+

US20070194937A1 - Transponder and method for a wireless data transmission - Google Patents

Transponder and method for a wireless data transmission Download PDF

Info

Publication number
US20070194937A1
US20070194937A1 US11/705,009 US70500907A US2007194937A1 US 20070194937 A1 US20070194937 A1 US 20070194937A1 US 70500907 A US70500907 A US 70500907A US 2007194937 A1 US2007194937 A1 US 2007194937A1
Authority
US
United States
Prior art keywords
transponder
input terminals
settable
base station
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/705,009
Inventor
Martin Berhorst
Alexander Kurz
Peter Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Germany GmbH filed Critical Atmel Germany GmbH
Assigned to ATMEL GERMANY GMBH reassignment ATMEL GERMANY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KURZ, ALEXANDER, BERHORST, MARTIN, SCHNEIDER, PETER
Publication of US20070194937A1 publication Critical patent/US20070194937A1/en
Assigned to ATMEL AUTOMOTIVE GMBH reassignment ATMEL AUTOMOTIVE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL GERMANY GMBH
Priority to US13/037,509 priority Critical patent/US8847737B2/en
Assigned to ATMEL CORPORATION reassignment ATMEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL AUTOMOTIVE GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to a transponder and a method for wireless data transmission.
  • Contactless identification systems or radio-frequency-identification (RFID) systems typically include a base station, a reading device, or a reading unit and a plurality of transponders or remote sensors.
  • the transponders or their transmitting and receiving devices typically do not have an active transmitter for data transmission to the base station.
  • Such inactive systems are called passive systems when they do not have their own power supply, and semipassive systems when they have their own power supply. Passive transponders draw the power necessary for their supply from the electromagnetic field emitted by the base station.
  • the transponder For data transmission between the transponder and the base station, for example, for a programming operation of the transponder, the transponder has an interface of a specific interface type, which is compatible with the corresponding interface type of the base station.
  • the interface types can be divided, in a preliminary rough grouping, into contact and contactless types.
  • the interface types with which the data transmission occurs contactless or contact-free differ, inter alia, in the operating or carrier frequency used for the data transmission, i.e., the frequency transmitted by the base station.
  • frequencies are, for example, 125 kHz (LF range), 13.56 MHz (RF range), a frequency range between 860 MHz to 960 MHz (UHF range), and a frequency range greater than 3 GHz (microwave range).
  • Another differentiating feature of the different interface types is the type of coupling between the specific interfaces of the transponder and the base station.
  • an inductive or magnetic coupling and a far-field coupling are differentiated. Described in simplified terms, in inductive or near-field coupling, an antenna coil of the base station and an antenna coil connected to the input circuit of the transponder form a transformer, which is why this type of coupling is also called a transformer coupling.
  • inductive coupling a maximum distance between the transponder and the base station is limited to the near field of the employed antenna. The near-field range is substantially established by the operating frequency of the interface.
  • a modulation is usually used in inductive coupling for data transmission from a transponder to a base station; in this regard, see, for example, Finkenzeller, Chapter 3.2.1.2.1 “Load Modulation.”
  • the base station in inductive coupling usually transmits a carrier signal with a frequency in a frequency range of 50 kHz to 250 kHz.
  • the base station via amplitude modulation of the carrier signal first generates a short field gap or a so-called “gap”; i.e., the amplitude of the carrier signal is dampened or attenuated briefly, for example, for about 50 ⁇ s to 400 ⁇ s, or totally suppressed.
  • Characters which are transmitted subsequent to the initiation of the data transmission by the base station are encoded by associated durations between temporally successive field gaps.
  • a first character value is hereby assigned a first duration and at least one second character value is assigned a second duration.
  • the transponder determines the specific durations between the field gaps and determines the value of the transmitted character from the determined duration.
  • the signal courses generated by the base station and received by the transponder by inductive coupling have established maximum tolerances, for example, in regard to their time course and/or employed level.
  • the quality of a parallel resonant circuit which is formed by the antenna coil and a capacitor connected parallel thereto, is increased in order to enable the supplying of the passive transponder from the field transmitted by the base station at greater distances as well.
  • the reduced damping of the resonant circuit has the effect that at a field gap a coil voltage or a voltage of the parallel resonant circuit of the transponder declines more slowly than in the case of a resonant circuit with a lower quality and therefore higher damping.
