US20070191503A1 - Method for producing solvent-free uv-crosslinkable acrylate pressure-sensitive adhesives - Google Patents
Method for producing solvent-free uv-crosslinkable acrylate pressure-sensitive adhesives Download PDFInfo
- Publication number
- US20070191503A1 US20070191503A1 US10/557,086 US55708604A US2007191503A1 US 20070191503 A1 US20070191503 A1 US 20070191503A1 US 55708604 A US55708604 A US 55708604A US 2007191503 A1 US2007191503 A1 US 2007191503A1
- Authority
- US
- United States
- Prior art keywords
- polymerization
- free
- sensitive adhesive
- polyacrylate
- adhesive composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004820 Pressure-sensitive adhesive Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 title description 17
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 64
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 62
- 238000004132 cross linking Methods 0.000 claims description 31
- 239000000178 monomer Substances 0.000 claims description 26
- 239000003999 initiator Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 230000032683 aging Effects 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 239000003112 inhibitor Substances 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 125000005395 methacrylic acid group Chemical group 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000004014 plasticizer Substances 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000012988 Dithioester Substances 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 125000005022 dithioester group Chemical group 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 239000004611 light stabiliser Substances 0.000 claims description 2
- 239000012989 trithiocarbonate Substances 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims 1
- -1 nitroxide compounds Chemical class 0.000 description 34
- 229920000642 polymer Polymers 0.000 description 33
- 238000012360 testing method Methods 0.000 description 17
- 230000001070 adhesive effect Effects 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000012943 hotmelt Substances 0.000 description 15
- 239000002390 adhesive tape Substances 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 150000003254 radicals Chemical group 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000012876 carrier material Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- MSMAPCFQRXQMRL-UHFFFAOYSA-N (2-oxo-1,2-diphenylethyl) prop-2-enoate Chemical compound C=1C=CC=CC=1C(OC(=O)C=C)C(=O)C1=CC=CC=C1 MSMAPCFQRXQMRL-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 0 [1*]C(=C)C(=O)O[2*] Chemical compound [1*]C(=C)C(=O)O[2*] 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- NJXYTXADXSRFTJ-UHFFFAOYSA-N 1,2-Dimethoxy-4-vinylbenzene Chemical compound COC1=CC=C(C=C)C=C1OC NJXYTXADXSRFTJ-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- 101710141544 Allatotropin-related peptide Proteins 0.000 description 2
- ITKBWZPRAFZVNW-UHFFFAOYSA-N C=C(C)SC Chemical compound C=C(C)SC ITKBWZPRAFZVNW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000004775 Tyvek Substances 0.000 description 2
- 229920000690 Tyvek Polymers 0.000 description 2
- 150000008062 acetophenones Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- BMFYCFSWWDXEPB-UHFFFAOYSA-N cyclohexyl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1 BMFYCFSWWDXEPB-UHFFFAOYSA-N 0.000 description 2
- 150000002118 epoxides Chemical group 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000000016 photochemical curing Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- BEUWVXJCXULGES-UHFFFAOYSA-N (2-tert-butylphenyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1C(C)(C)C BEUWVXJCXULGES-UHFFFAOYSA-N 0.000 description 1
- VHRJYXSVRKBCEX-UHFFFAOYSA-N (2-tert-butylphenyl) prop-2-enoate Chemical compound CC(C)(C)C1=CC=CC=C1OC(=O)C=C VHRJYXSVRKBCEX-UHFFFAOYSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- MFEWNFVBWPABCX-UHFFFAOYSA-N 1,1,2,2-tetraphenylethane-1,2-diol Chemical compound C=1C=CC=CC=1C(C(O)(C=1C=CC=CC=1)C=1C=CC=CC=1)(O)C1=CC=CC=C1 MFEWNFVBWPABCX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- QSSXJPIWXQTSIX-UHFFFAOYSA-N 1-bromo-2-methylbenzene Chemical compound CC1=CC=CC=C1Br QSSXJPIWXQTSIX-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- WMUBNWIGNSIRDH-UHFFFAOYSA-N 2,3,3-trichloroprop-2-enoic acid Chemical compound OC(=O)C(Cl)=C(Cl)Cl WMUBNWIGNSIRDH-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- DJKKWVGWYCKUFC-UHFFFAOYSA-N 2-butoxyethyl 2-methylprop-2-enoate Chemical compound CCCCOCCOC(=O)C(C)=C DJKKWVGWYCKUFC-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- IGDLZDCWMRPMGL-UHFFFAOYSA-N 2-ethenylisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(C=C)C(=O)C2=C1 IGDLZDCWMRPMGL-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- CEXQWAAGPPNOQF-UHFFFAOYSA-N 2-phenoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC1=CC=CC=C1 CEXQWAAGPPNOQF-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical compound BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- XFOFBPRPOAWWPA-UHFFFAOYSA-N 6-hydroxyhexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCO XFOFBPRPOAWWPA-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- QAIFTEKXRFATOA-UHFFFAOYSA-N CC(SC(=S)SC(C)c1ccccc1)c1ccccc1.S=C(Sc1ccccc1)c1ccccc1 Chemical compound CC(SC(=S)SC(C)c1ccccc1)c1ccccc1.S=C(Sc1ccccc1)c1ccccc1 QAIFTEKXRFATOA-UHFFFAOYSA-N 0.000 description 1
- LYDODUOPDJULET-UHFFFAOYSA-N CC1=C(C(=C(C(=O)[PH2]=O)C=C1)C)C Chemical compound CC1=C(C(=C(C(=O)[PH2]=O)C=C1)C)C LYDODUOPDJULET-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical class COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 238000010546 Norrish type I reaction Methods 0.000 description 1
- 238000010547 Norrish type II reaction Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Chemical class CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical class CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- KHAYCTOSKLIHEP-UHFFFAOYSA-N docosyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCCCOC(=O)C=C KHAYCTOSKLIHEP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- ZWEDFBKLJILTMC-UHFFFAOYSA-N ethyl 4,4,4-trifluoro-3-hydroxybutanoate Chemical compound CCOC(=O)CC(O)C(F)(F)F ZWEDFBKLJILTMC-UHFFFAOYSA-N 0.000 description 1
- XWNVSPGTJSGNPU-UHFFFAOYSA-N ethyl 4-chloro-1h-indole-2-carboxylate Chemical compound C1=CC=C2NC(C(=O)OCC)=CC2=C1Cl XWNVSPGTJSGNPU-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000011086 glassine Substances 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LSWADWIFYOAQRZ-UHFFFAOYSA-N n-(ethoxymethyl)prop-2-enamide Chemical compound CCOCNC(=O)C=C LSWADWIFYOAQRZ-UHFFFAOYSA-N 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- RGBXDEHYFWDBKD-UHFFFAOYSA-N propan-2-yl propan-2-yloxy carbonate Chemical compound CC(C)OOC(=O)OC(C)C RGBXDEHYFWDBKD-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- BWSZXUOMATYHHI-UHFFFAOYSA-N tert-butyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(C)(C)C BWSZXUOMATYHHI-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1812—Tubular reactors
- B01J19/1818—Tubular reactors in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/20—Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/02—Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
- B29C48/435—Sub-screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
- B29C48/435—Sub-screws
- B29C48/44—Planetary screws
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/02—Polymerisation in bulk
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/06—Organic solvent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/066—Copolymers with monomers not covered by C09D133/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
- C09J7/381—Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/385—Acrylic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00132—Controlling the temperature using electric heating or cooling elements
- B01J2219/00135—Electric resistance heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00186—Controlling or regulating processes controlling the composition of the reactive mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/18—Details relating to the spatial orientation of the reactor
- B01J2219/182—Details relating to the spatial orientation of the reactor horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/76—Venting, drying means; Degassing means
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/918—Polymerization reactors for addition polymer preparation
Definitions
- the invention relates to a polyacrylate pressure-sensitive adhesive, to methods for producing a pressure-sensitive adhesive of this kind, and to the use of pressure-sensitive adhesives of this kind.
- polyacrylate pressure-sensitive adhesives For industrial pressure-sensitive adhesive tape applications it is very common to use polyacrylate pressure-sensitive adhesives.
- Polyacrylates possess a variety of advantages over other elastomers. They are very stable toward UV light, oxygen, and ozone. Synthetic and natural rubber adhesives generally contain double bonds, which render these adhesives unstable to the aforementioned environmental effects.
- a further advantage of polyacrylates is their transparency and their usefulness across a relatively wide temperature range.
- Polyacrylate pressure-sensitive adhesives are generally prepared in solution by means of a free-radical polymerization.
- the polyacrylates are, generally speaking, coated from solution onto the corresponding carrier material, via a coating bar, and subsequently dried. To increase the cohesion the polymer is crosslinked. Curing proceeds thermally or by UV crosslinking or by EB curing (EB: electron beams).
- EB electron beams
- the pressure-sensitive adhesive is applied from the melt to the carrier material.
- PSA pressure-sensitive adhesive
- This new technology also entails restrictions.
- the solvent Prior to coating, the solvent is removed from the PSA, which additionally is prepared in solution, in a drying extruder.
- the drying operation is associated with a relatively high temperature and shearing exposure, so that high molecular weight polyacrylate PSAs in particular are significantly damaged.
- the acrylate PSA undergoes gelling or the low molecular weight fraction is sharply enriched as a result of molecular weight reduction. Both effects are unwanted, since they are deleterious for the application. Either the adhesive can no longer be coated, or its technical adhesive properties are altered.
- polyacrylate adhesives having a low average molecular weight and a narrow molecular weight distribution.
- the fraction of low molecular weight and high molecular weight molecules in the polymer is sharply reduced as a result of the polymerization process.
- the disappearance of the high molecular weight fractions lowers the flow viscosity, and the composition shows less of a tendency to gel.
- the low molecular weight fraction there is a reduction in the number of oligomers, which reduce the shear strength of the PSA.
- a further controlled polymerization method used is that of atom transfer radical polymerization, ATRP.
- ATRP atom transfer radical polymerization
- the various possibilities of ATRP are described in U.S. Pat. No. 5,945,491 A, U.S. Pat. No. 5,854,364 A and U.S. Pat. No. 5,789,48 A.
- metal catalysts are used, a side-effect of which is a negative influence on the aging of the PSAs (gelling, transesterification).
- the majority of metal catalysts are toxic, discolor the adhesive, and can be removed from the polymer only by means of costly and inconvenient precipitations.
- U.S. Pat. No. 4,581,429 A discloses a controlled free-radical polymerization process.
- the process employs as its initiator a compound of the formula R′R′′N—O—X, in which X represents a free radical species which is able to polymerize unsaturated monomers.
- X represents a free radical species which is able to polymerize unsaturated monomers.
- the conversion rates of the reactions are generally low.
- a particular problem is the polymerization of acrylates, which proceeds only at very low yields and molecular weights.
- WO 96/24620 A, WO 98/30601 A, and WO 98/4408 A describe further polymerization methods in which regulating substances are used to prepare polymers having low polydispersities. Disadvantages of these methods include the low conversion and the use of solvents.
- RAFT Reversible Addition-Fragmentation Chain Transfer
- the process is described at length in WO 98/01478 A and WO 99/31144 A, but in the manner depicted therein is not suitable for the production of PSAs, since the conversions achieved are very low and the average molecular weight of the polymers produced is too low for acrylate PSAs. Hence the polymers described cannot be used as acrylate PSAs.
- An improvement is achieved with the process described in DE 100 30 217 A.
- the invention accordingly provides a method for producing a UV-crosslinkable solvent-free polyacrylate pressure-sensitive adhesive which possesses an average molecular weight M w (weight average) of 100 000 to 3 000 000 g/mol and also possesses copolymerized photoinitiator units.
- the polyacrylate PSAs are produced by way of a free-radical solvent-free polymerization operation.
- the polyacrylate PSA has an average molecular weight M w (weight average) of 100 000 to 800 000 g/mol and a polydispersity of not more than 4.0 and also possesses these copolymerized photoinitiator units.
- the production of the polyacrylate PSAs having a polydispersity of not more than 4.0 is accomplished by way of a free-radical solvent-free polymerization operation in a planetary roller extruder in which a polymer is prepared from a monomer mixture, the monomer mixture for polymerization comprising copolymerizable photoinitiators and the polymerization operation being regulated in particular by the presence of at least one chemical compound containing the unit as polymerization regulator, X being S, O or N.
- Polymerization regulators which can be used with great advantage for the purposes of the invention include trithiocarbonates or dithioesters.
- the present invention therefore relates, among other things, to a method for producing solvent-free UV-crosslinkable polyacrylate pressure-sensitive adhesives.
- the method is also notable for the fact that the preparation of the polymer takes place by means of solvent-free polymerization, the monomer mixture possessing copolymerizable photoinitiators.
- copolymerizable photoinitiators during the solvent-free polymerization produces a polymer which can be very efficiently crosslinked by UV radiation.
- the polymers prepared by such a method coat very well and are notable not only for the high UV crosslinking efficiency but also for their extremely low odor intensity. They are suitable, consequently, for producing adhesive tapes which can be used even under high shearing load.
- An adhesive tape coated with the adhesive of the invention possesses, moreover, no solvent residues, as is the case with adhesive tapes produced by the conventional method.
- Commercially available UV-crosslinkable acrylate hotmelt PSAs for example, still include a certain residual solvent fraction.
- the planetary roller extruder is suitable in particular by virtue of its outstanding thermal characteristics and also by virtue of the extraordinarily diverse possibilities of temperature control for this solvent-free polymerization.
- the extruder used is preferably operated continuously. Partial recycling of the product stream, referred to as loop operation, may also be advantageous. The most advantageous is to produce a solvent-free UV-crosslinkable polyacrylate PSA in a hydraulically filled planetary roller extruder. Hydraulic filling simplifies the observance of oxygen-free conditions and also the best-possible utilization of the extruder section. Moreover, phase boundaries are avoided, which can have disruptive consequences for the polymerization operation.
- the monomers can be metered to the polymerization reactor either individually or as a mixture.
- Preliminary mixing, particularly of the copolymerizable photoinitiator, ensures a uniform distribution of the reaction mixture.
- the polymer following polymerization in the planetary roller extruder, is removed from constituents which are still volatile, such as unreacted monomers, in a devolatilizing extruder. These constituents, after a determination of their composition, may be fed back to the starting-material stream.
- the polymer following polymerization and, where necessary, devolatilizing and, where appropriate, the addition of one or more of the additives—which addition may take place in the polymerization extruder and/or in a downstream compounding extruder—is coated from the melt, advantageously gel-free, onto a carrier
- gel-free denotes compliance with the requirements for coatability of the compositions using the coating apparatus which is commonly employed and which is familiar to the skilled worker for these purposes; in particular, for a coatability which is distinguished by a uniform (homogeneous) coating pattern with no inhomogeneities or streaks when coating takes place through the commonly used coating nozzles or by means of a roll applicator).
- UV-crosslinking polyacrylate PSA and the narrow-distribution, UV-crosslinking polyacrylate PSA are composed preferably of the following monomers
- the monomers a) used include acrylic monomers which comprise acrylic and methacrylic esters having alkyl groups consisting of 4 to 14 carbon atoms, preferably 4 to 9 carbon atoms.
- acrylic monomers which comprise acrylic and methacrylic esters having alkyl groups consisting of 4 to 14 carbon atoms, preferably 4 to 9 carbon atoms.
- Specific examples without wishing to be restricted unnecessarily by this enumeration, are n-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, such as 2-ethylhexyl acrylate, for example.
- Further classes of compound which can likewise be added in small amounts under a) are methyl meth
- photoinitiators with at least one vinyl compound are used for the monomers b).
- the photoinitiators may be of the Norrish I or Norrish II type.
- the photoinitiators include as a building block, preferably, one or more of the following radicals:
- acrylated benzophenone such as Ebecryl P 36TM from UCB, for example, or benzoin acrylate.
- monomers c) used include vinyl esters, vinyl ethers, vinyl halides, vinylidene halides, vinyl compounds with aromatic rings and heterocycles in ⁇ -position.
- vinyl esters, vinyl ethers, vinyl halides, vinylidene halides, vinyl compounds with aromatic rings and heterocycles in ⁇ -position include vinyl esters, vinyl ethers, vinyl halides, vinylidene halides, vinyl compounds with aromatic rings and heterocycles in ⁇ -position.
- monomers c) monomers having the following functional groups are employed: hydroxyl, carboxyl, epoxy, acid amide, isocyanato or amino groups.
- acrylic monomers are used for c) that conform to the following general formula where R 1 ⁇ H or CH 3 and the radical —OR 2 represents or includes the functional group and, for example, in one particularly preferred version, possesses an H-donor effect, which facilitates the UV crosslinking.
- component c) are hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, allyl alcohol, maleic anhydride, itaconic anhydride, itaconic acid, acrylamide, and glyceridyl methacrylate, benzyl acrylate, benzyl methacrylate, phenyl acrylate, phenyl methacrylate, tert-butylphenyl acrylate, tert-butylphenyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, 2-butoxyethyl methacrylate, 2-butoxyethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyl methacrylate, diethylaminoethyl acrylate, dieth
- aromatic vinyl compounds are used for component c), the aromatic nuclei consisting preferably of C 4 to C 18 and also being able to contain heteroatoms.
- Particularly preferred examples are styrene, 4-vinylpyridine, N-vinylphthalimide, methylstyrene, 3,4-dimethoxystyrene, and 4-vinylbenzoic acid; this enumeration should likewise not be understood as exhaustive.
- the monomers are chosen such that the resultant polymers can be employed as industrially useful PSAs, particularly such that the resulting polymers possess pressure-sensitive adhesion properties in accordance with the “Handbook of Pressure Sensitive Adhesive Technology” by Donatas Satas (van Nostrand, New York 1989).
- the static glass transition temperature of the resultant polymer is advantageously below 25° C.
- the polymerization is carried out preferably using a control reagent of the general formula: in which R and R′ are chosen independently of one another or are the same, and which come from the following list:
- Control reagents of type (I) consist in a more preferred version of the following compounds.
- Halogens in this case are preferably F, Cl, Br or I, more preferably Cl and Br.
- alkyl, alkenyl, and alkynyl radicals in the various substitutents outstanding suitability is possessed by both linear and branched chains.
- alkyl radicals containing 1 to 18 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, 2-pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, tert-octyl, nonyl, decyl, undecyl, tridecyl, tetradecyl, hexadecyl and octadecyl.
- alkenyl radicals having 3 to 18 carbon atoms are propenyl, 2-butenyl, 3-butenyl, isobutenyl, n-2,4-pentadienyl, 3-methyl-2-butenyl, n-2-octenyl, n-2-dodecenyl, isododecenyl, and oleyl.
- alkynyl having 3 to 18 carbon atoms examples include propynyl, 2-butynyl, 3-butynyl, n-2-octynyl, and n-2-octadecynyl.
- hydroxy-substituted alkyl radicals are hydroxypropyl, hydroxybutyl or hydroxyhexyl.
- halogen-substituted alkyl radicals are dichlorobutyl, monobromobutyl or trichlorohexyl.
- a suitable C 2 -C 18 hetero-alkyl radical having at least one oxygen atom in the carbon chain is, for example, —CH 2 —CH 2 —O—CH 2 —CH 3 .
- radicals serving as C 3 -C 12 cycloalkyl radicals include cyclopropyl, cyclopentyl, cyclohexyl or trimethylcyclohexyl.
- radicals serving as C 6 -C 18 aryl radicals include phenyl, naphthyl, benzyl, 4-tert-butylbenzyl- or further substituted phenyl, such as, for example, ethyl, toluene, xylene, mesitylene, isopropylbenzene, dichlorobenzene or bromotoluene.
- compounds (Ia) and (IIa) are used as control reagents.
- initiator systems which additionally contain further free-radical initiators for the polymerization, especially thermally decomposing free-radical-forming azo or peroxo initiators.
- Suitable in principle for this purpose are all customary initiators that are known for acrylates.
- the production of C-centered radicals is described in Houben Weyl, Methoden der Organischen Chemie, vol. E 19a, pages 60 to 147. These methods are preferentially employed analogously.
- free-radical sources are peroxides, hydroperoxides, and azo compounds; as a number of nonexclusive examples of typical free-radical initiators, mention may be made here of potassium peroxodisulfate, dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-tert-butyl peroxide, cyclohexylsulfonyl acetyl peroxide, diisopropyl percarbonate, tert-butyl peroctoate, and benzpinacol.
- the free-radical initiator used is 2,2′-azobisisobutyronitrile (Vazo 64TM from DuPont).
- the average molecular weights M w (weight averages) of the polymers formed in the controlled free-radical polymerization are chosen such that they are situated within a range of 100 000 and 800 000 g/mol; specifically for further use as hotmelt PSAs, PSAs are produced which have average molecular weights (weight averages) M w of 100 000 to 350 000 g/mol.
- the average molecular weight M w is determined in each case via size exclusion chromatography (gel permeation chromatography, GPC) or matrix-assisted laser-desorption/ionization coupled with mass spectrometry (MALDI-MS).
- the polymerization takes place in bulk without addition of solvents.
- the thermally decomposing initiators For initiating the polymerization it is essential, for the thermally decomposing initiators, to introduce heat.
- the thermally decomposing initiators the polymerization can be initiated by heating to 50 to 160° C., depending on initiator type.
- one or more plasticizers are metered in to the polyacrylates, such as, for example, low molecular weight polyacrylates, phthalates, phosphates, citrates, and water-soluble plasticizers (whale oil plasticizers).
- the polyacrylates may further be blended with one or more additives such as aging inhibitors, light stabilizers, ozone protectants, fatty acids, nucleators, expandants, compounding agents and/or accelerants.
- aging inhibitors reference may be made in particular to primary and secondary aging inhibitors, which are available commercially under the tradenames IrganoxTM from Ciba Geigy and HostanoxTM from Clariant.
- the invention also provides for the particularly preferred use of the polyacrylate pressure-sensitive adhesive for an adhesive tape, it being possible for the polyacrylate pressure-sensitive adhesive to have been applied to one or both sides of a carrier.
- Carrier materials used for the PSA, for adhesive tapes for example are the customary materials familiar to the skilled worker, such as films (polyesters, PET, PE, PP, BOPP, PVC), nonwovens, foams, woven fabrics, and woven films, and also release paper (glassine, HDPE, LDPE). This enumeration should likewise not be understood as exhaustive.
- the polyacrylate (the resultant polymer) is applied, preferably inline, to a carrier or to a carrier material, in the form of a layer.
- the PSA utility it is particularly advantageous to crosslink the polyacrylates after they have been coated onto the carrier or onto the carrier material.
- the above-described polymers are for this purpose blended, optionally, with crosslinkers.
- Preferred substances in accordance with the inventive method that crosslink under radiation are, for example, difunctional or polyfunctional acrylates or difunctional or polyfunctional urethane acrylates, difunctional or polyfunctional isocyanates or difunctional or polyfunctional epoxides.
- Noncopolymerized photoinitiators Suitable for this purpose are, preferably, Norrish type I and type II cleaving compounds, a number of possible examples of both classes being benzophenone derivatives, acetophenone derivatives, benzil derivatives, benzoin derivatives, hydroxyalkylphenone derivatives, phenyl cyclohexyl ketone derivatives, anthraquinone derivatives, thioxanthone derivatives, triazine derivatives, or fluorenone derivatives, this enumeration possessing no claim to completeness.
- benzophenone derivatives acetophenone derivatives, benzil derivatives, benzoin derivatives, hydroxyalkylphenone derivatives, phenyl cyclohexyl ketone derivatives, anthraquinone derivatives, thioxanthone derivatives, triazine derivatives, or fluorenone derivatives, this enumeration possessing no claim to completeness.
- UV crosslinking takes place very preferably by means of brief ultraviolet irradiation in a wavelength range from 200 to 450 nm, particularly using high-pressure or medium-pressure mercury lamps with an output of 80 to 240 W/cm.
- monochromatic radiation in the form of lasers.
- it may be appropriate to shade off part of the UV beam path.
- special reflector systems which function as cold light emitters in order thus to prevent instances of overheating.
- Typical irradiation equipment that can be employed includes linear cathode systems, scanner systems and/or segmented cathode systems, where the devices in question are electron beam accelerators.
- the polymerization was implemented using as reactor a planetary roller extruder consisting of three roller barrels in series.
- the roller barrels used have a roller diameter D of 70 mm and were equipped with 7 planetary spindles. Both central spindle and roller barrels are fitted with separate temperature-control circuits.
- the temperature-control medium used was pressurized water.
- the reactor is operated continuously. Prior to the beginning of metering the reactor is flushed with nitrogen for 1 hour. A mixture is produced from monomers and initiator. This initial mixture is rendered inert by nitrogen being passed through it. By means of a pump, the reaction mixture is conveyed through a static mixer, which is fitted with further feed devices, and then through a heat exchanger into the reactor. The reaction mixture is added continuously to the reactor via a hole drilled at the beginning of the first roller barrel. Located at the exit from the reactor is a valve by means of which the hydraulic filling of the reactor is ensured.
- the heat exchanger for feed preheating, central spindle, and roller barrels are controlled with the particular desired temperatures.
- the central spindle a temperature of 80° C. was set; the medium for feed preheating was set at 90° C.
- Roller barrels 1 and 3 were controlled to 100° C., roller barrel 2 to 95° C.
- the speed of the central spindle was 50 revolutions per minute.
- the hydrodynamic residence time was 15 minutes. Following emergence from the reactor, a sample is taken to determine the conversion. Subsequently, volatile constituents still present are removed in a devolatilizing extruder.
- the adhesive is coated at an application rate of 50 g/m 2 via a hotmelt coater having two heatable rolls onto a Saran-primed PET film 23 ⁇ m thick.
- UV irradiation was carried out using a UV unit from Eltosch.
- the unit is equipped with a medium-pressure Hg UV lamp having an intensity of 120 W/cm.
- the swatch specimens produced by method B were each run through the unit at a speed of 20 m/min, the specimens being irradiated in a plurality of passes in order to increase the irradiation dose.
- the UV dose was measured using the Power Puck from Eltosch.
- the dose of one irradiation pass was approximately 140 mJ/cm 2 in the UV-B range and 25 mJ/cm 2 in the UV-C range.
- 2,2′-Bis(phenylethyl)thiocarbonate is synthesized starting from 2-phenylethyl bromide with carbon disulfide and sodium hydroxide in accordance with instructions from Synth. Communications 18(13), pp. 1531-1536, 1988. Yield after distillation: 72%.
- the copolymerizable photoinitiator used was benzoin acrylate.
- the conversion rate was determined by gravimetry and is expressed as a percentage in relation to the amount by weight of monomers employed. To isolate the polymer it is dried in a vacuum cabinet. The weight of the polymer is weighed and divided by the initial mass of monomers employed. The calculated value corresponds to the percentage conversion.
- the average molecular weight M w and the polydispersity PD were determined by gel permeation chromatography.
- the eluent used was THF containing 0.1% by volume trifluoroacetic acid. Measurement took place at 25° C.
- the precolumn used was PSS-SDV, 5 ⁇ , 10 3 ⁇ , ID 8.0 mm ⁇ 50 mm. Separation was carried out using the columns PSS-SDV, 5 ⁇ , 10 3 and also 10 5 and 10 6 each with ID 8.0 mm ⁇ 300 mm.
- the sample concentration was 4 g/l, the flow rate 1.0 ml per minute. Measurement was carried out against PMMA standards.
- a strip of the adhesive tape 13 mm wide, was applied to a smooth steel surface which had been cleaned three times with acetone and once with isopropanol. The area of application measured 20 mm ⁇ 13 mm (length ⁇ width). Subsequently the adhesive tape was pressed onto the steel support four times using a 2 kg weight. At room temperature (RT) a 1 kg weight was affixed to the adhesive tape, and a measurement was made of the time taken for the weight to drop off.
- RT room temperature
- the holding power times (HP) measured are reported in minutes and correspond to the average from three measurements.
- a strip 20 mm wide of an acrylate PSA applied as a layer to polyester was applied to steel plates.
- the PSA strip was pressed onto the substrate twice using a 2 kg weight.
- the adhesive tape was subsequently peeled from the substrate immediately at 300 mm/min and at an angle of 180°.
- the steel plates were washed twice with acetone and once with isopropanol. The measurement results are reported in N/cm and are averaged from three measurements. All measurements were carried out at room temperature.
- a polymer was prepared by method A. 5% of acrylic acid, 95% of n-butyl acrylate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64TM, DuPont) were used.
- the average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- the specimen was tested in accordance with tests C, D and E.
- a polymer was prepared by method A. 4.5% of acrylic acid, 95% of n-butyl acrylate, 0.5% of benzoin acrylate and also 0.124% of 2,2′-bis(phenylethyl)thiocarbonate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64TM, DuPont) were used.
- the average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- a polymer was prepared by method A. 0.5% of acrylic acid, 49.5% of n-butyl acrylate, 49.5% of 2-ethylhexyl acrylate, 0.5% of benzoin acrylate and also 0.124% of 2,2′-bis(phenylethyl)thiocarbonate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64TM, DuPont) were used.
- the average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- the specimen was tested in accordance with tests C, D and E.
- Table 2 shows the results of the crosslinking and technical adhesive evaluation of the swatch specimens.
- TABLE 2 Gel index Gel index Exam- [%] after [%] after BS - steel HP at RT ple polymerization UV crosslinking [N/cm] [min] 1 0 0 2 0 48 5.2 >10 000 3 0 46 4.5 2780 HP: Holding Power RT: Room Temperature BS: Bond Strength
- Example 1 serves as a reference example.
- examples 2 to 3 are attached.
- acrylate PSAs were produced with copolymerized photoinitiator and with a low molar mass. Through the use of a regulator, polymers were obtained which had a narrow-distribution molecular weight distribution.
- Example 1 is very high molecular weight and cannot be coated. Through the use of the regulator in the case of example 2 and 3 the molecular weight is lowered to an extent such that coating, which is necessary for application in the adhesive tape, is possible.
- example 2 with an Mw of 593 000 g/mol, is coatable at 120° C.
- example 3 with a lower Mw of 487 000 g/mol, is coatable at just 110° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polymerisation Methods In General (AREA)
- Adhesive Tapes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A UV-crosslinkable polyacrylate pressure-sensitive adhesive composition comprising a polyacrylate having photoinitiator units incorporated therein by polymerization and being produced by a free-radical solvent-free polymerization process.
Description
- The invention relates to a polyacrylate pressure-sensitive adhesive, to methods for producing a pressure-sensitive adhesive of this kind, and to the use of pressure-sensitive adhesives of this kind.
- For industrial pressure-sensitive adhesive tape applications it is very common to use polyacrylate pressure-sensitive adhesives. Polyacrylates possess a variety of advantages over other elastomers. They are very stable toward UV light, oxygen, and ozone. Synthetic and natural rubber adhesives generally contain double bonds, which render these adhesives unstable to the aforementioned environmental effects. A further advantage of polyacrylates is their transparency and their usefulness across a relatively wide temperature range.
- Polyacrylate pressure-sensitive adhesives are generally prepared in solution by means of a free-radical polymerization. The polyacrylates are, generally speaking, coated from solution onto the corresponding carrier material, via a coating bar, and subsequently dried. To increase the cohesion the polymer is crosslinked. Curing proceeds thermally or by UV crosslinking or by EB curing (EB: electron beams). The operation described is relatively cost-intensive and environmentally objectionable, since as a general rule the solvent is not recycled, and a high level of consumption of organic solvents implies a high environmental burden.
- Furthermore, it is very difficult to produce pressure-sensitive adhesive tapes at high application rate without bubbles.
- Remediation of these drawbacks is implied by the hotmelt process. Here, the pressure-sensitive adhesive (PSA) is applied from the melt to the carrier material. This new technology, however, also entails restrictions. Prior to coating, the solvent is removed from the PSA, which additionally is prepared in solution, in a drying extruder. The drying operation is associated with a relatively high temperature and shearing exposure, so that high molecular weight polyacrylate PSAs in particular are significantly damaged. The acrylate PSA undergoes gelling or the low molecular weight fraction is sharply enriched as a result of molecular weight reduction. Both effects are unwanted, since they are deleterious for the application. Either the adhesive can no longer be coated, or its technical adhesive properties are altered.
- One solution for lessening these drawbacks is offered by polyacrylate adhesives having a low average molecular weight and a narrow molecular weight distribution. Here, the fraction of low molecular weight and high molecular weight molecules in the polymer is sharply reduced as a result of the polymerization process. The disappearance of the high molecular weight fractions lowers the flow viscosity, and the composition shows less of a tendency to gel. As a result of the lowering of the low molecular weight fraction, there is a reduction in the number of oligomers, which reduce the shear strength of the PSA.
- For producing low molecular weight PSAs a variety of polymerization methods are suitable. State of the art is the use of regulators, such as, for example, alcohols or thiols (Makromoleküle, Hans-Georg Elias, 5th edition, 1990, Hüthig & Wepf Verlag Basle). These regulators reduce the molecular weight but broaden the molecular weight distribution.
- A further controlled polymerization method used is that of atom transfer radical polymerization, ATRP. The various possibilities of ATRP are described in U.S. Pat. No. 5,945,491 A, U.S. Pat. No. 5,854,364 A and U.S. Pat. No. 5,789,48 A. Generally speaking, metal catalysts are used, a side-effect of which is a negative influence on the aging of the PSAs (gelling, transesterification). Moreover, the majority of metal catalysts are toxic, discolor the adhesive, and can be removed from the polymer only by means of costly and inconvenient precipitations.
- U.S. Pat. No. 4,581,429 A discloses a controlled free-radical polymerization process. The process employs as its initiator a compound of the formula R′R″N—O—X, in which X represents a free radical species which is able to polymerize unsaturated monomers. The conversion rates of the reactions, however, are generally low. A particular problem is the polymerization of acrylates, which proceeds only at very low yields and molecular weights.
- WO 96/24620 A, WO 98/30601 A, and WO 98/4408 A describe further polymerization methods in which regulating substances are used to prepare polymers having low polydispersities. Disadvantages of these methods include the low conversion and the use of solvents.
- In the aforementioned patents or papers an attempt is made to improve the control of free-radical polymerization reactions. There exists, nevertheless, a need for a nitroxide-controlled polymerization method which is highly reactive and with which high conversions are achievable in conjunction with high molecular weight and low polydispersity.
- Another version is the RAFT process (Reversible Addition-Fragmentation Chain Transfer). The process is described at length in WO 98/01478 A and WO 99/31144 A, but in the manner depicted therein is not suitable for the production of PSAs, since the conversions achieved are very low and the average molecular weight of the polymers produced is too low for acrylate PSAs. Hence the polymers described cannot be used as acrylate PSAs. An improvement is achieved with the process described in DE 100 30 217 A.
- Neither the method according to the RAFT process nor the use of nitroxide compounds, however, can be employed for UV crosslinking, since the compounds disclosed possess a radical scavenger effect, so that the crosslinking efficiency following addition of the free UV photoinitiator is too low.
- Guse (U.S. Pat. No. 4,144,157 A) describes a process in which the acrylate PSAs are readily UV-crosslinkable and can be processed as a hotmelt, and yet, owing to the broad molecular weight distribution, they do not possess good technical adhesive properties. A further disadvantage is that these PSAs are also produced by solution polymerization with subsequent removal of solvent.
- Commercially, low molecular weight acrylate hotmelts are offered in which benzophenone derivatives or acetophenone derivatives have been incorporated as an acrylated photoinitiator into the acrylate polymer chain. They can then be crosslinked with UV-radiation (see also U.S. Pat. No. 5,073,611 A). The shear strength achievable with such systems, however, is not satisfactory, since for a relatively low molecular weight (Mw (weight average) about 250 000 g/mol) these systems have a relatively broad distribution. A great disadvantage of these systems, moreover, is that they still contain measurable fractions of residual solvent and hence are not solvent-free.
- An improvement to acrylate PSAs in connection with their processing by the hotmelt method and subsequent UV crosslinking is achieved through the production of narrow-distribution acrylate PSAs with copolymerized photoinitiators—as set out in DE 101 49 084 A. The use of copolymerized photoinitiators significantly increases the crosslinking efficiency as compared with the use of promoters which promote UV crosslinking and are not added until after the polymerization. With this method, however, the polymerization still takes place in solution and the polymer melt is produced only by concentration down to a residual solvent content of <2%. The environmental and also economic problem described at the outset, namely the high level of consumption of organic solvents, is therefore not solved here either. A further factor is that possible solvent residues in the adhesive can lead to odor nuisance in the course of subsequent use.
- A solventless method for producing polyacrylates in a twin-screw extruder is described in EP 0 160 394 A. However, the acrylate hotmelt PSAs produced by that method have a high gel fraction, in some cases considerably so, of up to 55%, thereby severely impairing their further processing. Since, here as well, UV crosslinking is only possible through subsequent addition of promoters, the crosslinking efficiency, too, is low.
- The central problem which therefore remains is the production of solvent-free acrylate PSAs with an efficient UV crosslinking.
- It is an object of the invention, therefore, to provide a method for producing a solvent-free polyacrylate composition which can be processed very effectively by the hotmelt method and thereafter is very effectively crosslinkable, and also to provide the resultant acrylate hotmelt PSAs, which does not have the drawbacks of the cited prior art, or has them only to a reduced extent.
- This object is achieved by means of a method as recorded in the main claim. The dependent claims provide advantageous developments of the method and also of its pressure-sensitive adhesive.
- The invention accordingly provides a method for producing a UV-crosslinkable solvent-free polyacrylate pressure-sensitive adhesive which possesses an average molecular weight Mw (weight average) of 100 000 to 3 000 000 g/mol and also possesses copolymerized photoinitiator units.
- The polyacrylate PSAs are produced by way of a free-radical solvent-free polymerization operation.
- In one advantageous development of the polyacrylate PSA it has an average molecular weight Mw (weight average) of 100 000 to 800 000 g/mol and a polydispersity of not more than 4.0 and also possesses these copolymerized photoinitiator units.
- The production of the polyacrylate PSAs having a polydispersity of not more than 4.0 is accomplished by way of a free-radical solvent-free polymerization operation in a planetary roller extruder in which a polymer is prepared from a monomer mixture, the monomer mixture for polymerization comprising copolymerizable photoinitiators and the polymerization operation being regulated in particular by the presence of at least one chemical compound containing the unit
as polymerization regulator, X being S, O or N. - Polymerization regulators which can be used with great advantage for the purposes of the invention include trithiocarbonates or dithioesters.
- Surprisingly it has been found that through polymerization in a planetary roller extruder, when using copolymerizable photoinitiators, the latter are copolymerized in such a way that it is possible to produce solvent-free polyacrylate hotmelt PSAs which can be crosslinked very efficiently by UV radiation.
- The present invention therefore relates, among other things, to a method for producing solvent-free UV-crosslinkable polyacrylate pressure-sensitive adhesives. The method is also notable for the fact that the preparation of the polymer takes place by means of solvent-free polymerization, the monomer mixture possessing copolymerizable photoinitiators.
- The use of copolymerizable photoinitiators during the solvent-free polymerization produces a polymer which can be very efficiently crosslinked by UV radiation. The polymers prepared by such a method coat very well and are notable not only for the high UV crosslinking efficiency but also for their extremely low odor intensity. They are suitable, consequently, for producing adhesive tapes which can be used even under high shearing load. An adhesive tape coated with the adhesive of the invention possesses, moreover, no solvent residues, as is the case with adhesive tapes produced by the conventional method. Commercially available UV-crosslinkable acrylate hotmelt PSAs, for example, still include a certain residual solvent fraction. By means of the method of the invention it is possible, then, to produce adhesive tapes which contain no solvent.
- It has been found that the solvent-free production of a UV-crosslinkable polyacrylate hotmelt PSA is possible with advantage in an extruder. The planetary roller extruder, in particular, has proven suitable for such a method. Polymerization in the planetary roller extruder has the advantage that the tendency to form gel is substantially lower than in, say, a twin-screw extruder; particularly when using regulator substances and copolymerizable photoinitiators, a particularly low propensity to form gel is observed. This results in narrow-distribution polyacrylate hotmelt PSAs having very good further-processing properties, which are crosslinkable, furthermore, very efficiently by UV crosslinking.
- Owing to the customarily short residence time in the case of polymerizations in the planetary roller extruder, there was no possibility of predicting that the copolymerizable photoinitiator would be copolymerized in the course of the solvent-free polymerization to an extent necessary for crosslinking. Surprisingly, even in the case of combined use of copolymerizable photoinitiators and regulator substances, highly UV-crosslinkable polyacrylate hotmelt PSAs were produced during polymerization in the planetary roller extruder. A reason why this could not have been predicted was that this combined use of the aforementioned substances in a conventional solution polymerization in a stirred tank leads to a massive reduction in reaction rate.
- It has been found that specifically the combination of the use of regulator substances with copolymerizable photoinitiator in polymerizations in a planetary roller extruder leads to UV-crosslinking adhesives which are possessed of particularly good coatability. The low polydispersity leads to advantages associated with the polymerization in the planetary roller extruder, thereby boosting the outstanding mixing properties which are a feature of a planetary roller extruder. The use of regulator substances results in polymers having a low polydispersity, which has advantageous consequences for the solvent-free polymerization. The viscosity, which plays a decisive part particularly in the case of solvent-free polymerization, is moved, as a result of the low polydispersity, into a range which is advantageous for solvent-free polymerization. Greater polydispersity is accompanied by an increase likewise in the viscosity, which reduces the possibilities of the heat removal and also reduces the mixing action in the reactor. These properties are of decisive importance for the reliable implementation of solvent-free polymerizations. Additionally, as a result of the positive effect of polydispersity on viscosity, a higher conversion rate is possible, and, too, the propensity to form gel is reduced as a result, which in turn is important for the use of the adhesive as a hotmelt PSA.
- The planetary roller extruder is suitable in particular by virtue of its outstanding thermal characteristics and also by virtue of the extraordinarily diverse possibilities of temperature control for this solvent-free polymerization.
- The extruder used is preferably operated continuously. Partial recycling of the product stream, referred to as loop operation, may also be advantageous. The most advantageous is to produce a solvent-free UV-crosslinkable polyacrylate PSA in a hydraulically filled planetary roller extruder. Hydraulic filling simplifies the observance of oxygen-free conditions and also the best-possible utilization of the extruder section. Moreover, phase boundaries are avoided, which can have disruptive consequences for the polymerization operation.
- The monomers can be metered to the polymerization reactor either individually or as a mixture. Preliminary mixing, particularly of the copolymerizable photoinitiator, ensures a uniform distribution of the reaction mixture. Also possible in principle, however, is mixing in the reactor or by bringing together different starting-material streams in an upstream continuous mixer, which is operated dynamically or which may be a static mixer or a micromixer.
- The addition of further substances such as initiators, polymerization regulators and further monomers, for example, to the starting-material stream along the length of the reactor may be sensible. When using a planetary roller extruder composed of a plurality of roller barrels in series, additions of this kind may be made via holes drilled in the connecting flanges of the roller barrels.
- With subsequent metering of suitable initiators or initiator mixtures it is possible to achieve high conversion rates without at the same time inducing—as a result of a high primary-radical concentration—low molecular weights or instances of gelling of the polymer.
- In one development of the method the polymer, following polymerization in the planetary roller extruder, is removed from constituents which are still volatile, such as unreacted monomers, in a devolatilizing extruder. These constituents, after a determination of their composition, may be fed back to the starting-material stream.
- In another development of the method the polymer, following polymerization and, where necessary, devolatilizing and, where appropriate, the addition of one or more of the additives—which addition may take place in the polymerization extruder and/or in a downstream compounding extruder—is coated from the melt, advantageously gel-free, onto a carrier (“gel-free” denotes compliance with the requirements for coatability of the compositions using the coating apparatus which is commonly employed and which is familiar to the skilled worker for these purposes; in particular, for a coatability which is distinguished by a uniform (homogeneous) coating pattern with no inhomogeneities or streaks when coating takes place through the commonly used coating nozzles or by means of a roll applicator).
- It is then advantageous to crosslink the polymer by means of UV radiation, this taking place, in particular, following coating onto the carrier. In this case it is preferred to proceed in such a way that the UV crosslinking is assisted by the added polymerization regulator.
- In summary, the following scheme can be compiled for an advantageous procedure:
-
- Polymerization operation of a monomer mixture containing, in addition to (meth-)acrylic acid-based monomers, copolymerizable photoinitiators,
- the polymerization taking place in a solvent-free operation,
- which is possible through the use of a planetary roller extruder.
- As a result of the use of a control reagent, polydispersities of 1.2 to 4 are achieved.
- The polymerization operation may be followed by a devolatilizing operation.
- The polymer can be further-processed directly. Solvent recycling is unnecessary.
- The polymer is coated gel-free from the melt, and
- after coating is crosslinked with UV light, the added regulator assisting and accelerating the UV crosslinking.
- The UV-crosslinking polyacrylate PSA and the narrow-distribution, UV-crosslinking polyacrylate PSA are composed preferably of the following monomers
-
- a) acrylic esters and/or methacrylic esters and/or the free acids thereof, with the following formula CH2═CH(R1)(COOR2),
- where R1═H or CH3 and R2 is an alkyl chain having 1 to 30 carbon atoms or H, at 70% to 99.9% by weight, in particular 75% to 99.5% by weight,
- b) UV photoinitiator having a free-radically polymerizable double bond at 0.1% to 2% by weight, in particular 0.4% to 1% by weight,
- c) if desired, olefinically unsaturated monomers having functional groups, at 0 to 30% by weight.
- a) acrylic esters and/or methacrylic esters and/or the free acids thereof, with the following formula CH2═CH(R1)(COOR2),
- In one very preferred version the monomers a) used include acrylic monomers which comprise acrylic and methacrylic esters having alkyl groups consisting of 4 to 14 carbon atoms, preferably 4 to 9 carbon atoms. Specific examples, without wishing to be restricted unnecessarily by this enumeration, are n-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, such as 2-ethylhexyl acrylate, for example. Further classes of compound which can likewise be added in small amounts under a) are methyl methacrylates, cyclohexyl methacrylates, and isobornyl methacrylates.
- In one very preferred version photoinitiators with at least one vinyl compound are used for the monomers b). The photoinitiators may be of the Norrish I or Norrish II type.
- The photoinitiators include as a building block, preferably, one or more of the following radicals:
- Benzophenone-, acetophenone-, benzil-, benzoin-, hydroxyalkylphenone-, phenyl cyclohexyl ketone-, anthraquinone-, trimethylbenzoylphosphine oxide-, methylthiophenyl morpholine ketone-, amino ketones-, azobenzoins, thioxanthone-, hexarylbisimidazole-, triazine-, or fluorenone, it being possible for each of these radicals additionally to be substituted by one or more halogen atoms and/or one or more alkoxy groups and/or one or more amino groups and/or hydroxyl groups. A representative overview is given in “Photoinitiation Photopolymerization and Photocuring, Fundamentals and Applications, by J.-P. Fouassier, Hanser Publishers, Munich, Vienna, New York 1995”. For supplementation it is possible to consult “Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, volume 5, A. Carroy, C. Decker, J. P. Dowling, P. Pappas, B. Monroe, ed. by P. K. T. Oldring, publ. by SITA Technology, London, England 1994”.
- Specific examples, without wishing to be restricted unnecessarily as a result, are acrylated benzophenone, such as Ebecryl P 36™ from UCB, for example, or benzoin acrylate.
- In one very preferred version monomers c) used include vinyl esters, vinyl ethers, vinyl halides, vinylidene halides, vinyl compounds with aromatic rings and heterocycles in α-position. Here again, non-exclusive mention may be made of some examples: vinyl acetate, vinyl formamide, vinyl pyridine, ethyl vinyl ether, vinyl chloride, vinylidene chloride and acrylonitrile. In one further very preferred version for the monomers c) monomers having the following functional groups are employed: hydroxyl, carboxyl, epoxy, acid amide, isocyanato or amino groups.
- In one advantageous version acrylic monomers are used for c) that conform to the following general formula
where R1═H or CH3 and the radical —OR2 represents or includes the functional group and, for example, in one particularly preferred version, possesses an H-donor effect, which facilitates the UV crosslinking. - Particularly preferred examples for component c) are hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, allyl alcohol, maleic anhydride, itaconic anhydride, itaconic acid, acrylamide, and glyceridyl methacrylate, benzyl acrylate, benzyl methacrylate, phenyl acrylate, phenyl methacrylate, tert-butylphenyl acrylate, tert-butylphenyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, 2-butoxyethyl methacrylate, 2-butoxyethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyl methacrylate, diethylaminoethyl acrylate, cyanoethyl methacrylate, cyanoethyl acrylate, glyceryl methacrylate, 6-hydroxyhexyl methacrylate, N-tert-butylacrylamide, N-methylolmethacrylamide, N-(buthoxymethyl)methacrylamide, N-methylolacrylamide, N-(ethoxymethyl)acrylamide, N-isopropylacrylamide, vinylacetic acid, tetrahydrofufuryl acrylate, β-acryloyloxypropionic acid, trichloroacrylic acid, fumaric acid, crotonic acid, aconitic acid, and dimethylacrylic acid; this enumeration should not be understood as exhaustive.
