock), 100 μl sodium orthovanadate (100 mM), 5 μl pepstatin (from 1 mg/ml stock), 1 μl leupeptin (from 5 mg/ml stock), 1 μl aprotin (from 5 mg/ml stock).
- The Complete Viral Delivery System composes of 1:1 mixture of Ham's F12 medium and DMEM, an effective amount of a gutless virus vector carrying a polynucleotide encoding a thrombomodulin protein or a variant of a thrombomodulin protein, and an a cellular oxygen carrier. Preferred oxygen carrier includes: unmodified or chemically modified hemoglobin in the range of 3 g/dl to 10 g/dl and perfluorochemical emulsions. The CVDS may optionally contain 1 mM L-glutamine (Sigma), 1.5 g/L sodium bicarbonate (Sigma), 1× antibiotic-antimycotic (GIBCO® 15240). The CVDM maintains tissue viability during the viral treatment of blood vessel.
- A vein segment is harvested from the leg and is stored in Ham's F12 medium. Gutless adenovirus suspended in CVDM is then injected into the isolated vein segment and incubated for 10 to 40 minutes depending on the desired level of transfection. The infection may be performed under pressure to enhance efficiency.
- After the incubation, the vein segment is washed several times to eliminate all viral particles that have not entered the endothelial cells of the vein segment, and is then grafted into the desired treatment site. The thorough rinse avoids the spread of the viral vector to other organs of the body following in situ grafting, and any systemic immune response to the viral vector.
- In this application, the vein in the leg is treated following evacuation of the clot. A catheter is inserted in the leg vein and both the proximal and distal balloons are inflated to isolate the vein segment to be transfected. The segment is evacuated of all blood, rinsed with physiologic saline. The segment is then filled with the CVDS described above, under pressure. The isolated vein segment is exposed to the CVDS for a period of 10 to 45 minutes, depending upon the desired transfection efficiency.
- In this application, the vein in the kidney is treated following evacuation of the clot. A catheter is inserted in the kidney vein and both the proximal and distal balloons are inflated to isolate the vein segment to be transfected. The segment is evacuated of all blood, rinsed with physiologic saline; it is then filled with the CVDS described above, under pressure. The isolated vein segment is exposed to the CVDS for a period of 10 to 45 minutes, depending upon the desired transfection efficiency.
- In this application, a virus-coated stent is placed at a treatment site after angioplasty. The virus is a gutless adenovirus carrying a polynucleotide encoding a thrombomodulin protein or a variant of a thrombomodulin protein. Alternatively, the virus may be embedded in the stent and is releases gradually through a time-releasing mechanism well-known to one skilled in the art.
- In one experiment, the tail vein of experimental rats was flushed with a solution containing a gutless adenoviral vector carrying a luciferase transgene. As shown in
FIG. 7 , the expression of luciferase was still very strong in the tail vein eight days after viral infection. - In another experiment, experimental rats were injected intravenously with the gutless TM viruses at doses ranging from 1×108 to 3×1011 particles/rat. TM expression in liver will be analyzed by the rate of blood coagulation (APTT) and by Western blot of liver biopsy samples.
- The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
SEQ ID NO:1 (pShuttle-ITR/HPRT) CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAG GGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGGGTGACG TAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACATGTAA GCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACAG GAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGG CGTAACCGAGTAAGATTTGGCCATTTTGGCGGGAAAACTGAATAAGAGGA AGTGAAATCTGAATAATTTTGTGTTACTCATAGGGCGTAATACTGGTACC GCGGCCGCCTCGAGTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTC TGATGGCTCTCAAAATTCCTGCCTGCTTTAGGGATAAAAGACTTTAAGAC TTTTTAACAAAAAAGAAAAAGAAAAAAAAAATTCCTGGCTCCTGGTGTAC ACACACAGAAGGGTTCCCTCCCCTTGAATGTGACCAGGATCTGTGAAAAT AACGGGATAGCCGGTCCTGTGATTAGGTTATGTGGTAGACTAGAGCAAGA TTCTCCTGCTGGTTTTGAAGAAGTCAGCTGCCATGTTGTGAGACTGTCAT GGGCTAGGGCATGAGCCTTTAAATATCTGGGAGCAACCCCTGGCCAGCAG CCAGTGAGAAAACGGGCCCTCAGTCCTACAATCACAAGGAACTAAATTCT GCCAACAACCTGAAGGAACTTTGAAGAGGATCATGAGTCCCTTGATTCAG CTTGATGAGCCCCTGAGCAGAGGATACAGCTAACTTGTACTAGGGAAGTA TAAAAAACATGCATGGGAATGATATATATCAACTTTAAGGATAATTGTCA TACTTCTGGGAATGAAGGGAAAGAAATGGGGCTTTAGTTGTATTATGATC TTTAATTTCTCAAAAAAAATAAGATCAGAAGCAAATATGGCAAAATGTTA ATACTTTTGTGGGTACGTAGGTATTCAGCATACCCTTTTTTCTGAGTTCA AAATATTTTATAATTAAAATGAAATGCAGGCCAGGCACAGTGGCTCATGC CTATAATACCAGCACTTTGCGAGGCCGAGGTGGGAGGATGGCTTGAGGCC AGACCAGCCTGGCCAACATGGCAAAACCCCATCTCTACTTTAAAAAAAAA AAACTATATATATATATATGTGTGTGTGTGTGTATATATATATATGTATA TATATTTATATATGTGTGTATATATATATATGTATATATATTTATATATG TGTGTGTATATATATATATAGACACACACACATATATACATACATACATA CACACACACACACACACAATTAGCCAGGCATGGTGGCGCACACCTGTAGT CCCAGCTACTTGGGAGGCTGAGACATGAGAATTGCTTGAACCTGGGAGGC AGAGTAGTTAGTGAGCTGAGATCATACCACTGCACTCCAGCCTGGTGACA GAGTGAGACTCTGTCTTAAAAAAAATAAAAATTAAAATTAAATGCAAAAG GTCCAAGTGAATTGAAGAGGAAAGGGGTATCAAGGAAGGTTTTGTGGAGG TGACGTTTGAGCTGGGTCTTAAATGACTTAAACATGGGATAAGAAGGGAG GGAATAAGGACATTTCAGGTACGAGAAATAAGGAGCAAACAGTGGAAACA ACCTAACGTGTGTCAACCAGTGAATGGATAACAAAAATGTAATTCAGATG GTATCCAACTTACGATGGTTCAACATGAGATTTTTCTGACTTTAGGATAG ATTTATCAAAGTAGTAAATCCATTTTCAACTTATGATATTTTCAACTTCA GATGGGTTTATCAGGACACAGTTGAGGAACACCTGTCTATCCATACAATT TGGCAATAAAAAGGAAATGAGTGCAGATATACTGCACAACATGAATGAAG CTTGAAAACATTAAGTGAGAGAAGCCAGATACAAAAGGCCACATATTGTA TGATTCTATTTATACAAAATGTCCAGAATAGGCAAATCTTATAGACAGCA AGTAGGTAGATGATCAGTTTGCTAGGTGCTGGGGGAAGGGGAAATGGGGA GTGATGGCTAAGGGGATTGGGTTTCTTTGTGGGGCAATGAAAATGTTTTA AAATTGAGCGTGATAATGATTGCACAATGCTGCATATATATATAATCTAT AGATTATATATATATAAAGAGAGGCTGTTAGACAGTGATAAGTGATATAT ATATATATATACATAGAGAGAGAGAGAGAGAGAGAGAGAGGCTGTTAGTG ATAAGTGATCAGGAAAATAAAAGTATTGAGGAGGAATACGAAGTTGACGG TGTGAAAACATGAGATTTTATATAGGATGGCCAGGGAAGGCCTTAATGAG AAAGTGACTTATGAGTAAAAACAAGGGATCCTAAACCTTAGCATGCATCA GAATCACTGGGAAACTTGTTAAAGCATAGCTTGCTGGGCCTCATCACAGA TATTTTGATTCGGTAGGTTCTTGTGTGATATTAATACTTTTGGTCTAGGG AACCACATTTTGAGAACCACTGAGCTAAAGGAAGTAAAGGTTTCCCTTAG TTTACTAGCTGGTAACCCTAGGAAACTGCTTAGCCTCTCGGTGCTAAGAT ACAAAATACTTTAGCACATAATAACACATGGAAAATAGTGTATAAATTAT AAATATTATTTTTTATGTACCAAATATTACATAAGACAAAATCTAAGCAA GATATATATATATATAGATAAAATATAAGATATATATGTATATATTATAT ATAGATAAATAGAGAGAGAGAGTTATGTTTAGAAAGAAAATACTTCAAAC TAAAAAAAGAGAGGTAGGAAGTATACCATTCCATTATTGGTAAAAACAAA TTACTAAGTAGTCTTTACAAAAAACCAATCTCACTCCTTTAGAACACAAG CCCACCATTAAAACTGATGCAGAGGAATTTGTCTGCCTGGCTTACCTTTA GGATGGTGCATACTAAGTTAGAAAAGTCATAAATGTTATATTAAAAGTAA ATGTGAACTTACTTCCACAATCAAGACATTCTAGAAGAAAAAGAGAAATG AAAATCAGTACAATGAATAAAACGGTATTTCCAATTATAAGTCAAATCAC ATCATAACAACCCTAAGGAATTATCCAAACTCTTGTTTTTAGATGCTTTA TTATATCAAACTCTCCTTTAAACAAGTGGCCCATCTGCTGGGATTTGGAA GCCTGTAATACTGAAATTTTCATCATAATGGAAATTTTAAAAACAGAATT TGACCCACCTGTTTTTAAAACACTTTCATTACTTAACAAGAGGTCTAATC TTGGGCAAGTCTTGAAATTTCTCTGGCCTTAGTTTGCCATGTGTTAAATG AAACTTGAAGCAGTTGGTCTCTTATAGTCTCCTGACTCTAACATTCTAAG AATTATATTTGTACAATAACTCAAAAATCAGATAATTTAATTTACCATAT GGACTCCAAAATATATTTTCTCATTAGGCTAAACTTGATGTGCATTTTCT GGATGTGTCCATATTCTTGGACTACACTAAAAGATGATACCAATGGTTCC TCTCACCATAAACCGTCACTTCGCTTTCTACATTTAAGAATTTTATAGCT GGAAGAGTCCTTAACAGAAAATACCATCTAATAATTACCCCTCAAAATCG AGAAAGTCCTATCTGTTCTTATGCTAGTTATAAGAATGAGGCAGCATTTC ACATAATGGTTATAAACACTGCCACAAGAAGATTCATGATGTGTTGTTTA TCTGTAGCTCTCATCATACTGTGTCATATAACTATAGCATTAAGATTTTA ATGTTCTATATATTCTTCTAAGACAGTGTTTACCAGAGTAAGGCACAAAA GATCCACTGGTTTGCAAGAAAGATTAGAACTTTTAAATTTTTTACCTCAC CTTGTTTAATCTATATTTTTGTATGTATTTTGTAACATATATATTATTAT TACCATAAATCATATATAATTTAAAATGCATATATTAGGGGTAAATGCTC AGGAAACTTTTTATAAATTGGGCATGCAAATACAAGTTTGAAGACTCACT GTTCTAGGTATTAAAAGTAAAGTTATAACCAAGTAAAGCTTCCACCTTTT CATGTCTCAAAGCAGTTTATTGTTGGAGGTAAGATCTCTTAGAAGCCTAA ACAGGTCCAAGTACAGAATGAAGTAAGGCTAGCCCATAACTTGTGGCAAG CAATTCATACTATTTCTCTCATGCTGAGGTGTCCTCAGTGAAGCAGCTAC TATAGACAACTGCAGCCTATTGGTAGCCTATTTTACAGGCAGGAAAAAAA TTACTTTTTATTGAAAGTGGAAGTCAGGACATGGGGAGAAAATGAATACA AAAAATAGGGTCAATCCAAAGGCACACAGCAAATGAGTAACACAGTTATG TTTTTTTCCCATTTGTATGAGGTCGCAGTAAATTCTAAGTAAACTGCAAA TTTAATAATACACTAAAAAAGCCATGCAATTGTTCAAATGAATCCCAGCA TGGTACAAGGAGTACAGACACTAGAGTCTAAAAAACAAAAGAATGCCATT ATTGAGTTTTTGAATTATATCAAGTAGTTACATCTCTACTTAATAAATGA GAAAAACGAGGATAAGAGGCCATTTGATAAAATGAAAATAGCCAAGAAGT GGTATTAGAGACTTGAATACAGGTATTCGCGTCCAAAGTTCATCTGCTCA AATACTAACTGGGGAAAAGAGGGAAAAATATTTATATACATATATATCTG CACACAAAAATACCCCCAAAAGACAAAATGAGGCCAGGCAGGGTGGCTCA CACCCGTAATCCCGGTACTTTGGGAGGCTGAGGCAGGTGGATACCTGAGA TCAGGAGTTGGAGATCAGCCTGGTCAACATGGTGAAACCCTGTCTGTACT AAAGATAAAAAAATTAGCCAGGCATGGTGGCGTGCGCCTGTAATCCCAGC TACTTGGGAGTCTGAGGCAGGAGAATCACTTGAACTGGGAAGGGGAGGTT GCAGTGAGCCAAGATCGTACTACTGCACTGCAGCCTGGGCAGCAGAGTGA GACTCCATCACAAAAATAAATAAATAAATAAAATACAATGAAACAGAAAG TTCAAATAATCCCATAATCTTACCAGCAAGAAATAACTTTCACTCGTTAT ACTTATTGATTTTTCGATAATAAATGTACTTTACTGTGACTATCATGAAA AGAAAGTTATTTTAGAAACAGAGAACTGTTTCAGATCAAATCTATGTAGT AGAACAGAGCCATTAGGTGGGAAAGACGAGATCAAACTAAATGTCAGAAG GCCTAAAAGGCTAGGTCCATTCCAGCACTAAAAACTGACCAGACAAGTAA TGGCTTCAACAGCTTCTAAATATGGACAAAGCATGCTGAAAGGGAAGGAC AGGTCTAACAGTGGTATATGAAATGAACAGGAGGGGCAAAGCTCATTTCT CCTCTGAAGTTTTCGAAAGATGCTGAGGAGGACATTAGTTTGACATGACC CTGATATGGGACAAGATAATTTCACAGAAGTTTTACATGTTAAAGTTTTC TTATAGATACTCATTCAAGTAAGCAATGAACACTAAAATCTAAAGAAAGA AAAGAGCTTTAGAGTCAGGTCTGTATTCAAATTCAAGCTCTACCACTTAC TGGTTCTGTGACTTTGGGCAAGTCTTTTAACCTTATTAAGTCTTAATTTC CTGATTTGTAAAATGGGGATATCGTCTCCCTCACAGGATTGTTGTGAAAC TTTTATGAGATTAATGCCTTTATATTTGGCATAGTGTAAGTAAACAATAA CTGGCAGCTTCAAAAAAAAAAAGCAGTAGCATTCCATCATTTATTATTGG TTACTCTCAAAAAGTTTTTCAATGTACTAGAAGATAAATATTCAAATACC TTAATATCTCCATTATTTTCAGGTAAACAGCATGCTCCTGAACAACCAAT GGGTCAACAAATAAATTAAAAGGGAAATCTAAAAACATCTTGATATTAAA CTACATGGAAGCACAATATACCAAAACCAATGGTTCACACTAGGAGAATT TTAAGGTACAAGAAAACTCTTTGAGATTTCTTAAAATAATAGTATGTCTG AATTTATTGAGTGATTTACCAGAAACTGTTGTAAGAGCTCTACTTGCATT ATAGCACTTAATCCTCTTAACTCTATGGCTGCTATTATCAACCTCACCCT AATCACATATGGGACACAGAGAGGTTAAGTAACTTGCCCAAGGTCAGAGT TAGGAAGTACTAAGCCATGCTTTGAATCAGTTGTCAGGCTCCGGAACTCA CACTTTCAGCCACTACATAATACTGCTTTGCTATCTTTTAGGAAACTATG TGAGTCTACCTCACATAGACTCACATAGGTTTGTTTTTTTTTTTTTTTTA AAGGCTATCTTTTCCCCCATCAATGTTTTTTGAAGGATCCCAAATTAGAG TCCCACAGAGGCAGACAGCAGTACTTGACAATATGGACATTTAAGGTTAA TGTTGGATTCTACTGTCTTTTTACTACATGACCTAGGGAACGATAATTAA CCTAGACTGCTTCCAAGGGTTAAATAACCCATTTAGTTATACTATGTAAA TTATCTCTTAGTGATTGATTGAAAGCACACTGTTACTAATTGACTCGGTA TGAAGTGCTTTTTTTTCTTCCCTTTCAAGATACATACCTTTCCAGTTAAA GTTGAGAGATCATCTCCACCAATTACTTTTATGTCCCCTGTTGACTGGTC ATTCTAGTTAAAAAAAAAAAAAACTATATATATATATATCTACACACACA TATGTATATGTATATCCTTATGTACACACACAAACTTCAAATTAAATGAG AACTAGAAGATTTGACAAGTTAGCTAGCTAATATCCATAGCATTATGATA TTCTAAATGATATGAATTATAAGAATTAGGTTTCCTGAAATGAATGACTA GAAAACTTTCAAGTAGAGATTAGTAAAAATTAAAAAGTCCTAATCGGCCA TTACTGATTTGATGTTTTTAAGAGTCCTAAAAAATGGGTTACATCCATTT TTAAGTCGGTAGTATTATAACAGCCACCCATCTTCAATCACAGTGATTTC TGAATTGTGAGGGAAGTTATTAGCATGACAGGTGTCTGGTTCTGGCCCTG TACGATTCCCATGAGTCAAGCAAATTGTAAGGGCTGGTCTATATCACACC CAACCCCAAGGATATGTCCCTCAAAAGTCTAGCCCAGGCCCCGTCATCTT CAGCATCATCTGGGAAACCAGGTCTGATTAGTAGTCCTTTAAGGAATACC TCTTAGGCTCCCATTTTACTGCTATCACAGAATCCAATAAAACCCTTACA GGAGATTCAATGGGAAATGCTCAACACCCACTGTAGTTGGTGGTGACAAT GACCATAATTTGGCTGTGCTGGATTCAGGACAGAAAATTTGGGTGAAAGA GCAGGTGAACAAAAGAGCTTCGACTTGCCCTAGCAGAGAGCAAGCCATAC CATAGCACAAAGCCACAGCAATTACAACGGTGCACTACCAGCACAGTAAA TGAACAAAGTAGAGCCCAGAAACAGACCCAGAACTATATGAGGATTTAGT ATACAATAAAGATGGTATTTCGAGTCAGTAGGGAAAAGATGAATTATTCA ATAAATGATGTTTGGCCAACTAGTAACCCATTTGGGAAAAAATAAAAGTA TGGTCCCTACCTCACAGCATACACAAAAATAAATTCCAGACGGATTAAAA TCTAAATGTAAAAAATAAAGCCATAAGTGGACTGGAAGAAAATAGACAAT TTTTTTTAACATCCGTAGAAAGGGTAAAAACCCAGGCATGACATGAACCA AAACTGAAGAGGTTCTGTAACAAATACCCCCTTTTATATATTGGGCTCCA ACAATAAGAACCCATAGGAAAATGGAGAATGAACACAAATAGACAATTTA TAGAAGAGAAGGTTATAAGGTCTAAAATTATATCTATCTGAGAAACAAAC ACTAAAACAATGTGATTCTACTGTTCTCCCACCCATACTGGCAAAACTTA AGCCTGATAATATGCTGAGGGGAAATAAGCACTCTTGTTGGTGAGAGTAT TAATTGGCATAGCTTCTTTTGAAAATGACATAGCAATACCTGTTAAAATT GCAAACATGCATGTCACTTAATCCAGTAATCCCACTTCTGGGAATCAATG CTACAAAAACACTGACAAGTATACAAAGATACATTCAAGAGTGTTCACTG GGCCGGGTGCGGTGGCTTCATGCCTGTAATCCCAGGGAGGCAGAGGCAAG ACGATCGCTTGACCCCAGGAGTTCAAGGCCAGCCCGAGAAACACAGCAAG ACCCTGTCTCTCTTTTTTTTATTTAAAAAATAAATGTTCACTGTATCAGT TGTTCACAAAAACAAACCAACATGTCCATTAACAGGGAACCATTTAAATT AATCAAGTTCATCTACACAATGTAATACCATGCAACTATTAAAAAGCACC TGATAATCCAAAGCACACTGAGACAGAATAATGCTATTAAAAACACCAAG TAGTGGAACACTGTGTTGCCTATGACACCATTTTTATTCAACATTTAAAC AAATTTGTAACAGCAATTACATGAGTAGTGACAATGGCGTTTATGAGACT TTTCACTTTTATGTGCTTCTATTTTTGTTATGCTTCTATATATACATCCA TTTATTATGGAGTGTTACTTTCAAAAATCACAAATGGGCCAGTATTATTT GGTGTTGCAAGGTGAGCATATGACTTCTGATATCAACCTTTGCATATTAC TTCTCAATTTAGGGAAATTACAGACATCCCTTATTCTAACTAACTTAAAA CCCAGCATTTCAAACATACAGAATTGATGGGGAAAAAAAAGAAAGAAGAA AGAAAGAAAAGGCAACAAGCTTCAGATGACAGTGACTCACATCAAATTAT TTATAAAATCTGTTAAATAGTGCCATCTTCTGGAGATACCTGGTATTACA GTCCAACTCCAGTTGATGTCTTTACAGAGACAAGAGGAATAAAGGAAAAA ATATTCAACAACTGAAAAGTATGGAGTCATGGAAAAATTGCTGTGATCCA AAGGCTACGGTGATAGGACAAGAAACAAGAGAACTCCAAGCAGTAAGACA CTGCTGTTCTATTAGCATCCAAACCTCCATACTCCTGTTTGCCCCAAGGC TTTTTTAAAAAATAGAGACAGGATCTCACTATTTTGCTCAGGCTGGTCTT GAACTCCTGGACTCAAGCTATCGTCCTGCGTCGGCCTCCTAAAGTGCCGA GATTACAGGCTTGAGTCACCATACCTGGCTATTTATTTTTTCTTAACTCT CTTGGCTGGCCTATAGCCACCATGGAAGCTAATAAAGAATATTAATTTAA GAGTAATGGTATAGTTCACTACATTGGAATACAGGTATAAGTGCCTACAT TGTACATGAATGGCATAGATGGATCAATTACCCCACCTGGGTGGCCAAAG GAACTGCGCGAACCTCCCTCCTTGGCTGTCTGGAACAAGCTTCGCACTAG ATCCCTTTACTGAGTGCCTCCCTCATCTTTAATTATGGTTAAGTCTAGGA TAACAGGACTGGCAAAGGTGAGGGGAAAGCTTCCTCCAGAGTTGCTCTAC CCTCTCCTCTACCGTCCTATCTCCTCACTCCTGTCAGCCAAGGAGTCCAA TCTGTCCTGAACTCAGAGCGTCACTGTCAACTACATAAAATTGCCAGAGA AGCTCTTTGGGACTACAAACACATACCCTTAATGTCTTTATTTCTATTTT GTCTACCTCTTCAGTCTAGGTGAAAAAATAGGAAGGATAATAGGGAAGAA CTTTGTTTATGCCTACTTATCCGCCCCTAGGAATTTTGAAAACCTCTAGG TAGCAATAAGAACTGCAGCATGGTATAGAAAAAGAGGAGGAAAGCTGTAT AGAAATGCATAATAAATGGGCAGGAAAAGAACTGCTTGGAACAAACAGGG AGGTTGAACTATAAGGAGAGAAAGCAGAGAGGCTAATCAACAAGGCTGGG TTCCCAAGAGGGCATGATGAGACTATTACTAAGGTAGGAATTACTAAGGG CTCCATGTCCCCTTAGTGGCTTAGTACTATGTAGCTTGCTTTCTGCAGTG AACTTCAGACCCTTCTTTTAGGATCCTAGAATGGACTTTTTTTTTTTATC GGAAAACAGTCATTCTCTCAACATTCAAGCAGGGCCCAAGTCTACCACAC TCAATCACATTTTCTCTTCATATCATAATCTCTCAACCATTCTCTGTGCT TTTAACTGTTTTTCTATACCCTGATCAAATGCCAACAAAAGTGAGAATGT TAGAATCATGTATTTTTAGAGGTAGACTGTATCTCAGATAAAAAAAAAGG GCAGATATTCCATTTTCCAAAATATGTATGCAGAAAAAATAAGTATGAAA GGACATATGCTCAGGTAACAAGTTAATTTGTTTACTTGTATTTTATGAAT TCCCTAAAACCTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCA CAAACTCCACCCCCTCATTATCATATTGGCTTCAATCCAAAATAAGGTAT ATTATTGATGATGTTAATTAACATGCATGGATCCATATGCGGTGTGAAAT ACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCGGCTT CCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTA TCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAA CGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAG CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACT ATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTG TTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGA AGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGC GAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACG GCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTT ACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGC TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAA AAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTGAG TGGAACGAAAACTCACGTTAAGGGATTTTGGTGATGAGATTATCAAAAAG GATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCT AAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGT GAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTG ACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC CCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTA TCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGC AACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGGTGCA GCCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTCACGTAGAA AGCCAGTCCGCAGAAACCGTGCTGACCCCGGATGAATGTCAGCTACTGGG CTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGC AGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAG CGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCT GCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGATGGCGCAGG GGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGA ACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTAT TCGGCTATGACTGGGCACAACAGACAATCGGCTGCTGTGATGCCGCCGTG TTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCT GTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTGGC TGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAA GGGGGAAGGGACTGGCTGGTATTGGGCGAAGTGCCGGGGCAGGATCTCCT GTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAA TGCGGCGGGTGCATAGGCTTGATCCGGCTACCTGCCCATTCGACCACCAA GCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGT CGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAAC TGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGGGAGGATCTCGTCGTG ACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTT TTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGG ACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGG GGTGACCGCTTCGTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCG CATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATTTTGTTAAAAT TTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAAT CCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAG TTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAAGGTCAAAGGG CGAAAAACGGTGTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTA ATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTA AAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCG AGAAAGGAAGGGAAGAAAGCGAAAGGAGGGGGCGCTAGGGCGCTGGCAAG TGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGGTTAATGCGC CGCTACAGGGCGCGTCCATTCGCCATTCAGGATCGAATTAATTCTTAATT AA SEQ ID NO:2 (human TM amino acid sequence) MLGVLVLGALALAGLGFPAPAEPQPGGSQCVEHDCFALYPGPATFLNASQ ICDGLRGHLMTVRSSVAADVISLLLNGDGGVGRRRLWTGLQLPPGCGDPK RLGPLRGFQWVTGDNNTSYSRWARLDLNGAPLCGPLCVAVSAAEATVPSE PIWEEQQCEVKADGFLCEFHFPATCRPLAVEPGAAAAAVSITYGTPFAAR GADFQALPVGSSAAVAPLGLQLMCTAPPGAVQGHWAREAPGAWDCSVENG GCEHACNAIPGAPRCQCPAGAALQADGRSCTASATQSCNDLCEHFCVPNP DQPGSYSCMCETGYRLAADQHRCEDVDDCILEPSPCPQRCVNTQGGFECH CYPNYDLVDGECVEPVDPCFRANCEYQCQPLNQTSYLCVCAEGFAPIPHE PHRCQMFCNQTACPADCDPNTQASCECPEGYILDDGFICTDIDECENGGF CSGVCHNLPGTFECICGPDSALARHIGTDCDSGKVDGGDSGSGEPPPSPT PGSTLTPPAVGLVHSGLLIGISIASLCLVVALLALLCHLRKKQGAARAKM EYKCAAPSKEVVLQHV RTERTPQRL SEQ ID NO:3 (human TM nucleotide sequence) atgcttggg gtcctggtcc ttggcgcgct ggccctggcc ggcctggggt tccccgcacc cgcagagccg cagccgggtg gcagccagtg cgtcgagcac gactgcttcg cgctctaccc gggccccgcg accttcctca atgccagtca gatctgcgac ggactgcggg gccacctaat gacagtgcgc tcctcggtgg ctgccgatgt catttccttg ctactgaacg gcgacggcgg cgttggccgc cggcgcctct ggatcggcct gcagctgcca cccggctgcg gcgaccccaa gcgcctcggg cccctgcgcg gcttccagtg ggttacggga gacaacaaca ccagctatag caggtgggca cggctcgacc tcaatggggc tcccctctgc ggcccgttgt gcgtcgctgt ctccgctgct gaggccactg tgcccagcga gccgatctgg gaggagcagc agtgcgaagt gaaggccgat ggcttcctct gcgagttcca cttcccagcc acctgcaggc cactggctgt ggagcccggc gccgcggctg ccgccgtctc gatoacotac ggcaccccgt tcgcggcccg cggagcggac ttccaggcgc tgccggtggg cagctccgcc gcggtggctc ccctcggctt acagctaatg tgcaccgcgc cgcccggagc ggtccagggg cactgggcca gggaggcgcc gggcgcttgg gactgcagcg tggagaacgg cggctgcgag cacgcgtgca atgcgatccc tggggctccc cgctgccagt gcccagccgg cgccgccctg caggcagacg ggcgctcctg caccgcatcc gcgacgcagt cctgcaacga cctctgcgag cacttctgcg ttcccaaccc cgaccagccg ggctcctact cgtgcatgtg cgagaccggc taccggctgg cggccgacca acaccggtgc gaggacgtgg atgactgcat actggagccc agtccgtgtc cgcagcgctg tgtcaacaca cagggtggct tcgagtgcca ctgctaccct aactacgacc tggtggacgg cgagtgtgtg gagcccgtgg acccgtgctt cagagccaac tgcgagtacc agtgccagcc cctgaaccaa actagctacc tctgcgtctg cgccgagggc ttcgcgccca ttccccacga gccgcacagg tgccagatgt tttgcaacca gactgcctgt ccagccgact gcgaccccaa cacccaggct agctgtgagt gccctgaagg ctacatcctg gacgacggtt tcatctgcac ggacatcgac gagtgcgaaa acggcggctt ctgctccggg gtgtgccaca acctccccgg taccttcgag tgcatctgcg ggcccgactc ggcccttgcc cgccacattg gcaccgactg tgactccggc aaggtggacg gtggcgacag cggctctggc gagcccccgc ccagcccgac gcccggctcc accttgactc ctccggccgt ggggctcgtg cattcgggct tgctcatagg catctccatc gcgagcctgt gcctggtggt ggcgcttttg gcgctcctct gccacctgcg caagaagcag ggcgccgcca gggccaagat ggagtacaag tgcgcggccc cttccaagga ggtagtgctg cagcacgtgc ggaccgagcg gacgccgcag agactc SEQ ID NO:4 (CMV promoter) TCTAGACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATGATATCATATGGAGTTCCGCGTTAC ATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACT TTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGC AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCCTATTGACGTCAAT GACGGTAAATGGCCCGCCTGGCATTATGCCCAGTNCATGACCTTATGGGA CTTTCCTACTTGGCAGACATCTACGTATTAGTCATCGCTATTACCATGGT GATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCAC GGGGATTTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTG GCACCAAAATCAACCGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT TGACGCAAATGGGCCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGA GCTCTCTGGCTAACTAGAGAACCGCTGCTTACTGGCTTATCGAGATATC SEQ ID NO:5 (hTM cDNA) GGCAGCGCGCAGCGGCAAGAAGTGTCTGGGCTGGGACGGACAGGAGAGGC TGTCGCCATCGGCGTCCTGTGCCCCTCTGCTCCGGCACGGCCCTGTCGCA GTGCCCGCGCTTTCCCCGGCGCCTGCACGCGGCGCGCCTGGGTAACATGC TTGGGGTCCTGGTCCTTGGCGCGCTGGCCCTGGCCGGCCTGGGGTTCCCC GCACCCGCAGAGCCGCAGCCGGGTGGCAGCCAGTGCGTCGAGCACGAGTG CTTCGCGCTCTACCCGGGCCCCGCCACCTTCCTCAATGCCAGTCAGATCT GCGACGGACTGCGGGGCCACCTAATGACAGTGCGCTCCTCGGTGGCTGCC GATGTCATTTCCTTGCTACTGAACGGCGACGGCGGCGTTGGCCGCCGGCG CCTCTGGATCGGCCTGCAGCTGCCACCCGGCTGCGGCGACCCCAAGCGCC TCGGGCCCCTCCGCGGCTTCCAGTGGGTTACGGGAGACAACAACACCAGC TATAGCAGGTGGGCACGGCTCCACCTCAATGGGGCTCCCCTCTGCGGCCC GTTGTGCGTCGCTGTCTCCGCTGCTGAGGCCACTGTGCCCAGCGAGCCGA TCTGGGAGGAGCAGCAGTGCGAAGTGAAGGCCGATGGCTTCCTCTGCGAG TTCCACTTCCCAGCCACCTGCAGGCCACTGGCTGTGGAGCCCGGCGCCGC GGCTGCCGCCGTCTCGATCACCTACGGCACCCCGTTCGCGGCCCGCGGAG CGGACTTCCAGGCGCTGCCGGTGGGCAGCTCCGCCGCGGTGGCTCCCCTC GCCTTACAGCTAATGTGCACCGCGCCGCCCGGAGCGGTCCAGGGGCACTG GGCCAGGGAGGCGCCGGGCGCTTGGGACTGCAGCGTGGAGAACGGCGGCT GCGAGCACGCGTGCAATGCGATCCCTGGGGCTCCCCGCTGCCAGTGCCCA GCCGGCGCCGCCCTGCAGGCAGACGGGCGCTCCTGCACCGCATCCGCGAC GGAGTCCTGCAACGACCTCTGCGAGCACTTCTGCGTTCCCAACCCCGACC AGCCGGGCTCCTACTCGTGCATGTGCGAGACCGGCTACCGGCTGGCGGCC GACCAACACCGGTGCGAGGACGTGGATGACTGCATACTGGAGCCCAGTCC GTGTCCGCAGCGCTGTGTCAACACACAGGGTGGCTTCGAGTGCCACTGCT ACCCTAACTACGACCTGGTGGACGGCGAGTGTGTGGAGCCCGTGGACCCG TGCTTCAGAGCCAACTGCGAGTACCAGTGCCAGCCCCTGAACCAAACTAG CTACCTCTGCGTCTGCGCCGAGGGCTTCGCGCCCATTCCCCACGAGCCGC ACAGGTGCCAGATGTTTTGCAACCAGACTGCCTGTCCAGCCGACTGCGAC CCCAACACCCAGGCTAGCTGTGAGTGCCCTGAAGCCTACATCCTGGACGA CGGTTTCATCTGCACGGACATCGACGAGTGCGAAAACGGCGGCTTCTGCT CCGGGGTGTGCCACAACCTCCCCGGTACCTTCGAGTGCATCTGCGGGCCC GACTCGGCCCTTGCCCGCCACATTGGCACCGACTGTGACTCCGGCAAGGT GGACGGTGGCGACAGCGGCTCTGGCGAGCCCCCGCCCAGCCCGACGGCCG GCTCCACCTTGACTCCTCCGGCCGTGGGGCTCGTGCATTCGGGCTTGCTC ATAGGCATCTCCATCGCGAGCCTGTGCCTGGTGGTGGCGCTTTTGGCGCT CCTCTGCCACCTGCGCAAGAAGCAGGGCGCCGCCAGGGCCAAGATGGAGT ACAAGTGCGCGGCCCGTTCGAAGGAGGTAGTGCTGCAGCACGTGCGGACC GAGCGGACGCCGCAGAGACTCTGAGCGGCCTCCGTCCAGGAGCCTGGCTC CGTCCAGGAGCCTGTGCCTCCTCACCCCCAGCTTTGCTACCAAAGCACCT TAGCTGGCATTACAGCTGGAGAAGACCCTCCCCGCACCCCCCAAGCTGTT TTCTTCTATTCCATGGCTAACTGGCGAGGGGGTGATTAGAGGGAGGAGAA TGAGCCTCGGCCTCTTCCGTGACGTCACTGGACCACTGGGCAATGATGGC AATTTTGTAACGAAGACACAGACTGCGATTTGTCCCAGCTCCTCACTACC GGGCGCAGGAGGGTGAGCGTTATTGGTCGGCAGCCTTCTGGGCAGACCTT GACCTCGTGGGGTAGGGATGACTAAAATATTTATTTTTTTTAAGTATTTA GGTTTTTGTTTGTTTCCTTTGTTCTTACCTGTATGTCTCCAGTATCCACT TTGCACAGCTCTCCGGTCTCTCTCTCTCTACAAACTCCCACTTGTCATGT GACAGGTAAACTATCTTGGTGAATTTTTTTTTCCTAGCCCTCTCACATTT ATGAAGCAAGCCCCACTTATTCCCCATTCTTCCTAGTTTTCTCCTCCCAG GAACTGGGCGAACTCACCTGAGTCACCCTAGCTGTGCCTGACCCTACTTC TTTTGCTCTTAGCTGTCTGCTCAGACAGAACCCCTACATGAAACAGAAAC AAAAACACTAAAAATAAAAATGGCCATTTGCTTTTTCACCAGATTTGCTA ATTTATGCTGAAATTTCAGATTCCCAGAGCAAAATAATTTTAAACAAAGG TTGAGATGTAAAAGGTATTAAATTGATGTTGCTGGACTGTCATAGAAATT ACACCCAAAGAGGTATTTATCTTTACTTTTAAACAGTGAGCCTGAATTTT GTTGCTGTTTTGATTTGTACTGAAAAATGGTAATTGTTGCTAATCTTCTT ATGCAATTTCCTTTTTTGTTATTATTACTTATTTTTGACAGTGTTGAAAA TGTTCAGAAGGTTGCTCTAGATTGAGAGAAGAGACAAACACCTCCCAGGA GACAGTTCAAGAAAGCTTCAAACTGCATGATTCATGCCAATTAGCAATTG ACTGTCACTGTTCCTTGTCACTGGTAGACCAAAATAAAACCAGCTCTACT GGTCTTGTGGAATTGGGAGCTTGGGAATGGATCCTGGAGGATGCCCAATT AGGGCCTAGCCTTAATCAGGTCCTCAGAGAATTTCTACCATTTCAGAGAG GGCTTTTGGAATGTGGCCCCTGAACAAGAATTGGAAGCTGCCCTGCCCAT GGGAGCTGGTTAGAAATGCAGAATCCTAGGCTCCACCCCATCCAGTTCAT GAGAATCTATATTTAACAAGATCTGCAGGGGGTGTGTCTGCTCAGTAATT TGAGGACAACCATTCCAGACTGCTTCCAATTTTCTGGAATACATGAAATA TAGATCAGTTATAAGTAGCAGGCCAAGTCAGGCCCTTATTTTCAAGAAAC TGAGGAATTTTCTTTGTGTAGCTTTGCTCTTTGGTAGAAAAGGGTAGGTA CACAGCTCTAGACACTGCCACACAGGGTCTGCAAGGTCTTTGGTTCAGCT AAGCTAGGAATGAAATCCTGCTTCAGTGTATGGAAATAAATGTATCATAG AAATGTAACTTTTGTAAGACAAAGGTTTTCCTCTTCTATTTTGTAAACTC AAAATATTTGTACATAGTTATTTATTTATTGGAGATAATCTAGAACACAG GCAAAATCCTTGCTTATGACATCACTTGTACAAAATAAACAAATAACAAT GTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO:6 (CMV-hTM expression cassette) GTTTAAACGGGCCCTCTAGACGCGTTGACATTGATTATTGACTAGTTATT AATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATGATATGATATG GAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCC CAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAA CGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAA ACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCC CTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTNC ATGACCTTATGGGACTTTCCTACTTGGCAGACATCTACGTATTAGTCATC GCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATA GCGGTTTGACTCACGGGGATTTTCCAAGTCTCCACCCCATTGACGTCAAT GGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA CAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGG TCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCGTGCTTACTGGC TTATCGAGATATCTGCAGAATTCATCTGTCGACTGCTACCGGCAGCGGGC AGCGGCAAGAAGTGTCTGGGCTGGGACGGACAGGAGAGGCTGTCGCCATC GGCGTCCTGTGCCCCTCTGGTCCGGCACGGCCCTGTCGGAGTGCCCGCGC TTTCCCCGGCGCCTGCACGCGGCGCGCCTGGGTAACATGCTTGGGGTCCT GGTCCTTGGCGCGCTGGCCCTGGCCGGCCTGGGGTTCCCCGCACCCGCAG AGCCGCAGCCGGGTGGCAGCCAGTGCGTCGAGCACGACTGCTTCGCGCTC TACCCGGGCCCCGCGACCTTCCTCAATGCCAGTCAGATCTGCGACGGACT GCGGGGCCACCTAATGACAGTGCGCTCCTCGGTGGCTGCCGATGTCATTT CCTTGCTACTGAACGGCGACGGCGGCGTTGGCCGCCGGCGCCTCTGGATC GGCGTGCAGCTGCCACCCGGCTGCGGCGACCGCAAGCGCCTCGGGCCCCT GCGCGGCTTCCAGTGGGTTACGGGAGACAACAACACCAGCTATAGCAGGT CGGCACGGCTCGACCTCAATGGGGCTCCCCTCTGCGGCCCGTTGTGCGTC GCTGTCTCCGCTGCTGAGGCCACTGTGCCCAGCGAGCCGATCTGGGAGGA GCAGCAGTGCGAAGTGAAGGCCGATGGCTTCCTCTGCGAGTTCCACTTCC CAGCCACCTGCAGGCCACTGGCTGTGGAGCCCGGCGCCGCGGCTGCCGCC GTCTCGATCACCTACGGCACCCCGTTCGCGGCCCGCGGAGCGGACTTCCA GGCGCTGCCGGTGGGCAGCTCCGCCGGGGTGGCTCCCCTCGGCTTACAGC TAATGTGCACCGCGCCGCCCGGAGCGGTCCAGGGGCACTGGGCCAGGGAG GCGCCGGGCGCTTGGGACTGCAGCGTGGAGAACGGCGGCTGCGAGCACGC GTGCAATGCGATCCCTGGGGCTCCCCGCTGCCAGTGCCCAGCCGGCGCCG CCCTGCAGGCAGACGGGCGCTCCTGCACCGCATCCGCGACGCAGTCCTGC AACGACCTCTGCGAGCACTTCTGCGTTCCCAACCCCGACCAGCCGGGCTC CTACTCGTGCATGTGCGAGACCGGCTACCGGCTGGCGGCCGACCAACACC GGTGCGAGGACGTGGATGACTGCATACTGGAGCCCAGTCCGTGTCCGCAG CGCTGTGTCAACACACAGGGTGGCTTCGAGTGCCACTGCTACCCTAACTA CGACCTGGTGGACGGCGAGTGTGTGGAGCCCGTGGACCCGTGCTTCAGAG CCAACTGCGAGTACCAGTGCCAGCCCCTGAACCAAACTAGCTACCTCTGC GTCTGCGCCGAGGGCTTCGCGCCCATTCCCCACGAGCCGCACAGGTGCCA GATGTTTTGCAACCAGACTGCCTGTCCAGCCGACTGCGACCCCAACACCC AGGCTAGCTGTGAGTGCCCTGAAGGCTAGATCCTGGACGACGGTTTCATC TGCACGGACATCGACGAGTGCGAAAACGGCGGCTTCTGCTCCGGGGTGTG CCACAACCTCGCCGGTACCTTCGAGTGCATCTGCGGGCCCGACTCGGCCC TTGCCCGCCACATTGGCACCGACTGTGACTCCGGCAAGGTGGACGGTGGC GACAGCGGCTCTGGCGAGCCCGCGCCCAGCCCGACGCCCGGCTCCACCTT GACTCCTCCGGCCGTGGGGCTCGTGCATTCGGGCTTGCTCATAGGCATCT CCATCGCGAGCCTGTGCCTGGTGGTGGCGCTTTTGGCGCTCCTCTGCCAC GTGGGCAAGAAGCAGGGCGCCGCCAGGGCCAAGATGGAGTACAAGTGCGC GGCCCCTTCCAAGGAGGTAGTGCTGCAGCACGTGCGGACCGAGCGGACGC CGCAGAGACTCTGAGCGGCCTCCGTCCAGGAGCCTGGCTCCGTCCAGGAG CCTGTGCCTCCTCACCCCCAGCTTTGCTACCAAAGCACCTTAGCTGGCAT TACAGCTGGAGAAGACCCTCCCCGCACCGGCCAAGCTGTTTTCTTCTATT CCATGGCTAACTGGCGAGGGGGTGATTAGAGGGAGGAGAATGAGCCTCGG CCTGTTCCGTGACGTCACTGGACCACTGGGCAATGATGGCAATTTTGTAA CGAAGACACAGACTGCGATTTGTCCCAGGTCCTCACTACCGGGCGCAGGA GGGTGAGCGTTATTGGTCGGCAGCCTTCTGGGCAGACCTTGACCTCGTGG GCTAGGGATGACTAAAATATTTATTTTTTTTAAGTATTTAGGTTTTTGTT TGTTTCCTTTGTTCTTACCTGTATGTCTCCAGTATCCACTTTGCACAGCT CTCCGGTCTCTCTCTCTCTACAAACTCGCACTTGTCATGTGACAGGTAAA CTATCTTGGTGAATTTTTTTTTCCTAGCCCTCTCACATTTATGAAGCAAG CCCCACTTATTCCCCATTCTTCGTAGTTTTCTCCTCCCAGGAACTGGGCC AACTCACCTGAGTCACCCTACCTGTGCCTGACCCTACTTCTTTTGCTCTT AGCTGTCTGCTCAGACAGAACCCCTACATGAAACAGAAACAAAAACACTA AAAATAAAAATGGCCATTTGCTTTTTCACCAGATTTGCTAATTTATCCTG AAATTTCAGATTCCCAGAGCAAAATAATTTTAAACAAAGGTTGAGATGTA AAAGGTATTAAATTGATGTTGCTGGACTGTCATAGAAATTACACGCAAAG AGGTATTTATCTTTACTTTTAAACAGTGAGCCTGAATTTTGTTGCTGTTT TGATTTGTACTGAAAAATGGTAATTGTTGCTAATCTTCTTATGCAATTTC CTTTTTTGTTATTATTACTTATTTTTGACAGTGTTGAAAATGTTCAGAAG GTTGCTCTAGATTGAGAGAAGAGACAAACACCTCCCAGGAGACAGTTCAA GAAAGCTTCAAACTGCATGATTCATGCCAATTAGCAATTGACTGTCACTG TTCCTTGTCACTGGTAGACCAAAATAAAACCAGCTCTACTGGTCTTGTGG AATTGGGAGCTTGGGAATGGATCCTGGAGGATGCCCAATTAGGGCCTAGC CTTAATCAGGTCCTCAGAGAATTTCTACCATTTCAGAGAGGCGTTTTGGA ATGTGGCCCCTGAACAAGAATTGGAAGCTGCCCTGCCCATGGGAGCTGGT TAGAAATGCAGAATCCTAGGCTCCACGCCATCCAGTTCATGAGAATCTAT ATTTAACAAGATCTGCAGGGGGTGTGTCTGCTCAGTAATTTGAGGACAAC CATTCCAGACTGCTTCCAATTTTCTGGAATACATGAAATATAGATCAGTT ATAAGTAGCAGGCCAAGTCAGGCCCTTATTTTCAAGAAACTGAGGAATTT TCTTTGTGTAGCTTTGCTCTTTGGTAGAAAAGGCTAGGTACACAGCTCTA GACACTGCCACACAGGGTCTGCAAGGTCTTTGGTTCAGCTAAGCTAGGAA TGAAATCCTGCTTCAGTGTATGGAAATAAATGTATCATAGAAATGTAACT TTTGTAAGACAAAGGTTTTCCTCTTCTATTTTGTAAACTCAAAATATTTG TACATAGTTATTTATTTATTGGAGATAATCTAGAACACAGGCAAAATCCT TGCTTATGACATCACTTGTACAAAATAAACAAATAACAATGTGAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGTAGCAGTCGACAGAT GAATTCCACCACACTGGACTAGTGGATCCGAGCTCGGTACCAAGCTTAAG TTTAAAC SEQ ID NO:7 (pTMadap) CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAG GGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGGGTGACG TAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACATGTAA GCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACAG GAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGG CGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAAACTGAATAAGAGGA AGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATACTGGTACC GCGGCGGCCTCGAGTCTAGAACTAGTGGATCCCCCAAACGGGCCCTCTAG ACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGG GTCATTAGTTCATAGCCCATGATATCATATGGAGTTCCGCGTTACATAAC TTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTG ACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCA TTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTAC ATCAAGTGTATCATATGCCAAGTACGCCCCCCTATTGACGTCAATGACGG TAAATGGCCCGCCTGGCATTATGCCCAGTNCATGACCTTATGGGACTTTC CTACTTGGCAGACATCTACGTATTAGTCATGGCTATTACCATGGTGATGC GGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGA TTTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACC AAAATCAACGGGACTTTCCAAAATGTCGTAAGAACTCCGCCCCATTGACG CAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCT CTGGCTAACTAGAGAACCCCTGCTTAGTGGCTTATCGAGATATCTGCAGA ATTCATCTGTCGACTGCTACCGGCAGCGCGCAGCGGCAAGAAGTGTCTGG GGTGGGACGGACAGGAGAGGCTGTCGCCATCGGCGTCCTGTGCCCCTCTG CTCCGGCACGGCCCTGTGGCAGTGCCCGCGCTTTCCCCGGCGCCTGCACG CGGCGCGCCTGGGTAACATGCTTGGGGTCCTGGTCCTTGGCGCGCTGGCC CTGGCCGGCCTGGGGTTCCCCGCACCCGCAGAGCGGCAGCCGGGTGGCAG CCAGTGCGTCGAGCACGACTGCTTCGCGCTCTACCCGGGCCCCGCGACCT TCCTCAATGGGAGTCAGATCTGCGACGGACTGCGGGGCCACCTAATGACA GTGCGCTCCTCGGTGGCTGCCGATGTCATTTCCTTGCTACTGAACGGCGA CGGCGGCGTTGGCCGCCGGCGCCTCTGGATCGGCCTGCAGCTGCCACCCG GCTGCGGCGACCCCAAGCGCCTCGGGCCCCTGCGCGGCTTCCAGTGGGTT ACGGGAGACAACAACACCAGCTATAGCAGGTGGGCACGGCTCGACCTCAA TGGGGCTCCCCTCTGCGGCCCGTTGTGCGTCGCTGTCTCCGCTGCTGAGG CCACTGTGCCCAGCGAGCCGATCTGGGAGGAGCAGCAGTGCGAAGTGAAG GCCGATGGCTTCCTCTGCGAGTTCCACTTCCCAGCCACCTGCAGGCCACT GGCTGTGGAGCCCGGCGCCGCGGCTGCCGCCGTCTCGATCACCTACGGCA CCCCGTTCGCGGCCCGCGGAGCGGACTTCCAGGCGCTGCCGGTGGGCAGC TCCGCCGCGGTGGCTCCCCTCGGCTTACAGCTAATGTGCACCGCGCCGCC CGGAGCGGTCCAGGGGCACTGGGCCAGGGAGGCGCCGGGCGCTTGGGACT GCAGCGTGGAGAACGGCGGCTGCGAGCACGCGTGCAATGCGATCCCTGGG GCTCCCCGCTGCCAGTGCCCAGCCGGCGCCGCCCTGCAGGCAGACGGGCG CTCCTGCACCGCATCCGCGACGCAGTCCTGCAACGACCTCTGCGAGCACT TCTGCGTTCCCAACCCCGACCAGCCGGGCTCCTACTCGTGCATGTGCGAG ACCGGCTACCGGCTGGCGGCCGACCAACACCGGTGCGAGGACGTGGATGA CTGCATACTGGAGCCCAGTCCGTGTCCGCAGCGCTGTGTCAACACACAGG GTGGCTTCGAGTGCCACTGCTACCCTAACTACGACCTGGTGGACGGCGAG TGTGTGGAGCCCGTGGACCCGTGCTTCAGAGCCAACTGCGAGTACCAGTG CCAGCGCCTGAACCAAACTAGCTACCTCTGCGTCTGCGCCGAGGGCTTCG CGCCCATTCCCCACGAGCCGCACAGGTGCCAGATGTTTTGCAACCAGACT GCCTGTCCAGCCGACTGCGACCCCAACACCCAGGCTAGCTGTGAGTGCCC TGAAGGCTACATCCTGGACGACGGTTTCATCTGCACGGACATCGACGAGT GCGAAAACGGCGGCTTCTGCTCCGGGGTGTGCCACAACCTCCCCGGTACC TTCGAGTGCATCTGCGGGCCCGACTCGGCCCTTGCCCGCCACATTGGCAC CGACTGTGACTCCGGCAAGGTGGACGGTGGCGACAGCGGCTCTGGCGAGC CCCCGCCCAGCCCGACGCCCGGCTCCACCTTGACTCGTCCGGCCGTGGGG CTCGTGCATTCGGGCTTGCTCATAGGCATCTCCATCGCGAGCCTGTGCCT GGTGGTGGCGCTTTTGGCGCTCCTCTGCCACCTGCGCAAGAAGCAGGGCG CCGCCAGGGCCAAGATGGAGTACAAGTGCGCGGCCCCTTCCAAGGAGGTA GTGCTGCAGCACGTGCGGACCGAGCGGACGCCGCAGAGACTCTGAGCGGC CTCCGTCCAGGAGCCTGGCTCCGTCCAGGAGCCTGTGCCTCCTCACCCCC AGCTTTGCTACCAAAGCACCTTAGCTGGCATTACAGCTGGAGAAGACCCT CCCCGCACCCCCCAAGCTGTTTTCTTCTATTCCATGGCTAACTGGCGAGG GGGTGATTAGAGGGAGGAGAATGAGCCTCGGCCTCTTCCGTGACGTCACT GGACCACTGGGCAATGATGGCAATTTTGTAACGAAGACACAGACTGCGAT TTGTCCCAGGTCCTCACTACCGGGCGCAGGAGGGTGAGCGTTATTGGTCG GCAGCCTTCTGGGCAGACCTTGACCTCGTGGGCTAGGGATGACTAAAATA TTTATTTTTTTTAAGTATTTAGGTTTTTGTTTGTTTCCTTTGTTCTTACC TGTATGTCTCCAGTATCCACTTTGCACAGCTCTCCGGTCTCTCTCTCTCT ACAAACTCCCACTTGTCATGTGACAGGTAAACTATCTTGGTGAATTTTTT TTTCCTAGCCCTCTCACATTTATGAAGCAAGCCCCACTTATTCCCCATTC TTCCTAGTTTTCTCCTCCCAGGAACTGGGCCAACTCACCTGAGTCACCCT ACCTGTGCCTGACCCTACTTCTTTTGCTCTTAGCTGTCTGCTCAGACAGA ACCCCTACATGAAACAGAAAGAAAAACAGTAAAAATAAAAATGGCCATTT GCTTTTTCACCAGATTTGCTAATTTATCCTGAAATTTCAGATTCCCAGAG CAAAATAATTTTAAACAAAGGTTGAGATGTAAAAGGTATTAAATTGATGT TGCTGGACTGTCATAGAAATTACACCCAAAGAGGTATTTATCTTTACTTT TAAACAGTGAGCCTGAATTTTGTTGCTGTTTTGATTTGTACTGAAAAATG GTAATTGTTGCTAATCTTCTTATGCAATTTCCTTTTTTGTTATTATTACT TATTTTTGACAGTGTTGAAAATGTTCAGAAGGTTGCTCTAGATTGAGAGA AGAGACAAACACCTCCCAGGAGACAGTTCAAGAAAGCTTCAAACTGCATG ATTCATGCCAATTAGCAATTGACTGTCACTGTTCCTTGTCACTGGTAGAC CAAAATAAAACCAGCTCTACTGGTCTTGTGGAATTGCGAGCTTGGGAATG GATCCTGGAGGATGCCCAATTAGGGCCTAGCCTTAATCAGGTCCTCAGAG AATTTCTAGCATTTCAGAGAGGCCTTTTGGAATGTGGCCCCTGAACAAGA ATTGGAAGCTGCCCTGCCCATGGGAGCTGGTTAGAAATGCAGAATCCTAG GCTCCACCCCATCCAGTTCATGAGAATCTATATTTAACAAGATCTGCAGG GGGTGTGTCTGCTCAGTAATTTGAGGACAACCATTCCAGACTGCTTCCAA TTTTCTGGAATACATGAAATATAGATCAGTTATAAGTAGCAGGCCAAGTC AGGCCCTTATTTTCAAGAAACTGAGGAATTTTCTTTGTGTAGCTTTGCTC TTTGGTAGAAAAGGCTAGCTACACAGGTCTAGACACTGCCACACAGGGTC TGCAAGGTCTTTGGTTCAGCTAAGCTAGGAATGAAATCCTGCTTCAGTGT ATGGAAATAAATGTATCATAGAAATGTAACTTTTGTAAGACAAAGGTTTT CCTCTTCTATTTTGTAAACTCAAAATATTTGTACATAGTTATTTATTTAT TGGAGATAATCTAGAACACAGGCAAAATCCTTGCTTATGACATCACTTGT ACAAAATAAACAAATAACAATGTGAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAGGTAGCAGTCGACAGATGAATTCCACCACACTGGAC TAGTGGATCCGAGCTCGGTACCAAGCTTAAGTTTGGGCTGCAGGAATTCT GATGGCTCTCAAAATTCCTGCCTCCTTTAGGGATAAAAGACTTTAAGACT TTTTAACAAAAAAGAAAAAGAAAAAAAAAATTCCTGCCTCCTGGTGTACA CACACAGAAGGGTTCCCTCCCCTTGAATGTGACCAGGATCTGTGAAAATA ACGGGATAGCCGCTCGTGTGATTAGGTTATGTGGTAGACTAGAGCAAGAT TCTCCTGCTGGTTTTGAAGAAGTCAGCTGCCATGTTGTGAGACTGTCATG GGCTAGGGCATGAGCCTTTAAATATCTGGGAGCAACCCCTGGCCAGCAGC CAGTGAGAAAACGGGCCCTCAGTCCTACAATCACAAGGAACTAAATTCTG CCAACAACCTGAAGGAACTTTGAAGAGGATCATGAGTCCCTTGATTGAGC TTGATGAGCCCCTGAGCAGAGGATACAGCTAACTTGTACTAGGGAAGTAT AAAAAACATGCATGGGAATGATATATATCAACTTTAAGGATAATTGTCAT ACTTCTGGGAATGAAGGGAAAGAAATGGGGCTTTAGTTGTATTATGATCT TTAATTTCTCAAAAAAAATAAGATCAGAAGCAAATATGGCAAAATGTTAA TACTTTTGTGGGTACGTAGGTATTCAGCATACCCTTTTTTCTGAGTTCAA AATATTTTATAATTAAAATGAAATGCAGGCCAGGCACAGTGGCTCATGCC TATAATACCAGCACTTTGCGAGGCCGAGGTGGGAGGATGGCTTGAGGCCA GAGCAGCCTGGCCAACATGGCAAAACCCCATCTCTACTTAAAAAAAAAAA AACTATATATATATATATGTGTGTGTGTGTGTATATATATATATGTATAT ATATTTATATATGTGTGTATATATATATATGTATATATATTTATATATGT GTGTGTATATATATATATACACACACACACATATATACATACATACATAC ACACACACACACACACAATTAGCCAGGCATGGTGGCGCACACCTGTAGTC CCAGCTACTTGGGAGGCTGAGACATGAGAATTGCTTGAACCTGGGAGGCA GAGTAGTTAGTGAGCTGAGATCATACCACTGCACTCCAGCCTGGTGACAG AGTGAGACTCTGTCTTAAAAAAAATAAAAATTAAAATTAAATGCAAAAGG TCCAAGTGAATTGAAGAGGAAAGGGGTATCAAGGAAGGTTTTGTGGAGGT GACGTTTGAGCTGGGTCTTAAATGACTTAAACATGGGATAAGAAGGGAGG GAATAAGGACATTTCAGGTACGAGAAATAAGGAGCAAACAGTGGAAACAA CCTAACGTCTGTCAACCAGTGAATGGATAACAAAAATGTAATTCAGATGG TATCCAACTTACGATGGTTCAACATGAGATTTTTCTGACTTTAGGATAGA TTTATCAAAGTAGTAAATCCATTTTCAACTTATGATATTTTCAACTTCAG ATGGGTTTATCAGGACACAGTTGAGGAACACCTGTCTATCCATACAATTT GGCAATAAAAAGGAAATGAGTGCAGATATACTCCACAACATGAATGAACC TTGAAAACATTAAGTGAGAGAAGCCAGATACAAAAGGCCACATATTGTAT GATTCTATTTATACAAAATGTCCAGAATAGGCAAATCTTATAGACAGCAA GTAGGTAGATGATCAGTTTGCTAGGTGCTGGGGGAAGGGGAAATGGGGAG TGATGGCTAAGGGGATTGGGTTTCTTTGTGGGGCAATGAAAATGTTTTAA AATTGAGCGTGATAATGATTGCACAATGCTGCATATATATATAATCTATA GATTATATATATATAAAGAGAGGCTGTTAGACAGTGATAAGTGATATATA TATATATATACATAGAGAGAGAGAGAGAGAGAGAGAGAGGCTGTTAGTGA TAAGTGATCAGGAAAATAAAAGTATTGAGGAGGAATACGAAGTTGACGGT GTGAAAACATGAGATTTTATATAGGATGGCCACGGAAGGCCTTAATGAGA AAGTGACTTATGAGTAAAAACAAGGGATCGTAAACCTTAGCATGCATCAG AATCACTCGGAAACTTGTTAAAGCATAGCTTGCTGGGCCTCATCACAGAT ATTTTGATTCGGTAGGTTCTTGTCTGATATTAATACTTTTGGTCTAGGGA ACCACATTTTGAGAACCACTGAGCTAAAGGAAGTAAAGGTTTCCCTTAGT TTACTAGCTGGTAACACTGGCCCAGGAGGCCTTTCTGGTGACCCCTAAGG AATTATCGAAACTCTTGTTTTTAGATGCTTTATTATATCAAACTCTCCTT TAAACAAGTGGCCCATCTGCTGGGATTTGGAAGCCTGTAATACTGAAATT TTCATCATAATGGAAATTTTAAAAACAGAATTTGACCCACCTGTTTTTAA AACACTTTCATTACTTAACAAGAGGTCTAATCTTGGGCAAGTCTTGAAAT TTCTCTGGCCTTAGTTTCCCATGTGTTAAATGAAACTTGAAGCAGTTGGT CTCTTATAGTCTCCTGACTCTAACATTCTAAGAATTATATTTGTACAATA ACTCAAAAATCACATAATTTAATTTACCATATGGACTCCAAAATATATTT TCTCATTAGGCTAAACTTGATCTGCATTTTCTGGATGTGTCGATATTCTT GGACTACACTAAAACATGATACCAATGCTTCCTCTCACCATAAACCCTCA CTTCGCTTTCTACATTTAAGAATTTTATAGCTGGAAGAGTCCTTAACAGA AAATACCATCTAATAATTACCCCTCAAAATCGAGAAAGTCCTATCTGTTC TTATGCTAGTTATAAGAATGAGGCAGCATTTCACATAATGGTTATAAACA CTGCCACAAGAAGATTCATGATGTGTTGTTTATCTGTAGCTCTCATCATA CTCTGTCATATAACTATAGCATTAAGATTTTAATGTTCTATATATTCTTC TAAGACAGTGTTTACCAGAGTAAGGCACAAAAGATCCACTGGTTTGCAAG AAAGATTAGAACTTTTAAATTTTTTACCTCACCTTGTTTAATCTATATTT TTGTATGTATTTTGTAACATATATATTATTATTACCATAAATCATATATA ATTTAAAATGCATATATTAGGGGTAAATGCTCAGGAAACTTTTTATAAAT TGGGCATGCAAATACAAGTTTGAAGACTCACTGTTCTAGGTATTAAAAGT AAAGTTATAACCAAGTAAAGCTTCCAGCTTTTCATGTCTCAAAGCAGTTT ATTGTTGGAGGTAAGATCTCTTAGAAGCCTAAACAGGTCCAAGTACAGAA TGAAGTAAGGCTAGCCCATAACTTGTGGCAAGCAATTCATACTATTTCTC TCATGCTGAGCTCTCCTCAGTGAAGCAGCTACTATAGACAACTGCAGCCT ATTGGTAGCCTATTTTACAGGCAGGAAAAAAATTACTTTTTATTCAAAGT GGAACTCAGGACATGGGGAGAAAATGAATACAAAAAATAGGGTCAATCCA AAGGCACACAGCAAATGAGTAACACAGTTATGTTTTTTTCCCATTTGTAT GAGGTCCCAGTAAATTCTAAGTAAACTGCAAATTTAATAATACACTAAAA AAGCCATGCAATTGTTCAAATGAATCCCAGCATGGTACAAGGAGTACAGA CACTAGAGTCTAAAAAACAAAAGAATGCCATTATTGAGTTTTTGAATTAT ATCAAGTAGTTACATCTCTACTTAATAAATGAGAAAAACGAGGATAAGAG GCCATTTGATAAAATGAAAATAGCCAAGAAGTGGTATTAGAGACTTGAAT ACAGGTATTCGGGTCCAAAGTTCATCTGCTCAAATACTAACTGGGGAAAA GAGGGAAAAATATTTATATACATATATATCTGCACACAAAAATACCCCCA AAAGACAAAATGAGGCCAGGCAGGGTGGCTCACACCCGTAATCCCGGTAC TTTGGGAGGCTGAGGCAGGTGGATACCTGAGATCAGGAGTTGGAGATCAG CCTGGTCAACATGGTGAAACCCTGTCTCTACTAAAGATAAAAAAATTAGC CAGGCATGGTGGCGTGCGCCTGTAATCCCAGCTACTTGGGAGTCTGAGGC AGGAGAATCACTTGAACTGGGAAGGGGAGGTTGCAGTGAGCCAAGATCGT ACTACTGCACTCCAGCCTGGGCAGCAGAGTGAGACTCCATCACAAAAATA AATAAATAAATAAAATACAATGAAACAGAAAGTTCAAATAATCCCATAAT CTTACCAGCAAGAAATAACTTTCACTCGTTATACTTATTGATTTTTCCAT AATAAATGTACTTTACTGTGACTATCATGAAAAGAAAGTTATTTTAGAAA CAGAGAACTGTTTCAGATCAAATCTATGTAGTAGAACAGAGCCATTAGGT GGGAAAGACGAGATCAAACTAAATCTCAGAAGGCCTAAAAGGCTAGGTCC ATTCCAGCACTAAAAACTGACCAGACAAGTAATGGCTTCAACAGCTTCTA AATATGGACAAAGCATGCTGAAAGGGAAGGACAGGTCTAACAGTGGTATA TGAAATGAACAGGAGGGGCAAAGCTCATTTCTCCTCTGAAGTTTTCCAAA GATGCTGAGGAGGACATTAGTTTGACATGACCCTGATATGGGACAAGATA ATTTCACAGAAGTTTTACATGTTAAAGTTTTCTTATAGATACTCATTCAA GTAAGCAATGAACACTAAAATCTAAAGAAAGAAAAGAGCTTTAGAGTCAG GTCTGTATTCAAATTCAAGCTCTACCACTTACTGGTTCTGTGACTTTGGG CAAGTCTTTTAACCTTATTAAGTCTTAATTTCCTGATTTGTAAAATGGGG ATATCGTCTCCCTCACAGGATTGTTGTGAAACTTTTATGAGATTAATGCC TTTATATTTGGCATAGTGTAAAGTAACAATAACTGGCAGCTTCAAAAAAA AAAAGCAGTAGCATTCCATCATTTATTATTGGTTACTCTCAAAAAGTTTT TCAATGTACTAGAAGATAAATATTCAAATACCTTAATATCTCCATTATTT TCAGGTAAACAGCATGCTCCTGAACAACCAATGGGTCAACAAATAAATTA AAAGGGAAATCTAAAAACATCTTGATATTAAACTACATGGAAGCACAATA TACCAAAACCAATGGTTCACACTAGGAGAATTTTAAGGTACAAGAAAACT CTTTGAGATTTCTTAAAATAATAGTATGTCTGAATTTATTGAGTGATTTA CCAGAAACTGTTGTAAGAGCTCTACTTGCATTATAGCACTTAATCCTCTT AACTCTATGGCTGCTATTATCAACCTCACCCTAATCACATATGGGACACA GAGAGGTTAAGTAACTTGCCCAAGGTCAGAGTTAGGAAGTACTAAGCCAT GCTTTGAATCAGTTGTCAGGCTCCGGAACTCACACTTTCAGCCACTACAT AATACTGCTTTGCTATCTTTTAGGAAACTATGTGAGTCTACCTCACATAG ACTCACATAGGTTTGTTTTTTTTTTTTTTTTAAAGGCTATCTTTTCCCCC ATCAATGTTTTTTGAAGGATCCCAAATTAGAGTCCCACAGAGGCAGACAG CAGTACTTGACAATATGGACATTTAAGGTTAATGTTGGATTCTACTGTCT TTTTACTACATGACCTAGGGAACGATAATTAACCTAGACTGCTTCCAAGG GTTAAATAACCCATTTAGTTATACTATGTAAATTATCTCTTAGTGATTGA TTGAAAGCACACTGTTACTAATTGACTCGGTATGAAGTGCTTTTTTTTCT TCCCTTTCAAGATACATACCTTTCCAGTTAAAGTTGAGAGATCATCTCCA CCAATTACTTTTATGTCCCCTGTTGACTGGTCATTCTAGTTAAAAAAAAA AAAAACTATATATATATATATCTACACACACATATGTATATGTATATCCT TATGTACACACACAAACTTCAAATTAAATGAGAACTAGAAGATTTGAGAA GTTAGCTAGCTAATATCCATAGCATTATGATATTCTAAATGATATGAATT ATAAGAATTAGGTTTCCTGAAATGAATGACTAGAAAACTTTCAAGTAGAG ATTAGTAAAAATTAAAAAGTCCTAATCGGCCATTACTGATTTGATGTTTT TAAGAGTCCTAAAAAATGGGTTACATCCATTTTTAAGTGGGTAGTATTAT AACAGCCACCCATCTTCAATCACAGTGATTTCTGAATTGTGAGGGAAGTT ATTAGCATGACAGGTGTCTGGTTCTGGCCCTGTACGATTCCCATGAGTCA AGCAAATTGTAAGGGCTGGTCTATATCACACCCAACCCCAAGGATATGTC CCTCAAAAGTCTAGCCCAGGCCCCGTCATCTTCAGCATCATCTGGGAAAC CAGGTCTGATTAGTAGTCCTTTAAGGAATACCTCTTAGGCTCCCATTTTA CTGCTATCACAGAATCCAATAAAACCCTTACAGGAGATTCAATGGGAAAT GCTCAACACCCACTGTAGTTGGTGGTGACAATGACCATAATTTGGCTGTG CTGGATTCAGGACAGAAAATTTGGGTGAAAGAGCAGGTGAACAAAAGAGC TTCGACTTGCCCTAGCAGAGAGCAAGCCATACCATACCACAAAGCCACAG CAATTACAACGGTGCAGTACCAGCACAGTAAATGAACAAAGTAGAGCCCA GAAACAGACCCAGAACTATATGAGGATTTAGTATACAATAAAGATGGTAT TTCGAGTCAGTAGGGAAAAGATGAATTATTCAATAAATGATGTTTGGCCA ACTAGTAACCCATTTGGGAAAAAATAAAAGTATGGTCCCTACCTCACAGC ATACACAAAAATAAATTCCAGACGGATTAAAATCTAAATGTAAAAAATAA AGCCATAAGTGGACTGGAAGAAAATAGAGAATTTTTTTTAACATCCGTAG AAAGGGTAAAAACCCAGGCATGACATGAACCAAAACTGAAGAGGTTCTGT AACAAATACCCCCTTTTATATATTGGGCTCCAACAATAAGAACCCATAGG AAAATGGAGAATGAACACAAATAGACAATTTATAGAAGAGAAGGTTATAA GGTGTAAAATTATATCTATCTGAGAAACAAACACTAAAACAATGTGATTC TACTGTTCTCCCACCCATACTGGCAAAACTTAAGCCTGATAATATGCTGA GGGGAAATAAGCACTCTTGTTGGTGAGAGTATTAATTGGCATAGCTTCTT TTGAAAATGACATAGCAATACCTGTTAAAATTGCAAACATGCATGTCACT TAATCCAGTAATCCCACTTCTGGGAATCAATGCTACAAAAACACTGACAA GTATACAAAGATACATTCAAGAGTGTTCACTGGGCCGGGTGCGGTGGCTT CATGCCTGTAATCCCAGGGAGGCAGAGGCAAGACGATCGCTTGACCCCAG GAGTTCAAGGCCAGCCCGAGAAACACAGCAAGACCCTGTCTCTCTTTTTT TTATTTAAAAAATAAATGTTCACTGTATCAGTTGTTCACAAAAACAAACC AACATGTCCATTAACAGGGAACCATTTAAATTAATCAAGTTCATGTACAC AATGTAATACCATCCAACTATTAAAAAGCACCTGATAATCCAAAGCACAC TGAGACAGAATAATGCTATTAAAAACACCAAGTAGTGGAACACTGTGTTG CCTATGACACCATTTTTATTCAACATTTAAACAAATTTGTAACAGCAATT ACATGAGTAGTGACAATGGCGTTTATGAGACTTTTCACTTTTATGTGGTT CTATTTTTGTTATGCTTCTATATATACATCCATTTATTATGGAGTGTTAC TTTCAAAAATCACAAATGGGCCAGTATTATTTGGTGTTGCAAGGTGAGCA TATGACTTCTGATATCAACCTTTGCATATTAGTTCTCAATTTAGGGAAAT TACAGACATCCCTTATTCTAACTAACTTAAAACCCAGCATTTCAAACATA CAGAATTGATGGGGAAAAAAAAGAAAGAAGAAAGAAAGAAAAGGCAACAA GCTTCAGATGACAGTGACTCACATCAAATTATTTATAAAATCTGTTAAAT AGTGCCATCTTCTGGAGATACCTGGTATTACAGTCCAACTCCAGTTGATG TCTTTACAGAGACAAGAGGAATAAAGGAAAAAATATTCAAGAACTGAAAA GTATGGAGTCATGGAAAAATTGCTGTGATCCAAAGGCTACGGTGATAGGA CAAGAAACAAGAGAACTCCAAGCAGTAAGACACTGCTGTTCTATTAGCAT CCAAACCTCCATACTCCTGTTTGCCCCAAGGCTTTTTTAAAAAATAGAGA CAGGATCTCACTATTTTGCTCAGGCTGGTCTTGAACTCCTGGACTCAAGC TATCCTCCTGCCTCGGCCTCCTAAAGTGCGGAGATTACAGGCTTGAGTCA CCATACCTGGCTATTTATTTTTTCTTAACTCTCTTGCCTGGCCTATAGCC ACCATGGAAGCTAATAAAGAATATTAATTTAAGAGTAATGGTATAGTTCA CTACATTGGAATACAGGTATAAGTGCCTACATTGTACATGAATGGCATAC ATGGATCAATTACCCCACCTGGGTGGGCAAAGGAACTGCGCGAACCTCCC TGCTTGGCTGTCTGGAACAAGCTTCCCACTAGATCCCTTTAGTGAGTGCC TCCCTCATCTTTAATTATGGTTAAGTCTAGGATAACAGGACTGGCAAAGG TGAGGGGAAAGCTTCCTCCAGAGTTGCTCTACCCTCTCCTCTACCGTCCT ATCTCCTCACTCCTCTCAGCCAAGGAGTCCAATCTGTCGTGAACTCAGAG CGTCACTGTCAACTACATAAAATTGCCAGAGAAGCTCTTTGGGACTACAA ACACATACCCTTAATGTCTTTATTTCTATTTTGTCTACCTCTTCAGTCTA GGTGAAAAAATAGGAAGGATAATAGGGAAGAACTTTGTTTATGCCTACTT ATCCGCCCCTAGGAATTTTGAAAACCTCTAGGTAGCAATAAGAACTGCAG CATGGTATAGAAAAAGAGGAGGAAAGCTGTATAGAAATGCATAATAAATG GGCAGGAAAAGAACTGCTTGGAACAAACAGGGAGGTTGAACTATAAGGAG AGAAAGCAGAGAGGCTAATCAACAAGGCTGGGTTCCCAAGAGGGCATGAT GAGACTATTACTAAGGTAGGAATTACTAAGGGCTCCATGTCCCGTTAGTG GCTTAGTACTATGTAGCTTGCTTTCTGCAGTGAACTTCAGACCCTTCTTT TAGGATCCTAGAATGGACTTTTTTTTTTTATCGGAAAACAGTCATTCTCT GAACATTCAAGCAGGCCCCAAGTCTACCACACTCAATCACATTTTCTCTT CATATCATAATCTCTCAACCATTCTCTGTCCTTTTAACTGTTTTTCTATA CCCTGATCAAATGCCAACAAAAGTGAGAATGTTAGAATCATGTATTTTTA GAGGTAGACTGTATCTCAGATAAAAAAAAAGGGCAGATATTCCATTTTCC AAAATATGTATGCAGAAAAAATAAGTATGAAAGGACATATGCTCAGGTAA CAAGTTAATTTGTTTACTTGTATTTTATGAATTCCCTAAAACCTACGTCA CCCGCCCCGTTCGCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCAT TATCATATTGGCTTCAATCCAAAATAAGGTATATTATTGATGATGTTAAT TAACATGCATGGATCCATATGCGGTGTGAAATACCGCACAGATGCGTAAG GAGAAAATACCGGATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGC TGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCG GTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTG AGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGC TCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTT TCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTA CCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAT AGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCT GGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACGGCTGCGCCTTATCCG GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTG GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGC TACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTAGCTTCGGAAAAAGAGTT GGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATC CTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGT TAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCT TTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAA CTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCG ATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGAT AACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAC CGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA GCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCAT CCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTA ATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGCCATGAGATTATCAAAA AGGATCTTCACCTAGATCCTTTTCACGTAGAAAGCCAGTCCGCAGAAACG GTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGAAA ACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGA TAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGC TGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGG CTTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGCTCTGATCAA GAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGC AGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCAC AACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAG GGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGA ACTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTC CTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTG CTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCC TGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGC TTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAG CGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGA CGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGG CGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGC TTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTG TGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCC GTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTG CTTTACGGTATGGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCT TCTTGACGAGTTCTTCTGAATTTTGTTAAAATTTTTGTTAAATCAGCTCA TTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGA ATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCAC TATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAG GGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTC GAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTA GAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAA GCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCG CGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCA TTCGCCATTCAGGATCGAATTAATTCTTAATTAA SEQ ID NO:8 (BstII linker) 5′-gtaacactgg cccaggaggc ctttctggtg acccc-3′ SEQ ID NO:9 (SfiI linker) 3′-tgacc gggtcctccg gaaagaccac tggggatt-5′ SEQ ID NO:10 (Forward PCR primer) 5′ TAGTTCCTTCTGCCTGGAATAC 3′ SEQ ID NO:11 (Reverse PCR primer) 5′ CAAGTCACAAGGATGGACTACA 3′ SEQ ID NO:12 (Stuffer 1) TAGTTCCTTCTGCCTGGAATACTTCCTCATCTCACTTGCTTTCCTGCCTG GCAGCTTCCTACTTGCCCTCTCGAACCAGCTCTAGGGTCACCACATCTCT GCTTCTGAGTGCCTCCTCAGACACAGTCTGTATTTCCTCTTCCAAGCTCT CATCACAAACATTGTGCTGTATTATATGTTTCTGTGTGGTCTTCCTTCTA TGAGGAAGCCTTGGAAAGCAGGAGACTTATTTTAGTCTTCTTTATGTTTC TTTTATTCCCAACACATTATGTCTGCCCCATAGACCTTTTCAATAAATGA TTATTGAGTTAGTGACTCCTTTTACATGCTGACAAATGTGGCTCTTATTA CTCCCCATTTCAGTATCACATATTTGTAAAAGTGAATCCTTCTTAATCGT