  • the field gap in the transponder can be detected, however, only when the coil voltage or a voltage obtained from the coil voltage by rectification has declined below a settable potential, field gaps can be detected in a delayed manner in comparison with a resonant circuit with a lower quality. This has the result that the durations of the field gaps detected in the transponder are shortened and the durations between the field gaps are lengthened. This change in the timing of the signal courses detected in the transponder is influenced directly by the quality of the resonant circuit. Because the timing must lie within predefined limit values, however, the signal transmitted by the base station should have a timing, which depends on the quality of the resonant circuit of the transponder, because otherwise transmission errors can arise.
  • the transponder of the invention comprises an input circuit with input terminals for connecting an antenna coil and/or an LC resonant circuit for data transmission to a base station by means of inductive coupling, a first controllable switch, at least one resistor, which is looped in series with the first controllable switch between the input terminals of the input circuit, and a controller which is designed in such a way that it connects through the first switch as soon as or when a voltage applied at the input terminals falls below a first settable threshold value, and again interrupts it as soon as or when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.
  • the second settable threshold value is preferably greater than the first settable threshold value.
  • the voltage applied at the input terminals can also be rectified for evaluating the signal level.
  • the closed switch in conjunction with the resistor has the effect that the damping of the resonant circuit increases depending on a selected resistance value, as soon as a first field gap is detected. After the detection of the first field gap, this leads to a rapid, substantially quality-independent decline in the coil voltage in subsequently generated field gaps.
  • the switch is interrupted, as a result of which the effective quality of the resonant circuit again increases considerably, as a result of which a high range is achievable. All in all, this means that despite high qualities of the resonant circuit a uniform timing of the signals received in the transponder or transmitted by the base station is achievable. In this way, it is possible to combine high transmission ranges and a quality-independent operation.
  • the transponder can be passive. Particularly in passive transponders, considerable range improvements can be achieved with the method of the invention with simultaneous retention of the data transmission quality.
  • the switch can be a transistor, particularly a MOS transistor.
  • the input circuit can be designed to process frequencies within a frequency range of 50 kHz to 250 kHz, particularly 125 kHz.
  • the input circuit for the data transmission to the base station comprises a modulation unit with a controllable voltage limiting unit, which is designed in such a way that it limits the voltage applied at the input terminals to a first settable maximum value or to a second settable maximum value.
  • the modulation unit is used in particular for load modulation.
  • the voltage limiting unit contains circuit parts, which limit or clamp the voltage applied at the input terminals, as a function of the control state, to the first settable maximum value or to the second settable maximum value.
  • the second maximum value is smaller than the first maximum value and the voltage limiting unit is driven in such a way that it adjusts the second, i.e., smaller maximum value, when the first switch is switched through, and adjusts the first, i.e., higher maximum value, when the first switch is interrupted. Because of the resulting simultaneous voltage reduction, when the resistor is switched on to increase the damping, the duration is again reduced, which the coil voltage requires, in order to decline in the case of a field gap below the first threshold value for detecting the field gap.
  • a resistive load between the input terminals is turned on as soon as a voltage applied at the input terminals falls below a first settable threshold value, and turns off again as soon as or when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.
  • FIG. 1 illustrates a passive transponder with an input circuit for connecting an antenna coil for inductive coupling with a base station
  • FIG. 2 is a timing diagram during a data transmission from a base station to the transponder of FIG. 1 .
  • FIG. 1 shows a passive transponder TR in the form of an integrated circuit with an input circuit EK with input terminals A 1 and A 2 for connecting an antenna coil L 1 for inductive coupling with a conventional base station (not shown).
  • a capacitor C 1 is connected parallel to the antenna coil L 1 , whereby antenna coil L 1 and capacitor C 1 form a parallel resonant circuit whose resonance frequency is matched to a base station transmission frequency of 125 kHz.
  • Antenna coil L 1 forms a transformer coupling with an antenna coil (not shown) of the base station.
  • Input circuit EK of the transponder TR comprises a controllable voltage limiting unit BE as part of a modulation unit (not shown further), which is used for data transmission from transponder TR to base station by means of load modulation.
  • a switching element in the form of a MOS transistor T 1 and a resistor R 1 are looped serially between the input terminals A 1 and A 2 of the input circuit EK.
  • An alternating voltage U 1 applied at the input terminals A 1 and A 2 supplies a rectifier GL of the input circuit EK, which generates a supply voltage for the transponder TR.
  • the rectified input voltage is supplied to a signal processing unit SV of the input circuit EK for field gap detection.
  • Transponder TR comprises furthermore a controller SE for controlling the transponder functions, which can be realized as a microprocessor or as a state machine.
  • Controller SE generates a drive signal WD for transistor T 1 and a drive signal MOD for voltage limiting unit BE, and receives a field gap detection signal GAP from the signal processing unit SV.
  • FIG. 2 shows a timing diagram during data transmission from a base station to the transponder of FIG. 1 . Only the envelope curve is shown for the voltage U 1 .
  • the rectified voltage U 1 is shown as signal S 1 again as an envelope curve.
  • the field gap detection signal GAP or the transistor drive signals WD and MOD are shown in the two lower diagrams. In the case of data receipt from the base station, the signals WD and MOD can have identical time courses.
  • the base station Before the data transmission, the base station by means of its antenna coils generates a magnetic alternating field with a frequency of 125 kHz, which owing to the inductive coupling induces the alternating voltage U 1 between the input terminals A 1 and A 2 ; An amplitude of the alternating voltage U 1 is limited or clamped to a maximum voltage UMAX by the voltage limiting unit BE.
  • the base station To initiate the data transmission within the scope of a write access operation to the transponder TR, the base station generates a field gap or a gap by suppressing the carrier signal.
  • the voltage U 1 of the parallel resonant circuit declines depending on its quality only slowly along the envelope curve.
  • the course of the rectified voltage U 1 is evaluated in the signal processing unit SV.
  • the signal processing unit SV When the voltage U 1 falls below a threshold value SW for the first time, the signal processing unit SV generates an active signal GAP, i.e., indicates the detected field gap to the controller SE.
  • Controller SE thereupon activates the signals MOD and WD, i.e., the transistor T 1 is connected through or turned on.
  • the through-connected transistor T 1 causes a resistive load in the form of resistor R 1 between the input terminals A 1 and A 2 to be connected, as a result of which the quality of the resonant circuit is reduced or its damping increased.
  • This causes the envelope curve of voltage U 1 in the case of a field gap to decrease much more rapidly; i.e., subsequent field gaps can be detected with a much smaller delay.
  • the signal course with the lower damping i.e., without a connected resistor R 1
  • the dashed line As is evident from FIG. 2 , until the detection of the field gap, a time difference ⁇ t arises between the conventional, undamped signal course and the more greatly damped signal course of the invention.
  • the signal course of the invention therefore corresponds much better to an ideal signal course, in which the voltage U 1 or the signal S 1 in the case of a field gap declines abruptly, as a result of which it is possible to detect the field gap without delay.
  • the resonant circuit damping is hereby determined substantially by the value of the resistor R 1 , i.e., the portions caused by antenna coil L 1 and capacitor C 1 are negligible.
  • the timing of the signal received by the transponder after the detection of the first field gap is therefore independent of the quality of antenna coil L 1 and of capacitor C 1 , i.e., the base station can generate its transmitting signal regardless of timing or of which antenna coil type is used in the transponder.
  • the voltage limiting unit BE driven by the active modulation signal MOD, causes the voltage U 1 to be limited or clamped to a value UWD.
  • the voltage reduction of the voltage U 1 to the maximum voltage value UWD also produces a more rapid detectability of a field gap, because voltage U 1 declines from a lower starting value to the threshold value SW.
  • the base station After the initiation of the data transmission by generation of the first field gap, the base station again turns on its carrier signal. Owing to the activated modulation signal MOD, the voltage limiting unit BE limits the voltage U 1 to the value UWD.
  • Characters which are transmitted subsequent to the initiation of the data transmission by the base station are encoded by the associated durations t 0 or t 1 between temporally successive field gaps. A first character value “0” is hereby assigned the duration t 0 and a second character value “1” the duration t 1 .
  • the transponder TR determines the specific durations t 0 or t 1 between the field gaps and determines the value of the transmitted character from the determined duration. In the shown case, the exemplary binary character sequence “1010” is transmitted to the transponder.
  • the transponder TR detects the end of the data transmission. It thereupon deactivates the signals WD and MOD. This causes, on the one hand, an increase in the quality of the input resonant circuit and, on the other, an increase in the maximum value of the voltage U 1 to the value UMAX, because the voltage limiting unit BE owing to the deactivated signal MOD limits the voltage U 1 to the maximum value UMAX.
  • the shown embodiments enable a high transmission range between base station and transponder due to the high settable quality of the input resonant circuit comprising an antenna coil L 1 and capacitor C 1 and simultaneously a substantially quality-independent timing of the signals generated by the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

A transponder and a method for wireless data transmission is provided. The transponder comprises an input circuit with input terminals for connecting an antenna coil for data transmission to a base station by means of inductive coupling, a first controllable switching means, at least one resistor, which is looped in series with the first controllable switching means between the input terminals of the input circuit, and a controller which is designed in such a way that it connects through the first switching means as soon as a voltage applied at the input terminals falls below a first settable threshold value, and again interrupts it as soon as the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.

Description

  • This nonprovisional application claims priority under 35 U.S.C. § 119(a) on German Patent Application No. DE 102006007261, which was filed in Germany on Feb. 10, 2006, and which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a transponder and a method for wireless data transmission.
  • 2. Description of the Background Art
  • Contactless identification systems or radio-frequency-identification (RFID) systems typically include a base station, a reading device, or a reading unit and a plurality of transponders or remote sensors. The transponders or their transmitting and receiving devices typically do not have an active transmitter for data transmission to the base station. Such inactive systems are called passive systems when they do not have their own power supply, and semipassive systems when they have their own power supply. Passive transponders draw the power necessary for their supply from the electromagnetic field emitted by the base station.
  • For data transmission between the transponder and the base station, for example, for a programming operation of the transponder, the transponder has an interface of a specific interface type, which is compatible with the corresponding interface type of the base station. The interface types can be divided, in a preliminary rough grouping, into contact and contactless types.
  • The interface types with which the data transmission occurs contactless or contact-free differ, inter alia, in the operating or carrier frequency used for the data transmission, i.e., the frequency transmitted by the base station. Frequently used frequencies are, for example, 125 kHz (LF range), 13.56 MHz (RF range), a frequency range between 860 MHz to 960 MHz (UHF range), and a frequency range greater than 3 GHz (microwave range).
  • Another differentiating feature of the different interface types is the type of coupling between the specific interfaces of the transponder and the base station. In this case, inter alia, an inductive or magnetic coupling and a far-field coupling are differentiated. Described in simplified terms, in inductive or near-field coupling, an antenna coil of the base station and an antenna coil connected to the input circuit of the transponder form a transformer, which is why this type of coupling is also called a transformer coupling. In inductive coupling, a maximum distance between the transponder and the base station is limited to the near field of the employed antenna. The near-field range is substantially established by the operating frequency of the interface.
  • A modulation is usually used in inductive coupling for data transmission from a transponder to a base station; in this regard, see, for example, Finkenzeller, Chapter 3.2.1.2.1 “Load Modulation.”
  • For data transmission from the base station to the transponder, the base station in inductive coupling usually transmits a carrier signal with a frequency in a frequency range of 50 kHz to 250 kHz. To begin the data transmission, the base station via amplitude modulation of the carrier signal first generates a short field gap or a so-called “gap”; i.e., the amplitude of the carrier signal is dampened or attenuated briefly, for example, for about 50 μs to 400 μs, or totally suppressed.
  • Characters which are transmitted subsequent to the initiation of the data transmission by the base station are encoded by associated durations between temporally successive field gaps. A first character value is hereby assigned a first duration and at least one second character value is assigned a second duration. To decode the transmitted characters, the transponder determines the specific durations between the field gaps and determines the value of the transmitted character from the determined duration.
  • For error-free data transmission or decoding of the characters, it is necessary that the signal courses generated by the base station and received by the transponder by inductive coupling have established maximum tolerances, for example, in regard to their time course and/or employed level.
  • To increase the achievable ranges between base station and passive transponders, the quality of a parallel resonant circuit, which is formed by the antenna coil and a capacitor connected parallel thereto, is increased in order to enable the supplying of the passive transponder from the field transmitted by the base station at greater distances as well. The reduced damping of the resonant circuit has the effect that at a field gap a coil voltage or a voltage of the parallel resonant circuit of the transponder declines more slowly than in the case of a resonant circuit with a lower quality and therefore higher damping. Because the field gap in the transponder can be detected, however, only when the coil voltage or a voltage obtained from the coil voltage by rectification has declined below a settable potential, field gaps can be detected in a delayed manner in comparison with a resonant circuit with a lower quality. This has the result that the durations of the field gaps detected in the transponder are shortened and the durations between the field gaps are lengthened. This change in the timing of the signal courses detected in the transponder is influenced directly by the quality of the resonant circuit. Because the timing must lie within predefined limit values, however, the signal transmitted by the base station should have a timing, which depends on the quality of the resonant circuit of the transponder, because otherwise transmission errors can arise.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a transponder and a method for wireless data transmission, which enable a high transmission range between base station and transponder and a substantially quality-independent timing of the signals generated by the base station.
  • The transponder of the invention comprises an input circuit with input terminals for connecting an antenna coil and/or an LC resonant circuit for data transmission to a base station by means of inductive coupling, a first controllable switch, at least one resistor, which is looped in series with the first controllable switch between the input terminals of the input circuit, and a controller which is designed in such a way that it connects through the first switch as soon as or when a voltage applied at the input terminals falls below a first settable threshold value, and again interrupts it as soon as or when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value. The second settable threshold value is preferably greater than the first settable threshold value. The voltage applied at the input terminals can also be rectified for evaluating the signal level. The closed switch in conjunction with the resistor has the effect that the damping of the resonant circuit increases depending on a selected resistance value, as soon as a first field gap is detected. After the detection of the first field gap, this leads to a rapid, substantially quality-independent decline in the coil voltage in subsequently generated field gaps. At the end of the data transmission between the base station and the transponder, i.e., as soon as the voltage applied at the input terminals for the settable duration is above the first and/or above the second settable threshold value, the switch is interrupted, as a result of which the effective quality of the resonant circuit again increases considerably, as a result of which a high range is achievable. All in all, this means that despite high qualities of the resonant circuit a uniform timing of the signals received in the transponder or transmitted by the base station is achievable. In this way, it is possible to combine high transmission ranges and a quality-independent operation.
  • In an embodiment, the transponder can be passive. Particularly in passive transponders, considerable range improvements can be achieved with the method of the invention with simultaneous retention of the data transmission quality.
  • In a further embodiment, the switch can be a transistor, particularly a MOS transistor.
  • In a further embodiment, the input circuit can be designed to process frequencies within a frequency range of 50 kHz to 250 kHz, particularly 125 kHz.
  • In a further embodiment, the input circuit for the data transmission to the base station comprises a modulation unit with a controllable voltage limiting unit, which is designed in such a way that it limits the voltage applied at the input terminals to a first settable maximum value or to a second settable maximum value. The modulation unit is used in particular for load modulation. The voltage limiting unit contains circuit parts, which limit or clamp the voltage applied at the input terminals, as a function of the control state, to the first settable maximum value or to the second settable maximum value. Preferably, the second maximum value is smaller than the first maximum value and the voltage limiting unit is driven in such a way that it adjusts the second, i.e., smaller maximum value, when the first switch is switched through, and adjusts the first, i.e., higher maximum value, when the first switch is interrupted. Because of the resulting simultaneous voltage reduction, when the resistor is switched on to increase the damping, the duration is again reduced, which the coil voltage requires, in order to decline in the case of a field gap below the first threshold value for detecting the field gap.
  • In the method for wireless data transmission by means of inductive coupling between a base station and a transponder, which has an input circuit with input terminals for connecting an antenna coil and/or an LC resonant circuit, a resistive load between the input terminals is turned on as soon as a voltage applied at the input terminals falls below a first settable threshold value, and turns off again as soon as or when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.
  • Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
  • FIG. 1 illustrates a passive transponder with an input circuit for connecting an antenna coil for inductive coupling with a base station; and
  • FIG. 2 is a timing diagram during a data transmission from a base station to the transponder of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a passive transponder TR in the form of an integrated circuit with an input circuit EK with input terminals A1 and A2 for connecting an antenna coil L1 for inductive coupling with a conventional base station (not shown).
  • A capacitor C1 is connected parallel to the antenna coil L1, whereby antenna coil L1 and capacitor C1 form a parallel resonant circuit whose resonance frequency is matched to a base station transmission frequency of 125 kHz. Antenna coil L1 forms a transformer coupling with an antenna coil (not shown) of the base station.
  • Input circuit EK of the transponder TR comprises a controllable voltage limiting unit BE as part of a modulation unit (not shown further), which is used for data transmission from transponder TR to base station by means of load modulation.
  • A switching element in the form of a MOS transistor T1 and a resistor R1 are looped serially between the input terminals A1 and A2 of the input circuit EK.
  • An alternating voltage U1 applied at the input terminals A1 and A2 supplies a rectifier GL of the input circuit EK, which generates a supply voltage for the transponder TR. The rectified input voltage is supplied to a signal processing unit SV of the input circuit EK for field gap detection.
  • Transponder TR comprises furthermore a controller SE for controlling the transponder functions, which can be realized as a microprocessor or as a state machine. Controller SE generates a drive signal WD for transistor T1 and a drive signal MOD for voltage limiting unit BE, and receives a field gap detection signal GAP from the signal processing unit SV.
  • FIG. 2 shows a timing diagram during data transmission from a base station to the transponder of FIG. 1. Only the envelope curve is shown for the voltage U1. The rectified voltage U1 is shown as signal S1 again as an envelope curve. The field gap detection signal GAP or the transistor drive signals WD and MOD are shown in the two lower diagrams. In the case of data receipt from the base station, the signals WD and MOD can have identical time courses.
  • Before the data transmission, the base station by means of its antenna coils generates a magnetic alternating field with a frequency of 125 kHz, which owing to the inductive coupling induces the alternating voltage U1 between the input terminals A1 and A2; An amplitude of the alternating voltage U1 is limited or clamped to a maximum voltage UMAX by the voltage limiting unit BE.
  • To initiate the data transmission within the scope of a write access operation to the transponder TR, the base station generates a field gap or a gap by suppressing the carrier signal. The voltage U1 of the parallel resonant circuit declines depending on its quality only slowly along the envelope curve. The course of the rectified voltage U1 is evaluated in the signal processing unit SV. When the voltage U1 falls below a threshold value SW for the first time, the signal processing unit SV generates an active signal GAP, i.e., indicates the detected field gap to the controller SE.
  • Controller SE thereupon activates the signals MOD and WD, i.e., the transistor T1 is connected through or turned on. The through-connected transistor T1 causes a resistive load in the form of resistor R1 between the input terminals A1 and A2 to be connected, as a result of which the quality of the resonant circuit is reduced or its damping increased. This causes the envelope curve of voltage U1 in the case of a field gap to decrease much more rapidly; i.e., subsequent field gaps can be detected with a much smaller delay.
  • This is shown by way of example for the second field gap, here the signal course with the lower damping, i.e., without a connected resistor R1, is shown by the dashed line. As is evident from FIG. 2, until the detection of the field gap, a time difference Δt arises between the conventional, undamped signal course and the more greatly damped signal course of the invention. The signal course of the invention therefore corresponds much better to an ideal signal course, in which the voltage U1 or the signal S1 in the case of a field gap declines abruptly, as a result of which it is possible to detect the field gap without delay.
  • The resonant circuit damping is hereby determined substantially by the value of the resistor R1, i.e., the portions caused by antenna coil L1 and capacitor C1 are negligible. The timing of the signal received by the transponder after the detection of the first field gap is therefore independent of the quality of antenna coil L1 and of capacitor C1, i.e., the base station can generate its transmitting signal regardless of timing or of which antenna coil type is used in the transponder.
  • The voltage limiting unit BE, driven by the active modulation signal MOD, causes the voltage U1 to be limited or clamped to a value UWD. The voltage reduction of the voltage U1 to the maximum voltage value UWD also produces a more rapid detectability of a field gap, because voltage U1 declines from a lower starting value to the threshold value SW.
  • After the initiation of the data transmission by generation of the first field gap, the base station again turns on its carrier signal. Owing to the activated modulation signal MOD, the voltage limiting unit BE limits the voltage U1 to the value UWD. Characters which are transmitted subsequent to the initiation of the data transmission by the base station are encoded by the associated durations t0 or t1 between temporally successive field gaps. A first character value “0” is hereby assigned the duration t0 and a second character value “1” the duration t1. To decode the transmitted characters, the transponder TR determines the specific durations t0 or t1 between the field gaps and determines the value of the transmitted character from the determined duration. In the shown case, the exemplary binary character sequence “1010” is transmitted to the transponder.
  • When the base station has transmitted the desired number of characters, it then no longer generates any field gaps. When a maximum duration tmax has elapsed since the last field gap (i.e., the voltage U1 applied at the input terminals A1, A2 is above the first threshold value SW for the duration tmax), the transponder TR detects the end of the data transmission. It thereupon deactivates the signals WD and MOD. This causes, on the one hand, an increase in the quality of the input resonant circuit and, on the other, an increase in the maximum value of the voltage U1 to the value UMAX, because the voltage limiting unit BE owing to the deactivated signal MOD limits the voltage U1 to the maximum value UMAX. To detect whether the data transmission has ended, it is also possible to use another, for example, higher threshold value (not shown) instead of the threshold value SW, whereby it is then checked accordingly whether the voltage U1 is above this threshold value for the maximum duration tmax.
  • The shown embodiments enable a high transmission range between base station and transponder due to the high settable quality of the input resonant circuit comprising an antenna coil L1 and capacitor C1 and simultaneously a substantially quality-independent timing of the signals generated by the base station.
  • The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.

Claims (6)

1. A transponder comprising
an input circuit having input terminals for connecting an antenna coil for facilitating data transmission to a base station by inductive coupling;
a first controllable switch;
at least one resistor that is looped in series with the first controllable switch between the input terminals of the input circuit; and
a controller that connects the first controllable switch when a voltage applied at the input terminals falls below a first settable threshold value and interrupts the first controllable switch when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.
2. The transponder according to claim 1, wherein the transponder is a passive transponder.
3. The transponder according to claim 1, wherein the first controllable switch is a transistor or a MOS transistor.
4. The transponder according to claim 1, wherein the input circuit processes frequencies within a frequency range of 50 kHz to 250 kHz.
5. The transponder according to claim 1, wherein the input circuit for the data transmission to the base station comprises a modulation unit with a controllable voltage limiting unit, which limits the voltage applied at the input terminals to a first settable maximum value or to a second settable maximum value.
6. A method for wireless data transmission via inductive coupling between a base station and a transponder, which has an input circuit with input terminals for connecting an antenna coil, the method comprising:
turning on a resistive load that is provided between the input terminals when a voltage applied at the input terminals falls below a first settable threshold value; and
turning off the resistive load when the voltage applied at the input terminals for a settable duration is above the first settable threshold value and/or above a second settable threshold value.
US11/705,009 2006-02-10 2007-02-12 Transponder and method for a wireless data transmission Abandoned US20070194937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/037,509 US8847737B2 (en) 2006-02-10 2011-03-01 Transponder and method for wireless data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE102006007261 2006-02-10
DE200610007261 DE102006007261A1 (en) 2006-02-10 2006-02-10 Transponder and method for wireless data transmission

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/037,509 Continuation US8847737B2 (en) 2006-02-10 2011-03-01 Transponder and method for wireless data transmission

Publications (1)

Publication Number Publication Date
US20070194937A1 true US20070194937A1 (en) 2007-08-23

Family

ID=38057523

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/705,009 Abandoned US20070194937A1 (en) 2006-02-10 2007-02-12 Transponder and method for a wireless data transmission
US13/037,509 Active 2029-03-30 US8847737B2 (en) 2006-02-10 2011-03-01 Transponder and method for wireless data transmission

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/037,509 Active 2029-03-30 US8847737B2 (en) 2006-02-10 2011-03-01 Transponder and method for wireless data transmission

Country Status (3)

Country Link
US (2) US20070194937A1 (en)
EP (1) EP1818858B1 (en)
DE (1) DE102006007261A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012700A1 (en) * 2004-04-19 2008-01-17 Peter Turban Transponder
US20090153300A1 (en) * 2007-10-16 2009-06-18 Texas Instruments Deutschland, Gmbh Rfid transponder with high downlink data rate
US20090195366A1 (en) * 2007-10-16 2009-08-06 Texas Instruments Deutschland, Gmbh High performance rfid transponder with fast downlink
US20100127820A1 (en) * 2007-01-31 2010-05-27 Herbert Froitzheim Quality adjustment of a receiving circuit
US20130283083A1 (en) * 2011-09-30 2013-10-24 Reed D. Vilhauer Maintaining operational stability on a system on a chip

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056031B4 (en) * 2010-12-27 2019-10-24 Atmel Corp. Passive transponder with a charging circuit and method for generating a supply voltage for a passive transponder
US9484629B2 (en) 2011-11-22 2016-11-01 Microsoft Technology Licensing, Llc Multi-use antenna
CN110086508B (en) * 2019-03-28 2021-08-03 惠州Tcl移动通信有限公司 Voltage adjusting method, system, storage medium and mobile terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083179A1 (en) * 2000-06-06 2005-04-21 Battelle Memorial Institute Phase modulation in RF tag
US20060076837A1 (en) * 2004-09-30 2006-04-13 Fujitsu Limited Rectifier circuit
US7151455B2 (en) * 2004-04-30 2006-12-19 Kimberly-Clark Worldwide, Inc. Activating a data tag by load or orientation or user control
US7240838B2 (en) * 2000-07-21 2007-07-10 Mbbs Holding S.A. Transponder and reader system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287112A (en) * 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
US5541604A (en) * 1993-09-03 1996-07-30 Texas Instruments Deutschland Gmbh Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement
GB9408588D0 (en) * 1994-04-29 1994-06-22 Disys Corp Passive transponder
JP3451506B2 (en) 1995-03-15 2003-09-29 オムロン株式会社 Data carrier
SG54559A1 (en) 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
DE19744782C2 (en) 1997-10-10 1999-09-23 Anatoli Stobbe Method and device for data transmission between a read / write device and a transponder
US6351215B2 (en) * 1998-06-02 2002-02-26 Rf Code, Inc. Monitoring antenna system
DE10245747B4 (en) * 2002-10-01 2005-12-01 Infineon Technologies Ag Contactless data carrier
US7014112B2 (en) * 2003-04-29 2006-03-21 Hewlett-Packard Development Company, L.P. Electronic identification label and interrogator for use therewith
JP3871667B2 (en) * 2003-08-18 2007-01-24 松下電器産業株式会社 Non-contact IC card
DE102004031671B4 (en) * 2004-06-30 2016-01-07 Infineon Technologies Ag Modulator circuitry, transceiver, reader and method of forming a modulated signal
DE102005032590A1 (en) * 2004-07-12 2006-02-09 Atmel Germany Gmbh Modulator for a wireless data transmission device, e.g. for a transponder in an RFID system, has a multistage rectifier circuit and at least a circuit device that is controlled by the modulation control signal in a feedback manner
CA2621920A1 (en) * 2005-09-23 2007-03-29 Ipico Innovation Inc. Radio frequency identification device systems
WO2008045570A2 (en) * 2006-10-11 2008-04-17 Kovio, Inc. Multi-mode tags and methods of making and using the same
DE102007049486B4 (en) * 2007-10-16 2018-08-09 Texas Instruments Deutschland Gmbh High performance RFID transponder with fast downlink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083179A1 (en) * 2000-06-06 2005-04-21 Battelle Memorial Institute Phase modulation in RF tag
US7240838B2 (en) * 2000-07-21 2007-07-10 Mbbs Holding S.A. Transponder and reader system
US7151455B2 (en) * 2004-04-30 2006-12-19 Kimberly-Clark Worldwide, Inc. Activating a data tag by load or orientation or user control
US20060076837A1 (en) * 2004-09-30 2006-04-13 Fujitsu Limited Rectifier circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012700A1 (en) * 2004-04-19 2008-01-17 Peter Turban Transponder
US7504935B2 (en) * 2004-04-19 2009-03-17 Siemens Aktiengesellschaft Transponder
US20100127820A1 (en) * 2007-01-31 2010-05-27 Herbert Froitzheim Quality adjustment of a receiving circuit
US9148189B2 (en) * 2007-01-31 2015-09-29 Continental Automotive Gmbh Quality adjustment of a receiving circuit
US20090153300A1 (en) * 2007-10-16 2009-06-18 Texas Instruments Deutschland, Gmbh Rfid transponder with high downlink data rate
US20090195366A1 (en) * 2007-10-16 2009-08-06 Texas Instruments Deutschland, Gmbh High performance rfid transponder with fast downlink
US20130283083A1 (en) * 2011-09-30 2013-10-24 Reed D. Vilhauer Maintaining operational stability on a system on a chip

Also Published As

Publication number Publication date
EP1818858A3 (en) 2008-06-25
EP1818858B1 (en) 2012-12-26
EP1818858A2 (en) 2007-08-15
DE102006007261A1 (en) 2007-08-23
US8847737B2 (en) 2014-09-30
US20110177781A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US8847737B2 (en) Transponder and method for wireless data transmission
US9661401B2 (en) Locating a backscatter-based transponder
EP0953181B1 (en) Multiple tag reading system
JP4657283B2 (en) Identification medium detection method
EP3279837B1 (en) Electronic tamper detection device
JPH02237323A (en) Identifying apparatus
JPH11120303A (en) Noncontact ic card system, card reader for ic card, and ic card
US20080012689A1 (en) Radio frequency identification system and method thereof
US8195100B2 (en) Transponder circuit with double clock extractor unit
US8013716B2 (en) Method for wireless data transmission
US8699560B2 (en) Method for wireless data transmission between a base station and a passive transponder, as well as a passive transponder
CA2343365A1 (en) Electrostatic radio frequency identification system having contactless programmability
US9165169B2 (en) Method for data communication between a base station and a transponder
US8363737B2 (en) Wireless data transmission between a base station and a transponder via inductive coupling
JP2007518298A (en) Synchronization during collision prevention
KR102710975B1 (en) Rf reader capable of detecting rf signal transmitted from rf active device in standby mode
US9634725B2 (en) Anticollision mechanism for an NFC device
US8022813B2 (en) Method of inventorizing a plurality of data carriers
JP2010109782A (en) Communications device, communicating mobile terminal, and reader/writer for non-contact ic card
KR20060005487A (en) Wireless data transceiver
JPH07240698A (en) Data communication system
AU737367B2 (en) Multiple tag reading system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATMEL GERMANY GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERHORST, MARTIN;KURZ, ALEXANDER;SCHNEIDER, PETER;REEL/FRAME:018986/0222;SIGNING DATES FROM 20070209 TO 20070212

AS Assignment

Owner name: ATMEL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATMEL GERMANY GMBH;REEL/FRAME:023205/0838

Effective date: 20081205

Owner name: ATMEL AUTOMOTIVE GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATMEL GERMANY GMBH;REEL/FRAME:023205/0838

Effective date: 20081205

AS Assignment

Owner name: ATMEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATMEL AUTOMOTIVE GMBH;REEL/FRAME:025899/0710

Effective date: 20110228

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载