US20070184989A1 - Additive package for high temperature synthetic lubricants - Google Patents
Additive package for high temperature synthetic lubricants Download PDFInfo
- Publication number
- US20070184989A1 US20070184989A1 US11/640,639 US64063906A US2007184989A1 US 20070184989 A1 US20070184989 A1 US 20070184989A1 US 64063906 A US64063906 A US 64063906A US 2007184989 A1 US2007184989 A1 US 2007184989A1
- Authority
- US
- United States
- Prior art keywords
- lubricant fluid
- synthetic
- fluid
- acid
- borated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000314 lubricant Substances 0.000 title claims abstract description 86
- 239000000654 additive Substances 0.000 title claims abstract description 36
- 230000000996 additive effect Effects 0.000 title claims abstract description 34
- 239000012530 fluid Substances 0.000 claims abstract description 63
- 229920005862 polyol Polymers 0.000 claims abstract description 47
- -1 polyol ester Chemical class 0.000 claims abstract description 41
- 239000002253 acid Substances 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 35
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 32
- 239000003963 antioxidant agent Substances 0.000 claims abstract description 28
- 239000002562 thickening agent Substances 0.000 claims abstract description 17
- 150000001412 amines Chemical class 0.000 claims abstract description 16
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 11
- 150000003077 polyols Chemical class 0.000 claims abstract description 10
- 150000002148 esters Chemical class 0.000 claims description 33
- 230000003078 antioxidant effect Effects 0.000 claims description 26
- 238000005260 corrosion Methods 0.000 claims description 18
- 230000007797 corrosion Effects 0.000 claims description 18
- 239000004519 grease Substances 0.000 claims description 17
- 239000002585 base Substances 0.000 claims description 16
- 239000003112 inhibitor Substances 0.000 claims description 16
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 15
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 claims description 13
- 150000004982 aromatic amines Chemical class 0.000 claims description 13
- 229920002396 Polyurea Polymers 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 7
- 239000011135 tin Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical class C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- FZQSLXQPHPOTHG-UHFFFAOYSA-N [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 Chemical compound [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 FZQSLXQPHPOTHG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004327 boric acid Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 239000012964 benzotriazole Substances 0.000 claims description 3
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims 3
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 claims 1
- 230000001050 lubricating effect Effects 0.000 abstract description 7
- 150000002763 monocarboxylic acids Chemical class 0.000 abstract description 7
- OILUAKBAMVLXGF-UHFFFAOYSA-N 3,5,5-trimethyl-hexanoic acid Chemical compound OC(=O)CC(C)CC(C)(C)C OILUAKBAMVLXGF-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 24
- 235000019198 oils Nutrition 0.000 description 24
- 235000006708 antioxidants Nutrition 0.000 description 19
- 238000012360 testing method Methods 0.000 description 15
- 238000003801 milling Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000344 soap Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid group Chemical group C(CCCCCC)(=O)O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 5
- 229920013639 polyalphaolefin Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000002966 varnish Substances 0.000 description 5
- XZOYHFBNQHPJRQ-UHFFFAOYSA-N 7-methyloctanoic acid Chemical compound CC(C)CCCCCC(O)=O XZOYHFBNQHPJRQ-UHFFFAOYSA-N 0.000 description 4
- 239000007866 anti-wear additive Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229940059574 pentaerithrityl Drugs 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002527 isonitriles Chemical class 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- IKXFIBBKEARMLL-UHFFFAOYSA-N triphenoxy(sulfanylidene)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=S)OC1=CC=CC=C1 IKXFIBBKEARMLL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/044—Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/12—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/06—Mixtures of thickeners and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/087—Boron oxides, acids or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
- C10M2215/065—Phenyl-Naphthyl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/045—Polyureas; Polyurethanes
- C10M2217/0456—Polyureas; Polyurethanes used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/14—Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
Definitions
- This invention relates generally to high temperature lubricant fluids and, more particularly to an additive package including at least an oligomeric aromatic amine antioxidant and a borated compound for use with a polyol ester to provide a lubricant fluid suitable for use in applications operating at temperatures in excess of 250° C.
- lubricant compositions suitable to operate at high temperature in excess of 250° C.
- Such lubricants must provide lubrication and antiwear protection.
- they must be stable in the high temperature environment, or decompose harmlessly without forming hard, varnish-like deposits or unacceptable amounts of smoke.
- Many industrial processes involve operation of open chain and drive gear assemblies that are associated with ovens, furnaces, kilns and other hot equipment.
- Such chain and drive gear assemblies are used in the manufacture of textiles, wallboard, corrugated metal, paper and plastic film.
- the lubricants In addition to not forming deposits or varnish and possessing stability at high temperatures, the lubricants must perform under high load, be compatible with all materials in contact with the lubricant and be low in volatility.
- Existing commercial lubricants for chain and drive gear operations which are based on vegetable oils or other glycerol-based esters and mineral oil, lack sufficient high-temperature stability.
- Polyolefins or polyacid esters also lack the necessary high-temperature stability. All these lubricants are prone to varnish formation and are characterized by relatively high volatility, as well as severe compatibility problems with silicone elastomers.
- Grease is a lubricating oil that contains a thickener to prevent the oil from leaking out of the area requiring lubrication.
- Conventional greases use a mineral oil or PAO based lubricating oil and a fatty acid-metal salt, clay, PTFE, or polyurea thickening system.
- the stability of the lubricating oil is a major factor in determining the suitability of a grease for a particular application. Difficult applications such as the constant velocity joints of front wheel drive automobiles can overstress conventional greases by exceeding their temperature limitations.
- Additional high temperature lubricant compositions are set forth in U.S. Pat. No. 6,436,881 that issued on Aug. 20, 2002.
- the lubricants described therein include a polyol ester base stock formed from a major proportion of dipentaerythritol and a mixture of C 5 to C 12 monocarboxylic acids.
- the base stock is mixed with an additive package that includes a viscosity improver, antioxidants, extreme pressure/antiwear agents and a corrosion inhibitor. This lubricant is acceptable for many applications such as static chain oils, where pools of lubricants are subject to continual heating.
- an improved additive package for a synthetic polyol ester lubricant fluid to be used as a high temperature oil or a component in a grease includes an effective amount of at least one oligomeric amine antioxidant and at least one borated extreme pressure/antiwear agent and may include a corrosion inhibitor.
- the polyol ester fluid is formed by reacting a polyol having at least three hydroxy groups and a monocarboxylic acid having from 5 to 12 carbon atoms.
- the resulting lubricant fluid does not require the addition of a viscosity index improver to be suitable for use in high temperature chain oil and grease applications.
- the pentaerythritol is dipentaerythritol and the monocarboxylic acid is an acid mixture that includes a major proportion of 3,5,5-trimethylhexanoic acid (iso-C 9 acid).
- the additive package may be added in up to about 15 percent by weight of the lubricant fluid to provide an oil having a viscosity at 40° C. of at least about 120 cSt and at 100° C. of no less than about 15.0 cSt.
- Another object of the invention is to provide an improved synthetic polyol ester lubricant fluid including an additive package including at least one oligomeric amine antioxidant and at least one borated extreme pressure agent suitable for use in high temperature chain oil and grease applications.
- a further object of the invention is to provide an improved polyol ester lubricant additive package that includes at least an oligomeric amine antioxidant and a borated extreme pressure agent.
- Yet another object of the invention is to provide an improved high temperature polyol ester synthetic lubricant including a dipentaerythritol ester and an additive package that has reduced weight loss when subject to heat for extended periods of time.
- Still another object of the invention is to provide an improved polyol ester lubricant oil for high temperature application that does not form hard varnish and undesirable deposits when subject to high temperature.
- the invention accordingly comprises a composition of matter possessing the characteristics, properties and the relation of components that will be exemplified in the compositions hereinafter described, and the scope of the invention will be indicated in the claims.
- FIG. 1 is a photograph of panel coking tests for polyol ester based lubricant fluids in accordance with the invention and a lubricant of a polyol and an additive package formulated in accordance with U.S. Pat. No. 6,436,881.
- the additive package in accordance with the invention suitable for use in 100% polyol ester high temperature lubricant fluids includes at least: (i) an oligomeric aromatic amine, and (ii) a borated extreme pressure agent.
- the polyol esters suitable for high temperature application are the reaction product of polyols having at least three hydroxyl groups, such as, pentaerythritol, dipentaerythritol and trimethylolpropane, with a monocarboxylic acid or monocarboxylic acid mixture of C 5 to C 12 acids.
- the polyol is a dipentaerythritol that is at least about 85 weight percent diPE and may include about 5 percent monopentaerythritol, and 10 percent tripentaerythritol plus higher pentaerythritols.
- the acid mixture includes at least about 60 weight percent iso-C 9 acid.
- the viscosity of the lubricating fluid base stock is at least about 120 cSt at 40° C.
- lubricants such as oils and greases there is no need to add a viscosity index modifier.
- the monocarboxylic acid found particularly suitable for use in preparing the high temperature fluid may be isononanoic (3,5,5-trimethylhexanoic) acid (“iso-C 9 acid”) for high viscosity lubricants and greases or mixtures of C 7 and C 8-10 normal monocarboxylic acids and iso-C 9 acid. It is one of the preferred embodiment of the invention that the acid be only iso-C 9 acid. Mixtures including heptanoic (C 7 ) acid and caprylic/capric (C 8-10 ) acid with the iso-C 9 acid are within the scope of the invention. Preferred acid mixtures include between at least about 60 to 70 weight percent iso-C 9 acid with the balance being C 7 and C 8-10 straight chain acids.
- the dipentaerythritol and acid composition can vary to provide an ester composition having a minimum viscosity at 40° C. of at least about 140 cSt.
- the viscosity of the polyol ester at 100° C. should be between about 15 to 30 cSt and have a viscosity index in the range of about 60 to 120.
- the polyol ester is dipentaerythritol isononanate having a viscosity at 40° C. of about 360 to 400 cSt.
- the acid mixture is varied to include C 7 and C 8-10 straight chain acids and iso-C 9 acid to yield polyols having a viscosity at 40° C. of between 120 and 170 cSt, and most preferably about 150 cSt.
- the additive package in accordance with the invention is added to the synthetic polyol ester base stock to form a lubricant fluid.
- the additive package includes between about 3-8 weight percent antioxidant in combination with about 1-4 weight percent of a borated extreme pressure/antiwear agent, based on the total weight of the composition.
- a minor effective amount of a corrosion inhibitor may also be added to the lubricant fluid. This yields a lubricant fluid having a density at 15.6° C. of about 8.0 to 8.25 lbs./gal., a total acid number of about 0.30 to 0.40, a pour point of less than about ⁇ 15° C. and a flash point of at least about 285° C.
- the lubricant fluids in accordance with the invention will include between about 5 to 10 parts by weight of the additive package and 100 parts by weight of the desired polyol ester base stock.
- the lubricating fluid of the polyol ester and additive package is suitable for use directly as an oil lubricant.
- the oil lubricant is particularly well suited for use in high temperature chain oil applications.
- the lubricating fluid can also be utilized to form a grease.
- a thickening agent to immobilize the fluid is included in the composition.
- the concentration of thickener determines the consistency and general properties of the finished product and may be included in amounts ranging from 20 to 30 weight percent of the total composition.
- thickener types are suitable. These include metallic soap thickeners, complex metallic soap thickeners, and non-soap thickeners.
- the non-soap thickeners are organo-clay, polyurea; and PTFE.
- Metallic soap thickeners are usually complex metallic soaps. These include aluminum, calcium, barium and lithium complexes.
- the non-soap thickeners are the organo-clay greases, PTFE (Teflon) and silica gel greases.
- PTFE Teflon
- silica gel greases When polyurea greases are utilized, the oils are mixed with suitable amines and isocyanides or disocyanates making the polyurea greases particularly suitable for high temperature applications.
- a grease in accordance with the invention includes between about 65 to 85 weight percent polyol ester, between about 15 to 35 percent polyurea or other suitable thickener and the additive package of between about 1 to 8 percent oligomeric aromatic amine antioxidant and about 0.10 to 4 percent borated extreme pressure agent. It has been found that such greases exceed 600 hours in the bearing life test at 1,000 rpm and 325° F. as described in ASTM D-3527.
- Ester based grease is prepared by charging a standard grease manufacturing kettle having milling and recirculation capabilities with about 40 parts of ISO 400 grade polyol ester, 21 parts of the polyurea thickening agent components and 0.5 parts water and heated to 225° to 235° F. Heating is continued to 375° to 385° F. then shut the heat off and agitated for 15 to 20 minutes. Three parts of a boron extreme pressure agent are added, and the oil is milled with the cooling oil on for at least 3 to 4 hours. After 1 to 1.2 hours of milling, the penetration of the grease is adjusted to a value of 240 to 260 by adding up to 22 parts of ISO 170 grade polyol ester while milling.
- any polyol ester based lubricant must exhibit compatibility with materials it contacts.
- the polyol ester lubricating fluid is prepared by placing the desired amount of polyol and carboxylic acid into a reaction vessel and conducting an esterification reaction to form the ester.
- the carboxylic acid component is present in the reaction mixture in an excess of about 5 to 10 weight percent for the amount of polyol.
- the excess carboxylic acid is used to force the reaction to completion.
- the excess is not critical to carrying out the reaction, except that the smaller the excess, the longer the reaction time.
- the esterification reaction is complete, the excess acid is removed by stripping and refining.
- the esterification reaction is carried out in the presence of a conventional catalyst.
- tin, titanium, zirconium or tungsten-based catalysts designed for high temperature systems are suitable. Uncatalyzed esterification may also be carried out.
- High temperature lubricant fluids are prepared by mixing an additive package with the ester reaction product.
- the additive package includes at least the oligomeric amine antioxidant and the borated extreme pressure and antiwear agent together with a corrosion inhibitor. Additional additives such as an antifoam agent, detergents, hydrolytic stabilizers and metal deactivators may also be included.
- the antioxidant is an oligomeric aromatic amine, such as the reaction product of alkylated diphenylamine, an alkylated phenylnaphthylamine and an ester base stock, in amounts between about 3 to 8 parts by weight based on 100 parts of fluid.
- the extreme pressure and antiwear agent is a borated compound selected from the group of borated amines, potassium tetraborate, borates of Group 1a alkali metals, borates of Group 2a alkaline earth metals, stable borates of transition metals, such as zinc, copper and tin, and boric acid.
- the borated agents may be included in amounts between about 1 to 4 parts by weight.
- a corrosion inhibitor, such as a benzotriazole may be added in minor amounts between about 0.01 to 0.10 parts by weight.
- the lubricant fluid should have a viscosity at 40° C. between about 120 to 400 cSt depending on the viscosity of the ester.
- the viscosity at 100° C. should be between about 15 to 30 cSt.
- the viscosity index is between about 80 to 130 the pour point is below about ⁇ 15° C. and the flash point is in excess of about 285° C.
- a polyol ester of desired viscosity can be prepared by blending a high viscosity polyol ester with a lower viscosity polyol ester.
- a dipentaerythritol hexaisononanoate ester was prepared in a reaction vessel equipped with a mechanical stirrer, thermocouple, thermoregulator, Dean-Stark trap, condenser, nitrogen sparge and vacuum source. The following materials were charged to the reactor: INGREDIENT AMOUNT gms (moles) Dipentaerythritol 1225 g (4.8 m) Isononanoic acid 5175 g (32.75 m)
- the reaction mixture was heated to 185°-190° C. with agitation.
- the water-of-reaction was collected in and removed from the Dean-Stark trap.
- the temperature was gradually raised over 5-6 hours to about 230° C. with application of vacuum to maintain reflux. This removed the reaction water and returned the acid collected in the trap to the reactor. These conditions were maintained to a point where the hydroxyl number of the reaction mixture was less than 3.0.
- the bulk of the excess acid was then removed by vacuum distillation together with nitrogen sparge and then residual acidity was removed with alkali.
- a dipentaerythritol ester having a viscosity of about 150 cSt at 40° C. can be prepared in a vessel in the same manner as described for the ester in Example 1.
- the following materials are charged to the reactor: INGREDIENT AMOUNT gms (moles) Dipentaerythritol 1225 g (4.8 m) Heptanoic acid 597 g (4.59 m)
- the reaction mixture is heated to 185°-190° C. with agitation.
- the water-of-reaction is collected in and removed from the Dean-Stark trap.
- the temperature is gradually raised over 5-6 hours to about 230° C. with application of vacuum to maintain reflux. This removes the reaction water and returns the acid collected in the trap to the reactor. These conditions are maintained to a point where the hydroxyl number of the reaction mixture is less than 3.0.
- the bulk of the excess acid is then removed by vacuum distillation together with nitrogen sparge and then residual acidity was removed with alkali.
- the resulting product is dried and filtered to obtain 5000 g of an ester product having a viscosity at 40° C. of about 150.
- the resulting lubricant fluids had the following physical properties: TABLE III Run 3 Run 4 Viscosity, cSt @ 100° C.: 25.6 25.3 @ 40° C.: 386 384 Viscosity Index: 86 87 Pour Point, ° C.: ⁇ 20 ( ⁇ 5) ⁇ 37 ( ⁇ 35) Flash Point, C.O.C., ° C.(° F.): 310 (590) 310 (590) Acid Valve, mgKOH/g: .36 .38
- a lubricant fluid In order for a lubricant fluid to be acceptable in the high temperature applications, it must have low volatility and not form deposits or varnish when exposed to high temperatures for extended periods of time.
- samples of the lubricant fluids of Example 2 were placed into an oven at high temperature for an extended period of time and the weight loss was measured.
- Example 2 In order for a lubricant fluid to be acceptable in the high temperature applications, it must have superior oxidative and thermal stability.
- the formulations of Example 2 were tested by the FED-STD-791 Method 5308, Oxidation and Corrosion Stability. In this test 100 ml of test oil is held at 425° F. (218° C.) for 72 hours in the presence of four different metals and a sparge of dry air. At the end of the test period, the test oil is evaluated for viscosity change, acidity change, and sediment/sludge formation. The test results are shown in Table V. TABLE V 425° F. 72 hour OCS Test Run 3 Run 4 % Viscosity Change +12.5 +7.4 Acid Value change, mgKOH/g 1.29 0.12 Sediment/sludge, mg/100 ml 1.9 3.2
- a polyol ester high temperature lubricant prepared following the procedures of Example 2 in U.S. Pat. No. 6,436,881 was prepared with the following components.
- a lubricant fluid prepared in accordance with Example 3 was compared to the lubricant prepare in accordance with Example 6 in a bench panel test.
- a stainless steel panel is electrically heated by means of two heaters which are inserted into holes in the panel. The temperature is monitored by means of a thermocouple.
- the panel is placed on a slight incline and heated to 540° F.
- the lubricant to be tested is dropped onto the heated panel for 20 hours in the presence of 0.1-0.2 lpm humid air flow. The characteristics are observed and shown in FIG. 1 .
- the lubricant contacts the panel near the top of the incline and is observed as a central dark band.
- the lubricant then tends to thin out as it travels towards the pointed end of the heated panel. It is along the oil-air-metal interface that the degradation of the lubricant is best observed.
- a grease using the polyol ester of Example 1 is prepared in accordance with the invention as follows.
- a standard grease manufacturing kettle having milling and recirculation capabilities is charged with 40 parts of ISO 400 grade polyol ester, 8.95 parts of an aromatic diisocyanate, 9.1 parts of a tallowalkylamine, and 0.95 parts of ethylene diamine (an alkyldiamine).
- ISO 400 grade polyol ester 8.95 parts of an aromatic diisocyanate
- 9.1 parts of a tallowalkylamine 9.1 parts of a tallowalkylamine
- 0.95 parts of ethylene diamine (an alkyldiamine) 0.95 parts of ethylene diamine (an alkyldiamine).
- ingredients or compounds recited in the singular are intended to include compatible mixtures of such ingredients wherever the sense permits.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- This application is based on and claims the benefit of U.S. provisional application Ser. No. 60/750,922, filed Dec. 16, 2006.
- This invention relates generally to high temperature lubricant fluids and, more particularly to an additive package including at least an oligomeric aromatic amine antioxidant and a borated compound for use with a polyol ester to provide a lubricant fluid suitable for use in applications operating at temperatures in excess of 250° C.
- There are continuing demands for lubricant compositions suitable to operate at high temperature in excess of 250° C. Such lubricants must provide lubrication and antiwear protection. In addition, they must be stable in the high temperature environment, or decompose harmlessly without forming hard, varnish-like deposits or unacceptable amounts of smoke. Many industrial processes involve operation of open chain and drive gear assemblies that are associated with ovens, furnaces, kilns and other hot equipment. Such chain and drive gear assemblies are used in the manufacture of textiles, wallboard, corrugated metal, paper and plastic film.
- In addition to not forming deposits or varnish and possessing stability at high temperatures, the lubricants must perform under high load, be compatible with all materials in contact with the lubricant and be low in volatility. Existing commercial lubricants for chain and drive gear operations, which are based on vegetable oils or other glycerol-based esters and mineral oil, lack sufficient high-temperature stability. Polyolefins or polyacid esters also lack the necessary high-temperature stability. All these lubricants are prone to varnish formation and are characterized by relatively high volatility, as well as severe compatibility problems with silicone elastomers.
- Grease is a lubricating oil that contains a thickener to prevent the oil from leaking out of the area requiring lubrication. Conventional greases use a mineral oil or PAO based lubricating oil and a fatty acid-metal salt, clay, PTFE, or polyurea thickening system. The stability of the lubricating oil is a major factor in determining the suitability of a grease for a particular application. Difficult applications such as the constant velocity joints of front wheel drive automobiles can overstress conventional greases by exceeding their temperature limitations.
- One such high temperature chain and drive gear lubricant is described in U.S. Pat. No. 5,151,205 to Calpon, Jr. While the Calpon patent describes a wide variety of synthetic polyalphaolefin based oils and ester based oils, the described compositions include a polyalphaolefin base oil, an ester oil solubulizer and 2-4 weight % of a polybutene tackifier. The composition is promoted for reducing smoking in chain and drive gear assemblies operated at high temperatures. However, as shown in comparative testing below such lubricants based on these polyalphaolefins tend to evaporate under high temperature exposure and are not fully satisfactory. Presently, no 100% polyalphaolefin based chain lubricants are fully satisfactory in this respect.
- Additional high temperature lubricant compositions are set forth in U.S. Pat. No. 6,436,881 that issued on Aug. 20, 2002. The lubricants described therein include a polyol ester base stock formed from a major proportion of dipentaerythritol and a mixture of C5 to C12 monocarboxylic acids. The base stock is mixed with an additive package that includes a viscosity improver, antioxidants, extreme pressure/antiwear agents and a corrosion inhibitor. This lubricant is acceptable for many applications such as static chain oils, where pools of lubricants are subject to continual heating.
- It remains desirable to provide high temperature oils that are suitable for use in high temperature chain oil environments and that exhibit reduced evaporation rates under high temperature conditions and avoid the varnish/deposits shortcomings of some commercially available chain oil lubricants. It is also desirable to provide greases that exhibit improved oxidative stability and a higher drop point than current commercially available greases.
- Generally speaking, in accordance with the invention, an improved additive package for a synthetic polyol ester lubricant fluid to be used as a high temperature oil or a component in a grease is provided. The additive package includes an effective amount of at least one oligomeric amine antioxidant and at least one borated extreme pressure/antiwear agent and may include a corrosion inhibitor. The polyol ester fluid is formed by reacting a polyol having at least three hydroxy groups and a monocarboxylic acid having from 5 to 12 carbon atoms. After addition of the additive package in accordance with the invention, the resulting lubricant fluid does not require the addition of a viscosity index improver to be suitable for use in high temperature chain oil and grease applications. Preferably, the pentaerythritol is dipentaerythritol and the monocarboxylic acid is an acid mixture that includes a major proportion of 3,5,5-trimethylhexanoic acid (iso-C9 acid).
- The additive package may be added in up to about 15 percent by weight of the lubricant fluid to provide an oil having a viscosity at 40° C. of at least about 120 cSt and at 100° C. of no less than about 15.0 cSt.
- Accordingly, it is an object of the invention to provide an additive package for a synthetic ester lubricant fluid suitable for use in high temperature chain oil applications.
- Another object of the invention is to provide an improved synthetic polyol ester lubricant fluid including an additive package including at least one oligomeric amine antioxidant and at least one borated extreme pressure agent suitable for use in high temperature chain oil and grease applications.
- A further object of the invention is to provide an improved polyol ester lubricant additive package that includes at least an oligomeric amine antioxidant and a borated extreme pressure agent.
- Yet another object of the invention is to provide an improved high temperature polyol ester synthetic lubricant including a dipentaerythritol ester and an additive package that has reduced weight loss when subject to heat for extended periods of time.
- Still another object of the invention is to provide an improved polyol ester lubricant oil for high temperature application that does not form hard varnish and undesirable deposits when subject to high temperature.
- Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
- The invention accordingly comprises a composition of matter possessing the characteristics, properties and the relation of components that will be exemplified in the compositions hereinafter described, and the scope of the invention will be indicated in the claims.
- For a fuller understanding of the invention, reference is had to the following description taken in connection with the accompanying drawing(s), in which:
-
FIG. 1 is a photograph of panel coking tests for polyol ester based lubricant fluids in accordance with the invention and a lubricant of a polyol and an additive package formulated in accordance with U.S. Pat. No. 6,436,881. - The additive package in accordance with the invention suitable for use in 100% polyol ester high temperature lubricant fluids includes at least: (i) an oligomeric aromatic amine, and (ii) a borated extreme pressure agent.
- The components of the additive package in accordance with the invention are as follows:
-
- (1) Antioxidant: The preferred antioxidant is an oligomeric aromatic amine available from R.T. Vauderbilt Company as Vanlube 9317. This is the reaction product of alkylated diphenylamine, alkylated phenylnaphthylamine and an ester base stock. The antioxidant is present in an amount between about 1 to 10 weight percent, based on the total weight of the lubricant. Preferably, between about 3 to 8 weight percent and most preferably about 3 to 5 weight percent is included.
- (2) Extreme Pressure/Antiwear Agents: The preferred extreme pressure agent found to be particularly suitable for use with the preferred antioxidant is a borated additive. These borated additives are borated amines, potassium tetraborate, borates of Group la alkali metals, borates of Group 2a alkaline earth metals, stable borates of transition metals such as zinc, copper and tin and boric acid. Mild antiwear agents, such as methylene bis(dithiocarbamates) and dialkyl dithiophosphate esters where the alkyls for these range from C1 to C8 as well as higher alkylated (C9 to C12) triphenyl phosphorothionate, tripheny phosphorothronate, tranryl phosphorates, and mixtures thereof may also be included. The extreme pressure agent is present in an amount between about 0.1 to 5 weight percent, and preferable between about 1 to 4 weight percent. Most preferably, between about 1.5 to 3 weight percent is present.
- (3) Corrosion Inhibitor: Corrosion inhibitors may be included, and include heterocyclic nitrogen compounds such as benzothiazole, benzotriazole, tolyltriazole and aminotriazole or mixtures thereof. Generally, the corrosion inhibitor is present in an amount between about 0.01 to 1.0 weight percent.
- The polyol esters suitable for high temperature application are the reaction product of polyols having at least three hydroxyl groups, such as, pentaerythritol, dipentaerythritol and trimethylolpropane, with a monocarboxylic acid or monocarboxylic acid mixture of C5 to C12 acids. Preferably, the polyol is a dipentaerythritol that is at least about 85 weight percent diPE and may include about 5 percent monopentaerythritol, and 10 percent tripentaerythritol plus higher pentaerythritols. Preferably, the acid mixture includes at least about 60 weight percent iso-C9 acid.
- Preferably, the viscosity of the lubricating fluid base stock is at least about 120 cSt at 40° C. For the preferred fluid compositions to be suitable in lubricants such as oils and greases there is no need to add a viscosity index modifier.
- The monocarboxylic acid found particularly suitable for use in preparing the high temperature fluid may be isononanoic (3,5,5-trimethylhexanoic) acid (“iso-C9 acid”) for high viscosity lubricants and greases or mixtures of C7 and C8-10 normal monocarboxylic acids and iso-C9 acid. It is one of the preferred embodiment of the invention that the acid be only iso-C9 acid. Mixtures including heptanoic (C7) acid and caprylic/capric (C8-10) acid with the iso-C9 acid are within the scope of the invention. Preferred acid mixtures include between at least about 60 to 70 weight percent iso-C9 acid with the balance being C7 and C8-10 straight chain acids.
- It is possible to vary the dipentaerythritol and acid composition to provide an ester composition having a minimum viscosity at 40° C. of at least about 140 cSt. The viscosity of the polyol ester at 100° C. should be between about 15 to 30 cSt and have a viscosity index in the range of about 60 to 120. In one preferred embodiment of the invention, the polyol ester is dipentaerythritol isononanate having a viscosity at 40° C. of about 360 to 400 cSt. In another preferred embodiment the acid mixture is varied to include C7 and C8-10 straight chain acids and iso-C9 acid to yield polyols having a viscosity at 40° C. of between 120 and 170 cSt, and most preferably about 150 cSt.
- The additive package in accordance with the invention is added to the synthetic polyol ester base stock to form a lubricant fluid. The additive package includes between about 3-8 weight percent antioxidant in combination with about 1-4 weight percent of a borated extreme pressure/antiwear agent, based on the total weight of the composition. In addition, a minor effective amount of a corrosion inhibitor may also be added to the lubricant fluid. This yields a lubricant fluid having a density at 15.6° C. of about 8.0 to 8.25 lbs./gal., a total acid number of about 0.30 to 0.40, a pour point of less than about −15° C. and a flash point of at least about 285° C. Generally, the lubricant fluids in accordance with the invention will include between about 5 to 10 parts by weight of the additive package and 100 parts by weight of the desired polyol ester base stock.
- The lubricating fluid of the polyol ester and additive package is suitable for use directly as an oil lubricant. The oil lubricant is particularly well suited for use in high temperature chain oil applications. The lubricating fluid can also be utilized to form a grease. In this case, a thickening agent to immobilize the fluid is included in the composition. The concentration of thickener determines the consistency and general properties of the finished product and may be included in amounts ranging from 20 to 30 weight percent of the total composition.
- A wide variety of thickener types are suitable. These include metallic soap thickeners, complex metallic soap thickeners, and non-soap thickeners. The non-soap thickeners are organo-clay, polyurea; and PTFE. Metallic soap thickeners are usually complex metallic soaps. These include aluminum, calcium, barium and lithium complexes.
- The non-soap thickeners are the organo-clay greases, PTFE (Teflon) and silica gel greases. When polyurea greases are utilized, the oils are mixed with suitable amines and isocyanides or disocyanates making the polyurea greases particularly suitable for high temperature applications.
- A grease in accordance with the invention includes between about 65 to 85 weight percent polyol ester, between about 15 to 35 percent polyurea or other suitable thickener and the additive package of between about 1 to 8 percent oligomeric aromatic amine antioxidant and about 0.10 to 4 percent borated extreme pressure agent. It has been found that such greases exceed 600 hours in the bearing life test at 1,000 rpm and 325° F. as described in ASTM D-3527.
- Ester based grease is prepared by charging a standard grease manufacturing kettle having milling and recirculation capabilities with about 40 parts of ISO 400 grade polyol ester, 21 parts of the polyurea thickening agent components and 0.5 parts water and heated to 225° to 235° F. Heating is continued to 375° to 385° F. then shut the heat off and agitated for 15 to 20 minutes. Three parts of a boron extreme pressure agent are added, and the oil is milled with the cooling oil on for at least 3 to 4 hours. After 1 to 1.2 hours of milling, the penetration of the grease is adjusted to a value of 240 to 260 by adding up to 22 parts of ISO 170 grade polyol ester while milling. When the mixture temperature is 225° to 235° F., 0.05 parts corrosion inhibitor and 2 parts of an anti-wear additive are added with continue milling. The penetration is adjusted to the range of 240 to 260 using ISO 170 polyol ester as necessary. Milling is stopped with continued recirculation of the mixture. When the temperature is 190° F., 1 part of a secondary anti-wear additive, 4 parts oligomeric amine anti-oxidant, and 0.5 parts of a corrosion inhibitor are added. The batch is mixed for 25 to 35 minutes and adjusted to a penetration range of 265 to 295 to complete the grease.
- When preparing a lubricant to operate at high temperatures, it is important that the lubricant not only provide the desired viscosity properties at operating temperatures, but also provide improved thermal stability. Accordingly, incorporation of an additive package to protect oxidation and corrosion and boundary surface wear will result in a highly desirable lubricant. In addition, any polyol ester based lubricant must exhibit compatibility with materials it contacts.
- The polyol ester lubricating fluid is prepared by placing the desired amount of polyol and carboxylic acid into a reaction vessel and conducting an esterification reaction to form the ester. The carboxylic acid component is present in the reaction mixture in an excess of about 5 to 10 weight percent for the amount of polyol. The excess carboxylic acid is used to force the reaction to completion. The excess is not critical to carrying out the reaction, except that the smaller the excess, the longer the reaction time. After the esterification reaction is complete, the excess acid is removed by stripping and refining. Generally, the esterification reaction is carried out in the presence of a conventional catalyst. For example, tin, titanium, zirconium or tungsten-based catalysts designed for high temperature systems are suitable. Uncatalyzed esterification may also be carried out.
- High temperature lubricant fluids are prepared by mixing an additive package with the ester reaction product. The additive package includes at least the oligomeric amine antioxidant and the borated extreme pressure and antiwear agent together with a corrosion inhibitor. Additional additives such as an antifoam agent, detergents, hydrolytic stabilizers and metal deactivators may also be included.
- In a preferred embodiment of the invention, the antioxidant is an oligomeric aromatic amine, such as the reaction product of alkylated diphenylamine, an alkylated phenylnaphthylamine and an ester base stock, in amounts between about 3 to 8 parts by weight based on 100 parts of fluid. The extreme pressure and antiwear agent is a borated compound selected from the group of borated amines, potassium tetraborate, borates of Group 1a alkali metals, borates of Group 2a alkaline earth metals, stable borates of transition metals, such as zinc, copper and tin, and boric acid. The borated agents may be included in amounts between about 1 to 4 parts by weight. A corrosion inhibitor, such as a benzotriazole may be added in minor amounts between about 0.01 to 0.10 parts by weight.
- After mixing the selected polyol ester with the additive package, the lubricant fluid should have a viscosity at 40° C. between about 120 to 400 cSt depending on the viscosity of the ester. The viscosity at 100° C. should be between about 15 to 30 cSt. Preferably, the viscosity index is between about 80 to 130 the pour point is below about −15° C. and the flash point is in excess of about 285° C. A polyol ester of desired viscosity can be prepared by blending a high viscosity polyol ester with a lower viscosity polyol ester.
- The invention will be better understood with reference to the following examples. All percentages are set forth in percentages by weight, except where molar quantities are indicated. These examples are presented for purposes of illustration only, and are not intended to be construed in a limiting sense.
- A dipentaerythritol hexaisononanoate ester was prepared in a reaction vessel equipped with a mechanical stirrer, thermocouple, thermoregulator, Dean-Stark trap, condenser, nitrogen sparge and vacuum source. The following materials were charged to the reactor:
INGREDIENT AMOUNT gms (moles) Dipentaerythritol 1225 g (4.8 m) Isononanoic acid 5175 g (32.75 m) - The reaction mixture was heated to 185°-190° C. with agitation. The water-of-reaction was collected in and removed from the Dean-Stark trap. The temperature was gradually raised over 5-6 hours to about 230° C. with application of vacuum to maintain reflux. This removed the reaction water and returned the acid collected in the trap to the reactor. These conditions were maintained to a point where the hydroxyl number of the reaction mixture was less than 3.0. The bulk of the excess acid was then removed by vacuum distillation together with nitrogen sparge and then residual acidity was removed with alkali.
- The resulting product was dried and filtered to obtain 5000 g of ester product having the following properties:
TABLE I Run 1 Run 2 Viscosity, cSt @ 100° C.: 27 26 @ 40° C.: 403 395 Viscosity Index: 90 86 Pour Point, ° C.: −18 −23 Flash Point, C.O.C., ° C.: 291 288 Total Acid No., mgKOH/g: .02 .01 Density @ 15.6° C. (60° F.), lb/gal 8.06 8.07 - A dipentaerythritol ester having a viscosity of about 150 cSt at 40° C. can be prepared in a vessel in the same manner as described for the ester in Example 1. In this case, the following materials are charged to the reactor:
INGREDIENT AMOUNT gms (moles) Dipentaerythritol 1225 g (4.8 m) Heptanoic acid 597 g (4.59 m) Caprylic/capric acid 1094 g (7.06 m) Isononanoic acid 3283 g (20.78 m) - The reaction mixture is heated to 185°-190° C. with agitation. The water-of-reaction is collected in and removed from the Dean-Stark trap. The temperature is gradually raised over 5-6 hours to about 230° C. with application of vacuum to maintain reflux. This removes the reaction water and returns the acid collected in the trap to the reactor. These conditions are maintained to a point where the hydroxyl number of the reaction mixture is less than 3.0. The bulk of the excess acid is then removed by vacuum distillation together with nitrogen sparge and then residual acidity was removed with alkali.
- The resulting product is dried and filtered to obtain 5000 g of an ester product having a viscosity at 40° C. of about 150.
- An additive package of an oligomeric amine antioxidant and borated antiwear agent in accordance with the invention was added to the polyol esters prepared in Example 1 to formulate the lubricating fluid. The esters of Runs 1 and 2 from Example 1 were formulated as follows:
TABLE II Lubricating Fluid Component Weight % Polyol ester 92.95 Oligomeric amine antioxidant 3.00 Borate antiwear agent 2.00 Secondary antiwear agents 2.00 Corrosion inhibitor 0.05 Anti-foaming agent 5 ppm - The resulting lubricant fluids had the following physical properties:
TABLE III Run 3 Run 4 Viscosity, cSt @ 100° C.: 25.6 25.3 @ 40° C.: 386 384 Viscosity Index: 86 87 Pour Point, ° C.: −20 (−5) −37 (−35) Flash Point, C.O.C., ° C.(° F.): 310 (590) 310 (590) Acid Valve, mgKOH/g: .36 .38 - In order for a lubricant fluid to be acceptable in the high temperature applications, it must have low volatility and not form deposits or varnish when exposed to high temperatures for extended periods of time. To test the high temperature volatility of the lubricant fluid, samples of the lubricant fluids of Example 2 were placed into an oven at high temperature for an extended period of time and the weight loss was measured.
- In this test, 2 grams of lubricant fluid was placed in an aluminum weighing dish having an internal diameter of 70 mm. The aluminum dish was placed in a ventilated oven at 288° C. (550° F.) and weighed after 5 hours.
- The results are as follows:
TABLE IV Oven Evaporation Loss, 5 hours at 288° C. Run 3 Run 4 Evaporation Loss, wt % 44 42 - In order for a lubricant fluid to be acceptable in the high temperature applications, it must have superior oxidative and thermal stability. To evaluate the high temperature oxidative stability the formulations of Example 2 were tested by the FED-STD-791 Method 5308, Oxidation and Corrosion Stability. In this test 100 ml of test oil is held at 425° F. (218° C.) for 72 hours in the presence of four different metals and a sparge of dry air. At the end of the test period, the test oil is evaluated for viscosity change, acidity change, and sediment/sludge formation. The test results are shown in Table V.
TABLE V 425° F. 72 hour OCS Test Run 3 Run 4 % Viscosity Change +12.5 +7.4 Acid Value change, mgKOH/g 1.29 0.12 Sediment/sludge, mg/100 ml 1.9 3.2 - A polyol ester high temperature lubricant prepared following the procedures of Example 2 in U.S. Pat. No. 6,436,881 was prepared with the following components.
TABLE VI Lubricant Parts by Weight Polyol ester of Example 1- 100.00 U.S. Pat. No. 6,436,881* Viscosity index 5.60 (2.8% polymer) improver Antioxidant 4.50 Extreme pressure and 2.25 antiwear agents Corrosion inhibitor 0.05 Dipentaerythritol 1225 g (4.8 m) Heptanoic acid 750 g (5.77 m) Caprylic/capric acid 750 g (4.83 m) (acid no. 361.5) Isononanoic acid 3500 g (22.15 m)
*Poylol Ester Base Stock:
- A lubricant fluid prepared in accordance with Example 3 was compared to the lubricant prepare in accordance with Example 6 in a bench panel test. In this test, a stainless steel panel is electrically heated by means of two heaters which are inserted into holes in the panel. The temperature is monitored by means of a thermocouple. The panel is placed on a slight incline and heated to 540° F. The lubricant to be tested is dropped onto the heated panel for 20 hours in the presence of 0.1-0.2 lpm humid air flow. The characteristics are observed and shown in
FIG. 1 . The lubricant contacts the panel near the top of the incline and is observed as a central dark band. The lubricant then tends to thin out as it travels towards the pointed end of the heated panel. It is along the oil-air-metal interface that the degradation of the lubricant is best observed. - The results of the panel test for the lubricants of
Runs 3 and 4 prepared in accordance with the fluid of Example 2 showed essentially no degradation along the oil-air-metal interface. In comparison, the panel test results for a polyol ester lubricant in accordance with Example A in U.S. Pat. No. 6,463,881 shows observable carbonization along the oil-air-metal interface. - A grease using the polyol ester of Example 1 is prepared in accordance with the invention as follows.
- A standard grease manufacturing kettle having milling and recirculation capabilities is charged with 40 parts of ISO 400 grade polyol ester, 8.95 parts of an aromatic diisocyanate, 9.1 parts of a tallowalkylamine, and 0.95 parts of ethylene diamine (an alkyldiamine). The mixture is heated to 225° to 235° F. and then add 0.5 parts water is added. Heating is continued to 375° to 385° F., then shut the heat off and the batch is agitated for 15 to 20 minutes.
- Three parts of a boron containing extreme pressure agent is added and then the oil is milled with the cooling oil on for 3 to 4 hours minimum. After 1 to 1.2 hours of milling, the penetration of the grease is adjusted to a value of 240 to 260 by adding up to 22 parts of ISO 170 grade polyol ester while milling. When the mixture temperature is 225° to 235° F. parts of a corrosion inhibitor and 2 parts of an anti-wear additive are added on and milling is continued. The penetration is adjusted to the range of 240 to 260 using ISO 170 polyol ester as necessary. Milling is stopped, but recirculation of the mixture is continued. When the temperature is 190° F. maximum 1 part of a secondary anti-wear additive is added with 4 parts polymeric amine anti-oxidant, and 0.5 parts of a corrosion inhibitor b. The batch is mixed for 25 to 35 minutes and then penetration is adjusted to the range of 265 to 295.
- The grease prepared including the borated anti-wear agent and aromatic amine antioxidant exhibits the desired high temperature properties sought herein. It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above composition of matter without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
- It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
- Particularly it is to be understood that in said claims, ingredients or compounds recited in the singular are intended to include compatible mixtures of such ingredients wherever the sense permits.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/640,639 US20070184989A1 (en) | 2005-12-16 | 2006-12-18 | Additive package for high temperature synthetic lubricants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75092205P | 2005-12-16 | 2005-12-16 | |
US11/640,639 US20070184989A1 (en) | 2005-12-16 | 2006-12-18 | Additive package for high temperature synthetic lubricants |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070184989A1 true US20070184989A1 (en) | 2007-08-09 |
Family
ID=38105514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/640,639 Abandoned US20070184989A1 (en) | 2005-12-16 | 2006-12-18 | Additive package for high temperature synthetic lubricants |
Country Status (6)
Country | Link |
---|---|
US (1) | US20070184989A1 (en) |
EP (1) | EP1963470B1 (en) |
JP (1) | JP2009520079A (en) |
CN (1) | CN101331216B (en) |
RU (1) | RU2008129100A (en) |
WO (1) | WO2007075531A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080045425A1 (en) * | 2006-08-15 | 2008-02-21 | Dibella Eugene P | Antioxidants and Methods of Making Antioxidants |
US20090031338A1 (en) * | 2007-07-26 | 2009-01-29 | The Directv Group, Inc. | Method and system for positioning row advertising in a program guide |
US20110187253A1 (en) * | 2008-10-24 | 2011-08-04 | Peter Jaehrling | Fitting for household appliances and lubricant |
CN101368129B (en) * | 2008-08-06 | 2012-05-23 | 杭州得润宝油脂有限公司 | Urea-based lubricating grease composition and preparation method thereof |
WO2012178165A2 (en) * | 2011-06-23 | 2012-12-27 | Caterpillar Inc. | Extreme pressure additives and lubricants containing them |
CN113817526A (en) * | 2021-10-29 | 2021-12-21 | 中国石油化工股份有限公司 | High-temperature chain oil composition and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102952607B (en) * | 2011-08-25 | 2014-10-01 | 中国石油化工股份有限公司 | Composite zirconium-based urea hexamer grease and preparation method thereof |
MA45050A (en) * | 2016-05-18 | 2019-03-27 | Modernatx Inc | LIPOPROTEIN LIPASE CODING POLYNUCLEOTIDES FOR THE TREATMENT OF HYPERLIPIDEMIA |
US20190093040A1 (en) * | 2017-09-22 | 2019-03-28 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with viscosity and deposit control |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207935A (en) * | 1989-03-31 | 1993-05-04 | Amoco Corporation | Wheel bearing grease |
US6020290A (en) * | 1997-03-31 | 2000-02-01 | Nachi-Fujikoshi Corp. | Grease composition for rolling bearing |
US6426324B1 (en) * | 1993-12-15 | 2002-07-30 | Noveon Ip Holdings Corp. | Lubricant composition |
US6436881B1 (en) * | 2001-06-01 | 2002-08-20 | Hatco Corporation | High temperature lubricant composition |
US20030139303A1 (en) * | 1996-01-16 | 2003-07-24 | Curtis R. Scharf | Lubricating compositions |
US20050222000A1 (en) * | 2004-03-31 | 2005-10-06 | Mitsubishi Heavy Industries, Ltd. | Lubricating oil composition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313727A (en) * | 1965-02-09 | 1967-04-11 | Chevron Res | Alkali metal borate e.p. lubricants |
JP3722472B2 (en) * | 2000-06-02 | 2005-11-30 | シェブロンテキサコジャパン株式会社 | Lubricating oil composition |
CA2403540A1 (en) * | 2001-11-20 | 2003-05-20 | Bp Corporation North America Inc. | Synergystic combination of aryl amine antioxidants in aviation turbine oils |
US6884761B2 (en) * | 2001-12-18 | 2005-04-26 | Bp Corporation North America Inc. | High temperature stable lubricant mixed polyol ester composition containing an aromatic carboxylic acid and method for making the same |
US6841521B2 (en) * | 2003-03-07 | 2005-01-11 | Chevron Oronite Company Llc | Methods and compositions for reducing wear in heavy-duty diesel engines |
-
2006
- 2006-12-18 US US11/640,639 patent/US20070184989A1/en not_active Abandoned
- 2006-12-18 JP JP2008545881A patent/JP2009520079A/en active Pending
- 2006-12-18 RU RU2008129100/04A patent/RU2008129100A/en not_active Application Discontinuation
- 2006-12-18 EP EP06845688A patent/EP1963470B1/en not_active Not-in-force
- 2006-12-18 WO PCT/US2006/048174 patent/WO2007075531A2/en active Application Filing
- 2006-12-18 CN CN2006800474711A patent/CN101331216B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207935A (en) * | 1989-03-31 | 1993-05-04 | Amoco Corporation | Wheel bearing grease |
US6426324B1 (en) * | 1993-12-15 | 2002-07-30 | Noveon Ip Holdings Corp. | Lubricant composition |
US20030139303A1 (en) * | 1996-01-16 | 2003-07-24 | Curtis R. Scharf | Lubricating compositions |
US6020290A (en) * | 1997-03-31 | 2000-02-01 | Nachi-Fujikoshi Corp. | Grease composition for rolling bearing |
US6436881B1 (en) * | 2001-06-01 | 2002-08-20 | Hatco Corporation | High temperature lubricant composition |
US20050222000A1 (en) * | 2004-03-31 | 2005-10-06 | Mitsubishi Heavy Industries, Ltd. | Lubricating oil composition |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080045425A1 (en) * | 2006-08-15 | 2008-02-21 | Dibella Eugene P | Antioxidants and Methods of Making Antioxidants |
US7413682B2 (en) * | 2006-08-15 | 2008-08-19 | Anderol, Inc. | Antioxidants and methods of making antioxidants |
US20090031338A1 (en) * | 2007-07-26 | 2009-01-29 | The Directv Group, Inc. | Method and system for positioning row advertising in a program guide |
CN101368129B (en) * | 2008-08-06 | 2012-05-23 | 杭州得润宝油脂有限公司 | Urea-based lubricating grease composition and preparation method thereof |
US20110187253A1 (en) * | 2008-10-24 | 2011-08-04 | Peter Jaehrling | Fitting for household appliances and lubricant |
WO2012178165A2 (en) * | 2011-06-23 | 2012-12-27 | Caterpillar Inc. | Extreme pressure additives and lubricants containing them |
WO2012178165A3 (en) * | 2011-06-23 | 2013-04-18 | Caterpillar Inc. | Extreme pressure additives and lubricants containing them |
CN113817526A (en) * | 2021-10-29 | 2021-12-21 | 中国石油化工股份有限公司 | High-temperature chain oil composition and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1963470A2 (en) | 2008-09-03 |
CN101331216A (en) | 2008-12-24 |
EP1963470B1 (en) | 2013-02-27 |
CN101331216B (en) | 2013-08-07 |
JP2009520079A (en) | 2009-05-21 |
WO2007075531A3 (en) | 2007-09-13 |
WO2007075531A2 (en) | 2007-07-05 |
RU2008129100A (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6436881B1 (en) | High temperature lubricant composition | |
US20070184989A1 (en) | Additive package for high temperature synthetic lubricants | |
US5531911A (en) | Metal free hydraulic fluid with amine salt | |
AU2002310255A1 (en) | High temperature lubricant composition | |
JP5680648B2 (en) | Lubricating composition | |
KR101931511B1 (en) | High-temperature lubricant for use in the food industry | |
US4263159A (en) | Automatic transmission fluid comprising esters derived from a particular monocarboxylic acid composition | |
EP2264132B1 (en) | Grease composition and bearings | |
CN103958653A (en) | Grease composition | |
JP5019841B2 (en) | Urea grease composition | |
CN102757838A (en) | Ultrahigh-temperature lubricating grease composition and preparation method thereof | |
JP2008208240A (en) | Biodegradable grease composition | |
CN109415653B (en) | Flame-retardant grease composition | |
JP5349246B2 (en) | Silicone grease composition | |
JP2007277459A (en) | Flame-retardant grease composition | |
JP4954763B2 (en) | Flame retardant grease composition | |
JP3941150B2 (en) | Engine oil composition | |
CA1295316C (en) | Method of manufacturing an improved multi-grade lubricating grease | |
US3579448A (en) | Grease composition | |
US20220025291A1 (en) | Sulphur-containing polyester | |
US20170313953A1 (en) | Compositions comprising an alternative to di-isotridecyl adipate | |
JP2024529150A (en) | Use of hemimellitic esters as base oils in lubricant compositions | |
CN114058424A (en) | Non-spreading grease composition | |
WO2019005723A1 (en) | Low voc lubricant compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: MERGER;ASSIGNOR:KAUFMAN HOLDINGS CORPORATION;REEL/FRAME:022892/0566 Effective date: 20080722 Owner name: KAUFMAN HOLDINGS CORPORATION, CONNECTICUT Free format text: MERGER;ASSIGNOR:HATCO CORPORATION;REEL/FRAME:022892/0348 Effective date: 20080722 |
|
AS | Assignment |
Owner name: CITIBANK, N.A.,DELAWARE Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC;AND OTHERS;REEL/FRAME:023998/0001 Effective date: 20100212 Owner name: CITIBANK, N.A., DELAWARE Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;A & M CLEANING PRODUCTS, LLC;AQUA CLEAR INDUSTRIES, LLC;AND OTHERS;REEL/FRAME:023998/0001 Effective date: 20100212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., CONNECTICUT Free format text: FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISE COMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:026028/0622 Effective date: 20101110 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: A & M CLEANING PRODUCTS, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ASCK, INC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB COMPANY STORE, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: AQUA CLEAR INDUSTRIES, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ASEPSIS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB TEXTILES ADDITIVES, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON MONOCHEM, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CNK CHEMICAL REALTY CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: ISCI, INC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: KEM MANUFACTURING CORPORATION, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: NAUGATUCK TREATMENT COMPANY, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: UNIROYAL CHEMICAL COMPANY LIMITED (DELAWARE), CONN Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: MONOCHEM, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: RECREATIONAL WATER PRODUCTS, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: WRL OF INDIANA, INC., CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BIOLAB FRANCHISE COMPANY, LLC, CONNECTICUT Free format text: INTELLECTUAL PROPERTY SECURITY RELEASE AGREEMENT;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:026039/0142 Effective date: 20101110 Owner name: BANK OF AMERICA, N. A., CONNECTICUT Free format text: SECDOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CHEMTURA CORPORATION;BIOLAB FRANCHISE COMPANY, LLC;BIO-LAB, INC.;AND OTHERS;REEL/FRAME:027881/0347 Effective date: 20101110 |
|
AS | Assignment |
Owner name: BIOLAB FRANCHISE COMPANY, LLC, GEORGIA Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: BIO-LAB, INC., CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: RECREATIONAL WATER PRODUCTS, INC., GEORGIA Free format text: RELEASE OF FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042447/0508 Effective date: 20170421 Owner name: HOMECARE LABS, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: BIOLAB FRANCHISE COMPANY, LLC, GEORGIA Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: BIO-LAB, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CROMPTON COLORS INCORPORATED, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CHEMTURA CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GLCC LAUREL, LLC, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GREAT LAKES CHEMICAL GLOBAL, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: WEBER CITY ROAD LLC, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: GT SEED TREATMENT, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: CROMPTON HOLDING CORPORATION, CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: RECREATIONAL WATER PRODUCTS, INC., GEORGIA Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 Owner name: LAUREL INDUSTRIES HOLDINGS, INC., CONNECTICUT Free format text: RELEASE OF SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042449/0001 Effective date: 20170421 |