TTTACTTTTCTCCTAGTAAATTCCTCATCTATGCCTGTCTGCTGCTGTTC TCTGTGCTGCTGGCCCTTCGTTTGGATGGCATCATACAGTGGAGTTACTG GGCTGTCTTTGCTCCAATATGGCTGTGGAAGTTAATGGTCATTGTTGGAG CCTCAGTTGGAACTGGAGTCTGGGCACGAAATCCTCAATATCGGTAATAC TGCTTTATACAACCCATTGGTCTGTAGCATGAGGGAGCAATATCTTGACT TTTGTCACTTTTGATGAAGTAAGGACCATTTTATTTTCTACCTATCTGGG GTCTTAGAACTATAGTATAAGCTAACAGATCTCTTCTGTGTTTTTGAAAA TTTAGTCTTTGGTATGTATTTTCTTACAAAAGCAGTGCCATTTGGGGGTA AGTTGCCAGCCAGCTCACAGATGCCTATATAATCCAAAATGCACCCAAAA TACAGAACTGGTATGCCATACTAGACTAAGCAGCATGAAACCAGCCTGTT TTTAGGAAAAGACACTCATATTATGTTTGGTCATGAAAGATCTTTCTCCA ATACAGTTTTGGAACTGGGGCTCCCCTTGTCCCACCCTGCTAGTCCCAGA CCTTTAGGACTATTAGCAGTGTAGGGGAGGTGGGTTGACCAGGAGACCAT GAGTCCCTGAGACAGCAGCTGGGGAATGAGGAAAGTCAAAGATTGGATGC CGAGAAGGAAAGCAGAGCCTTTGGGGGCAGGGGAGAGGGGTACCCTTTAC CGTTTCCAACTCTTGCCCTCCCTGCTCTTGGATGCCTCCGCTGGCCCAAA TTCCTGGGAGTTGCTCACGCCAGCATGCAACCTGCTTGTTGCTGGGACCT GCGAGAGTCTTTCCCTTCTCTGCCACAGAGACTGTAACTACATAAAGGGA AAAAGGGGGACTTAAGACTGGGAGGCTATTATGAACCTCCACTGGGAAAA TGAGGAGTACAGGAATTCCCAGAAGGCAGCTGCTCATGTGGGAAAAGTGT AAAGTTGAAACTACCGCACCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAATGGTGTGA TCTCGGCCCACTGCAGCCTCCACATCCCGGGTTCAAGTGATTCTCCTGCC TCGGCCTCCTGAGTAGCTGGGATTACAGGCACCTGCCACCATGCCCAGCT AATTTTTTGTATTTTTAGTAGAGATAGGGTTTGACCATGCCAGGCTAGTT TTGAACTCCTGACATCAGGTGATCCACCCGCCTTGGCCTCCTGAAGTGCT GGGATTACAGGTGTGAGCCACCACGTCCGGCGACTACATCAACTTTTTAA ATTTTTGTTTACTAAATATGAAAATGATTCAGATTGTGTAAATTACATAT CACATACATGTCTAAGAACTGTAAAACAGTTACACAGAGAGCCTTGGCAG GTGAGGGACATTCATGTATAGCTGTTTCAGAGTTCTTAGATTTTTTTTGA AAGATTGATGACCTGTGTGGCTGTATGTGTTTTATTTTTTTATGAGATAT TTTCAGATATCTAATATTAATTGCTTCTCAAAGAATGCAAAGTTAAATAA ACATTTAGCTTCTACTAATTGATATTTAGAATATATTCAAACTTCTCTTT GTTGGTCTTATTTAAGATGTTTTGAGCAAGGAAAGGAATTGTGTATGTGG GGTTGAATGTAAGGAATGTACAGGCGTGGTCATTCTCATGTTAACATTAA CCAGTGGAACATGGTTGGGTCCTACAGGAATAACCTCTGATAGCATTTTC TCTATGATCTAACTTCCGGTGTATTTGTCACCGACAATACATGTATATCA TAAATGTTCATCTGTATTTTGAATAAACATTGTAGGCCTTTCAGATGCAT TATAGAGGCTTTTCCTGATTAGGGGCCTTACCATTGGTCAATTGTAGATC TGTTAAGGTTATTGTGGATGATACTTAGCTAATTAAACTGATTTTGTTTG AGAACAGTTTTAACTCTTGTTCTTCTTTCTCTTTCATGTGCAGGTGTTAA TTTATCTTAATGGAATAGAAAGGAAAATGAAAATCATTTATACGTTTTAT TTGCATTTAAAAATAGCACCTAACAATAGTTACTACTATCTTGAAATATA ACTGGCAGTTGTTCATAGAACTAGAGTTATTTTTATAATATTGTGTGAAG GGTGGTTTACATGGTTTCTTGAAAAATGAGGATCATGAGACTTAAGGGGT ATTTGCCTGGTTTTAGCAGCAGAAGCAAATCAGCTTGAATAATCTTGGAA GTAACTCTTGTTGTTGAATTTAAAGATGTGAACAGAAGTGTTTATGTACA TTGTCAGGGAAATAAGAACTGGCTATTACTTTTGAGAATATCCTTATACG GTTAAAACATTAAATTCTGGTTTGGTTGTAATGTTGATTTTGTATTATGT AGTAGTTCTTCGATGTTTCAGAGATTGCCTACGAAAGCTTAGGTTTAAGT TAGCTTTCTAGCTGATTTCCCTTTGCTTTTGTCAAATTTTCAAGTAAAAT TCAAAGTATAAATATAAGTTGGTATTTGCCCTGAAGTGGTTGCTTATAGT GGAGATTCTGAACTGAGGGTGTTTTCTTCTTCTCTCCCTTTTTTAGAGCA GAAGGAGAAACGTGTGTGGAGTTTAAAGCCATGTTGATTGCAGTGGGCAT CCACTTGCTCTTGTTGATGTTTGAAGTTCTGGTCTGTGACAGAATCGAGA GAGGAAGCCATTTCTGGCTCCTGGTCTTCATGCCGCTGTTCTTTGTTTCC CCGGTGTCTGTTGCAGCTTGCGTTTGGGGCTTTCGACATGAGAGGTCACT AGAGGTGAGATTTCATATATTTAAGAATGTTTTCCACTTTGGGAGGTCAA GGCAGGTGGATCACTTGAGGTCAGGAGTTTGAGACCAGCCTGGCGAACAT GGTGAAACCCCATCTCTACTAATAATACAAAAATTAGCCGGGTGTGGTGG CATGCGCCAGTAATCCCAGCTTCTCCGGAGGCTGAGGCGGGAGAATCTCT TGAACCCAGGAGGCGGAGGTTGCAGTGAGCCAAGATTGAACCATTGCACT CCAGCCTGGGTGACAGAATGAAACTCCGTCTTAAAAAAAAAAAAAAAGAA TGTTTTCAAAAGTAAAATATTTTGCTCAGTTATTCAGATGTCAATTTCTT ACCCTTTGTTAGGAAGAGCTTGATCATTACCAACTCTACATCATGAGACA ACAAGGCAACAAAAGATGATGGAAATAACAATTTTTCTTTCTTCACTTAG AACACTAGCTTTTCACCCAGGACATCAGCCTTCTCCCAGCTTCACATCCT GTATCAATCAGACAGAAACAGAACTGATAGGTTAGATACAGATATATGTA TAAAGAGAGTTAAGGAACTGGCTCACATTACTGTGGGGCTGGCAAGTCTG AAATCTCCAGGGCAGGTGAACAGGCTGGAGACCTAGGAGGAGTTGACACT GCAGTCCTGGCACAGAATTTTTTCCTCTCCAGGAAACCACAGTTTTTGCT TTTAAGGCCTTCACCTGATTGCATGAGGCCCACCCATGCTATGGAGGGTA GTCTCCTTTATTCAAAGTCAGTACCTTCACTGCAACAGCAAGCTTAGTGT TTGATTAAATAACTGGGTACTATAGCCCAGCCAAGTTGACACTCAAAACT GACCATCTCCCCACCTCAGACCCCATGATTTAGCACCTCCCCTGCTGTCT GGTTAGGTTATCCTGATGTGCCCCTGTGTTTGTTTATTCATTCAATAAAC ATTTATCAAGTATTTACTAGATGCCAAGCCCTTTTTCCCTAAGCATAGAG GATATGCAGATGAATAAAATACCAGGACTAGTAATAATAGTAATGAAAGT AATTGCAGATAACGTTTATTGAGCACTTACTGTGTGCCAGGCATTGTGCG AGGCACATTACATGTGGTAGTTTTCTTACTAACTAACTCTGTGAGGTAGG TCCAGAGAAGATAAGTCATTTGTTCATGGCCACATGTGAAGGGGCAGGAC CAGGATTCCGTTTGAGTCAGCCCGACTCTAAAGCCCGGGCACATAACTAC ATAACTGCATAGAAGCTGAGGGCCCAAAGCTGAATACTGATGGGTTGAGG GGAGAACTAGAGGCTGTAGATGCCTGGTTTTGAGCCGTGTGGATGAAGAG TGAAGGGAGAAGACTGCAGTTGGCTTAGGAAGTAAACATAGCAGCTGTAG GGTGGGTCAGGCATATAAGCCTAGACCCCAGGTATGGGCGTGAGGGGAAG GTATGTAGACAGAGGGACGGTGATGGAGCAAGGCCCTGTGGGACTCAGGG AGAATGGGACCTAGAGCACCAGGAAGGGTTTGGCCTTGAACAAGGGGAGC TATTCCCTGATTTTCATGCTGGTGGAAAGGCCACAGCATGGGTATAGTGG TAGGTAGGAGTGAGCCGTGGAGGGAGAGTATCTGATGGTCCACTTTCACC CTCCCTACAATTCCCAGTTTATATCAGGGACTTGAGCATCCATGGATTTT GGTATCCACAGGGGGTCCTGGAACCAATCCCCCACAGATACTGAGGGACA ACTATACAAGGACTAGGACTGCATTGGGCCTGAATTACAGAAAGTAAGTC TTTCATATATTCACACTCTAGGCATTCCTGCCCTTGGAAGAAACAACATA CCAGGAGCTGAGCTCCCTCCTCCTGTGATGCAAGAACAGTACCTATGTTG GTGAGGGGGTGGTCTGGAGTAGGCTCATACAGAGATGGGAAGGAGGAGTT GAGGGTCTGCCAGGAAGCCCTGTGTTGGGAGGGAAGGGATGGCATTTTTG GGACACATTGAAGCCTAGAGGCAGGAAACACTCCATCAGCTGAGTGGACT GTGGCGATTCAGATCCGACGGGAGCACAAGGTGGAAAGGAAGGAACTGTG GGAGTTGAGAAGAGAGGGAGCCTCTACAGAGGGATTGGGGCAAATAGGGG CCACGTCCTCAGCCCACAGAGCATGTGCTGAAGTGCCCCAGGCACCCCAG TGCACTCACAGGGCACCAGGGGATAGTGGACATTTTGAGGAAAACAGTAA TACCTGACATTTGTTGGGACACCATACAAACTACTAGCTTGAAATAGTTT ACAGGTTTATTTTTAGGCCACACTGCATTCCTTTCAGTGACGTCGTATCT TTAAGAAGCTGGGTTTTCAGCAGTTGCTGTGAAAACAAAAAAGGCTAATG CTGTGTGAAAATCCGGGTGAAGAACAGGTAACGAGTGGGAGCACCTTGTC TGATTCCAAGGCGTGGGAAATGGTGAGCTACCTGACAGGCACACGCATCC CACTGGGAATTAGTTTTGGTTATTTAAGAATAATATTAACATTTTTCTTT AGATTTATATGAATTATTTTTTCTAGTGGCTACTTAGAAATACTTACTAA GTTAGATGTAATTACTTAAATCAGTGCAACTGTTGGCATTCCCAGCCACA TTAGGGATTTCTTTTGGCCTAGAGGTCTATGGAGGAATTACTAAATTCCC CATGTACCTATGTACTGAGAACTTTTGGGAAGCTCTGGGCCTGGTCCCAG ATTTCAATTTTGTGGGCAAGAATGTACTTTACCAGAGTGAGGAGCAGCCT GCAGGGCGTTTGGGCTGGAGGCGGGAGGTTAGTAAGGGGTTGCTGAAGTG GTAGGCGGATGGTGCCGAAGAAGGCCTCACTAGGCAGTCATCATCAGGAT AGGAAGTGGGCACGGGATTCAGGAGAAATCTGGACTTTACAGTGGACAGG ATGTGGTGACTGAACGTGACAGTGTGGGAAAAAGAATGCAGGGTGATTCC CGGGCTCATGGCTTGAGAAATGAGACCACTGTTGTGCCTCCAAGTGACAT GGGAGGCTATAGAAAGTGACATGGGAGGCTATAGAAAGTGACATGGGAGG CCATAGAAAGTGACATGGGAGGCCATAGAAAGTGACATGGGAGGCCATAG AAAGTGACAAGGGAGGCCATAGAAAGTGACATGGGAGGCCATAGTGACAT GGGAGGCCATAGAAAGTGACATGGGAGGCTATAGAAAGTGACATGGGAGG CCATAGAAAGTGACATGGGAGGCCATAGAAAGTGACATGGGAGGCCATAG TGACATGGGAGGCCATAGAAAGTGACATGGGAGGCTATAGAAAGAGGAGA TACAAGGTTCTAAGTGCAGGCGATAATGATCTCTATTTGGGACTGGCTTC ATTTGAGGTGCCTTTAGGAGAGCCGAGTGGCCTATGCACAGCTGGGTCTG CTATGCAGCAGGAAGGCTAAGTTGGAGACAGATGTGAGAACTAACGATGA AGGAGGTAATAATGCAGACCAAGGGTCTGGTTGAAATTTCTTCTCCCCCA GTCCAGGGTGCAGCGGGTGAGTGAAAATATGTGTGTTTGTGTGTCTGTCT TCCTAGTCGGGAGAGAAGACTGAGTTTGTGGCTCTGCGGAGCATCACCAT TTAAGGAGGGGGAAAAGGAGAGAGAAGGAATTACCAGAACACTCCAGAGG GCTCCAAGACTGTATGGTGGGATCTAGATGGCCAGGAGGAGGGGAGCAAA AAGGAAAGAGTCATCCACAGTATCAGTAGGATGCCAGTTGAAGTGTTTTT GCTGCCTCCCGGTTATCGGTGACTTTGATGAAAGCTGTCTTCTGGTGGTC ATGGGGGTGGAGGCCAGATCACAAGGAAGCTGGGAATGGTAGATGAGATA GTAGGGGCTTGCATATTCATTACTGTCTGGCAGAGAGAAACCTGAGGCTA AGAGGGGTCTTGGATCAAAGGATGGGGTGGGTTTATCTGGTTTCGGGGCT TTTGTTTTTAATGAGAAGGAGTCATTTCTGTGCTGCTAGGAGGGATCAAT GGAATAGGTGGGGTTAAAGATACAGTACGGAATCTACAGTTGATGGCTTG ATGTGACAAGGTCCTCAAGGAGCCTGAAAGGAAGGGGTGGGGTCCAAGGG CAAAACCGAGGTATGAGAAGAAGGATGCACAAGGATGGTTTCGAGTAGAC AGTATTGTTGGTAGGGACATGAAGGAAGTTTAGTGGTCTATTGCAGCTAG CCTGTGTTCCCAGTGAACCTGGAAACAAGGTTCTCATCTGTGCTCAGGCC TCAGGCCAGAAAGGGCAAGGCAGCAGAGGGGCAAGGCAGCAGGCTGAGCC CCATTTCCCCTTGCCATAATACTGCTGTGCCCCTCTGGTACCGAAAATCA GGAGTTTCCAGTGCAATATAATATTATACAAGTTACACTGTATTATAATG TGTATTGTCTTTTAGTGTGTTAACCAAATTACTGCAGTATTAAATGCAAA TTATACTTTGTTTAACTGATTCTTCTCTTCATTTTTAGTTAGAAATCCTG TGTTCTGTCAACATTCTCCAGTTTATATTCATTGCCTTAAGACTGGACAA GATCATCCACTGGCCCTGGCTTGTATGTAACTTTTAAAATGCTTAAATAA ACTTCTTTTTTATTATAAAAGTAATTCATATTCACTGTACAAAGCTTGGA AAAGACGGACAAGCAGAAGTAATAGCCTAATAGTCACCCATkATCCCACC ATGGGGAGATAACATGGTTAGTGTTTTTATGTCTGTGTTTTATAGAAACA GTTTGGATATAACTGTGTGCACGATTTTGTATCCTGATTTTTTTGTTTTA ATGTTGTATCATAAACATTTTATCATGTTAATAAAAGGTCTTTATAAACA TGACTTCTAAAGTTTAATTGATACAAAATATTCTTCAAGTGCATGTATCA GACCATCCTCTTATTTCTAAAATATGGTATTTCCATTGTTGCCAGTGTTG AATGATTTTAAATCATACTGCAGTATATATGTTTATGCATTAAAATTTTT GCCTTTTGTTTTTTGGTTGTTTTCTTAGGAAATAGTCCAGAAATAGTGTT ACTGAGCTAGAGGTTGGGAACTATTTGAGATTCCTATATACGTATACTGC ACTGCCAACTTGCTTTTCCAAAAGCCATACCTGGCCAGGCGCAGTGGCTT ACACTTACAGTCCCAGCACTTTGGGAGGCCGAGGTGAGCTGATCACTTGA GCTCAGGAGTTGGAGACCAACCTGTGCAATGTAGCAAGACCCTGTCTCAA AAGAAAAAAAAAAAAAGCCATACCCATTTACACTCTTGGTGGTGGTGGCA TCTATGTCATGCTTCTAAACTGTGACTTCAGTTACTGGGCATTTGGTTGA AATTAACTGTGAATAAATGGGTAGATGGATGCAGAGATAGAAAGATAAGT GGCAAGGTAGAAATTAGAGAACACAGTATAGATTCCACTATTAAATGCAT GGAAAAAAGATGGAGACTAAAGGCAGAAGAGTTCCATTGCCACTGGGAGG TAAGGTCATGCTAGTGTTTTTGTTCGGTTTTATTTTCTCTGTTGTTTGAT GTATAATTTTGCATACAATATATTTTATGTATTAAATATAGCTACCCTTA AAAAGTGAAAAGTATAGTAAAGAATTGGGAGCAGAGAAGAAATGAAGGGA ACCTAAGTATACTCCATATTTAAAGATGGGAATAATCACTTCTGCCCAAA GTCTTTGATAAAACATTCATAATAAAAAATATTCAGTCACTCATCCTACA ACTTCACAGTGCTGTATCTGGAGAATGGTCATTGGGTTCAAAACTGTTTC TGTTGTGACGTGAAGGAAACATATCTAAACAAGACCAAATTTTTTCGTAT AAGATACTCTCAGGGAAAAAAAAGATTAGTAATTTTGAGAGCTTTCCACA AATGAGAAGAAAGATTTTTTCTGCCCTTCATCCTCTGTAGATCCCAGTTG ATGAAGCAGTCTGAGTACATGTTTCCCATAGTGAGCAAGAGAAAACAAGG AAGCCTATTGAGATCTAACATTCCACCCATGAAGGGAACTTCAGTAAAAA GGAGAATCTCATCACAGAATGGGGAACGGGGAAGAAAGGCTGTGCATAGA CTCTGCAGAGAAACCTACAATCAAGAACTGGTCAGGAGAAGTAAAATTCG TATGCCAACTCAAATCATAGATCTAAAAGAAAATGTAAAACTATAGATCT GTTAGGAAATAACATAGGACAGAATCTTTGGGGTTTGCAATTAGGCAGAG AGTACTTAGAAATGGCACTGTTAATATGGTCCATACGAGAGAGAAATCAT AAATTTGGACTTCCTCAAAATTAAAATGAAATGAAGACAGGCCACAGACT GGGAGAAAATATTTGCAAAGCACACATCAAAACACTGACTTGCACCCAGA ACATACAGAGAACTCTTAAAAACTCAAAACTGCAAAAAGAAACACCTAAA AATTGGCAAAAGAGTTGACAATTTGCGAAGGGGATATACACATGGCGAAA AAGCACAGGAAAAGATGCTCAACGCCATTACAGGTTAGGGAAGACAAACT ACAACCAGGATGAGGGCCCGAAACACATGGCTTCAGAATGGTGAAACTCA GCAACACTGACGAGGCCACGTGCCTGGGAGGATGCAGAGGAACTGGGACA CTCCAGTGTTACTGGCGGGAAGGCAGGTGGTACGGGCACTGTAGAAAATG GTTTGGCCATCTCTGATGCAGTTAAAAGCGCACTTCCCGTGGGACTTGGC TGCCCCACTCCTGGGTATAAGATTTACCCCCAGAGAAGTGAAAGCGCGCA GCCTTGTAGAAACCCACACACCAGTGTTTGTAGCAGTCTTGTTTGCATTT TGGATAGCGGCCTTGTTTGGTTTTCACAAACCACCCTCAGCGGACAGTCA GATAAACTGTAGGCATCCATACAATGGAATACCACTCAGATCTGAGAGGG AACGACCTGTGGATACAGGGAGGGAACAACTTGGATGAATCTCATTAGAG ACATTATGTGGATGGCGGGAAGCCAGTCTCAACAGGTTACTTGTCTCGCG ATGCCATCTACATAAAGTTCCAGCAGAGACAAAAGTACAGTGAGAGAACA GATCAGTGTTTGCCGGGGCTAATGGTGGGGACGGTGTGATAGTGAAGGGA CAGCACGGAGAGTTTTGCAGGGTGACAGACCTCTTCTGCATCCTGCCAAC GGCTGTGTGAATCTACTTGTGTGAAGACTCAGGGAACTCACACCAAAGGA AGACGGTCACTTTTCCTACTGTATGATAGATAATTAATAAAAAGGGAGAA CGGAGGAGTGTCGTCCCAGGAGGCAGGGCAGGAGGGCGAAGACGTGTCAC AGGGGAGCCTGGCCAAGTGGCGCCCCCGGAACTCGTCCTCTGGGCTTGTG TGTGGATGAGACAAGGTCTACCTGGTACGACAGGGACATACTGGGAATGC GCCCTTGGCGTGGAGGCGGGGACCCGGCAGCGCTACGTATCCAGCATCAA CCTGTATCCAGCATCAACCCGCCAAGTTCACTAACTTGGTAGGGGTGAGG TTAGGGATCCTTAGGAGCCCAGGCAGCCAGACTTTCTGGGGAGCCCATTC CCATTTGTGTTGCCAAAGTACCCCCAGCAGGTTGTGGGAATGTTGCCTGT GAAGAGAGTCTGTTGGGGTGAGATCTTGTGTGTGTGCACAGGGTGACAGT TGTGTCCCATTTCCCGGGAAGCTGTGATGGCAGCAGAACCTAGAGGAGCC TGAGAGAGTGTGGGAGAGTGGGCCTCTGGAAGAGTAGAGGCTGCGGAGCC AGGTGCAGGGCTGTCTGTCACCCAAAGGAAGAGGGAGTGATGACTCACTG AGCGTGTGTGTCCCCTGGTGGCAGCAGGCCCCATAGTGAACATACCATAC CTTTTCTGTCCTGAGCGATGCTCCCAGCAGTCCTGGGAGATGGAACGGTC CTTATTCGGCTCACAGGAAGGACCGCCTTAACTGGACAGACACAGCAAGG TGCTAAAGATGCCTTCCATCAGAGGCCAGGTTGGAAGCTCTAAAGAGACT TCTCTTGCTGTTCTCTCACCCACCCCCAGGTTGTGTGTGTGCCGCTGTGG ATTCTCATGTCCTTTCTGTGCCTGGTGGTCCTCTACTACATTGTGTGGTC CGTCTTGTTCTTGCGGTCTATGGATGTGATTGCGGACAGCGCAGGACACA CATAACCATGGCCCTGAGCTGGATGACCATCGTCGTGCCCCTTCTTACAT TTGAGGTAAGCGTTCCACGGGAAGCCTCTTCAGCCCCTGAAGCTTGCGCT TCCCCTGACAGGATTCTGCACCCCTAGAAAGGCAGCCTCTGTGCCTCGAG CTCACAGTGAGCCCACTGCAGGAGAGGGGAGAGAACACAGCCATCTCCGA GAGGGAGCTTCGGTGAAAGGAGAGCATCCTTCCTTTCTCTTGGGGGCAGG ACGTGGGGCTGGCAGGGAGAAGAGTGCACCTTTTTAGCCATGGTGCCTCT GTATGGCTCGAGTTTCCACTCTGGGGAAAGCAGAGTGGGATGTCAGATTT GTGTATTGGAGTCACGTGGAGAATTGTAGAATGGGAGCTGTTGACTCCTT AGAACAAACACCCGGAGGAGTTTGCCATAAAACTGCTGGCACTGGGAACT TTTCAAGTGGATAGGCTATTGCCGAGCTCTGAAGAGGGACATAAAAGCTC ATTTCGAGCTTTCCGCAGGGATAGGTGGTTTCCTGCCTTTTTCTGGCGGT GCTGATGTTCCCTCTTGTGGGAGCTCACGCGGGGGTGGGGTGGTGGGGAG GAACTGCCTAATGAAGTCTGGCTTCCGGCTCTGCCCATTTTCGGTGCTGG CATCAACCGGGACTATGTCTCTTTCTTTAGATTCTGCTGGTTCACAAACT GGATGGCCACAACGCCTTCTCCTGCATCCCGATCTTTGTCCCCCTTTGGC TCTCGTTGATCACGGTGATGGCAACCACATTTGGACAGAAGGGAGGAAAC CACTGTATGTACTCAGCATTTCAGAAGTCCTTGGTGTGTGTCTGGGGGGG GACCAGGGGGTGGGGGGTGGCGGATAGAAGTCTAGGAAGGGATGAGTCCC CGAGGGCCCCAATTTAGAAGCTTGTGTGGGAAAGTGAGGGCTGAGGAAAT TCTGGGACCTTCTAAGGGAAGGGCATGCCGTAACTCTGGTGTTCTGCTGG CCTGCACCGGGACTTTTCTCGCAGTGCACGCTGCCATTTGAGGTAGAACC AGACACGGCAGGCAACCTCTCAGAGATCCCGTTCCCTCCTCTGCAAAATG GGGATCAAGACAGATTCTTCCCAGGCCCGGGAGGGTTTGATGGAAAATCC ACATCTCCCACCCAAACCTGGGATTCATCCTAGGTCCCTGTTGGCCGCTC TGCCTCCCCCATATCCTTGCTGCCATCACCCGAGTCTTGCCTGTCTTGCC TTGCTAACACTCTATTCCCCTCCACCTGCTTGCTGAGGCAGACACTTCCA AAACGATCTCTGCAGAGGGTGCCTTCCTGGCAAGGCTGTGGGCTCCATGG CACGGAAGCCCAGAGCATTGCCCTTCGGAAAGCCAGTGGGTTTGGGGGCA GGGCCTCACTGCAGCCCAGCAGCCCGGGCTGTGCTTGCTGTTTGTGCCTC TGCCCCCTACCCCGCACCCGGGAGCAGGGAGGGCTTGCACCGAGCTGACA CTCCAGTAGCCTACAGAGAGGAGTAGTGGGACTGGGAAAGTGGCTTTAAG GTGGCTCCATGAGTTCAGGCCCCCTCCTGGCCAACCCGTGCATGACTACG GCCCTCACGGATTCCAGAGGGTGACAGAAATCTTGTTCTTGGGTGGCACT GTCATCCATGAGTTTATCCTGGCTGGAGAAGATTAGCGGAAGACAGCGTA GTCTGCGCACCACAGATATTTTGAGACTCACTGGAGCAGTAGTTCTCAAA TTTGGGCATCCAGCAGAATCCCAAAAGGGCCAGGAAAAGGGGACCGCTGG AGCCCACCCTAGCCCGACTCAGTTTCTGGAGGTCTGGGCTGGGGCCCGAG AATGGCATCCCTAACTAGGCCCCGTGGACGCTGTCCCTGCCGGTCCGGGA ACCCCAGTCCAAGCACCACAGAGCTAGCATTTGCACTTCTTCCCCATTTT GGGTACTCAAGCCCTGTTCAGGCTTTGTGACTCAGGAGTCTGGATAAAGT ATGTTATGACATTGTAGGAGTGAAACTTCTTGTTACGGAAAGAAAGTTAA CAGGAAGGTCAGTTCAGCCTCGTGTGTGAAATAAAAAATTCTTATTTTTC AGGGTGGTTTGGTATCCGCAAAGATTTCTGTCAGTTTCTGCTTGAAATCT TCCCATTTCTACGAGAATATGGAAACATTTCCTATGATCTCCATCACGAA GATAATGAAGAAACCGAAGAGACCCCAGTTCCGGAGCCCCCTAAAATCGC ACCCATGTTTCGAAAGAAGGCCAGGGTGGTCATTACCCAGAGCCCTGGGA AGTATGTGCTCCCACCTCCCAAATTAAATATCGAAATGCCAGATTAGATG CGACTTCCGGGGACAGAGCTTAAGTGGACTGGGACGCACTCTCTCCGCCT TCCTCTGCCCCCTCGTTCACCCCGCAGACCAGAACCAGTACTGGAGCTGG GTCTCCAGGTACGTCCATCTCATGCCTTGTTTGCATCCAGCGCCTATCAG CCACTCACCACGACGGGACGCGGAAGTGGCAGGTGACGGGGGTGTGTGCC AGCAGATGCGGATGCCAGGAAGAGTGTGAGAACAGGGGTGGGATTACCGT CTGTCTGGGAGGGGCTCCAGGTACCCCTCTTCCCCGTCAGACCCACTGGG AGATGGCTGCTTGCCAGGCCCCCAGAAGGAACATCTGTCTATACGGTGCT GAAATCCCAATCAAAAGTATTGTTTAGAAATGTATTTCTCCACAGGGCTG ACCTCCTGCAGCTCGCTGAGCACTCCCAGGTCCTCAGCACTCCCAGGTCG TGGCTGGGGCAGTCAGTAGGAACTGTAACTATGTCTCTGATGCACCACGT GTTTAGACACAGCACAGTCCTTTTTTCTGTTCCTACTGTGGAAGTAGTTT CTCTTTGGGCATGCTGACAGCAGTTTTTCATAGCCTCACGGATGAGCCCT TTCTACGGGAGTGACTCCATGCTTGTATACAGAGTATTTATACAAATGTT TTAGCATCTTCATATGCGGTGTTAACCCGTAGTTCTGTACAGCATATTCT GTTCAAGTATTTTTTTACAAGCTTGTGCTGTAGGCACATGCCTTCTGCTG CAGAAGTGGACGCCCGTGGCACACTCCCCCCCCCCCCCCGTGGGGTGCCA CGCCTTCATGGGACATTGCCACTTCTGCCCTGGAACTCGTGCAGGTACGT AGTAGCTGCTACTGCCAGAACGGCAACACCAAGCAAGAGATGGTCCATGC TTTTCTGACGTTCTCAGAATAGTGGCTAGCTTCAAACCTGACAAGCGCTG CTTGAAGCCGGAACACTAGAGAATGTTGCTGAGAGCAGAAACGGCCACGC GGGTCACGACTATGCGTGGGAAAGTCTCAAGCTTCCCTCCTGCCAGCAAC AAGAAGGCTTTGGAGTAGGCATGATGTTTTCACGTGTGCGTGCCGTTTCT CCAAGCACTGCAGGTTCCACCGTGTGTCAGAGGCTGCAAGTTTAACATCC TCCTGCCTGAAAACAAATAGGTCCTTTGCTGAAAAGAGGGTAAAAAAAGA GCTTTGATCTTCTCAGCCAGGAGAAGAGGGTGGTGTTTTCACGCGGGCAA CTGCTCGCCGGCCTACATGGGGTTAATTCAAGTCTGCTGCGAGCACGACT CCGCCCTTGGCACTGGCCTCCAGCAAGCCCTGTTCTCTTTGGGGTACAGG GGAACGGGATGGTTTAGACTTTCCTGCTCAGTGTGTAAAAAATGTAGCTA AAGCCACTATTTTTGCTCTCCTTAAGCTGTTCAATAAACCGGTTCCTCAT TTTACACGTGCATGATGTGTATCTTCTTTGCTGGATGGGCCAGGAAACTG GAGTGGTCCTCTCAGCCAGCCTCAGAGGAAAGAAATCTCTAGCTGGCACA GGCAGCCAGTGAGTGAGGCTGGCGGCTGCAGGGGCACAGCCTTTAGAATG AGTCCTTCAGTGCACAGGTCCCAGGGTATACGGGGTAGTGGGAGGAAGGA GGGGACGCCTCGGAGATGCCACTGTTGGCTGGGCTACACCTTGCCACACT TGTTACTGCTTAGGAGGCTTTGTGGAGTGTTCCTTGGGTGCTACGACAAT CTGCAGCAGACACTGTCCTTTCACCGCTCCTGGTCCTCGTTTGCTCCCCA GTGATGTCAACAGCTGAGGACTGCTCACGCTGCAACAAAAGGCTCTGCAG TCGCTGTCTAGCTTGCCCTAGTCGTCTCTAGAGTTCTGCCTGAACTGAAA CTCAAGTGGGGTTCAGCTCATGACTTGTGGCAATTGACCAGGAAATTCAC CAGTTGCTGTGGCTGGAAGGATTTTCAGTCCTGTGGGTTGTAACCAGAGG CCACAGGTGGATTCTGCCTTAGGCTCATGAGATTTCCGACTTGCTGTTGA AGAAAATGCCTTGTGAAGTGACAACAGTAGCTCTGACCCAACTGCCGGTG CCTCGCTAGTTCCTATACGTCCCACTGGATCCTCACAGCCCCGGGAAGCA GGTGCTACTACTCTTATCCCCGGGAGGAGACAGAGGCCGAGAGAGGTTAA GTGACGTGCCCAAGTCACACAGCTCGGCAGCGGCCGGGTTGAGCATCAGC AGTCTGTTTGCAGACCCCTCACTGTCACCCCCTGAGCCAGTGCGCCTTGG GCCCTGCGGTCAGGATGTCTCAAGCGTGGAGGCATCACCGGTTCGTGGCA GTCTCTGGAAGGTCACTGAGCTCTGTGCCCAGAATCGAGTCGGGGGAGTC TGTGCAGAGGTGGCCCTGTGTGTGGGGACAGTGTGTGACACAGACACTGC TTTGGATGGACACCTCTCCCGTGACCTCCTAGCATCCAATCCCAAAGGAA CAACTGTTGCAGAGATGGACCGCTGGACACAAACCCACGTGCGTTTCTCT GGAGACACTGGCCAAGGAAAACAAAACATGCTCGAAGGCCAACAGCTGCA TGCCCCACCGCGATGTGACCGCAGACACCCGGGGTGTAGAAGGGTCTCTG CCTGGTGGGGGGACACGTGCAGGCCGAGGAGAGGGAGGAAGGAGGCTGCC TCCGACTCCCCAGTGGACTGCATGGCGACGGCGTGTGGTGGGGCAGTCAG CTAAGCCATTTGCCTAAGGGGCTGTGGGGCATCTGCGTGCTGGGGACCGA CAGTGTGGGTGTGTTAGGAGGATCTGTATGGAGCACATTGCTGCCTCTGG GTAGGACAGGGTGGAAAGGGTGGCGTGGCTACAGCCTGACCCATGGGCAC CGTCCTACCGTTTGTTCTGTGCTTCCGAGTGTCAGTCATGTGCTGGGGTC TGTGGGCCCATGACTCAGACGGTGAGCTCTGACCTTCCTGAGCCAGGGCT TTGCTGTAGTTGTGCCTGGCTGAGGAGCTCTAGGACAAGGGGACCGCTCC AGGTCTGCATCTACGGTGTGGCAGGGCCCCTCGGCACTCTTGTGCACTAG TGTCATCTTTCCCATTGAAATGACTGTGAGGACCAGAATGTGCACATGCA GATGGGCAGCTACTTGTCTGCCTTGGCCCTTTATTACACAACTTGCTGGG GGTGGAGATGCCACCCCCCGGCAGTGAGAGCCCCTTTATGATGTCATGGG GCTGGTTACATGACTGCCAAGGGGTGCTGCTGGCCACACTGCACTAGCAA GTTTGCCAGATGGAGGACAAGCGATCATTGAGTATGGCTCGCTGTGAAGA AAGAAATTCGAGAGGACAGGATCATGGCTTGGAAAGGGTGCGTTTCCCTC CCCAGTTGCAGTCAGAGACCTACCTTCACCCAGCAGATCCTTCCCCTGCC TGGGACGACGCGGGGTCCACTGGGAGCCCTAAGTTGAGGCTGCTGACAGA AGAAATCGCTTTCCAACCTCTGGCCGAGGAAGCTTCGTTCAGAAGGCCGC ACCCTGACGGTGACGTCCCGCCCCAGGGAGAAGATAATCTCCTCTCCCTC CCCTTTCCACAGAAACTGTGGAGACTGGTCAGCAGCAACCAGTTTTCGTC CATGTGGTGGGATGACAGTGGGGCTTGTAGAGTGATCAATCAAAAACTCT TTGAAAAGGAGATTCTCAAAAGGGACGTCGCAGACAAAGTGTTTGCCACA ACTTCGATAAAGAGCTTCTTCCGCGAGCTAAACTTGTATGGCTTCCGAAA ACGGCGTCAATGCACTTTCAGGACCTTCACCCGCATTTTCTCCGCAAAAA GGCTGGTCTCCATCTTGAATAAGGTAATGAACGACAAGCCTCTGGAGGGG TTAAGTCGGTGGGCTCTGGGGCCTGGTCGGGTGGAAGTCCCAGGACTGCC TCCTGGGAAGTGGGCGAGCTCAGGCAGGGTGTGGGGCCATCGCTGTGGGC CTGTGTCCCCCTCTGGGTGGAGGTGACATGAACTAAGAGTGAATGTGGGG AGAGGGCTGAGGATGGTGCGGGCCCCTCTCGAGTGTGTAAAATATCACAG GTGCCAAGTAGCCGTATCTGCGTGTCGTCCTCCCCGGGGCCAGCCATGTC ATCTGGTGGTTGCTGTGTCCCCCTGACTCCACAGCACATTACCCTGTGAG GTGAGCAGGCCAGGGGAGTCTGGTATTTGTACCACTGTCACCCTAGCTGG TGTCTGGAGAGGTGCTCAAGTGGAAGCACTGAAGGGCGCCTGGCGCAGGA GGTGCAGATGCTCCTGCTGCCCTTGGTAGGTGGGCCCCTGGTGTGGAAGA GCCAGTACCCAGGGCCTCCAACCCAGCCGGGGTGCATTCTGTTGCCAGCT GACACTGCATGGGGGAGGCCCAGAATCTTCTTCCCTCCTGGTCTGCAACT TCAAAGACCCTTTCCGCCGGCCATGGACACCCTAATCTGCCATTTTGAGG CTTTTTCCAAGACGGAAAGGCCCGCCACAACTTGGTAAACCTTGACGATG TGAACGCGAGTCCCCAGCTTCCTTTGGGGACTGGGACCTTTTCCAGAAAG GCCTCCTGGGCCAGTAGAGTTCTCTTGCACAGGGGCGTAGATGGTTGGTA GTTGTAGTCCATCCTTGTGACTTG SEQ ID NO:13 (Stuffer 1-Short) GGCCCAGGAGGCCTTTCTGGAAAAGGTCCCAGTCCCCAAAGGAAGCTGGG GACTCGCGTTCACATCGTCAAGGTTTACCAAGTTGTGGCGGGCCTTTCCG TGTTGGAAAAAGCCTCAAAATGGCAGATTAGGGTGTCCATGGCCGGCGGA AAGGGTCTTTGAAGTTGCAGACCAGGAGGGAAGAAGATTGTGGGCCTCCC CCATGCAGTGTCAGCTGGCAACAGAATGCACCCCGGCTGGGTTGGAGGCC CTGGGTACTGGCTCTTCCACACCAGGGGCCCACCTACCAAGGGCAGCAGG AGCATCTGCACCTCCTGCGCCAGGCGCCCTTCAGTGCTTCCACTTGAGCA CCTCTCCAGACACCAGCTAGGGTGACAGTGGTACAAATACCAGACTCCCC TGGCCTGCTCACCTCACAGGGTAATGTGCTGTGGAGTCAGGGGGACACAG CAACCACCAGATGACATGGCTGGCCCCGGGGAGGACGACACGCAGATACG GCTACTTGGCACCTGTGATATTTTACACACTCGAGAGGGGCCCGCAGCAT CCTCAGCCCTCTCCCCACATTCACTCTTAGTTCATGTCACCTCCACCCAG AGGGGGACACAGGCCCACAGCGATGGCCCCACACCCTGCCTGAGGTCGCC CACTTCCCAGGAGGCAGTCCTGGGACTTCCACCCGACCAGGCCCCAGAGC CCACCGACTTAACCCCTCCAGAGGCTTGTCGTTCATTACCTTATTCAAGA TGGAGACCAGCCTTTTTGCGGAGAAAATGCGGGTGAAGGTCCTGAAAGTG CATTGACGCCGTTTTCGGAAGCCATACAAGTTTAGCTGGCGGAAGAAGCT CTTTATCGAAGTTGTGGCAAAGACTTTGTGTGCGACGTCCCTTTTGAGAA TCTCCTTTTCAAAGAGTTTTTGATTGATCACTCTACAAGCCCCACTGTCA TCCCACCAGATGGACGAAAACTGGTTGCTGCTGACCAGTCTCCACAGTTT CTGTGGAAAGGGGAGGGAGAGGAGATTATCTTCTCCCTGGGGCGGGACGT CACCGTCAGGGTGCGGCCTTCTGAACGAAGCTTCCTCGGCCAGAGGTTGG AAAGCGATTTCTTCTGTCAGCAGCCTCAAGTTAGGGCTCCCAGTGGACCC CGGGTCGTGCCAGGCAGGGGAAGGATCTGCTGGGTGAAGGTAGGTCTCTG ACTGCAACTGGGGAGGGAAAGGCACCCTTTCCAAGCCATGATCCTGTCCT CTCGAATTTCTTTCTTCACAGCGAGCCATACTCAATGATCGCTTGTCCTC CATCTGGCAAACTTGCTAGTGCAGTGTGGCGAGCAGCACCCCTTGGCAGT CATGTAACCAGCCCCATGACATCATAAAGGGGCTCTGACTGCCGGGGGGT GGCATCTCCACCCCCAGCAAGTTGTGTAATAAAGGGCGAAGGCAGACAAG TAGCTGCCCATCTGCATGTGGACATTCTGGTCCTCACAGTCATTTCAATG GGAAAGATGACACTAGTGCACAAGAGTGCCGAGGGGCCCTGCCACACCGT AGATGCAGACCTGGAGCGGTCCCCTTGTCCTAGAGCTCCTGAGCCAGGCA CAACTACAGCAAAGCCCTGGCTCAGGAAGGTCAGAGCTGACCGTCTGAGT CATGGGCCCACAGACCCCAGCACATGACTGACACTCGGAAGCACAGAACA AAGGGTAGGACGGTGCCCATGGGTCAGGCTGTAGCCACGGCACCGTTTCC ACCCTGTCCTAGCCAGAGGCAGCAATGTGCTCCATACAGATCCTCCTAAC ACACCGACACTGTCGGTCCCCAGCACGCAGATGCCCGACAGCCCCTTAGG CAAATGGCTTAGCTGACTGCCCCACCACACGCGGTCGCCATGCAGTCCAG TGGGGAGTCGGAGGCAGCCTGCTTCCTGCCTCTCCTCGGCCTGCACGTGT CCCCCCACCAGGCAGAGACCCTTCTACACCCCGGGTGTCTGCGGTCACAT CGCGGTGGGGCATGCAGCTGTTGGCCTTCGAGCATGTTTTGTTTTCCTTG GCCAGTGTCTCCAGAGAATCGCACGTGGGTTTGTGTCCAGCGGTCCATCT CTGCAACAGTTGTTCCTTTGGGATTGGATGCTAGGAGGTCACGGGAGAGG TGTCCATCCAAAGCAGTGTCTGTGTCACACACTGTCCCCACACAGAGGGC CACCTCTGCACAGACTCCCCGGACTCGATTCTGGGCACAGAGGTCAGTGA CCTTCCAGAGACTGCCACGAACCGGTGATGCCTCCACGCTTGAGACATCC TGACCGCAGGGCCCAAGGCGCACTGGCTCAGGGGGTGACAGTGAGGGGTC TGCAAACAGACTGCTGATGCTCAACCCGGCCGCTGCCGAGCTGTGTGACT TGGGCACGTCACTTAACCTCTCTCGGCCTCTGTCTCCTCCCGGGGATAAG AGTAGTAGCACCTGCTTCCCGGGGCTGTGAGGATCCAGTGGGACGTATAG GAACTAGGGAGGCACCGGCAGTTGGGTCAGAGCTACTGTTGTCACTTCAC AAGGCATTTTCTTCAACAGCAAGTCGGAAATCTCATGAGCCTAAGGCAGA ATCCACCTGTGGCCTCTGGTTACAACCCACAGGACTGAAAATCGTTCCAG CCACAGCAACTGGTGAATTTGCTGGTCAATTGCCAGAAGTCATGAGCTGA ACCGCACTTGAGTTTCAGTTCAGGCAGAACTCTAGAGACGACTAGGGCAA GCTAGACAGCGACTGCAGAGCCTTTTGTTGCAGCGTGAGCAGTCCTCAGC TGTTGACATCACTGGGGAGCAAACGAGGACCAGGAGCGGTGAAAGGACAG TGTCTGCTGCAGATTGTCGTAGCACCCAAGGAACACTCCAGAAAGCCTCC TAAGCAGTAACAAGTGTGGCAAGGTGTAGCCCAGCCAACAGTGGCATCTG CGAGGCGTCCCCTCCTTCCTCCCACTACCCCGTATACCCTGGGACCTGTG CACTGAAGGACTCATTCTAAAGGCTGTGCCCCTGCAGCCGCCAGCCTGAC TCACTGGCTGCCTGTGCCAGCTAGAGATTTCTTTCCTCTGAGGCTGGCTG AGAGGACCACTCCAGTTTCCTGGCCCATCCAGCAAAGAAGATACACATCA TGCACGTGTAAAATGAGGAACCGGTTTATTGAACAGCTTAAGGAGAGCAA AAATAGTGGCTTTAGCTACATTTTTTACACACTGAGCAGGAAAGTCTAAA CCATCCCGTTCCCCTGTACCCCAAAGAGAACAGGGCTTGCTGGAGGCCAG TGCCAAGGGCGGAGTCGTGCTCGCAGCAGACTTGAATTAACCCCATGTAG GCCGGCGAGCAGTTGCCCGCGTGAAAACACCACCCTCTTCTCCTGGCTGA GAAGATCAAAGCTCTTTTTTTACCCTCTTTTCAGCAAAGGACCTATTTGT TTTCAGGCAGGAGGATGTTAAACTTGCAGCCTCTGACACACGGTGGAACC TGCAGTGCTTGGAGAAACGGCACGCACACGTGAAAACATCATGCCTACTC CAAAGCCTTCTTGTTGCTGGCAGGAGGGAAGCTTGAGACTTTCCCACGCA TAGTCGTGACCCGCGTGGCCGTTTCTGCTCTCAGCAACATTCTCTAGTGT TCCGGCTTCAAGCAGCGCTTGTCAGGTTTGAAGCTAGCCACTATTCTGAG AACGTCAGAAAAGCATGGACCATCTCTTGCTTGGTGTTGCCGTTGTGGCA GTAGCAGCTACTACGTACCTGCACGAGTTCCAGGGCAGAAGTGGCAATGT CCCATGAAGGCGTGGCACCCCACGGGGGGGGGGGGGGAGTGTGCCACGGG CGTCCACTTCTGCAGCAGAAGGCATGTGCCTACAGCACAAGCTTGTAAAA AAATACTTGAACAGAATATGCTGTACAGAACTAGGGGTTAACACCGCATA TGAAGATGCTAAAACATTTGTATAAATACTCTGTATACAAGCATGGAGTC ACTCCCGTAGAAAGGGCTCATCCGTGAGGCTATGAAAAACTGCTGTCAGC ATGCCCAAAGAGAAACTACTTCCACAGTAGGAACAGAAAAAAGGACTGTG CTGTGTCTAAACACGTGGTGCATCAGAGACATAGTTACAGTTCCTACTGA CTGCCCCAGCCACGACCTGGGAGTGCTGAGGACCTGGGAGTGCTCAGCGA GCTGCAGGAGGTCAGCCCTGTGGAGAAATACATTTCTAAACAATACTTTT GATTGGGATTTCAGCACCGTATAGACAGATGTTCCTTCTGGGGGCCTGGC AAGCAGCCATCTCCCAGTGGGTCTGACGGGGAAGAGGGGTACCTGGAGCC CCTCCCAGACAGACGGTAATCCCACCCCTGTTCTCACACTCTTCCTGGCA TCCGCATCTGCTGGCACACACCCCCGTCACCTGCCACTTCCGCGTCCCGT CGTGGTGAGTGGCTGATAGGCGCTGGATGCAAACAAGGCATGAGATGGAC GTACCTGGAGACCCAGCTCCAGTACTGGTTCTGGTCTGCGGGGTGAACGA GGGGGCAGAGGAAGGCGGAGAGAGTGCGTCCCAGTCCACTTAAGCTCTGT CCCCGGAAGTGGCATCTAATCTGGCATTTCGATATTTAATTTGGGAGGTG GGAGCACATACTTCCCAGGGCTCTGGGTAATGACCACCCTGGCCTTCTTT CGAAACATGGGTGCGATTTTAGGGGGCTCCGGAACTGGGGTCTCTTCGGT TTCTTCATTATCTTCGTGATGGAGATCATAGGAAATGTTTCCATATTCTC GTAGAAATGGGAAGATTTCAAGCAGAAACTGACAGAAATCTTTGCGGATA CCAAACCACCCTGAAAAATAAGAATTTTTTATTTCACACACGAGGCTCAA CTGACCTTCCTGTTAACTTTCTTTCCGTAACAAGAAGTTTCACTCCTACA ATGTCATAACATACTTTATCCAGACTCCTGAGTCACAAAGCCTGAACAGG GCTTGAGTACCCAAAATGGGGAAGAAGTGCAAATGCTAGCTCTGTGGTGC TTGGAGTGGGGTTCCCGGACCGGCAGGGACAGCGTCCACGGGGCCTAGTT AGGGATGCCATTCTCGGGCCCCAGCCCAGACCTCCAGAAACTGAGTCGGG CTAGGGTGGGCTCCAGCGGTCCCCTTTTCCTGGCCCTTTTGGGATTCTGC TGGATGCCCAAATTTGAGAACTACTGCTCCAGTGAGTCTCAAAATATCTG TGGTGCGCAGACTACGGTGTCTTCCGCTAATCTTCTCCAGCCAGGATAAA CTCATGGATGACAGTGCCACCCAAGAACAAGATTTCTGTCACCCTCTGGA ATCCGTGAGGGCGGTAGTCATGCACGGGTTGGCCAGGAGGGGGCCTGAAC TCATGGAGCCACCTTAAAGCCACTTTCCCAGTCCCACTACTCCTCTCTGT AGGCTACTGGAGTGTCAGCTCGGTGCAAGCCCTCCCTGCTCCCGGGTGCG GGGTAGGGGGCAGAGGCACAAACAGCAAGCACAGCCCGGGCTGCTGGGCT GCAGTGAGGCCCTGCCCCCAAACCCACTGGCTTTCCGAAGGGCAATGCTC TGGGCTTCCGTGCCATGGAGCCCACAGCCTTGCCAGGAAGGCACCCTCTG CAGAGATCGTTTTGGAAGTGTCTGCCTCAGCAAGCAGGTGGAGGGGAATA GAGTGTTAGCAAGGCAAGACAGGCAAGACTCGGGTGATGGCAGCAAGGAT ATGGGGGAGGCAGAGCGGCCAACAGGGACCTAGGATGAATCCCAGGTTTG GGTGGGAGATGTGGATTTTCCATCAAACCCTCCCGGGCCTGGGAAGAATC TGTCTTGATCCCCATTTTGCAGAGGAGGGAACGGGATCTCTGAGAGGTTG CCTGCCGTGTCTGGTTCTACCTCAAATGGCAGCGTGCACTGCGAGAAAAG TCCCGGTGCAGGCGAGCAGAACACCAGAGTTACGGCATGCCCTTCCCTTA GAAGGTCCCAGAATTTCCTCAGCCCTCAGTTTCCCACACAAGCTTCTAAA TTGGGGCCCTCGGGGACTCATCCCTTCCTAGACTTCTATCCGCCACCCCC CACCGCCTGGTCCCCCCCCAGACACACACCAAGGACTTCTGAAATGCTGA GTACATACAGTGGTTTCCTCCCTTCTGTCCAAATGTGGTTGCCATCAGCG TGATCAACGAGAGCCAAAGGGGGACAAAGATCGGGATGCAGGAGAAGGCG TTGTGGCCATCCAGTTTGTGAACCAGCAGAATCTAAAGAAAGAGACATAG TCCCGGTTGATGCCAGCACCGAAAATGGGCAGAGGCGGAAGCCAGACTTC ATTAGGCAGTTCCTCCCCACCACCCCACCCCCGCGTGAGCTCCCACAAGA GGGAACATCAGCACCGCCAGAAAAAGGCAGGAAACCACCTATCCCTGGGG AAAGCTCGAAATGAGCTTTTATGTCCCTCTTCAGAGCTCGGCAATAGCCT ATCCACTTGAAAAGTTCCCAGTGCCAGCAGTTTTATGGCAAACTCCTCCG GGTGTTTGTTCTAAGGAGTCAACAGCTCCCATTCTAGAATTCTCCACGTG ACTCCAATACACAAATCTGACATCCCACTCTGCTTTCCCCAGAGTGGAAA CTGGAGCCATACAGAGGCACCATGGCTAAAAAGGTGCACTCTTCTCCCTG CCAGCCCGACGTGCTGCCCCCAAGAGAAAGGAAGGATGCTCTCCTTTCAC CGAAGCTCCCTCTCGGAGATGGCTGTGTTCTCTCCCCTCTCCTGGAGTGG GCTCACTGTGAGCTCGAGGGACAGAGGCTGCCTTTCTAGGGGTGCAGAAT CCTGTCAGGGGAAGCGCAAGCTTCAGGGGCTGAAGAGGCTTCCCGTGGAA CGCTTACCTCAAATGTAAGAAGGGGCACGACGATGGTCATCCAGCTCAGG GCCATGGTTATGTGTGTCCTGCGCTGTCCGCAATCACATCCATAGAGCGC AAGAACAAGACGGACCACACAATGTAGTAGAGGACCACCAGGCACAGAAA GGACATGAGAATCCACAGCGGGACACACACAACCTGGGGGTGGGTGAGAG AACAGCAAGAGAAGTCTCTTTAGAGCTTCCAACCTGGCCTCTGATGGAAG GCATCTTTAGCACCTTGCTGTGTCTGTCCAGTTAAGGCGGTCCTTCCTGT GAGCCGAATAAGGACCGTTCCATCTCCCAGGACTGCTGGGAGCATCGCTC AGGACAGAAAAGGTATGGTATGTTCACTATGGGGCCTGCTGCCACCAGGG GACACACACGCTCAGTGAGTCATCAGTCCCTCTTCCTTTGGGTGACAGAC AGCCCTGCACCTGGCTCCGCAGCCTCTACTCTTCCAGAGGCCCACTCTCC CACACTCTCTCAGGCTCCTCTAGGTTCTGCTGCCATCACAGCTTCCCGGG AAATGGGACACAACTGTCACCCTGTGCACACACACAAGATCTCACCCCAA CAGACTCTCTTCACAGGCAACATTCCCACAACCTGCTGGGGGTACTTTGG CAACACAAATGGGAATGGGCTCCCCAGAAAGTCTGGCTGCCTGGGCTCCT AAGGATCCCTAACCTCACCCCTACCAAGTTAGTGAACTTGGCGGGTTGAT GCTGGATACAGGTTGATGCTGGATACGTAGCGCTGCCGGGTGACC SEQ ID NO:14 (p2-2) GGGCGAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCG GGAATTCGATATCACTAGTGAATTCGCGGCCGGCGATTGGGCCGGACGTC GCATGCTCCCGGCCGCCATGGCGGCCGCGGGAATTCGATTCCTTAATTAA GTCGACTGGGACCCAAACTTTGGAGTCGTTGACAGATGTGAGAGGTGAAG CCTGGGATGACATCGCCAAAAATGCAACGTCTCACTCATTGTCACTACTC CCAGGGCTCAGTCGTCACTGGGGAAAATCTCCAGAAGGTAGCGCGGGCCA AGGTGACAGGTGTCTGCCAAGATCTGCCCGCCAGACTCCCGGGCGGCGCG CTCCCTCCCTGCAGGCCTTCAGGCCGTCAGCATCCCCTTCCTCGGGGCCC TGCTCACTCCCAGCCTCCATCCGCCTGCCATCTCCTCCGCCGGTCGCGTG CGGACACAAGGATGGGGACCTCCCAGCGAGGAGCGCTCTGGGCGGGGCTC CGGACGCATGCGCGGCCCTCGTACGGAAGCCCGGAAGGAGGGGCAGGGGG CGGTGGCTCAGGTTTCTCCGGGCGGCGGCGGGGGCGGCGGCGGCGACGGC GACGGCGACGGCAGCGGGGACGGCAGCAGTAGCGGGAGCAGCAGCGTGGA CGCGGCTGGCGCTGGCGCCATGAACCCGCTGTAAGGCGCAGGCTGTGCAG CACGGGGTGCGGGGGAGGAGGAGGAGGACGCGGCGGTGAAGTTCTCCGCC ATGAACGTGAGGGGCCTCTTCCAGGACTTCAACCCGAGGTGAGGCGGCGT CGTTGGGGCCCCCGGGAGTCCGCGCTGCGGGCTCGGGCGCGGGCTGGTGT TCGGCTCCGGGGAGGCACGGCGGGCGAGATGGTGCAGCCCGAGGACCCGG GCGCCTGCCCGAGCCTCCCTGCGGGTGCAAGCGGTCCCCAGGCAAAACAG TCGGCCTCGGCGCCCGCCCGCTTCCTCCTCCCGTGCCCGGTGCTTTCAGC CCCTGCCCGGCCACGGCCGGAAGGGCCCGGCCGCGAGCCCCGTCCTGCCC CAAGGGAACCCCATTCTTTTCTGCTTGCTGTCCCTCATTGGTGTCCCAAC TTCTTCGTCTCGGTTCCATCCTCTTCTGCGCCGCTGCGGGGCCTCCATTC TCCGCGTCAGGGCCGTCTCACTCGACCCAACACCCCTACCCCCACCCCAG CTGTTTCCTCCAGTTCCTCGCAGTCCTTGGGGTTTTCCTTGGGTTTATGC CCATCCCTCTCTTGTTTGCTTCTTTGTTGAACGGATACCTGAAACACTGT TGAATCCTTGGAGTCAGTGTCGGGGTATGGCAATACCTTATATAATGCAT TTCTGGGTGAGCCTGATCATTTTCCATACTCATTTTCTCATCAGTCTTCA CTACAAGTTTATTTGCAGGAAGTAGATATTGCTGTCCTTCTTTTCCAGAT GGGGAACACCCAGTGGACAGTGTGGAGAAAACACTGGCTAAGCACTCAAG CGCCTGTCCTTGCACTTGCCCGACTGTTTTGTAACTGTTCTTTACCCCAG GCTGTGAGCTCCCTGAAGCTGAGACCATCTCCTGCTCATCTCAGTGTCCC CAGCGCCTCCCACCCACCGTATCTGGCACATAGTAGGCAGATATAAAATG TTTGTGGAACTAAACTGAGCCCAAAGACTTGGATTGGAGACGAGGCCATA TGTAACTGGGTGATTCTCTGCCCTTCTTTGGCCCTTCTGTAAAATGAGGA GTTGGCCTAACTGATCTCTTAAATGCACTACTCTCCGAAAGGAGTATCCG TTTCCCTTATTTGCCAGTTGGGAAGACGTGCTCAGTAAATATTTGTGTGC TGTAACCTATGTTAGGTGCTTTAGATGCTGGCGGTCTCAGCATGGGGTGA AGAAGGGCTTGTACACTTAAGATGCCTTACAGTACTGTGCAGTGCTGTAC TGCGGGGGCCAACTCTGGGGACCTATGCCTTGGCTGGTTGTTGAGGATGA AAGGAAGTTTTAGGGGAGTATTTGTATGTTGAGGGTGCAGTCTCCCTAGG GATGGTGACATTTTAACTTGTGAGTCATTGTGACTTTGTATGTGCCCTTA TTCCACTTTGAGTTCATGTTCTGGTTAGGAGTGCCAGTGTCTCTAACACG GTGCAGACATTATCATTGTTGGGTTCGAAGGCATAGAGGAGGTAACAGAA CTAACTGCAGTCCCTTCCTCTGCTGCATCAGGGGGTTAAGATTGGTCTGC AGGGTAGTAGGGTTGGTGCTGTGGCTGGACAAGCCCTGTATGTCTTCTAT TTGGAGATGGTGATAAGAAAGTTAAGTAAAAACTGAATTGTTTTGTGCCC TTGGGCAACTCACTTATCTATTGTTTTATCTGTAGAATGAGTATAATCTC TCAGTGGGGTAGGGAGGCCAATTAAGGATTGATTACAAAGTGCCTTACAA ATAGAAAGCTACAGTGACTTGTTTGCAAGGTGACAGAGAATTCAGAAGCC TCAAGAAACTGCCTTAAGTGATCAAACAGGCTAACGGAGTTGCCAAAGCA AAATAGTGCTGCACTGATACTACCTTTAACCGTTTTTTCCTTTAGCCCTT TTCCCCCCAAAAAAATTAGTATATCAAATTACAGTGAAATACCTGGTATC TAAGCAGATTTATAGTAATTCTCAACATATTCATCAATCTCTTAATTCTA CCTGCATTAAAATGTATTTCTACCTGAAAAGTTTAAAGGTCTTTTATACT GTGCCATTTTCCTGATTCATTGTTGCCAGAGGTAGTGAGTTCCTTAATTT TACAGATATTTCAAGAGGACATTGGCCAGGTATTATTGGTAAATCAGATT TGTTTTTTTAGCTGGTAGTGTTTCACCTCTCCTGAGCACTCCTAGTTTTT GACAGTGTGCTTTAGTCTCCTTCCATGCTGAGGAAGGCCTTCTCTATAGG AGAAAGAAAACTGAGGGGTGTACACAGGAAGTTACCTTATGCTGGGGACT CAAACCTTGATGCTACTGCTTTGCTCCCTGCCTCTATTTTTGAACCAATT CAACATCTCCCTCCTACCCCAGGACCTTGTCACACACTGTTCTCTTTACC AGGAATGTTTCCCTCTCTTTTCCTCTCCTCCAGACCTAGTGAACTCCTAT TTATCCTCACTTGGCACTTGCTAAGGGAAGCATTCCTGACTTCCCTGACC AGATTTACTGCTCCCTGTTTCTACAGTTCCTGTAGTATTTACTACTCCTC CATCATAGTGCATATTTGTACCCTTGTGTCTGTCTGGATGCTTATTTGAT TAATACCTGCCTCCCCCACTAAACTTTAAGCTCCATGGGGTCAAGGCCGT GACTGTGTCAGTATCGTAGCCTGCATACTTGGAATAGTACCTGGCTCAAT AAATATTTGTGGAGTAAATAACTGAATAACTCTCCAGAGCCTATAAGATA AATCTAGAGCTGCTGCTTTCAATCACTGCTTTCCTGGTGGTCTGTGGCCT GGTTCTCTTTCTTCTCACACTCTTCCCACCTTCAGAGTGCAGCCATTGCT TTGGAGAGATGGGAGAGAACATGGCACTAAGGCAGAATATGGCTATATTT ACTTTGAAGAGCATGTCTTTGTCATAGAAATAGTCACTGTCATGGTTTGG TGGGTCCCAAGGCATGGGTCATGGCTCCAGATCCCCTTTCCAGCCTTTTG GATCTTGGTAAGTCTGAACCCACTGCTGCGTTGGCAAGGCTCTGGAAACT ATAGTGACAGAGAATGATTCACAAGTGTCAACACTCAGATGTACAGGGCT GCCAGCTGACCCACTCTACCTATTTCCATCTGGCACTGAACTGGTTGATC ATGAACTTCTTTTCATAATTGCTTTTTAGTTATGCAGGTTAAGACATGCC GAAACAGATGTACCGGACCCACAAACAAGTCCTTCCTTGAATGCCTGAGG CTTCCTAACAGTGAAAGAGCCCTGTTCTTAGAGTAGGCAAACTGATTCTG AGGCATTGTAGGTGGTAGGGATCTGGTAGTAGGTAGCATTAGGTGGGCTC CCGGCACTCACCATGGAGCCTTGAAATTTTCTGCTACTTTGGGGGAGTTG CTGGTTCAGAGAAGGCCCTTCCACCCTGGTAGCCATGTGGCACTGGAAGG CTGTGAAAACTCTGCTGGGCCTTCTTAGTCATCTGTTGTGAGCTCCTGAT GGGAGTGTGGTGTATCCCTCAGGTGTGCTAGACTGGAACAAAGGCTGAGA AGTGTTGCTCTGGGGGTTCCAACTTGTGGGCATGGGGTACTGATGAGATC AGTAGTGTTTGGAGACTTCTGTATGCTCGATCTTCAGAAGACATTCTGGA GTCCATATAAGTTATCTTGTCTCTTGTTTGAAGCAGGAAAAAGGAATGCG ATTGCTGGTAATATAGTTCACTAAAGTCAGCTACCTGGCCTCTAACAGTT ATTTGCAAAGTATATTATAACATTGATTCCTCAAACATCTAGATTCCTAT CTCGTGCCAAGTGATGTACTAGGTGCTCTAAGTACAAAAATAAAGGAATA TAGTCCTCCTCTCAATGCGTAAGCCTAGTGGAAGAAGCAGAAATGAAAGG GAAATAAGAATTCAATAGAGTATGAGGCATTACAGTGAAAGAAACCAAAT GTCTTAGAAGTACAAATGGCAGAGCTACTAATTCTGTCTCGAGCAGGCAG GGAAGAGTCTATAGTGGAAATGACTTTTGAGCTAGATTTTGAATTGAGCT AGTCTTTTGAGCCAGACTTTTGAGCTAGAATTGTAGGGTTGTCATCAGAC CAGAGAGTAGGAAGGGTACCTTGTGAGGAAGAGAGAGAGAGATCAGATTG TTACTGTGTCTATGTAGAAAAGGAAGACATAAGAAACTGCATTTTGATCT GTACTAAGAAAAATTGTTTCTGCTTTGAGATGCTGTTAACCTGTAACTTT AGTCCCAACCCTGTGGTCACAGAAACCTGTGCTGTAATGAATCAAGGTTT AATGGATTTAGGGCTGTGCAGGATGTACCTTGTTAACAATATGTTTGCAG GCAGTATGCTTGGTAAAAGTCATCGCCATTGTCCATTCTCGATTAACCAG GGACACAGTGCACTGCGGAAGGCCGCAGGGACATCTGCCCAAGAAAGCGT GGGTATTGTCCAAGGTTTCCCCCCACTGAGACAGCCTGAGATATGGCCTT GTGGGAAAGGAAAGACCTTACCACCCCCCAGCCCGACACCCGTAAAGTGT CTGTGCTGAGGAGGAGTAGTGAAAGAGCGGGGCCTCTTTGCAGTTGAGAT AAGAGGAAGGCTTCTGTCTCCTGCTCATCCCTGGGAATGGAATGTCTCTG TGTAAAGCTGACCATTCCCATTCGTTCTATTCTGAGATAGGAGAAAACGA CCCTGTGGCTGGAGGCGAAGTATGCTGGCAGCAATACTGCTCTGTTACTC TTTGCTACACTGAGTTGTTTGGGTAAAGAGAAACATAAATCTAGCCTGCG TGCACATCCAGGCACAGTACGTTTCCTTGAACTTATTCATGATACAGATT CCTTTGCTCACGTTTCCCTGCTGACCTTCTCCCCACCTGTTGCCCTGCTA CACTCCCCTCGCTAAGATAGTAAAAATAATGATCAGTAAATACTGAGGTA ACTCAGAGGCTAGCGCTGGTGCGGGTCCTCCGTATGCTGAGTGCCGGTCC CCTGGGCCCACTGTTCTTTCTCTATACTTTGTTTCTGTGTCTTATTTCTT TTCTCAGTCTCGTCCCACCTGACGAGAAATACCCACAGGTGTGGAGGGGC TGGCCCCTTTCAGTATCTCAGAAGGGACAAAGTACACAAAGGCATGGGGT CATGATAGTGCCTGGTATGTTCAGGTAGTGAAGAGGTCCATGTGGTATGA GCACTGCAGATGATATGTGTCGTATGAATTAAAAATACATAGTTACTGCA AATAGTTTTTACAGGTTATTGTTTTTAAGAAAGCAGTATCTAATGCACGA GTGTACTGTCAGTACTGTCAATGAACTACTTACCACTCAAGTGACTGGTT ACGCGTCGAATCACTAGTGAATTCGCGGCCGCCTGCAGGTCGACGATATG GGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCA CCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATT GTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGT AAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG CTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGGTGCATTAAT GAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCC GGTTCCTCGCTCACTGACTCGGTGCGCTCGGTCGTTCGGCTGCGGCGAGC GGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGG ATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAAC CGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGA CGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAG GACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTC GGGAAGCGTGGCGCTTTCTCATAGCTCAGGCTGTAGGTATCTCAGTTCGG TGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAG GCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGT AAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCA GAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC TACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCC AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCA CCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGA AAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAA AAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCA ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAAT CAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCT GGCCCCAGTGCTGCAATGATACCGCGAGACGGACGCTCACCGGCTCCAGA TTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTC CTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCT AGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGG TACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCT CCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAA AAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGC CGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTG TCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAG TCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTC AATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCA TTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTG AGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATC TTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATG CCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTC TTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAG CGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC GCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAG ATGCGTAAGGAGAAAATACCGCATCAGGAAATTGTAAGCGTTAATATTTT GTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAAT AGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATA GGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGT GGACTCCAACGTCAAAGGGCGAAAAAGCGTCTATCAGGGCGATGGCCCAG TACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTGGAGGTGCCGTAAA GCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGG AAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGG GGGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACA CCCGCCGCGCTTAATGCGCGGCTACAGGGCGCGTCCATTGGCCATTCAGG CTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACG CCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGC CAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAA TACGACTCACTATA NEED SEQ ID NO:15 (Stuffer 2) GGCCGCGGGAATTCGATTCCTTAATTAAGTCGACTGGGACCCAAACTTTG GAGTCGTTGACAGATGTGACAGGTGAAGCCTGGGATGACATCGCCAAAAA TGCAACGTCTCACTCATTGTCACTACTCCCAGGGCTCAGTCGTCACTGGG GAAAATCTCCAGAAGGTAGCGCGGGCCAAGGTGACAGGTGTCTGCCAAGA TCTGCCCGCCAGACTCCGGGGCGGGGCGCTCCCTCCCTGCAGGCCTTCAG CCCGTCAGCATCCCCTTGCTGGGGGCCCTGCTCACTCCCAGCCTCCATCG CCCTGCCATCTCCTCCGCCGGTCGGGTGCGGAGACAAGGATGGGGACCTC CCAGCGAGGAGCGCTCTGGGGGGGGCTCCGGACGCATGCGCGGCCCTCGT ACGGAAGCCCGGAAGGAGGGGCAGGGGGCGGTGGCTCAGGTTTCTGCGGG CGGCGGCGGCGGCGGCGGCGGCGACGGCGACGGCGACGGCAGCGGGGACG GCAGCAGTAGCGGGAGCAGCAGCGTGGACGCGGCTGGCGCTGGCGCCATG AACCCGCTGTAAGGCGCAGGCTGTGCAGCACGGGGTGGGGGGGAGGAGGA GGAGGACGCCGCGGTGAAGTTCTCCGCCATGAACCTGAGGGGCCTCTTCC AGGACTTCAACCCGAGGTGAGGCGGCGTCGTTGGCGCCCCCGGGAGTCCG CGCTGCGGGCTCGGGCGCGGGCTGGTGTTCGGCTCCGGGGAGGCACGGCG GGCGAGATGCTGCAGCCCGAGGACCCGGGCGCGTGCCGGAGCCTCCCTGC GGGTGCAAGCGGTCCCCAGGCAAAACAGTCGGCCTCGGCGGCCGCCCGCT TCCTCCTCCCGTGCCCGGTGCTTTCAGCCCCTGCCCGGCCACGGCCGGAA GGGCCCGGCCGCGAGCCCCGTCCTGGCCCAAGGGAACCCCATTCTTTTCT GCTTGCTGTCCCTCATTGGTGTCCCAACTTCTTCGTCTCGGTTCCATCCT CTTCTGCGCCGCTGCGGGCCCTCCATTCTCCGCGTCAGGGGCGTCTCACT CGACCCAACACCCCTACCCCCACCCCAGCTGTTTCCTCCAGTTCCTCGCA GTCCTTGGGGTTTTCCTTGGGTTTATGCCCATCCCTCTCTTGTTTGCTTC TTTGTTGAACGGATACCTGAAACACTGTTGAATCCTTGGAGTCAGTGTCG GGGTATGGCAATACCTTATATAATGCATTTCTGGGTGAGCCTGATCATTT TCCATACTCATTTTCTCATCAGTCTTCACTACAAGTTTATTTGCAGGAAG TAGATATTGCTGTCCTTCTTTTCCAGATGGGGAACACCCAGTGGACAGTG TGGAGAAAACACTGGCTAAGCACTCAAGCGCCTGTCCTTGCACTTGCCCG ACTGTTTTGTAACTGTTCTTTACCCCAGGCTGTGAGCTCCCTGAAGCTGA GACCATCTCCTGCTCATCTCAGTGTCCCCAGCGCCTCCCACCCACCGTAT CTGGCACATAGTAGGCACATATAAAATGTTTGTGGAACTAAACTGAGCCC AAAGACTTGGATTGGAGACGAGGCCATATGTAACTGGGTGATTCTCTGCC CTTCTTTGGCCCTTCTGTAAAATGAGGAGTTGGCCTAACTGATCTCTTAA ATGCACTACTCTCCGAAACGAGTATCCGTTTCCCTTATTTGCCAGTTGGG AAGACGTGCTCAGTAAATATTTGTGTGCTGTAACCTATGTTAGGTGCTTT AGATGCTGGCGGTCTCAGCATGGGGTGAAGAAGGGCTTGTACACTTAAGA TGCCTTACAGTACTGTGCAGTGCTGTACTGCGGGGGCCAACTCTGGGGAC CTATGCCTTGGCTGCTTGTTGAGGATGAAAGGAAGTTTTAGGGGAGTATT TGTATGTTGACGGTGCAGTCTCCCTAGGGATGGTGACATTTTAACTTGTG AGTCATTGTGACTTTGTATGTGCCCTTATTCCACTTTGAGTTCATGTTCT GGTTAGGAGTGCCAGTGTCTCTAACACGGTGCAGACATTATCATTGTTGG CTTCGAAGGCATAGAGGAGGTAACAGAACTAACTGCAGTCCCTTCCTCTG CTGCATCAGGGGGTTAAGATTGGTCTGCAGGGTAGTAGGGTTGGTGCTGT GGCTGGACAAGCCCTGTATGTCTTCTATTTGGAGATGGTGATAAGAAAGT TAAGTAAAAACTGAATTGTTTTGTGCCCTTGGGCAACTCACTTATCTATT GTTTTATCTGTAGAATGAGTATAATCTCTCAGTGGGGTAGGGAGGCCAAT TAAGGATTGATTACAAAGTGCCTTACAAATAGAAAGCTACAGTGACTTGT TTGCAAGGTGACAGAGAATTCAGAAGCCTCAAGAAACTGCCTTAAGTGAT CAAACAGGCTAACGGAGTTGCCAAAGCAAAATAGTGCTGCACTGATACTA CCTTTAACCGTTTTTTCCTTTAGCCCTTTTCCCCCCAAAAAAATTAGTAT ATGAAATTACAGTGAAATACCTGGTATCTAAGCAGATTTATAGTAATTCT CAACATATTCATCAATCTCTTAATTCTACCTGCATTAAAATGTATTTCTA CCTGAAAAGTTTAAAGGTCTTTTATACTGTGCCATTTTCCTGATTCATTG TTGCCAGAGGTAGTCAGTTCCTTAATTTTACAGATATTTCAAGAGGACAT TGGCCAGGTATTATTGGTAAATCAGATTTGTTTTTTTAGCTGGTAGTGTT TCACCTCTCCTGAGCACTCCTAGTTTTTGACAGTGTGCTTTAGTCTCCTT CCATGCTGAGGAAGGCCTTCTCTATAGGAGAAAGAAAACTGAGGGGTGTA CACAGGAAGTTACCTTATGCTGGGGACTCAAACCTTGATGCTACTGCTTT GCTCCCTGCCTCTATTTTTGAACCAATTCAACATCTCCCTCCTACCCCAG GACCTTGTCACACACTGTTCTCTTTACCAGGAATGTTTCCCTCTCTTTTC CTCTCCTCCAGACCTAGTGAACTCCTATTTATCCTCACTTGGCACTTGCT AAGGGAAGCATTCCTGACTTCCCTGACCAGATTTACTGCTCCCTGTTTCT ACAGTTCCTGTAGTATTTACTACTCCTCCATCATAGTGCATATTTGTACC CTTGTGTCTGTCTGGATGCTTATTTGATTAATACCTGCCTCCCCCACTAA ACTTTAAGCTCCATGGGGTCAAGGCCGTGACTGTGTCAGTATCGTAGCCT GCATACTTGGAATAGTACCTGGCTCAATAAATATTTGTGGAGTAAATAAC TGAATAACTCTCCAGAGCCTATAAGATAAATCTAGAGCTGCTGCTTTCAA TCACTGCTTTCCTGGTGGTCTGTGGCCTGGTTCTCTTTCTTCTCACACTC TTCCCACCTTCAGAGTGCAGCCATTGCTTTGGAGAGATGGGAGAGAACAT GGCACTAAGGCAGAATATGGCTATATTTACTTTGAAGAGCATGTCTTTGT CATAGAAATAGTCACTGTCATGGTTTGGTGGGTCCCAAGGCATGGGTCAT GGCTCCAGATCCCCTTTCCAGCCTTTTGGATGTTGGTAAGTCTGAACCCA CTGCTGCGTTGGCAAGGCTCTGGAAACTATAGTGACAGAGAATGATTCAC AAGTGTCAACACTCAGATGTACAGGGCTGCGAGCTGACCCACTCTACCTA TTTCCATCTGGCACTGAACTGGTTGATCATGAAGTTCTTTTCATAATTGC TTTTTAGTTATGCAGGTTAAGACATGCCGAAACAGATGTACCGGACCCAC AAACAAGTCCTTCCTTGAATGCCTGAGGCTTCCTAACAGTGAAAGAGCCC TGTTCTTAGAGTAGGCAAACTGATTCTGAGGCATTGTAGGTGGTAGGGAT CTGGTAGTAGGTAGCATTAGGTGGGCTGCCGGCACTCACCATGGAGCCTT GAAATTTTCTGCTACTTTGGGGGAGTTGCTGGTTCAGAGAAGGCCCTTCC ACCCTGGTAGCCATGTGGCACTGGAAGGCTGTGAAAACTCTGCTGGGCCT TCTTAGTCATCTGTTGTGAGCTCCTGATGGGAGTGTGGTGTATCCCTCAG GTGTGCTAGACTGGAACAAAGGCTGAGAAGTGTTGCTCTGGGGGTTCCAA CTTGTGGGCATGGGGTACTGATGAGATCAGTAGTGTTTGGAGACTTCTGT ATGCTCCATCTTCAGAAGACATTCTGGAGTCCATATAAGTTATCTTGTCT CTTGTTTGGCAAAGGAAAAAGGAATGCGATTGCTGGTAATATAGTTCACT AAGTCAGCTACCTGGCCTCTAACAGTTATTTGCAAAGTATATTATAAACA TTGATTCCTCAAACATCTAGATTCCTATGTCGTGCCAAGTGATGTACTAG GTGCTCTAAGTAGAAAAATAAAGGAATATAGTCCTCCTCTCAATGCGTAA GCCTAGTGGAAGAAGCAGAAATGAAAGGGAAATAAGAATTCAATAGAGTA TGAGGCATTACAGTGAAAGAAACCAAATGTCTTAGAAGTACAAATGGCAG AGCTACTAATTCTGTCTCGAGCAGGCAGGGAAGAGTCTATAGTGGAAATG ACTTTTGAGCTAGATTTTGAATTGAGCTAGTCTTTTGAGCCAGACTTTTG AGCTAGAATTGTAGGGTTGTCATCAGACGAGAGAGTAGGAAGGGTACCTT GTGAGGAAGAGAGAGAGAGATCAGATTGTTACTGTGTCTATGTAGAAAAG GAAGACATAAGAAACTCGATTTTGATCTGTACTAAGAAAAATTGTTTCTG CTTTGAGATGCTGTTAACCTGTAACTTTAGTCCCAACCCTGTGCTCACAG AAACCTGTGCTGTAATGAATCAAGGTTTAATGGATTTAGGGCTGTGCAGG ATGTACCTTGTTAACAATATGTTTGCAGGCAGTATGCTTGGTAAAAGTCA TCGCCATTCTCCATTCTCGATTAACCAGGGACACAGTGCACTGCGGAAGG CCGCAGGGACATCTGCCCAAGAAAGCCTGGGTATTGTCCAAGGTTTCCCC CCAGTGAGACAGCCTGAGATATGGGCTTGTGGGAAAGGAAAGACCTTACC ACCCCCCAGCCCGACACCCGTAAAGTGTCTGTGCTGAGGAGGAGTAGTGA AAGAGCGGGGCCTCTTTGCAGTTGAGATAAGAGGAAGGCTTCTGTCTCCT GCTCATCCCTGGGAATGGAATGTCTCTGTGTAAAGCTGACCATTCCCATT CGTTCTATTCTGAGATAGGAGAAAACCACCCTGTGGCTGGAGGCGAAGTA TGCTGGCAGCAATACTGCTCTGTTACTCTTTGCTACACTGAGTTGTTTGG GTAAAGAGAAACATAAATCTAGCCTGCGTGCACATCCAGGCACAGTACCT TTCCTTGAACTTATTCATGATACAGATTCCTTTGCTCACGTTTCCCTGCT GACCTTCTCCCCACCTGTTGCCCTGCTACACTCCCCTCGCTAAGATAGTA AAAATAATGATCAGTAAATACTGAGGTAACTCAGAGGCTAGCGCTGGTGC GGGTCCTCCGTATGCTGAGTGCCGGTCCCCTGGGCCCACTGTTCTTTCTC TATACTTTCTTTCTGTGTCTTATTTCTTTTCTCAGTCTCGTCCCACCTGA CGAGAAATACCCACAGGTGTGGAGGGGCTGGCCCCTTTCAGTATCTCAGA AGGGACAAAGTACACAAAGGCATGGGGTCATGATAGTGCCTGGTATGTTC AGGTAGTGAAGAGGTCCATGTGGTATGAGCACTGCAGATGATATGTGTCG TATGAATTAAAAATACATAGTTACTGCAAATAGTTTTTACAGGTTATTGT TTTTAAGAAAGCAGTATCTAATGCACGAGTGTACTGTCAGTACTGTCAAT GAACTACTTACCACTCAAGTGACTGCTTACGCGTCGAATCACTAGTGAAT TCGC SEQ ID NO:16 (pTM-final) GTACGGAAGCCCGGAAGGAGGGGCAGGGGGCGGTGGCTCAGGTTTCTCCG GGCGGCGGCGGCGGCGGCGGCGGCGACGGCGACGGCGACGGCAGCGGGGA CGGCAGCAGTAGCGGGAGCAGCAGCGTGGACGCGGCTGGCGCTGGCGCCA TGAACCCGCTGTAAGGCGCAGGCTGTGCAGCACGGGGTGCGGGGGAGGAG GAGGAGGACGCCGCGGTGAAGTTCTCCGCCATGAACCTGAGGGGCCTCTT CCAGGACTTCAACCCGAGGTGAGGCGGCGTCGTTGGCGCCCCCGGGAGTC CGCGCTGCGGGCTCGGGCGCGGGCTGGTGTTCGGCTCCGGGGAGGCACGG CGGGCGAGATGCTGCAGCCCGAGGACCCGGGCGCCTGCCCGAGCCTCCCT GCGGGTGCAAGCGGTCCCCAGGCAAAACAGTCGGCCTCGGCGCCCGCCCG CTTCCTCCTCCCGTGCCCGGTGCTTTCAGCCCCTGCCCGGCCACGGCCGG AAGGGCCCGGCCGCGAGCCCCGTCCTGCCCCAAGGGAACCCCATTCTTTT CTGCTTGCTGTCCCTCATTGGTGTCCCAACTTCTTCGTCTCGGTTCCATC CTCTTCTGCGCCGCTGCGGGCCCTCCATTCTCCGCGTCAGGGCCGTCTCA CTCGACCCAACACCCCTACCCCCACCCCAGCTGTTTCCTCCAGTTCCTCG CAGTCCTTGGGGTTTTCCTTGGGTTTATGCCCATCCCTCTCTTGTTTGCT TCTTTGTTGAACGGATACCTGAAACACTGTTGAATCCTTGGAGTCAGTGT CGGGGTATGGCAATACCTTATATAATGCATTTCTGGGTGAGCCTGATCAT TTTCCATACTCATTTTCTCATCAGTCTTCACTACAAGTTTATTTGCAGGA AGTAGATATTGCTGTCCTTCTTTTCCAGATGGGGAACACCCAGTGGACAG TGTGGAGAAAACACTGGCTAAGCACTCAAGCGCCTGTCCTTGCACTTGCC CGACTGTTTTGTAACTGTTCTTTACCCCAGGCTGTGAGCTCCCTGAAGCT GAGACCATCTCCTGCTCATCTCAGTGTCCCCAGCGCCTCCCACCCACCGT ATCTGGCACATAGTAGGCACATATAAAATGTTTGTGGAACTAAACTGAGC CCAAAGACTTGGATTGGAGACGAGGCCATATGTAACTGGGTGATTCTCTG CCCTTCTTTGGCCCTTCTGTAAAATGAGGAGTTGGCCTAACTGATCTCTT AAATGCACTACTCTCCGAAAGGAGTATCCGTTTCCCTTATTTGCCAGTTG GGAAGACGTGCTCAGTAAATATTTGTGTGCTGTAACCTATGTTAGGTGCT TTAGATGCTGGCGGTCTCAGCATGGGGTGAAGAAGGGCTTGTACACTTAA GATGCCTTACAGTACTGTGCAGTGCTGTACTGCGGGGGCCAACTCTGGGG ACCTATGCCTTGGCTGCTTGTTGAGGATGAAAGGAAGTTTTAGGGGAGTA TTTGTATGTTGAGGGTGCAGTCTCCCTAGGGATGGTGACATTTTAACTTG TGAGTCATTGTGACTTTGTATGTGCCCTTATTCCACTTTGAGTTCATGTT CTGGTTAGGAGTGCCAGTGTCTCTAACACGGTGCAGACATTATCATTGTT GGCTTCGAAGGCATAGAGGAGGTAACAGAACTAACTGCAGTCCCTTCCTC TGCTGCATCAGGGGGTTAAGATTGGTCTGCAGGGTAGTAGGGTTGGTGCT GTGGCTGGACAAGCCCTGTATGTCTTCTATTTGGAGATGGTGATAAGAAA GTTAAGTAAAAACTGAATTGTTTTGTGCCCTTGGGCAACTCACTTATCTA TTGTTTTATCTGTAGAATGAGTATAATCTCTCAGTGGGGTAGGGAGGCCA ATTAAGGATTGATTACAAAGTGCCTTACAAATAGAAAGCTACAGTGACTT GTTTGCAAGGTGACAGAGAATTCAGAAGCCTCAAGAAACTGCCTTAAGTG ATCAAACAGGCTAAGGGAGTTGCCAAAGCAAAATAGTGCTGCACTGATAC TACCTTTAACCGTTTTTTCCTTTAGCCCTTTTGCCCGCAAAAAAATTAGT ATATGAAATTACAGTGAAATACCTGGTATCTAAGCAGATTTATAGTAATT CTCAACATATTCATCAATCTCTTAATTCTAGCTGCATTAAAATGTATTTC TACCTGAAAAGTTTAAAGGTCTTTTATACTGTGCCATTTTCCTGATTCAT TGTTGCCAGAGGTAGTGAGTTCCTTAATTTTACAGATATTTCAAGAGGAC ATTGGCCAGGTATTATTGGTAAATCAGATTTGTTTTTTTAGCTGGTAGTG TTTCACCTCTCCTGAGCACTCCTAGTTTTTGACAGTGTGCTTTAGTCTGC TTCCATGCTGAGGAAGGCCTTCTCTATAGGAGAAAGAAAACTGAGGGGTG TACACAGGAAGTTACCTTATGCTGGGGACTCAAAGCTTGATGCTACTGCT TTGCTCCCTGCCTCTATTTTTGAACCAATTCAACATCTCCCTCCTAGCCC AGGACCTTGTCACACACTGTTCTCTTTACCAGGAATGTTTCCCTCTCTTT TCGTCTCCTCCAGAGCTAGTGAACTCCTATTTATCCTCACTTGGCACTTG CTAAGGGAAGCATTCCTGACTTCCCTGACCAGATTTACTGCTGCCTGTTT CTACAGTTCCTGTAGTATTTACTACTCCTCCATGATAGTGCATATTTGTA CCCTTGTGTCTGTCTGGATGCTTATTTGATTAATACCTGCCTCCCCCACT AAACTTTAAGCTCCATGGGGTCAAGGCCGTGACTGTGTCAGTATCGTAGC CTGCATACTTGGAATAGTACCTGGCTCAATAAATATTTGTGGAGTAAATA ACTGAATAACTCTCCAGAGCCTATAAGATAAATCTAGAGCTGCTGCTTTC AATCACTGCTTTCCTGGTGGTCTGTGGCCTGGTTCTCTTTCTTCTCAGAC TCTTCCCACCTTCAGAGTGCAGCCATTGCTTTGGAGAGATGGGAGAGAAC ATGGCACTAAGGCAGAATATGGCTATATTTACTTTGAAGAGCATGTCTTT GTCATAGAAATAGTCACTGTCATGGTTTGGTGGGTGCCAAGGCATGGGTC ATGGCTCCAGATCCCCTTTCCAGCCTTTTGGATCTTGGTAAGTCTGAACC CACTGCTGGGTTGGCAAGGCTCTGGAAACTATAGTGACAGAGAATGATTC ACAAGTGTCAACACTCAGATGTACAGGGCTGCCAGCTGACCCACTCTACC TATTTCCATCTGGCACTGAACTGGTTGATCATGAACTTCTTTTCATAATT GCTTTTTAGTTATGCAGGTTAAGACATGCCGAAACAGATGTACCGGACCC ACAAACAAGTCCTTCCTTGAATGCCTGAGGCTTCCTAACAGTGAAAGAGC CGTGTTCTTAGAGTAGGCAAACTGATTCTGAGGCATTGTAGGTGGTAGGG ATCTGGTAGTAGGTAGCATTAGGTGGGCTCCCGGCACTCACCATGGAGCC TTGAAATTTTCTGCTACTTTGGGGGAGTTGCTGGTTCAGAGAAGGCCCTT CCACCCTGGTAGCCATGTGGGACTGGAAGGCTGTGAAAACTCTGCTGGGC CTTCTTAGTCATCTGTTGTGAGGTCCTGATGGGAGTGTGGTGTATCCCTC AGGTGTGCTAGACTGGAACAAAGGCTGAGAAGTGTTGCTCTGGGGGTTCC AACTTGTGGGCATGGGGTACTGATGAGATCAGTAGTGTTTGGAGACTTCT GTATGCTCCATCTTCAGAAGACATTCTGGAGTCCATATAAGTTATGTTGT CTCTTGTTTGAAGCAGGAAAAAGGAATGCGATTGCTGGTAATATAGTTCA CTAAAGTCAGCTACCTGGCCTCTAACAGTTATTTGCAAAGTATATTATAA CATTGATTCCTCAAACATCTAGATTCCTATCTCGTGCCAAGTGATGTACT AGGTGCTCTAAGTACAAAAATAAAGGAATATAGTCGTCCTCTCAATGCGT AAGCCTAGTGGAAGAAGCAGAAATGAAAGGGAAATAAGAATTCAATAGAG TATGAGGCATTACAGTGAAAGAAACCAAATGTCTTAGAAGTACAAATGGC AGAGCTACTAATTCTGTCTCGAGCAGGCAGGGAAGAGTCTATAGTGGAAA TGACTTTTGAGCTAGATTTTGAATTGAGCTAGTCTTTTGAGCCAGACTTT TGAGCTAGAATTGTAGGGTTGTCATCAGACCAGAGAGTAGGAAGGGTACC TTGTGAGGAAGAGAGAGAGAGATCAGATTGTTACTGTGTCTATGTAGAAA AGGAAGACATAAGAAACTCCATTTTGATCTGTACTAAGAAAAATTGTTTC TGCTTTGAGATGCTGTTAACCTGTAACTTTAGTCCCAACCCTGTGCTCAC AGAAACCTGTGCTGTAATGAATCAAGGTTTAATGGATTTAGGGCTGTGCA GGATGTACCTTGTTAACAATATGTTTGCAGGCAGTATGCTTGGTAAAAGT CATCGCCATTCTCCATTCTCGATTAACCAGGGACACAGTGCACTGCGGAA GGCCGCAGGGACATCTGCCCAAGAAAGCCTGGGTATTGTCCAAGGTTTCC CCCCACTGAGACAGCCTGAGATATGGCCTTGTGGGAAAGGAAAGACCTTA CCACCCCCCAGCCCGACACCCGTAAAGTGTCTGTGCTGAGGAGGAGTAGT GAAAGAGCGGGGCCTCTTTGCAGTTGAGATAAGAGGAAGGCTTCTGTCTC CTGCTCATCCCTGGGAATGGAATGTCTCTGTGTAAAGCTGACCATTCCCA TTGGTTCTATTCTGAGATAGGAGAAAACCACCCTGTGGCTGGAGGCGAAG TATGCTGGCAGCAATACTGCTCTGTTACTCTTTGCTACACTGAGTTGTTT GGGTAAAGAGAAACATAAATCTAGCCTGCGTGCACATCCAGGCACAGTAC CTTTCCTTGAACTTATTCATGATACAGATTCCTTTGCTCACGTTTCCCTG CTGACCTTCTCCCCACCTGTTGCCCTGCTACACTCCCCTCGCTAAGATAG TAAAAATAATGATCAGTAAATACTGAGGTAACTCAGAGGCTAGCGCTGGT GCGGGTCCTCCGTATGCTGAGTGCCGGTCCCCTGGGCCCACTGTTCTTTC TCTATACTTTGTTTCTGTGTCTTATTTCTTTTCTCAGTCTCGTCCCACCT GACGAGAAATACCCACAGGTGTGGAGGGGCTGGCCCCTTTCAGTATCTCA GAAGGGACAAAGTACACAAAGGCATGGGGTCATGATAGTGCCTGGTATGT TCAGGTAGTGAAGAGGTCCATGTGGTATGAGCACTGCAGATGATATGTGT CGTATGAATTAAAAATACATAGTTACTGCAAATAGTTTTTACAGGTTATT GTTTTTAAGAAAGCAGTATCTAATGCACGAGTGTACTGTCAGTACTGTCA ATGAACTACTTACCACTCAAGTGACTGCTTACGCGTCGAATCACTAGTGA ATTCGCGGCCGCCTCGAGTCTAGAACTAGTGGATCCCCCAAACGGGCCCT CTAGACGCGTTGACATTCATTATTGACTAGTTATTAATAGTAATCAATTA CGGGGTCATTAGTTCATAGCCCATGATATCATATGGAGTTCCGCGTTACA TAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC ATTGACGTGAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTT TCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCA GTACATCAAGTGTATCATATGCCAAGTACGCCCCCCTATTGACGTCAATG ACGGTAAATGGCCCGCCTGGCATTATGCCCAGTNCATGACCTTATGGGAC TTTCCTACTTGGCAGACATCTACGTATTAGTCATCGCTATTACCATGGTG ATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG GGGATTTTCCAAGTCTCGACCCCATTGACGTCAATGGGAGTTTGTTTTGG CACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATT GACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAG CTCTCTGGCTAACTAGAGAACCCCTGCTTACTGGCTTATCGAGATATCTG CAGAATTCATCTGTCGACTGCTACCGGCAGCGCGCAGCGGCAAGAAGTGT CTGGGCTGGGACGGACAGGAGAGGCTGTCGCCATCGGCGTCCTGTGCCCC TCTGCTCCGGCACGGCCCTGTCGCAGTGCCCGCGCTTTCCCCGGCGCCTG CACGCGGCGCGCCTGGGTAACATGCTTGGGGTCCTGGTCCTTGGCGCGCT GGCCCTGGCCGGCCTGGGGTTCCCCGCACCCGCAGAGCCGCAGCCGGGTG GCAGCCAGTGCGTCGAGCACGACTGCTTCGCGCTCTACCCGCGCCCCGCG ACCTTCCTCAATGCCAGTCAGATCTGCGACGGACTGCGGGGCCACCTAAT GACAGTGCGCTCCTCGGTGGCTGCCGATGTCATTTCCTTGCTACTGAACG GCGACGGCGGCGTTGGCCGCCGGCGCCTCTGGATCGGCCTGCAGCTGCCA CCCGGCTGCGGCGACCCCAAGCGCCTCGGGCCCCTGCGCGGCTTCCAGTG GGTTACGGGAGACAACAACACCAGCTATAGCAGGTGGGCACGGCTCGACC TCAATGGGGCTCCCCTCTGCGGCCCGTTGTGCGTCGCTGTCTCCGCTGCT GAGGCCACTGTGCCCAGCGAGCCGATCTGGGAGGAGCAGCAGTGCGAAGT GAAGGCCGATGGCTTCCTCTGCGAGTTCCACTTCCCAGCCACCTGCAGGC CACTGGCTGTGGAGCCCGGCGCCGCGGCTGCCGCCGTCTCGATCACCTAC GGCACCCCGTTCGCGGCCCGCGGAGCGGACTTCCAGGCGCTGCCGGTGGG CAGCTCCGCCGCGGTGGCTCCGCTCGGCTTACAGCTAATGTGCACCGCGC CGCCCGGAGCGGTCCAGGGGCACTGGGCCAGGGAGGCGCCGGGCGCTTGG GACTGCAGCGTGGAGAACGGCGGCTGCGAGCACGCGTGCAATGCGATCCC TGGGGCTCCCCGCTGCCAGTGCCCAGCCGGCGCCGCCCTGCAGGCAGACG GGCGCTGCTGCACCGCATCCGCGACGCAGTCCTGCAACGACCTCTGCGAG CACTTCTGCGTTCCCAACCCCGACCAGCCGGGCTCCTACTCGTGCATGTG CGAGACCGGCTACCGGCTGGCGGCCGACCAACACCGGTGCGAGGACGTGG ATGACTGCATACTGGAGCCCAGTCCGTGTCCGCAGCGCTGTGTCAACACA CAGGGTGGCTTCGAGTGCCACTGCTACCCTAACTACGACCTGGTGGACGG CGAGTGTGTGGAGCCCGTGGACCCGTGCTTCAGAGCCAACTGCGAGTACC AGTGCCAGCCCCTGAACCAAACTAGCTACCTCTGCGTCTGCGCCGAGGGC TTCGCGCCCATTCCCCACGAGCCGCACAGGTGCCAGATGTTTTGCAACCA GACTGCCTGTCCAGCCGACTGCGACCCCAACACCCAGGCTAGCTGTGAGT GCCGTGAAGGCTACATCCTGGACGACGGTTTCATCTGCACGGACATCGAC GAGTGCGAAAACGGCGGCTTCTGCTCCGGGGTGTGCCAGAACCTCCCCGG TACCTTCGAGTGCATCTGCGGGCCCGACTCGGCCGTTGCCCGCCACATTG GCACCGAGTGTGACTCCGGCAAGGTGGACGGTGGCGACAGCGGCTCTGGC GAGCCCCCGCCCAGCCCGACGCCCGGCTCCACCTTGACTCCTCCGGCCGT GGGGCTCGTGCATTCGGGCTTGCTCATAGGCATCTCCATCGCGAGCCTGT GCCTGGTGGTGGCGCTTTTGGCGCTCCTCTGCCACCTGCGCAAGAAGCAG GGCGCCGCCAGGGCCAAGATGGAGTACAAGTGCGCGGCCCCTTCCAAGGA GGTAGTGCTGCAGCACGTGCGGACCGAGCGGACGCCGCAGAGACTCTGAG CGGCCTCCGTCCAGGAGGCTGGCTCCGTCCAGGAGCCTGTGCCTCCTCAC CCCCAGCTTTGCTACCAAAGCACCTTAGCTGGCATTACAGCTGGAGAAGA CCCTCCCCGCACCCCCCAAGCTGTTTTCTTCTATTCCATGGCTAACTGGC GAGGGGGTGATTAGAGGGAGGAGAATGAGCCTCGGCCTCTTCCGTGACGT CACTGGACCACTGGGCAATGATGGCAATTTTGTAACGAAGACACAGACTG CGATTTGTGCCAGGTCCTCACTACCGGGCGCAGGAGGGTGAGCGTTATTG GTCGGCAGCCTTCTGGGCAGACCTTGACCTCGTGGGCTAGGGATGACTAA AATATTTATTTTTTTTAAGTATTTAGGTTTTTGTTTGTTTCCTTTGTTCT TACCTGTATGTCTCCAGTATCCACTTTGCACAGCTCTCGGGTCTCTCTCT CTCTACAAACTCCCACTTGTCATGTGACAGGTAAACTATCTTGGTGAATT TTTTTTTCCTAGCCCTCTCACATTTATGAAGCAAGCCCCACTTATTCCCC ATTCTTCCTAGTTTTCTCCTCCCAGGAACTGGGCCAACTCACCTGAGTCA CCCTACGTGTGCCTGACCCTACTTCTTTTGCTCTTAGCTGTCTGCTCAGA CAGAACCCCTACATGAAACAGAAACAAAAACAGTAAAAATAAAAATGGCC ATTTGCTTTTTCACCAGATTTGCTAATTTATCCTGAAATTTCAGATTCCC AGAGCAAAATAATTTTAAACAAAGGTTGAGATGTAAAAGGTATTAAATTG ATGTTGCTGGACTGTCATAGAAATTACACCCAAAGAGGTATTTATCTTTA CTTTTAAACAGTGAGCCTGAATTTTGTTGCTGTTTTGATTTGTACTGAAA AATGGTAATTGTTGCTAATCTTCTTATGCAATTTCCTTTTTTGTTATTAT TACTTATTTTTGACAGTGTTGAAAATGTTCAGAAGGTTGCTCTAGATTGA GAGAAGAGACAAACACCTCCCAGGAGACAGTTCAAGAAAGCTTCAAACTG CATGATTCATGCCAATTAGCAATTGACTGTCACTGTTCCTTGTCACTGGT AGACCAAAATAAAACCAGCTCTACTGGTCTTGTGGAATTGGGAGCTTGGG AATGGATCCTGGAGGATGCCCAATTAGGGCCTAGCCTTAATCAGGTCCTC AGAGAATTTCTACCATTTCAGAGAGGCCTTTTGGAATGTGGCCCCTGAAC AAGAATTGGAAGCTGCCCTGCCCATGGGAGCTGGTTAGAAATGCAGAATC CTAGGCTCCACCCCATCCAGTTCATGAGAATCTATATTTAACAAGATCTG CAGGGGGTGTGTCTGCTCAGTAATTTGAGGACAACCATTCCAGACTGCTT CCAATTTTCTGGAATACATGAAATATAGATCAGTTATAAGTAGCAGGCCA AGTCAGGCCCTTATTTTCAAGAAACTGAGGAATTTTCTTTGTGTAGCTTT GCTCTTTGGTAGAAAAGGCTAGGTACACAGCTCTAGACACTGCCACACAG GGTCTGCAAGGTCTTTGGTTCAGCTAAGCTAGGAATGAAATCCTGCTTCA GTGTATGGAAATAAATGTATCATAGAAATGTAACTTTTGTAAGACAAAGG TTTTCCTCTTCTATTTTGTAAACTCAAAATATTTGTACATAGTTATTTAT TTATTGGAGATAATCTAGAACACAGGCAAAATCCTTGCTTATGACATCAC TTGTACAAAATAAACAAATAACAATGTGAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAGGTAGCAGTCGACAGATGAATTCCACCACACT GGACTAGTGGATCCGAGCTCGGTACCAAGCTTAAGTTTGGGCTGCAGGAA TTCTGATGGCTCTCAAAATTCCTGCCTCCTTTAGGGATAAAAGACTTTAA GACTTTTTAACAAAAAAGAAAAAGAAAAAAAAAATTCCTGCCTCCTGGTG TACACACACAGAAGGGTTCCCTCCCGTTGAATGTGACCAGGATCTGTGAA AATAACGGGATAGCCGCTCCTGTGATTAGGTTATGTGGTAGACTAGAGCA AGATTCTCCTGCTGGTTTTGAAGAAGTCAGCTGCCATGTTGTGAGACTGT CATGGGCTAGGGCATGAGCCTTTAAATATCTGGGAGCAACCCCTGGCCAG CAGCCAGTGAGAAAACGGGCCCTCAGTCCTACAATCACAAGGAACTAAAT TCTGCCAACAACCTGAAGGAACTTTGAAGAGGATCATGAGTCCCTTGATT CAGCTTGATGAGCCCCTGAGCAGAGGATACAGCTAACTTGTACTAGGGAA GTATAAAAAACATGCATGGGAATGATATATATCAACTTTAAGGATAATTG TCATACTTCTGGGAATGAAGGGAAAGAAATGGGGCTTTAGTTGTATTATG ATCTTTAATTTCTCAAAAAAAATAAGATCAGAAGCAAATATGGCAAAATG TTAATACTTTTGTGGGTACGTAGGTATTCAGCATACCCTTTTTTCTGAGT TCAAAATATTTTATAATTAAAATGAAATGCAGGCCAGGCACAGTGGCTCA TGCCTATAATACCAGCACTTTGCGAGGCCGAGGTGGGAGGATGGCTTGAG GCCAGACCAGCCTGGCCAACATGGCAAAACCCCATCTCTACTTAAAAAAA AAAAAACTATATATATATATATGTGTGTGTGTGTGTATATATATATATGT ATATATATTTATATATGTGTGTATATATATATATGTATATATATTTATAT ATGTGTGTGTATATATATATATACACACACACACATATATACATACATAC ATACACACACACACACACACAATTAGCCAGGCATGGTGGCGCACACCTGT AGTCCCAGCTACTTGGGAGGCTGAGACATGAGAATTGCTTGAACCTGGGA GGCAGAGTAGTTAGTGAGCTGAGATCATACCACTGCACTCCAGCCTGGTG ACAGAGTGAGACTCTGTCTTAAAAAAAATAAAAATTAAAATTAAATGCAA AAGGTCCAAGTGAATTGAAGAGGAAAGGGGTATCAAGGAAGGTTTTGTGG AGGTGACGTTTGAGCTGGGTCTTAAATGACTTAAACATGGGATAAGAAGG GAGGGAATAAGGACATTTCAGGTACGAGAAATAAGGAGCAAACAGTGGAA ACAACCTAACGTCTGTCAACCAGTGAATGGATAACAAAAATGTAATTCAG ATGGTATCCAACTTACGATGGTTCAACATGAGATTTTTCTGACTTTAGGA TAGATTTATCAAAGTAGTAAATCCATTTTCAACTTATGATATTTTCAACT TCAGATGGGTTTATCAGGACACAGTTGAGGAACACCTGTCTATCCATACA ATTTGGCAATAAAAAGGAAATGAGTGCAGATATACTCCACAACATGAATG AACCTTGAAAACATTAAGTGAGAGAAGCCAGATACAAAAGGCCACATATT GTATGATTCTATTTATACAAAATGTCCAGAATAGGCAAATCTTATAGACA GCAAGTAGGTAGATGATCAGTTTGCTAGGTGCTGGGGGAAGGGGAAATGG GGAGTGATGGCTAAGGGGATTGGGTTTCTTTGTGGGGCAATGAAAATGTT TTAAAATTGAGCGTGATAATGATTGCACAATGCTGCATATATATATAATC TATAGATTATATATATATAAAGAGAGGCTGTTAGAGAGTGATAAGTGATA TATATATATATATACATAGAGAGAGAGAGAGAGAGAGAGAGAGGCTGTTA GTGATAAGTGATCAGGAAAATAAAAGTATTGAGGAGGAATACGAAGTTGA CGGTGTGAAAACATGAGATTTTATATAGGATGGCCAGGGAAGGCCTTAAT GAGAAAGTGACTTATGAGTAAAAACAAGGGATCCTAAACCTTAGCATGCA TCAGAATCACTCGGAAACTTGTTAAAGCATAGCTTGCTGGGCCTCATCAC AGATATTTTGATTCGGTAGGTTCTTGTCTGATATTAATACTTTTGGTCTA GGGAACCACATTTTGAGAACCACTGAGCTAAAGGAAGTAAAGGTTTCCCT TAGTTTACTAGCTGGTAACACTGGCCCAGGAGGCCTTTCTGGAAAAGGTG GCAGTCCCCAAAGGAAGCTGGGGAGTCGCGTTCACATCGTCAAGGTTTAC CAAGTTGTGGCGGGCCTTTCCGTCTTGGAAAAAGCCTCAAAATGGCAGAT TAGGGTGTCCATGGGCGGCGGAAAGGGTCTTTGAAGTTGCAGACCAGGAG GGAAGAAGATTCTGGGCCTCCCGCATGCAGTGTCAGCTGGGAACAGAATG CACCCCGGCTGGGTTGGAGGCCGTGGGTACTGGCTCTTCCACACCAGGGG CCCACCTACCAAGGGCAGCAGGAGCATCTGCACCTCCTGCGCCAGGCGCC CTTGAGTGCTTCGACTTGAGCAGCTCTCCAGACACCAGCTAGGGTGACAG TGGTACAAATACCAGACTCCCCTGGCCTGCTCACCTCACAGGGTAATGTG CTGTGGAGTCAGGGGGACACAGCAACCACCAGATGACATGGCTGGCCCCG GGGAGGACGACACGCAGATACGGCTACTTGGCACCTGTGATATTTTACAC ACTCGAGAGGGGCCCGCACCATCCTCAGCCCTCTCCCCACATTCACTCTT AGTTCATGTCACCTCCACCCAGAGGGGGACACAGGCCCACAGCGATGGCC CCACACCCTGCCTGAGGTCGCCCACTTCCGAGGAGGCAGTCCTGGGACTT CCACCCGACCAGGCCCCAGAGCCCACCGACTTAACCCCTCCAGAGGCTTG TCGTTCATTACCTTATTCAAGATGGAGAGCAGCCTTTTTGCGGAGAAAAT GCGGGTGAAGGTCCTGAAAGTGCATTGACGCCGTTTTCGGAAGCCATACA AGTTTAGCTGGCGGAAGAAGCTCTTTATCGAAGTTGTGGCAAACACTTTG TGTGCGACGTCCCTTTTGAGAATCTCCTTTTCAAAGAGTTTTTGATTGAT CACTCTAGAAGCCCCACTGTCATCCCACCAGATGGACGAAAACTGGTTGC TGCTGACCAGTGTCCACAGTTTCTGTGGAAAGGGGAGGGAGAGGAGATTA TCTTCTCCCTGGGGCGGGACGTCACCGTCAGCGTGCGGCCTTCTGAACGA AGCTTCCTCGGCCAGAGGTTGGAAAGCGATTTCTTCTGTCAGCAGCCTCA AGTTAGGGCTCCCAGTGGACCCCGGGTCGTCCCAGGCAGGGGAAGGATCT GCTGGGTGAAGGTAGGTCTCTGACTGCAACTGGGGAGGGAAAGGCACCCT TTCCAAGCCATGATCCTGTGCTCTCGAATTTCTTTCTTCACAGCGAGCCA TACTCAATGATCGCTTGTCCTCCATCTGGCAAACTTGCTAGTGCAGTGTG GCCAGCAGCACCCCTTGGCAGTCATGTAACCAGCCCCATGACATCATAAA GGGGCTCTGACTGCCGGGGGGTGGGATCTCCACCCCCAGCAAGTTGTGTA ATAAAGGGCCAAGGCAGACAAGTAGCTGCCCATCTGCATGTGCACATTCT GGTCCTCACAGTCATTTCAATGGGAAAGATGACACTAGTGCACAAGAGTG CCGAGGGGCCCTGCCACACCGTAGATGCAGACCTGGAGCGGTCCCCTTGT CCTAGAGCTCCTGAGCCAGGCACAACTACAGCAAAGCCCTGGCTCAGGAA GGTCAGAGCTCACCGTCTGAGTCATGGGCCCACAGACCCCAGCACATGAC TGACACTCGGAAGCACAGAACAAAGGGTAGGACGGTGCCCATGGGTCAGG CTGTAGCCACGCCACCCTTTCCACCCTGTCCTAGCCAGAGGCAGCAATGT GCTCGATACAGATCCTCCTAACACACCCACACTGTCGGTCCCCAGCAGGC AGATGCCCGACAGCCCCTTAGGCAAATGGCTTAGCTGACTGCCCCACCAC ACGCCGTCGCCATGCAGTCCAGTGGGGAGTCGGAGGCAGCCTCCTTCCTG CCTCTCCTCGGCCTGCACGTGTCGCCCCACCAGGCAGAGACCCTTCTACA CCGCGGGTGTCTGCGGTCACATCGCGGTGGGGCATGCAGCTGTTGGCCTT CGAGGATGTTTTGTTTTCCTTGGCGAGTGTCTCCAGAGAAACGCACGTGG GTTTGTGTCCAGCGGTCCATCTCTGCAACAGTTGTTCCTTTGGGATTGGA TGCTAGGAGGTCACGGGAGAGGTGTCCATCCAAAGCAGTGTCTGTGTCAC ACAGTGTCGCCACACAGAGGGCCACCTCTGCACAGACTCCCCCGACTCGA TTCTGGGCACAGAGCTCAGTGACCTTCCAGAGACTGCCACGAACCGGTGA TGCCTCCACGCTTGAGACATCCTGACCGCAGGGCCCAAGGCGCACTGGCT CAGGGGGTGACAGTGAGGGGTGTGCAAACAGACTGCTGATGCTCAACCCG GCCGCTGCCGAGCTGTGTGACTTGGGCACGTCACTTAACCTCTCTCGGCC TCTGTCTCCTCCCGGGGATAAGAGTAGTAGCACCTGCTTCCCGGGGCTGT GAGGATCCAGTGGGACGTATAGGAACTAGCGAGGCACCGGCAGTTGGGTC AGAGCTACTGTTGTCACTTCACAAGGCATTTTCTTCAACAGCAAGTCGGA AATCTCATGAGCCTAAGGCAGAATCCACCTGTGGCCTCTGGTTACAACCC ACAGGACTGAAAATCCTTCCAGCCACAGCAACTGGTGAATTTCCTGGTCA ATTGCCACAAGTCATGAGCTGAACCCCACTTGAGTTTCAGTTCAGGCAGA ACTCTAGAGACGACTAGGGCAAGCTAGACAGCGACTGCAGAGCCTTTTGT TGCAGCGTGAGCAGTCCTCAGCTGTTGACATCACTGGGGAGCAAACGAGG ACCAGGAGCGGTGAAAGGACAGTGTCTGCTGCAGATTGTCGTAGCACGCA AGGAAGACTCCAGAAAGCCTCCTAAGCAGTAACAAGTGTGGCAAGGTGTA GCCCAGCCAACAGTGGCATCTGGGAGGCGTCCCCTCGTTCCTCCCACTAC CCCGTATACCCTGGGACCTGTGCAGTGAAGGACTCATTCTAAAGGGTGTG CCCCTGCAGCCGCCAGCCTCACTCACTGGCTGCCTGTGCCAGCTAGAGAT TTCTTTCCTCTGAGGCTGGCTGAGAGGACCACTCCAGTTTCCTGGCCCAT CCAGCAAAGAAGATACACATCATGCACGTGTAAAATGAGGAACCGGTTTA TTGAACAGCTTAAGGAGAGCAAAAATAGTGGCTTTAGCTACATTTTTTAC ACACTGAGCAGGAAAGTCTAAACCATCCCGTTCCCCTGTACCCCAAAGAG AACAGGGCTTGCTGGAGGCCAGTGCCAAGGGCGGAGTCGTGCTCGCAGCA GACTTGAATTAACCCCATGTAGGCCGGCGAGCAGTTGCCCGCGTGAAAAC ACCACCCTCTTCTCCTGGCTGAGAAGATCAAAGCTCTTTTTTTACCCTCT TTTCAGCAAAGGACCTATTTGTTTTCAGGCAGGAGGATGTTAAACTTGCA GCCTCTGACACACGGTGGAACCTGCAGTGCTTGGAGAAACGGCACGCACA CGTGAAAACATCATGCCTACTCCAAAGCCTTCTTGTTGCTGGCAGGAGGG AAGCTTGAGACTTTCCCACGCATAGTCGTGACCCGCGTGGCCGTTTCTGC TCTCAGCAACATTCTCTAGTGTTCCGGCTTCAAGCAGCGCTTGTCAGGTT TGAAGCTAGCCAGTATTCTGAGAACGTCAGAAAAGCATGGACCATCTCTT GCTTGGTGTTGCCGTTGTGGCAGTAGCAGCTACTACGTACCTGCACGAGT TCCAGGGCAGAAGTGGCAATGTCCCATGAAGGCGTGGCACCCCACGGGGG GGGGGGGGGAGTGTGCCACGGGCGTCCACTTCTGCAGCAGAAGGCATGTG CCTAGAGCACAAGCTTGTAAAAAAATAGTTGAACAGAATATGCTGTACAG AACTAGGGGTTAACACCGGATATGAAGATGCTAAAACATTTGTATAAATA CTCTGTATACAAGCATGGAGTCACTCCCGTAGAAAGGGCTCATCCGTGAG GCTATGAAAAACTGCTGTCAGCATGCCCAAAGAGAAACTACTTCCACAGT AGGAACAGAAAAAAGGACTGTGCTGTGTCTAAACACGTGGTGCATCAGAG ACATAGTTACAGTTCCTACTGACTGCCCCAGCCACGACCTGGGAGTGCTG AGGACCTGGGAGTGCTCAGCGAGCTGCAGGAGGTCAGCCCTGTGGAGAAA TACATTTCTAAACAATACTTTTGATTGGGATTTCAGCACCGTATAGACAG ATGTTCCTTCTGGGGGCCTGGCAAGCAGCCATCTCCCAGTGGGTCTGACG GGGAAGAGGGGTACCTGGAGCCCCTCCCAGACAGACGGTAATCCCACGCC TGTTCTCACACTCTTCCTGGCATCCGCATCTGCTGGCACACACCCCCGTC ACCTGCCACTTCCGCGTCCCGTCGTGGTGAGTGGCTGATAGGCGCTGGAT GCAAACAAGGCATGAGATGGACGTACCTGGAGACCCAGCTCCAGTACTGG TTCTGGTCTGCGGGGTGAACGAGGGGGCAGAGGAAGGCGGAGAGAGTGCG TCCCAGTCCACTTAAGCTCTGTCCCCGGAAGTGGCATCTAATCTGGCATT TCGATATTTAATTTGGGAGGTGGGAGCACATACTTCCCAGGGCTCTGGGT AATGACCACCCTGGCCTTCTTTCGAAACATGGGTGCGATTTTAGGGGGCT CCGGAACTGGGGTCTGTTGGGTTTCTTCATTATCTTCGTGATGGAGATCA TAGGAAATGTTTCCATATTCTCGTAGAAATGGGAAGATTTCAAGCAGAAA CTGACAGAAATCTTTGGGGATACCAAACCACCCTGAAAAATAAGAATTTT TTATTTCACACACGAGGCTCAACTGACCTTCCTGTTAACTTTCTTTCCGT AACAAGAAGTTTCACTCCTACAATGTCATAACATACTTTATCCAGACTCC TGAGTCACAAAGCCTGAACAGGGCTTGAGTACCCAAAATGGGGAAGAAGT GCAAATGCTAGCTCTGTGGTGCTTGGAGTGGGGTTCCCGGAGCGGCAGGG ACAGCGTCCACGGGGCCTAGTTAGGGATGCCATTCTCGGGCCCCAGCCCA GACCTGCAGAAACTGAGTCGGGCTAGGGTCGGCTCCAGCGGTCCCCTTTT CCTGGCCCTTTTGGGATTCTGCTGGATGCCCAAATTTGAGAACTACTGCT CCAGTGAGTCTCAAAATATCTGTGGTGCGCAGACTACGGTGTCTTCCGCT AATCTTCTCCAGCCAGGATAAACTCATGGATGACAGTGCCACCCAAGAAC AAGATTTCTGTCACCCTCTGGAATCCGTGAGGGCGGTAGTCATGCACGGG TTGGCGAGGAGGGGGCCTGAAGTGATGGAGCCACCTTAAAGCCACTTTCC CAGTCCCACTACTCCTCTCTGTAGGCTACTGGAGTGTCAGCTCGGTGCAA GCCCTCCCTGCTCCCGGGTGCGGGGTAGGGGGCAGAGGCACAAACAGCAA GGACAGCCCGGGCTGCTGGGCTGCAGTGAGGCCCTGCCCCCAAACCCACT GGCTTTCCGAAGGGCAATGCTCTGGGCTTCGGTGCCATGGAGCCCACAGC CTTGCCAGGAAGGCAGCCTCTGCAGAGATCGTTTTGGAAGTGTCTGCCTC AGCAAGCAGGTGGAGGGGAATAGAGTGTTAGCAAGGGAAGACAGGCAAGA CTCGGGTGATGGCAGCAAGGATATGGGGGAGGCAGAGCGGCCAACAGGGA CCTAGGATGAATCCCAGGTTTGGGTGGGAGATGTGGATTTTCCATCAAAC CCTCCGGGGCCTGGGAAGAATCTGTCTTGATCCCCATTTTGCAGAGGAGG GAACGGGATCTCTGAGAGGTTGCCTGCCGTGTCTGGTTCTACCTCAAATG GCAGCGTGCACTGCGAGAAAAGTCCCGGTGCAGGCCAGCAGAACACCAGA GTTACGGCATGCCCTTCCCTTAGAAGGTCCCAGAATTTCCTCAGCCCTCA CTTTCCCACACAAGCTTCTAAATTGGGGCCCTCGGGGACTCATCCCTTCC TAGACTTCTATCCGCCACCCCCCACCCCGTGGTCCCCCCCCAGACACACA CCAAGGACTTCTGAAATGCTGAGTACATACAGTGGTTTCCTCCCTTCTGT CCAAATGTGGTTGCCATCAGCGTGATCAACGAGAGCCAAAGGGGGACAAA GATCGGGATGCAGGAGAAGGCGTTGTGGCCATCCAGTTTGTGAACCAGCA GAATCTAAAGAAAGAGACATAGTCCCGGTTGATGCCAGCACCGAAAATGG GCAGAGGCGGAAGCCAGACTTCATTAGGCAGTTCCTCCCCACCACCCCAC CCCCGCGTGAGCTCCCACAAGAGGGAACATCAGCACCGCCAGAAAAAGGC AGGAAACCACCTATCCCTGGGGAAAGCTCGAAATGAGCTTTTATGTCCCT CTTCAGAGCTCGGCAATAGCCTATCCACTTGAAAAGTTCCCAGTGCCAGC AGTTTTATGGCAAACTCCTCCGGGTGTTTGTTCTAAGGAGTCAACAGCTC CCATTCTAGAATTCTCCACGTGACTCCAATACACAAATCTGACATCCCAC TCTGCTTTCCCCAGAGTGGAAACTGGAGCCATACAGAGGCACCATGGCTA AAAAGGTGCACTCTTCTCCCTGCCAGCCCCACGTGCTGCCCCCAAGAGAA AGGAAGGATGCTCTCCTTTCACCGAAGCTCCCTCTCGGAGATGGCTGTGT TCTCTCCCCTCTCCTGGAGTGGGCTCACTGTGAGCTCGAGGGACAGAGGC TGCCTTTCTAGGGGTGCAGAATCCTGTCAGGGGAAGCGCAAGCTTCAGGG GCTGAAGAGGCTTGCCGTGGAACGCTTACCTCAAATGTAAGAAGGGGCAC GACGATGGTCATCCAGCTCAGGGCCATGGTTATGTGTGTCCTGCGCTGTC CGCAATCACATCCATAGAGCGCAAGAACAAGACGGACCACACAATGTAGT AGAGGACCACCAGGCACAGAAAGGACATGAGAATCCACAGCGGGACACAC ACAACCTGGGGGTGGGTGAGAGAACAGCAAGAGAAGTCTCTTTAGAGCTT CCAACCTGGCCTCTGATGGAAGGCATCTTTAGCACCTTGCTGTGTCTGTC CAGTTAAGGCGGTCCTTCCTGTGAGCCGAATAAGGACCGTTCCATCTCCC AGGACTGCTGGGAGCATCGCTCAGGACAGAAAAGGTATGGTATGTTCACT ATGGGGCCTGCTGCCACCAGGGGACACACACGCTCAGTGAGTCATCAGTC CCTCTTCCTTTGGGTGACAGACAGCCCTGCACCTGGCTCCGCAGCCTCTA CTCTTCCAGAGGCCCACTCTCCCACACTCTCTCAGGCTCCTCTAGGTTCT GCTGCCATCACAGCTTCCCGGGAAATGGGACACAACTGTCACCCTGTGCA CACACACAAGATCTCACCCCAACAGACTCTCTTCACAGGCAACATTCCCA CAACCTGCTGGGGGTACTTTGGCAACACAAATGGGAATGGGCTCCCCAGA AAGTCTGGCTGCCTGGGCTCCTAAGGATCCCTAACCTCACCCCTACCAAG TTAGTGAACTTGGCGGGTTGATGCTGGATACAGGTTGATGCTGGATACGT AGCGCTGCCGGGTCGTGACCCCTAAGGAATTATCCAAACTCTTGTTTTTA GATGCTTTATTATATCAAACTCTCCTTTAAACAAGTGGCCCATCTGCTGG GATTTGGAAGCCTGTAATACTGAAATTTTCATCATAATGGAAATTTTAAA AACAGAATTTGACCCAGCTGTTTTTAAAACACTTTCATTACTTAACAAGA GGTCTAATCTTGGGGAAGTGTTGAAATTTCTCTGGCCTTAGTTTCCCATG TGTTAAATGAAACTTGAAGCAGTTGGTCTCTTATAGTCTCCTGACTCTAA CATTCTAAGAATTATATTTGTACAATAACTCAAAAATCACATAATTTAAT TTACCATATGGACTCCAAAATATATTTTCTCATTAGGCTAAACTTGATCT GCATTTTCTGGATGTGTCCATATTCTTGGACTACACTAAAACATGATACC AATGCTTCCTCTCACCATAAACCCTCACTTCGCTTTCTACATTTAAGAAT TTTATAGGTGGAAGAGTCGTTAACAGAAAATACCATCTAATAATTACCCC TCAAAATCGAGAAAGTCCTATCTGTTCTTATGCTAGTTATAAGAATGAGG CAGCATTTCACATAATGGTTATAAAGACTGCCACAAGAAGATTCATGATG TGTTGTTTATCTGTAGGTCTCATCATACTCTGTCATATAACTATAGCATT AAGATTTTAATGTTCTATATATTCTTCTAAGACAGTGTTTACCAGAGTAA GGCACAAAAGATCCACTGGTTTGCAAGAAAGATTAGAACTTTTAAATTTT TTACCTCACCTTGTTTAATCTATATTTTTGTATGTATTTTGTAACATATA TATTATTATTACCATAAATCATATATAATTTAAAATGCATATATTAGGGG TAAATGCTCAGGAAACTTTTTATAAATTGGGCATGCAAATACAAGTTTGA AGACTCACTGTTCTAGGTATTAAAAGTAAAGTTATAACCAAGTAAAGCTT CCACCTTTTCATGTCTCAAAGCAGTTTATTGTTGGAGGTAAGATCTCTTA GAAGCCTAAACAGGTCCAAGTACAGAATGAAGTAAGGCTAGCCCATAACT TGTGGCAAGCAATTCATACTATTTCTCTCATGCTGAGCTCTCCTCAGTGA AGCAGCTACTATAGACAACTGCAGCCTATTGGTAGCCTATTTTACAGGCA GGAAAAAAATTACTTTTTATTCAAAGTGGAACTCAGGACATGGGGAGAAA ATGAATACAAAAAATAGGGTCAATCCAAAGGCACACAGCAAATGAGTAAC ACAGTTATGTTTTTTTCCCATTTGTATGAGGTCCCAGTAAATTCTAAGTA AACTGCAAATTTAATAATACACTAAAAAAGCCATGCAATTGTTCAAATGA ATCCCAGCATGGTACAAGGAGTACAGACACTAGAGTCTAAAAAACAAAAG AATGCCATTATTGAGTTTTTGAATTATATCAAGTAGTTACATCTCTACTT AATAAATGAGAAAAACGAGGATAAGAGGCCATTTGATAAAATGAAAATAG CCAAGAAGTGGTATTAGAGAGTTGAATACAGGTATTCGGGTCCAAAGTTG ATCTGCTCAAATACTAACTGGGGAAAAGAGGGAAAAATATTTATATACAT ATATATCTGCACACAAAATACCCCCAAAAAGACAAAATGAGGCCAGGCAG GGTGGCTCACACCCGTAATCCCGGTACTTTGGGAGGCTGAGGCAGGTGGA TACCTGAGATCAGGAGTTGGAGATCAGCCTGGTCAACATGGTGAAACCCT GTCTCTACTAAAGATAAAAAAATTAGCCAGGCATGGTGGCGTGCGCCTGT AATCCCAGCTACTTGGGAGTCTGAGGCAGGAGAATCACTTGAACTGGGAA GGGGAGGTTGCAGTGAGCCAAGATCGTACTACTGCACTCCAGCCTGGGCA GCAGAGTGAGACTCCATCACAAAAATAAATAAATAAATAAAATACAATGA AACAGAAAGTTCAAATAATCCCATAATCTTACCACCAAGAAATAACTTTC ACTCGTTATACTTATTGATTTTTCCATAATAAATGTACTTTACTGTGACT ATCATGAAAAGAAAGTTATTTTAGAAACAGAGAACTGTTTCAGATCAAAT CTATGTAGTAGAACAGAGCCATTAGGTGGGAAAGACGAGATCAAACTAAA TCTCAGAAGGCCTAAAAGGCTAGGTCCATTCCAGCACTAAAAACTGACCA GACAAGTAATGGCTTCAACAGCTTCTAAATATGGACAAAGCATGCTGAAA GGGAAGGACAGGTCTAACAGTGGTATATGAAATGAACAGGAGGGGCAAAG CTCATTTCTCCTCTGAAGTTTTCCAAAGATGGTGAGGAGGACATTAGTTT GACATGACCCTGATATGGGACAAGATAATTTCACAGAAGTTTTACATGTT AAAGTTTTCTTATAGATACTCATTCAAGTAAGCAATGAACACTAAAATCT AAAGAAAGAAAAGAGCTTTAGAGTCAGGTCTGTATTCAAATTCAAGCTCT ACCACTTAGTGGTTCTGTGACTTTGGGCAAGTCTTTTAACCTTATTAAGT CTTAATTTCCTGATTTGTAAAATGGGGATATCGTCTCCCTCACAGGATTG TTGTGAAACTTTTATGAGATTAATGCCTTTATATTTGGCATAGTGTAAGT AAACAATAACTGGCAGCTTCAAAAAAAAAAAGCAGTAGCATTCCATCATT TATTATTGGTTACTCTCAAAAAGTTTTTCAATGTACTAGAAGATAAATAT TCAAATACCTTAATATCTCCATTATTTTCAGGTAAACAGCATGCTCCTGA ACAACCAATGGGTGAACAAATAAATTAAAAGGGAAATCTAAAAACATCTT GATATTAAACTACATGGAAGCACAATATACCAAAACCAATGGTTCACACT AGGAGAATTTTAAGGTACAAGAAAACTCTTTGAGATTTCTTAAAATAATA GTATGTCTGAATTTATTGAGTGATTTACCAGAAACTGTTGTAAGAGCTCT ACTTGCATTATAGCACTTAATCCTCTTAACTCTATGGCTGCTATTATCAA CCTCACCCTAATCACATATGGGACACAGAGAGGTTAAGTAACTTGCCCAA GGTCAGAGTTAGGAAGTACTAAGCCATGCTTTGAATCAGTTGTCAGGCTC CGGAACTCACACTTTCAGCCACTACATAATACTGCTTTGCTATCTTTTAG GAAACTATGTGAGTCTACCTCACATAGACTCACATAGGTTTGTTTTTTTT TTTTTTTTAAAGGCTATCTTTTCCCCCATCAATGTTTTTTGAAGGATCCC AAATTAGAGTCCCACAGAGGCAGACAGCAGTACTTGACAATATGGACATT TAAGGTTAATGTTGGATTCTACTGTCTTTTTACTACATGACCTAGGGAAC GATAATTAACCTAGACTGCTTCCAAGGGTTAAATAACCCATTTAGTTATA CTATGTAAATTATCTCTTAGTGATTGATTGAAAGCACACTGTTACTAATT GACTCGGTATGAAGTGCTTTTTTTTCTTCCCTTTCAAGATACATACCTTT CCAGTTAAAGTTGAGAGATCATCTCCACCAATTACTTTTATGTCCCCTGT TGACTGGTCATTCTAGTTAAAAAAAAAAAAAACTATATATATATATATCT ACACACACATATGTATATGTATATCCTTATGTACACACACAAACTTCAAA TTAAATGAGAACTAGAAGATTTGAGAAGTTAGCTAGCTAATATCCATAGC ATTATGATATTCTAAATGATATGAATTATAAGAATTAGGTTTCCTGAAAT GAATGACTAGAAAACTTTCAAGTAGAGATTAGTAAAAATTAAAAAGTCCT AATCGGCCATTACTGATTTGATGTTTTTAAGAGTCCTAAAAAATGGGTTA CATCCATTTTTAAGTGGGTAGTATTATAACAGCCACCCATCTTCAATCAC AGTGATTTCTGAATTGTGAGGGAAGTTATTAGCATGACAGGTGTCTGGTT CTGGCCCTGTACGATTCCCATGAGTCAAGCAAATTGTAAGGGCTGGTCTA TATCAGACCCAACCCCAAGGATATGTCCCTCAAAAGTCTAGCCCAGGCCC CGTCATCTTCAGCATCATCTGGGAAACCAGGTCTGATTAGTAGTCCTTTA AGGAATACCTCTTAGGCTCCCATTTTACTGCTATCACAGAATCCAATAAA ACCCTTACAGGAGATTCAATGGGAAATGCTCAACACCCACTGTAGTTGGT GGTGACAATGACCATAATTTGGCTGTGCTGGATTCAGGACAGAAAATTTG GGTGAAAGAGCAGGTGAACAAAAGAGCTTCGACTTGCCCTAGCAGAGAGC AAGCCATACCATACCACAAAGCCACAGCAATTACAACGGTGCAGTACCAG CACAGTAAATGAACAAAGTAGAGCCCAGAAACAGACCCAGAACTATATGA GGATTTAGTATACAATAAAGATGGTATTTCGAGTCAGTAGGGAAAAGATG AATTATTCAATAAATGATGTTTGGCCAACTAGTAACCCATTTGGGAAAAA ATAAAAGTATGGTCCCTACCTCACAGCATACACAAAAATAAATTCCAGAC GGATTAAAATCTAAATGTAAAAAATAAAGCCATAAGTGGACTGGAAGAAA ATAGAGAATTTTTTTTAACATCCGTAGAAAGGGTAAAAACCCAGGCATGA CATGAACCAAAACTGAAGAGGTTCTGTAACAAATACCCCCTTTTATATAT TGGGCTCCAACAATAAGAACCCATAGGAAAATGGAGAATGAACACAAATA GACAATTTATAGAAGAGAAGGTTATAAGGTGTAAAATTATATCTATCTGA GAAACAAACACTAAAACAATGTGATTCTACTGTTCTCCCACCGATACTGG CAAAACTTAAGCCTGATAATATGCTGAGGGGAAATAAGCACTGTTGTTGG TGAGAGTATTAATTGGCATAGCTTCTTTTGAAAATGAGATAGCAATACCT GTTAAAATTGCAAACATGCATGTCACTTAATCCAGTAATGCCACTTCTGG GAATCAATGCTACAAAAACACTGACAAGTATACAAAGATACATTCAAGAG TGTTCACTGGGCCGGGTGCGGTGGCTTCATGCCTGTAATCCCAGGGAGGC AGAGGCAAGACGATCGCTTGACCCCAGGAGTTCAAGGCCAGCCCGAGAAA CACAGCAAGACCGTGTCTCTCTTTTTTTTATTTAAAAAATAAATGTTCAC TGTATCAGTTGTTCACAAAAACAAACCAACATGTCCATTAACAGGGAACC ATTTAAATTAATCAAGTTCATCTACACAATGTAATACCATGCAACTATTA AAAAGCACCTGATAATCCAAAGCACACTGAGACAGAATAATGGTATTAAA AACACCAAGTAGTGGAACACTGTGTTGCCTATGACACCATTTTTATTCAA CATTTAAACAAATTTGTAACAGCAATTACATGAGTAGTGACAATGGCGTT TATGAGACTTTTCACTTTTATGTGCTTCTATTTTTGTTATGCTTCTATAT ATACATCCATTTATTATGGAGTGTTACTTTCAAAAATCACAAATGGGCCA GTATTATTTGGTGTTGCAAGGTGAGCATATGACTTCTGATATCAACCTTT GCATATTACTTCTCAATTTAGGGAAATTACAGACATCCCTTATTCTAACT AACTTAAAACCCAGCATTTCAAACATACAGAATTGATGGGGAAAAAAAAG AAAGAAGAAAGAAAGAAAAGGCAACAAGCTTCAGATGACAGTGACTCACA TCAAATTATTTATAAAATCTGTTAAATAGTGCCATCTTCTGGAGATACCT GGTATTACAGTCCAACTCCAGTTGATGTCTTTACAGAGACAAGAGGAATA AAGGAAAAAATATTCAAGAACTGAAAAGTATGGAGTCATGGAAAAATTGC TGTGATCCAAAGGCTACGGTGATAGGACAAGAAACAAGAGAACTCCAAGC AGTAAGACACTGCTGTTCTATTAGCATCGAAACCTCCATACTCCTGTTTG CCCCAAGGCTTTTTTAAAAAATAGAGACAGGATCTCACTATTTTGCTCAG GCTGGTCTTGAACTCCTGGACTCAAGCTATCCTCCTGCCTCGGCCTCCTA AAGTGCCGAGATTACAGGCTTGAGTCACCATACCTGGCTATTTATTTTTT CTTAACTCTCTTGCCTGGCCTATAGCCACCATGGAAGCTAATAAGAATAT TAATTTAAGAGTAATGGTATAGTTCACTACATTGGAATACAGGTATAAGT GCCTACATTGTACATGAATGGCATACATGGATCAATTACCGCACCTGGGT GGCCAAAGGAACTGCGCGAACCTCCCTCCTTGGCTGTCTGGAAGAAGCTT CCCACTAGATCCCTTTACTGAGTGCCTCCCTCATCTTTAATTATGGTTAA GTCTAGGATAACAGGACTGGCAAAGGTGAGGGGAAAGCTTCCTCCAGAGT TGCTCTACCCTCTCCTCTACCGTCCTATCTCCTCACTCCTCTCAGCCAAG GAGTCCAATCTGTCCTGAACTCAGAGCGTCACTGTCAACTACATAAAATT GCCAGAGAAGCTCTTTGGGACTACAAACACATACCCTTAATGTCTTTATT TCTATTTTGTGTACCTCTTCAGTGTAGGTGAAAAAATAGGAAGGATAATA GGGAAGAACTTTGTTTATGCCTACTTATCCGCCCCTAGGAATTTTGAAAA CCTCTAGGTAGCAATAAGAACTGCAGCATGGTATAGAAAAAGAGGAGGAA AGCTGTATAGAAATGCATAATAAATGGGCAGGAAAAGAACTGCTTGGAAC AAACAGGGAGGTTGAACTATAAGGAGAGAAAGCAGAGAGGCTAATCAACA AGGGTGGGTTCCCAAGAGGGCATGATGAGACTATTACTAAGGTAGGAATT ACTAAGGGCTCCATGTCCCCTTAGTGGGTTAGTACTATGTAGCTTGCTTT CTGCAGTGAACTTCAGACCCTTCTTTTAGGATCCTAGAATGGACTTTTTT TTTTTATCGGAAAACAGTCATTCTCTCAACATTCAAGCAGGCCCCAAGTC TACCACACTCAATCACATTTTCTCTTCATATCATAATCTCTCAACCATTC TCTGTCCTTTTAACTGTTTTTCTATACCCTGATCAAATGCCAACAAAAGT GAGAATGTTAGAATCATGTATTTTTAGAGGTAGAGTGTATCTCAGATAAA AAAAAAGGGCAGATATTCCATTTTCCAAAATATGTATGCAGAAAAAATAA GTATGAAAGGACATATGCTCAGGTAACAAGTTAATTTGTTTACTTGTATT TTATGAATTCCCTAAAACCTACGTCACCCGCGCCGTTCCCACGCCCCGCG CCACGTCACAAACTCCACCCCCTCATTATCATATTGGCTTCAATCCAAAA TAAGGTATATTATTGATGATGTTAATTAACATGCATGGATCCATATGCGG TGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTC TTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGC GAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCA GGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCGAG GAACGGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCC CTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCG ACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCG CTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC CTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGT TCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGT TCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACC CGGTAAGACACGACTTATCGCCACTGGGAGCAGCCACTGGTAACAGGATT AGCAGAGCGAGGTATGTAGGCGGTGGTACAGAGTTCTTGAAGTGGTGGCC TAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCG CAGAAAAAAAGGATGTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTGATGAGATTA TCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAA ATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCT TAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATA GTTGCGTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACC ATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTC CAGATTTATGAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGT GGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGA AGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCA TTGCTGCAGCCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTC ACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGAGCCCGGATGAATGTCAG CTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGG TAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGG ACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGG GAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGAT GGCGCAGGGGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTTCGC ATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGA GAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATG CCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAG ACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCT ATGGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG TCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAG GATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGC TGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTAGCTGCCCATTCG ACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCC GGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCC AGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATC TCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAAT GGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCG CTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCG GCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGAT TCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATTTT GTTAAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATC GGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGT TGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACG TCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCA TCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCG GAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGA ACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCG CTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGGGCT TAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGAATCGATTAAT TCTTAATTAACATCATCAATAATATACCTTATTTTGGATTGAAGCCAATA TGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGG GCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGA ACACATGTAAGCGAGGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCG GTGTACAGAGGAAGTGACAATTTTCGCGCGGTTTTAGGCGGATGTTGTAG TAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAAACTG AATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAA TACTG -
Claims (20)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/650,479 US7481998B2 (en) | 2002-12-02 | 2007-01-08 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
PCT/US2007/006371 WO2008088358A2 (en) | 2007-01-08 | 2007-03-14 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
CA2674563A CA2674563C (en) | 2007-01-08 | 2007-03-14 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
EP07772782A EP2099438A4 (en) | 2007-01-08 | 2007-03-14 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,715 US7687058B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,714 US7713522B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43009902P | 2002-12-02 | 2002-12-02 | |
US10/725,013 US7179459B2 (en) | 2002-12-02 | 2003-12-02 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US11/650,479 US7481998B2 (en) | 2002-12-02 | 2007-01-08 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/725,013 Continuation-In-Part US7179459B2 (en) | 2002-12-02 | 2003-12-02 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/219,714 Continuation US7713522B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,715 Division US7687058B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070212334A1 true US20070212334A1 (en) | 2007-09-13 |
US7481998B2 US7481998B2 (en) | 2009-01-27 |
Family
ID=46327006
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/650,479 Expired - Fee Related US7481998B2 (en) | 2002-12-02 | 2007-01-08 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,714 Expired - Fee Related US7713522B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,715 Expired - Fee Related US7687058B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/219,714 Expired - Fee Related US7713522B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US12/219,715 Expired - Fee Related US7687058B2 (en) | 2002-12-02 | 2008-07-28 | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Country Status (1)
Country | Link |
---|---|
US (3) | US7481998B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090238795A1 (en) * | 2002-12-02 | 2009-09-24 | Biovec, Llc. | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7481998B2 (en) * | 2002-12-02 | 2009-01-27 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US7803365B2 (en) * | 2002-12-02 | 2010-09-28 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US20070166481A1 (en) * | 2006-01-13 | 2007-07-19 | Seagate Technology Llc | In-situ UV curing of media lubricants |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4826811A (en) * | 1986-06-20 | 1989-05-02 | Northfield Laboratories, Inc. | Acellular red blood cell substitute |
US5981225A (en) * | 1998-04-16 | 1999-11-09 | Baylor College Of Medicine | Gene transfer vector, recombinant adenovirus particles containing the same, method for producing the same and method of use of the same |
US6290949B1 (en) * | 1993-05-20 | 2001-09-18 | Brent A. French | Adenoviral vector for inhibiting restenosis |
US7179459B2 (en) * | 2002-12-02 | 2007-02-20 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7481998B2 (en) * | 2002-12-02 | 2009-01-27 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
US7501114B2 (en) * | 2002-12-02 | 2009-03-10 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
-
2007
- 2007-01-08 US US11/650,479 patent/US7481998B2/en not_active Expired - Fee Related
-
2008
- 2008-07-28 US US12/219,714 patent/US7713522B2/en not_active Expired - Fee Related
- 2008-07-28 US US12/219,715 patent/US7687058B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4826811A (en) * | 1986-06-20 | 1989-05-02 | Northfield Laboratories, Inc. | Acellular red blood cell substitute |
US6290949B1 (en) * | 1993-05-20 | 2001-09-18 | Brent A. French | Adenoviral vector for inhibiting restenosis |
US5981225A (en) * | 1998-04-16 | 1999-11-09 | Baylor College Of Medicine | Gene transfer vector, recombinant adenovirus particles containing the same, method for producing the same and method of use of the same |
US7179459B2 (en) * | 2002-12-02 | 2007-02-20 | Biovec, Llc | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090238795A1 (en) * | 2002-12-02 | 2009-09-24 | Biovec, Llc. | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
US20100247487A1 (en) * | 2002-12-02 | 2010-09-30 | Biovec, Llc | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
US20110196022A1 (en) * | 2002-12-02 | 2011-08-11 | Biovec, Llc | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
US8242095B2 (en) * | 2002-12-02 | 2012-08-14 | Biovec, Llc | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
US8367056B2 (en) * | 2002-12-02 | 2013-02-05 | Biovec, Llc | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
US9388427B2 (en) * | 2002-12-02 | 2016-07-12 | Biovec, Llc | In vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors |
Also Published As
Publication number | Publication date |
---|---|
US20090105180A1 (en) | 2009-04-23 |
US7713522B2 (en) | 2010-05-11 |
US7481998B2 (en) | 2009-01-27 |
US20090123440A1 (en) | 2009-05-14 |
US7687058B2 (en) | 2010-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7670597B2 (en) | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases | |
US9353383B2 (en) | Vivo and ex vivo gene transfer into renal tissue using gutless adenovirus vectors | |
EP1749098B1 (en) | Chimeric adenoviruses for use in cancer treatment | |
JP3565859B2 (en) | Improved adenovirus and uses thereof | |
WO2008095027A2 (en) | Adenoviral vector comprising herpes simplex virus type 1 thymidine kinase and a transgene for increasing the expression of the transgene | |
US7501114B2 (en) | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases | |
US7713522B2 (en) | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases | |
US20020081284A1 (en) | Manipulation of arterial-venous identity | |
US8420075B2 (en) | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases | |
CA2674563C (en) | Ex vivo and in vivo expression of the thrombomodulin gene for the treatment of cardiovascular and peripheral vascular diseases | |
CA2515916A1 (en) | Therapeutic applications of thrombomodulin gene via viral and non-viral vectors | |
Gao et al. | A study of gene transfer and expression of human clotting factor IX in Hemophilia B mice mediated by mini-adenoviral vector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOVEC, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEHGAL, LAKSHMAN R.;WONG, JONATHAN;REEL/FRAME:019214/0567;SIGNING DATES FROM 20070208 TO 20070215 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BIOVEC, BV, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVEC, LLC;REEL/FRAME:023319/0058 Effective date: 20090929 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BIOVEC, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVEC, BV;REEL/FRAME:030079/0423 Effective date: 20130321 |
|
AS | Assignment |
Owner name: BIOVEC B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVEC, LLC;REEL/FRAME:031038/0297 Effective date: 20130812 |
|
AS | Assignment |
Owner name: BIOVEC, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVEC B.V.;REEL/FRAME:038754/0850 Effective date: 20160531 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210127 |