- In one further preferred version aromatic vinyl compounds are used for component c), the aromatic nuclei consisting preferably of C4 to C18 and also being able to contain heteroatoms. Particularly preferred examples are styrene, 4-vinylpyridine, N-vinylphthalimide, methylstyrene, 3,4-dimethoxystyrene, and 4-vinylbenzoic acid; this enumeration should likewise not be understood as exhaustive.
- For the polymerization the monomers are chosen such that the resultant polymers can be employed as industrially useful PSAs, particularly such that the resulting polymers possess pressure-sensitive adhesion properties in accordance with the “Handbook of Pressure Sensitive Adhesive Technology” by Donatas Satas (van Nostrand, New York 1989). For these applications the static glass transition temperature of the resultant polymer is advantageously below 25° C.
-
-
- branched and unbranched C1 to C18 alkyl radicals; C3 to C18 alkenyl radicals; C3 to C18 alkynyl radicals
- H or C1 to C18 alkoxy
- C3 to C18 alkynyl radicals; C3 to C18 alkenyl radicals; C1 to C18 alkyl radicals substituted by at least one OH group or one halogen atom or one silyl ether;
- C2-C18 hetero-alkyl radicals having at least one oxygen atom and/or one NR′ group in the carbon chain
- C3-C18 alkynyl radicals, C3-C18 alkenyl radicals, C1-C18 alkyl radicals substituted by at least one ester group, amine group, carbonate group, cyano, isocyano and/or epoxide group and/or by sulfur;
- C3-C12 cycloalkyl radicals
- C6-C18 aryl or benzyl radicals
- hydrogen
- Control reagents of type (I) consist in a more preferred version of the following compounds.
- Halogens in this case are preferably F, Cl, Br or I, more preferably Cl and Br. As alkyl, alkenyl, and alkynyl radicals in the various substitutents outstanding suitability is possessed by both linear and branched chains.
- Examples that may be mentioned of alkyl radicals containing 1 to 18 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, 2-pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, tert-octyl, nonyl, decyl, undecyl, tridecyl, tetradecyl, hexadecyl and octadecyl.
- Examples of alkenyl radicals having 3 to 18 carbon atoms are propenyl, 2-butenyl, 3-butenyl, isobutenyl, n-2,4-pentadienyl, 3-methyl-2-butenyl, n-2-octenyl, n-2-dodecenyl, isododecenyl, and oleyl.
- Examples of alkynyl having 3 to 18 carbon atoms are propynyl, 2-butynyl, 3-butynyl, n-2-octynyl, and n-2-octadecynyl.
- Examples of hydroxy-substituted alkyl radicals are hydroxypropyl, hydroxybutyl or hydroxyhexyl.
- Examples of halogen-substituted alkyl radicals are dichlorobutyl, monobromobutyl or trichlorohexyl.
- A suitable C2-C18 hetero-alkyl radical having at least one oxygen atom in the carbon chain is, for example, —CH2—CH2—O—CH2—CH3.
- Examples of radicals serving as C3-C12 cycloalkyl radicals include cyclopropyl, cyclopentyl, cyclohexyl or trimethylcyclohexyl.
- Examples of radicals serving as C6-C18 aryl radicals include phenyl, naphthyl, benzyl, 4-tert-butylbenzyl- or further substituted phenyl, such as, for example, ethyl, toluene, xylene, mesitylene, isopropylbenzene, dichlorobenzene or bromotoluene.
- The above lists serve only as examples of the respective groups of compound and possess no claim to completeness.
-
-
- In connection with the abovementioned polymerizations which proceed by a controlled-growth free-radical mechanism it is preferred to use initiator systems which additionally contain further free-radical initiators for the polymerization, especially thermally decomposing free-radical-forming azo or peroxo initiators. Suitable in principle for this purpose, however, are all customary initiators that are known for acrylates. The production of C-centered radicals is described in Houben Weyl, Methoden der Organischen Chemie, vol. E 19a, pages 60 to 147. These methods are preferentially employed analogously.
- Examples of free-radical sources are peroxides, hydroperoxides, and azo compounds; as a number of nonexclusive examples of typical free-radical initiators, mention may be made here of potassium peroxodisulfate, dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-tert-butyl peroxide, cyclohexylsulfonyl acetyl peroxide, diisopropyl percarbonate, tert-butyl peroctoate, and benzpinacol. In one very preferred version the free-radical initiator used is 2,2′-azobisisobutyronitrile (Vazo 64™ from DuPont).
- The average molecular weights Mw (weight averages) of the polymers formed in the controlled free-radical polymerization are chosen such that they are situated within a range of 100 000 and 800 000 g/mol; specifically for further use as hotmelt PSAs, PSAs are produced which have average molecular weights (weight averages) Mw of 100 000 to 350 000 g/mol. The average molecular weight Mw is determined in each case via size exclusion chromatography (gel permeation chromatography, GPC) or matrix-assisted laser-desorption/ionization coupled with mass spectrometry (MALDI-MS).
- The polymerization takes place in bulk without addition of solvents.
- For initiating the polymerization it is essential, for the thermally decomposing initiators, to introduce heat. For the thermally decomposing initiators the polymerization can be initiated by heating to 50 to 160° C., depending on initiator type.
- In one further advantageous development one or more plasticizers are metered in to the polyacrylates, such as, for example, low molecular weight polyacrylates, phthalates, phosphates, citrates, and water-soluble plasticizers (whale oil plasticizers).
- The polyacrylates may further be blended with one or more additives such as aging inhibitors, light stabilizers, ozone protectants, fatty acids, nucleators, expandants, compounding agents and/or accelerants. With regard to the aging inhibitors, reference may be made in particular to primary and secondary aging inhibitors, which are available commercially under the tradenames Irganox™ from Ciba Geigy and Hostanox™ from Clariant.
- The invention also provides for the particularly preferred use of the polyacrylate pressure-sensitive adhesive for an adhesive tape, it being possible for the polyacrylate pressure-sensitive adhesive to have been applied to one or both sides of a carrier.
- Carrier materials used for the PSA, for adhesive tapes for example, are the customary materials familiar to the skilled worker, such as films (polyesters, PET, PE, PP, BOPP, PVC), nonwovens, foams, woven fabrics, and woven films, and also release paper (glassine, HDPE, LDPE). This enumeration should likewise not be understood as exhaustive.
- Particularly for use as a PSA it is advantageous for the inventive method if the polyacrylate (the resultant polymer) is applied, preferably inline, to a carrier or to a carrier material, in the form of a layer.
- For the PSA utility it is particularly advantageous to crosslink the polyacrylates after they have been coated onto the carrier or onto the carrier material. For producing the PSA tapes the above-described polymers are for this purpose blended, optionally, with crosslinkers. Preferred substances in accordance with the inventive method that crosslink under radiation are, for example, difunctional or polyfunctional acrylates or difunctional or polyfunctional urethane acrylates, difunctional or polyfunctional isocyanates or difunctional or polyfunctional epoxides. Here, however, it is also possible to use all further difunctional or polyfunctional compounds, familiar to the skilled worker, which are capable of crosslinking polyacrylates.
- To improve the crosslinking efficiency it is possible if desired to blend the polyacrylates with further, noncopolymerized photoinitiators. Suitable for this purpose are, preferably, Norrish type I and type II cleaving compounds, a number of possible examples of both classes being benzophenone derivatives, acetophenone derivatives, benzil derivatives, benzoin derivatives, hydroxyalkylphenone derivatives, phenyl cyclohexyl ketone derivatives, anthraquinone derivatives, thioxanthone derivatives, triazine derivatives, or fluorenone derivatives, this enumeration possessing no claim to completeness. A representative overview is given, again, in “Photoinitiation Photopolymerization and Photocuring, Fundamentals and Applications, by J.-P. Fouassier, Hanser Publishers, Munich, Vienna, New York 1995” and “Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, volume 5, A. Carroy, C. Decker, J. P. Dowling, P. Pappas, B. Monroe, ed. by P. K. T. Oldring, publ. by SITA Technology, London, England 1994”.
- UV crosslinking takes place very preferably by means of brief ultraviolet irradiation in a wavelength range from 200 to 450 nm, particularly using high-pressure or medium-pressure mercury lamps with an output of 80 to 240 W/cm. For UV crosslinking it is also possible, however, to use monochromatic radiation in the form of lasers. In order to prevent instances of overheating it may be appropriate to shade off part of the UV beam path. Furthermore, it is possible to use special reflector systems which function as cold light emitters in order thus to prevent instances of overheating.
- It can be appropriate to crosslink the inventively described polyacrylates additionally using electron beams. Typical irradiation equipment that can be employed includes linear cathode systems, scanner systems and/or segmented cathode systems, where the devices in question are electron beam accelerators.
- An exhaustive description of the state of the art and of the most important process parameters is found in Skelhorne “Electron Beam Processing” in vol. 1 “Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints” publ. by Sita Technology, London 1991. The typical acceleration voltages are situated in the range between 50 kV and 500 kV, preferably 80 kV to 300 kV. The radiation doses employed range between 5 to 150 kGy, in particular 20 to 100 kGy.
- Practical Implementations
- Implementation of Polymerization (Method A):
- The polymerization was implemented using as reactor a planetary roller extruder consisting of three roller barrels in series. The roller barrels used have a roller diameter D of 70 mm and were equipped with 7 planetary spindles. Both central spindle and roller barrels are fitted with separate temperature-control circuits. The temperature-control medium used was pressurized water.
- For the polymerization the reactor is operated continuously. Prior to the beginning of metering the reactor is flushed with nitrogen for 1 hour. A mixture is produced from monomers and initiator. This initial mixture is rendered inert by nitrogen being passed through it. By means of a pump, the reaction mixture is conveyed through a static mixer, which is fitted with further feed devices, and then through a heat exchanger into the reactor. The reaction mixture is added continuously to the reactor via a hole drilled at the beginning of the first roller barrel. Located at the exit from the reactor is a valve by means of which the hydraulic filling of the reactor is ensured.
- The heat exchanger for feed preheating, central spindle, and roller barrels are controlled with the particular desired temperatures. In the case of the central spindle a temperature of 80° C. was set; the medium for feed preheating was set at 90° C. Roller barrels 1 and 3 were controlled to 100° C., roller barrel 2 to 95° C.
- The speed of the central spindle was 50 revolutions per minute. The hydrodynamic residence time was 15 minutes. Following emergence from the reactor, a sample is taken to determine the conversion. Subsequently, volatile constituents still present are removed in a devolatilizing extruder.
- Production of Swatch Specimens (Method B):
- The adhesive is coated at an application rate of 50 g/m2 via a hotmelt coater having two heatable rolls onto a Saran-primed PET film 23 μm thick.
- UV Irradiation (Method C)
- UV irradiation was carried out using a UV unit from Eltosch. The unit is equipped with a medium-pressure Hg UV lamp having an intensity of 120 W/cm. The swatch specimens produced by method B were each run through the unit at a speed of 20 m/min, the specimens being irradiated in a plurality of passes in order to increase the irradiation dose. The UV dose was measured using the Power Puck from Eltosch. The dose of one irradiation pass was approximately 140 mJ/cm2 in the UV-B range and 25 mJ/cm2 in the UV-C range.
- 2,2′-Bis(phenylethyl)thiocarbonate is synthesized starting from 2-phenylethyl bromide with carbon disulfide and sodium hydroxide in accordance with instructions from Synth. Communications 18(13), pp. 1531-1536, 1988. Yield after distillation: 72%.
- Characterization: 1H NMR (CDCl3) δ (ppm): 7.20-7.40 (m, 10H), 1.53, 1.59 (2×d, 6H), 3.71, 381 (2×m, 2H).
- Photoinitiators
- The copolymerizable photoinitiator used was benzoin acrylate.
- Test Methods
- The following test methods were employed to evaluate the properties of the polymers and of the PSAs produced.
- Determination of Conversion (Test A)
- The conversion rate was determined by gravimetry and is expressed as a percentage in relation to the amount by weight of monomers employed. To isolate the polymer it is dried in a vacuum cabinet. The weight of the polymer is weighed and divided by the initial mass of monomers employed. The calculated value corresponds to the percentage conversion.
- Gel Permeation Chromatography GPC (Test B)
- The average molecular weight Mw and the polydispersity PD were determined by gel permeation chromatography. The eluent used was THF containing 0.1% by volume trifluoroacetic acid. Measurement took place at 25° C. The precolumn used was PSS-SDV, 5μ, 103 Å, ID 8.0 mm×50 mm. Separation was carried out using the columns PSS-SDV, 5μ, 103 and also 105 and 106 each with ID 8.0 mm×300 mm. The sample concentration was 4 g/l, the flow rate 1.0 ml per minute. Measurement was carried out against PMMA standards.
- Determination of the Gel Fraction (Test C)
- The carefully dried, solvent-free samples of adhesive are welded into a polyethylene web pouch (Tyvek nonwoven). For the determination of the gel index after UV crosslinking a defined area of the swatch specimen produced is welded into a polyethylene flow pouch (Tyvek nonwoven). From the difference in the sample weights before extraction and after extraction with toluene a determination is made of the gel index—that is, the toluene-insoluble weight fraction of the polymer.
- The following test methods were employed to evaluate the technical adhesive properties of the PSAs produced.
- Shear Strength (Test D)
- A strip of the adhesive tape, 13 mm wide, was applied to a smooth steel surface which had been cleaned three times with acetone and once with isopropanol. The area of application measured 20 mm×13 mm (length×width). Subsequently the adhesive tape was pressed onto the steel support four times using a 2 kg weight. At room temperature (RT) a 1 kg weight was affixed to the adhesive tape, and a measurement was made of the time taken for the weight to drop off.
- The holding power times (HP) measured are reported in minutes and correspond to the average from three measurements.
- 180° Bond Strength Test (Test E)
- A strip 20 mm wide of an acrylate PSA applied as a layer to polyester was applied to steel plates. The PSA strip was pressed onto the substrate twice using a 2 kg weight. The adhesive tape was subsequently peeled from the substrate immediately at 300 mm/min and at an angle of 180°. The steel plates were washed twice with acetone and once with isopropanol. The measurement results are reported in N/cm and are averaged from three measurements. All measurements were carried out at room temperature.
- A polymer was prepared by method A. 5% of acrylic acid, 95% of n-butyl acrylate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) were used.
- The average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- Subsequently a swatch sample was produced by method B and was UV-irradiated by method C.
- The specimen was tested in accordance with tests C, D and E.
- A polymer was prepared by method A. 4.5% of acrylic acid, 95% of n-butyl acrylate, 0.5% of benzoin acrylate and also 0.124% of 2,2′-bis(phenylethyl)thiocarbonate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) were used.
- The average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- Subsequently a swatch sample was produced by method B.
- A polymer was prepared by method A. 0.5% of acrylic acid, 49.5% of n-butyl acrylate, 49.5% of 2-ethylhexyl acrylate, 0.5% of benzoin acrylate and also 0.124% of 2,2′-bis(phenylethyl)thiocarbonate and 0.015% of azoisobutyronitrile (AIBN, Vazo 64™, DuPont) were used.
- The average molecular weight and the polydispersity were determined by means of test B, the conversion by test A, and the gel index by test C.
- Subsequently a swatch sample was produced by method B and was UV-irradiated by method C.
- The specimen was tested in accordance with tests C, D and E.
- Table 1 below first of all assembles the results of the polymerizations:
TABLE 1 Polydis- Roll temperature Exam- Mw persity Conver- required for ple [g/mol] PD sion [%] coating [° C.] 1 2 380 000 6.1 72 uncoatable 2 593 000 3.4 67 120 3 487 000 3.6 60 110
Mw: average molecular weight from GPC
PD: Mw/Mn = polydispersity from GPC
- Table 2 shows the results of the crosslinking and technical adhesive evaluation of the swatch specimens.
TABLE 2 Gel index Gel index Exam- [%] after [%] after BS - steel HP at RT ple polymerization UV crosslinking [N/cm] [min] 1 0 0 2 0 48 5.2 >10 000 3 0 46 4.5 2780
HP: Holding Power
RT: Room Temperature
BS: Bond Strength
- Example 1 serves as a reference example. For the method of the invention, examples 2 to 3 are attached. In examples 2 to 3, acrylate PSAs were produced with copolymerized photoinitiator and with a low molar mass. Through the use of a regulator, polymers were obtained which had a narrow-distribution molecular weight distribution.
- The advantages of the method of the invention become clear on viewing the coatability of the acrylate composition. Example 1 is very high molecular weight and cannot be coated. Through the use of the regulator in the case of example 2 and 3 the molecular weight is lowered to an extent such that coating, which is necessary for application in the adhesive tape, is possible. Thus example 2, with an Mw of 593 000 g/mol, is coatable at 120° C., and example 3, with a lower Mw of 487 000 g/mol, is coatable at just 110° C. By virtue of the method of the invention it becomes possible to process the adhesive produced at a low coating temperature. Hence it is possible for completely solvent-free production of the adhesive tapes to take place.
- For the efficiency of UV crosslinking the gel index is a decisive criterion. From table 2 it is evident that the use of a copolymerizable photoinitiator leads to crosslinking. Thus the composition from example 1, in which no copolymerizable photoinitiator was used, cannot be crosslinked by UV radiation. If, however, as in example 2 and 3, a photoinitiator is copolymerized, efficient crosslinking takes place by UV radiation. This leads to a good shear strength in the swatch specimens produced, in conjunction with a high bond strength to steel.
- The examples therefore demonstrate that with the inventive method it is possible to produce solvent-free UV-crosslinkable acrylate PSAs. With the method of the invention it is possible, as a result of solvent-free production, to produce adhesive tapes which are notable for good cohesion, since they are UV-crosslinkable. The method allows high coating speed (>>100 m/min) and, at the same time, good crosslinkability, with a fast belt speed as well. Crosslinking can take place by means of a modular UV section, 6 medium-pressure Hg 200 W/cm lamps, at 200 m/min. In application, therefore, the method is particularly suitable for producing industrial adhesive tapes.
Claims (20)
1. A UV-crosslinkable polyacrylate pressure-sensitive adhesive composition, comprising a polyacrylate having copolymerized photoinitiator units,
an average molecular weight Mw (weight average) of 100 000 to 3 000 000 g/mol, and being produced by a free-radical solvent-free polymerization.
2. The UV-crosslinkable polyacrylate pressure-sensitive adhesive composition of claim 1 ,
wherein said average molecular weight Mw (weight average) is 100 000 to 800 000 g/mol, and said polyacrylate has a polydispersity of not more than 4.0.
4. The polyacrylate pressure-sensitive adhesive composition of claim 3 , wherein said polymerization regulator is a trithiocarbonates or dithioester.
5. The polyacrylate pressure-sensitive adhesive composition of claim 1 , wherein said polyacrylate is produced from a monomer mixture which includes at least the following components:
68% to 99.9% by weight of acrylic esters and/or methacrylic esters and/or the free acids thereof, with the following formula CH2═CH(R1)(COOR2),
where R1═H or CH3 and R2 is an alkyl chain having 1 to 30 carbon atoms or H, 0.05% to 2% by weight of copolymerizable UV photoinitiators having a free-radically polymerizable double bond.
6. The polyacrylate pressure-sensitive adhesive composition of claim 5 , wherein said monomer mixture further comprises up to 30% by weight of olefinically unsaturated monomers having functional groups.
7. The polyacrylate pressure-sensitive adhesive composition of claim 1 , further comprising one or more additives selected from the group consisting of aging inhibitors, light stabilizers, ozone protectants, fatty acids, plasticizers, nucleators, expandants, accelerants and fillers.
8. A method for producing the polyacrylate pressure-sensitive adhesive composition of claim 1 , wherein said solvent-free polymerization is conducted in a planetary roller extruder.
9. The method of claim 8 , wherein said polymerization takes place continuously.
10. The method of claim 8 , wherein further substances selected from the group consisting of initiators, monomers, copolymerizable photoinitiators, and polymerization regulators are added downstream of the extruder.
11. The method of claim 8 , wherein the polymerization is followed by devolatilization.
12. The method of claim 8 , wherein, following polymerization and, optionally, subsequent devolatilization, the polyacrylate pressure-sensitive adhesive composition is coated from the melt onto a carrier.
13. The method of claim 12 , wherein the polyacrylate is crosslinked by UV radiation and the UV crosslinking is assisted by an added polymerization regulator.
14. The method of claim 13 , wherein, before and/or during the polymerization, thermally decomposing, free-radical-forming initiators are added.
15. A single-sided or double-sided pressure-sensitive adhesive tape comprising the UV-crosslinkable polyacrylate pressure-sensitive adhesive composition of claim 1 .
16. The polyacrylate pressure-sensitive adhesive composition of claim 5 , wherein said amount of said acrylic esters and/or methacrylic esters and/or free acids thereof is 75% to 99.5% by weight, and said amount of copolymerizable UV photoinitiators having a free-radically polymerizable double bond is 0.4% to 1% by weight.
17. The method of claim 8 , wherein said planetary roller extruder is a hydraulically filled planetary roller extruder.
18. The method of claim 17 , wherein said polymerization takes place continuously.
19. The method of claim 13 , wherein said polyacrylate is crosslinked after coating onto a carrier.
20. The method of claim 14 , wherein said initiators are azo initiators and/or peroxo initiators.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/733,000 US8519076B2 (en) | 2003-05-19 | 2010-03-26 | Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesives |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10322830A DE10322830A1 (en) | 2003-05-19 | 2003-05-19 | Process for the continuous production of polymers from vinyl compounds by bulk or solvent polymerization |
DE10322830.6 | 2003-05-19 | ||
PCT/EP2004/005341 WO2004101698A1 (en) | 2003-05-19 | 2004-05-18 | Method for producing solvent-free uv-crosslinkable acrylate pressure-sensitive adhesives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/005341 A-371-Of-International WO2004101698A1 (en) | 2003-05-19 | 2004-05-18 | Method for producing solvent-free uv-crosslinkable acrylate pressure-sensitive adhesives |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/733,000 Division US8519076B2 (en) | 2003-05-19 | 2010-03-26 | Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070191503A1 true US20070191503A1 (en) | 2007-08-16 |
Family
ID=33441050
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/555,472 Expired - Lifetime US7279535B2 (en) | 2003-05-19 | 2004-05-18 | Method for the continuous production of polymers made of vinyl compounds by substance and/or solvent polymerization |
US10/555,173 Abandoned US20070055032A1 (en) | 2003-05-19 | 2004-05-18 | Solvent-free production method for producing acrylate pressure-sensitive adhesive substances |
US10/557,086 Abandoned US20070191503A1 (en) | 2003-05-19 | 2004-05-18 | Method for producing solvent-free uv-crosslinkable acrylate pressure-sensitive adhesives |
US12/733,000 Expired - Fee Related US8519076B2 (en) | 2003-05-19 | 2010-03-26 | Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesives |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/555,472 Expired - Lifetime US7279535B2 (en) | 2003-05-19 | 2004-05-18 | Method for the continuous production of polymers made of vinyl compounds by substance and/or solvent polymerization |
US10/555,173 Abandoned US20070055032A1 (en) | 2003-05-19 | 2004-05-18 | Solvent-free production method for producing acrylate pressure-sensitive adhesive substances |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/733,000 Expired - Fee Related US8519076B2 (en) | 2003-05-19 | 2010-03-26 | Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesives |
Country Status (7)
Country | Link |
---|---|
US (4) | US7279535B2 (en) |
EP (3) | EP1627023B1 (en) |
JP (3) | JP4778901B2 (en) |
DE (6) | DE10322830A1 (en) |
ES (3) | ES2282865T3 (en) |
TW (3) | TWI359157B (en) |
WO (3) | WO2004101626A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7671152B2 (en) * | 2005-12-22 | 2010-03-02 | The Goodyear Tire & Rubber Company | Surfactantless synthesis of amphiphilic cationic block copolymers |
US7906598B2 (en) * | 2006-08-30 | 2011-03-15 | Intertape Polymer Corp. | Recirculation loop reactor bulk polymerization process |
JP2009524706A (en) * | 2006-01-24 | 2009-07-02 | インターテープ ポリマー コーポレーション | Continuous bulk polymerization in planetary roller extruders. |
US20100105847A1 (en) | 2006-01-24 | 2010-04-29 | Intertape Polymer Corp. | Plug flow bulk polymerization of vinyl monomers |
JP2010502786A (en) | 2006-08-30 | 2010-01-28 | インターテープ ポリマー コーポレーション | Bulk polymerization process with recirculation loop reactor |
DE102007057189A1 (en) * | 2007-11-28 | 2009-06-04 | Automatik Plastics Machinery Gmbh | Process and apparatus for the production of polyamide |
US8829066B2 (en) | 2009-07-03 | 2014-09-09 | Lg Chem, Ltd. | Polymerization reactor for producing super absorbent polymers and method of producing super absorbent polymers using the polymerization reactor |
EP2500367A1 (en) * | 2011-03-18 | 2012-09-19 | Henkel AG & Co. KGaA | Block-copolymer containing crosslinkable photoinitator groups |
DE102011112081A1 (en) | 2011-05-11 | 2015-08-20 | Entex Rust & Mitschke Gmbh | Process for processing elastics |
DE102011086503A1 (en) | 2011-11-16 | 2013-05-16 | Tesa Se | Process for the preparation of cohesive polyacrylate adhesives having a narrow molecular weight distribution |
DE102011086502A1 (en) | 2011-11-16 | 2013-05-16 | Tesa Se | Process for the preparation of undyed polyacrylate adhesives having a narrow molecular weight distribution |
DE102011089367A1 (en) * | 2011-12-21 | 2013-06-27 | Tesa Se | PSAs with high molecular weights and narrow molecular weight distribution and process for their preparation |
DE102012008170A1 (en) * | 2012-04-26 | 2013-10-31 | Entex Rust & Mitschke Gmbh | Planetary roller extruder with planetary spindles and thrust ring |
CN104736317B (en) | 2012-10-11 | 2017-09-22 | 恩特克斯拉斯特及米施克有限责任公司 | The extruder for the plastics being easily bonded for processing |
JP2014213572A (en) * | 2013-04-26 | 2014-11-17 | スリーエム イノベイティブプロパティズカンパニー | Method for producing laminate including cured pressure sensitive adhesive sheet |
US10035338B2 (en) | 2013-07-01 | 2018-07-31 | Mark Andy, Inc. | Method and apparatus for in-line solventless lamination |
DE102013221847A1 (en) * | 2013-08-01 | 2015-02-05 | Tesa Se | Method for molding a body in a mold |
CN104870569B (en) | 2013-09-24 | 2018-06-29 | Lg化学株式会社 | Pressure-sensitive adhesive composition |
DE102013019611A1 (en) | 2013-11-25 | 2015-05-28 | Gneuss Gmbh | Apparatus for the production of polymers |
JP2016148459A (en) * | 2015-01-30 | 2016-08-18 | 秀之 春山 | Solution transfer cooling device and manufacturing method |
DE102015001167A1 (en) | 2015-02-02 | 2016-08-04 | Entex Rust & Mitschke Gmbh | Degassing during the extrusion of plastics |
DE102017001093A1 (en) | 2016-04-07 | 2017-10-26 | Entex Rust & Mitschke Gmbh | Degassing during the extrusion of plastics with sintered metal filter discs |
CN104758181A (en) * | 2015-04-09 | 2015-07-08 | 史祎 | Preparation technology of solvent-free sticking agent |
CN104721054A (en) * | 2015-04-09 | 2015-06-24 | 史祎 | Solvent-free online coating production equipment |
DE102016002143A1 (en) | 2016-02-25 | 2017-08-31 | Entex Rust & Mitschke Gmbh | Filling module in planetary roller extruder design |
US12006692B2 (en) * | 2016-03-25 | 2024-06-11 | Holcim Technology Ltd | Fully-adhered roof system adhered and seamed with a common adhesive |
WO2017165868A1 (en) * | 2016-03-25 | 2017-09-28 | Firestone Building Products Co., LLC | Fully-adhered roof system adhered and seamed with a common adhesive |
DE102017004563A1 (en) | 2017-03-05 | 2018-09-06 | Entex Rust & Mitschke Gmbh | Degassing when extruding polymers |
DE102017105755A1 (en) | 2017-03-17 | 2018-09-20 | Lohmann Gmbh & Co. Kg | Functionalized acrylates (from the melt) |
WO2018176443A1 (en) | 2017-04-01 | 2018-10-04 | Dow Global Technologies Llc | Aqueous polymer dispersion and aqueous coating composition comprising the same |
DE102017003681A1 (en) | 2017-04-17 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Cooling when extruding melt |
DE102017005999A1 (en) | 2017-05-28 | 2018-11-29 | Entex Rust & Mitschke Gmbh | Production of edible sausage pelts from collagen or similar substances by extrusion |
DE102017005998A1 (en) | 2017-06-23 | 2018-12-27 | Entex Rust & Mitschke Gmbh | Chemical process control for flowable feedstock in a planetary roller extruder |
DE102017006638A1 (en) | 2017-07-13 | 2019-01-17 | Entex Rust & Mitschke Gmbh | Filling module in planetary roller extruder design |
DE102018001412A1 (en) | 2017-12-11 | 2019-06-13 | Entex Rust & Mitschke Gmbh | Degassing during the extrusion of substances, preferably plastics |
WO2019139396A1 (en) * | 2018-01-11 | 2019-07-18 | 주식회사 엘지화학 | Method for preparing low-molecular weight acryl-based resin |
WO2019166125A1 (en) | 2018-02-28 | 2019-09-06 | Entex Rust & Mitschke Gmbh | Method for producing and processing polymers and polymer mixtures in a modular planetary roller extruder |
DE102018221589A1 (en) * | 2018-08-23 | 2020-02-27 | Tesa Se | Process for the production of an in particular thermally vulcanizable adhesive and an adhesive tape with the thermally vulcanizable adhesive |
DE102019207550A1 (en) * | 2019-05-23 | 2020-11-26 | Tesa Se | Process for the production of pressure-sensitive adhesive reactive adhesive tapes |
KR102611378B1 (en) * | 2019-09-26 | 2023-12-08 | 주식회사 엘지화학 | Esterification reaction epuipment and esterification reaction method |
DE102020007239A1 (en) | 2020-04-07 | 2021-10-07 | E N T E X Rust & Mitschke GmbH | Cooling when extruding melts |
EP3892441A1 (en) | 2020-04-07 | 2021-10-13 | Entex Rust & Mitschke GmbH | Retrofitting of an extruder system |
CN115197377B (en) * | 2022-07-20 | 2023-10-10 | 浙江卫星新材料科技有限公司 | Preparation method of continuous bulk polymerization high-absorptivity resin |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4144157A (en) * | 1974-09-11 | 1979-03-13 | Beiersdorf Aktiengesellschaft | Acrylic and methacrylic self-adhesive composition and radiation method of making same |
US4581429A (en) * | 1983-07-11 | 1986-04-08 | Commonwealth Scientific And Industrial Research Organization | Polymerization process and polymers produced thereby |
US4619979A (en) * | 1984-03-28 | 1986-10-28 | Minnesota Mining And Manufacturing Company | Continuous free radial polymerization in a wiped-surface reactor |
US5073611A (en) * | 1989-04-29 | 1991-12-17 | Basf Aktiengesellschaft | Copolymers crosslinkable by ultraviolet radiation in the atmosphere |
US5789487A (en) * | 1996-07-10 | 1998-08-04 | Carnegie-Mellon University | Preparation of novel homo- and copolymers using atom transfer radical polymerization |
US5854364A (en) * | 1996-12-26 | 1998-12-29 | Elf Atochem S.A. | Process for the controlled radical polymerization or copolymerization of (meth)acrylic, vinyl, vinylidene and diene monomers, and (co)polymers obtained |
US5919871A (en) * | 1995-02-07 | 1999-07-06 | Elf Atochem S.A. | Stabilization of a polymer by a stable free radical |
US6271340B1 (en) * | 1997-01-10 | 2001-08-07 | E. I. Du Pont De Nemours And Company | Method of controlling polymer molecular weight and structure |
US6281311B1 (en) * | 1997-03-31 | 2001-08-28 | Pmd Holdings Corp. | Controlled free radical polymerization process |
US6288162B2 (en) * | 1998-03-17 | 2001-09-11 | Ciba Specialty Chemicals Corp. | Continuous process for preparing polymer based pigment preparations |
US20020193539A1 (en) * | 2000-06-20 | 2002-12-19 | Mare Husemann | Method for producing polyacrylates |
US20030105258A1 (en) * | 2001-10-05 | 2003-06-05 | Marc Husemann | UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution |
US6642318B1 (en) * | 1997-12-18 | 2003-11-04 | E. I. Du Pont De Nemours And Company | Polymerization process with living characteristics and polymers made therefrom |
US20040171777A1 (en) * | 1996-07-10 | 2004-09-02 | Le Tam Phuong | Polymerization with living characteristics |
US20050143544A1 (en) * | 2000-10-27 | 2005-06-30 | Marc Husemann | Method for producing acrylate adhesive materials |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2158246C3 (en) * | 1971-11-24 | 1979-06-28 | Eickhoff-Kleinewefers Kunststoffmaschinen Gmbh, 4630 Bochum | Device for the preparation and extrusion of thermoplastics |
DE2303366A1 (en) | 1973-01-24 | 1974-07-25 | Ludwig Wittrock | Extrudable thermoplastic or thermosetting resin mass - by preconsolidating in screw extruder, comminuting formed bodies, plasticising, and consolidating up to extrusion pressure |
JPS5456662A (en) * | 1977-10-13 | 1979-05-07 | Sumitomo Chem Co Ltd | Continuous production of methyl methacrylate resin plates |
DE3030541C2 (en) * | 1980-08-13 | 1988-09-08 | Rudolf P. 7000 Stuttgart Fritsch | Device for the continuous production of high molecular weight polymers |
JPS5853970A (en) * | 1981-09-28 | 1983-03-30 | Nitto Electric Ind Co Ltd | Pressure-sensitive adhesive composition |
DE3305727A1 (en) * | 1983-02-18 | 1984-08-23 | Nitto Electric Industrial Co., Ltd., Ibaraki, Osaka | Process for the free-radical polymerisation of acrylic monomers |
CS246370B1 (en) * | 1984-11-10 | 1986-10-16 | Miloslav Kolinsky | Method of vinyl polymers one-stage production and reactor for application of this method |
DE3621429A1 (en) | 1985-07-02 | 1987-01-08 | Milchem Inc | CONTINUOUS POLYMERIZATION PROCESS |
JPS6264822A (en) * | 1985-09-17 | 1987-03-23 | Teijin Ltd | Process and apparatus for producing polyester |
DE3605003A1 (en) * | 1986-02-18 | 1987-08-20 | Herberts Gmbh | Thermocurable adhesive film, process for the production thereof, and the use thereof |
JPS6429410A (en) * | 1987-07-25 | 1989-01-31 | Mitsubishi Petrochemical Co | Ultraviolet radiation-curing self-adhesive composition |
IL86605A (en) * | 1988-06-02 | 1992-02-16 | Bromine Compounds Ltd | Process for the polymerization of pentabromobenzylester monoacrylate |
DE3908415A1 (en) | 1989-03-15 | 1990-09-20 | Rust & Mitschke Entex | Processing of rubber mixtures |
DE3940954A1 (en) * | 1989-12-12 | 1991-06-13 | Battenfeld Extrusionstech | Extruder screw for efficient mixing - has start and end parts with concentric circular core profiles but asymmetrical intermediate length which is pref. polygonal |
DE4001986C1 (en) * | 1990-01-24 | 1991-09-19 | Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De | |
JPH06100605A (en) * | 1992-09-18 | 1994-04-12 | Sanyo Chem Ind Ltd | Production of acrylic resin |
DE4312249C1 (en) * | 1993-04-15 | 1994-03-17 | Inventa Ag | Planetary drive for multi-screw extruder and process - has housing with inner teeth, central shaft sun wheel, screws forming main planetary wheels and intermediate planetary wheels between them |
EP0779853B1 (en) * | 1994-09-09 | 1999-05-06 | Minnesota Mining And Manufacturing Company | Method of making a packaged hot melt adhesive |
DE4433487C2 (en) | 1994-09-20 | 1998-07-02 | Rust & Mitschke Entex | Planetary roller extruder |
DE9421955U1 (en) | 1994-09-20 | 1997-05-07 | Entex Rust & Mitschke Gmbh, 44805 Bochum | Planetary roller extruder |
JP3375430B2 (en) * | 1994-10-03 | 2003-02-10 | 積水化学工業株式会社 | Method for producing acrylic polymer |
US5608023A (en) * | 1995-03-30 | 1997-03-04 | Xerox Corporation | Rate enhanced polymerization processes |
DE19518255C5 (en) | 1995-05-18 | 2004-07-08 | Entex Rust & Mitschke Gmbh | Planetary roller extruder |
DE19524182A1 (en) | 1995-07-03 | 1997-01-09 | Basf Ag | Process and device for the continuous production of polymers |
DE59504339D1 (en) | 1995-07-26 | 1999-01-07 | Sulzer Chemtech Ag | Method and device for carrying out a polymerization in a tubular reactor |
DE19534813C2 (en) | 1995-09-20 | 2001-12-13 | Rust & Mitschke Entex | Laboratory extruder |
DE19548136A1 (en) * | 1995-12-21 | 1997-06-26 | Gefinex Jackon Gmbh | Low cost, monomer processing to give semi-finished plastic products |
DE19631182A1 (en) | 1996-01-12 | 1997-07-17 | Rust & Mitschke Entex | Granulating extruder, especially for plastics and foodstuffs |
CA2248732A1 (en) * | 1996-03-13 | 1997-09-18 | Minnesota Mining And Manufacturing Company | Methods for making hot melt adhesives and pressure-sensitive adhesiver therefrom |
FR2752238B1 (en) * | 1996-08-12 | 1998-09-18 | Atochem Elf Sa | METHOD FOR CONTROLLED RADICAL POLYMERIZATION OR COPOLYMERIZATION OF (METH) ACRYLIC AND VINYLIC MONOMERS AND (CO) POLYMERS OBTAINED |
FR2752237B1 (en) * | 1996-08-12 | 1998-09-18 | Atochem Elf Sa | METHOD FOR CONTROLLED RADICAL POLYMERIZATION OR COPOLYMERIZATION OF (METH) ACRYLIC AND VINYLIC MONOMERS AND (CO) POLYMERS OBTAINED |
FR2755441B1 (en) * | 1996-11-07 | 1998-12-24 | Atochem Elf Sa | PROCESS FOR CONTROLLED RADICAL (CO) POLYMERIZATION OF (METH) ACRYLIC, VINYLIC, VINYLIDENIC AND DIENE MONOMERS IN THE PRESENCE OF AN RH, CO OR IR COMPLEX |
DE29724790U1 (en) * | 1997-05-17 | 2004-03-11 | Entex Rust & Mitschke Gmbh | Planetary gear extruder with simplified sensor connections - has running rings at the ends of each planetary gear extruder module with identical connectors in the rings for attaching a temperature and/or pressure sensor and/or an injector |
DE29710235U1 (en) | 1997-06-12 | 1997-08-14 | Battenfeld Extrusionstechnik Gmbh, 32547 Bad Oeynhausen | Device for plasticizing plastic material |
DE19806609A1 (en) * | 1998-02-18 | 1999-08-19 | Beiersdorf Ag | Process for the continuous, solvent and mastication free production of non-thermoplastic elastomers based self-adhesive compositions |
EP0943662B1 (en) * | 1998-03-17 | 2002-05-02 | Ciba SC Holding AG | Continuous process for preparing polymer based pigment preparations |
TWI225483B (en) * | 1998-10-16 | 2004-12-21 | Ciba Sc Holding Ag | Heterocyclic alkoxyamines as regulators in controlled radical polymerization process |
DE19915916A1 (en) | 1999-04-09 | 2000-10-12 | Basf Ag | Process for the continuous production of polymers |
DE19939077A1 (en) * | 1999-08-18 | 2001-02-22 | Beiersdorf Ag | Process for the continuous, solvent and mastication-free production of pressure-sensitive self-adhesive compositions based on non-thermoplastic elastomers and their coating for the production of self-adhesive articles |
DE19939073A1 (en) * | 1999-08-18 | 2001-02-22 | Beiersdorf Ag | Process for the continuous, solvent and mastication-free production of pressure-sensitive self-adhesive compositions based on non-thermoplastic elastomers and their coating for the production of self-adhesive articles |
DE10103428A1 (en) * | 2000-02-23 | 2001-08-30 | Basf Ag | Composition containing polyacrylate to be processed from melt and phosphite stabilizer is useful as hot-melt adhesive, e.g. for production of self-adhesive labels, adhesive tape or protective film |
CN1398219A (en) * | 2000-02-24 | 2003-02-19 | 贝斯托夫有限公司 | Extruder with cover |
JP4911811B2 (en) * | 2000-02-28 | 2012-04-04 | スリーエム イノベイティブ プロパティズ カンパニー | Thermally active adhesive and photocrosslinkable thermally active adhesive |
ATE292151T1 (en) * | 2000-06-23 | 2005-04-15 | Solutia Inc | METHOD FOR PRODUCING SOLID PRESSURE SENSITIVE ADHESIVE POLYMERIC MICROBALLS |
DE10036801A1 (en) * | 2000-07-28 | 2002-02-07 | Tesa Ag | Acrylic PSAs with a narrow molecular weight distribution |
GB0019074D0 (en) * | 2000-08-03 | 2000-09-27 | Ranier Ltd | Precision polyurethane manufacture |
JP2002241410A (en) * | 2001-02-20 | 2002-08-28 | Nitto Denko Corp | Process for producing polymer |
CN1269860C (en) * | 2001-05-15 | 2006-08-16 | 西巴特殊化学品控股有限公司 | Method of grafting ethylenically unsaturated carboxylic acid derivatives onto thermoplastic polymers using hydroxylamine |
EP1336629A3 (en) * | 2002-02-16 | 2003-10-15 | Degussa AG | Process for the preparation of urethane (meth)acrylates |
DE10221047A1 (en) * | 2002-05-10 | 2003-11-27 | Degussa | Process for the solvent-free, continuous production of polyureas |
-
2003
- 2003-05-19 DE DE10322830A patent/DE10322830A1/en not_active Withdrawn
-
2004
- 2004-05-18 EP EP04739242A patent/EP1627023B1/en not_active Expired - Lifetime
- 2004-05-18 DE DE502004003348T patent/DE502004003348D1/en not_active Expired - Lifetime
- 2004-05-18 US US10/555,472 patent/US7279535B2/en not_active Expired - Lifetime
- 2004-05-18 JP JP2006529861A patent/JP4778901B2/en not_active Expired - Fee Related
- 2004-05-18 JP JP2006529864A patent/JP5002263B2/en not_active Expired - Fee Related
- 2004-05-18 TW TW093113944A patent/TWI359157B/en not_active IP Right Cessation
- 2004-05-18 TW TW093113946A patent/TWI359156B/en not_active IP Right Cessation
- 2004-05-18 DE DE112004000674T patent/DE112004000674D2/en not_active Expired - Fee Related
- 2004-05-18 ES ES04733562T patent/ES2282865T3/en not_active Expired - Lifetime
- 2004-05-18 ES ES04733535T patent/ES2327739T3/en not_active Expired - Lifetime
- 2004-05-18 EP EP04733562A patent/EP1631599B1/en not_active Expired - Lifetime
- 2004-05-18 US US10/555,173 patent/US20070055032A1/en not_active Abandoned
- 2004-05-18 TW TW093113950A patent/TWI345572B/en not_active IP Right Cessation
- 2004-05-18 JP JP2006529863A patent/JP4839217B2/en not_active Expired - Fee Related
- 2004-05-18 WO PCT/EP2004/005339 patent/WO2004101626A1/en active IP Right Grant
- 2004-05-18 ES ES04739242T patent/ES2305783T3/en not_active Expired - Lifetime
- 2004-05-18 DE DE112004000673T patent/DE112004000673D2/en not_active Withdrawn - After Issue
- 2004-05-18 WO PCT/EP2004/005341 patent/WO2004101698A1/en active IP Right Grant
- 2004-05-18 DE DE502004009828T patent/DE502004009828D1/en not_active Expired - Lifetime
- 2004-05-18 DE DE502004007146T patent/DE502004007146D1/en not_active Expired - Lifetime
- 2004-05-18 WO PCT/EP2004/005349 patent/WO2004101627A1/en active Application Filing
- 2004-05-18 US US10/557,086 patent/US20070191503A1/en not_active Abandoned
- 2004-05-18 EP EP04733535A patent/EP1626994B1/en not_active Expired - Lifetime
-
2010
- 2010-03-26 US US12/733,000 patent/US8519076B2/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4144157A (en) * | 1974-09-11 | 1979-03-13 | Beiersdorf Aktiengesellschaft | Acrylic and methacrylic self-adhesive composition and radiation method of making same |
US4581429A (en) * | 1983-07-11 | 1986-04-08 | Commonwealth Scientific And Industrial Research Organization | Polymerization process and polymers produced thereby |
US4619979A (en) * | 1984-03-28 | 1986-10-28 | Minnesota Mining And Manufacturing Company | Continuous free radial polymerization in a wiped-surface reactor |
US5073611A (en) * | 1989-04-29 | 1991-12-17 | Basf Aktiengesellschaft | Copolymers crosslinkable by ultraviolet radiation in the atmosphere |
US5919871A (en) * | 1995-02-07 | 1999-07-06 | Elf Atochem S.A. | Stabilization of a polymer by a stable free radical |
US20040171777A1 (en) * | 1996-07-10 | 2004-09-02 | Le Tam Phuong | Polymerization with living characteristics |
US5789487A (en) * | 1996-07-10 | 1998-08-04 | Carnegie-Mellon University | Preparation of novel homo- and copolymers using atom transfer radical polymerization |
US5945491A (en) * | 1996-07-10 | 1999-08-31 | Carnegie-Mellon University | Preparation of novel homo- and copolymers using atom transfer radical polymerization |
US5854364A (en) * | 1996-12-26 | 1998-12-29 | Elf Atochem S.A. | Process for the controlled radical polymerization or copolymerization of (meth)acrylic, vinyl, vinylidene and diene monomers, and (co)polymers obtained |
US6271340B1 (en) * | 1997-01-10 | 2001-08-07 | E. I. Du Pont De Nemours And Company | Method of controlling polymer molecular weight and structure |
US6281311B1 (en) * | 1997-03-31 | 2001-08-28 | Pmd Holdings Corp. | Controlled free radical polymerization process |
US6642318B1 (en) * | 1997-12-18 | 2003-11-04 | E. I. Du Pont De Nemours And Company | Polymerization process with living characteristics and polymers made therefrom |
US6288162B2 (en) * | 1998-03-17 | 2001-09-11 | Ciba Specialty Chemicals Corp. | Continuous process for preparing polymer based pigment preparations |
US20020193539A1 (en) * | 2000-06-20 | 2002-12-19 | Mare Husemann | Method for producing polyacrylates |
US20050143544A1 (en) * | 2000-10-27 | 2005-06-30 | Marc Husemann | Method for producing acrylate adhesive materials |
US20030105258A1 (en) * | 2001-10-05 | 2003-06-05 | Marc Husemann | UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution |
US6720399B2 (en) * | 2001-10-05 | 2004-04-13 | Tesa Ag | UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8519076B2 (en) | Method for producing solvent-free UV-crosslinkable acrylate pressure-sensitive adhesives | |
US6720399B2 (en) | UV-crosslinkable acrylic hotmelt PSAs with narrow molecular weight distribution | |
US6974853B2 (en) | Acrylate contact adhesive materials having tight molecular weight distribution | |
US6765078B2 (en) | Method for producing polyacrylates | |
US7521487B2 (en) | Pressure-sensitive adhesive with dual crosslinking mechanism | |
EP2985330B1 (en) | Cationic uv-crosslinkable acrylic polymers for pressure sensitive adhesives | |
US20060052475A1 (en) | Uv-initiated thermally cross-linked acrylate pressure-sensitive adhesive substances | |
US9540458B2 (en) | Method for producing non-colored polyacrylate adhesive compounds with a narrow molar mass distribution | |
JP5688833B2 (en) | Method for producing polyacrylate | |
KR20110126129A (en) | Pressure sensitive adhesive transfer tape with differentiated adhesion on any side and method of making such tape | |
JP2013129830A (en) | Pressure sensitive adhesive having high molecular weight and narrow molecular weight distribution, and method for producing the same | |
CN105765018B (en) | Pressure sensitive adhesive for low energy or rough surfaces | |
US20050143544A1 (en) | Method for producing acrylate adhesive materials | |
US7514515B2 (en) | Method for the production of acrylate adhesive materials using metal-sulphur compounds | |
US7071269B2 (en) | Acrylic PSAs with narrow molecular weight distribution | |
US20070287807A1 (en) | Heat-Activable, Pressure-Sensitive Adhesive Mass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TESA AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGENBUCH, JESSICA;MASSOW, KLAUS;ZOLLNER, STEPHAN;REEL/FRAME:018588/0056;SIGNING DATES FROM 20060202 TO 20060902 Owner name: TESA AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGENBUCH, JESSICA;MASSOW, KLAUS;ZOLLNER, STEPHAN;REEL/FRAME:018588/0117;SIGNING DATES FROM 20060202 TO 20060902 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |