US20070185019A1 - Novel antimicrobial peptides with heparin binding activity - Google Patents
Novel antimicrobial peptides with heparin binding activity Download PDFInfo
- Publication number
- US20070185019A1 US20070185019A1 US10/557,455 US55745504A US2007185019A1 US 20070185019 A1 US20070185019 A1 US 20070185019A1 US 55745504 A US55745504 A US 55745504A US 2007185019 A1 US2007185019 A1 US 2007185019A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- antimicrobial
- amino acid
- peptides
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000044503 Antimicrobial Peptides Human genes 0.000 title claims abstract description 105
- 108700042778 Antimicrobial Peptides Proteins 0.000 title claims abstract description 105
- 230000010556 Heparin Binding Activity Effects 0.000 title claims abstract description 11
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 37
- 239000003910 polypeptide antibiotic agent Substances 0.000 claims abstract description 34
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 164
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 90
- 239000000203 mixture Substances 0.000 claims description 33
- 241000894006 Bacteria Species 0.000 claims description 31
- 244000005700 microbiome Species 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 27
- 239000000872 buffer Substances 0.000 claims description 17
- 241000124008 Mammalia Species 0.000 claims description 16
- 239000004599 antimicrobial Substances 0.000 claims description 16
- 208000015181 infectious disease Diseases 0.000 claims description 14
- 241000588724 Escherichia coli Species 0.000 claims description 13
- -1 carrier Substances 0.000 claims description 11
- 150000001413 amino acids Chemical class 0.000 claims description 10
- 241000194032 Enterococcus faecalis Species 0.000 claims description 9
- 241000233866 Fungi Species 0.000 claims description 9
- 239000003242 anti bacterial agent Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 239000002671 adjuvant Substances 0.000 claims description 7
- 230000003115 biocidal effect Effects 0.000 claims description 7
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 241000222122 Candida albicans Species 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 239000000499 gel Substances 0.000 claims description 6
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims description 5
- 241000700605 Viruses Species 0.000 claims description 5
- 229940032049 enterococcus faecalis Drugs 0.000 claims description 5
- 230000000813 microbial effect Effects 0.000 claims description 4
- 239000002674 ointment Substances 0.000 claims description 4
- 244000045947 parasite Species 0.000 claims description 4
- 239000003826 tablet Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 241000191967 Staphylococcus aureus Species 0.000 claims description 3
- 210000004899 c-terminal region Anatomy 0.000 claims description 3
- 229940095731 candida albicans Drugs 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000006071 cream Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 241000222173 Candida parapsilosis Species 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 241000588770 Proteus mirabilis Species 0.000 claims description 2
- 241000193998 Streptococcus pneumoniae Species 0.000 claims description 2
- 241000193996 Streptococcus pyogenes Species 0.000 claims description 2
- 230000021736 acetylation Effects 0.000 claims description 2
- 238000006640 acetylation reaction Methods 0.000 claims description 2
- 230000010933 acylation Effects 0.000 claims description 2
- 238000005917 acylation reaction Methods 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 239000000443 aerosol Substances 0.000 claims description 2
- 230000029936 alkylation Effects 0.000 claims description 2
- 238000005804 alkylation reaction Methods 0.000 claims description 2
- 230000009435 amidation Effects 0.000 claims description 2
- 238000007112 amidation reaction Methods 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229940055022 candida parapsilosis Drugs 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 230000032050 esterification Effects 0.000 claims description 2
- 238000005886 esterification reaction Methods 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 230000006320 pegylation Effects 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229940031000 streptococcus pneumoniae Drugs 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 239000006188 syrup Substances 0.000 claims description 2
- 235000020357 syrup Nutrition 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 150000001768 cations Chemical class 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 239000011505 plaster Substances 0.000 claims 1
- 230000000845 anti-microbial effect Effects 0.000 abstract description 61
- 108090000623 proteins and genes Proteins 0.000 abstract description 37
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 31
- 102000004169 proteins and genes Human genes 0.000 abstract description 30
- HNDVDQJCIGZPNO-UHFFFAOYSA-N Histidine Chemical compound OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 abstract description 18
- 108010077861 Kininogens Proteins 0.000 abstract description 16
- 108010085895 Laminin Proteins 0.000 abstract description 8
- 102000007547 Laminin Human genes 0.000 abstract description 8
- 230000000295 complement effect Effects 0.000 abstract description 7
- 102000003886 Glycoproteins Human genes 0.000 abstract description 5
- 108090000288 Glycoproteins Proteins 0.000 abstract description 5
- 102000001708 Protein Isoforms Human genes 0.000 abstract description 5
- 108010029485 Protein Isoforms Proteins 0.000 abstract description 5
- 102000010631 Kininogens Human genes 0.000 abstract 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 33
- 229920000669 heparin Polymers 0.000 description 33
- 229960002897 heparin Drugs 0.000 description 33
- 235000018102 proteins Nutrition 0.000 description 29
- 230000027455 binding Effects 0.000 description 21
- 230000000844 anti-bacterial effect Effects 0.000 description 18
- 102100035792 Kininogen-1 Human genes 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 11
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 10
- 108010042502 laminin A Proteins 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 102100022133 Complement C3 Human genes 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 8
- 239000007983 Tris buffer Substances 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 206010052428 Wound Diseases 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 229940088710 antibiotic agent Drugs 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 108010088360 laminin alpha5 Proteins 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 102100037362 Fibronectin Human genes 0.000 description 5
- 108010067306 Fibronectins Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 102100027619 Histidine-rich glycoprotein Human genes 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000002009 allergenic effect Effects 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 108010044853 histidine-rich proteins Proteins 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- 229920000045 Dermatan sulfate Polymers 0.000 description 4
- 201000004624 Dermatitis Diseases 0.000 description 4
- 206010012438 Dermatitis atopic Diseases 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 239000007987 MES buffer Substances 0.000 description 4
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 102100024078 Plasma serine protease inhibitor Human genes 0.000 description 4
- 108010001953 Protein C Inhibitor Proteins 0.000 description 4
- 229940122929 Protein C inhibitor Drugs 0.000 description 4
- 102100035140 Vitronectin Human genes 0.000 description 4
- 108010031318 Vitronectin Proteins 0.000 description 4
- 201000008937 atopic dermatitis Diseases 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000001493 electron microscopy Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000001974 tryptic soy broth Substances 0.000 description 4
- 108010050327 trypticase-soy broth Proteins 0.000 description 4
- 108010047303 von Willebrand Factor Proteins 0.000 description 4
- 102100036537 von Willebrand factor Human genes 0.000 description 4
- 229960001134 von willebrand factor Drugs 0.000 description 4
- 208000002874 Acne Vulgaris Diseases 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 101710154607 Azurocidin Proteins 0.000 description 3
- 102100030009 Azurocidin Human genes 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- 206010017533 Fungal infection Diseases 0.000 description 3
- 229920002683 Glycosaminoglycan Polymers 0.000 description 3
- 101000887486 Homo sapiens Probable G-protein coupled receptor 150 Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 102100039876 Probable G-protein coupled receptor 150 Human genes 0.000 description 3
- 206010040943 Skin Ulcer Diseases 0.000 description 3
- 206010000496 acne Diseases 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 208000010668 atopic eczema Diseases 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000001332 colony forming effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 3
- 229940051593 dermatan sulfate Drugs 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000002101 lytic effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 102100033735 Bactericidal permeability-increasing protein Human genes 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 208000001860 Eye Infections Diseases 0.000 description 2
- 241000192125 Firmicutes Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 229920002971 Heparan sulfate Polymers 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 108010019494 Histatins Proteins 0.000 description 2
- 102000006492 Histatins Human genes 0.000 description 2
- 101000871785 Homo sapiens Bactericidal permeability-increasing protein Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010021531 Impetigo Diseases 0.000 description 2
- 208000031880 Intertrigo candida Diseases 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 239000007997 Tricine buffer Substances 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 206010046914 Vaginal infection Diseases 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 238000011203 antimicrobial therapy Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 229940108928 copper Drugs 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000008344 egg yolk phospholipid Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000011323 eye infectious disease Diseases 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 206010033072 otitis externa Diseases 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000008347 soybean phospholipid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- OEANUJAFZLQYOD-CXAZCLJRSA-N (2r,3s,4r,5r,6r)-6-[(2r,3r,4r,5r,6r)-5-acetamido-3-hydroxy-2-(hydroxymethyl)-6-methoxyoxan-4-yl]oxy-4,5-dihydroxy-3-methoxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](OC)O[C@H](CO)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](OC)[C@H](C(O)=O)O1 OEANUJAFZLQYOD-CXAZCLJRSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- AJTVSSFTXWNIRG-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid Chemical compound OCC[NH+](CCO)CCS([O-])(=O)=O AJTVSSFTXWNIRG-UHFFFAOYSA-N 0.000 description 1
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- ACERFIHBIWMFOR-UHFFFAOYSA-N 2-hydroxy-3-[(1-hydroxy-2-methylpropan-2-yl)azaniumyl]propane-1-sulfonate Chemical compound OCC(C)(C)NCC(O)CS(O)(=O)=O ACERFIHBIWMFOR-UHFFFAOYSA-N 0.000 description 1
- LVQFQZZGTZFUNF-UHFFFAOYSA-N 2-hydroxy-3-[4-(2-hydroxy-3-sulfonatopropyl)piperazine-1,4-diium-1-yl]propane-1-sulfonate Chemical compound OS(=O)(=O)CC(O)CN1CCN(CC(O)CS(O)(=O)=O)CC1 LVQFQZZGTZFUNF-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- JTYMXXCJQKGGFG-UHFFFAOYSA-N 3-(imidazol-1-yl)lactic acid Chemical compound OC(=O)C(O)CN1C=CN=C1 JTYMXXCJQKGGFG-UHFFFAOYSA-N 0.000 description 1
- NUFBIAUZAMHTSP-UHFFFAOYSA-N 3-(n-morpholino)-2-hydroxypropanesulfonic acid Chemical compound OS(=O)(=O)CC(O)CN1CCOCC1 NUFBIAUZAMHTSP-UHFFFAOYSA-N 0.000 description 1
- RZQXOGQSPBYUKH-UHFFFAOYSA-N 3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound OCC(CO)(CO)NCC(O)CS(O)(=O)=O RZQXOGQSPBYUKH-UHFFFAOYSA-N 0.000 description 1
- XCBLFURAFHFFJF-UHFFFAOYSA-N 3-[bis(2-hydroxyethyl)azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound OCCN(CCO)CC(O)CS(O)(=O)=O XCBLFURAFHFFJF-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- RRRCPCOJPQLWEP-UHFFFAOYSA-N 3-hydroxytriazolo[4,5-b]pyridine Chemical compound C1=CN=C2N(O)N=NC2=C1.C1=CN=C2N(O)N=NC2=C1 RRRCPCOJPQLWEP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XNPKNHHFCKSMRV-UHFFFAOYSA-N 4-(cyclohexylamino)butane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCNC1CCCCC1 XNPKNHHFCKSMRV-UHFFFAOYSA-N 0.000 description 1
- LOJNFONOHINEFI-UHFFFAOYSA-N 4-[4-(2-hydroxyethyl)piperazin-1-yl]butane-1-sulfonic acid Chemical compound OCCN1CCN(CCCCS(O)(=O)=O)CC1 LOJNFONOHINEFI-UHFFFAOYSA-N 0.000 description 1
- VTOWJTPBPWTSMK-UHFFFAOYSA-N 4-morpholin-4-ylbutane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCN1CCOCC1 VTOWJTPBPWTSMK-UHFFFAOYSA-N 0.000 description 1
- 239000007991 ACES buffer Substances 0.000 description 1
- 101150035093 AMPD gene Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108700016232 Arg(2)-Sar(4)- dermorphin (1-4) Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 108091028026 C-DNA Proteins 0.000 description 1
- 239000008000 CHES buffer Substances 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102100038608 Cathelicidin antimicrobial peptide Human genes 0.000 description 1
- 108050004290 Cecropin Proteins 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 108010028780 Complement C3 Proteins 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 108010051815 Glutamyl endopeptidase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 241000989913 Gunnera petaloidea Species 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 1
- GIZQLVPDAOBAFN-UHFFFAOYSA-N HEPPSO Chemical compound OCCN1CCN(CC(O)CS(O)(=O)=O)CC1 GIZQLVPDAOBAFN-UHFFFAOYSA-N 0.000 description 1
- 108010000487 High-Molecular-Weight Kininogen Proteins 0.000 description 1
- 101000741320 Homo sapiens Cathelicidin antimicrobial peptide Proteins 0.000 description 1
- ACZFBYCNAVEFLC-UHFFFAOYSA-N Imidazole lactic acid Natural products OC(=O)C(O)CC1=CN=CN1 ACZFBYCNAVEFLC-UHFFFAOYSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 241000102542 Kara Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- DBXNUXBLKRLWFA-UHFFFAOYSA-N N-(2-acetamido)-2-aminoethanesulfonic acid Chemical compound NC(=O)CNCCS(O)(=O)=O DBXNUXBLKRLWFA-UHFFFAOYSA-N 0.000 description 1
- MKWKNSIESPFAQN-UHFFFAOYSA-N N-cyclohexyl-2-aminoethanesulfonic acid Chemical compound OS(=O)(=O)CCNC1CCCCC1 MKWKNSIESPFAQN-UHFFFAOYSA-N 0.000 description 1
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 206010048685 Oral infection Diseases 0.000 description 1
- 206010050346 Oropharyngeal candidiasis Diseases 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000869417 Trematodes Species 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000034953 Twin anemia-polycythemia sequence Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000003255 anti-acne Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 201000007032 bacterial conjunctivitis Diseases 0.000 description 1
- 230000008956 bacterial persistence Effects 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000007998 bicine buffer Substances 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 230000035587 bioadhesion Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- HAUBPZADNMBYMB-UHFFFAOYSA-N calcium copper Chemical compound [Ca].[Cu] HAUBPZADNMBYMB-UHFFFAOYSA-N 0.000 description 1
- 229940041011 carbapenems Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 108060001132 cathelicidin Proteins 0.000 description 1
- 102000014509 cathelicidin Human genes 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000004182 chemical digestion Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- OGGXGZAMXPVRFZ-UHFFFAOYSA-M dimethylarsinate Chemical compound C[As](C)([O-])=O OGGXGZAMXPVRFZ-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 210000000087 hemolymph Anatomy 0.000 description 1
- 102000022382 heparin binding proteins Human genes 0.000 description 1
- 108091012216 heparin binding proteins Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- USSYUMHVHQSYNA-SLDJZXPVSA-N indolicidin Chemical class CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)CC1=CNC2=CC=CC=C12 USSYUMHVHQSYNA-SLDJZXPVSA-N 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 239000013546 insoluble monolayer Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 238000004810 partition chromatography Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 201000001245 periodontitis Diseases 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229940093158 polyhexanide Drugs 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 108700022109 ropocamptide Proteins 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 229940009188 silver Drugs 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229950000244 sulfanilic acid Drugs 0.000 description 1
- 125000004962 sulfoxyl group Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4723—Cationic antimicrobial peptides, e.g. defensins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/39—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/55—Protease inhibitors
- A61K38/57—Protease inhibitors from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/14—Ectoparasiticides, e.g. scabicides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/811—Serine protease (E.C. 3.4.21) inhibitors
- C07K14/8121—Serpins
- C07K14/8128—Antithrombin III
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity selected from the group consisting of laminin isoforms, complement factor C3, histidin rich glycoprotein and kininogen and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consists of at least four amino acid residues selected from the group consisting of K, R and H.
- the invention also relates to pharmaceutical compositions comprising said antimicrobial peptides and use of the antimicrobial peptides and/or antimicrobial/pharmaceutical compositions.
- Symptomatic infections may be treated by various medicaments. Some diseases may also be combated by for instance vaccines. However, vaccines are not always the best treatment option and for certain microorganisms no vaccine is available. When no protection is available treatment of the disease is pursued. Often the treatment is performed by the use of an antibiotic agent, which kills the microbe. However, during the last years several microbes have become resistant against antibiotic agents. Most likely, resistance problems will increase in the near future. Additionally, several individuals have developed allergy against the antibiotic agent, thereby reducing the possibility to effectively use certain antibiotic agents.
- U.S. Pat. No. 6,503,881 disclose cationic peptides being an indolicidin analogue to be used as an antimicrobial peptide.
- the cationic peptides being derived from different species, including animals and plants.
- U.S. Pat. No. 5,912,230 disclose anti-fungal and anti-bacterial histatin-based peptides.
- the peptides being based on defined portions of the amino acid sequences of naturally occurring human histatins and methods for treatment of fungal and bacterial infections.
- U.S. Pat. No. 5,717,064 disclose methylated lysine-rich lytic peptides.
- the lytic peptides being tryptic digestion resistant and non-natural.
- the lytic peptides are suitable for in vivo administration.
- U.S. Pat. No. 5,646,014 disclose an antimicrobial peptide.
- the peptide was isolated from an antimicrobial fraction from silkworm hemolymph.
- the peptide exhibits excellent antimicrobial activity against several bacterial strains, such as Escherichia coli, Staphylococcus aureus and Bacillus cereus.
- WO2004016653 disclose a peptide based on the 20-44 sequence of azurocidin. This peptide contains a loop structure linked by disulfide bridges.
- U.S. Pat. No. 6,495,516 and related patents disclose peptides based on the bactericidal 55 kDa protein bactericidal/permeability increasing protein (BPI). The peptides exerted antimicrobial effects as well as had heparin and LPS-neutralizing capacity.
- BPI protein bactericidal/permeability increasing protein
- WO 01/81578 discloses numerous sequences encoding G-coupled protein-receptor related polypeptides, which may be used for numerous diseases.
- WO 00/27415 discloses peptides being suitable for inhibition of angiogenesis.
- the peptides being analogous of high molecular weight kininogen 5.
- the BLASTp search shows sequences, which are conserved or have similarities among different species such as kininogen without any indication of the function of such conserved regions or if they at all have any function as small peptides.
- Antimicrobial peptides which can be used to combat microbes and being resistant or tolerant against antibiotic agents and/or other antimicrobial agents. Additionally, there is a need for new antimicrobial peptides, which are non-allergenic when introduced into mammals such as human beings. Bacteria have encountered endogenously produced antimicrobial peptides during evolution without induction of significant resistance.
- the invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity selected from the group consisting of laminin isoforms, complement factor C3, histidin rich glycoprotein and kininogen and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consists of at least four amino acid residues, selected from the group consisting of K, R and H.
- the risks for allergenic reactions to antimicrobial peptides may be reduced due to the fact that the peptides are derived from endogenous proteins and/or peptides.
- the stability of the peptide may be increased and the production costs reduced, as compared to longer peptides and proteins, whereby the invention may be economically advantageous.
- the invention originates from the finding that peptides with heparin-binding motifs derived from non-antimicrobial endogenous proteins exhibit antimicrobial activities, as described by Andersson et al., Eur J Biochem, 2004, 271:1219-1226, published after the priority date of the present application.
- the antimicrobial peptides and the corresponding antimicrobial/pharmaceutical compositions according to the invention provide peptides and compositions, which facilitate efficient prevention, reduction or elimination of microorganisms. Thereby the possibility to combat microorganisms, which are resistant or tolerant against the antibiotic agents, may be increased. Moreover, mammals, which are allergenic against commercially available antimicrobial agents, may be treated. By providing antimicrobial/pharmaceutical compositions, which are derived from endogenous proteins, the probability may be reduced or even eliminated that a mammal will develop allergy against these particular peptides. This makes the antimicrobial/pharmaceutical compositions useful for several applications in which the antimicrobial/pharmaceutical compositions contact a mammal either as a medicament or as an additive to prevent infections.
- the invention relates to antimicrobial/pharmaceutical compositions comprising one or more antimicrobial peptides as defined above and an pharmaceutical acceptable buffer, diluent, carrier, adjuvant or excipient.
- the invention relates to the use of the antimicrobial peptides and/or the antimicrobial/pharmaceutical compositions as defined herein after.
- inventive antimicrobial peptides increase the list of antimicrobial agents, which aid in the choice to prevent, reduce or eliminate microorganisms in all kind of applications including but not limited to those that invade or infect mammals such as the human being.
- FIG. 1 A-C are diagrams demonstrating the antibacterial effects of peptides on Enterococcus faecalis.
- FIG. 2 A and B are petri dishes illustrating radial diffusion assays using a set of highly active peptides.
- FIG. 3A -C are diagrams and a table describing antibacterial effects of histidine-rich peptides.
- FIG. 4 A-H are electron microscopy pictures showing the analysis of Pseudomonas aeruginosa subjected to antimicrobial peptides.
- FIG. 5 A-C are photographs showing the heparin binding activity of peptides derived from complement C3, histidine-rich glycoprotein and kininogen.
- FIG. 6 is a photograph illustrating purification of histidine-containing antimicrobial fragment on nickel-sepharose.
- nucleotide sequence is intended to mean a sequence of two or more nucleotides.
- the nucleotides may be of genomic DNA, cDNA, RNA, semisynthetic or synthetic origin or a mixture thereof.
- the term includes single and double stranded forms of DNA or RNA.
- antimicrobial peptide is intended to mean a peptide, which comprises from about 10 to about 36 amino acid residues, has anti-microbial and heparin binding activity and is derived from an endogenous mammalian which inherently has no antimicrobial effect.
- the “antimicrobial peptide” prevents, inhibits, reduces or destroys a microorganism.
- the antimicrobial activity can be determined by for example the method in EXAMPLE 2, 4 or 5.
- heparin binding affinity is intended to mean a peptide, which binds to a heparin either directly or indirectly.
- the heparin binding activity can be determined by for example the method in EXAMPLE 7.
- the invented antimicrobial peptides, which exhibit affinity for heparin also bind dermatan sulfate.
- heparin binding antimicrobial peptides also interact with the endogenous glycosaminoglycan dermatan sulfate.
- amphipathic is intended to mean the distribution of hydrophilic and hydrophobic amino acid residues along opposing faces of an ⁇ -helix structure, ⁇ -strand, linear, circular, or other secondary conformation, which result in one face of the molecule being predominantly charged and the other face being predominantly hydrophilic.
- the degree of amphipathicity of a peptide can be assessed by plotting the sequence of amino acid residues by various web-based algorithms, eg. those found on http://us.expasy.org/cgi-bin/protscale.pl.
- the distribution of hydrophobic residues can be visualized by helical wheel diagrams. Secondary structure prediction algorithms, such as GORIV can be found at www.expasy.com.
- cationic is intended to mean a molecule, which has a net positive charge within the pH range of from about 4 to about 12.
- microorganism is intended to mean any living microorganism. Examples of microorganisms are bacteria, fungus, virus, parasites and yeasts.
- antimicrobial agent is intended to mean any agent, which prevent, inhibit or destroy life of microbes. Examples of antimicrobial agents can be found in The Sanford Guide to Antimicrobial Therapy (32nd edition, Antimicrobial Therapy, Inc, US).
- amino acid names and atom names are used as defined by the Protein DataBank (PNB) (www.pdb.org), which is based on the IUPAC nomenclature (IUPAC Nomenclature and Symbolism for Amino Acids and Peptides (residue names, atom names etc.), Eur J Biochem., 138, 9-37 (1984) together with their corrections in Eur J Biochem., 152, 1 (1985).
- PDB Protein DataBank
- amino acid is intended to indicate an amino acid from the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gln or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Val or V), tryptophan (Trp or W) and tyrosine (Tyr or Y), or derivatives thereof.
- the present invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consist of at least four amino acid residues selected from the group consisting of K, R and H. Two of the amino acid residues may be adjecent. A distance of ⁇ 20 ⁇ between the B amino acid residues constitutes a prerequisite for heparin binding irrespective of peptide conformation as reported by Margalit et al., 1993 J Biol Chem 268, 19228-31.
- the use of short peptides increase bioavailibility of shorter peptides as compared to longer peptides or proteins, e.g., through an increased skin the penetration capacity as well as reduces the production and purification costs.
- the present antimicrobial peptides are complements to those antimicrobial peptides, which are commercially available today and increases the possibility to combat microorganisms, being tolerant and/or resistant against available antimicrobial agents. By deriving the new antimicrobial peptides from endogenous non-antimicrobial proteins it is possible to identify new peptides which are non-allergenic for the mammal from which the peptide has been based.
- the endogenous antimicrobial peptides are derived from human endogenous proteins.
- the antimicrobial peptides may be based on the structure of a peptide and/or protein present in plasma, blood, connective tissue and constituent cells and may be selected from the group consisting of heparin binding proteins; laminin isoforms, von Willebrand factor, vitronectin, protein C inhibitor, fibronectin, coagulation factors, growth factors, chemokines, histidin rich glycoprotein, kininogen, or complement factor C3.
- the antimicrobial peptides of the invention have, a binding affinity (Kd) to heparin of about 10 nM to about 20 ⁇ M.
- the peptides may have a size of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 amino acid residues.
- the length and sequence of the peptides is dependent on the origin of the antimicrobial peptides and which microorganism to combat, if the peptides are to be used to prevent, inhibit, reduce or destroy the microorganism and what kind of environment the microorganism is present in and what kind of environment the antimicrobial peptide will encounter after administration.
- the invention relates to antimicrobial peptides being based on kininogen proteins or histidin rich glycoprotein, wherein at least 20% of the amino acid residues are H.
- the antimicrobial peptides may comprise more than 30, 40 or even 50% H, R and/or K amino acid residues. In specific examples 1, 2, 3, 4, 5 or 6 amino acid residues are H.
- the antimicrobial peptide may be selected from the group consisting of SEQ ID NO:1, 2, 3 and 4. These peptides are derived from heparin-binding domains of the non-antimicrobial proteins kininogen and histidine-rich glycoprotein, respectively and are rich in H residues.
- the invention relates to antimicrobial peptides being based on complement factor proteins.
- the antimicrobial peptide may be selected from the group consisting of SEQ ID NO: 5, 6 and 7.
- SEQ ID NO: 5, 6 and 7 peptides are derived from well-defined helical segments of the complement factor C3 molecule.
- the helical regions of the C3-derived C3a molecule are defined by segments 19-28 (represented by SEQ ID NO: 5) and 47-70 (represented by SEQ ID NO: 6 and 7).
- the holoprotein C3 exerts no antimicrobial effects.
- the heparin binding and antimicrobial capacity of peptide segments derived from C3 has been disclosed recently (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226).
- the invention relates to antimicrobial peptides derived from the group of laminin proteins.
- the antimicrobial peptide may be selected from the group consisting of SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15 and 16.
- Laminin ⁇ -chain LG-domains are composed of five (1-5) LG-modules that have been identified as binding sites for heparin and other cell-surface receptors (Timpl., et al., Matrix Biol, 2000, 19, 309-317). These modular proteins are synthesised during developmental processes such as wound healing and it has been described that proteolytic processing of LG-modules occur during these events.
- a previously undisclosed antimicrobial function of heparin-binding epitopes of LG-modules was described recently (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226)
- peptides are derived from endogenous proteins they may be produced as semisynthetic or even synthetic peptides as well as in microorganisms.
- the antimicrobial peptides may be extended by one or more amino acid residues, such as 1-100 amino acid residues, 5-50 amino acid residues or 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 amino acid residues.
- additional amino acids may duplicate a sequence contiguous to the sequence of the antimicrobial peptide derived from a non-antimicrobial protein. The number to be added depends on which microorganism to be combated in including, stability of the peptide, toxicity, the mammal to be treated or in which product the peptide should be in and which peptide structure the antimicrobial peptide is based upon.
- the number of amino acid residues to be added to the peptides depends also on the choice of production, e.g., expression vector and expression hosts and the choice of manufacturing the antimicrobial/pharmaceutical composition.
- the extension may be at the N- or C-terminal part or at both parts of the antimicrobial peptides as long as it does not disrupt the antimicrobial effect of the peptide.
- the antimicrobial peptides may also be a fusion protein, wherein the antimicrobial peptide is fused to another peptide.
- antimicrobial peptides may be operably linked to other known antimicrobial peptides or other substances, such other peptides, proteins, oligosaccharides, polysaccharides, other organic compounds, or inorganic substances.
- antimicrobial peptides may be coupled to a substance which protect the antimicrobial peptides from being degraded within a mammal prior to the antimicrobial peptides has inhibited, prevented or destroyed the life of the microorganism.
- antimicrobial peptides may be modified at the C-terminal part by amidation or esterification and at the N-terminal part by acylation, acetylation, PEGylation, alkylation and the like.
- peptides derived from functional antimicrobial segments of non-antimicrobial holo-proteins may be modified by substitution of one to six amino acids.
- microorganism that are inhibited, prevented or destroyed by the antimicrobial peptide are bacteria, both Gram positive and Gram-negative bacteria such as Enterococcus faecalis, Eschericia coli Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus , viruses, parasites, fungus and yeast, such Candida albicans and Candida parapsilosis.
- bacteria both Gram positive and Gram-negative bacteria such as Enterococcus faecalis, Eschericia coli Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus , viruses, parasites, fungus and yeast, such Candida albicans and Candida parapsilosis.
- the antimicrobial peptides can be obtained from a naturally occurring source, such as from a human cell, a c-DNA, genomic clone, chemically synthesized or obtained by recombinant DNA techniques as expression products from cellular sources.
- the antimicrobial peptides may be synthesized by standard chemical methods, including synthesis by automated procedure.
- peptide analogues are synthesized based on the standard solid-phase Fmoc protection strategy with HATU (N-[DIMETHYLAMINO-1H-1.2.3.-TRLAZOLO[4,5-B]PYRIDIN-1-YLMETHYLELE]-N-METHYLMETHANAMINIUM HEXAFLUOROPHOSPHATE N-OXIDE) as the coupling agent or other coupling agents such as HOAt-1-HYDROXY-7-AZABENZOTRIAZOLE.
- the peptide is cleaved from the solid-phase resin with trifluoroacetic acid containing appropriate scavengers, which also deprotects side chain functional groups. Crude peptide is further purified using preparative reversed-phase chromatography. Other purification methods, such as partition chromatography, gel filtration, gel electrophoresis, or ion-exchange chromatography may be used. Other synthesis techniques, known in the art, such as the tBoc protection strategy, or use of different coupling reagents or the like can be employed to produce equivalent peptides.
- Peptides may alternatively be synthesized by recombinant production (see e.g., U.S. Pat. No. 5,593,866).
- a variety of host systems are suitable for production of the peptide analogues, including bacteria, such as E. coli , yeast, such as Saccharomyces cerevisiae or pichia , insects, such as Sf9, and mammalian cells, such as CHO or COS-7.
- bacteria such as E. coli
- yeast such as Saccharomyces cerevisiae or pichia
- insects such as Sf9
- mammalian cells such as CHO or COS-7.
- Vectors and procedures for cloning and expression in E. coli can be found in for example Sambrook et al. (Molecular Cloning.: A Laboratory Manual,
- the peptides may be purified from plasma, blood, various tissues or the like.
- the peptides may be endogenous, or generated after enzymatic or chemical digestion of the purified protein.
- a heparin binding protein may be digested by trypsin and the resulting antibacterial peptides further isolated in larger scale.
- a DNA sequence encoding the antimicrobial peptide is introduced into a suitable expression vector appropriate for the host.
- the gene is cloned into a vector to create a fusion protein.
- amino acids susceptible to chemical cleavage e.g., CNBr
- enzymatic cleavage e.g., V8 protease, trypsin
- the fusion partner is preferably a normal intracellular protein that directs expression toward inclusion body formation. In such a case, following cleavage to release the final product, there is no requirement for renaturation of the peptide.
- the DNA cassette comprising fusion partner and peptide gene
- the expression vector is a plasmid that contains an inducible or constitutive promoter to facilitate the efficient transcription of the inserted DNA sequence in the host.
- the expression vector can be introduced into the host by conventional transformation techniques such as by calcium-mediated techniques, electroporation, or other methods well known to those skilled in the art.
- the sequence encoding the antimicrobial peptide may be derived from a natural source such as a mammalian cell, an existing cDNA or genomic clone or synthesized.
- One method, which may be used, is amplification of the antimicrobial peptide by the aid of PCR using amplification primers which are derived from the 5′ and 3′ ends of the antimicrobial DNA template and typically incorporate restriction sites chosen with regard to the cloning site of the vector. If necessary, translational initiation and termination codons can be engineered into the primer sequences.
- the sequence encoding the antimicrobial peptide may be codon-optimized for facilitate expression in the particular host as long as the choice of the codons are made considering the final mammal to be treated. Thus, for example, if the antimicrobial peptide is expressed in bacteria, the codons are optimized for bacteria.
- the expression vector should contain a promoter sequence, to facilitate expression of the introduced antimicrobial peptide.
- regulatory sequences may also be included, such as one or more enhancers, ribosome binding site, transcription termination signal sequence, secretion signal sequence, origin of replication, selectable marker, and the like.
- the regulatory sequences are operably linked to each other to allow transcription and subsequent translation.
- the regulatory sequences are those which are designed to be used within bacteria and such are well-known for a person skilled in the art. Suitable promoters, such as constitutive and inducible promoters, are widely available and includes promoters from T5, T7, T3, SP6 phages, and the trp, lpp, and lac operons.
- vector containing the antimicrobial peptide is to be expressed within bacteria
- examples of origin are either those which give rise to a high copy number or those which give rise to a low copy, for example f1-ori and col E1 ori.
- the plasmids include at least one selectable marker that is functional in the host, which allows transformed cells to be identified and/or selectively grown.
- selectable marker genes for bacterial hosts include the ampicillin resistance gene, chloroamphenicol resistance gene, tetracycline resistance gene, kanamycin resistance gene and others known in the art.
- plasmids for expression in bacteria examples include the pET expression vectors pET3a, pET 11a, pET 12a-c, and pET 15b (available from Novagen, Madison, Wis.).
- Low copy number vectors e.g., pPD100
- pPD100 can be used for efficient over-production of peptides deleterious to the E. coli host (Dersch et al., FEMS Microbiol. Lett. 123:19, 1994).
- Suitable hosts are bacteria, yeast, insects and mammal cells. However, often either bacteria such as E. coli is used.
- the expressed antimicrobial peptide is isolated by conventional isolation techniques such as affinity, size exclusion, or ionic exchange chromatography, HPLC and the like. Different purification techniques can be found in A Biologist's Guide to Principles and Techniques of Practical Biochemistry (eds. Wilson and Golding, Edward Arnold, London, or in Current Protocols in Molecular Biology (John Wiley & Sons, Inc).
- antimicrobial/pharmaceutical compositions comprising an antimicrobial peptide as described above and a pharmaceutical acceptable buffer, diluent, carrier, adjuvant or excipient. Additional compounds may be included in the compositions. These include, for example, chelating agents such as EDTA, EGTA or glutathione.
- the antimicrobial/pharmaceutical compositions may be prepared in a manner known in the art that is sufficiently storage stable and suitable for administration to humans and animals.
- the pharmaceutical compositions may be lyophilised e.g., through freeze drying, spray drying or spray cooling.
- “Pharmaceutically acceptable” means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients, i.e., the antimicrobial peptide(s).
- Such pharmaceutically acceptable buffers, carriers or excipients are well-known in the art (see Remington's Pharmaceutical Sciences, 18th edition, A. R Gennaro, Ed., Mack Publishing Company (1990) and handbook of Pharmaceutical Excipients, 3rd edition, A. Kibbe, Ed., Pharmaceutical Press (2000).
- buffer is intended to mean an aqueous solution containing an acid-base mixture with the purpose of stabilising pH.
- buffers are Trizma, Bicine, Tricine, MOPS, MOPSO, MOBS, Tris, Hepes, HEPBS, MES, phosphate, carbonate, acetate, citrate, glycolate, lactate, borate, ACES, ADA, tartrate, AMP, AMPD, AMPSO, BES, CABS, cacodylate, CHES, DIPSO, EPPS, ethanolamine, glycine, HEPPSO, imidazole, imidazolelactic acid, PIPES, SSC, SSPE, POPSO, TAPS, TABS, TAPSO, TES, tricine.
- diluent is intended to mean an aqueous or non-aqueous solution with the purpose of diluting the peptide in the pharmaceutical preparation.
- the diluent may be one or more of saline, water, polyethylene glycol, propylene glycol, ethanol or oils (such as safflower oil, corn oil, peanut oil, cottonseed oil or sesame oil).
- adjuvant is intended to mean any compound added to the formulation to increase the biological effect of the peptide.
- the adjuvant may be one or more of zinc, copper or silver salts with different anions, for example, but not limited to fluoride, chloride, bromide, iodide, tiocyanate, sulfite, hydroxide, phosphate, carbonate, lactate, glycholate, citrate, borate, tartrate, and acetates of different acyl composition.
- the excipient may be one or more of carbohydrates, polymers, lipids and minerals.
- carbohydrates include lactose, sucrose, mannitol, and cyclodextrines, which are added to the composition, e.g., for facilitating lyophilization.
- polymers examples include starch, cellulose ethers, cellulose carboxymethylcellulose, alginates, carrageenans, hyaluronic acid, polyacrylic acid, polysulphonate, polyethylenglycol/polyethylene oxide, polyvinylalcohol/polyvinylacetate of different degree of hydrolysis, and polyvinylpyrrolidone, all of different molecular weight, which are added to the composition, e.g., for viscosity control, for achieving bioadhesion, or for protecting the lipid from chemical and proteolytic degradation.
- lipids are fatty acids, phospholipids, mono-, di-, and triglycerides, ceramides, sphingolipids and glycolipids, all of different acyl chain length and saturation, egg lecithin, soy lecithin, hydrogenated egg and soy lecithin, which are added to the composition for reasons similar to those for polymers.
- minerals are talc, magnesium oxide, zinc oxide and titanium oxide, which are added to the composition to obtain benefits such as reduction of liquid accumulation or advantageous pigment properties.
- a preferred carrier is an emulsified cream comprising the active peptide, but other common carriers such as certain petrolatum/mineral-based and vegetable-based ointments can be used, as well as polymer gels, liquid crystalline phases and microemulsions.
- the antimicrobial/pharmaceutical compositions may comprise one or more peptides, such as 1, 2, 3 or 4 different peptides in the antimicrobial/pharmaceutical compositions.
- the antimicrobial effect may be increased as well as decrease of the possibility that the microorganism to combat might be resistant and/or tolerant against the antimicrobial agent.
- Histidin rich and/or kininogen based peptides particularly as short peptides have limited antimicrobial activity. However if these peptides are in a composition comprising a salt and/or a pH from about 5.0 to about 7.0, the peptides become active , i.e., an enhanced effect is obtained by the addition of a salt and/or a choice of a specific pH range.
- the peptide as a salt may be an acid adduct with inorganic acids, such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid, perchloric acid, thiocyanic acid, boric acid etc. or with organic acid such as formic acid, acetic acid, haloacetic acid, propionic acid, glycolic acid, citric acid, tartaric acid, succinic acid, gluconic acid, lactic acid, malonic acid, fumaric acid, anthranilic acid, benzoic acid, cinnamic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfanilic acid etc.
- inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid, perchloric acid, thiocyanic acid, boric acid etc.
- organic acid such as formic acid, acetic acid,
- Inorganic salts such as monovalent sodium, potassium or divalent zinc, magnesium, copper calcium, all with a corresponding anion, may be added to improve the biological activity of the antimicrobial composition.
- An antimicrobial H-rich peptides based on kininogen and histidine-rich glycoprotein may be used in defined solutions, such as gel, where the pH is defined and controlled (eg. pH 5.5-6.0) to enhance the effects of the added antimicrobial peptides.
- a gel, ointment or bandage with a defined pH from about 5.0 to about 7.0, such as from about 5.5 to about 6.0 with or without an ionic environment will enhance, control, and localise the function of the antimicrobial peptides.
- the antimicrobial/pharmaceutical compositions of the invention may also be in the form of a liposome in which the peptide is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids, which exist in aggregated forms as micelles, insoluble monolayers and liquid crystals.
- Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is can be found in for example U.S. Pat. No. 4,235,871.
- the antimicrobial/pharmaceutical compositions of the invention may also be in the form of biodegradable microspheres.
- Aliphatic polyesters such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), copolymers of PLA and PGA (PLGA) or poly(carprolactone) (PCL), and polyanhydrides have been widely used as biodegradable polymers in the production of microsheres. Preparations of such microspheres can be found in U.S. Pat. No. 5,851,451 and in EP0213303.
- the antimicrobial peptides may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol or oils (such as safflower oil, corn oil, peanut oil, cottonseed oil or sesame oil), tragacanth gum, and/or various buffers.
- the pharmaceutical composition may also include ions and a defined pH for poteniation of action of antimicrobial peptides.
- the antimicrobial/pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilisation and/or may contain conventional adjuvants such as preservatives, stabilisers, wetting agents, emulsifiers, buffers, fillers, etc., e.g., as disclosed elsewhere herein.
- compositions according to the invention may be administered locally or systemically.
- Routes of administration include topical, ocular, nasal, pulmonary, buccal; parenteral (intravenous, subcutaneous, and intramuscular), oral, parenteral, vaginal and rectal. Also administration from implants is possible.
- Suitable antimicrobial preparation forms are, for example granules, powders, tablets, coated tablets, (micro) capsules, suppositories, syrups, emulsions, microemulsions, defined as optically isotropic thermodynamically stable systems consisting of water, oil and surfactant, liquid crystalline phases, defined as systems characterized by long-range order but short-range disorder (examples include lamellar, hexagonal and cubic phases, either water- or oil continuous), or their dispersed counterparts, gels, ointments, dispersions, suspensions, creams, aerosols, droplets or injectable solution in ampule form and also preparations with protracted release of active compounds, in whose preparation excipients, diluents, adjuvants or carriers are customarily used as described above.
- the pharmaceutical composition may also be provided in bandages or plasters or the like.
- compositions will be administered to a patient in a pharmaceutically effective dose.
- pharmaceutically effective dose is meant a dose that is sufficient to produce the desired effects in relation to the condition for which it is administered.
- the exact dose is dependent on the, activity of the compound, manner of administration, nature and severity of the disorder, age and body weight of the patient different doses may be needed.
- the administration of the dose can be carried out both by single administration in the form of an individual dose unit or else several smaller dose units and also by multiple administration of subdivided doses at specific intervals
- compositions of the invention may be administered alone or in combination with other therapeutic agents, such as antibiotic or antiseptic agents such as anti-bacterial agents, anti-fungicides, anti-viral agents, and antiparasitic agents.
- antibiotic or antiseptic agents such as anti-bacterial agents, anti-fungicides, anti-viral agents, and antiparasitic agents.
- examples are penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones.
- Antiseptic agents include iodine, silver, copper, chlorhexidine, polyhexanide and other biguanides, chitosan, acetic acid, and hydrogen peroxide. These agents may be incorporated as part of the same pharmaceutical composition or may be administered separately.
- the present invention concerns both humans and other mammal such as horses, dogs, cats, cows, pigs, camels, among others.
- the objects, suitable for such treatment may be identified by well-established hallmarks of an infection, such as fever, puls, culture of organisms, and the like.
- Infections that may be treated with the antimicrobial peptides include those caused by or due to microorganisms.
- microorganisms include bacteria (e.g., Gram-positive, Gram-negative), fungi, (e.g., yeast and molds), parasites (e.g., protozoans, nematodes, cestodes and trematodes), viruses, and prions.
- Infections include, but are not limited to, chronic skin ulcers, infected acute wounds and burn wounds, infected skin eczema, impetigo, atopic dermatitis, acne, external otitis, vaginal infections, seborrhoic dermatitis, oral infections and parodontitis, candidal intertrigo, conjunctivitis and other eye infections, and pneumonia.
- antimicrobial/pharmaceutical compositions may be used for prophylactic treatment of burn wounds, after surgery and after skin trauma.
- the pharmaceutical composition may also be included in solutions intended for storage and treatment of external materials in contact with the human body, such as contact lenses, orthopedic implants, and catheters.
- the antimicrobial/pharmaceutical compositions may be used for treatment of atopic dermatitis, impetigo, chronic skin ulcers, infected acute wound and burn wounds, acne, external otitis, fungal infections, pneumonia, seborrhoic dermatitis, candidal intertrigo, candidal vaginitis, oropharyngeal candidiasis, eye infections (bacterial conjunctivitis), and nasal infections (including MRSA carriage).
- the antimicrobial/pharmaceutical compositions may also be used to in cleansing solutions, such as lens disinfectants and storage solutions or used to prevent bacterial infection in association with urinary catheter use or use of central venous catheters.
- antimicrobial compostions may be used for prevention of infection post-surgery in plasters, adhesives, sutures, or be incorporated in wound dressings.
- the antimicrobial peptides may also be used in polymers, textiles or the like to create antibacterial surfaces or Cosmetics, and personal care products (soap, shampoos, tooth paste, anti-acne, suncreams, tampons, diapers, etc) may be supplemented with the antimicrobial/pharmaceutical compositions.
- the invention also relates to a method for the identification of one or more new antimicrobial peptide, which enables the possibility to provide mammals such as human beings with a new set of antimicrobial peptides having low allergenicity and being effective against the microorganism, which has invaded the mammal.
- new improved antimicrobial peptides will be available which provides a large collection of antimicrobial agents which reduce or even eliminates the problems of resistance and/or tolerance which are common today against the antibiotic agents available on the market.
- the method comprising the steps of; providing the endogenous peptide and/or protein, providing heparin, mixing the endogenous peptide and/or protein with heparin creating a peptide and/or protein heparin complex, detecting the peptide and/or protein heparin complex and identifying the antimicrobial human endogenous peptide and/or protein.
- nickel such as nickelsepharose may be used instead of heparin.
- Heparin can be presented in solution, or connected to a matrix. In the latter case, this is suitable for separation purposes (h.p.l.c or f.p.l.c) or Biocore analysis.
- Heparin-sepharose, or similar media may be used.
- antimicrobial peptides also interact with other glycosaminoglycans, it is possible to use these molecules, such as dermatan or heparan sulfate, for the purification of novel antimicrobial peptides.
- Heparin, heparan sulfate, and dermatan sulfate contains interspersed and spatially defined sulfo- or carboxyl-groups.
- any other polymeric compound of similar interactive capability as these glycosaminoglycans can be used for specific binding of antimicrobial peptides.
- H-rich peptides may be purified on Nickel-sepharose or similar media, either alone or in combination with heparin-chromatography.
- antimicrobial peptides shown in the sequence listing and Table 1 below were synthesized by Innovagen AB, Ideon, SE-22370, Lund, Sweden. The purity and molecular weight of these peptides was confirmed by mass spectral analysis (MALDI.TOF Voyager).
- FIG. 1 describes bactericidal effects of arginine and lysine-rich peptides (Sequence listing) on Enterococcus faecalis .
- Bacteria were grown to mid-logarithmic phase in Todd-Hewitt (TH) medium. Bacteria were washed and diluted in either 10 mM Tris, pH 7.4, containing 5 mM glucose Bacteria (50 ⁇ l; 2 ⁇ 10 6 cfu/ml) were incubated, at 37° C. for 2 hours, with the synthetic peptide at concentrations ranging from 0.03 to 60 ⁇ M.
- serial dilutions of the incubation mixture were plated on TH agar, followed by incubation at 37° C. overnight and the number of colony-forming units was determined.
- RIQ18 SEQ ID NO:16
- B Three peptides are derived from the complement factor C3 (LRK26:SEQ ID NO:5, LGE27:SEQ ID NO:6 and CNY21:SEQ ID NO:7), AKK15 from vitronectin, SEK20:SEQ ID NO:19 from the protein C inhibitor, QPP18:SEQ ID NO:17 from fibronectin, and YIG23:SEQ ID NO:18 from the von Willebrand factor.
- n 1 peptides exerted no antimicrobial effects.
- Peptides not interacting with heparin; GHRPLDKKREEAPSLRPA, LVTSKGDKELRTGKEKVTS, and KNNQKSEPLIGRKKT were not antimicrobial.
- RDA Radial diffusion assays
- the underlay gel was then covered with 5 ml of molten overlay (6% TSB and 1% Low-EEO agarose in dH 2 O). Antimicrobial activity of a peptide is visualized as a clear zone around each well after 18-24 hours of incubation at 37° C. Synthetic peptides were tested in concentrations of 100 ⁇ M to determine the antibacterial effect relative the known peptide LL-37. To minimize variation between experiments, a LL-37 standard (100 ⁇ M) was included on each plate. The activities of the peptides are presented in radial diffusion units ((diameter of clear zone in millimetres ⁇ well diameter) ⁇ 10). The results are shown in table 2 below.
- FIG. 2 illustrates radial diffusion assays using a set of antimicrobial peptides. The assays were performed as above. Antimicrobial activity of a peptide was visualized as a clear zone around each well after 18-24 hours of incubation at 37° C. for E. faecalis bacteria panel A) and 28° C. for Candida albicans (panel B).
- FIG. 3 describes bactericidal effects of histidine-rich peptides.
- E. faecalis bacteria were grown to mid-logarithmic phase in Todd-Hewitt (TH) medium. Bacteria were washed and diluted in either 10 mM Tris, pH 7.4, containing 5 mM glucose with or without 50 ⁇ M ZnCl or 10 mM MES-buffer, 5 mM glucose, pH 5.5. Bacteria (50 ⁇ l; 2 ⁇ 10 6 cfu/ml) were incubated, at 37° C.
- TH Todd-Hewitt
- FIG. 4 shows electron microscopy analysis of Pseudomonas aeruginosa bacteria subjected to antimicrobial peptides.
- A Control.
- B-H Analysis of bacteria treated with peptides at ⁇ 50% of the required bactericidal concentration. HKH20 was also analysed at 200%.
- B LL-37,
- C ARK24,
- D SEK20,
- E AKK24,
- F LGT25
- G HKH20,
- H HKH20 at 200% of bactericidal concentration.
- the bar represents 1 ⁇ m except for G and H (0.5 ⁇ m).
- Electron microscopy analysis of bacteria treated with peptides demonstrated clear differences in the morphology of treated bacteria in comparison with the control.
- the cathelicidin LL-37 caused local perturbations and breaks along P. aeruginosa bacterial cell membranes, and occasionally, intracellular material was found extracellularly and similar finding were obtained with the endogenous antimicrobial peptides herein disclosed.
- Peptides were tested for heparin binding activities. Peptides were applied on nitrocellulose membranes (Hybond, Amersham Biosciences). Membranes were blocked (PBS, pH 7.4, 0.25% Tween 20, 3% bovine serum albumin) for one hour and incubated with radiolabelled heparin for one hour in the same buffer. Histidine-rich peptides were tested for heparin-binding in the presence or absence of 50 ⁇ M ZnCl. The radioiodination of heparin was performed as described earlier (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226). Unlabelled polysaccharides (2 mg/ml) were added for competition of binding. The membranes were washed (3 ⁇ 10 min in PBS, pH 7.4, 0.25% Tween 20). A Bas 2000 radioimaging system (Fuji) was used for visualization of radioactivity.
- Unlabelled heparin (6 mg/ml) inhibited the binding of 12511 heparin to the C3-derived peptides LRK26 and LGE27 and LL-37 (upper part).
- Domain D5 of human kininogen which contains peptide epitopes KHN20, GGH20 and HKH20 was expressed in Eschericia coli strain (BL21DE3). Protein production was induced by addition of 1 mM isopropyl-thio- ⁇ -D-galactoside to exponentially growing bacteria. After 3 h incubation bacteria were harvested by centrifugation. The pellet was resuspended in 50 mM phosphate, 300 mM NaCl, pH 8.0 (buffer A) and bacteria were lysed by repeated cycles of freeze-thawing. The lysate was then centrifuged at 29000 g for 30 min.
- the supernatant was mixed with 2 ml NiNTA-sepharose loaded with nickel and equilibrated with buffer A.
- the sepharose was loaded into a column and washed with 10 ml buffer A with 0.1% Triton X-100, 10 ml buffer A, 5 ml buffer a with 1 M NaCl, 5 ml buffer A, 10 ml 20% ethanol, 10 ml buffer A with 5 mM imidazol, and buffer A with 30 mM imidazole.
- Protein (arrow) was eluted in 500 mM imidazole. This domain exerts antibacterial effects against E. coli in radial diffusion assays.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Marine Sciences & Fisheries (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Abstract
The invention relates to an antimicrobial peptide with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity selected from the group consisting of laminin isoforms, complement factor C3, histidin rich glycoprotein and kininogen and having from 10 to 36 amino acid residues, wherein the antimicrobial peptide consists of at least four amino acid residues selected from the group consisting of K, R and H. The invention also relates to pharmaceutical compositions comprising said antimicrobial peptide and use of the antimicrobial peptide and/or antimicrobial/pharmaceutical composition.
Description
- The invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity selected from the group consisting of laminin isoforms, complement factor C3, histidin rich glycoprotein and kininogen and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consists of at least four amino acid residues selected from the group consisting of K, R and H. The invention also relates to pharmaceutical compositions comprising said antimicrobial peptides and use of the antimicrobial peptides and/or antimicrobial/pharmaceutical compositions.
- Several infections are successfully combated by the immune system of a mammal such as a human being. However, in some instances, bacteria, fungi, or viruses are not always cleared, which may cause localised or generalised acute infections. This is a serious concern at perinatal-, burn, or intensive care units, and in immunocompromised individuals. In other cases, a continuous bacterial persistence at epithelial surfaces may cause or aggravate chronic disease. In humans, this is exemplified by chronic skin ulcers, atopic dermatitis and other types of eczema, acne, or genitourinary infections.
- Symptomatic infections may be treated by various medicaments. Some diseases may also be combated by for instance vaccines. However, vaccines are not always the best treatment option and for certain microorganisms no vaccine is available. When no protection is available treatment of the disease is pursued. Often the treatment is performed by the use of an antibiotic agent, which kills the microbe. However, during the last years several microbes have become resistant against antibiotic agents. Most likely, resistance problems will increase in the near future. Additionally, several individuals have developed allergy against the antibiotic agent, thereby reducing the possibility to effectively use certain antibiotic agents.
- Epithelial surfaces of various organisms are continuously exposed to bacteria. During recent years the innate immune system, based on antibacterial peptides has been attributed important roles in the initial clearance of bacteria at biological boundaries susceptible to infection (Lehrer, R. I., and Ganz, T. (1999) Curr Opin Immunol 11: 23-27, Boman, H. G. (2000) Immunol. Rev. 173, 5-16). Antimicrobial peptides kill bacteria by permeating their membranes, and thus the lack of a specific molecular microbial target minimizes resistance development.
- Several antimicrobial peptides and proteins, unrelated to the herein described peptides are known in the art.
- U.S. Pat. No. 6,503,881 disclose cationic peptides being an indolicidin analogue to be used as an antimicrobial peptide. The cationic peptides being derived from different species, including animals and plants.
- U.S. Pat. No. 5,912,230 disclose anti-fungal and anti-bacterial histatin-based peptides. The peptides being based on defined portions of the amino acid sequences of naturally occurring human histatins and methods for treatment of fungal and bacterial infections.
- U.S. Pat. No. 5,717,064 disclose methylated lysine-rich lytic peptides. The lytic peptides being tryptic digestion resistant and non-natural. The lytic peptides are suitable for in vivo administration.
- U.S. Pat. No. 5,646,014 disclose an antimicrobial peptide. The peptide was isolated from an antimicrobial fraction from silkworm hemolymph. The peptide exhibits excellent antimicrobial activity against several bacterial strains, such as Escherichia coli, Staphylococcus aureus and Bacillus cereus.
- McCabe et al., J. Biol. Chem. Vol 277:27477-27488, 2002, describes an 37 kDa antimicrobial and chemotactic protein, azurocidin, containing the heparin binding consensus motifs XBBXBX and XBBBXXBX.
- WO2004016653 disclose a peptide based on the 20-44 sequence of azurocidin. This peptide contains a loop structure linked by disulfide bridges.
- U.S. Pat. No. 6,495,516 and related patents, disclose peptides based on the bactericidal 55 kDa protein bactericidal/permeability increasing protein (BPI). The peptides exerted antimicrobial effects as well as had heparin and LPS-neutralizing capacity.
- WO 01/81578 discloses numerous sequences encoding G-coupled protein-receptor related polypeptides, which may be used for numerous diseases.
- WO 00/27415 discloses peptides being suitable for inhibition of angiogenesis. The peptides being analogous of high molecular weight kininogen 5. The BLASTp search shows sequences, which are conserved or have similarities among different species such as kininogen without any indication of the function of such conserved regions or if they at all have any function as small peptides.
- At present, over 700 different antimicrobial peptide sequences are known (www.bbcm.univ.trieste.it/˜tossi/search.htm), including cecropins, defensins magainins and cathelicidins.
- Even though there is a huge amount of antimicrobial peptides available today there is still an increased need of new improved antimicrobial peptides. Antimicrobial peptides which can be used to combat microbes and being resistant or tolerant against antibiotic agents and/or other antimicrobial agents. Additionally, there is a need for new antimicrobial peptides, which are non-allergenic when introduced into mammals such as human beings. Bacteria have encountered endogenously produced antimicrobial peptides during evolution without induction of significant resistance.
- According to a first aspect, the invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity selected from the group consisting of laminin isoforms, complement factor C3, histidin rich glycoprotein and kininogen and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consists of at least four amino acid residues, selected from the group consisting of K, R and H.
- By providing such antimicrobial peptides, the risks for allergenic reactions to antimicrobial peptides may be reduced due to the fact that the peptides are derived from endogenous proteins and/or peptides. By using short peptides the stability of the peptide may be increased and the production costs reduced, as compared to longer peptides and proteins, whereby the invention may be economically advantageous. The invention originates from the finding that peptides with heparin-binding motifs derived from non-antimicrobial endogenous proteins exhibit antimicrobial activities, as described by Andersson et al., Eur J Biochem, 2004, 271:1219-1226, published after the priority date of the present application. The structural prerequisite for heparin-binding and the presence of heparin-binding motifs in various proteins, is generally well documented. This group of molecules includes various laminin isoforms, fibronectin, coagulation factors, growth factors, chemokines, histidine-rich glycoprotein, kininogen and many others (see Andersson et al., (2004) Eur J Biochem 271; 271:1219-26 and references therein), none of them being inherently anti-microbial.
- The antimicrobial peptides and the corresponding antimicrobial/pharmaceutical compositions according to the invention provide peptides and compositions, which facilitate efficient prevention, reduction or elimination of microorganisms. Thereby the possibility to combat microorganisms, which are resistant or tolerant against the antibiotic agents, may be increased. Moreover, mammals, which are allergenic against commercially available antimicrobial agents, may be treated. By providing antimicrobial/pharmaceutical compositions, which are derived from endogenous proteins, the probability may be reduced or even eliminated that a mammal will develop allergy against these particular peptides. This makes the antimicrobial/pharmaceutical compositions useful for several applications in which the antimicrobial/pharmaceutical compositions contact a mammal either as a medicament or as an additive to prevent infections.
- Additionally, the use of short peptides improves bioavailibility. Furthermore, the use of structurally distinct heparin-binding antimicrobial peptides with specific or preferable actions on Gram-negative and Gram-positive bacteria, or fungi, enables specific targeting of various microorganisms, thus minimising development of resistance and ecological problems. By supplementing peptides that already exist in the mammal, the risk of additional ecological pressure by novel antibiotics is further diminished. Finally, these formulations may also enhance the effect of endogenous antimicrobial peptides.
- According to a second aspect, the invention relates to antimicrobial/pharmaceutical compositions comprising one or more antimicrobial peptides as defined above and an pharmaceutical acceptable buffer, diluent, carrier, adjuvant or excipient.
- According to a third aspect, the invention relates to the use of the antimicrobial peptides and/or the antimicrobial/pharmaceutical compositions as defined herein after.
- The inventive antimicrobial peptides increase the list of antimicrobial agents, which aid in the choice to prevent, reduce or eliminate microorganisms in all kind of applications including but not limited to those that invade or infect mammals such as the human being.
-
FIG. 1 A-C are diagrams demonstrating the antibacterial effects of peptides on Enterococcus faecalis. -
FIG. 2 A and B are petri dishes illustrating radial diffusion assays using a set of highly active peptides. -
FIG. 3A -C are diagrams and a table describing antibacterial effects of histidine-rich peptides. -
FIG. 4 A-H are electron microscopy pictures showing the analysis of Pseudomonas aeruginosa subjected to antimicrobial peptides. -
FIG. 5 A-C are photographs showing the heparin binding activity of peptides derived from complement C3, histidine-rich glycoprotein and kininogen. -
FIG. 6 is a photograph illustrating purification of histidine-containing antimicrobial fragment on nickel-sepharose. - Definitions
- In the context of the present application and invention the following definitions apply:
- The term “nucleotide sequence” is intended to mean a sequence of two or more nucleotides. The nucleotides may be of genomic DNA, cDNA, RNA, semisynthetic or synthetic origin or a mixture thereof. The term includes single and double stranded forms of DNA or RNA.
- The term “antimicrobial peptide” is intended to mean a peptide, which comprises from about 10 to about 36 amino acid residues, has anti-microbial and heparin binding activity and is derived from an endogenous mammalian which inherently has no antimicrobial effect. The “antimicrobial peptide” prevents, inhibits, reduces or destroys a microorganism. The antimicrobial activity can be determined by for example the method in EXAMPLE 2, 4 or 5.
- The term “heparin binding affinity” is intended to mean a peptide, which binds to a heparin either directly or indirectly. The heparin binding activity can be determined by for example the method in EXAMPLE 7. The invented antimicrobial peptides, which exhibit affinity for heparin, also bind dermatan sulfate. Hence, heparin binding antimicrobial peptides, also interact with the endogenous glycosaminoglycan dermatan sulfate.
- The term “amphipathic” is intended to mean the distribution of hydrophilic and hydrophobic amino acid residues along opposing faces of an α-helix structure, β-strand, linear, circular, or other secondary conformation, which result in one face of the molecule being predominantly charged and the other face being predominantly hydrophilic. The degree of amphipathicity of a peptide can be assessed by plotting the sequence of amino acid residues by various web-based algorithms, eg. those found on http://us.expasy.org/cgi-bin/protscale.pl. The distribution of hydrophobic residues can be visualized by helical wheel diagrams. Secondary structure prediction algorithms, such as GORIV can be found at www.expasy.com.
- The term “cationic” is intended to mean a molecule, which has a net positive charge within the pH range of from about 4 to about 12.
- The term “microorganism” is intended to mean any living microorganism. Examples of microorganisms are bacteria, fungus, virus, parasites and yeasts.
- The term “antimicrobial agent” is intended to mean any agent, which prevent, inhibit or destroy life of microbes. Examples of antimicrobial agents can be found in The Sanford Guide to Antimicrobial Therapy (32nd edition, Antimicrobial Therapy, Inc, US).
- In the present context, amino acid names and atom names are used as defined by the Protein DataBank (PNB) (www.pdb.org), which is based on the IUPAC nomenclature (IUPAC Nomenclature and Symbolism for Amino Acids and Peptides (residue names, atom names etc.), Eur J Biochem., 138, 9-37 (1984) together with their corrections in Eur J Biochem., 152, 1 (1985). The term “amino acid” is intended to indicate an amino acid from the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gln or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Val or V), tryptophan (Trp or W) and tyrosine (Tyr or Y), or derivatives thereof.
- Antimicrobial Peptide
- The present invention relates to antimicrobial peptides with heparin binding activity, being derived from endogenous mammalian proteins being substantially free from antimicrobial activity and having from 10 to 36 amino acid residues, wherein the antimicrobial peptides consist of at least four amino acid residues selected from the group consisting of K, R and H. Two of the amino acid residues may be adjecent. A distance of ˜20 Å between the B amino acid residues constitutes a prerequisite for heparin binding irrespective of peptide conformation as reported by Margalit et al., 1993 J Biol Chem 268, 19228-31. The use of short peptides increase bioavailibility of shorter peptides as compared to longer peptides or proteins, e.g., through an increased skin the penetration capacity as well as reduces the production and purification costs. The present antimicrobial peptides are complements to those antimicrobial peptides, which are commercially available today and increases the possibility to combat microorganisms, being tolerant and/or resistant against available antimicrobial agents. By deriving the new antimicrobial peptides from endogenous non-antimicrobial proteins it is possible to identify new peptides which are non-allergenic for the mammal from which the peptide has been based.
- Furthermore, increased knowledge of peptide action and dependence of various salts and ionic environments enables design of specific compositions, which enhance and control peptide effects. Peptides scissored for actions on fungi will further be advantageous in targeting specific diseases, such as yeast infections on mucous membranes without significantly affecting bacterial ecology at these sites. The fact that antimicrobial peptides, act on bacterial membranes suggest that they may act synergistically together with antibiotics. Therefore, combination of antibiotics and peptides may have therapeutical advantages. Finally, there is also a need of antimicrobial agents, which are low cost and non-allergenic to be used in different kinds of products in which it is necessary to prevent growth of microorganisms.
- Additionally, the use of structurally distinct heparin-binding short antimicrobial peptides with specific or preferable actions on Gram-negative and Gram-positive bacteria, or fungi enables specific targeting of various microorganisms, thus minimising resistance and ecological problems. By supplementing peptides that already occur in the organism, the risk of additional ecological pressure by novel antibiotics is further diminished. The introduction of specific formulations that enhance peptide effects localise and enhance exogenously supplied peptides which further minimises the risk of side effects of peptides, such as induction of resistance, outside the treated area. Finally, these formulations may also enhance the effect of endogenous antimicrobial peptides. If the antimicrobial peptides, are developed to be used to combat microorganisms in humans, the endogenous antimicrobial peptides are derived from human endogenous proteins. The same applies for other animals, such as horses, cows, pigs, or poultry. The antimicrobial peptides may be based on the structure of a peptide and/or protein present in plasma, blood, connective tissue and constituent cells and may be selected from the group consisting of heparin binding proteins; laminin isoforms, von Willebrand factor, vitronectin, protein C inhibitor, fibronectin, coagulation factors, growth factors, chemokines, histidin rich glycoprotein, kininogen, or complement factor C3.
- The antimicrobial peptides of the invention have, a binding affinity (Kd) to heparin of about 10 nM to about 20 μM.
- The peptides may have a size of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 amino acid residues. The length and sequence of the peptides is dependent on the origin of the antimicrobial peptides and which microorganism to combat, if the peptides are to be used to prevent, inhibit, reduce or destroy the microorganism and what kind of environment the microorganism is present in and what kind of environment the antimicrobial peptide will encounter after administration.
- According to a first embodiment the invention relates to antimicrobial peptides being based on kininogen proteins or histidin rich glycoprotein, wherein at least 20% of the amino acid residues are H. The antimicrobial peptides may comprise more than 30, 40 or even 50% H, R and/or K amino acid residues. In specific examples 1, 2, 3, 4, 5 or 6 amino acid residues are H. For example the antimicrobial peptide may be selected from the group consisting of SEQ ID NO:1, 2, 3 and 4. These peptides are derived from heparin-binding domains of the non-antimicrobial proteins kininogen and histidine-rich glycoprotein, respectively and are rich in H residues.
- According to another embodiment the invention relates to antimicrobial peptides being based on complement factor proteins. For example the antimicrobial peptide may be selected from the group consisting of SEQ ID NO: 5, 6 and 7. SEQ ID NO: 5, 6 and 7 peptides are derived from well-defined helical segments of the complement factor C3 molecule. As has been shown by Hugli and co-workers (Chazin et al., (1988) Biochemistry 27, 9139-48, Hugli, Current topics in Microbiology and Immunology, 1989, 153, 181-208) the helical regions of the C3-derived C3a molecule are defined by segments 19-28 (represented by SEQ ID NO: 5) and 47-70 (represented by SEQ ID NO: 6 and 7). The holoprotein C3 exerts no antimicrobial effects. The heparin binding and antimicrobial capacity of peptide segments derived from C3 has been disclosed recently (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226).
- According to a third embodiment the invention relates to antimicrobial peptides derived from the group of laminin proteins. For example the antimicrobial peptide may be selected from the group consisting of SEQ ID NO: 8, 9, 10, 11, 12, 13, 14, 15 and 16. Laminin α-chain LG-domains are composed of five (1-5) LG-modules that have been identified as binding sites for heparin and other cell-surface receptors (Timpl., et al., Matrix Biol, 2000, 19, 309-317). These modular proteins are synthesised during developmental processes such as wound healing and it has been described that proteolytic processing of LG-modules occur during these events. A previously undisclosed antimicrobial function of heparin-binding epitopes of LG-modules was described recently (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226)
- Even though the peptides are derived from endogenous proteins they may be produced as semisynthetic or even synthetic peptides as well as in microorganisms.
- The antimicrobial peptides may be extended by one or more amino acid residues, such as 1-100 amino acid residues, 5-50 amino acid residues or 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 amino acid residues. Such additional amino acids may duplicate a sequence contiguous to the sequence of the antimicrobial peptide derived from a non-antimicrobial protein. The number to be added depends on which microorganism to be combated in including, stability of the peptide, toxicity, the mammal to be treated or in which product the peptide should be in and which peptide structure the antimicrobial peptide is based upon. The number of amino acid residues to be added to the peptides depends also on the choice of production, e.g., expression vector and expression hosts and the choice of manufacturing the antimicrobial/pharmaceutical composition. The extension may be at the N- or C-terminal part or at both parts of the antimicrobial peptides as long as it does not disrupt the antimicrobial effect of the peptide. The antimicrobial peptides may also be a fusion protein, wherein the antimicrobial peptide is fused to another peptide.
- Additionally the antimicrobial peptides may be operably linked to other known antimicrobial peptides or other substances, such other peptides, proteins, oligosaccharides, polysaccharides, other organic compounds, or inorganic substances. For example the antimicrobial peptides may be coupled to a substance which protect the antimicrobial peptides from being degraded within a mammal prior to the antimicrobial peptides has inhibited, prevented or destroyed the life of the microorganism.
- Accordingly the antimicrobial peptides may be modified at the C-terminal part by amidation or esterification and at the N-terminal part by acylation, acetylation, PEGylation, alkylation and the like.
- Alternatively, peptides derived from functional antimicrobial segments of non-antimicrobial holo-proteins may be modified by substitution of one to six amino acids.
- Examples of microorganism that are inhibited, prevented or destroyed by the antimicrobial peptide are bacteria, both Gram positive and Gram-negative bacteria such as Enterococcus faecalis, Eschericia coli Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, viruses, parasites, fungus and yeast, such Candida albicans and Candida parapsilosis.
- The antimicrobial peptides can be obtained from a naturally occurring source, such as from a human cell, a c-DNA, genomic clone, chemically synthesized or obtained by recombinant DNA techniques as expression products from cellular sources.
- The antimicrobial peptides may be synthesized by standard chemical methods, including synthesis by automated procedure. In general, peptide analogues are synthesized based on the standard solid-phase Fmoc protection strategy with HATU (N-[DIMETHYLAMINO-1H-1.2.3.-TRLAZOLO[4,5-B]PYRIDIN-1-YLMETHYLELE]-N-METHYLMETHANAMINIUM HEXAFLUOROPHOSPHATE N-OXIDE) as the coupling agent or other coupling agents such as HOAt-1-HYDROXY-7-AZABENZOTRIAZOLE. The peptide is cleaved from the solid-phase resin with trifluoroacetic acid containing appropriate scavengers, which also deprotects side chain functional groups. Crude peptide is further purified using preparative reversed-phase chromatography. Other purification methods, such as partition chromatography, gel filtration, gel electrophoresis, or ion-exchange chromatography may be used. Other synthesis techniques, known in the art, such as the tBoc protection strategy, or use of different coupling reagents or the like can be employed to produce equivalent peptides.
- Peptides may alternatively be synthesized by recombinant production (see e.g., U.S. Pat. No. 5,593,866). A variety of host systems are suitable for production of the peptide analogues, including bacteria, such as E. coli, yeast, such as Saccharomyces cerevisiae or pichia, insects, such as Sf9, and mammalian cells, such as CHO or COS-7. There are many expression vectors available to be used for each of the hosts and the invention is not limited to any of them as long as the vector and host is able to produce the antimicrobial peptide. Vectors and procedures for cloning and expression in E. coli can be found in for example Sambrook et al. (Molecular Cloning.: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1987) and Ausubel et al. (Current Protocols in Molecular Biology, Greene Publishing Co., 1995).
- Finally, the peptides may be purified from plasma, blood, various tissues or the like. The peptides may be endogenous, or generated after enzymatic or chemical digestion of the purified protein. For example, a heparin binding protein may be digested by trypsin and the resulting antibacterial peptides further isolated in larger scale.
- A DNA sequence encoding the antimicrobial peptide is introduced into a suitable expression vector appropriate for the host. In preferred embodiments, the gene is cloned into a vector to create a fusion protein. To facilitate isolation of the peptide sequence, amino acids susceptible to chemical cleavage (e.g., CNBr) or enzymatic cleavage (e.g., V8 protease, trypsin) are used to bridge the peptide and fusion partner. For expression in E. coli, the fusion partner is preferably a normal intracellular protein that directs expression toward inclusion body formation. In such a case, following cleavage to release the final product, there is no requirement for renaturation of the peptide. In the present invention, the DNA cassette, comprising fusion partner and peptide gene, may be inserted into an expression vector. Preferably, the expression vector is a plasmid that contains an inducible or constitutive promoter to facilitate the efficient transcription of the inserted DNA sequence in the host.
- The expression vector can be introduced into the host by conventional transformation techniques such as by calcium-mediated techniques, electroporation, or other methods well known to those skilled in the art.
- The sequence encoding the antimicrobial peptide may be derived from a natural source such as a mammalian cell, an existing cDNA or genomic clone or synthesized. One method, which may be used, is amplification of the antimicrobial peptide by the aid of PCR using amplification primers which are derived from the 5′ and 3′ ends of the antimicrobial DNA template and typically incorporate restriction sites chosen with regard to the cloning site of the vector. If necessary, translational initiation and termination codons can be engineered into the primer sequences. The sequence encoding the antimicrobial peptide may be codon-optimized for facilitate expression in the particular host as long as the choice of the codons are made considering the final mammal to be treated. Thus, for example, if the antimicrobial peptide is expressed in bacteria, the codons are optimized for bacteria.
- The expression vector should contain a promoter sequence, to facilitate expression of the introduced antimicrobial peptide. If necessary, regulatory sequences may also be included, such as one or more enhancers, ribosome binding site, transcription termination signal sequence, secretion signal sequence, origin of replication, selectable marker, and the like. The regulatory sequences are operably linked to each other to allow transcription and subsequent translation. If the antimicrobial peptide is to be expressed in bacteria, the regulatory sequences are those which are designed to be used within bacteria and such are well-known for a person skilled in the art. Suitable promoters, such as constitutive and inducible promoters, are widely available and includes promoters from T5, T7, T3, SP6 phages, and the trp, lpp, and lac operons.
- If the vector containing the antimicrobial peptide is to be expressed within bacteria examples of origin are either those which give rise to a high copy number or those which give rise to a low copy, for example f1-ori and col E1 ori.
- Preferably, the plasmids include at least one selectable marker that is functional in the host, which allows transformed cells to be identified and/or selectively grown. Suitable selectable marker genes for bacterial hosts include the ampicillin resistance gene, chloroamphenicol resistance gene, tetracycline resistance gene, kanamycin resistance gene and others known in the art.
- Examples of plasmids for expression in bacteria include the pET expression vectors pET3a, pET 11a, pET 12a-c, and pET 15b (available from Novagen, Madison, Wis.). Low copy number vectors (e.g., pPD100) can be used for efficient over-production of peptides deleterious to the E. coli host (Dersch et al., FEMS Microbiol. Lett. 123:19, 1994).
- Examples of suitable hosts are bacteria, yeast, insects and mammal cells. However, often either bacteria such as E. coli is used.
- The expressed antimicrobial peptide is isolated by conventional isolation techniques such as affinity, size exclusion, or ionic exchange chromatography, HPLC and the like. Different purification techniques can be found in A Biologist's Guide to Principles and Techniques of Practical Biochemistry (eds. Wilson and Golding, Edward Arnold, London, or in Current Protocols in Molecular Biology (John Wiley & Sons, Inc).
- Antimicrobial/Pharmaceutical Composition
- Additionally the invention relates to antimicrobial/pharmaceutical compositions comprising an antimicrobial peptide as described above and a pharmaceutical acceptable buffer, diluent, carrier, adjuvant or excipient. Additional compounds may be included in the compositions. These include, for example, chelating agents such as EDTA, EGTA or glutathione. The antimicrobial/pharmaceutical compositions may be prepared in a manner known in the art that is sufficiently storage stable and suitable for administration to humans and animals. The pharmaceutical compositions may be lyophilised e.g., through freeze drying, spray drying or spray cooling.
- “Pharmaceutically acceptable” means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients, i.e., the antimicrobial peptide(s). Such pharmaceutically acceptable buffers, carriers or excipients are well-known in the art (see Remington's Pharmaceutical Sciences, 18th edition, A. R Gennaro, Ed., Mack Publishing Company (1990) and handbook of Pharmaceutical Excipients, 3rd edition, A. Kibbe, Ed., Pharmaceutical Press (2000).
- The term “buffer” is intended to mean an aqueous solution containing an acid-base mixture with the purpose of stabilising pH. Examples of buffers are Trizma, Bicine, Tricine, MOPS, MOPSO, MOBS, Tris, Hepes, HEPBS, MES, phosphate, carbonate, acetate, citrate, glycolate, lactate, borate, ACES, ADA, tartrate, AMP, AMPD, AMPSO, BES, CABS, cacodylate, CHES, DIPSO, EPPS, ethanolamine, glycine, HEPPSO, imidazole, imidazolelactic acid, PIPES, SSC, SSPE, POPSO, TAPS, TABS, TAPSO, TES, tricine.
- The term “diluent” is intended to mean an aqueous or non-aqueous solution with the purpose of diluting the peptide in the pharmaceutical preparation. The diluent may be one or more of saline, water, polyethylene glycol, propylene glycol, ethanol or oils (such as safflower oil, corn oil, peanut oil, cottonseed oil or sesame oil).
- The term “adjuvant” is intended to mean any compound added to the formulation to increase the biological effect of the peptide. The adjuvant may be one or more of zinc, copper or silver salts with different anions, for example, but not limited to fluoride, chloride, bromide, iodide, tiocyanate, sulfite, hydroxide, phosphate, carbonate, lactate, glycholate, citrate, borate, tartrate, and acetates of different acyl composition.
- The excipient may be one or more of carbohydrates, polymers, lipids and minerals. Examples of carbohydrates include lactose, sucrose, mannitol, and cyclodextrines, which are added to the composition, e.g., for facilitating lyophilization. Examples of polymers are starch, cellulose ethers, cellulose carboxymethylcellulose, alginates, carrageenans, hyaluronic acid, polyacrylic acid, polysulphonate, polyethylenglycol/polyethylene oxide, polyvinylalcohol/polyvinylacetate of different degree of hydrolysis, and polyvinylpyrrolidone, all of different molecular weight, which are added to the composition, e.g., for viscosity control, for achieving bioadhesion, or for protecting the lipid from chemical and proteolytic degradation. Examples of lipids are fatty acids, phospholipids, mono-, di-, and triglycerides, ceramides, sphingolipids and glycolipids, all of different acyl chain length and saturation, egg lecithin, soy lecithin, hydrogenated egg and soy lecithin, which are added to the composition for reasons similar to those for polymers. Examples of minerals are talc, magnesium oxide, zinc oxide and titanium oxide, which are added to the composition to obtain benefits such as reduction of liquid accumulation or advantageous pigment properties.
- The characteristics of the carrier are dependent on the route of administration. One route of administration is topical administration. For example, for topical administrations, a preferred carrier is an emulsified cream comprising the active peptide, but other common carriers such as certain petrolatum/mineral-based and vegetable-based ointments can be used, as well as polymer gels, liquid crystalline phases and microemulsions.
- The antimicrobial/pharmaceutical compositions may comprise one or more peptides, such as 1, 2, 3 or 4 different peptides in the antimicrobial/pharmaceutical compositions. By using a combination of different peptides the antimicrobial effect may be increased as well as decrease of the possibility that the microorganism to combat might be resistant and/or tolerant against the antimicrobial agent.
- Histidin rich and/or kininogen based peptides, particularly as short peptides have limited antimicrobial activity. However if these peptides are in a composition comprising a salt and/or a pH from about 5.0 to about 7.0, the peptides become active , i.e., an enhanced effect is obtained by the addition of a salt and/or a choice of a specific pH range.
- The peptide as a salt may be an acid adduct with inorganic acids, such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid, perchloric acid, thiocyanic acid, boric acid etc. or with organic acid such as formic acid, acetic acid, haloacetic acid, propionic acid, glycolic acid, citric acid, tartaric acid, succinic acid, gluconic acid, lactic acid, malonic acid, fumaric acid, anthranilic acid, benzoic acid, cinnamic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfanilic acid etc. Inorganic salts such as monovalent sodium, potassium or divalent zinc, magnesium, copper calcium, all with a corresponding anion, may be added to improve the biological activity of the antimicrobial composition. An antimicrobial H-rich peptides based on kininogen and histidine-rich glycoprotein may be used in defined solutions, such as gel, where the pH is defined and controlled (eg. pH 5.5-6.0) to enhance the effects of the added antimicrobial peptides. For example a gel, ointment or bandage, with a defined pH from about 5.0 to about 7.0, such as from about 5.5 to about 6.0 with or without an ionic environment will enhance, control, and localise the function of the antimicrobial peptides.
- The antimicrobial/pharmaceutical compositions of the invention may also be in the form of a liposome in which the peptide is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids, which exist in aggregated forms as micelles, insoluble monolayers and liquid crystals. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is can be found in for example U.S. Pat. No. 4,235,871.
- The antimicrobial/pharmaceutical compositions of the invention may also be in the form of biodegradable microspheres. Aliphatic polyesters, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), copolymers of PLA and PGA (PLGA) or poly(carprolactone) (PCL), and polyanhydrides have been widely used as biodegradable polymers in the production of microsheres. Preparations of such microspheres can be found in U.S. Pat. No. 5,851,451 and in EP0213303.
- Alternatively, the antimicrobial peptides may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol or oils (such as safflower oil, corn oil, peanut oil, cottonseed oil or sesame oil), tragacanth gum, and/or various buffers. The pharmaceutical composition may also include ions and a defined pH for poteniation of action of antimicrobial peptides.
- The antimicrobial/pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilisation and/or may contain conventional adjuvants such as preservatives, stabilisers, wetting agents, emulsifiers, buffers, fillers, etc., e.g., as disclosed elsewhere herein.
- The antimicrobial/pharmaceutical compositions according to the invention may be administered locally or systemically. Routes of administration include topical, ocular, nasal, pulmonary, buccal; parenteral (intravenous, subcutaneous, and intramuscular), oral, parenteral, vaginal and rectal. Also administration from implants is possible. Suitable antimicrobial preparation forms are, for example granules, powders, tablets, coated tablets, (micro) capsules, suppositories, syrups, emulsions, microemulsions, defined as optically isotropic thermodynamically stable systems consisting of water, oil and surfactant, liquid crystalline phases, defined as systems characterized by long-range order but short-range disorder (examples include lamellar, hexagonal and cubic phases, either water- or oil continuous), or their dispersed counterparts, gels, ointments, dispersions, suspensions, creams, aerosols, droplets or injectable solution in ampule form and also preparations with protracted release of active compounds, in whose preparation excipients, diluents, adjuvants or carriers are customarily used as described above. The pharmaceutical composition may also be provided in bandages or plasters or the like.
- The pharmaceutical compositions will be administered to a patient in a pharmaceutically effective dose. By “pharmaceutically effective dose” is meant a dose that is sufficient to produce the desired effects in relation to the condition for which it is administered. The exact dose is dependent on the, activity of the compound, manner of administration, nature and severity of the disorder, age and body weight of the patient different doses may be needed. The administration of the dose can be carried out both by single administration in the form of an individual dose unit or else several smaller dose units and also by multiple administration of subdivided doses at specific intervals
- The pharmaceutical compositions of the invention may be administered alone or in combination with other therapeutic agents, such as antibiotic or antiseptic agents such as anti-bacterial agents, anti-fungicides, anti-viral agents, and antiparasitic agents. Examples are penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones. Antiseptic agents include iodine, silver, copper, chlorhexidine, polyhexanide and other biguanides, chitosan, acetic acid, and hydrogen peroxide. These agents may be incorporated as part of the same pharmaceutical composition or may be administered separately.
- The present invention concerns both humans and other mammal such as horses, dogs, cats, cows, pigs, camels, among others. Thus the methods are applicable to both human therapy and veterinary applications. The objects, suitable for such treatment may be identified by well-established hallmarks of an infection, such as fever, puls, culture of organisms, and the like. Infections that may be treated with the antimicrobial peptides include those caused by or due to microorganisms. Examples of microorganisms include bacteria (e.g., Gram-positive, Gram-negative), fungi, (e.g., yeast and molds), parasites (e.g., protozoans, nematodes, cestodes and trematodes), viruses, and prions. Specific organisms in these classes are well known (see for example, Davis et al., Microbiology, 3.sup.rd edition, Harper & Row, 1980). Infections include, but are not limited to, chronic skin ulcers, infected acute wounds and burn wounds, infected skin eczema, impetigo, atopic dermatitis, acne, external otitis, vaginal infections, seborrhoic dermatitis, oral infections and parodontitis, candidal intertrigo, conjunctivitis and other eye infections, and pneumonia.
- Accordingly the antimicrobial/pharmaceutical compositions may be used for prophylactic treatment of burn wounds, after surgery and after skin trauma. The pharmaceutical composition may also be included in solutions intended for storage and treatment of external materials in contact with the human body, such as contact lenses, orthopedic implants, and catheters.
- Additionally, the antimicrobial/pharmaceutical compositions may be used for treatment of atopic dermatitis, impetigo, chronic skin ulcers, infected acute wound and burn wounds, acne, external otitis, fungal infections, pneumonia, seborrhoic dermatitis, candidal intertrigo, candidal vaginitis, oropharyngeal candidiasis, eye infections (bacterial conjunctivitis), and nasal infections (including MRSA carriage).
- The antimicrobial/pharmaceutical compositions may also be used to in cleansing solutions, such as lens disinfectants and storage solutions or used to prevent bacterial infection in association with urinary catheter use or use of central venous catheters.
- Additionally the antimicrobial compostions may be used for prevention of infection post-surgery in plasters, adhesives, sutures, or be incorporated in wound dressings.
- The antimicrobial peptides may also be used in polymers, textiles or the like to create antibacterial surfaces or Cosmetics, and personal care products (soap, shampoos, tooth paste, anti-acne, suncreams, tampons, diapers, etc) may be supplemented with the antimicrobial/pharmaceutical compositions.
- Method to Identify Antimicrobial Human Peptides and/or Proteins
- The invention also relates to a method for the identification of one or more new antimicrobial peptide, which enables the possibility to provide mammals such as human beings with a new set of antimicrobial peptides having low allergenicity and being effective against the microorganism, which has invaded the mammal. By such a method new improved antimicrobial peptides will be available which provides a large collection of antimicrobial agents which reduce or even eliminates the problems of resistance and/or tolerance which are common today against the antibiotic agents available on the market.
- The method comprising the steps of; providing the endogenous peptide and/or protein, providing heparin, mixing the endogenous peptide and/or protein with heparin creating a peptide and/or protein heparin complex, detecting the peptide and/or protein heparin complex and identifying the antimicrobial human endogenous peptide and/or protein. Additionally nickel such as nickelsepharose may be used instead of heparin. Heparin can be presented in solution, or connected to a matrix. In the latter case, this is suitable for separation purposes (h.p.l.c or f.p.l.c) or Biocore analysis. For separation purposes, Heparin-sepharose, or similar media may be used. Since antimicrobial peptides also interact with other glycosaminoglycans, it is possible to use these molecules, such as dermatan or heparan sulfate, for the purification of novel antimicrobial peptides. Heparin, heparan sulfate, and dermatan sulfate contains interspersed and spatially defined sulfo- or carboxyl-groups. In principal, any other polymeric compound of similar interactive capability as these glycosaminoglycans can be used for specific binding of antimicrobial peptides. Additionally, H-rich peptides may be purified on Nickel-sepharose or similar media, either alone or in combination with heparin-chromatography.
- The following examples are intended to illustrate but not to limit the invention in any manner, shape, or form, either explicitly or implicitly.
- Microorganisms
- Enterococcus faecalis 2374, Escherichia coli 37.4, Pseudomonas aeruginosa 27.4, originally obtained from chronic venous ulcers, and the fungus Candida albicans BM 4435 obtained from an patient with atopic eczema, were used in the experiments.
- Antimicrobial Peptides
- The antimicrobial peptides shown in the sequence listing and Table 1 below were synthesized by Innovagen AB, Ideon, SE-22370, Lund, Sweden. The purity and molecular weight of these peptides was confirmed by mass spectral analysis (MALDI.TOF Voyager).
TABLE 1 Origin Peptide Code C3a LRKCCEDGMR ENPMRFSCQR RTRFIS LRK26 C3a LGEACKKVFL DCCNYITELR RQHARAS LGE27 C3a CNYITELRRQHARASHLGLAR CNY21 Laminin-α1 SRNLSEIKLLISQARK SRN16 Laminin-α1 SRNLSEIKLL ISQARKQAAS IKVAVSADR SRN29 Laminin-α1 KDFLSIELFR GRVKV KDF15 Laminin-α1 SAVRKKLSVE LSIRT SAV15 Laminin-α5 LGTRLRAQSR QRSRPGRWHK VSVRW LGT25 Laminin-α5 PPPPLTSASK AIQVFLLGGS RKRVL PPP25 Laminin-α5 RLRAQSRQRS RPGRWHKVSV RW RLR22 Laminin-α1 PGRWHKVSVR W PGR11 Laminin-β1 RIQNLLKITNLRIKFVKL RIQ18 Fibronectin QPPRARITGY IIKYEKPG QPP18 Von Willebrand Factor YIGLKDRKRP SELRRIASQV KYA YIG23 Vitronectin AKKQRFRHRN RKGYR AKK15 Protein C inhibitor SEKTLRKWLK MFKKRQLELY SEK20 Histidine-rich glycopro- GHHPHGHHPH GHHPHGHHPH GHH20 tein Kininogen KHNLGHGHKH ERDQGHGHQR KHN20 Kininogen GGHVLDHKHGHGHGKHKNKG GGH20 Kininogen HKHGHGHGKH KNKGKKNGKH HKH20 Synthetic sequence AKKARAAKKA RAAKKARAAK KARA AKK24 Synthetic sequence AKKARAAKKA RAAKKARA AKK18 Synthetic sequence AKKARAAKKA RA AKK12 Synthetic sequence ARKKAAKAAR KKAAKAARKK AAKA ARK24 Synthetic sequence ARKKAAKAAR KKAAKA ARK16 Synthetic K−>H sequence AHHAHAAHHA HAAHHAHAAH HAHA AHH24:1 Synthetic K−>H sequence AHHHAAHAAH HHAAHAAHHH AAHA AHH24:2 - Antibacterial Effects of Arginine and Lysine-Rich Peptides
-
FIG. 1 describes bactericidal effects of arginine and lysine-rich peptides (Sequence listing) on Enterococcus faecalis. Bacteria were grown to mid-logarithmic phase in Todd-Hewitt (TH) medium. Bacteria were washed and diluted in either 10 mM Tris, pH 7.4, containing 5 mM glucose Bacteria (50 μl; 2×106 cfu/ml) were incubated, at 37° C. for 2 hours, with the synthetic peptide at concentrations ranging from 0.03 to 60 μM. To quantify the bactericidal activity, serial dilutions of the incubation mixture were plated on TH agar, followed by incubation at 37° C. overnight and the number of colony-forming units was determined. - 2×106 colony-forming units (CFU)×ml−1 of E. faecalis (isolate 2374) were incubated in 50 μl with peptides at concentrations ranging from 0.03 to 60 μM. (A) Synthetic peptides derived from laminin. Effect of peptides from the LG-domain of the α5 chain (PPP25: SEQ ID NO:13, LGT25: SEQ ID NO:12, RLR22: SEQ ID NO:14, PGR11: SEQ ID NO:15) and al chain (SRN16: SEQ ID NO:8, SRN29:SEQ ID NO:9, KDF15:SEQ ID NO:10, SAV15:SEQ ID NO:11) are shown. One peptide (RIQ18: SEQ ID NO:16) is derived from the β1 chain. (B) Three peptides are derived from the complement factor C3 (LRK26:SEQ ID NO:5, LGE27:SEQ ID NO:6 and CNY21:SEQ ID NO:7), AKK15 from vitronectin, SEK20:SEQ ID NO:19 from the protein C inhibitor, QPP18:SEQ ID NO:17 from fibronectin, and YIG23:SEQ ID NO:18 from the von Willebrand factor. (C) Antibacterial effects of heparin-binding consensus sequences (AKKARA)n (n=1-4), and (ARKKAAKA)n (n=1-3). The n=1 peptides exerted no antimicrobial effects. Peptides not interacting with heparin; GHRPLDKKREEAPSLRPA, LVTSKGDKELRTGKEKVTS, and KNNQKSEPLIGRKKT (Andersson et al., Eur J Biochem, 2004, 271; 271:1219-1226) were not antimicrobial.
- Radial Diffusion Assay Analysis of Antimicrobial Peptides (Table 2)
- Radial diffusion assays (RDA) were performed essentially as described earlier (Andersson et al., Eur J Biochem, 2004, 271:1219-1226). Briefly, bacteria (E. coli) or fungi (C. albicans) were grown to mid-logarithmic phase in 10 ml of full-strength (3% w/v) trypticase soy broth (TSB) (Becton-Dickinson, Cockeysville, Md.). The microorganisms were washed once with 10 mM Tris, pH 7.4. 4×106 bacterial cfu or 1×105 fungal cfu was added to 5 ml of the underlay agarose gel, consisting of 0.03% (w/v) TSB, 1% (w/v) low-electroendosmosistype (Low-EEO) agarose (Sigma, St Louise Mo.) and a final concentration of 0.02% (v/v) Tween 20 (Sigma). The underlay was poured into a Ø85 mm petri dish. After agarose solidified, 4 mm-diameter wells were punched and 6 μl of test sample was added to each well. Plates were incubated at 37° C. for 3 hours to allow diffusion of the peptides. The underlay gel was then covered with 5 ml of molten overlay (6% TSB and 1% Low-EEO agarose in dH2O). Antimicrobial activity of a peptide is visualized as a clear zone around each well after 18-24 hours of incubation at 37° C. Synthetic peptides were tested in concentrations of 100 μM to determine the antibacterial effect relative the known peptide LL-37. To minimize variation between experiments, a LL-37 standard (100 μM) was included on each plate. The activities of the peptides are presented in radial diffusion units ((diameter of clear zone in millimetres−well diameter)×10). The results are shown in table 2 below.
TABLE 2 Radial diffusion Origin Code units hCAP-18 LL-37 50 C3a LRK26 70 C3a LGE27 40 C3a CNY21 32 Laminin-α1 SRN16 77 Laminin-α1 SRN29 71 Laminin-α1 KDF15 65 Laminin-α1 SAV15 75 Laminin-α5 LGT25 85 Laminin-α5 PPP25 81 Laminin-α5 RLR22 92 Laminin- α1 PGR11 86 Laminin-β1 RIQ18 93 Fibronectin QPP18 59 Von Willebrand Factor YIG23 80 Vitronectin AKK15 101 Protein C inhibitor SEK20 92 Synthetic sequence AKK24 67 Synthetic sequence ARK24 74 - Radial Diffusion Assay of Peptides Against E. coli and C. albicans (
FIG. 2 ). -
FIG. 2 illustrates radial diffusion assays using a set of antimicrobial peptides. The assays were performed as above. Antimicrobial activity of a peptide was visualized as a clear zone around each well after 18-24 hours of incubation at 37° C. for E. faecalis bacteria panel A) and 28° C. for Candida albicans (panel B). - Antibacterial Effects of Histidine-Rich Peptides
-
FIG. 3 describes bactericidal effects of histidine-rich peptides. E. faecalis bacteria were grown to mid-logarithmic phase in Todd-Hewitt (TH) medium. Bacteria were washed and diluted in either 10 mM Tris, pH 7.4, containing 5 mM glucose with or without 50 μM ZnCl or 10 mM MES-buffer, 5 mM glucose, pH 5.5. Bacteria (50 μl; 2×106 cfu/ml) were incubated, at 37° C. for 2 hours, with the synthetic peptide at concentrations ranging from 0.03 to 60 μM (Tris-buffer with or without zinc), or 30 and 60 μM (Tris and MES-buffer). To quantify the bactericidal activity, serial dilutions of the incubation mixture were plated on TH agar, followed by incubation at 37° C. overnight and the number of colony-forming units was determined. (A): effect of peptides from the heparin-binding domain of histidine-rich glycoprotein (GHH20: SEQ ID NO:4) and kininogen (KHN20: SEQ ID NO:3, GGH20: SEQ ID NO:2 and HKH20: SEQ ID NO:1) in the presence or absence of 50 uM ZnCl are shown. (B): Effects of peptides (30 and 60 uM) in 10 mM Tris, pH 7.4, containing 5 mM glucose or 10 mM MES-buffer, 5 mM glucose, pH 5.5. The numbers indicate % survival where 100% is control (without peptide). (C): Effects of peptides AHH24:1 and AHH24:2 on E. faecalis in the presence of a fixed peptide/zinc molar ratio (1:100). Peptides without zinc exerted no antimicrobial activity. - Analysis by Electron Microscopy of Peptide Effects
-
FIG. 4 shows electron microscopy analysis of Pseudomonas aeruginosa bacteria subjected to antimicrobial peptides. (A) Control. (B-H) Analysis of bacteria treated with peptides at ˜50% of the required bactericidal concentration. HKH20 was also analysed at 200%. (B) LL-37, (C) ARK24, (D) SEK20, (E) AKK24, (F) LGT25 (G) HKH20, (H) HKH20 at 200% of bactericidal concentration. The bar represents 1 μm except for G and H (0.5 μm). Electron microscopy analysis of bacteria treated with peptides demonstrated clear differences in the morphology of treated bacteria in comparison with the control. The cathelicidin LL-37 caused local perturbations and breaks along P. aeruginosa bacterial cell membranes, and occasionally, intracellular material was found extracellularly and similar finding were obtained with the endogenous antimicrobial peptides herein disclosed. - Heparin Binding of Endogenous Antimicrobial Peptides (
FIG. 5 ). - Peptides were tested for heparin binding activities. Peptides were applied on nitrocellulose membranes (Hybond, Amersham Biosciences). Membranes were blocked (PBS, pH 7.4, 0.25
% Tween - Unlabelled heparin (6 mg/ml) inhibited the binding of 12511 heparin to the C3-derived peptides LRK26 and LGE27 and LL-37 (upper part).
- Purification of Histidine-Containing Antimicrobial Fragment on Nickel-Sepharose (
FIG. 6 ). - Domain D5 of human kininogen, which contains peptide epitopes KHN20, GGH20 and HKH20 was expressed in Eschericia coli strain (BL21DE3). Protein production was induced by addition of 1 mM isopropyl-thio-β-D-galactoside to exponentially growing bacteria. After 3 h incubation bacteria were harvested by centrifugation. The pellet was resuspended in 50 mM phosphate, 300 mM NaCl, pH 8.0 (buffer A) and bacteria were lysed by repeated cycles of freeze-thawing. The lysate was then centrifuged at 29000 g for 30 min. The supernatant was mixed with 2 ml NiNTA-sepharose loaded with nickel and equilibrated with buffer A. The sepharose was loaded into a column and washed with 10 ml buffer A with 0.1% Triton X-100, 10 ml buffer A, 5 ml buffer a with 1 M NaCl, 5 ml buffer A, 10
ml 20% ethanol, 10 ml buffer A with 5 mM imidazol, and buffer A with 30 mM imidazole. Protein (arrow) was eluted in 500 mM imidazole. This domain exerts antibacterial effects against E. coli in radial diffusion assays.
Claims (29)
1.-49. (canceled)
50. An antimicrobial peptide with heparin binding activity, the peptide comprising a 10 to 36 amino acid residue portion of the amino acid sequence KHNLGHGHKH ERDQGHGHQR GHGLGHGHEQ QHGLGHGHKF KLDDDLEHQG GHVLDHGHKHKHGHGHGKH KNKGKKNGKH NGWK or a variant thereof, wherein at least 30% of the residues of the 10 to 36 amino acid residue portion are selected from the group consisting of K, R and H.
51. The peptide of claim 50 , wherein at least 40% of the residues of the 10 to 36 amino acid residue portion are selected from the group consisting of K, R and H.
52. The peptide of claim 50 , wherein at least 50% of the residues of the 10 to 36 amino acid residue portion are selected from the group consisting of K, R and H.
53. The peptide of claim 50 , wherein the 10 to 36 amino acid residue portion comprises at least 20% H amino acid residues.
54. The peptide of claim 50 , wherein the peptide consists of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 amino acid residues.
55. The peptide of claim 50 , wherein the 10 to 36 amino acid residue portion is selected from the group consisting of SEQ ID NO 1, 2 and 3.
56. The peptide of claim 50 , wherein the 10 to 36 amino acid residue portion is endogenous, synthetic, or semisynthetic.
57. The peptide of claim 50 , wherein the peptide is linked to one or more other antimicrobial peptide(s) or other substances.
58. The peptide of claim 50 , wherein the peptide is extended by 1-100 amino acid residues at either the N- or C-terminal end, or at both ends.
59. The peptide of claim 58 , wherein the peptide is extended by 5-50 amino acid residues.
60. The peptide of claim 59 , wherein the peptide is extended by 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 amino acid residues.
61. The peptide of claim 50 , wherein the 10 to 36 amino acid residue portion is modified by substitution of one to six amino acids.
62. The peptide of claim 50 , wherein the peptide(s) are modified by amidation, esterification, acylation, acetylation, PEGylation or alkylation.
63. A composition comprising the peptide according to claim 50 , the composition comprising a pharmaceutically acceptable buffer, diluent, carrier, adjuvant or excipient.
64. The composition of claim 63 , wherein the composition comprises a salt.
65. The composition of claim 64 , wherein the salt is selected from the group consisting of monovalent sodium, potassium or divalent zinc, magnesium, copper and calcium.
66. The composition of claim 65 , wherein the cation in the salt is divalent zinc.
67. The composition of claim 63 , wherein the composition has a pH from about 5.0 to about 7.0.
68. The peptide of claim 50 , wherein the peptide is in the form of a composition comprising a mixture of between 1, 2, 3 or 4 different polypeptides.
69. The composition of claim 63 , additionally comprising one or more antibiotic and/or antiseptic agent(s).
70. The composition of claim 50 , in the form of granules, powders, tablets, coated tablets, capsules, suppositories, syrups, emulsions, gels, ointments, suspensions, creams, aerosols, droplets or injectable forms.
71. A method of preventing, inhibiting, reducing, or destroying microorganisms selected from the group consisting of bacteria, viruses, parasites, fungus, and yeast, the method comprising administering to a patient the peptide of claim 50 .
72. The method of claim 71 , wherein the patient has a microbial infection.
73. The method of claim 72 , wherein the microbial infection is caused by a microorganism selected from the group consisting of Enterococcus faecalis, Eschericia coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus.
74. The method of claim 72 , wherein the microbial infection is caused by a microorganism selected from the group consisting of Candida albicans of Candida parapsilosis.
75. The method of claim 72 , wherein the patient is a mammal.
76. The method of claim 71 , wherein the peptide is administered in the form of a composition comprising a plaster, wound dressing, suture, or adhesive.
77. An antimicrobial peptide with heparin binding activity, the peptide comprising a 10 to 36 amino acid residue portion of the amino acid sequence SVQLTEKRM DKVGKYPKEL RKCCEDGMRE NPMRFSCQRR TRFISLGEAC KKVFLDCCNY ITELRRQHAR ASHLGLAR or a variant there of, wherein the 10 to 36 amino acid residue portion comprises at least four amino acids selected from the group consisting of K, R and H.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/557,455 US20070185019A1 (en) | 2003-05-19 | 2004-05-19 | Novel antimicrobial peptides with heparin binding activity |
US11/877,394 US8551954B2 (en) | 2003-05-19 | 2007-10-23 | Antimicrobial peptides with heparin binding activity |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32020403P | 2003-05-19 | 2003-05-19 | |
SE0301431-3 | 2003-05-19 | ||
SE0301431A SE0301431D0 (en) | 2003-05-19 | 2003-05-19 | Novel antimicrobial peptides |
PCT/SE2004/000797 WO2005061535A1 (en) | 2003-05-19 | 2004-05-19 | Novel antimicrobial peptides with heparin binding activity |
US10/557,455 US20070185019A1 (en) | 2003-05-19 | 2004-05-19 | Novel antimicrobial peptides with heparin binding activity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2004/000797 A-371-Of-International WO2005061535A1 (en) | 2003-05-19 | 2004-05-19 | Novel antimicrobial peptides with heparin binding activity |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/877,394 Division US8551954B2 (en) | 2003-05-19 | 2007-10-23 | Antimicrobial peptides with heparin binding activity |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070185019A1 true US20070185019A1 (en) | 2007-08-09 |
Family
ID=20291321
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/557,455 Abandoned US20070185019A1 (en) | 2003-05-19 | 2004-05-19 | Novel antimicrobial peptides with heparin binding activity |
US11/877,394 Expired - Fee Related US8551954B2 (en) | 2003-05-19 | 2007-10-23 | Antimicrobial peptides with heparin binding activity |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/877,394 Expired - Fee Related US8551954B2 (en) | 2003-05-19 | 2007-10-23 | Antimicrobial peptides with heparin binding activity |
Country Status (12)
Country | Link |
---|---|
US (2) | US20070185019A1 (en) |
EP (1) | EP1625155B1 (en) |
JP (1) | JP4611979B2 (en) |
KR (1) | KR101160474B1 (en) |
CN (2) | CN100362017C (en) |
AU (1) | AU2004303728B2 (en) |
CA (1) | CA2523998C (en) |
ES (1) | ES2395206T3 (en) |
HK (1) | HK1119390A1 (en) |
PL (1) | PL1625155T3 (en) |
SE (1) | SE0301431D0 (en) |
WO (1) | WO2005061535A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080139518A1 (en) * | 2006-12-04 | 2008-06-12 | Concert, Llc | Topical compositions for treatment of skin conditions |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0402807D0 (en) * | 2004-11-17 | 2004-11-17 | Dermagen Ab | Novel antimicrobial peptides |
US20090312265A1 (en) * | 2006-02-10 | 2009-12-17 | Dermagen Ab | Novel antimicrobial peptides and use thereof |
US8076286B2 (en) * | 2006-02-10 | 2011-12-13 | Dermagen Ab | Antimicrobial peptides and use thereof |
KR101487719B1 (en) | 2006-05-16 | 2015-01-29 | 페르가뭄 아베 | The improved antimicrobial peptide |
US8759300B2 (en) * | 2007-06-14 | 2014-06-24 | The Research Foundation For The State University Of New York | Polypeptides and methods of use |
GB0821721D0 (en) * | 2008-11-27 | 2008-12-31 | Hansa Medical Ab | Antimicrobial therapy |
WO2010080819A1 (en) | 2009-01-06 | 2010-07-15 | C3 Jian, Inc. | Targeted antimicrobial moieties |
WO2010111702A1 (en) * | 2009-03-27 | 2010-09-30 | The Research Foundation Of State University Of New York | Methods for preventing and treating angioedema |
FR2960877B1 (en) * | 2010-06-04 | 2014-08-29 | Agronomique Inst Nat Rech | FRACTION OF PROTEINS AND PEPTIDES FROM EGG WHITE AND PROTEIN FROM EGG WHITE AND THEIR USE AS ANTI-LISTERIA AGENT |
CN102507936B (en) * | 2011-11-09 | 2013-10-23 | 北京正旦国际科技有限责任公司 | Multi-antibody immunomic mass spectrum kit for liver cancer marker |
JP6456819B2 (en) * | 2012-05-14 | 2019-01-23 | メルク パテント ゲーエムベーハー | Particles for electrophoretic display |
WO2015138494A1 (en) | 2014-03-10 | 2015-09-17 | Georges Belfort | Anti-microbial peptides and method for designing novel anti-microbial peptides |
EP3423477B1 (en) * | 2015-06-30 | 2021-09-29 | Chain Antimicrobials OY | New antimicrobial peptides, their variants and uses |
US11174288B2 (en) * | 2016-12-06 | 2021-11-16 | Northeastern University | Heparin-binding cationic peptide self-assembling peptide amphiphiles useful against drug-resistant bacteria |
EP3994151A4 (en) * | 2019-07-02 | 2023-07-19 | Trustees of Tufts College | NEW PEPTIDE, COMPOSITIONS AND METHOD OF DELIVERING AGENTS INTO CELLS AND TISSUES |
DE102022133728A1 (en) * | 2022-12-16 | 2024-06-27 | Henkel Ag & Co. Kgaa | PEPTIDES AS COLOR TRANSFER INHIBITORS FOR DETERGENT OR CLEANING AGENTS |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284726B1 (en) * | 1998-11-10 | 2001-09-04 | Temple University - Of The Commonwealth System Of Higher Education | Inhibition of angiogenesis by peptide analogs of high molecular weight kininogen domain 5 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
SE459005B (en) | 1985-07-12 | 1989-05-29 | Aake Rikard Lindahl | SET TO MANUFACTURE SPHERICAL POLYMER PARTICLES |
US5912230A (en) | 1991-11-01 | 1999-06-15 | Periodontix, Inc. | Anti-fungal and anti-bacterial histatin-based peptides |
US5593866A (en) | 1992-08-21 | 1997-01-14 | The University Of British Columbia | Cationic peptides and method for production |
US5733872A (en) | 1993-03-12 | 1998-03-31 | Xoma Corporation | Biologically active peptides from functional domains of bactericidal/permeability-increasing protein and uses thereof |
ATE169304T1 (en) * | 1993-03-12 | 1998-08-15 | Xoma Corp | BIOLOGICALLY ACTIVE PEPTIDES FROM FUNCTIONAL DOMAIN OF THE BACTERICIDE/PERMEABILITY-INCREASE PROTEINS AND THEIR USE |
WO1995013085A1 (en) | 1993-11-08 | 1995-05-18 | Demeter Biotechnologies Ltd. | Methylated lysine-rich lytic peptides and method of making same by reductive alkylation |
JP3459314B2 (en) | 1994-08-31 | 2003-10-20 | 社団法人農林水産技術情報協会 | New peptide, antimicrobial agent, new peptide gene, new recombinant DNA and novel peptide production method |
JPH08208692A (en) * | 1994-09-28 | 1996-08-13 | Sumitomo Pharmaceut Co Ltd | Novel cell adhesion inhibitor peptide derivative |
CA2192782C (en) | 1995-12-15 | 2008-10-14 | Nobuyuki Takechi | Production of microspheres |
US6503881B2 (en) | 1996-08-21 | 2003-01-07 | Micrologix Biotech Inc. | Compositions and methods for treating infections using cationic peptides alone or in combination with antibiotics |
IL121134A0 (en) * | 1997-06-22 | 1997-11-20 | Yeda Res & Dev | Peptides and antiallergic compositions comprising them |
IL142822A0 (en) | 1998-11-10 | 2002-03-10 | Univ Temple | Inhibition of angiogenesis by high molecular weight kininogen and peptide analogs thereof |
US20030083244A1 (en) | 2000-04-26 | 2003-05-01 | Vernet Corine A.M. | Novel proteins and nucleic acids encoding same |
WO2002032459A2 (en) * | 2000-10-17 | 2002-04-25 | Massachusetts Institute Of Technology | Method of increasing the efficacy of antibiotics by complexing with cyclodextrins |
GB2382775B (en) * | 2001-12-06 | 2005-05-25 | Johnson & Johnson Medical Ltd | Controlled release therapeutic wound dressings |
WO2004006839A2 (en) * | 2002-07-12 | 2004-01-22 | Bayer Pharmaceuticals Corporation | Pituitary adenylate cyclase activating peptide (pacap) receptor (vpac2) agonists and their pharmacological methods of use |
US20060173162A1 (en) | 2002-08-15 | 2006-08-03 | Rene Djurup | Bactericidak anti-apoptotic, pro-inflammatory and anti-inflammatory peptides of heparin-binding protein (hbp) |
-
2003
- 2003-05-19 SE SE0301431A patent/SE0301431D0/en unknown
-
2004
- 2004-05-19 EP EP04734024A patent/EP1625155B1/en not_active Expired - Lifetime
- 2004-05-19 AU AU2004303728A patent/AU2004303728B2/en not_active Ceased
- 2004-05-19 CA CA2523998A patent/CA2523998C/en not_active Expired - Fee Related
- 2004-05-19 CN CNB2004800137282A patent/CN100362017C/en not_active Expired - Fee Related
- 2004-05-19 WO PCT/SE2004/000797 patent/WO2005061535A1/en active Application Filing
- 2004-05-19 US US10/557,455 patent/US20070185019A1/en not_active Abandoned
- 2004-05-19 PL PL04734024T patent/PL1625155T3/en unknown
- 2004-05-19 ES ES04734024T patent/ES2395206T3/en not_active Expired - Lifetime
- 2004-05-19 CN CN2007101481827A patent/CN101161284B/en not_active Expired - Fee Related
- 2004-05-19 JP JP2006517016A patent/JP4611979B2/en not_active Expired - Fee Related
- 2004-05-19 KR KR1020057021961A patent/KR101160474B1/en not_active Expired - Fee Related
-
2007
- 2007-10-23 US US11/877,394 patent/US8551954B2/en not_active Expired - Fee Related
-
2008
- 2008-09-30 HK HK08110883.1A patent/HK1119390A1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284726B1 (en) * | 1998-11-10 | 2001-09-04 | Temple University - Of The Commonwealth System Of Higher Education | Inhibition of angiogenesis by peptide analogs of high molecular weight kininogen domain 5 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080139518A1 (en) * | 2006-12-04 | 2008-06-12 | Concert, Llc | Topical compositions for treatment of skin conditions |
Also Published As
Publication number | Publication date |
---|---|
JP2007531691A (en) | 2007-11-08 |
HK1119390A1 (en) | 2009-03-06 |
US20090074864A1 (en) | 2009-03-19 |
KR20060028676A (en) | 2006-03-31 |
CN101161284A (en) | 2008-04-16 |
JP4611979B2 (en) | 2011-01-12 |
CN1791612A (en) | 2006-06-21 |
AU2004303728B2 (en) | 2011-03-31 |
ES2395206T3 (en) | 2013-02-11 |
WO2005061535A1 (en) | 2005-07-07 |
CN101161284B (en) | 2011-10-05 |
EP1625155B1 (en) | 2012-08-29 |
CN100362017C (en) | 2008-01-16 |
KR101160474B1 (en) | 2012-06-28 |
EP1625155A1 (en) | 2006-02-15 |
AU2004303728A1 (en) | 2005-07-07 |
SE0301431D0 (en) | 2003-05-19 |
US8551954B2 (en) | 2013-10-08 |
CA2523998C (en) | 2014-05-13 |
PL1625155T3 (en) | 2013-06-28 |
CA2523998A1 (en) | 2005-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8551954B2 (en) | Antimicrobial peptides with heparin binding activity | |
EP2021364B1 (en) | Improved antimicrobial peptides | |
US20090312265A1 (en) | Novel antimicrobial peptides and use thereof | |
US8076286B2 (en) | Antimicrobial peptides and use thereof | |
AU2005307160B2 (en) | Novel antimicrobial peptides | |
BRPI0711470A2 (en) | antimicrobial peptide, antimicrobial / pharmaceutical composition, product, use of antimicrobial peptide, pharmaceutical composition or product, and, method for treating a mammal presenting a microbial infection or disease for prophylactic treatment. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DERMAGEN AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMIDTCHEN, ARTUR;MALMSTEN, MARTIN;REEL/FRAME:018251/0015 Effective date: 20060103 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |