US20070196056A1 - Fiber-optic endface cleaning assembly and method - Google Patents
Fiber-optic endface cleaning assembly and method Download PDFInfo
- Publication number
- US20070196056A1 US20070196056A1 US11/507,952 US50795206A US2007196056A1 US 20070196056 A1 US20070196056 A1 US 20070196056A1 US 50795206 A US50795206 A US 50795206A US 2007196056 A1 US2007196056 A1 US 2007196056A1
- Authority
- US
- United States
- Prior art keywords
- endface
- cleaning apparatus
- housing
- solvent
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 287
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000002904 solvent Substances 0.000 claims abstract description 147
- 239000013307 optical fiber Substances 0.000 claims abstract description 55
- 239000000356 contaminant Substances 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 110
- 239000007788 liquid Substances 0.000 claims description 14
- 235000007586 terpenes Nutrition 0.000 claims description 11
- 239000013043 chemical agent Substances 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 150000003505 terpenes Chemical class 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 238000012634 optical imaging Methods 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- -1 monocyclic terpene Chemical class 0.000 claims description 4
- 239000003208 petroleum Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 20
- 238000004891 communication Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 9
- 239000000835 fiber Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical group N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3833—Details of mounting fibres in ferrules; Assembly methods; Manufacture
- G02B6/3866—Devices, tools or methods for cleaning connectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B11/00—Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
- B08B11/02—Devices for holding articles during cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B5/00—Cleaning by methods involving the use of air flow or gas flow
- B08B5/02—Cleaning by the force of jets, e.g. blowing-out cavities
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/381—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B2240/00—Type of materials or objects being cleaned
- B08B2240/02—Optical fibers or optical fiber connectors
Definitions
- the present invention relates generally to fiber-optic cleaning systems and, more specifically, to cleaning systems for cleaning fiber-optic endfaces.
- a fiber-optic endface is the cross-sectional surface that is created when an optical fiber is cut for termination.
- the fiber-optic endfaces are typically supported by a connector that couples to a bulkhead adapter (also sometimes referred to as a backplane adapter or a mating adapter) having an alignment sleeve for receiving the fiber-optic endface.
- fiber-optic interconnects are arranged in a male-to-male configuration and utilize a female-to-female configured alignment sleeve for coupling. Thus, when the user-side connector is removed, one endface is readily accessible, while the other resides at the bottom of a deep narrow hole. This makes cleaning very difficult.
- backplane fiber-optic interconnects are notoriously difficult to access for maintenance, cleaning, and repair. Whether multi-fiber or single-fiber (simplex), these fiber-optic connectors are typically located near the back of a narrow “card slot”. A typical slot is 1.5 inches wide and 12 inches deep, and rather difficult to access for service. Most current cleaning techniques require the user to disassemble the backplane to gain access to the connector for cleaning.
- cleaning system manufacturers have designed cleaning systems that are insertable within the alignment sleeve for cleaning the fiber-optic endfaces without necessitating the removal of the connector from the bulkhead adapter.
- the methods used by these systems are disadvantageous for several reasons. For instance, most of these methods utilize contact cleaning methods, wherein the endface is directly contacted by a non-fluid material, such as a cotton swab or a physical structure coated with an adhesive. Because the fiber-optic endface is directly contacted by a non-fluid material, these systems contain the inherent risk of adding contamination to the fiber-optic endface as a portion of the non-fluid contact material may remain on the fiber-optic endface.
- the physical contact may result in the introduction of defects upon the fiber-optic endface, such as scratches on the fiber-optic endface through “brushing” of the media across the fiber-optic endface or the “dragging” of a contaminate particle across the endface.
- defects upon the fiber-optic endface such as scratches on the fiber-optic endface through “brushing” of the media across the fiber-optic endface or the “dragging” of a contaminate particle across the endface.
- cleaning solvents may collect in a chamfer formed in the fiber-optic endface.
- the chamfer is located around the periphery of the fiber-optic endface.
- the chamfer acts as a protected cavity, which ultimately forms a reservoir that retains solvent within the alignment sleeve.
- the cleaning solvent and any contaminants contained in the chamfer often flow back onto the fiber-optic endface, recontaminating the endface.
- a cleaning apparatus for cleaning an endface of an optical fiber contained within an interface device.
- the cleaning apparatus includes a housing having an interface portion adapted to be received by the interface device and a first nozzle at least partially disposed within the housing.
- the first nozzle is operable to deliver a pressurized gas and a solvent upon the endface of the optical fiber when the interface portion of the housing is received by the interface device to aid in the removal of contaminants on the endface.
- the cleaning apparatus further includes an evacuation passageway through the housing for removing the pressurized gas and the solvent released from the first nozzle.
- the solvent is a liquid comprised of a hydrocarbon and a terpene mixture.
- the cleaning apparatus may also include a second nozzle disposed at least partially within the housing and operable to dispense the pressurized gas.
- the cleaning apparatus further includes a microscope-receiving aperture, wherein the microscope-receiving aperture is operable to selectively receive a microscope for inspecting the endface of the optical fiber.
- the cleaning apparatus may also include a microscope attached to the housing via the microscope-receiving aperture, wherein the microscope is adaptable to view the endface.
- the cleaning apparatus further comprises a baffle disposed within the housing and positioned in proximity to the endface when the interface portion of the housing is received by the interface device, the baffle adapted to direct the pressurized gas upon the endface.
- the baffle may be actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
- a method for cleaning an endface of an optical fiber contained within an interface device is provided.
- the steps of the method are comprised of inserting an interface portion of a housing of a cleaning apparatus within the interface device so as to position a nozzle at least partially contained within the housing in proximity to the endface of the optical fiber, directing a pressurized gas through the nozzle toward the endface of the optical fiber, and intermixing a solvent with the pressurized gas.
- the method may also include actuating a baffle disposed within the housing between a first position, wherein the baffle is positioned in proximity to the endface to direct the flow of the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
- the method may include applying a vacuum to the housing to aid in removal of fluids contained therein. Additional aspects of the method include inspecting the endface of the optical fiber with a microscope having an optical imaging axis that passes through a passageway in the housing while the interface portion of the housing is inserted within the interface device, or removing the interface portion of the housing from the interface device and inserting another portion of the housing containing a microscope within the interface device and inspecting the endface of the optical fiber.
- FIG. 1 is a perspective view of one embodiment of a fiber-optic endface cleaning assembly formed in accordance with the present invention, additionally showing a fiber-optic bulkhead adapter with two connectors coupled thereto, of which the fiber-optic endface cleaning assembly is operable to interface with and clean the endfaces of the fiber-optic cables contained therein;
- FIG. 2 is a planar fragmentary sectional view of the fiber-optic endface cleaning assembly, the bulkhead adapter and fiber-optic connectors depicted in FIG. 1 , wherein the fiber-optic endface cleaning assembly is shown inserted within the bulkhead adapter;
- FIG. 3 is a planar elevation view of an alternate embodiment of a fiber-optic endface cleaning assembly formed in accordance with the present invention, shown interfacing with a fiber-optic connector, wherein a microscope is received within the fiber-optic endface cleaning assembly;
- FIG. 4 is a fragmentary detail view of the head portion of the alternate embodiment of the fiber-optic endface cleaning assembly depicted in FIG. 3 ;
- FIG. 5 is a planar elevation view of another alternate embodiment of a fiber-optic cleaning assembly formed in accordance with the present invention, wherein the fiber-optic cleaning assembly further includes a microscope for inspecting fiber-optic endfaces;
- FIG. 6 is an exploded perspective view of yet another alternate embodiment of a fiber-optic cleaning assembly formed in accordance with the present invention, showing an interface section having one of two interchangeable interface tips selectively attachable thereto;
- FIG. 7 is a perspective view of the alternate embodiment of the fiber-optic cleaning assembly depicted in FIG. 6 , showing a baffle actuator section having a needle valve adjustment screw protruding therefrom;
- FIG. 8 is a side view of the alternate embodiment of the fiber-optic cleaning assembly depicted in FIG. 6 coupled to a fiber-optic bulkhead adapter, with a portion of the fiber-optic cleaning assembly and fiber-optic connector shown in cross-section, revealing a baffle depicted in a retracted position;
- FIG. 9 is a fragmentary cross-sectional view of the alternate embodiment of FIG. 8 , showing a magnified perspective of the baffle in a retracted position;
- FIG. 10 is a side view of the alternate embodiment of the fiber-optic cleaning assembly depicted in FIG. 6 coupled to a fiber-optic bulkhead adapter, with a portion of the fiber-optic cleaning assembly and fiber-optic connector shown in cross-section, revealing a baffle in an extended position;
- FIG. 11 is a fragmentary cross-sectional view of the alternate embodiment of FIG. 10 , showing a magnified perspective of the baffle in an extended position;
- FIG. 12 is a perspective view of the baffle depicted in FIG. 8 .
- the present invention is a fiber-optic endface cleaning assembly for cleaning the endface of an optical fiber. While not limited to the following application, the cleaning assembly of the present invention is particularly suitable for cleaning an endface of an optical fiber contained in an interface device, which is defined as any assembly, device, or apparatus having an exposed fiber-optic endface therein or supported thereby. Examples of such an interface device include any one or more, or combination of, the following: an alignment sleeve, bulkhead adapter, transceiver, transmitter, detector, or connector.
- a bulkhead adapter is also sometimes referred to as a “mating adapter” or a “backplane adapter”, and their design and configurations vary greatly.
- the embodiments of the present invention will be described either in relation to a fiber-optic connector contained within a bulkhead adapter, or alternately, in relation to a fiber-optic connector that has been removed from the bulkhead adapter.
- the fiber-optic cleaning assembly may be used in any situation where an exposed fiber-optic endface is present.
- the fiber-optic endface cleaning assembly includes a system for applying a pressurized fluid and a cleaning solvent upon a fiber-optic endface.
- the fiber-optic endface cleaning assembly is operable to receive or includes a microscope for illuminating and viewing the endfaces of optical fibers.
- the fiber-optic endface cleaning assembly includes a retractable baffle for aiding in the removal of fluids from the fiber-optic endface.
- FIGS. 1 and 2 illustrate one embodiment of a fiber-optic endface cleaning assembly 100 formed in accordance with the present invention.
- the fiber-optic endface cleaning assembly 100 is capable of interfacing with a fiber-optic bulkhead adapter 200 , such as those typically used in well known fiber-optics data transmission systems, to clean the endfaces of the optical fibers contained therein.
- the fiber-optic endface cleaning assembly 100 includes a housing 110 , an evacuation system 104 , a cleaning solvent delivery system 106 , and a pressurized fluid delivery system 108 .
- the illustrated fiber-optic bulkhead adapter 200 is suitable for use in most well-known fiber-optics data transmission systems.
- the fiber-optic bulkhead adapter 200 typically includes a first pair of female inputs 204 and 206 located on a first end of the bulkhead adapter 200 .
- the female inputs 204 and 206 are aligned with a second pair of female inputs (not shown) facing in an opposite direction relative to the first pair of female inputs 204 and 206 on a second end of the bulkhead adapter 200 .
- the female inputs 204 and 206 are sized and configured to receive fiber-optic connectors, such as those referenced by numerals 214 and 216 therewithin.
- fiber-optic connectors When fiber-optic connectors are received within aligned, opposing female inputs, the optical fibers 217 (one shown) contained within the opposing fiber-optic connectors are received within an alignment sleeve 219 housed within the bulkhead adapter 200 .
- the endfaces of the opposing fiber-optic connectors face one another within the alignment sleeve 219 to permit the passage of optical signals between the optical fibers, as is well known in the art.
- the bulkhead adapter 200 is mounted through a bulkhead (not shown) to allow the connection of the optical fibers through the bulkhead. Therefore, while the fiber-optic connectors received within female inputs 204 and 206 may be easily accessed and removed by a user, access to the fiber-optic connectors 214 and 216 is typically blocked by the bulkhead.
- the bulkhead adapter 200 may allow passage of the optical fibers through the bulkhead of an amplification unit, wherein to “unplug” the fiber-optic connectors 214 and 216 from the bulkhead adapter 200 , one would need to disassemble the amplification unit to access the fiber-optic connectors 214 and 216 , a process that is labor intensive and associated with a high potential for equipment damage.
- the fiber-optic endfaces 202 associated with each connector are exposed to the other side of the bulkhead and are ready to interface with another fiber-optic connector.
- the fiber-optic endface cleaning assembly 100 of the present invention may be inserted into the empty female input 204 or 206 . The fiber-optic endface cleaning assembly 100 may then be used for cleaning the endfaces 202 of each fiber-optic strand 217 terminated within the fiber-optic bulkhead adapter 200 .
- the fiber-optic bulkhead adapter 200 has an alignment sleeve 219 mounted inside each aligned, opposing pairs of female inputs to receive, retain, and align the optical fibers associated with the fiber-optic connectors received by the female inputs.
- the fiber-optic connectors 214 and 216 include a ferrule 218 that houses the optical fiber 217 therewithin.
- the ferrule 218 serves to protect the optical fiber 217 and align the optical fiber 217 within the bulkhead adapter 200 through engagement of the ferrule 218 with the alignment sleeve 219 .
- the endface 202 of a terminated optical fiber is cut and polished to a high degree of precision for purposes of optimizing signal propagation.
- Each fiber-optic endface 202 is either “flat” (i.e., orthogonal to the optical axis of the fiber) or cut at an angle.
- each fiber-optic endface 202 is cut at an angle of 8° from vertical (plus or minus 0.1°) to reduce signal degradation caused by reflection.
- bulkhead adapters 200 are duplex in design, such as shown in FIGS. 1 and 2 allowing for a send and receive channel within a single housing. It should be apparent to one skilled in the art, however, that simplex bulkhead adapters are also quite common and suitable for use in conjunction with the present invention, as well as multiplexes exceeding two.
- the bulkhead adapter 200 may include a split housing 208 , female inputs 204 and 206 at each end for receiving fiber-optic connectors, such as those referenced by numerals 214 and 216 , therewithin.
- the split housing 208 is generally an elongate hollow block structure formed by joining a first housing half 210 to a second housing half 212 along a pair of opposing mating flanges 220 and 222 . Mounted within is the alignment sleeve 219 into which the ferrule 218 , and optical fiber 217 are retained and aligned.
- the fiber-optic endface cleaning assembly 100 includes the housing 110 , the evacuation system 104 , the cleaning solvent delivery system 106 , and the pressurized fluid delivery system 108 .
- the housing 110 is comprised of an interface portion 116 coupled to or integrally formed with a tubing receiving portion 118 .
- the interface portion 116 is a hollow elongate block structure having outer dimensions substantially similar to the inner dimensions of the female inputs 204 and 206 of the fiber-optic bulkhead adapter 200 to allow the insertion of the interface portion 116 therein.
- the interface portion 116 is configured to orient the components of the cleaning solvent delivery system 106 and the pressurized fluid delivery system 108 contained within the interface portion 116 so that any fluid discharged therefrom will properly impinge the fiber-optic endfaces 202 , as will be discussed in further detail below.
- the tubing receiving portion 118 Joined to the interface portion 116 is the tubing receiving portion 118 .
- the evacuation passageway 120 , cleaning solvent tubing 122 , and pressurized fluid tubing 124 pass through the tubing receiving portion 118 .
- the tubing receiving portion 118 is a triangular block structure, preferably solid in construction with exception of the tubing passing therethrough.
- the evacuation system 104 is comprised of the evacuation passageway 120 coupled to a vacuum pump (not shown) by well known flexible tubing (not shown.)
- the vacuum pump may be any well known pump that has sufficient capacity to maintain a negative pressure within the alignment sleeve 219 during cleaning, despite the injection of a pressurized fluid therein.
- a low level of vacuum is applied to mitigate the entrance of contaminants exterior of the connector through infiltrating cracks or other openings in the connector.
- One such vacuum pump suitable for use with the present invention is a single stage venturi pump, Model No. AVR046H, manufactured by Air-Vac, located in Seymour, Conn. The pump is capable of producing vacuum flow rates up to 118 ml/sec.
- the passageway 120 passes through the tubing receiving portion 118 of the housing 110 at an angle relative to the horizontally oriented interface portion 116 of the housing 110 .
- the evacuation passageway 120 is defined by the inner walls of the interface portion 116 of the housing 110 .
- the inner diameter of the evacuation passageway 120 within the interface portion 116 is equal to the outer dimensions of a protective housing 226 that encompasses the alignment sleeve 219 and related fiber-optic endfaces 202 , although any diameter that allows adequate volume flow is acceptable.
- the pressurized fluid delivery system 108 is comprised of a fluid pressurization unit (not shown), the pressurized fluid tubing 124 , and a pressurized fluid nozzle 130 .
- the fluid pressurization unit delivers a pressurized fluid via flexible tubing (not shown) to the pressurized fluid tubing 124 for discharge from the pressurized fluid nozzle 130 .
- the fluid pressurization unit may be any well known pump or other source that has a sufficient capacity to maintain sufficient flow under sufficient pressure during cleaning.
- a pressurized fluid is delivered within a range of 15 psi to substantially greater values, with a preferred value of 100 psi, for three seconds at a flow rate of 112 ml/sec.
- the pressurized fluid is a pressurized gas provided by selectively releasing pressurized nitrogen from well known commercially available pressurized nitrogen bottles.
- the fluid is a pressurized gas such as dry filtered air provided by a well known compressor or pump.
- the pressurized fluid is described as either nitrogen or air, it should be apparent to one skilled in the art that other fluids are suitable for use with the present invention, such as liquids and fluids with entrained solid particles.
- the term “pressurized gas” includes gaseous compounds that may have small amounts of liquids contained therein, such as air having a humidity other than zero.
- the pressurized fluid tubing 124 terminates in a pressurized fluid nozzle 130 .
- the pressurized fluid nozzle 130 is made from any suitable rigid material, such as stainless steel hypodermic needle tubing. In the illustrated embodiment, the nozzle is comprised of extra thin wall, 26-gauge hypodermic needle tubing having an outside diameter of 0.018 inches and an inside diameter of 0.014 inches.
- the pressurized fluid nozzle 130 includes a pressurized fluid discharge port or nozzle tip 112 at the distal end of the pressurized fluid nozzle 130 .
- the pressurized fluid is preferably filtered through a well known filter arrangement, one such suitable filter arrangement being a reusable syringe filter housing utilizing a fine porosity, medium-fast flow rate, 1.0 ⁇ m size particle retention, 13 mm glass fiber membrane, Model No. 66073, manufactured by Pall Gelman Laboratory, located in Ann Arbor, Mich.
- the cleaning solvent delivery system 106 is comprised of cleaning solvent tubing 122 coupled to a cleaning solvent storage source (not shown).
- the cleaning solvent tubing 122 is coupled in fluid communication with a solvent storage source or delivery system (not shown) via flexible tubing (not shown).
- the cleaning solvent tubing 122 terminates in a nozzle 126 having a discharge port or nozzle tip 114 at the distal end of the nozzle 126 for delivery of the pressurized gas and cleaning solvent upon the fiber-optic endface 202 .
- the cleaning solvent tubing 122 passes in line with the centerline of interface portion 118 through both the tubing receiving portion 118 and the interface portion 116 of the housing 110 .
- the cleaning solvent tubing 122 may be made from any suitable rigid material, such as stainless steel hypodermic needle tubing.
- the nozzle is comprised of extra thin wall, 20-gauge hypodermic needle tubing having an inside diameter of 0.028 inches. The inside diameter is selected to allow the pressurized fluid tubing 124 to pass therethrough and sufficiently oversized to result in the formation of an annulus 117 between the outer surface of the pressurized fluid tubing 124 and the inner surface of the cleaning solvent tubing 122 .
- a venturi effect caused by the passage of pressurized fluid through the pressurized fluid nozzle 130 draws cleaning solvent from the cleaning solvent storage source (not shown), through flexible tubing connecting the cleaning solvent storage source to the cleaning solvent tubing 122 , and through the annulus 117 for eventual discharge from the nozzle tip 114 .
- the pressurized fluid tubing 124 is depicted running concentrically within the cleaning solvent tubing 122 , it should be apparent to one skilled in the art that other configurations are suitable for use with the present invention.
- the cleaning solvent tubing 122 may run within the pressurized fluid tubing 124 .
- the cleaning solvent tubing 122 and the pressurized fluid tubing 124 may be separate and distinct units directed at the endface and/or directed to discharge into the flow path of the other, as should be apparent to one skilled in the art.
- the cleaning solvent may be a gas, liquid, solid or a combination thereof.
- the cleaning solvent if a liquid, has a flashpoint above 50 degrees Celsius.
- the cleaning solvent may be heated to increase the efficiency of the cleaning solvent.
- One suitable cleaning solvent is a hydrocarbon and terpene blend solvent, manufactured by American Polywater Corporation, located in Stillwater, Minn., sold under the trademark HPTM, product number HPV-16LF.
- the hydrocarbon and terpene blend is comprised of a medium aliphatic petroleum solvent and a monocyclic terpene.
- the cleaning solvent is a cyanide gas, capable of dissolving some plastics.
- the cleaning solvent is a liquid with soft suspended solids therein.
- the cleaning solvent is delivered by means of a venturi effect caused by the passing of the pressurized fluid through the pressurized fluid nozzle 130 .
- the cleaning solvent is delivered by a pump.
- One such suitable pump is a solenoid operated diaphragm pump, manufactured by Clark, located in Hudson, Mass., Model No. DMS 035. The pump is capable of providing a fluid at 5 psi at a flow rate of 160 ml/min.
- the cleaning solvent discharge port or nozzle tip 114 is preferably located approximately 0.025 inches to 0.200 inches from the endface. However, it should be apparent to one skilled in the art that other distances are appropriate for use with the present invention. It should also be apparent to one skilled in the art that the spacing of the nozzle tip 114 from the endface affects the back pressure and the effectiveness of the cleaning ability of the present invention. More specifically, if the nozzle tip 114 is placed too close to the endface, back pressures escalate, decreasing the effectiveness of the cleaning operation.
- the energy of the jet is dissipated prior to impacting the endface 202 , thereby significantly reducing the cleaning effectiveness of the apparatus.
- a spacing of 0.05 inches is preferred.
- the cleaning solvent is also preferably filtered through a well known filter arrangement, one such suitable filter arrangement being a reusable syringe filter housing utilizing a fine porosity, medium-fast flow rate, 1.0 ⁇ m size particle retention, 13 mm glass fiber membrane, Model No. 66073, manufactured by Pall Gelman Laboratory, located in Ann Arbor, Mich.
- a fiber-optic connector is removed from the female input 204 and the interface portion 116 of the cleaning assembly 100 is inserted therewithin.
- the cleaning process is then initiated by pressing a button or similar actuator (not shown). Dry, filtered air at 100 psi is applied at a rate of 112 ml/sec in 3-second bursts through the pressurized fluid tubing 124 .
- a cleaning solvent comprised of a liquid hydrocarbon and terpene solvent mixture is drawn through the cleaning solvent delivery tubing 122 in approximately the first 100 milliseconds by a venturi effect created by the flow of filtered air through the pressurized fluid nozzle 130 .
- the pressurized air mixes with the cleaning solvent, thereby creating an aerosol mist of cleaning solvent entrained in a high-speed gas jet.
- the aerosol mist of cleaning solvent and pressurized gas is discharged through the discharge port 114 of the cleaning solvent nozzle 126 .
- the discharge port 114 is located approximately 0.025 inches to 0.200 inches from the endface with the preferred distance being 0.05 inches.
- the aerosol mist of cleaning solvent and pressurized gas impinges the endface 202 , removing any contaminants located thereupon. Vacuum is applied throughout the entire procedure and for a period thereafter through the evacuation passageway 120 at a rate of approximately 118 ml/sec, thus removing any spent pressurized gas and cleaning solvent, and maintaining the inner portions of the connector 200 slightly below atmospheric pressure.
- a drying phase comprising the application of pressurized gas and evacuation vacuum upon the endface, may be initiated following the cleaning evolution to aid in the removal of any residual cleaning solvent that remains within the alignment sleeve 219 .
- specific quantities such as pressures, flow rates, durations, and fluids are disclosed above, it should be apparent to one skilled in the art that other quantities and fluids are suitable for use with the present invention, and are therefore within the scope of the invention.
- the fiber-optic endface cleaning assembly 300 is capable of interfacing with a fiber-optic connector 400 , such as the fiber-optic connectors 214 and 216 shown in FIGS. 1 and 2 , to clean the endfaces of the optical fiber(s) contained therewithin.
- the fiber-optic endface cleaning assembly 300 of this embodiment is similar to the embodiment described above and depicted in FIGS.
- the fiber-optic endface cleaning assembly 300 is designed to provide a pathway 330 through which an optical imaging axis of a microscope 500 may extend for viewing the endface 402 of the connector ferrule 418 contained within the fiber-optic connector 400 , and also with the exception that the cleaning is performed once the connector 400 is removed from the bulkhead adapter. Since the optical features of the microscope 500 and the general knowledge of the optical nature of the microscope 500 are well known, these aspects of the microscope 500 will not be further discussed herein.
- the fiber-optic endface cleaning assembly 300 includes an evacuation system 304 , a cleaning solvent delivery system 306 , and a pressurized fluid delivery system 308 , all of which are substantially similar to those described for the above embodiment.
- an active evacuation system 304 is depicted in this embodiment substantially similar to the system described for the above embodiment, it should be apparent to one skilled in the art that the method of removing debris in this configuration may be done in either an active (vacuum) or passive (vent) manner.
- the evacuation system 304 may alternately accomplish the removal of debris through simply passively venting any fluids discharged upon the endface through a suitably designed evacuation system, as opposed to actively applying a vacuum in proximity to the endface as was disclosed for the previous embodiments.
- the housing 310 of the cleaning assembly 300 is formed by joining or integrally forming a hollow cone-shaped section 332 to an axially aligned hollow cylindrically shaped section 334 .
- the cone shaped section 332 includes an interface portion 316 .
- the interface portion 316 is a hollow elongate block structure having inner dimensions substantially similar to the outer dimensions of the ferrule 418 of the fiber-optic connector 400 to allow the insertion of the ferrule 418 therein. It should be apparent to one skilled in the art that a similar configuration wherein the interface portion 316 is designed to interface with inner dimensions of a female input of a bulkhead adapter is a clear extension of this embodiment.
- the interface portion 316 is configured to orient the components of the cleaning solvent delivery system 306 and the pressurized fluid delivery system 308 contained within the cone-shaped section 332 so that any fluid discharged therefrom will properly impinge the fiber-optic endface 402 , as will be discussed in further detail below.
- the cone-shaped section 332 allows the placement of the components of the cleaning solvent delivery system 306 , pressurized fluid delivery system 308 , and evacuation system 304 out of the optical pathway 330 of the microscope 500 .
- the cylindrically shaped section 334 Joined to the cone-shaped section 332 is the cylindrically shaped section 334 .
- the evacuation passageway 320 , cleaning solvent tubing 322 , and pressurized fluid tubing 324 pass through the cylindrically shaped section 334 .
- the cylindrically shaped section 334 further includes a receiving aperture 336 for receiving a head portion 502 of the microscope 500 therewithin.
- the receiving aperture 336 serves to align the optical imaging axis of the microscope 500 through the optical pathway 330 that passes through the housing 310 and upon the endface 402 of the fiber-optic strand, allowing the user to view the fiber-optic endface 402 .
- the microscope 500 is inserted after the completion of a cleaning cycle to inspect and view the endfaces 402 of the optical fiber to verify the effectiveness of the cleaning cycle.
- the microscope 500 is a separate unit operable to removably engage the cleaning assembly 300 , it should be apparent to one skilled in the art that the microscope 500 may be integrally formed or otherwise permanently affixed to the cleaning assembly 300 without departing from the scope of the invention. Within this alternate embodiment, the user would be able to view the endface during the cleaning cycle or shortly thereafter without removal of the cleaning assembly 300 from the fiber-optic connector 400 .
- FIGS. 3 and 4 The operation of the alternate embodiment of the cleaning assembly 300 depicted in FIGS. 3 and 4 is substantially similar in operation to the cleaning assembly embodiment described above and depicted in FIGS. 1 and 2 with exception of the use of the microscope 500 and the orientation of the evacuation system 304 , the cleaning solvent delivery system 306 and the pressurized fluid delivery system 308 . Inasmuch as the operation is substantially similar to that described above, it will not be further discussed herein.
- FIG. 5 a second alternate embodiment of a fiber-optic endface cleaning assembly 600 formed in accordance with the present invention will now be described.
- the fiber-optic endface cleaning assembly 600 is capable of interfacing with an interface device, such as those typically used in fiber-optic data transmission equipment and depicted in FIGS. 1 and 2 , to clean the endfaces of the optical fibers contained therewithin.
- the fiber-optic endface cleaning assembly 600 of this invention is similar to the embodiment described above and depicted in FIGS.
- the fiber-optic endface cleaning assembly 600 further includes a microscope 700 integrally formed with the fiber-optic endface cleaning assembly 600 to allow the optical imaging of the fiber-optic endfaces of the fiber-optic strands contained within a connector. Since the optical features of a microscope 700 and the general knowledge of the optical nature of a microscope are well known, these aspects of the fiber-optic endface cleaning assembly 600 will not be further discussed herein.
- the microscope 700 is located on a first end of a housing 610 of the fiber-optic endface cleaning assembly 600 , opposite a cleaning apparatus interface portion 634 located on a second end.
- the cleaning apparatus interface portion 634 includes an evacuation system, a cleaning solvent delivery system, and a pressurized fluid delivery system, all of which are substantially similar to those described for the above two embodiments and therefore will not discuss further herein.
- a user selectively inserts either the first or second end within an interface device depending on whether cleaning or inspecting operations are desired. For example, if the user desires to clean a fiber-optic endface contained within the bulkhead adapter, the cleaning apparatus interface portion 634 is inserted within the bulkhead adapter, and an actuator button 636 is depressed to initiate cleaning operations. Upon completion of the cleaning operations, the user would subsequently remove the fiber-optic cleaning assembly 600 and rotate the cleaning assembly 600 end-to-end, followed by the insertion of an interface portion 702 of the microscope 700 within the bulkhead adapter.
- the interface portion 702 is designed to interface with a bulkhead adapter such that the optical lens of the microscope may focus upon the fiber-optic endfaces contained within the fiber-optic bulkhead adapter.
- the fiber-optic endface cleaning assembly 800 is capable of interfacing with an interface device, such as a fiber-optic bulkhead adapter 900 , to clean the endfaces of the optical fibers contained therewithin.
- the fiber-optic endface cleaning assembly 800 of this embodiment is similar in operation and structure to the embodiment described above and depicted in FIGS. 1-2 , with the exception that the fiber-optic endface cleaning assembly 800 further includes a retractable baffle 802 .
- the baffle 802 aids in the removal of cleaning solvent remaining within an alignment sleeve 822 during a cleaning evolution.
- the fiber-optic endface 902 has a chamfer 904 located around the periphery of the fiber-optic endface 902 . It has been found that during cleaning operations, cleaning solvent and/or other fluids may collect in the chamfer 904 .
- the chamfer 904 acts as a protected cavity, partially shielding the cleaning solvent contained therewithin from the pressurized fluid and/or applied vacuum. Thus, while the pressurized fluid is flowing, the fiber-optic endface 902 remains in a clean and dry state.
- the cleaning solvent present in the chamfer 904 and any contaminants contained therein flow back onto the fiber-optic endface 902 , recontaminating the endface.
- the retractable baffle 802 of the illustrated embodiment aids in the removal of cleaning solvent from the chamfer by concentrating the flow of the pressurized fluid into the chamfer 904 .
- the pressurized fluid more directly impinges the cleaning solvents contained in the chamfer 904 , thereby enhancing cleaning solvent removal.
- the fiber-optic endface cleaning assembly 800 includes a housing 810 subdivided into three distinct sections: an interface section 844 , a middle section 846 , and a baffle actuator section 848 .
- the interface section 844 and the baffle actuator section 848 are joined to the middle section 846 by well known fasteners 840 and 842 .
- Coupled to the interface section 844 is an interface tip 816 .
- the interface tip 816 is a hollow, sometimes cylindrical-shaped structure having outer dimensions substantially similar to the inner dimensions of an entry female input 906 of a fiber-optic bulkhead adapter 900 (see FIG. 9 ) to allow the insertion of the interface tip 816 therein.
- the interface tip 816 is configured to orient the components of the cleaning solvent delivery system and the pressurized fluid delivery system contained within the fiber-optic endface cleaning assembly 800 so that any fluid discharged therefrom will properly impinge the fiber-optic endfaces, as will be discussed in further detail below. Further, the interface tip 816 or some portion of the interface portion 844 is preferably configured to allow the interface tip 816 or at least a portion of the interface portion 844 to be removed from the cleaning assembly 800 . Configured as such, the interface tip 816 or some portion of the interface portion 844 may be easily removed and exchanged for a different style of interface tip 816 or interface portion 844 to accommodate a wide variety of interface devices.
- interface tip 816 may be selectively removed from an interface tip receiving port 815 in the interface portion 844 and replaced with an alternately shaped interface tip 817 , thereby allowing the cleaning assembly 800 to interface with a fiber-optic endface associated with a different shaped interface device.
- fiber-optic endface cleaning assembly 800 may be selectively configured to be compatible with nearly any interface device.
- an actuator button 834 and an access port 838 Disposed on the middle section 846 is an actuator button 834 and an access port 838 .
- the access port 838 an oblong aperture in the housing 810 , permits access to a set screw 862 disposed within the fiber-optic endface cleaning assembly 800 , the purpose of which will be described in further detail below. Further, the access port 838 allows the position of a baffle 802 to be visually confirmed. Further still, the access port 838 allows the manual activation of the baffle between an extended position and a retracted position.
- the baffle actuator section 848 houses a baffle actuator 870 for selectively positioning a baffle between extended and retracted positions, as will be described in further detail below.
- a needle valve adjustment screw 836 for fine tuning the operation of the baffle actuator 870 is disposed on the outer surface of the baffle actuator section 848 .
- Also disposed on the outer surface of the baffle actuator section 848 is an access port 850 .
- the access port 850 allows the passage of an electrical wiring umbilical cord (not shown for clarity) for delivery of electrical control signals and power to select internal components of the fiber-optic endface cleaning assembly 800 , such as the baffle actuator 870 .
- the access port 850 allows the passage of a section of pressurized fluid delivery tubing and a section of cleaning solvent delivery tubing (not shown for clarity), substantially similar in operation and structure as the solvent tubing 122 and the pressurized fluid tubing 124 shown in FIG. 1 , into the fiber-optic endface cleaning assembly 800 .
- the middle section 846 is comprised of a baffle return spring chamber 854 and a solvent delivery valve chamber 860 .
- the baffle return spring chamber 854 is cylindrical in shape and runs longitudinally through the fiber-optic endface cleaning assembly 800 .
- the baffle return spring chamber 854 houses a baffle return spring 852 .
- the baffle return spring 852 biases the baffle 802 in a retracted position, as shown in FIG. 8 .
- the baffle return spring 852 biases the baffle 802 by exerting a spring force upon a rod clamp 864 .
- the rod clamp 864 is reciprocatingly disposed within the baffle return spring chamber 854 and has a spring seat 866 that engages a distal end of the baffle return spring 852 and an actuator seat 868 that communicates with a baffle actuator 870 .
- the rod clamp 864 is coupled to an actuating rod 872 through the use of a well known set screw 862 .
- a solvent delivery valve chamber 860 Located adjacent to and in a parallel orientation with the baffle return spring chamber 854 is a solvent delivery valve chamber 860 .
- the solvent delivery valve chamber 860 houses a solvent delivery valve return spring 858 and a solvent delivery valve 856 .
- the solvent delivery valve return spring 858 biases the solvent delivery valve 856 in a closed position until actuated by fluid pressure from solvent port 898 into an open position, thereby allowing delivery of a cleaning solvent to the fiber-optic endface 902 .
- the solvent delivery valve acts as a check valve.
- the valve configuration herein described may be replaced by any number of actuator/valve combinations well known in the art, such as electromechanical, pneumatic, hydraulic, and mechanical actuators.
- the baffle actuator section 848 includes an actuator chamber 876 .
- the actuator chamber 876 runs longitudinally through the baffle actuator section 848 and is sized to house the baffle actuator 870 .
- the baffle actuator 870 may be selected from any number of well known actuators in the art such as electromechanical, pneumatic, hydraulic, or mechanical actuators.
- the baffle actuator 870 may be selectively toggled between an extended position, as shown in FIG. 10 , and a retracted position, as shown in FIG. 8 .
- An O-ring 878 is disposed at the distal end of the actuator chamber 876 at the interface between the middle section 846 and the baffle actuator section 848 .
- the O-ring 878 provides a pressure resistant seal to isolate the air volume within the actuator chamber 876 .
- the needle valve adjustment screw 836 is disposed on the baffle actuator section 848 .
- the needle valve adjustment screw 836 is manipulated during manufacture to selectively adjust the operating parameters of the baffle actuator 870 , such as the actuation rate of the baffle 802 .
- the interface section 844 is comprised of a fiber-optic endface receiving chamber 880 sized to receive a protective housing 926 that partially encompasses the fiber-optic endface 902 and alignment sleeve 822 .
- a well known O-ring 884 Disposed in an annular channel formed on the inner wall of the fiber-optic endface receiving chamber 880 is a well known O-ring 884 .
- the O-ring 884 acts as a seal between the protective housing 926 of the alignment sleeve 822 and the fiber-optic endface receiving chamber 880 , thereby impeding the passage of fluids between the protective housing 926 and the inner surface of the fiber-optic endface receiving chamber 880 . It should be apparent to one skilled in the art that this seal may alternately be formed by any number of methods well known in the art, or alternately, may be omitted if ambient contamination is not a consideration.
- the baffle 802 disposed within the fiber-optic endface receiving chamber 880 is the baffle 802 .
- the baffle 802 is comprised of a base portion 886 integrally formed to a concentrically oriented hollow cylinder 888 .
- the base portion 886 is formed from four legs 812 disposed radially outward from the cylinder 888 so that each leg 812 is spaced 90° from the closest adjacent legs 812 .
- relief gaps 814 are formed between adjacent legs 812 for permitting the passage of evacuation gases thereby.
- the base portion 886 of the baffle 902 is adapted to receive an actuating rod 872 therein.
- the baffle 802 Upon actuation of the actuating rod 872 by the baffle actuator 870 , the baffle 802 is reciprocally driven within the fiber-optic endface receiving chamber 880 through the pressure exerted by the actuating rod 872 upon the baffle 802 via the base portion 886 .
- the cylinder 888 has a flared distal end 890 , having guiding members, such as five longitudinally aligned guiding ribs 892 equally spaced around the flared distal end 890 .
- the guiding ribs 892 aid in the alignment of the baffle 802 within the alignment sleeve 822 , which partially encloses the endface 902 , while still allowing the flow of fluids for removal from the connector 900 between adjacent guiding ribs 892 .
- the illustrated embodiment is shown with five guiding ribs 892 , it should be apparent to one skilled in the art that other quantities of guiding ribs 892 are suitable for use with the present invention, such as three, four, or six for example.
- a pressurized fluid nozzle 896 and a cleaning solvent nozzle 894 Passing through a hollow cylindrical passage 826 in the baffle 802 is a pressurized fluid nozzle 896 and a cleaning solvent nozzle 894 .
- the pressurized fluid nozzle 896 and the cleaning solvent nozzle 894 are substantially similar in construction and operation as that of the pressurized fluid nozzle 130 and cleaning solvent nozzle 126 depicted in the FIG. 2 , and therefore will not be discussed in further detail here.
- a cleaning solvent passageway 899 In fluid communication with the cleaning solvent nozzle 894 is a cleaning solvent passageway 899 .
- the cleaning solvent passageway 899 is in fluid communication with the solvent delivery valve 856 , a solvent port vent 832 , and also with solvent delivery tubing, not shown but similar to the solvent delivery tubing 122 shown in FIG. 1 .
- the solvent port vent 832 is open to the atmosphere to allow atmospheric air into the cleaning assembly 800 during solvent flow. Moreover, the solvent port vent 832 aids in solvent flow by impeding vapor lock formation by the introduction of near atmospheric pressure air into the solvent flow. Air entering the solvent port vent 832 during solvent flow is filtered via a filter 830 .
- the filter 830 is a 1 micron rated glass fiber filter, although it should be apparent to one skilled in the art that other filters are suitable for use in the present invention, and further, that the filter may be eliminated if ambient contamination is not a consideration.
- the solvent delivery valve 856 is situated in the cleaning solvent passageway 899 , between the solvent port vent 832 and the cleaning solvent nozzle 894 .
- the solvent delivery valve 856 selectively controls the passage of a solvent to the cleaning solvent nozzle 894 .
- the solvent delivery valve 856 is actuated between a flow and no flow condition by fluid pressure applied to solvent port 898 during cleaning.
- the operation of the alternate embodiment of the cleaning assembly 800 depicted in FIGS. 6-11 is substantially similar in operation to the cleaning assembly embodiment described above and depicted in FIGS. 1 and 2 with exception of the use of the baffle 802 .
- the baffle 802 is actuatable between the retracted position shown in FIG. 8 and extended position shown in FIG. 9 . By selectively positioning the baffle 802 as such, the amount of residual cleaning solvent remaining in the connector 900 after a cleaning evolution is substantially reduced.
- the fiber-optic endface 902 has a chamfer 904 located around the periphery of the fiber-optic endface 902 as discussed above.
- the retractable baffle 802 of the illustrated embodiment aids in concentrating the flow of the pressurized fluid into the chamfer 904 .
- the pressurized fluid is directed in a flow path 824 which more directly impinges the cleaning solvents contained in the chamfer 904 , thereby enhancing cleaning solvent removal during a drying/solvent removal phase of the cleaning evolution, when the pressurized fluid, absent cleaning solvent, is directed at the endface 902 .
- the baffle 802 may be selectively retracted during the application of the cleaning solvent and pressurized fluid so as to allow the unfettered flow of these fluids during cleaning as shown in FIG. 9 .
- a retractable baffle is shown, it should be apparent to one skilled in the art that the baffle may be rigidly held in an extended position.
- the illustrated embodiment depicts a baffle of a certain shape and construction, it should be apparent to one skilled in the art that the baffle may take many various forms.
- the baffle may be formed by flaring the end of the cleaning solvent nozzle 894 outwards. Therefore it should be apparent to one skilled in the art that the baffle is defined by its ability to enhance the flow of fluids within the chamfer 904 and across the endface 902 , and is therefore not limited to the illustrated form shown in FIGS. 8-12 .
- an alternate treatment of the problem of re-contamination of the fiber endface 902 by flow of the solvent back onto the cleaned surface is to increase the surface tension of the retained fluid.
- the surface tension may be increased by adding a chemical agent, such as water, during a second fluid application stage, which would tend to minimize the tendency of the retained fluid to wick across the cleaned surface recontaminating the surface.
- the chemical agent may be delivered upon the endface by any suitable means.
- the chemical agent may be applied in the same manner as the solvent by simply toggling the solvent delivery tubing between fluid communication with a solvent source and fluid communication with a chemical agent source, as should be apparent to one skilled in the art.
- a third nozzle may be disposed in the housing for discharging the chemical agent directly upon the endface, or for dispensing the chemical agent into the pressurized fluid flow for delivery upon the endface.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
A cleaning apparatus (100) for cleaning an endface (202) of an optical fiber contained within an interface device (200) is provided. The cleaning apparatus includes a housing (110) having an interface portion (116) adapted to be received by the interface device. The cleaning apparatus also includes at least a first nozzle (126) operable to deliver a pressurized gas and a solvent upon the endface to aid in the removal of contaminants on the endface. A method for cleaning an endface of an optical fiber contained within an interface device is also provided. The method comprises the steps of inserting an interface portion within the interface device so as to position a nozzle in proximity to the endface of the interface device. The method further comprises the steps of directing a pressurized gas through the nozzle toward the endface and intermixing a solvent with the pressurized gas.
Description
- This application is a continuation of prior U.S. application Ser. No. 10/961,838, filed Oct. 8, 2004, which is a continuation of prior U.S. application Ser. No. 10/199,925, filed Jul. 18, 2002, priority from the filing date of which is hereby claimed under 35 U.S.C. § 120.
- The present invention relates generally to fiber-optic cleaning systems and, more specifically, to cleaning systems for cleaning fiber-optic endfaces.
- The proliferation of fiber-optic communications has led to its widespread implementation and use in industry, especially in the fields of telecommunications and data communications. It is well known in the industry that fiber-optic endfaces must be kept clean and undamaged within fiber-optic communication systems. A fiber-optic endface is the cross-sectional surface that is created when an optical fiber is cut for termination. The fiber-optic endfaces are typically supported by a connector that couples to a bulkhead adapter (also sometimes referred to as a backplane adapter or a mating adapter) having an alignment sleeve for receiving the fiber-optic endface.
- Failure to keep an endface clean and undamaged results in signal loss because of scattering effects at the endface of the optical fiber. As bandwidths increase, particularly with the rise of wavelength division multiplexing (WDM) technology, the need for cleanliness at the fiber-optic endface is even more important. Further, since fiber-optic communication systems handle heavy bandwidth traffic, the cleanliness at the fiber-optic endface is particularly important because the laser power driving the fiber-optic communication signals is typically higher. When a high-powered laser strikes a small piece of debris on the fiber-optic endface, the debris burns, leaving a film of soot on the fiber-optic endface that degrades communication signals. As a result, the “dirty” fiber-optic endface at the interconnect point must be taken out of service and repaired.
- While cleanliness of the fibers is of utmost importance, access to the fiber endface is often very limited. Most fiber-optic interconnects are arranged in a male-to-male configuration and utilize a female-to-female configured alignment sleeve for coupling. Thus, when the user-side connector is removed, one endface is readily accessible, while the other resides at the bottom of a deep narrow hole. This makes cleaning very difficult. Further, backplane fiber-optic interconnects are notoriously difficult to access for maintenance, cleaning, and repair. Whether multi-fiber or single-fiber (simplex), these fiber-optic connectors are typically located near the back of a narrow “card slot”. A typical slot is 1.5 inches wide and 12 inches deep, and rather difficult to access for service. Most current cleaning techniques require the user to disassemble the backplane to gain access to the connector for cleaning.
- To overcome the access problem, some cleaning system manufacturers have designed cleaning systems that are insertable within the alignment sleeve for cleaning the fiber-optic endfaces without necessitating the removal of the connector from the bulkhead adapter. However, the methods used by these systems are disadvantageous for several reasons. For instance, most of these methods utilize contact cleaning methods, wherein the endface is directly contacted by a non-fluid material, such as a cotton swab or a physical structure coated with an adhesive. Because the fiber-optic endface is directly contacted by a non-fluid material, these systems contain the inherent risk of adding contamination to the fiber-optic endface as a portion of the non-fluid contact material may remain on the fiber-optic endface. Further, the physical contact may result in the introduction of defects upon the fiber-optic endface, such as scratches on the fiber-optic endface through “brushing” of the media across the fiber-optic endface or the “dragging” of a contaminate particle across the endface. Thus, it is widely understood that contact cleaning methods are one of the leading causes of endface scratching, which often results in signal degradation.
- Other cleaning manufacturers have designed cleaning systems that involve injecting a liquid within the bulkhead adapter for cleaning the fiber-optic endfaces without necessitating the removal of the connector from the backplane. However, current methods of this nature are also disadvantageous for several reasons. For instance, a typical bulkhead adapter is not watertight, therefore significant quantities of the liquid, such as water, are leaked from the bulkhead adapter, thereby presenting a potential or a perceived potential for damage to the expensive communication equipment located in proximity to the connector. Further, these systems do not provide an immediate evacuation system for the rapid removal of the liquid injected within the bulkhead adapter, thus increasing the potential for damage to the surrounding communications equipment and increasing the potential for residuals of the fluid to remain on the endface, thus contaminating the endface.
- Moreover, it has been found that during cleaning operations, cleaning solvents may collect in a chamfer formed in the fiber-optic endface. The chamfer is located around the periphery of the fiber-optic endface. The chamfer acts as a protected cavity, which ultimately forms a reservoir that retains solvent within the alignment sleeve. Thus, after the cleaning process is complete, the cleaning solvent and any contaminants contained in the chamfer often flow back onto the fiber-optic endface, recontaminating the endface.
- Further, existing assemblies do not incorporate an inspection microscope within the cleaning assembly or a means to receive one. Thus, the cycle time to clean and inspect a fiber-optic endface is increased since the operator is forced to swap between the cleaning assembly and an inspection microscope. Further still, the potential for the introduction of contaminants or damage to the fiber endface due to the repetitive coupling and decoupling of the cleaning assembly and inspection microscope during the cleaning process is also substantially increased. In other aspects, a manufacturer must design/develop separate tooling to produce and inventory two separate units, a cleaning assembly and a microscope, resulting in increased costs relative to a combined unit.
- Therefore, a need exists for a cleaning assembly that is effective in cleaning fiber-optic endfaces while exhibiting a reduced potential of contamination introduction and/or damage to the fiber-optic endface being cleaned and does not expose nearby components to rogue fluids. Further, there exists a need for a cleaning assembly that is operable to receive or contains a microscope therewithin to reduce the cleaning process cycle time and risk of fiber-optic endface contamination.
- In accordance with one embodiment of the present invention, a cleaning apparatus for cleaning an endface of an optical fiber contained within an interface device is provided. The cleaning apparatus includes a housing having an interface portion adapted to be received by the interface device and a first nozzle at least partially disposed within the housing. The first nozzle is operable to deliver a pressurized gas and a solvent upon the endface of the optical fiber when the interface portion of the housing is received by the interface device to aid in the removal of contaminants on the endface.
- In accordance with further aspects of the invention, the cleaning apparatus further includes an evacuation passageway through the housing for removing the pressurized gas and the solvent released from the first nozzle. Preferably, the solvent is a liquid comprised of a hydrocarbon and a terpene mixture. In accordance with still further yet aspects of the invention, the cleaning apparatus may also include a second nozzle disposed at least partially within the housing and operable to dispense the pressurized gas.
- In accordance with other aspects of the present invention, the cleaning apparatus further includes a microscope-receiving aperture, wherein the microscope-receiving aperture is operable to selectively receive a microscope for inspecting the endface of the optical fiber. Hence, the cleaning apparatus may also include a microscope attached to the housing via the microscope-receiving aperture, wherein the microscope is adaptable to view the endface.
- In accordance with additional aspects of the present invention, the cleaning apparatus further comprises a baffle disposed within the housing and positioned in proximity to the endface when the interface portion of the housing is received by the interface device, the baffle adapted to direct the pressurized gas upon the endface. Further, the baffle may be actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
- In accordance with still additional aspects of the present invention, a method for cleaning an endface of an optical fiber contained within an interface device is provided. The steps of the method are comprised of inserting an interface portion of a housing of a cleaning apparatus within the interface device so as to position a nozzle at least partially contained within the housing in proximity to the endface of the optical fiber, directing a pressurized gas through the nozzle toward the endface of the optical fiber, and intermixing a solvent with the pressurized gas. The method may also include actuating a baffle disposed within the housing between a first position, wherein the baffle is positioned in proximity to the endface to direct the flow of the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
- Even further, the method may include applying a vacuum to the housing to aid in removal of fluids contained therein. Additional aspects of the method include inspecting the endface of the optical fiber with a microscope having an optical imaging axis that passes through a passageway in the housing while the interface portion of the housing is inserted within the interface device, or removing the interface portion of the housing from the interface device and inserting another portion of the housing containing a microscope within the interface device and inspecting the endface of the optical fiber.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a perspective view of one embodiment of a fiber-optic endface cleaning assembly formed in accordance with the present invention, additionally showing a fiber-optic bulkhead adapter with two connectors coupled thereto, of which the fiber-optic endface cleaning assembly is operable to interface with and clean the endfaces of the fiber-optic cables contained therein; -
FIG. 2 is a planar fragmentary sectional view of the fiber-optic endface cleaning assembly, the bulkhead adapter and fiber-optic connectors depicted inFIG. 1 , wherein the fiber-optic endface cleaning assembly is shown inserted within the bulkhead adapter; -
FIG. 3 is a planar elevation view of an alternate embodiment of a fiber-optic endface cleaning assembly formed in accordance with the present invention, shown interfacing with a fiber-optic connector, wherein a microscope is received within the fiber-optic endface cleaning assembly; -
FIG. 4 is a fragmentary detail view of the head portion of the alternate embodiment of the fiber-optic endface cleaning assembly depicted inFIG. 3 ; -
FIG. 5 is a planar elevation view of another alternate embodiment of a fiber-optic cleaning assembly formed in accordance with the present invention, wherein the fiber-optic cleaning assembly further includes a microscope for inspecting fiber-optic endfaces; -
FIG. 6 is an exploded perspective view of yet another alternate embodiment of a fiber-optic cleaning assembly formed in accordance with the present invention, showing an interface section having one of two interchangeable interface tips selectively attachable thereto; -
FIG. 7 is a perspective view of the alternate embodiment of the fiber-optic cleaning assembly depicted inFIG. 6 , showing a baffle actuator section having a needle valve adjustment screw protruding therefrom; -
FIG. 8 is a side view of the alternate embodiment of the fiber-optic cleaning assembly depicted inFIG. 6 coupled to a fiber-optic bulkhead adapter, with a portion of the fiber-optic cleaning assembly and fiber-optic connector shown in cross-section, revealing a baffle depicted in a retracted position; -
FIG. 9 is a fragmentary cross-sectional view of the alternate embodiment ofFIG. 8 , showing a magnified perspective of the baffle in a retracted position; -
FIG. 10 is a side view of the alternate embodiment of the fiber-optic cleaning assembly depicted inFIG. 6 coupled to a fiber-optic bulkhead adapter, with a portion of the fiber-optic cleaning assembly and fiber-optic connector shown in cross-section, revealing a baffle in an extended position; -
FIG. 11 is a fragmentary cross-sectional view of the alternate embodiment ofFIG. 10 , showing a magnified perspective of the baffle in an extended position; and -
FIG. 12 is a perspective view of the baffle depicted inFIG. 8 . - The present invention is a fiber-optic endface cleaning assembly for cleaning the endface of an optical fiber. While not limited to the following application, the cleaning assembly of the present invention is particularly suitable for cleaning an endface of an optical fiber contained in an interface device, which is defined as any assembly, device, or apparatus having an exposed fiber-optic endface therein or supported thereby. Examples of such an interface device include any one or more, or combination of, the following: an alignment sleeve, bulkhead adapter, transceiver, transmitter, detector, or connector. A bulkhead adapter is also sometimes referred to as a “mating adapter” or a “backplane adapter”, and their design and configurations vary greatly. For illustrative purposes only, the embodiments of the present invention will be described either in relation to a fiber-optic connector contained within a bulkhead adapter, or alternately, in relation to a fiber-optic connector that has been removed from the bulkhead adapter. However, it should be apparent to one skilled in the art that the fiber-optic cleaning assembly may be used in any situation where an exposed fiber-optic endface is present.
- In general, and as will be further described below, the fiber-optic endface cleaning assembly includes a system for applying a pressurized fluid and a cleaning solvent upon a fiber-optic endface. In other embodiments of the present invention, the fiber-optic endface cleaning assembly is operable to receive or includes a microscope for illuminating and viewing the endfaces of optical fibers. In still yet another embodiment of the present invention, the fiber-optic endface cleaning assembly includes a retractable baffle for aiding in the removal of fluids from the fiber-optic endface.
-
FIGS. 1 and 2 illustrate one embodiment of a fiber-opticendface cleaning assembly 100 formed in accordance with the present invention. The fiber-opticendface cleaning assembly 100 is capable of interfacing with a fiber-optic bulkhead adapter 200, such as those typically used in well known fiber-optics data transmission systems, to clean the endfaces of the optical fibers contained therein. The fiber-opticendface cleaning assembly 100 includes ahousing 110, anevacuation system 104, a cleaningsolvent delivery system 106, and a pressurizedfluid delivery system 108. - Inasmuch as the fiber-optic
endface cleaning assembly 100 will be better understood in light of a description of the fiber-optic bulkhead adapter 200 that the cleaningassembly 100 interfaces with, a detailed description of the fiber-optic bulkhead adapter 200 will precede a discussion of the fiber-opticendface cleaning assembly 100. The illustrated fiber-optic bulkhead adapter 200 is suitable for use in most well-known fiber-optics data transmission systems. The fiber-optic bulkhead adapter 200 typically includes a first pair offemale inputs bulkhead adapter 200. Thefemale inputs female inputs bulkhead adapter 200. Thefemale inputs numerals alignment sleeve 219 housed within thebulkhead adapter 200. With the connectors received as described, the endfaces of the opposing fiber-optic connectors face one another within thealignment sleeve 219 to permit the passage of optical signals between the optical fibers, as is well known in the art. - In a typical application, the
bulkhead adapter 200 is mounted through a bulkhead (not shown) to allow the connection of the optical fibers through the bulkhead. Therefore, while the fiber-optic connectors received withinfemale inputs optic connectors bulkhead adapter 200 may allow passage of the optical fibers through the bulkhead of an amplification unit, wherein to “unplug” the fiber-optic connectors bulkhead adapter 200, one would need to disassemble the amplification unit to access the fiber-optic connectors - Once the fiber-
optic connectors bulkhead adapter 200, the fiber-optic endfaces 202 associated with each connector are exposed to the other side of the bulkhead and are ready to interface with another fiber-optic connector. In practice, once a fiber-optic connector is removed from one of thefemale inputs endface cleaning assembly 100 of the present invention may be inserted into the emptyfemale input endface cleaning assembly 100 may then be used for cleaning theendfaces 202 of each fiber-optic strand 217 terminated within the fiber-optic bulkhead adapter 200. - Still referring to
FIGS. 1 and 2 and focusing on the structure of the bulkhead adapter, the fiber-optic bulkhead adapter 200 has analignment sleeve 219 mounted inside each aligned, opposing pairs of female inputs to receive, retain, and align the optical fibers associated with the fiber-optic connectors received by the female inputs. The fiber-optic connectors ferrule 218 that houses theoptical fiber 217 therewithin. Theferrule 218 serves to protect theoptical fiber 217 and align theoptical fiber 217 within thebulkhead adapter 200 through engagement of theferrule 218 with thealignment sleeve 219. - The
endface 202 of a terminated optical fiber is cut and polished to a high degree of precision for purposes of optimizing signal propagation. Each fiber-optic endface 202 is either “flat” (i.e., orthogonal to the optical axis of the fiber) or cut at an angle. Preferably, each fiber-optic endface 202 is cut at an angle of 8° from vertical (plus or minus 0.1°) to reduce signal degradation caused by reflection. -
Many bulkhead adapters 200 are duplex in design, such as shown inFIGS. 1 and 2 allowing for a send and receive channel within a single housing. It should be apparent to one skilled in the art, however, that simplex bulkhead adapters are also quite common and suitable for use in conjunction with the present invention, as well as multiplexes exceeding two. - The
bulkhead adapter 200 may include asplit housing 208,female inputs numerals split housing 208 is generally an elongate hollow block structure formed by joining afirst housing half 210 to asecond housing half 212 along a pair of opposingmating flanges alignment sleeve 219 into which theferrule 218, andoptical fiber 217 are retained and aligned. - In light of the above discussion of the fiber-
optic bulkhead adapter 200, the fiber-opticendface cleaning assembly 100 will now be discussed. As stated above, the fiber-opticendface cleaning assembly 100 includes thehousing 110, theevacuation system 104, the cleaningsolvent delivery system 106, and the pressurizedfluid delivery system 108. Thehousing 110 is comprised of aninterface portion 116 coupled to or integrally formed with atubing receiving portion 118. Theinterface portion 116 is a hollow elongate block structure having outer dimensions substantially similar to the inner dimensions of thefemale inputs optic bulkhead adapter 200 to allow the insertion of theinterface portion 116 therein. Theinterface portion 116 is configured to orient the components of the cleaningsolvent delivery system 106 and the pressurizedfluid delivery system 108 contained within theinterface portion 116 so that any fluid discharged therefrom will properly impinge the fiber-optic endfaces 202, as will be discussed in further detail below. - Joined to the
interface portion 116 is thetubing receiving portion 118. Theevacuation passageway 120, cleaningsolvent tubing 122, and pressurizedfluid tubing 124 pass through thetubing receiving portion 118. Thetubing receiving portion 118 is a triangular block structure, preferably solid in construction with exception of the tubing passing therethrough. - The
evacuation system 104 is comprised of theevacuation passageway 120 coupled to a vacuum pump (not shown) by well known flexible tubing (not shown.) The vacuum pump may be any well known pump that has sufficient capacity to maintain a negative pressure within thealignment sleeve 219 during cleaning, despite the injection of a pressurized fluid therein. Preferably, a low level of vacuum is applied to mitigate the entrance of contaminants exterior of the connector through infiltrating cracks or other openings in the connector. One such vacuum pump suitable for use with the present invention is a single stage venturi pump, Model No. AVR046H, manufactured by Air-Vac, located in Seymour, Conn. The pump is capable of producing vacuum flow rates up to 118 ml/sec. Thepassageway 120 passes through thetubing receiving portion 118 of thehousing 110 at an angle relative to the horizontally orientedinterface portion 116 of thehousing 110. As theevacuation passageway 120 passes through theinterface portion 116 of thehousing 110, theevacuation passageway 120 is defined by the inner walls of theinterface portion 116 of thehousing 110. In the embodiment illustrated, the inner diameter of theevacuation passageway 120 within theinterface portion 116 is equal to the outer dimensions of aprotective housing 226 that encompasses thealignment sleeve 219 and related fiber-optic endfaces 202, although any diameter that allows adequate volume flow is acceptable. - The pressurized
fluid delivery system 108 is comprised of a fluid pressurization unit (not shown), the pressurizedfluid tubing 124, and a pressurizedfluid nozzle 130. The fluid pressurization unit delivers a pressurized fluid via flexible tubing (not shown) to the pressurizedfluid tubing 124 for discharge from the pressurizedfluid nozzle 130. The fluid pressurization unit may be any well known pump or other source that has a sufficient capacity to maintain sufficient flow under sufficient pressure during cleaning. In the illustrated embodiment, a pressurized fluid is delivered within a range of 15 psi to substantially greater values, with a preferred value of 100 psi, for three seconds at a flow rate of 112 ml/sec. In one embodiment, the pressurized fluid is a pressurized gas provided by selectively releasing pressurized nitrogen from well known commercially available pressurized nitrogen bottles. In another embodiment, the fluid is a pressurized gas such as dry filtered air provided by a well known compressor or pump. Although in the illustrated embodiment, the pressurized fluid is described as either nitrogen or air, it should be apparent to one skilled in the art that other fluids are suitable for use with the present invention, such as liquids and fluids with entrained solid particles. Further, it should be understood that within the meaning of this detailed description, the term “pressurized gas” includes gaseous compounds that may have small amounts of liquids contained therein, such as air having a humidity other than zero. Further still, although a specific pressure, duration and flow rate suitable for use with the present invention have been described for illustrative purposes, it should be apparent to one skilled in the art that these quantities are descriptive in nature. Therefore, other quantities are suitable for use with the present invention and within the scope of the invention. - The pressurized
fluid tubing 124 terminates in a pressurizedfluid nozzle 130. The pressurizedfluid nozzle 130 is made from any suitable rigid material, such as stainless steel hypodermic needle tubing. In the illustrated embodiment, the nozzle is comprised of extra thin wall, 26-gauge hypodermic needle tubing having an outside diameter of 0.018 inches and an inside diameter of 0.014 inches. The pressurizedfluid nozzle 130 includes a pressurized fluid discharge port ornozzle tip 112 at the distal end of the pressurizedfluid nozzle 130. - In the illustrated embodiment the pressurized fluid is preferably filtered through a well known filter arrangement, one such suitable filter arrangement being a reusable syringe filter housing utilizing a fine porosity, medium-fast flow rate, 1.0 μm size particle retention, 13 mm glass fiber membrane, Model No. 66073, manufactured by Pall Gelman Laboratory, located in Ann Arbor, Mich.
- The cleaning
solvent delivery system 106 is comprised of cleaningsolvent tubing 122 coupled to a cleaning solvent storage source (not shown). The cleaningsolvent tubing 122 is coupled in fluid communication with a solvent storage source or delivery system (not shown) via flexible tubing (not shown). The cleaningsolvent tubing 122 terminates in anozzle 126 having a discharge port ornozzle tip 114 at the distal end of thenozzle 126 for delivery of the pressurized gas and cleaning solvent upon the fiber-optic endface 202. The cleaningsolvent tubing 122 passes in line with the centerline ofinterface portion 118 through both thetubing receiving portion 118 and theinterface portion 116 of thehousing 110. - The cleaning
solvent tubing 122 may be made from any suitable rigid material, such as stainless steel hypodermic needle tubing. In the illustrated embodiment, the nozzle is comprised of extra thin wall, 20-gauge hypodermic needle tubing having an inside diameter of 0.028 inches. The inside diameter is selected to allow the pressurizedfluid tubing 124 to pass therethrough and sufficiently oversized to result in the formation of anannulus 117 between the outer surface of the pressurizedfluid tubing 124 and the inner surface of the cleaningsolvent tubing 122. A venturi effect caused by the passage of pressurized fluid through the pressurizedfluid nozzle 130 draws cleaning solvent from the cleaning solvent storage source (not shown), through flexible tubing connecting the cleaning solvent storage source to the cleaningsolvent tubing 122, and through theannulus 117 for eventual discharge from thenozzle tip 114. Further, although in the illustrated embodiment the pressurizedfluid tubing 124 is depicted running concentrically within the cleaningsolvent tubing 122, it should be apparent to one skilled in the art that other configurations are suitable for use with the present invention. For instance, the cleaningsolvent tubing 122 may run within the pressurizedfluid tubing 124. Alternately, the cleaningsolvent tubing 122 and the pressurizedfluid tubing 124 may be separate and distinct units directed at the endface and/or directed to discharge into the flow path of the other, as should be apparent to one skilled in the art. - It should also be apparent to one skilled in the art that any suitable cleaning solvent able to effectively remove contaminants contained on the endface of the fiber-optic strand is suitable for use in the present invention. The cleaning solvent may be a gas, liquid, solid or a combination thereof. Preferably, the cleaning solvent, if a liquid, has a flashpoint above 50 degrees Celsius. The cleaning solvent may be heated to increase the efficiency of the cleaning solvent. One suitable cleaning solvent is a hydrocarbon and terpene blend solvent, manufactured by American Polywater Corporation, located in Stillwater, Minn., sold under the trademark HP™, product number HPV-16LF. The hydrocarbon and terpene blend is comprised of a medium aliphatic petroleum solvent and a monocyclic terpene. In another embodiment, the cleaning solvent is a cyanide gas, capable of dissolving some plastics. In yet another embodiment, the cleaning solvent is a liquid with soft suspended solids therein.
- In the illustrated embodiment, the cleaning solvent is delivered by means of a venturi effect caused by the passing of the pressurized fluid through the pressurized
fluid nozzle 130. In another embodiment, the cleaning solvent is delivered by a pump. One such suitable pump is a solenoid operated diaphragm pump, manufactured by Clark, located in Hudson, Mass., Model No. DMS 035. The pump is capable of providing a fluid at 5 psi at a flow rate of 160 ml/min. Although a specific pump has been described that is suitable for use with the present invention, it should be apparent to one skilled in the art that any such suitable pump may be used with the present invention without departing from the scope of the invention. - In the illustrated embodiment, approximately 25 microliters of cleaning solvent are delivered per three second cleaning blast. Nonetheless, it should be apparent to one skilled in the art that other quantities and durations are suitable for use with the present invention, and are therefore within the scope of the invention. In the present embodiment the cleaning solvent discharge port or
nozzle tip 114 is preferably located approximately 0.025 inches to 0.200 inches from the endface. However, it should be apparent to one skilled in the art that other distances are appropriate for use with the present invention. It should also be apparent to one skilled in the art that the spacing of thenozzle tip 114 from the endface affects the back pressure and the effectiveness of the cleaning ability of the present invention. More specifically, if thenozzle tip 114 is placed too close to the endface, back pressures escalate, decreasing the effectiveness of the cleaning operation. On the other hand, if thenozzle tip 114 is displaced too far from the endface, the energy of the jet is dissipated prior to impacting theendface 202, thereby significantly reducing the cleaning effectiveness of the apparatus. In the illustrated embodiment, a spacing of 0.05 inches is preferred. - In the illustrated embodiment, the cleaning solvent is also preferably filtered through a well known filter arrangement, one such suitable filter arrangement being a reusable syringe filter housing utilizing a fine porosity, medium-fast flow rate, 1.0 μm size particle retention, 13 mm glass fiber membrane, Model No. 66073, manufactured by Pall Gelman Laboratory, located in Ann Arbor, Mich.
- Still referring to
FIGS. 1 and 2 , in light of the above description of the fiber-opticendface cleaning assembly 100, the operation of one embodiment of the fiber-opticendface cleaning assembly 100 during a typical cleaning cycle will now be described. First, a fiber-optic connector is removed from thefemale input 204 and theinterface portion 116 of the cleaningassembly 100 is inserted therewithin. The cleaning process is then initiated by pressing a button or similar actuator (not shown). Dry, filtered air at 100 psi is applied at a rate of 112 ml/sec in 3-second bursts through the pressurizedfluid tubing 124. Approximately 25 ml of a cleaning solvent comprised of a liquid hydrocarbon and terpene solvent mixture is drawn through the cleaningsolvent delivery tubing 122 in approximately the first 100 milliseconds by a venturi effect created by the flow of filtered air through the pressurizedfluid nozzle 130. - The pressurized air mixes with the cleaning solvent, thereby creating an aerosol mist of cleaning solvent entrained in a high-speed gas jet. The aerosol mist of cleaning solvent and pressurized gas is discharged through the
discharge port 114 of the cleaningsolvent nozzle 126. Thedischarge port 114 is located approximately 0.025 inches to 0.200 inches from the endface with the preferred distance being 0.05 inches. The aerosol mist of cleaning solvent and pressurized gas impinges theendface 202, removing any contaminants located thereupon. Vacuum is applied throughout the entire procedure and for a period thereafter through theevacuation passageway 120 at a rate of approximately 118 ml/sec, thus removing any spent pressurized gas and cleaning solvent, and maintaining the inner portions of theconnector 200 slightly below atmospheric pressure. A drying phase, comprising the application of pressurized gas and evacuation vacuum upon the endface, may be initiated following the cleaning evolution to aid in the removal of any residual cleaning solvent that remains within thealignment sleeve 219. Although specific quantities, such as pressures, flow rates, durations, and fluids are disclosed above, it should be apparent to one skilled in the art that other quantities and fluids are suitable for use with the present invention, and are therefore within the scope of the invention. - Referring now to
FIGS. 3 and 4 , an alternate embodiment of a fiber-opticendface cleaning assembly 300 formed in accordance with the present invention will now be described. The fiber-opticendface cleaning assembly 300 is capable of interfacing with a fiber-optic connector 400, such as the fiber-optic connectors FIGS. 1 and 2 , to clean the endfaces of the optical fiber(s) contained therewithin. The fiber-opticendface cleaning assembly 300 of this embodiment is similar to the embodiment described above and depicted inFIGS. 1 and 2 , with the exception that the fiber-opticendface cleaning assembly 300 is designed to provide apathway 330 through which an optical imaging axis of amicroscope 500 may extend for viewing theendface 402 of theconnector ferrule 418 contained within the fiber-optic connector 400, and also with the exception that the cleaning is performed once theconnector 400 is removed from the bulkhead adapter. Since the optical features of themicroscope 500 and the general knowledge of the optical nature of themicroscope 500 are well known, these aspects of themicroscope 500 will not be further discussed herein. - The fiber-optic
endface cleaning assembly 300 includes anevacuation system 304, a cleaningsolvent delivery system 306, and a pressurizedfluid delivery system 308, all of which are substantially similar to those described for the above embodiment. Although anactive evacuation system 304 is depicted in this embodiment substantially similar to the system described for the above embodiment, it should be apparent to one skilled in the art that the method of removing debris in this configuration may be done in either an active (vacuum) or passive (vent) manner. Specifically, it should be apparent to one skilled in the art that theevacuation system 304 may alternately accomplish the removal of debris through simply passively venting any fluids discharged upon the endface through a suitably designed evacuation system, as opposed to actively applying a vacuum in proximity to the endface as was disclosed for the previous embodiments. - The
housing 310 of the cleaningassembly 300 is formed by joining or integrally forming a hollow cone-shapedsection 332 to an axially aligned hollow cylindrically shapedsection 334. The cone shapedsection 332 includes aninterface portion 316. Theinterface portion 316 is a hollow elongate block structure having inner dimensions substantially similar to the outer dimensions of theferrule 418 of the fiber-optic connector 400 to allow the insertion of theferrule 418 therein. It should be apparent to one skilled in the art that a similar configuration wherein theinterface portion 316 is designed to interface with inner dimensions of a female input of a bulkhead adapter is a clear extension of this embodiment. Theinterface portion 316 is configured to orient the components of the cleaningsolvent delivery system 306 and the pressurizedfluid delivery system 308 contained within the cone-shapedsection 332 so that any fluid discharged therefrom will properly impinge the fiber-optic endface 402, as will be discussed in further detail below. The cone-shapedsection 332 allows the placement of the components of the cleaningsolvent delivery system 306, pressurizedfluid delivery system 308, andevacuation system 304 out of theoptical pathway 330 of themicroscope 500. - Joined to the cone-shaped
section 332 is the cylindrically shapedsection 334. Theevacuation passageway 320, cleaningsolvent tubing 322, and pressurizedfluid tubing 324 pass through the cylindrically shapedsection 334. The cylindrically shapedsection 334 further includes a receivingaperture 336 for receiving ahead portion 502 of themicroscope 500 therewithin. When thehead portion 502 of themicroscope 500 engages the receivingaperture 336 during insertion within thehousing 310, the receivingaperture 336 serves to align the optical imaging axis of themicroscope 500 through theoptical pathway 330 that passes through thehousing 310 and upon theendface 402 of the fiber-optic strand, allowing the user to view the fiber-optic endface 402. In this embodiment, themicroscope 500 is inserted after the completion of a cleaning cycle to inspect and view theendfaces 402 of the optical fiber to verify the effectiveness of the cleaning cycle. - Although in the illustrated embodiment, the
microscope 500 is a separate unit operable to removably engage thecleaning assembly 300, it should be apparent to one skilled in the art that themicroscope 500 may be integrally formed or otherwise permanently affixed to thecleaning assembly 300 without departing from the scope of the invention. Within this alternate embodiment, the user would be able to view the endface during the cleaning cycle or shortly thereafter without removal of the cleaningassembly 300 from the fiber-optic connector 400. - The operation of the alternate embodiment of the cleaning
assembly 300 depicted inFIGS. 3 and 4 is substantially similar in operation to the cleaning assembly embodiment described above and depicted inFIGS. 1 and 2 with exception of the use of themicroscope 500 and the orientation of theevacuation system 304, the cleaningsolvent delivery system 306 and the pressurizedfluid delivery system 308. Inasmuch as the operation is substantially similar to that described above, it will not be further discussed herein. - Referring now to
FIG. 5 , a second alternate embodiment of a fiber-opticendface cleaning assembly 600 formed in accordance with the present invention will now be described. The fiber-opticendface cleaning assembly 600 is capable of interfacing with an interface device, such as those typically used in fiber-optic data transmission equipment and depicted inFIGS. 1 and 2 , to clean the endfaces of the optical fibers contained therewithin. The fiber-opticendface cleaning assembly 600 of this invention is similar to the embodiment described above and depicted inFIGS. 1 and 2 , with the exception that the fiber-opticendface cleaning assembly 600 further includes amicroscope 700 integrally formed with the fiber-opticendface cleaning assembly 600 to allow the optical imaging of the fiber-optic endfaces of the fiber-optic strands contained within a connector. Since the optical features of amicroscope 700 and the general knowledge of the optical nature of a microscope are well known, these aspects of the fiber-opticendface cleaning assembly 600 will not be further discussed herein. - The
microscope 700 is located on a first end of ahousing 610 of the fiber-opticendface cleaning assembly 600, opposite a cleaningapparatus interface portion 634 located on a second end. The cleaningapparatus interface portion 634 includes an evacuation system, a cleaning solvent delivery system, and a pressurized fluid delivery system, all of which are substantially similar to those described for the above two embodiments and therefore will not discuss further herein. - In operation, a user selectively inserts either the first or second end within an interface device depending on whether cleaning or inspecting operations are desired. For example, if the user desires to clean a fiber-optic endface contained within the bulkhead adapter, the cleaning
apparatus interface portion 634 is inserted within the bulkhead adapter, and anactuator button 636 is depressed to initiate cleaning operations. Upon completion of the cleaning operations, the user would subsequently remove the fiber-optic cleaning assembly 600 and rotate thecleaning assembly 600 end-to-end, followed by the insertion of aninterface portion 702 of themicroscope 700 within the bulkhead adapter. Theinterface portion 702 is designed to interface with a bulkhead adapter such that the optical lens of the microscope may focus upon the fiber-optic endfaces contained within the fiber-optic bulkhead adapter. - Referring now to
FIGS. 6-12 , an alternate embodiment of a fiber-opticendface cleaning assembly 800 formed in accordance with the present invention will now be described. The fiber-opticendface cleaning assembly 800 is capable of interfacing with an interface device, such as a fiber-optic bulkhead adapter 900, to clean the endfaces of the optical fibers contained therewithin. The fiber-opticendface cleaning assembly 800 of this embodiment is similar in operation and structure to the embodiment described above and depicted inFIGS. 1-2 , with the exception that the fiber-opticendface cleaning assembly 800 further includes aretractable baffle 802. - Referring to
FIGS. 11 and 12 , thebaffle 802 aids in the removal of cleaning solvent remaining within analignment sleeve 822 during a cleaning evolution. Moreover, the fiber-optic endface 902 has achamfer 904 located around the periphery of the fiber-optic endface 902. It has been found that during cleaning operations, cleaning solvent and/or other fluids may collect in thechamfer 904. Thechamfer 904 acts as a protected cavity, partially shielding the cleaning solvent contained therewithin from the pressurized fluid and/or applied vacuum. Thus, while the pressurized fluid is flowing, the fiber-optic endface 902 remains in a clean and dry state. However, when the flow of the pressurized fluid ceases, the cleaning solvent present in thechamfer 904 and any contaminants contained therein flow back onto the fiber-optic endface 902, recontaminating the endface. Theretractable baffle 802 of the illustrated embodiment aids in the removal of cleaning solvent from the chamfer by concentrating the flow of the pressurized fluid into thechamfer 904. Thus, when thebaffle 802 is in an extended position as shown inFIG. 11 , the pressurized fluid more directly impinges the cleaning solvents contained in thechamfer 904, thereby enhancing cleaning solvent removal. - Focusing now more on the outer structure of the fiber-optic
endface cleaning assembly 800, and in reference toFIGS. 6-8 , the external components comprising the fiber-opticendface cleaning assembly 800 will be described. The fiber-opticendface cleaning assembly 800 includes ahousing 810 subdivided into three distinct sections: aninterface section 844, amiddle section 846, and abaffle actuator section 848. Theinterface section 844 and thebaffle actuator section 848 are joined to themiddle section 846 by wellknown fasteners interface section 844 is aninterface tip 816. Theinterface tip 816 is a hollow, sometimes cylindrical-shaped structure having outer dimensions substantially similar to the inner dimensions of an entryfemale input 906 of a fiber-optic bulkhead adapter 900 (seeFIG. 9 ) to allow the insertion of theinterface tip 816 therein. - The
interface tip 816 is configured to orient the components of the cleaning solvent delivery system and the pressurized fluid delivery system contained within the fiber-opticendface cleaning assembly 800 so that any fluid discharged therefrom will properly impinge the fiber-optic endfaces, as will be discussed in further detail below. Further, theinterface tip 816 or some portion of theinterface portion 844 is preferably configured to allow theinterface tip 816 or at least a portion of theinterface portion 844 to be removed from the cleaningassembly 800. Configured as such, theinterface tip 816 or some portion of theinterface portion 844 may be easily removed and exchanged for a different style ofinterface tip 816 orinterface portion 844 to accommodate a wide variety of interface devices. - In the embodiment depicted in
FIG. 6 ,interface tip 816 may be selectively removed from an interfacetip receiving port 815 in theinterface portion 844 and replaced with an alternately shapedinterface tip 817, thereby allowing the cleaningassembly 800 to interface with a fiber-optic endface associated with a different shaped interface device. Thus, fiber-opticendface cleaning assembly 800 may be selectively configured to be compatible with nearly any interface device. As should be apparent to one skilled in the art, although aninterchangeable interface tip 816 orinterface portion 844 is described with specificity in regard to the above described embodiment only, it should be apparent to one skilled in the art that any of the embodiments described within this detailed description may incorporate this concept therein. - Disposed on the
middle section 846 is anactuator button 834 and anaccess port 838. By pressing theactuator button 834, a user initiates the cleaning process. Theaccess port 838, an oblong aperture in thehousing 810, permits access to aset screw 862 disposed within the fiber-opticendface cleaning assembly 800, the purpose of which will be described in further detail below. Further, theaccess port 838 allows the position of abaffle 802 to be visually confirmed. Further still, theaccess port 838 allows the manual activation of the baffle between an extended position and a retracted position. - The
baffle actuator section 848, as the name implies, houses abaffle actuator 870 for selectively positioning a baffle between extended and retracted positions, as will be described in further detail below. A needlevalve adjustment screw 836 for fine tuning the operation of thebaffle actuator 870 is disposed on the outer surface of thebaffle actuator section 848. Also disposed on the outer surface of thebaffle actuator section 848 is anaccess port 850. Theaccess port 850 allows the passage of an electrical wiring umbilical cord (not shown for clarity) for delivery of electrical control signals and power to select internal components of the fiber-opticendface cleaning assembly 800, such as thebaffle actuator 870. Further, theaccess port 850 allows the passage of a section of pressurized fluid delivery tubing and a section of cleaning solvent delivery tubing (not shown for clarity), substantially similar in operation and structure as thesolvent tubing 122 and the pressurizedfluid tubing 124 shown inFIG. 1 , into the fiber-opticendface cleaning assembly 800. - Focusing now more on the internal structure of the fiber-optic
endface cleaning assembly 800, and in reference toFIGS. 8 and 9 , the internal components comprising the fiber-opticendface cleaning assembly 800 will be described. Themiddle section 846 is comprised of a bafflereturn spring chamber 854 and a solventdelivery valve chamber 860. The bafflereturn spring chamber 854 is cylindrical in shape and runs longitudinally through the fiber-opticendface cleaning assembly 800. The bafflereturn spring chamber 854 houses abaffle return spring 852. Thebaffle return spring 852 biases thebaffle 802 in a retracted position, as shown inFIG. 8 . Thebaffle return spring 852 biases thebaffle 802 by exerting a spring force upon arod clamp 864. Therod clamp 864 is reciprocatingly disposed within the bafflereturn spring chamber 854 and has aspring seat 866 that engages a distal end of thebaffle return spring 852 and anactuator seat 868 that communicates with abaffle actuator 870. Therod clamp 864 is coupled to an actuating rod 872 through the use of a well known setscrew 862. - Located adjacent to and in a parallel orientation with the baffle
return spring chamber 854 is a solventdelivery valve chamber 860. The solventdelivery valve chamber 860 houses a solvent deliveryvalve return spring 858 and asolvent delivery valve 856. The solvent deliveryvalve return spring 858 biases thesolvent delivery valve 856 in a closed position until actuated by fluid pressure fromsolvent port 898 into an open position, thereby allowing delivery of a cleaning solvent to the fiber-optic endface 902. Thus, the solvent delivery valve acts as a check valve. As should be apparent to one skilled in the art, the valve configuration herein described may be replaced by any number of actuator/valve combinations well known in the art, such as electromechanical, pneumatic, hydraulic, and mechanical actuators. - Focusing now on the
baffle actuator section 848, thebaffle actuator section 848 includes anactuator chamber 876. Theactuator chamber 876 runs longitudinally through thebaffle actuator section 848 and is sized to house thebaffle actuator 870. As should be apparent to one skilled in the art, thebaffle actuator 870 may be selected from any number of well known actuators in the art such as electromechanical, pneumatic, hydraulic, or mechanical actuators. Thebaffle actuator 870 may be selectively toggled between an extended position, as shown inFIG. 10 , and a retracted position, as shown inFIG. 8 . An O-ring 878 is disposed at the distal end of theactuator chamber 876 at the interface between themiddle section 846 and thebaffle actuator section 848. The O-ring 878 provides a pressure resistant seal to isolate the air volume within theactuator chamber 876. Also disposed on thebaffle actuator section 848 is the needlevalve adjustment screw 836. The needlevalve adjustment screw 836 is manipulated during manufacture to selectively adjust the operating parameters of thebaffle actuator 870, such as the actuation rate of thebaffle 802. - Focusing now on the
interface section 844, theinterface section 844 is comprised of a fiber-opticendface receiving chamber 880 sized to receive aprotective housing 926 that partially encompasses the fiber-optic endface 902 andalignment sleeve 822. Disposed in an annular channel formed on the inner wall of the fiber-opticendface receiving chamber 880 is a well known O-ring 884. The O-ring 884 acts as a seal between theprotective housing 926 of thealignment sleeve 822 and the fiber-opticendface receiving chamber 880, thereby impeding the passage of fluids between theprotective housing 926 and the inner surface of the fiber-opticendface receiving chamber 880. It should be apparent to one skilled in the art that this seal may alternately be formed by any number of methods well known in the art, or alternately, may be omitted if ambient contamination is not a consideration. - Referring now to
FIGS. 8, 9 , and 12, disposed within the fiber-opticendface receiving chamber 880 is thebaffle 802. Thebaffle 802 is comprised of abase portion 886 integrally formed to a concentrically orientedhollow cylinder 888. Thebase portion 886 is formed from fourlegs 812 disposed radially outward from thecylinder 888 so that eachleg 812 is spaced 90° from the closestadjacent legs 812. Thus,relief gaps 814 are formed betweenadjacent legs 812 for permitting the passage of evacuation gases thereby. Thebase portion 886 of thebaffle 902 is adapted to receive an actuating rod 872 therein. Upon actuation of the actuating rod 872 by thebaffle actuator 870, thebaffle 802 is reciprocally driven within the fiber-opticendface receiving chamber 880 through the pressure exerted by the actuating rod 872 upon thebaffle 802 via thebase portion 886. - The
cylinder 888 has a flareddistal end 890, having guiding members, such as five longitudinally aligned guidingribs 892 equally spaced around the flareddistal end 890. The guidingribs 892 aid in the alignment of thebaffle 802 within thealignment sleeve 822, which partially encloses theendface 902, while still allowing the flow of fluids for removal from theconnector 900 between adjacent guidingribs 892. Although the illustrated embodiment is shown with five guidingribs 892, it should be apparent to one skilled in the art that other quantities of guidingribs 892 are suitable for use with the present invention, such as three, four, or six for example. - Passing through a hollow
cylindrical passage 826 in thebaffle 802 is a pressurizedfluid nozzle 896 and a cleaningsolvent nozzle 894. The pressurizedfluid nozzle 896 and the cleaningsolvent nozzle 894 are substantially similar in construction and operation as that of the pressurizedfluid nozzle 130 and cleaningsolvent nozzle 126 depicted in theFIG. 2 , and therefore will not be discussed in further detail here. - In fluid communication with the cleaning
solvent nozzle 894 is a cleaningsolvent passageway 899. The cleaningsolvent passageway 899 is in fluid communication with thesolvent delivery valve 856, asolvent port vent 832, and also with solvent delivery tubing, not shown but similar to thesolvent delivery tubing 122 shown inFIG. 1 . Thesolvent port vent 832 is open to the atmosphere to allow atmospheric air into the cleaningassembly 800 during solvent flow. Moreover, thesolvent port vent 832 aids in solvent flow by impeding vapor lock formation by the introduction of near atmospheric pressure air into the solvent flow. Air entering thesolvent port vent 832 during solvent flow is filtered via afilter 830. In the illustrated embodiment, thefilter 830 is a 1 micron rated glass fiber filter, although it should be apparent to one skilled in the art that other filters are suitable for use in the present invention, and further, that the filter may be eliminated if ambient contamination is not a consideration. - The
solvent delivery valve 856 is situated in the cleaningsolvent passageway 899, between thesolvent port vent 832 and the cleaningsolvent nozzle 894. Thesolvent delivery valve 856 selectively controls the passage of a solvent to the cleaningsolvent nozzle 894. Moreover, thesolvent delivery valve 856 is actuated between a flow and no flow condition by fluid pressure applied tosolvent port 898 during cleaning. - The operation of the alternate embodiment of the cleaning
assembly 800 depicted inFIGS. 6-11 is substantially similar in operation to the cleaning assembly embodiment described above and depicted inFIGS. 1 and 2 with exception of the use of thebaffle 802. Inasmuch as the operation is substantially similar to that described above, the aspects of operation substantially similar to that described above will not be further discussed herein. As for thebaffle 802, the baffle is actuatable between the retracted position shown inFIG. 8 and extended position shown inFIG. 9 . By selectively positioning thebaffle 802 as such, the amount of residual cleaning solvent remaining in theconnector 900 after a cleaning evolution is substantially reduced. - More specifically and as best seen in
FIG. 11 , the fiber-optic endface 902 has achamfer 904 located around the periphery of the fiber-optic endface 902 as discussed above. Theretractable baffle 802 of the illustrated embodiment aids in concentrating the flow of the pressurized fluid into thechamfer 904. Thus, with the baffle in the extended position, the pressurized fluid is directed in aflow path 824 which more directly impinges the cleaning solvents contained in thechamfer 904, thereby enhancing cleaning solvent removal during a drying/solvent removal phase of the cleaning evolution, when the pressurized fluid, absent cleaning solvent, is directed at theendface 902. - Inasmuch as the
baffle 802 may impede the flow of cleaning solvent and pressurized fluid during cleaning operations, thebaffle 802 may be selectively retracted during the application of the cleaning solvent and pressurized fluid so as to allow the unfettered flow of these fluids during cleaning as shown inFIG. 9 . Although a retractable baffle is shown, it should be apparent to one skilled in the art that the baffle may be rigidly held in an extended position. Further still, although the illustrated embodiment depicts a baffle of a certain shape and construction, it should be apparent to one skilled in the art that the baffle may take many various forms. For instance, the baffle may be formed by flaring the end of the cleaningsolvent nozzle 894 outwards. Therefore it should be apparent to one skilled in the art that the baffle is defined by its ability to enhance the flow of fluids within thechamfer 904 and across theendface 902, and is therefore not limited to the illustrated form shown inFIGS. 8-12 . - While the baffle previously described is effective at reducing the volume of solvent retained by the
chamfer 904, an alternate treatment of the problem of re-contamination of thefiber endface 902 by flow of the solvent back onto the cleaned surface is to increase the surface tension of the retained fluid. The surface tension may be increased by adding a chemical agent, such as water, during a second fluid application stage, which would tend to minimize the tendency of the retained fluid to wick across the cleaned surface recontaminating the surface. As should be apparent to one skilled in the art, the chemical agent may be delivered upon the endface by any suitable means. For example, the chemical agent may be applied in the same manner as the solvent by simply toggling the solvent delivery tubing between fluid communication with a solvent source and fluid communication with a chemical agent source, as should be apparent to one skilled in the art. Alternately, a third nozzle may be disposed in the housing for discharging the chemical agent directly upon the endface, or for dispensing the chemical agent into the pressurized fluid flow for delivery upon the endface. - While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Claims (63)
1. A cleaning apparatus for cleaning an endface of an optical fiber, wherein a portion of the optical fiber is contained within an interface device, the cleaning apparatus comprising:
(a) a housing having an interface portion adapted to be received by the interface device; and
(b) a first nozzle at least partially disposed within the housing, the first nozzle operable to deliver a pressurized gas and a solvent upon the endface of the optical fiber when the interface portion of the housing is received by the interface device to aid in the removal of contaminants on the endface.
2. The cleaning apparatus of claim 1 , wherein the interface device comprises an alignment sleeve and a bulkhead adapter, wherein the alignment sleeve is disposed within the bulkhead adapter and contains the endface of the optical fiber.
3. The cleaning apparatus of claim 1 further comprising an evacuation passageway through the housing for removing the pressurized gas and the solvent released within the interface device.
4. The cleaning apparatus of claim 3 , wherein the evacuation passageway is at least partially defined by the interior walls of the housing.
5. The cleaning apparatus of claim 1 , wherein the solvent is a liquid comprised of a hydrocarbon and a terpene mixture.
6. The cleaning apparatus of claim 1 , wherein the solvent is a liquid comprised of an aliphatic petroleum solvent and a monocyclic terpene mixture.
7. The cleaning apparatus of claim 1 further comprising a second nozzle disposed at least partially within the housing and operable to dispense the pressurized gas.
8. The cleaning apparatus of claim 7 , wherein the flow of the pressurized gas from the second nozzle is operable to draw the solvent through the first nozzle by a venturi effect.
9. The cleaning apparatus of claim 8 , wherein a distal end of the second nozzle terminates within the first nozzle.
10. The cleaning apparatus of claim 1 further comprising a microscope receiving aperture, wherein the microscope receiving aperture is operable to selectively receive a microscope for inspecting the endface of the optical fiber when the interface portion of the housing is received by the interface device.
11. The cleaning apparatus of claim 1 further comprising a microscope attached to the housing, wherein the microscope is adaptable to view the endface.
12. The cleaning apparatus of claim 8 further comprising:
a microscope receiving aperture, wherein the microscope receiving aperture is operable to selectively receive a microscope for inspecting the endface of the optical fiber when the interface portion of the housing is received by the interface device; and
an evacuation passageway through the housing for removing the pressurized gas and the solvent released within the connector.
13. The cleaning apparatus of claim 12 , wherein the microscope receiving aperture is disposed between the evacuation passageway and the first and second nozzles.
14. The cleaning apparatus of claim 1 , wherein a distal end of the first nozzle is located about 0.025 to 0.20 inches from the endface of the optical fiber when the interface portion of the housing is received by the interface device.
15. The cleaning apparatus of claim 1 further comprising a baffle disposed within the housing and positioned in proximity to the endface when the interface portion of the housing is received by the interface device, the baffle adapted to direct the pressurized gas upon the endface.
16. The cleaning apparatus of claim 15 , wherein the baffle is actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
17. The cleaning apparatus of claim 15 , wherein the end of the baffle in proximity to the endface is contoured to direct the pressurized gas into a chamfer of the endface.
18. The cleaning apparatus of claim 15 , wherein the baffle comprises a plurality of guide members for engaging an alignment sleeve at least partially disposed within the interface device.
19. The cleaning apparatus of claim 1 , wherein the first nozzle is further operable to deliver a chemical agent upon the endface to increase the surface tension of the solvent.
20. The cleaning apparatus of claim 1 , wherein at least a segment of the interface portion is selectively removable for replacement with at least a segment of a second alternately shaped interface portion.
21. A cleaning apparatus for cleaning an endface of an optical fiber, the cleaning apparatus comprising:
(a) an interface portion adapted to be positioned in proximity to the endface;
(b) a first nozzle at least partially disposed within the interface portion and adapted to dispense a solvent; and
(c) a second nozzle at least partially disposed within the interface portion, wherein the second nozzle is operable to deliver a pressurized fluid upon the endface of the optical fiber to aid in the removal of contaminants present on the endface, and further wherein the first nozzle dispenses the solvent such that the solvent mixes with the pressurized fluid.
22. The cleaning apparatus of claim 21 further comprising an evacuation passageway through the housing for removing the pressurized fluid and the solvent directed upon the endface.
23. The cleaning apparatus of claim 21 , wherein the solvent is a liquid comprised of a hydrocarbon and a terpene mixture.
24. The cleaning apparatus of claim 21 , wherein the solvent is a liquid comprised of an aliphatic petroleum and a monocyclic terpene mixture.
25. The cleaning apparatus of claim 21 , wherein a distal end of the second nozzle terminates within the first nozzle.
26. The cleaning apparatus of claim 25 , wherein the flow of the pressurized fluid from the second nozzle is operable to draw the solvent through the first nozzle by a venturi effect.
27. The cleaning apparatus of claim 21 further comprising a microscope receiving aperture, wherein the microscope receiving aperture is adapted to selectively receive a microscope for inspecting the endface of the optical fiber.
28. The cleaning apparatus of claim 21 further comprising a microscope coupled to the cleaning apparatus, wherein the microscope is adaptable to view the endface of the optical fiber.
29. The cleaning apparatus of claim 21 further comprising:
a microscope receiving aperture, wherein the microscope receiving aperture is operable to selectively receive a microscope for inspecting the endface of the optical fiber; and
an evacuation passageway through the housing for removing the pressurized gas and the solvent released from the first and second nozzles.
30. The cleaning apparatus of claim 29 , wherein the microscope receiving aperture is disposed between the evacuation passageway and the first and second nozzles.
31. The cleaning apparatus of claim 21 , wherein a distal end of the first nozzle is located about 0.02 to 0.2 inches from the endface when the interface portion of the housing is received by an interface device.
32. The cleaning apparatus of claim 21 further comprising a baffle disposed within the housing to selectively direct the pressurized fluid upon the endface.
33. The cleaning apparatus of claim 32 , wherein the baffle is actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the pressurized fluid upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
34. The cleaning apparatus of claim 32 , wherein the baffle is contoured to direct the pressurized fluid into a chamfer of the endface.
35. The cleaning apparatus of claim 32 , wherein the baffle comprises a plurality of guiding members for engaging an alignment sleeve at least partially disposed within an interface device containing endface.
36. The cleaning apparatus of claim 21 , wherein the first nozzle is further operable to deliver a chemical agent upon the endface to increase the surface tension of the solvent.
37. The cleaning apparatus of claim 21 , wherein at least a segment of the interface portion is selectively removable for replacement with at least a segment of a second alternately shaped interface portion.
38. A cleaning apparatus for cleaning an endface of an optical fiber, the cleaning apparatus comprising:
(a) a housing having an interface portion adapted to be positioned in proximity to the endface;
(b) a first nozzle at least partially disposed within the housing, the first nozzle operable to deliver a fluid upon the endface of the optical fiber to aid in the removal of contaminants on the endface; and
(c) a microscope at least partially disposed within the housing and adaptable to view the endface.
39. The cleaning apparatus of claim 38 , wherein the housing further comprises a microscope receiving aperture for removably receiving the microscope for inspecting the endface of the optical fiber.
40. The cleaning apparatus of claim 38 , wherein the microscope is oriented within the housing so that both an image axis of the microscope and the fluid, when discharged from the first nozzle, are directed upon the endface.
41. The cleaning apparatus of claim 38 , wherein the first nozzle is operable to deliver a pressurized gas and a solvent upon the endface.
42. The cleaning apparatus of claim 38 further including a second nozzle at least partially disposed within the housing, the second nozzle operable to deliver a pressurized gas.
43. The cleaning apparatus of claim 38 further comprising an evacuation passageway through the housing for removing the fluid discharged from the first nozzle upon the endface.
44. The cleaning apparatus of claim 38 , further comprising a baffle disposed within the housing and positioned in proximity to the endface, the baffle adapted to direct the fluid upon the endface.
45. The cleaning apparatus of claim 44 , wherein the baffle is actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the fluid upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
46. The cleaning apparatus of claim 44 , wherein the baffle is contoured to direct the fluid into a chamfer of the endface.
47. The cleaning apparatus of claim 38 , wherein the first nozzle is further operable to deliver a chemical agent upon the endface to increase the surface tension of at least a portion of the fluid.
48. The cleaning apparatus of claim 44 , wherein at least a segment of the interface portion is selectively removable for replacement with at least a segment of a second alternately shaped interface portion.
49. A cleaning apparatus for cleaning an endface of an optical fiber, wherein a portion of the optical fiber is contained within an interface device, the cleaning apparatus comprising:
(a) a housing adapted to be at least partially received by the interface device; and
(b) a nozzle at least partially disposed within the housing, wherein the nozzle is operable to deliver a fluid upon the endface of the optical fiber when the housing is received by the interface device; and
(c) a baffle disposed within the housing and positioned in proximity to the endface for selectively directing the flow of the fluid upon the endface when the housing is received by the interface device.
50. The cleaning apparatus of claim 49 , wherein the interface device comprises an alignment sleeve and a bulkhead adapter, wherein the alignment sleeve is disposed within the bulkhead adapter and contains the endface of the optical fiber.
51. The cleaning apparatus of claim 49 , wherein an end of the baffle facing the endface is contoured to direct the fluid into a chamfer of the endface.
52. The cleaning apparatus of claim 49 , wherein the baffle is actuatable between a first position, wherein the baffle is positioned in proximity to the endface for selectively directing the flow of the fluid upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
53. The cleaning apparatus of claim 49 , wherein an end of the baffle facing the endface comprises a plurality of guide members for engaging an alignment sleeve at least partially disposed within the interface device.
54. A method for cleaning an endface of an optical fiber, wherein a portion of the optical fiber is contained within an interface device, the method comprising the steps of:
(a) inserting an interface portion of a housing of a cleaning apparatus within the interface device so as to position a nozzle at least partially contained within the housing in proximity to the endface of the optical fiber;
(b) directing a pressurized gas through the nozzle toward the endface of the optical fiber; and
(c) intermixing a solvent with the pressurized gas.
55. The method of claim 54 further comprising the step of actuating a baffle disposed within the housing between a first position, wherein the baffle is positioned in proximity to the endface to direct the flow of the pressurized gas upon the endface, and a second position, wherein the baffle is in a retracted position relative to the endface.
56. The method of claim 54 further comprising the step of applying a vacuum to the housing to aid in removal of fluids released from the nozzle.
57. The method of claim 54 further comprising the step of inspecting the endface of the optical fiber with a microscope having an optical imaging axis that passes through a passageway in the housing while the interface portion of the housing is received by the interface device.
58. The method of claim 54 further comprising the step of removing the interface portion of the housing from the interface device and inserting another portion of the housing containing a microscope within the interface device and inspecting the endface of the optical fiber.
59. The method of claim 54 , wherein the pressurized gas is pressurized air.
60. The method of claim 54 , wherein the solvent is comprised of a hydrocarbon and a terpene solvent.
61. The method of claim 54 , wherein the solvent is comprised of an aliphatic petroleum solvent and a monocyclic terpene solvent.
62. The method of claim 54 , wherein the intermixing of the solvent with the pressurized gas atomizes the solvent.
63. The method of claim 54 further comprising the step of applying a chemical agent to the endface to increase the surface tension of the solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/507,952 US20070196056A1 (en) | 2002-07-18 | 2006-08-21 | Fiber-optic endface cleaning assembly and method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/199,925 US6821025B2 (en) | 2002-07-18 | 2002-07-18 | Fiber-optic endface cleaning assembly and method |
US10/961,838 US7147490B2 (en) | 2002-07-18 | 2004-10-08 | Fiber-optic endface cleaning assembly and method |
US11/507,952 US20070196056A1 (en) | 2002-07-18 | 2006-08-21 | Fiber-optic endface cleaning assembly and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/961,838 Continuation US7147490B2 (en) | 2002-07-18 | 2004-10-08 | Fiber-optic endface cleaning assembly and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070196056A1 true US20070196056A1 (en) | 2007-08-23 |
Family
ID=30443442
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/199,925 Expired - Lifetime US6821025B2 (en) | 2002-07-18 | 2002-07-18 | Fiber-optic endface cleaning assembly and method |
US10/961,838 Expired - Lifetime US7147490B2 (en) | 2002-07-18 | 2004-10-08 | Fiber-optic endface cleaning assembly and method |
US11/507,952 Abandoned US20070196056A1 (en) | 2002-07-18 | 2006-08-21 | Fiber-optic endface cleaning assembly and method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/199,925 Expired - Lifetime US6821025B2 (en) | 2002-07-18 | 2002-07-18 | Fiber-optic endface cleaning assembly and method |
US10/961,838 Expired - Lifetime US7147490B2 (en) | 2002-07-18 | 2004-10-08 | Fiber-optic endface cleaning assembly and method |
Country Status (1)
Country | Link |
---|---|
US (3) | US6821025B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9207454B1 (en) | 2013-03-15 | 2015-12-08 | Cadence Design Systems, Inc. | System and method for dust contamination prevention and removal in fiber-optic panel-mount assemblies |
US9891389B1 (en) * | 2016-10-14 | 2018-02-13 | Corning Optical Communications LLC | Cleaning nozzle, apparatus, nozzle assembly, and methods for optical fiber connectors |
US10955624B2 (en) | 2016-11-04 | 2021-03-23 | Corning Optical Communications LLC | Cleaning nozzle and nozzle assembly and cleaning methods for optical fiber connectors |
US11415757B2 (en) * | 2017-03-10 | 2022-08-16 | Corning Optical Communications LLC | Cleaning nozzle and nozzle assembly for multi-fiber connectors |
WO2025075896A1 (en) * | 2023-10-02 | 2025-04-10 | Zynon Technologies, Llc | Cleaning tip for non-contact cleaning of fiber optic connectors and end faces |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7232262B2 (en) * | 2002-07-18 | 2007-06-19 | Westover Scientific, Inc. | Fiber-optic endface cleaning apparatus and method |
DE10245140B4 (en) * | 2002-09-27 | 2005-10-20 | Dornier Medtech Laser Gmbh | Intelligent therapy fiber |
US6975803B2 (en) * | 2003-07-15 | 2005-12-13 | Japan Aviation Electronics Industry, Limited | Optical fiber end face cleaner |
JP4435658B2 (en) * | 2004-09-15 | 2010-03-24 | 株式会社アドバンテスト | Optical connector cleaning method, cleaning jig, cleaning jig unit, and optical connector |
US7147386B2 (en) * | 2005-02-02 | 2006-12-12 | Rainbow Communications, Inc | MEMS based handheld fiber optic connector cleaner |
DE102005017798A1 (en) * | 2005-04-18 | 2006-11-09 | Dornier Medtech Laser Gmbh | optical fiber |
EP1803454A1 (en) * | 2005-12-30 | 2007-07-04 | Dornier MedTech Laser GmbH | Treatment of cancer by a combination of non-ionizing radiation and androgen deprivation |
US7215864B1 (en) * | 2006-07-24 | 2007-05-08 | All Optronics, Inc. | Low-cost portable fiber-optic connector cleaner |
US20080028567A1 (en) * | 2006-08-03 | 2008-02-07 | The United States Of America As Represented By The Secretary Of The Navy | Cleaning device for fiber optic connectors |
EP1914576B1 (en) * | 2006-10-17 | 2019-01-16 | Dornier MedTech Laser GmbH | Laser applicator with an optical lightguide, the optical lightguide comprising a photorefractive section having a volume hologram. |
US7630066B2 (en) * | 2007-03-30 | 2009-12-08 | Adc Telecommunications, Inc. | Optical fiber inspection tool |
US20090019718A1 (en) * | 2007-07-20 | 2009-01-22 | Apple Inc. | Apparatus and method for cleaning electronic jacks of debris |
US7787739B2 (en) * | 2007-08-28 | 2010-08-31 | Embarq Holdings Company, Llc | Bare fiber adapter |
EP2268223B1 (en) | 2008-04-25 | 2019-01-02 | Dornier MedTech Laser GmbH | Light-based device for the endovascular treatment of pathologically altered blood vessels |
US7591696B1 (en) | 2008-05-19 | 2009-09-22 | Embarq Holdings Company, Llc | Ground bonding strap |
USD623369S1 (en) * | 2009-03-19 | 2010-09-07 | Ntt Advanced Technology Corporation | Cleaning device for optical connectors |
CA139672S (en) * | 2010-09-17 | 2011-10-21 | Fujikura Ltd | Optical connector cleaner |
US8959695B2 (en) | 2011-02-28 | 2015-02-24 | Corning Cable Systems Llc | Micro filament cleaning tool for emerging optical connectors |
KR102758903B1 (en) | 2012-02-01 | 2025-01-23 | 리바이브 일렉트로닉스, 엘엘씨 | Methods and apparatuses for drying electronic devices |
US12276454B2 (en) | 2020-04-21 | 2025-04-15 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US12215925B2 (en) | 2020-04-21 | 2025-02-04 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US10876792B2 (en) | 2012-02-01 | 2020-12-29 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US9970708B2 (en) | 2012-02-01 | 2018-05-15 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US10690413B2 (en) | 2012-02-01 | 2020-06-23 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US11713924B2 (en) | 2012-02-01 | 2023-08-01 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US12281847B2 (en) | 2020-04-21 | 2025-04-22 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US9644891B2 (en) | 2012-02-01 | 2017-05-09 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US10240867B2 (en) | 2012-02-01 | 2019-03-26 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US8998503B2 (en) * | 2012-05-16 | 2015-04-07 | Corning Cable Systems Llc | Fiber optic connector and bonded cover |
US9110252B2 (en) * | 2012-08-29 | 2015-08-18 | Lightel Technologies, Inc. | Adaptive device for inspecting endfaces of fiber-optic connector having multiple rows of fibers |
CA150291S (en) * | 2012-10-17 | 2014-01-20 | Fujikura Ltd | Optical connector cleaner |
US9488565B2 (en) | 2012-11-14 | 2016-11-08 | Revive Electronics, LLC | Method and apparatus for detecting moisture in portable electronic devices |
US9028154B2 (en) * | 2013-02-01 | 2015-05-12 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Adapter for cleaning an optical junction and reducing optical back reflection |
US9411110B2 (en) * | 2013-02-06 | 2016-08-09 | Corning Optical Communications LLC | Fiber optic connector cover and fiber optic assembly including same |
WO2014153007A1 (en) | 2013-03-14 | 2014-09-25 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US9939590B2 (en) * | 2013-10-22 | 2018-04-10 | CommScope Connectivity Spain, S.L. | Self-cleaning fiber optic connection system |
CN104668223A (en) * | 2013-11-28 | 2015-06-03 | 泰科电子(上海)有限公司 | Machine and method for cleaning optical fibers |
EP3238309A4 (en) | 2014-12-23 | 2019-01-02 | Revive Electronics LLC | Apparatuses and methods for controlling power to electronic devices |
USD800659S1 (en) | 2015-06-05 | 2017-10-24 | Corning Optical Communications LLC | Fiber optic connector |
USD800660S1 (en) | 2015-06-05 | 2017-10-24 | Corning Optical Communications LLC | Fiber optic connector |
US9971100B2 (en) * | 2016-03-01 | 2018-05-15 | Leviton Manufacturing Co., Inc. | Methods and devices for preventing contamination of fiber optic connectors |
US10335839B2 (en) | 2016-06-29 | 2019-07-02 | Lockheed Martin Corporation | Component connector servicer |
US10307803B2 (en) * | 2016-07-20 | 2019-06-04 | The United States Of America As Represented By Secretary Of The Navy | Transmission window cleanliness for directed energy devices |
US10591681B2 (en) * | 2017-07-13 | 2020-03-17 | Nest Technical Services, Inc. | Multichannel fiber optic connector, adapter, and contact retention method |
MX2021002326A (en) | 2018-08-29 | 2021-04-28 | Corning Inc | NOZZLES AND CLEANING METHODS FOR FIBER OPTIC CONNECTORS OR ADAPTERS. |
DE102019212775A1 (en) * | 2019-08-26 | 2021-03-04 | Meiko Maschinenbau Gmbh & Co. Kg | Cleaning basket for cleaning breathing apparatus |
US20220397724A1 (en) * | 2020-04-27 | 2022-12-15 | Fujikura Ltd. | Cleaning tool |
US12285783B2 (en) * | 2020-05-27 | 2025-04-29 | Viavi Solutions Inc. | Monitoring air pressure and flow in a fiber cleaning device |
CN111812788B (en) * | 2020-07-23 | 2022-03-18 | 西安蓝极医疗电子科技有限公司 | Medical optical fiber assembly applied to high-power high-photon energy laser |
JP2024515551A (en) * | 2021-04-05 | 2024-04-10 | ザイノン・テクノロジーズ・エルエルシー | Method for non-contact cleaning of optical fiber connectors and endfaces - Patents.com |
CN113857153B (en) * | 2021-11-21 | 2023-07-21 | 湖南玖芯光电科技有限公司 | Optical fiber end face cleaning method and equipment |
CN114779406B (en) * | 2022-04-09 | 2024-05-28 | 贵州湘黔顺通信工程有限公司 | Optical fiber coupler and optical fiber plug thereof |
CN118329782B (en) * | 2024-06-17 | 2024-08-20 | 成都博视达科技有限公司 | Electrode slice defect detection method, device and storage medium |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1796338A (en) * | 1929-02-08 | 1931-03-17 | Dampney Company Of America | Means for and method of coating the interior of tubes |
US1939612A (en) * | 1933-06-09 | 1933-12-12 | William H Rose | Liquid pervious container attachment |
US2218738A (en) * | 1939-08-02 | 1940-10-22 | Louis A Bisson | Mouth freshener and dental cleanser implement |
US2318365A (en) * | 1940-03-11 | 1943-05-04 | Boysen Bigelow | Dental and mouth cleansing means |
US2616820A (en) * | 1947-05-19 | 1952-11-04 | Saint Gobain | Vibratory cleansing of objects |
US2851008A (en) * | 1956-10-04 | 1958-09-09 | Clarence E Augsbach | Eraser means |
US3118163A (en) * | 1962-12-17 | 1964-01-21 | Abberly Nicholas Rippen | Bath sponge of foamed plastic |
US3319281A (en) * | 1966-03-31 | 1967-05-16 | James M Montgomery | Toilet bowl cleaning tool |
US3694845A (en) * | 1970-10-14 | 1972-10-03 | Horizon Ind Ltd | Cleansing device for surgical scrubs |
US3708818A (en) * | 1969-11-26 | 1973-01-09 | Siemens Ag | Apparatus for cleaning tubes and the like |
US3998012A (en) * | 1974-04-10 | 1976-12-21 | Reuben Ness | Abrading article |
US4028162A (en) * | 1974-10-24 | 1977-06-07 | Bell Telephone Laboratories, Incorporated | Method of splicing pairs of arrayed or individual fibers utilizing optical fiber aligning grooves |
US4045121A (en) * | 1976-01-22 | 1977-08-30 | The Deutsch Company Electronic Components Division | Optical fiber connector |
US4065409A (en) * | 1975-08-01 | 1977-12-27 | Corporate Brands, Inc. | Hard surface detergent composition |
US4077702A (en) * | 1975-07-21 | 1978-03-07 | Siemens Aktiengesellschaft | Splicing element for connection of individual light waveguides |
US4148559A (en) * | 1976-10-05 | 1979-04-10 | Societe Anonyme Dite: Les Cables De Lyon | Method and device for connecting optical fibres |
US4218133A (en) * | 1977-08-25 | 1980-08-19 | Agfa-Gevaert, A.G. | Photographic copying apparatus |
US4263692A (en) * | 1979-09-06 | 1981-04-28 | Gremillion Kenneth P | Shipboard communications phone-jack cleaner |
US4322127A (en) * | 1979-12-31 | 1982-03-30 | International Business Machines Corporation | Self-aligned plug connector for optical fibers |
US4428092A (en) * | 1982-03-01 | 1984-01-31 | Bell Telephone Laboratories, Incorporated | Electrical terminal pin conditioning apparatus |
US4604649A (en) * | 1981-11-24 | 1986-08-05 | Vought Corporation | Radiographic inspection means and method |
US4637089A (en) * | 1984-08-03 | 1987-01-20 | Siemens Aktiengesellschaft | Device for cleaning light waveguide plug connector parts |
US4733428A (en) * | 1985-11-12 | 1988-03-29 | Amphenol Corporation | Tool for cleaning an optical surface |
US4767180A (en) * | 1985-08-13 | 1988-08-30 | Radiall Industrie | Device for making a non-permanent connection between two optical fibers, mobile plug members and holding device for same, and appropriate method of preparing an optical fiber termination |
US4785586A (en) * | 1987-03-11 | 1988-11-22 | Kratfel Edward R | Cue tip shaping device |
US4816951A (en) * | 1984-11-22 | 1989-03-28 | Giovanni Zago | Device for cleaning tape contacting members in video tape recorders and the like apparatus |
US4850536A (en) * | 1986-10-14 | 1989-07-25 | Arimitsu Industry Co., Ltd. | Liquid ejection apparatus |
US4901142A (en) * | 1987-03-23 | 1990-02-13 | Olympus Optical Co., Ltd. | Video scope system |
US4998672A (en) * | 1987-07-20 | 1991-03-12 | Sames S.A. | Manually controlled spraying installation and sprayer |
US5023464A (en) * | 1989-09-20 | 1991-06-11 | Hitachi, Ltd. | Fixing apparatus and recording apparatus |
US5080461A (en) * | 1990-10-31 | 1992-01-14 | At&T Bell Laboratories | Retracting optical fiber connector |
US5117528A (en) * | 1989-04-06 | 1992-06-02 | Nippon Telegraph And Telephone Corporation | Optical connector cleaner |
US5135590A (en) * | 1991-05-24 | 1992-08-04 | At&T Bell Laboratories | Optical fiber alignment method |
US5144775A (en) * | 1991-06-26 | 1992-09-08 | Curtis Manufacturing Company, Inc. | Cleaning cartridge for computer and video games |
US5148572A (en) * | 1989-12-20 | 1992-09-22 | Wells James M | Video game console and cartridge cleaning kit |
US5151964A (en) * | 1991-09-06 | 1992-09-29 | Minnesota Mining And Manufacturing Company | Wedge-actuated multiple optical fiber splice |
US5210647A (en) * | 1991-09-20 | 1993-05-11 | Minnesota Mining And Manufacturing Company | Fiber viewer |
US5220703A (en) * | 1989-04-06 | 1993-06-22 | Nippon Telegraph & Telephone Co. | Combination of optical connector cleaner and holder jig |
US5226101A (en) * | 1992-06-15 | 1993-07-06 | Siecor Corporation | Method of laser polishing fiber optic connectors |
US5230032A (en) * | 1991-05-09 | 1993-07-20 | Itt Corporation | Abutting tips fiber optic connector and method of making same |
US5317661A (en) * | 1993-07-06 | 1994-05-31 | Siecor Corporation | Laser removal of altered index of refraction layer on glass fibers |
US5325452A (en) * | 1993-04-09 | 1994-06-28 | Stein Harold M | Device for cleaning and polishing an optical fiber |
US5332157A (en) * | 1990-10-01 | 1994-07-26 | Take 5 | Hand operated fluid dispenser for multiple fluids and dispenser bottle |
US5376446A (en) * | 1991-02-01 | 1994-12-27 | E. I. Du Pont De Nemours And Company | Electrically dissipative composite |
US5381504A (en) * | 1993-11-15 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Optical fiber element having a permanent protective coating with a Shore D hardness value of 65 or more |
US5381498A (en) * | 1993-09-16 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Modular multifiber connector with phone-like plug and socket |
US5472119A (en) * | 1994-08-22 | 1995-12-05 | S. C. Johnson & Son, Inc. | Assembly for dispensing fluids from multiple containers, while simultaneously and instantaneously venting the fluid containers |
US5487398A (en) * | 1993-06-22 | 1996-01-30 | Tadahiro Ohmi | Rotary cleaning method with chemical solutions and rotary cleaning apparatus with chemical solutions |
US5557696A (en) * | 1995-04-24 | 1996-09-17 | Stein; Harold M. | Adaptors for a device for cleaning and polishing an optical fiber |
US20030111094A1 (en) * | 2001-12-13 | 2003-06-19 | 3M Innovative Properties Company | Liquid spray device and method for cleaning optical surfaces |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257495A (en) * | 1978-05-10 | 1981-03-24 | National Research Development Corporation | Damping device |
GB2108600A (en) * | 1981-10-24 | 1983-05-18 | Leyland Vehicles | Continuously-variable-ratio transmisson |
IN176702B (en) * | 1988-11-21 | 1996-08-24 | Torotrak Dev Ltd | |
US5423727A (en) * | 1988-11-21 | 1995-06-13 | Torotrak (Development) Limited | Transmission of the toroidal-race rolling-traction type |
US5730162A (en) | 1995-01-12 | 1998-03-24 | Tokyo Electron Limited | Apparatus and method for washing substrates |
US5573015A (en) | 1995-03-28 | 1996-11-12 | Williams; Colin D. | Extruded ear plug |
GB9507185D0 (en) | 1995-04-06 | 1995-05-31 | Incro Ltd | Spraying apparatus and nozzle devices |
GB2301634A (en) | 1995-05-04 | 1996-12-11 | Hay Nien Company Limited | Spray bottle |
GB9513141D0 (en) * | 1995-06-28 | 1995-08-30 | Greenwood Christopher J | Improvements in or relating to continuously-variable-ratio transmissions of the toroidal-race rolling traction type |
KR0127820Y1 (en) | 1995-08-14 | 1998-12-15 | 유기범 | Optical Connector Ferrule Cleaner with Belt Plate |
KR0149596B1 (en) | 1995-10-12 | 1999-04-15 | 김광호 | Alignment device and manufacturing method of optical device coupling system |
US5836031A (en) | 1996-06-07 | 1998-11-17 | Minnesota Mining And Manufacturing Company | Fiber optic cable cleaner |
US5925191A (en) | 1996-05-13 | 1999-07-20 | Stein; Harold M. | Ferrule cleaning rod and method of use |
US5761758A (en) | 1996-08-29 | 1998-06-09 | Mellon; William H. | Flexible jack cleaning tool |
JP3345316B2 (en) * | 1996-09-27 | 2002-11-18 | カルテンバハ アンド フォイト ゲー エム ベー ハー アンド カンパニー | Hand instrument for medical or dental care |
US5863211A (en) | 1996-12-12 | 1999-01-26 | International Business Machines Corporation | Inter-book-package mechanical and electrical connection system |
EP0966697A2 (en) * | 1997-03-10 | 1999-12-29 | Minnesota Mining And Manufacturing Company | Fiber optic cable cleaner |
US5878458A (en) | 1997-06-23 | 1999-03-09 | Higginbotham; William Earl | Electronic card lock cleaner |
US5906686A (en) | 1997-11-18 | 1999-05-25 | Lucent Technologies Inc. | Fiber optic connector cleaning process |
US6053985A (en) | 1997-12-12 | 2000-04-25 | Cheswick; Alfred J. | Method of cleaning optical fibers and connectors and apparatus used therefor |
US6186670B1 (en) * | 1998-06-02 | 2001-02-13 | Pirelli Cable Corporation | Optical fiber connector module |
US6209162B1 (en) | 1999-03-26 | 2001-04-03 | Molex Incorporated | System for cleaning fiber optic connectors |
US6209163B1 (en) | 1999-03-26 | 2001-04-03 | Molex Incorporated | Cleaner for fiber optic connectors |
US6347974B1 (en) | 1999-10-26 | 2002-02-19 | William Keith Chandler | Automated polishing methods |
US6374030B2 (en) | 1999-12-07 | 2002-04-16 | The Whitaker Corporation | Connector cleaning insert and assembly |
US20020162582A1 (en) * | 2000-12-13 | 2002-11-07 | Ching Chu | Optical fiber connector system cleaning machine |
US6619854B2 (en) * | 2001-01-31 | 2003-09-16 | Teradyne, Inc. | Techniques for cleaning an optical interface of an optical connection system |
US6619954B2 (en) * | 2001-11-09 | 2003-09-16 | The Timao Group, Inc. | Bundled optical and fluid conduits |
US6851008B2 (en) * | 2002-03-06 | 2005-02-01 | Broadcom Corporation | Adaptive flow control method and apparatus |
US7089624B2 (en) * | 2002-03-11 | 2006-08-15 | Molex Incorporated | Cleaner for fiber optic connectors |
US6839935B2 (en) * | 2002-05-29 | 2005-01-11 | Teradyne, Inc. | Methods and apparatus for cleaning optical connectors |
-
2002
- 2002-07-18 US US10/199,925 patent/US6821025B2/en not_active Expired - Lifetime
-
2004
- 2004-10-08 US US10/961,838 patent/US7147490B2/en not_active Expired - Lifetime
-
2006
- 2006-08-21 US US11/507,952 patent/US20070196056A1/en not_active Abandoned
Patent Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1796338A (en) * | 1929-02-08 | 1931-03-17 | Dampney Company Of America | Means for and method of coating the interior of tubes |
US1939612A (en) * | 1933-06-09 | 1933-12-12 | William H Rose | Liquid pervious container attachment |
US2218738A (en) * | 1939-08-02 | 1940-10-22 | Louis A Bisson | Mouth freshener and dental cleanser implement |
US2318365A (en) * | 1940-03-11 | 1943-05-04 | Boysen Bigelow | Dental and mouth cleansing means |
US2616820A (en) * | 1947-05-19 | 1952-11-04 | Saint Gobain | Vibratory cleansing of objects |
US2851008A (en) * | 1956-10-04 | 1958-09-09 | Clarence E Augsbach | Eraser means |
US3118163A (en) * | 1962-12-17 | 1964-01-21 | Abberly Nicholas Rippen | Bath sponge of foamed plastic |
US3319281A (en) * | 1966-03-31 | 1967-05-16 | James M Montgomery | Toilet bowl cleaning tool |
US3708818A (en) * | 1969-11-26 | 1973-01-09 | Siemens Ag | Apparatus for cleaning tubes and the like |
US3694845A (en) * | 1970-10-14 | 1972-10-03 | Horizon Ind Ltd | Cleansing device for surgical scrubs |
US3998012A (en) * | 1974-04-10 | 1976-12-21 | Reuben Ness | Abrading article |
US4028162A (en) * | 1974-10-24 | 1977-06-07 | Bell Telephone Laboratories, Incorporated | Method of splicing pairs of arrayed or individual fibers utilizing optical fiber aligning grooves |
US4077702A (en) * | 1975-07-21 | 1978-03-07 | Siemens Aktiengesellschaft | Splicing element for connection of individual light waveguides |
US4065409A (en) * | 1975-08-01 | 1977-12-27 | Corporate Brands, Inc. | Hard surface detergent composition |
US4045121A (en) * | 1976-01-22 | 1977-08-30 | The Deutsch Company Electronic Components Division | Optical fiber connector |
US4148559A (en) * | 1976-10-05 | 1979-04-10 | Societe Anonyme Dite: Les Cables De Lyon | Method and device for connecting optical fibres |
US4218133A (en) * | 1977-08-25 | 1980-08-19 | Agfa-Gevaert, A.G. | Photographic copying apparatus |
US4263692A (en) * | 1979-09-06 | 1981-04-28 | Gremillion Kenneth P | Shipboard communications phone-jack cleaner |
US4322127A (en) * | 1979-12-31 | 1982-03-30 | International Business Machines Corporation | Self-aligned plug connector for optical fibers |
US4604649A (en) * | 1981-11-24 | 1986-08-05 | Vought Corporation | Radiographic inspection means and method |
US4428092A (en) * | 1982-03-01 | 1984-01-31 | Bell Telephone Laboratories, Incorporated | Electrical terminal pin conditioning apparatus |
US4637089A (en) * | 1984-08-03 | 1987-01-20 | Siemens Aktiengesellschaft | Device for cleaning light waveguide plug connector parts |
US4816951A (en) * | 1984-11-22 | 1989-03-28 | Giovanni Zago | Device for cleaning tape contacting members in video tape recorders and the like apparatus |
US4767180A (en) * | 1985-08-13 | 1988-08-30 | Radiall Industrie | Device for making a non-permanent connection between two optical fibers, mobile plug members and holding device for same, and appropriate method of preparing an optical fiber termination |
US4733428A (en) * | 1985-11-12 | 1988-03-29 | Amphenol Corporation | Tool for cleaning an optical surface |
US4850536A (en) * | 1986-10-14 | 1989-07-25 | Arimitsu Industry Co., Ltd. | Liquid ejection apparatus |
US4785586A (en) * | 1987-03-11 | 1988-11-22 | Kratfel Edward R | Cue tip shaping device |
US4901142A (en) * | 1987-03-23 | 1990-02-13 | Olympus Optical Co., Ltd. | Video scope system |
US4998672A (en) * | 1987-07-20 | 1991-03-12 | Sames S.A. | Manually controlled spraying installation and sprayer |
US5117528A (en) * | 1989-04-06 | 1992-06-02 | Nippon Telegraph And Telephone Corporation | Optical connector cleaner |
US5220703A (en) * | 1989-04-06 | 1993-06-22 | Nippon Telegraph & Telephone Co. | Combination of optical connector cleaner and holder jig |
US5023464A (en) * | 1989-09-20 | 1991-06-11 | Hitachi, Ltd. | Fixing apparatus and recording apparatus |
US5148572A (en) * | 1989-12-20 | 1992-09-22 | Wells James M | Video game console and cartridge cleaning kit |
US5332157A (en) * | 1990-10-01 | 1994-07-26 | Take 5 | Hand operated fluid dispenser for multiple fluids and dispenser bottle |
US5080461A (en) * | 1990-10-31 | 1992-01-14 | At&T Bell Laboratories | Retracting optical fiber connector |
US5376446A (en) * | 1991-02-01 | 1994-12-27 | E. I. Du Pont De Nemours And Company | Electrically dissipative composite |
US5230032A (en) * | 1991-05-09 | 1993-07-20 | Itt Corporation | Abutting tips fiber optic connector and method of making same |
US5135590A (en) * | 1991-05-24 | 1992-08-04 | At&T Bell Laboratories | Optical fiber alignment method |
US5281301A (en) * | 1991-05-24 | 1994-01-25 | At&T Laboratories | Alignment and assembly method |
US5144775A (en) * | 1991-06-26 | 1992-09-08 | Curtis Manufacturing Company, Inc. | Cleaning cartridge for computer and video games |
US5151964A (en) * | 1991-09-06 | 1992-09-29 | Minnesota Mining And Manufacturing Company | Wedge-actuated multiple optical fiber splice |
US5210647A (en) * | 1991-09-20 | 1993-05-11 | Minnesota Mining And Manufacturing Company | Fiber viewer |
US5226101A (en) * | 1992-06-15 | 1993-07-06 | Siecor Corporation | Method of laser polishing fiber optic connectors |
US5325452A (en) * | 1993-04-09 | 1994-06-28 | Stein Harold M | Device for cleaning and polishing an optical fiber |
US5487398A (en) * | 1993-06-22 | 1996-01-30 | Tadahiro Ohmi | Rotary cleaning method with chemical solutions and rotary cleaning apparatus with chemical solutions |
US5317661A (en) * | 1993-07-06 | 1994-05-31 | Siecor Corporation | Laser removal of altered index of refraction layer on glass fibers |
US5381498A (en) * | 1993-09-16 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Modular multifiber connector with phone-like plug and socket |
US5381504A (en) * | 1993-11-15 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Optical fiber element having a permanent protective coating with a Shore D hardness value of 65 or more |
US5472119A (en) * | 1994-08-22 | 1995-12-05 | S. C. Johnson & Son, Inc. | Assembly for dispensing fluids from multiple containers, while simultaneously and instantaneously venting the fluid containers |
US5557696A (en) * | 1995-04-24 | 1996-09-17 | Stein; Harold M. | Adaptors for a device for cleaning and polishing an optical fiber |
US20030111094A1 (en) * | 2001-12-13 | 2003-06-19 | 3M Innovative Properties Company | Liquid spray device and method for cleaning optical surfaces |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9207454B1 (en) | 2013-03-15 | 2015-12-08 | Cadence Design Systems, Inc. | System and method for dust contamination prevention and removal in fiber-optic panel-mount assemblies |
US9891389B1 (en) * | 2016-10-14 | 2018-02-13 | Corning Optical Communications LLC | Cleaning nozzle, apparatus, nozzle assembly, and methods for optical fiber connectors |
US10955624B2 (en) | 2016-11-04 | 2021-03-23 | Corning Optical Communications LLC | Cleaning nozzle and nozzle assembly and cleaning methods for optical fiber connectors |
US11668882B2 (en) | 2016-11-04 | 2023-06-06 | Corning Optical Communications LLC | Cleaning nozzle and nozzle assembly and cleaning methods for optical fiber connectors |
US11415757B2 (en) * | 2017-03-10 | 2022-08-16 | Corning Optical Communications LLC | Cleaning nozzle and nozzle assembly for multi-fiber connectors |
WO2025075896A1 (en) * | 2023-10-02 | 2025-04-10 | Zynon Technologies, Llc | Cleaning tip for non-contact cleaning of fiber optic connectors and end faces |
Also Published As
Publication number | Publication date |
---|---|
US20040013370A1 (en) | 2004-01-22 |
US6821025B2 (en) | 2004-11-23 |
US7147490B2 (en) | 2006-12-12 |
US20050105859A1 (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6821025B2 (en) | Fiber-optic endface cleaning assembly and method | |
US7232262B2 (en) | Fiber-optic endface cleaning apparatus and method | |
US11167320B2 (en) | Cleaning nozzles and methods for optical fiber connectors or adapters | |
US7215864B1 (en) | Low-cost portable fiber-optic connector cleaner | |
US12174430B2 (en) | End face protection tape for fiber optic connector; and methods | |
US9891389B1 (en) | Cleaning nozzle, apparatus, nozzle assembly, and methods for optical fiber connectors | |
US20020102065A1 (en) | Techniques for cleaning an optical interface of an optical connection system | |
KR20030028452A (en) | Adapter retaining method and pull-protector for fiber optic cable | |
US6125227A (en) | Fiber optic cable cleaner | |
US12220733B2 (en) | Method for non-contact cleaning of fiber optic connectors and end faces | |
US20020162582A1 (en) | Optical fiber connector system cleaning machine | |
US6863080B2 (en) | Liquid spray device and method for cleaning optical surfaces | |
JPH0968623A (en) | Cleaning method for optical connector and cleaning implement therefor | |
WO2025075896A1 (en) | Cleaning tip for non-contact cleaning of fiber optic connectors and end faces | |
WO2006030796A1 (en) | Method, jig and jig unit for cleaning optical connector, and optical connector | |
JP2016151599A (en) | Optical connector cleaner and optical connector cleaning method | |
MXPA99008155A (en) | Fiber optic cable cleaner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |