+

US20070170372A1 - Dual mode ion source for ion implantation - Google Patents

Dual mode ion source for ion implantation Download PDF

Info

Publication number
US20070170372A1
US20070170372A1 US11/648,378 US64837806A US2007170372A1 US 20070170372 A1 US20070170372 A1 US 20070170372A1 US 64837806 A US64837806 A US 64837806A US 2007170372 A1 US2007170372 A1 US 2007170372A1
Authority
US
United States
Prior art keywords
source
ion
cathode
block
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/648,378
Inventor
Thomas Horsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semequip Inc
Original Assignee
Semequip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2000/033786 external-priority patent/WO2001043157A1/en
Application filed by Semequip Inc filed Critical Semequip Inc
Priority to US11/648,378 priority Critical patent/US20070170372A1/en
Assigned to SEMEQUIP, INC. reassignment SEMEQUIP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLIAMS, JOHN N., HORSKY, THOMAS N.
Assigned to SEMEQUIP, INC. reassignment SEMEQUIP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORSKY, THOMAS N.
Publication of US20070170372A1 publication Critical patent/US20070170372A1/en
Assigned to TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT reassignment TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SEMEQUIP, INC.
Assigned to SEMEQUIP, INC. reassignment SEMEQUIP, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/026Cluster ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0822Multiple sources
    • H01J2237/0827Multiple sources for producing different ions sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/017Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Definitions

  • the present invention relates to an ion source for the generation of ion beams for doping wafers in the semiconductor manufacturing of PMOS and NMOS transistor structures to make integrated circuits and more particularly to a universal ion source configured to operate in dual modes, for example, an arc discharge mode and an electron impact mode.
  • the fabrication of semiconductor devices involves, in part, the formation of transistor structures within a silicon substrate by ion implantation.
  • the ion implantation equipment includes an ion source which creates a stream of ions containing a desired dopant species, a beam line which accelerates and focuses the ion stream into an ion beam having a well-defined energy or velocity, an ion filtration system which selects the ion of interest, since there may be different species of ions present within the ion beam, and a process chamber which houses the silicon substrate upon which the ion beam impinges ; the ion beam penetrating a well-defined distance into the substrate.
  • Transistor structures are created by passing the ion beam through a mask formed directly on the substrate surface, the mask being configured so that only discrete portions of the substrate are exposed to the ion beam.
  • dopant ions penetrate into the silicon substrate, the substrate's electrical characteristics are locally modified, creating source, drain and gate structures by the introduction of electrical carriers: such as, holes by p-type dopants, such as boron or indium, and electrons by n-type dopants, such as phosphorus or arsenic, for example.
  • Bernas-type ion sources have been used in ion implantation equipment.
  • Such ion sources are known to break down dopant-bearing feed gases,such as BF 3 , AsH 3 or PH 3 , for example, into their atomic or monomer constituents, producing the following ions in copious amounts: B + , As + and P + .
  • Such ion sources are known to produce extracted ion currents of up to 50 mA, enabling up to 20 mA of filtered ion beam at the silicon substrate.
  • Bernas type ion sources are known as hot plasma or arc discharge type sources and typically incorporate an electron emitter, either a naked filament cathode or an indirectly-heated cathode, and an electron repeller, or anticathode, mounted opposed to one another in a so-called “reflex” geometry.
  • This type of source generates a plasma that is confined by a magnetic field.
  • cluster implantation sources have been introduced into the equipment market. These ion sources are unlike the Bernas-style sources in that they have been designed to produce “clusters”, or conglomerates of dopant atoms in molecular form, e.g., ions of the form AS n + , P n + , or B n H m + , where n and m are integers, and 2 ⁇ n ⁇ 18.
  • These cluster sources preserve the parent molecules of the feed gases and vapors introduced into the ion source. The most successful of these have used electron-impact ionization, and do not produce dense plasmas, but rather generate low ion densities at least 100 times smaller than produced by conventional Bernas sources.
  • the present invention relates to an ion source for providing a range of ion beams consisting of either ionized clusters such as B 2 H x + , B 5 H x + , B 10 H x + , B 18 H x + , P 4 + or As 4 + or monomer ions, such as Ge + , In + , Sb + , B + , As + , and P + , to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity.
  • This is accomplished by the novel design of an ion source which can operate in two discrete modes: electron impact mode, which efficiently produces ionized clusters, or arc discharge mode, which efficiently produces monomer ions.
  • Borohydride molecular ions are created by introducing gaseous B 2 H 6 , B 5 H 9 , B 10 H 14 , or B 18 H 22 into the ion source where they are ionized through a “soft” ionization process, such as electron impact ionization, which preserves the number of boron atoms in the parent molecule (the number of hydrogens left attached to the ion may be different from that of the parent).
  • As vapor or P vapor can be introduced into the ion source (from a vaporizer which sublimates elemental As or P) to produce an abundance of As 4 + , As 2 + , and As + , or P 4 + , P 2 + , and P + ions.
  • Monomer ions are produced by creating an arc discharge within the ion source, producing a dense plasma and breaking down the feed gases BF 3 , AsH 3 , PH 3 , SbF 5 , InCl 3 , InF 3 and GeF 4 into their constituent atoms. This provides high currents of Ge + , In + , Sb + , B + , As + , and P + ions as required by many semiconductor processes today.
  • the invention as described in detail below, is disclosed by novel methods of constructing and operating a single or universal ion source which produces these very different ion species, i.e., both clusters and monomers, and switching between its two modes of operation quickly and easily, enabling its efficient use in semiconductor manufacturing.
  • An object of this invention is to provide a method of manufacturing a semiconductor device, this method being capable of forming ultra-shallow impurity-doped regions of N-type conductivity in a semiconductor substrate by implanting ionized clusters of the form P 4 + and As 4 + .
  • a further object of this invention is to provide for an ion implantation source and system for manufacturing semiconductor devices, which has been designed to form ultra shallow impurity-doped regions of N-conductivity type in a semiconductor substrate through the use of cluster ions of the form P 4 + and As 4 + .
  • a method of implanting cluster ions comprising the steps of: providing a supply of molecules each of which contains a plurality of either As or P dopant atoms into an ionization volume, ionizing the molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, and implanting the dopant cluster ions into a semiconductor substrate.
  • the preferred method of forming drain extensions for sub-65 nm devices is expected to incorporate a wafer tilt ⁇ 30 deg from the substrate normal, in order to produce enough “under the gate” dopant concentration, without relying on excessive dopant diffusion brought about by aggressive thermal activation techniques.
  • Excellent beam angular definition and low beam angular divergence are also desired for these implants; while high current implanters tend to have large angular acceptances and significant beam non-uniformities, medium current implanters meet these high-tilt and precise angle control requirements. Since medium-current implanters do not deliver high enough currents, their throughput on high-dose implants is too low for production. If ion implanters could produce the required low-energy beams at high dose rates, great economic advantage would be achieved.
  • drain extensions are the shallowest of implants, they are also at the lowest energies (about 3 keV As at the 65 nm node, for example); the long, complicated beamlines which typify medium-current implanters cannot produce enough current at low energy to be useful in manufacturing such devices.
  • the use of As 4 + and P 4 + cluster implantation in medium-current beam lines and other scanned, single-wafer implanters extends the useful process range of these implanters to low energy and to high dose. By using high currents of these clusters, up to a factor of 16 in throughput increase can be realized for low-energy, high dose ( ⁇ 10 14 /cm 2 ) implants with effective As and P implant energies as low as 1 keV per atom.
  • elemental, solid As and P are known to exist in a tetrahedral form(i.e., as white phosphorus, P 4 , and as yellow arsenic, As ) . They would therefore seem to be ideal candidates for producing tetramer ions in an ion source.
  • these compounds can be synthesized, they are more reactive, and hence more unstable, than their more common forms, i.e., red P and grey As metals. These latter forms are easily manufactured, stable in air, and inexpensive.
  • red P and grey As are vaporized, they naturally form primarily P 4 and As 4 clusters in the vapor phase! [see, for example, M. Shen and H. F.
  • This tetrahedral phase is delicate, however, and is readily dissociated, for example, by exposure to ultraviolet light or x-rays, and dissociates in plasmas of the type formed by conventional ion sources. Indeed, it is known that As 4 quite readily dissociates into 2 As 2 under energetic light bombardment.
  • the ion source of the present invention introduces gaseous As 4 and P 4 vapors through a vaporizer which heats solid feed materials, such as elemental As or P, and conducts the vapor through a vapor conduit into the ionization chamber of the ion source.
  • a vaporizer which heats solid feed materials, such as elemental As or P, and conducts the vapor through a vapor conduit into the ionization chamber of the ion source.
  • the vapor or gas interacts with an electron beam which passes into the ionization volume from an external electron gun, forming ions.
  • the vapor is not exposed to a hot, UV-producing cathode since the electron gun is external to the ionization volume and has no line-of-sight to the vapors.
  • the ions are then extracted from a rectangular aperture in the front of the ionization volume by electrostatic optics, forming an ion beam.
  • FIG. 1 is a schematic diagram of an exemplary ion beam generation system in accordance with the present invention.
  • FIG. 2 is a schematic diagram of an alternative embodiment of the exemplary ion beam generation system illustrated in FIG. 1 ,illustrating a solid vapor source and an in-situ cleaning system.
  • FIG. 3 a is a schematic representation of the basic components of the ion source in accordance with the present invention which includes an electron gun, an indirectly-heated cathode, a source liner, a cathode block, a base, an extraction aperture, a source block, and a mounting flange.
  • FIG. 3 b is an exploded view of the ion source of the present invention, illustrating the major subsystems of the ion source
  • FIG. 4 a is an exploded isometric view of the ion source illustrated in FIG. 3 a, shown with the mounting flange assembly, electron gun assembly, indirectly heated cathode assembly and the extraction aperture plate removed.
  • FIG. 4 b is an exploded isometric view of the ionization volume liner and the interface or base block showing the plenum and the plenum ports in the interface block.
  • FIG. 4 c is an isometric view of the ionization volume assembly in which the ionization volume is formed from a cathode block, an interface block, and a magnetic yoke assembly, shown with the ionization volume liner removed.
  • FIG. 5 a is an exploded isometric view of a indirectly-heated cathode (IHC) assembly in accordance with one aspect of the present invention.
  • IHC indirectly-heated cathode
  • FIG. 5 b is an enlarged exploded view of a portion of the IHC assembly, illustrating the IHC, a filament, a cathode sleeve, and a portion of a cathode plate.
  • FIG. 5 c is an elevational view in cross section of the IHC assembly illustrated in FIG. 5 b.
  • FIG. 5 d is an isometric view of a water-cooled cathode block shown assembled to the IHC assembly illustrated in FIG. 5 a in accordance with one aspect of the invention.
  • FIG. 5 e is an elevational view of the assembly illustrated in FIG. 5 d illustrating the cathode block and the cathode plate of the IHC assembly in section.
  • FIG. 5 f is an isometric view of a magnetic yoke assembly which surrounds the cathode block and ionization volume In accordance with the present invention.
  • FIG. 6 a is an isometric view of an emitter assembly which forms a portion of the external electron gun assembly in accordance with one aspect of the present invention.
  • FIG. 6 b is an isometric view of an electron gun assembly in accordance with the present invention shown with an electrostatic shield assembly removed.
  • FIG. 7 is an isometric view illustrating a magnetic circuit associated with the electron gun and ionization volume yoke assembly.
  • FIG. 8 is an isometric view of an exemplary dual hot vaporizer assembly in accordance with one aspect of the present invention.
  • FIG. 9 a is an isometric view of a source block in accordance with the present invention.
  • FIG. 9 b is similar to FIG. 9 a but shown with the hot vaporizer assembly removed.
  • FIG. 10 is a diagram which illustrates the typical voltages applied to each element of the ion source when operating in electron-impact ionization mode.
  • FIG. 11 is similar to FIG. 10 but indicates the typical voltages applied to each element of the ion source when operating in arc discharge mode.
  • FIGS. 12 a and 12 b are logic flow diagrams illustrating the sequence of steps required to establish each operating mode in succession.
  • FIG. 13 is a diagram which shows the thermal interfaces between source block, interface block, cathode block, and the ionization volume liner.
  • FIG. 14 is a side view in cross section, of the source assembly, cut in the y-z plane.
  • FIG. 15 is similar to FIG. 14 but cut in the x-y plane.
  • FIG. 16 is similar to FIG. 14 but cut in the x-z plane
  • FIG. 17 is a photograph of the source with the front aperture plate removed, showing the indirectly heated cathode and the ionization volume liner.
  • FIG. 18 is a photograph showing the mounting flange with feedthroughs, shown with the vaporizers removed.
  • FIG. 19 is a plot of mass-analyzed B 18 H x + beam current delivered to an implanter Faraday cup positioned 2 meters from the ion source and downstream from an analyzer magnet on the left vertical axis, and total ion current extracted from the same ion source shown on the right vertical axis, as a function of vapor flow into the ion source.
  • FIG. 20 is a B 18 H 22 mass spectrum collected from the ion source of the present invention.
  • FIG. 21 is a PH 3 mass spectrum collected from the ion source of the present invention.
  • FIG. 22 is an AsH 3 mass spectrum collected from the ion source of the present invention.
  • FIG. 23 is a P spectrum showing the monomer P + , the dimer P 2 + , the trimer P 3 + , and the tetramer P 4 + .
  • FIG. 24 is a As spectrum showing the monomer As + , the dimer As 2 + , the trimer As 3 + , and the tetramer As 4 + .
  • the present invention relates to ion source for providing a range of ion beams consisting of either ionized clusters,such as B 2 H x + , B 5 H x + , B 10 H x + , B 18 H x + , P 4 + or As 4 + or monomer ions,such as Ge + , In + , Sb + , B + , As + , and P + , to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity.
  • ionized clusters such as B 2 H x + , B 5 H x + , B 10 H x + , B 18 H x + , P 4 + or As 4 + or monomer ions,such as Ge + , In + , Sb + , B + , As + , and P + .
  • the range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
  • FIG. 14 shows, in cross section, a cut in the y-z plane (i.e., side view) through the ion source assembly in accordance with the present invention.
  • FIG. 15 is similar to FIG. 14 , but shows, in cross section, a cut in the x-y plane through the source assembly.
  • FIG. 16 shows, in cross section, a cut in the x-z plane through the source assembly.
  • FIG. 17 is a photograph of the source with the front aperture plate removed, showing the indirectly heated cathode and the ionization chamber liner.
  • FIG. 18 is a photograph showing the mounting flange with feed throughs with the vaporizers removed.
  • the ion source of the present invention incorporates the following features:
  • the ion source of the present invention also incorporates the following features:
  • the ion source incorporates an in-situ chemical cleaning process, preferably by the controlled introduction of atomic fluorine gas, and the materials used to construct the elements of the ion source are selected from materials resistant to attack by F:
  • the ionization chamber liner may be fabricated from titanium diboride (TiB 2 ), which is resistant to attack by halogen gases, and possesses good thermal and electrical conductivity, but may also be usefully fabricated of aluminum, graphite or other electrical and thermal conductor which is not readily attacked by flourine;
  • the arc discharge electron source may be an indirectly-heated cathode, and the portion of which exposed to the cleaning gas may be formed a thick tungsten, tantalum or molybdenum disk, and is therefore much more robust against failure in a halogen environment than a naked filament;
  • the indirectly-heated cathode assembly is mechanically mounted onto a water-cooled aluminum “cathode block” so that the, limiting its radiative heat load to the ionization chamber and liner (we note that aluminum passivates in a F environment, and is therefore resistant to chemical etch); this enables rapid cool down of the cathode between the time it is de-energized and the onset of an in-situ cleaning cycle, reducing the degree of chemical attack of the refractory metal cathode
  • the electron gun which is energized during electron-impact ionization is remote from the ionization volume, mounted externally and has no line-of-sight to the F gas load during an in-situ clean, and therefore is robust against damage by F etching.
  • FIG. 1 a schematic diagram of an exemplary ion beam generation system which incorporates an ion source in accordance with the present invention is illustrated.
  • the ion source 400 is adapted to produce an ion beam for transport to an ion implantation chamber for implant into semiconductor wafers or flat-panel displays.
  • the ion beam generation system includes an ion source 400 , an extraction electrode 405 , a vacuum housing 410 , a voltage isolation bushing 415 of electrically insulative material, a vacuum pumping system 420 , a vacuum housing isolation valve 425 , a reactive gas inlet 430 , a feed gas and vapor inlet 441 , a vapor source 445 , a feed gas source 450 , a reactive gas source 455 , an ion source high voltage power supply 460 and an ion beam transport housing 411 .
  • the ion source 400 produces a resultant ion beam illustrated by the arrow 475 .
  • the ion source 400 is constructed to provide cluster ions and molecular ions, for example the borohydride ions B 10 H x + , B 10 H x ⁇ , B 18 H x + , and B 18 H x ⁇ or, and alternatively, more conventional ion beams, such as P + , As + , B + , In + , Sb + , Si + , and Ge.
  • the gas and vapor inlet 441 for gaseous feed material to be ionized is connected to a suitable vapor source 445 , which may be in close proximity to gas and vapor inlet 441 or may be located in a more remote location, such as in a gas distribution box, located elsewhere within a terminal enclosure.
  • a terminal enclosure is a metal box, not shown, which encloses the ion beam generating system. It contains required facilities for the ion source, such as pumping systems, power distribution, gas distribution, and controls. When mass analysis is employed for selection of an ion species in the beam, the mass analyzing system may also be located in the terminal enclosure.
  • the ion source 400 is held at a high positive voltage (in the more common case where a positively-charged ion beam is generated) with respect to an extraction electrode assembly 405 and a vacuum housing 410 by a high voltage power supply 460 .
  • the extraction electrode assembly 405 is disposed close to and aligned with an extraction aperture 504 on an extraction aperture plate which forms a portion of the ionization volume 500 .
  • the extraction electrode assembly consists of at least two aperture-containing electrode plates, a so-called suppression electrode 406 closest to the ionization volume 500 , and a “ground” electrode 407 .
  • the suppression electrode 406 is biased negative with respect to a ground electrode 407 to reject or suppress unwanted electrons which are attracted to the positively-biased ion source 400 when generating positively-charged ion beams.
  • the ground electrode 407 , vacuum housing 410 , and terminal enclosure are all at the so-called terminal potential, which is at earth ground unless it is desirable to float the entire terminal above ground, as is the case for certain implantation systems, for example for medium-current ion implanters.
  • the extraction electrode 405 may be of the novel temperature-controlled metallic design, described below.
  • the ion source 400 may be configured for in situ cleaning, i.e. without the ion source being removed from its operating position in the vacuum housing, and with little interruption of service.
  • the source chamber or ionization volume 500 is small, having a volume, for example, less than about 100 ml, and an internal surface area of, for example, less than about 200 cm 2 , and is constructed to receive a flow of the reactive gas, e.g. atomic fluorine or a reactive fluorine-containing compound at a flow rate of less than about 200 Standard Liters Per Minute.
  • a dedicated endpoint detector 470 in communication with the vacuum housing 410 may be used to monitor the reactive gas products during chemical cleaning.
  • FIG. 2 illustrates an embodiment of an ion source, similar to FIG. 1 , that is configured for conducting in-situ chemical cleaning of the ion source 400 including the extraction electrode assembly 405 .
  • the in situ cleaning system is described in detail in International Patent Application No. PCT/US2004/041525, filed on Dec. 9, 2004, hereby incorporated by reference.
  • three inlet passages are integrated into ion source 400 , respectively.
  • One inlet passage is for reactive gas 430 from a plasma source 455 .
  • Another inlet passage is for feed gas 435 from one of a number of storage volumes 450 selected.
  • the third inlet is for feed vapor 440 from a vaporizer 445 .
  • the plasma-based reactive gas source 455 is biased at the high voltage of the ion source 400 .
  • This enables the remote plasma source 455 to share control points of the ion source 400 and also enables the cleaning feed gas 465 and argon purge gas from storage source 466 to be supplied from an ion source gas distribution box, which is at source potential.
  • a different type of endpoint detector namely a Fourier Transform Infrared (FTIR) optical spectrometer.
  • FTIR Fourier Transform Infrared
  • This detector can function ex-situ (outside of the vacuum housing), through a quartz window.
  • an extractive type of FTIR spectrometer may be used, which directly samples the gas in the vacuum housing 410 during cleaning.
  • a temperature sensor TD may sense the temperature of the de-energized ionization chamber by sensing a thermally isolated, representative region of the surface of the chamber.
  • the sensor TD can monitor heat produced by the exothermic reaction of F with the contaminating deposit, to serve as end-point detection.
  • FIG. 3 a is a simplified schematic representation of the basic components of the ion source, indicating the electron gun cathode 10 , the indirectly-heated cathode (IHC) 20 , an ionization volume liner 30 , a cathode block 40 , a base or interface block 50 , extraction aperture plate 60 , a source block 70 , and a mounting flange 80 .
  • the ionization volume liner 30 is preferably made of TiB 2 or aluminum, but may be usefully constructed of SiC, B 4 C, C, or any other suitable electrically conductive material which is not a deleterious contaminant in silicon circuits, and can sustain an operating temperature of between 100 C and 500 C.
  • the cathode block 40 is preferably of aluminum due to its high thermal and electrical conductivity, and resistance to attack by halogen gases. Al also allows for direct water cooling since it is non-porous and non-hydroscopic. Other materials may be used such as refractory metals like tungsten and molybdenum which have good electrical and thermal properties; however they are readily attacked by halogen gases. Another consideration for the cathode block is compatibility with ion bombardment of P + , As + , and other species produced under arc discharge operation. Since the cathode block is unipotential with the IHC cathode 20 , it is subject to erosion by ion bombardment of plasma ions.
  • the base 50 is preferably made of aluminum, but can be made of molybdenum or other electrically and thermally conductive materials. Since the source block 70 , mounting flange 80 , and ion extraction aperture 60 are typically operated at 200 C or below, they can be usefully constructed of aluminum as well.
  • the ionization volume liner 30 surrounds an ionization volume 35 and is in light thermal contact with the mounting base 50 , which is itself in good thermal contact with the source block 70 .
  • the ionization volume of the ion source is fully bounded by a cylindrical bore through the ionization volume liner 30 and the top and bottom plates of the cathode block 40 .
  • the source block 70 is temperature controlled to up to 200 C, for example. Thus, when the electron gun 10 is active, very little power is transferred to the ionization volume liner 30 , the temperature of which is close to that of the source block 70 .
  • the ionization volume liner 30 When the IHC 100 is energized, the ionization volume liner 30 is exposed to hundreds of watts of power and can attain a much higher temperature than the source block 70 (up to 400 C or higher), which is beneficial to limit condensation of gases onto the surface of the ionization volume liner 30 .
  • FIG. 3 b is an exploded isometric view of the ion source of the present invention, showing its major subsystems.
  • the ion source includes an ion extraction aperture plate 60 , an ionization volume or chamber assembly 90 , an IHC assembly 100 , an electron gun assembly 110 , a source block assembly 120 , and a mounting flange assembly 130 .
  • the ion source also includes a low-temperature vaporizer (not shown) coupled to a port 135 .
  • a vapor conduit 137 is used to transport the vapor into the ionization assembly 90 .
  • the ion source also includes dual hot vapor inlet ports 138 , a process gas inlet port 139 , and an optional reactive gas inlet port 140 .
  • embodiment atomic F may fed to the ionization volume assembly 90 via the reactive gas inlet port 140 .
  • Vaporized As, P, or SbO 3 into the dual hot vapor inlet ports 138 while B 18 H 22 vapor may be applied to the vapor conduit 137 .
  • FIG. 4 a is an exploded isometric view of the ion source in accordance with the present invention, shown with the mounting flange assembly 130 , electron gun assembly 110 , indirectly heated cathode assembly 100 and the extraction aperture plate 60 removed.
  • the ion source includes a source block 120 , a cathode block 40 , mounting base or interface block 50 , an ionization volume or source liner 30 , a liner gasket 115 , a base gasket 125 , and a cathode block gasket 127 .
  • FIG. 4 c when the magnetic yoke assembly 150 is added, these parts form an ionization volume assembly 90 ( FIG. 3 b ).
  • the gaskets 125 and 127 are electrically insulating, thermally conductive gaskets, fabricated from polymer compounds, for example. Their purpose is to prevent thermal isolation of the parts while allowing for potential differences between the mating parts.
  • the cathode block 40 is at several hundred volts below the base or interface block 50 potential during arc discharge operation, and so must be electrically isolated. However, during electron impact operation, the cathode block 40 should be near the temperature of the base or interface block 50 , and so it cannot be thermally isolated.
  • the gasket 115 is a metal gasket which forms the interface between the ionization volume liner 30 and the base or interface block 50 .
  • the base or interface block 50 is effectively heat sunk to the source block 120 (which is a constant temperature reservoir, i.e., it is actively temperature controlled through embedded ohmic heaters coupled to a closed-loop controller), it tracks near the source block 70 temperature.
  • the source block 70 is actively temperature controlled, and the separate source elements track this temperature through carefully selected thermal contact paths, as described in FIG. 13 .
  • Closed loop control of the source block 70 temperature may be implemented using a conventional PID controller, such as the Omron E5CK digital controller, which can be used to control the duty cycle of the power delivered to the ohmic heaters embedded in the source block, as is known in the art.
  • a conventional PID controller such as the Omron E5CK digital controller, which can be used to control the duty cycle of the power delivered to the ohmic heaters embedded in the source block, as is known in the art.
  • FIG. 4 b is an exploded isometric view of the ionization volume liner 30 and the interface or base block 50 , showing the plenum and the plenum ports in the interface block 50 .
  • the several gas and vapor inlet ports namely vapor port 137 , reactive gas port 140 , process gas port 139 , and dual hot vapor ports 141 a and 141 b, feed into a gas plenum 45 , formed in the base or interface block 50 .
  • the interface block 50 is provided with one or more through holes 142 a and 142 b to accommodate mounting conventional fasteners (not shown) to secure the interface block 50 to the source block 120 and thereby establish electrical conductivity between the interface block 50 and the source block 120 ).
  • the gas plenum 45 may be cavity machined into the interface block 50 and is used to collect any of the gases fed into the plenum 45 and feed them into multiple liner ports 32 .
  • the multiple liner ports 32 are configured in a “shower head” design to distribute the gases along different directions into the ionization volume 35 within the ionization volume liner 30 .
  • By transporting all of the gases or vapors into the plenum 45 which acts as a ballast volume, which then feeds the gases through a shower head directly into the ionization volume 35 , produces a uniform distribution of gas or vapor molecules within the ionization volume 35 .
  • Such a configuration results in a more uniform distribution of ions presented to extraction aperture 60 , and the subsequent formation of a more spatially uniform ion beam.
  • FIG. 4 c is an isometric view of the ionization volume assembly 90 , shown with the ionization volume liner removed.
  • the ionization volume assembly 90 is formed from the cathode block 40 , the interface block 50 , and the magnetic yoke assembly 150 .
  • the magnetic yoke assembly 150 is constructed of magnetic steel and conducts the magnetic flux produced by a pair of permanent magnets 151 a and 151 b around through ionization volume assembly 90 , producing a uniform magnetic field of about 120 Gauss, for example, within the ionization volume 35 .
  • this permanent field confines the electron beam so that the ions are produced in a well-defined, narrow column adjacent to the ion extraction aperture 60 .
  • the same field provides confinement for the plasma column between cathode and the upper plate of the cathode block 40 , which serves as an anticathode.
  • FIG. 5 a is an exploded view of the indirectly-heated cathode (IHC) assembly 100 .
  • IHC assemblies are generally known in the art. Examples of such IHC assemblies are disclosed in U.S. Pat. Nos. 5,497,006; 5,703,372; and 6,777,686, as well as US Patent Application Publication No. US 2003/0197129 A1, all hereby incorporated by reference. The principles of the present able invention are applicable to all such IHC assemblies.
  • An alternate IHC assembly 100 in for use with the present invention includes an indirectly-heated cathode 160 , a cathode sleeve 161 , a filament 162 , a cathode plate 163 ,a pair of filament clamps 164 a and 164 b, a pair of filament leads 165 a and 165 b, and a pair of insulators 167 a and 167 b (not shown).
  • the filament 162 emits up to 2 A, for example, of electron current which heats the indirectly-heated cathode 160 to incandescence by electron bombardment.
  • the cathode 160 is unipotential with the cathode mounting plate 163 .
  • the insulators 167 a and 167 b are required to stand off the filament voltage of up to 1 kV.
  • the IHC 160 is located onto the cathode plate 163 via a flange 159 and is locked into position by sleeve 161 through threaded connection 156 .
  • the sleeve 161 serves as a radiation shield for the IHC 160 , minimizing heat loss through radiation, except at the emitting surface 157 .
  • the indirectly heated cathode (IHC) 160 may be machined from a single tungsten cylinder.
  • An exemplary IHC 160 may be about 0.375 inch thick, and is robust against both F etch and ion bombardment.
  • the IHC 160 has the appearance of a thick circular disk joined to a hollow cylinder which has a bottom flange 159 which registers the IHC 160 within its mounting part, cathode plate 163 .
  • Two or more circular grooves 158 or saw cuts are machined into the cylinder to reduce the conduction of heat from the cathode emission surface 157 to the cathode plate 163 , reducing electron beam heating requirements.
  • a similar groove 153 is machined into the sleeve 161 to reduce heat transfer to the cathode plate 163 .
  • the sleeve 161 attaches to the cathode plate 163 via threads in the plate 163 and the sleeve 161 .
  • the sleeve 161 serves two functions: it “locks down” IHC 158 , and acts as a radiation shield between the IHC 160 and its environment, reducing heating power requirements. Note that the IHC 160 and its sleeve 161 are enclosed by the water-cooled cathode block 40 which is designed to absorb radiation to reduce overall source heating.
  • Filament 162 is constructed of approximately 1 mm-thick tungsten wire twisted into a three-bend pattern which provides fairly uniform emission current coverage onto the bottom of the IHC 160 disk.
  • the filament 162 is attached to dual clamps 164 a and 164 b which conduct current through dual leads 165 a and 165 b to a vacuum feedthrough and to a 60 A filament power supply.
  • This power supply, and hence the filament is floated to a negative potential relative to the IHC by a high voltage power supply, so that electron emission current leaving the filament 162 is accelerated to the IHC 160 , providing electron beam heating.
  • This 2 A, 1 kV power supply provides up to 2 kW of electron beam heating power to bring the cathode surface 157 to electron emission. In practice, 1 kW of electron beam heating is sufficient (1.7 A at 600V, for example), but for IHC arc currents of over several amperes, higher cathode temperature and hence higher power is needed.
  • the IHC 160 , sleeve 161 , and filament 162 are preferably made of tungsten.
  • the filament leads shown in FIG. 5 b are crimped onto the filament 162 , and are usefully made of molybdenum or tantalum, for example.
  • the cathode plate 163 can be made of graphite, stainless steel, molybdenum, or any high temperature, electrically conductive material having good mechanical tensile strength. Since the cathode plate 163 mounts directly to the cathode block, it is at cathode potential when the IHC 160 is energized.
  • FIGS. 5 d and 5 e illustrate the indirectly-heated cathode assembly 100 mounted onto the water-cooled cathode block 40 .
  • a pair of water fittings 41 a and 41 b are used to transport de-ionized water through a vacuum interface.
  • the water circulates through the cathode block 40 and can absorb several kW of power, allowing the cathode block 40 to remain well below 100° C. at all times.
  • the IHC 160 is unipotential with the cathode block 40 . As such, no insulation is required between the cathode 160 and cathode block 40 , which forms the top and bottom boundary surfaces of the ionization volume 35 .
  • FIG. 5 f shows a detail of the magnetic yoke assembly 150 which surrounds the cathode block 40 and the ionization volume 35 .
  • the magnetic yoke assembly 150 is constructed of magnetic steel and conducts magnetic flux through an ionization volume or chamber assembly 90 , producing a uniform axial magnetic field of about 120 Gauss, for example, within the ionization volume 35 .
  • This magnetic yoke assembly 150 is used to generate a magnetic field to confine the plasma generated in the ionization volume 35 during an arc discharge mode of operation.
  • the electron gun assembly 110 is shielded from the magnetic field because of a magnetic shield which is inserted between the yoke assembly 150 and the electron gun, as indicated in FIG. 7 below.]
  • FIGS. 6 a and 6 b illustrate the external electron gun assembly 110 .
  • Such electron gun assemblies are disclosed in detail in U.S. Pat. No. 6,686,595 as well as US Patent Application Publication No. US 2004/0195973 A1, hereby incorporated by reference.
  • FIG. 6 a is an isometric view of an exemplary emitter assembly 210 which forms a part of the external electron gun assembly 110 .
  • FIG. 6 b is an isometric view of an electron gun assembly 110 , shown with an electrostatic shield assembly 250 removed.
  • the electron gun assembly 110 includes a gun base 240 , which carries an emitter assembly 210 , an anode 215 , an electrostatic shield assembly 250 and a magnetic shield 255 .
  • Electrons emitted from a filament 200 in the emitter assembly 210 are extracted by the anode 215 and bent through 90 degrees by the magnetic dipole 220 , passing through an aperture 230 in the gun base 240 .
  • the electron beam is shielded from the magnetic fields within the ionization volume assembly 90 , generated by the magnetic yoke 150 , by a magnetic shield 255 .
  • the anode 215 , gun base 240 , and the electrostatic shield assembly 250 are all at anode potential, as high as, for example, 2 kV above the potential of the ionization volume assembly 90 , which is held at the potential of the source block 120 during electron impact operation.
  • the filament voltage for example, is several hundred volts negative; thus, the electron beam is decelerated between the gun base 240 and the ionization volume 35 , as described in detail, for example by Horsky in U.S. Pat. No. 6,686,595, hereby incorporated by reference.
  • FIG. 7 is a physical representation of the magnetic circuit associated with the electron gun assembly 110 and the magnetic yoke assembly 150 .
  • the magnetic circuit consists of the magnetic dipole 220 , the gun magnetic shield 255 , and the magnetic yoke assembly 150 .
  • Magnetic dipole 220 is made of magnetic stainless steel, and produces a uniform transverse magnetic field across the poles, bending the electron beam produced by the electron gun emitter through approximately 90 degrees. Thus deflected, the electron beam passes through the aperture 230 of FIG. 6 , and into the ionization volume, where it is confined by the chamber magnetic field.
  • FIG. 8 is an isometric view of an exemplary dual hot vaporizer assembly 301 .
  • the dual hot vaporizer assembly 301 includes dual vaporizer ovens 300 a and 300 b, heater windings 310 a and 310 b, and a pair of vapor nozzles 320 a and 320 b.
  • Solid source material such as As, P, Sb 2 O 3 , or InF 3 , resides within the oven cavities, which are hollow steel cylinders. Sometimes the material is captured by a graphite crucible which forms a liner between the material and cylinder, preventing contamination of the oven walls.
  • the oven heater windings 310 a and 310 b carry up to 20 A of current at 48V DC, and can dissipate up to 1 kW of heater power. They are brazed onto the ovens for good thermal contact.
  • the nozzles 320 a and 320 b are usefully fabricated of molybdenum for good temperature uniformity, but can be made of steel or other high temperature, conductive materials. The nozzles are preferable 1 ⁇ 4 inch tubing and no longer than two inches ⁇ long, to ensure good vapor conductance from oven to ionization volume.
  • the temperature of the ovens 300 a and 300 b is monitored by a pair of thermocouples 330 a and 330 b.
  • the temperature of the heater windings 310 a and 310 b is monitored by a pair of thermocouples 331 a and 331 b.
  • FIG. 9 a shows the source block 70 with the dual hot vaporizer assembly 301 removed while FIG. 9 b illustrates the source block with the hot vaporizer assembly 301 being inserted.
  • FIG. 10 is a diagram which illustrates the typical voltages applied to each element of the ion source when operating in electron-impact ionization mode. All voltages are referenced to source potential Vs, which is positive with respect to ground.
  • the mounting base or interface block 50 , the cathode block 40 , and the source block 70 are held at Vs.
  • the electron gun filament 200 is held at cathode potential Vc by its related power supply ( ⁇ 1 kV ⁇ Vc ⁇ 100V), and the potential of the anode 240 Va is positive (1 kV ⁇ Va ⁇ 2 kV), so that the kinetic energy of the electrons leaving the filament 200 and forming the electron beam 27 is e(Va ⁇ Vc).
  • the ion extraction aperture plate 60 is biased to either a positive or negative voltage to improve the focusing of the extracted ion beam ( ⁇ 350V ⁇ Vb ⁇ 350V).
  • the IHC assembly 100 is not energized during an electron-impact ionization mode and is held at the potential Vs during this mode.
  • FIG. 11 is similar to FIG. 10 but indicates the typical voltages applied to each element of the ion source when operating in arc discharge mode. All voltages are referenced to source potential Vs which is positive with respect to ground.
  • the electron gun assembly 110 is not used, but the cathode supply is connected to the IHC cathode 160 Vc ( ⁇ 100V ⁇ Vc ⁇ 0), which is unipotential with the cathode block 40 . Since the electron gun assembly is not used in this mode, its filament 200 and anode 240 are held at cathode voltage Vc.
  • the IHC filament 162 is at up to 1 kV below the IHC 20 potential ( ⁇ 1 kV ⁇ Vf ⁇ 0), and can provide up to 2 A, for example, of electron beam heating current.
  • FIGS. 12 a and 12 b are logic flow diagrams of the sequence of steps required to establish each operating mode in succession. Since the voltages of the ion source components are different for the two modes of operation, there is a preferred sequence for moving between modes:
  • step 602 When switching from the electron impact mode 600 to the arc discharge mode 614 , as illustrated in FIG. 12 a, initially, in step 602 , the electron gun assembly 110 is shut off. Next in step 604 , the electron gun anode 215 is decoupled from its power supply. In step 606 , the electron gun anode 215 is set to cathode potential. This prevents any fields from punching through the cathode block 40 at the upper plate of the cathode block 40 , making this an effective anticathode. In step 608 , the bias voltage applied to the ion extraction aperture plate 60 is interrupted.
  • step 610 water flow into the cathode block 40 is initiated by automatic sequencing of pneumatically actuated water flow valves.
  • the water flow valves are interlocked to the ion source control system through a water flow sensor and relay switch so that the IHC cannot be energized unless flow has been established
  • the cathode block 40 must be water cooled during operation of the IHC assembly 100 to prevent undue heating of the source components, and to keep the magnets 151 a, 151 b in the magnetic yoke 150 below their Curie temperature.
  • an arc can by initiated by the introduction of process gas into the ionization volume 35 and energizing the IHC assembly 100 as is known in the art.
  • the IHC assembly 100 When switching from the arc discharge 614 to the electron impact mode 600 , as illustrated in FIG. 12 b, initially in step, the IHC assembly 100 is de-energized. Next in step 618 , the electron gun anode 215 is connected to its positive power supply. In step 620 , the cathode block 40 and the IHC assembly 100 are connected to the to the source voltage. In step 622 , the bias voltage is set and connected to the ion extraction aperture plate 60 . In step 624 , water cooling of the cathode block 40 is terminated. Finally, in step 626 , the electron gun assembly 110 is energized to establish an electron beam. Also, vapor is introduced into the ionization volume 35 to begin ionized cluster formation.
  • FIG. 13 shows the thermal interfaces between source block 70 , the interface block 50 , the cathode block 40 , and the ionization volume liner 30 .
  • thermal paths are defined between the cathode block 40 , the ion extraction aperture 60 , the interface or mounting block 50 , the ionization volume or source liner 30 , and the source block 70 through thermally conductive gaskets which are in wetted contact to the surfaces of these components.
  • the ionization volume liner 30 can attain higher temperatures than the temperature of source block 70 , which is actively temperature controlled.
  • the water-cooled cathode block 40 has a thermal path to reach the temperature of the mounting base 50 after water cooling is disabled.
  • FIG. 19 is a plot of mass-analyzed B 18 H x + beam current delivered to a Faraday cup positioned 2 meters from the ion source and downstream from an analyzer magnet, and total ion current extracted from the ion source. Shown are the extracted ion current, in mA, on the right vertical axis, and the Faraday current (similar to on-wafer current) on the left vertical axis. The currents are measured as a function of B 18 H 22 vapor flow into the ion source, measured as inlet pressure into the ion source. The vapor was fed into this ion source through a proprietary closed-loop vapor flow controller which has been described in detail elsewhere. The transmission through the extraction optics and beam line of this implanter is about 25%, and begins to fall off at the highest vapor flows, presumably due to charge exchange with the residual vapor.
  • FIG. 20 is a B 18 H 22 mass spectrum collected from the ion source of the present invention, in electron-impact mode.
  • the parent peak, B 18 H x + represents about 85% of the beam spectrum.
  • the small peak at half the parent 210 amu mass is doubly ionized B 18 H x + , or B 18 H x ++ .
  • FIG. 21 is a PH 3 mass spectrum collected from the ion source of the present invention, in arc discharge mode. Over 10 mA of 31 P + current and over 2 mA of doubly ionized phosphorus was delivered to the Faraday of the implanter at 20 kV extraction voltage. This performance is comparable to many commercial Bernas-style ion sources used in ion implantation.
  • FIG. 22 is an AsH 3 mass spectrum collected from the ion source of the present invention, in arc discharge mode. Over 10 mA of 70 As + current and about 0.5 mA of doubly ionized arsenic, as well as 0.5 mA of arsenic dimer was delivered to the Faraday of the implanter at 20 kV extraction voltage. This performance is comparable to many commercial Bernas-style ion sources used in ion implantation.
  • FIG. 23 is a phosphorus spectrum showing the monomer P + , the dimer P 2 + , the trimer P 3 + , and the tetramer P 4 + , produced in electron impact mode.
  • the spectrum is unusual in that the monomer, dimer, and tetramer peaks are all about the same height (about 0.9 mA), so that the tetramer yields the highest dose rate, or about 3.6 mA of effective phosphorus atom current.
  • the spectrum was produced using elemental P vapors from the hot vaporizer of the dual mode source.
  • the high cluster yield is due to the fact that the P vapor preferentially produces P 4 , and this fragile cluster is preserved during the ionization process by electron-impact ionization without exposing the vapors to intense radiation or heat.
  • FIG. 24 is similar to FIG. 23 , but collected with elemental As vapors produced by the hot vaporizer of the dual-mode source.
  • the As spectrum shows the monomer 70 As + , the dimer As 2 + , the trimer As 3 + , and the tetramer As 4 + .
  • the equivalent of 4 mA of 5 keV As + is delivered to the Faraday.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx +, B5Hx +, B10Hx +, B18Hx +, P4 + or As4 + or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of commonly owned co-pending U.S. application Ser. No. 10/170,512, filed on Jun. 12, 2002, which was nationalized from international patent application no. PCT/US00/33786, filed on Dec. 13, 2000, under 35 USC §371, which, in turn, claims the benefit of U.S. provisional patent application No. 60/170,473, filed on Dec. 13, 1999 and U.S. provisional application No. 60/250,080, filed on Nov. 30, 2000.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an ion source for the generation of ion beams for doping wafers in the semiconductor manufacturing of PMOS and NMOS transistor structures to make integrated circuits and more particularly to a universal ion source configured to operate in dual modes, for example, an arc discharge mode and an electron impact mode.
  • 2. Description of the Prior Art
  • The Ion Implantation Process
  • The fabrication of semiconductor devices involves, in part, the formation of transistor structures within a silicon substrate by ion implantation. The ion implantation equipment includes an ion source which creates a stream of ions containing a desired dopant species, a beam line which accelerates and focuses the ion stream into an ion beam having a well-defined energy or velocity, an ion filtration system which selects the ion of interest, since there may be different species of ions present within the ion beam, and a process chamber which houses the silicon substrate upon which the ion beam impinges ; the ion beam penetrating a well-defined distance into the substrate. Transistor structures are created by passing the ion beam through a mask formed directly on the substrate surface, the mask being configured so that only discrete portions of the substrate are exposed to the ion beam. Where dopant ions penetrate into the silicon substrate, the substrate's electrical characteristics are locally modified, creating source, drain and gate structures by the introduction of electrical carriers: such as, holes by p-type dopants, such as boron or indium, and electrons by n-type dopants, such as phosphorus or arsenic, for example.
  • Prior Art Ion Sources
  • Traditionally, Bernas-type ion sources have been used in ion implantation equipment. Such ion sources are known to break down dopant-bearing feed gases,such as BF3, AsH3 or PH3, for example, into their atomic or monomer constituents, producing the following ions in copious amounts: B+, As+ and P+. Such ion sources are known to produce extracted ion currents of up to 50 mA, enabling up to 20 mA of filtered ion beam at the silicon substrate. Bernas type ion sources are known as hot plasma or arc discharge type sources and typically incorporate an electron emitter, either a naked filament cathode or an indirectly-heated cathode, and an electron repeller, or anticathode, mounted opposed to one another in a so-called “reflex” geometry. This type of source generates a plasma that is confined by a magnetic field.
  • Recently, cluster implantation sources have been introduced into the equipment market. These ion sources are unlike the Bernas-style sources in that they have been designed to produce “clusters”, or conglomerates of dopant atoms in molecular form, e.g., ions of the form ASn +, Pn +, or BnHm +, where n and m are integers, and 2≦n≦18. Such ionized clusters can be implanted much closer to the surface of the silicon substrate and at higher doses relative to their monomer (n=1) counterparts, and are therefore of great interest for forming ultra-shallow p-n transistor junctions, for example in transistor devices with gate lengths of 65 nm, 45 nm, or 32 nm. These cluster sources preserve the parent molecules of the feed gases and vapors introduced into the ion source. The most successful of these have used electron-impact ionization, and do not produce dense plasmas, but rather generate low ion densities at least 100 times smaller than produced by conventional Bernas sources.
  • SUMMARY OF THE INVENTION
  • Briefly, the present invention relates to an ion source for providing a range of ion beams consisting of either ionized clusters such as B2Hx +, B5Hx +, B10Hx +, B18Hx +, P4 + or As4 + or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. This is accomplished by the novel design of an ion source which can operate in two discrete modes: electron impact mode, which efficiently produces ionized clusters, or arc discharge mode, which efficiently produces monomer ions.
  • Borohydride molecular ions are created by introducing gaseous B2H6, B5H9, B10H14, or B18H22 into the ion source where they are ionized through a “soft” ionization process, such as electron impact ionization, which preserves the number of boron atoms in the parent molecule (the number of hydrogens left attached to the ion may be different from that of the parent). Likewise, As vapor or P vapor can be introduced into the ion source (from a vaporizer which sublimates elemental As or P) to produce an abundance of As4 +, As2 +, and As+, or P4 +, P2 +, and P+ ions. The mechanism for producing As and P clusters from elemental vapor will be described in more detail below. Monomer ions are produced by creating an arc discharge within the ion source, producing a dense plasma and breaking down the feed gases BF3, AsH3, PH3, SbF5, InCl3, InF3 and GeF4 into their constituent atoms. This provides high currents of Ge+, In+, Sb+, B+, As+, and P+ ions as required by many semiconductor processes today. The invention, as described in detail below, is disclosed by novel methods of constructing and operating a single or universal ion source which produces these very different ion species, i.e., both clusters and monomers, and switching between its two modes of operation quickly and easily, enabling its efficient use in semiconductor manufacturing.
  • Production of Clusters of Arsenic and Phosphorus
  • An object of this invention is to provide a method of manufacturing a semiconductor device, this method being capable of forming ultra-shallow impurity-doped regions of N-type conductivity in a semiconductor substrate by implanting ionized clusters of the form P4 + and As4 +.
  • A further object of this invention is to provide for an ion implantation source and system for manufacturing semiconductor devices, which has been designed to form ultra shallow impurity-doped regions of N-conductivity type in a semiconductor substrate through the use of cluster ions of the form P4 + and As4 +.
  • According to one aspect of this invention, there is provided a method of implanting cluster ions comprising the steps of: providing a supply of molecules each of which contains a plurality of either As or P dopant atoms into an ionization volume, ionizing the molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, and implanting the dopant cluster ions into a semiconductor substrate.
  • Economic Benefits of As and P Clusters
  • While the implantation of P-type clusters of boron hydrides for semiconductor manufacturing has been demonstrated, no N-type cluster has been documented which produces large ionized clusters in copious amounts. If ions of the form Pn + and Asn + with n=4 (or greater) could be produced in currents of at least 1 mA, then ultra-low energy, high dose implants of both N- and P-type conductivity would be enabled. Since both conductivity types are required by CMOS processing, such a discovery would enable clusters to be used for all low energy, high dose implants, resulting in a dramatic increase in productivity, with a concomitant reduction in cost. Not only would cost per wafer decline dramatically, but fewer ion implanters would be required to process them, saving floor space and capital investment.
  • Process Benefits of As and P Clusters
  • The preferred method of forming drain extensions for sub-65 nm devices is expected to incorporate a wafer tilt ≧30 deg from the substrate normal, in order to produce enough “under the gate” dopant concentration, without relying on excessive dopant diffusion brought about by aggressive thermal activation techniques. Excellent beam angular definition and low beam angular divergence are also desired for these implants; while high current implanters tend to have large angular acceptances and significant beam non-uniformities, medium current implanters meet these high-tilt and precise angle control requirements. Since medium-current implanters do not deliver high enough currents, their throughput on high-dose implants is too low for production. If ion implanters could produce the required low-energy beams at high dose rates, great economic advantage would be achieved. Since drain extensions are the shallowest of implants, they are also at the lowest energies (about 3 keV As at the 65 nm node, for example); the long, complicated beamlines which typify medium-current implanters cannot produce enough current at low energy to be useful in manufacturing such devices. The use of As4 + and P4 + cluster implantation in medium-current beam lines and other scanned, single-wafer implanters extends the useful process range of these implanters to low energy and to high dose. By using high currents of these clusters, up to a factor of 16 in throughput increase can be realized for low-energy, high dose (≧1014/cm2) implants with effective As and P implant energies as low as 1 keV per atom.
  • The Chemical Nature of Arsenic and Phosphorus
  • As is generally known, elemental, solid As and P are known to exist in a tetrahedral form(i.e., as white phosphorus, P4, and as yellow arsenic, As). They would therefore seem to be ideal candidates for producing tetramer ions in an ion source. However, while these compounds can be synthesized, they are more reactive, and hence more unstable, than their more common forms, i.e., red P and grey As metals. These latter forms are easily manufactured, stable in air, and inexpensive. Importantly, it turns out that when common red P and grey As are vaporized, they naturally form primarily P4 and As4 clusters in the vapor phase! [see, for example, M. Shen and H. F. Schaefer III, J. Chem. Phys. 101 (3) pp. 2261-2266, 1 Aug. 1994.; Chemistry of the Elements, 2nd Ed., N. N Greenwood and A. Earnshaw, Eds., Butterworth-Heiemann Publishers, Oxford, England, 2001, Chap. 13, p. 55; R. E. Honig and D. A. Kramer, RCA Review 30, p. 285, June 1969.] Electron diffraction studies have confirmed that in the vapor phase the tetrahedral As4 predominates. This tetrahedral phase is delicate, however, and is readily dissociated, for example, by exposure to ultraviolet light or x-rays, and dissociates in plasmas of the type formed by conventional ion sources. Indeed, it is known that As4 quite readily dissociates into 2 As2 under energetic light bombardment.
  • Significant currents of ionized As4 and P4 clusters can be produced by vaporizing solid forms of As and P (either the amorphous or tetrahedral solid phases) and preserving these clusters through ionization in a novel electron-impact ionization source, demonstrating that the clusters survive electron impact.
  • Although prior art ion sources have used vaporized solid As and P to generate ion beams, the tetramers have not been preserved. The ions produced by these arc discharge sources have consisted of principally monomers and dimers. Since the tetramer forms As4 and P4 are delicate and easily dissociated by the introduction of energy, to preserve them, the source should be free from excessive UV (such as emitted by hot filaments, for example) and most importantly, be ionized by a “soft” ionization technique, such as electron impact. As will be discussed in more detail below, this technique is useful in creating As4 + ions from vaporized elemental arsenic and phosphorus.
  • Advantages of the Novel Ion Source for As4 and P4 Production
  • The ion source of the present invention introduces gaseous As4 and P4 vapors through a vaporizer which heats solid feed materials, such as elemental As or P, and conducts the vapor through a vapor conduit into the ionization chamber of the ion source. Once introduced into the ionization chamber of the ion source, the vapor or gas interacts with an electron beam which passes into the ionization volume from an external electron gun, forming ions. The vapor is not exposed to a hot, UV-producing cathode since the electron gun is external to the ionization volume and has no line-of-sight to the vapors. The ions are then extracted from a rectangular aperture in the front of the ionization volume by electrostatic optics, forming an ion beam.
  • DESCRIPTION OF THE DRAWINGS
  • These and other advantages of the present invention will be readily understood with reference to the following specification and attached drawing wherein:
  • FIG. 1 is a schematic diagram of an exemplary ion beam generation system in accordance with the present invention.
  • FIG. 2 is a schematic diagram of an alternative embodiment of the exemplary ion beam generation system illustrated in FIG. 1,illustrating a solid vapor source and an in-situ cleaning system.
  • FIG. 3 a is a schematic representation of the basic components of the ion source in accordance with the present invention which includes an electron gun, an indirectly-heated cathode, a source liner, a cathode block, a base, an extraction aperture, a source block, and a mounting flange.
  • FIG. 3 b is an exploded view of the ion source of the present invention, illustrating the major subsystems of the ion source
  • FIG. 4 a is an exploded isometric view of the ion source illustrated in FIG. 3 a, shown with the mounting flange assembly, electron gun assembly, indirectly heated cathode assembly and the extraction aperture plate removed.
  • FIG. 4 b is an exploded isometric view of the ionization volume liner and the interface or base block showing the plenum and the plenum ports in the interface block.
  • FIG. 4 c is an isometric view of the ionization volume assembly in which the ionization volume is formed from a cathode block, an interface block, and a magnetic yoke assembly, shown with the ionization volume liner removed.
  • FIG. 5 a is an exploded isometric view of a indirectly-heated cathode (IHC) assembly in accordance with one aspect of the present invention.
  • FIG. 5 b is an enlarged exploded view of a portion of the IHC assembly, illustrating the IHC, a filament, a cathode sleeve, and a portion of a cathode plate.
  • FIG. 5 c is an elevational view in cross section of the IHC assembly illustrated in FIG. 5 b.
  • FIG. 5 d is an isometric view of a water-cooled cathode block shown assembled to the IHC assembly illustrated in FIG. 5 a in accordance with one aspect of the invention.
  • FIG. 5 e is an elevational view of the assembly illustrated in FIG. 5 d illustrating the cathode block and the cathode plate of the IHC assembly in section.
  • FIG. 5 f is an isometric view of a magnetic yoke assembly which surrounds the cathode block and ionization volume In accordance with the present invention.
  • FIG. 6 a is an isometric view of an emitter assembly which forms a portion of the external electron gun assembly in accordance with one aspect of the present invention.
  • FIG. 6 b is an isometric view of an electron gun assembly in accordance with the present invention shown with an electrostatic shield assembly removed.
  • FIG. 7 is an isometric view illustrating a magnetic circuit associated with the electron gun and ionization volume yoke assembly.
  • FIG. 8 is an isometric view of an exemplary dual hot vaporizer assembly in accordance with one aspect of the present invention.
  • FIG. 9 a is an isometric view of a source block in accordance with the present invention
  • FIG. 9 b is similar to FIG. 9 a but shown with the hot vaporizer assembly removed.
  • FIG. 10 is a diagram which illustrates the typical voltages applied to each element of the ion source when operating in electron-impact ionization mode.
  • FIG. 11 is similar to FIG. 10 but indicates the typical voltages applied to each element of the ion source when operating in arc discharge mode.
  • FIGS. 12 a and 12 b are logic flow diagrams illustrating the sequence of steps required to establish each operating mode in succession.
  • FIG. 13 is a diagram which shows the thermal interfaces between source block, interface block, cathode block, and the ionization volume liner.
  • FIG. 14 is a side view in cross section, of the source assembly, cut in the y-z plane.
  • FIG. 15 is similar to FIG. 14 but cut in the x-y plane.
  • FIG. 16 is similar to FIG. 14 but cut in the x-z plane
  • FIG. 17 is a photograph of the source with the front aperture plate removed, showing the indirectly heated cathode and the ionization volume liner.
  • FIG. 18 is a photograph showing the mounting flange with feedthroughs, shown with the vaporizers removed.
  • FIG. 19 is a plot of mass-analyzed B18Hx + beam current delivered to an implanter Faraday cup positioned 2 meters from the ion source and downstream from an analyzer magnet on the left vertical axis, and total ion current extracted from the same ion source shown on the right vertical axis, as a function of vapor flow into the ion source.
  • FIG. 20 is a B18H22 mass spectrum collected from the ion source of the present invention.
  • FIG. 21 is a PH3 mass spectrum collected from the ion source of the present invention.
  • FIG. 22 is an AsH3 mass spectrum collected from the ion source of the present invention.
  • FIG. 23 is a P spectrum showing the monomer P+, the dimer P2 +, the trimer P3 +, and the tetramer P4 +.
  • FIG. 24 is a As spectrum showing the monomer As+, the dimer As2 +, the trimer As3 +, and the tetramer As4 +.
  • DETAILED DESCRIPTION
  • The present invention relates to ion source for providing a range of ion beams consisting of either ionized clusters,such as B2Hx +, B5Hx +, B10Hx +, B18Hx +, P4 + or As4 + or monomer ions,such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
  • The universal ion source in accordance with the present invention is illustrated and described below. FIG. 14 shows, in cross section, a cut in the y-z plane (i.e., side view) through the ion source assembly in accordance with the present invention. FIG. 15 is similar to FIG. 14, but shows, in cross section, a cut in the x-y plane through the source assembly. FIG. 16 shows, in cross section, a cut in the x-z plane through the source assembly. FIG. 17 is a photograph of the source with the front aperture plate removed, showing the indirectly heated cathode and the ionization chamber liner. FIG. 18 is a photograph showing the mounting flange with feed throughs with the vaporizers removed.
  • In order to efficiently produce ionized clusters, the ion source of the present invention incorporates the following features:
      • An electron-impact ionization source is provided, for example an electron gun which is located external to the ionization volume and out of line-of-sight of any process gas or vapors exiting the ionization volume, and the vapors in the ionization chamber are likewise not exposed to electromagnetic radiation emitted by the hot cathode in the electron gun;
      • When operating in the electron-impact mode, the surfaces exposed to the vapor introduced into the source are held within a temperature range which is low enough to prevent dissociation of the temperature-sensitive parent molecule, and high enough to prevent or limit unwanted condensation of the vapors onto said surfaces;
      • Multiple vaporizers are provided which can produce a stable flow of vapor into the source (the vaporization temperatures of the solid borohydride materials B10H14 and B18H22 range from 20 C to 120 C, while solid elemental materials, such as As and P, require heating in the range between 400 C and 550 C to provide the required vapor flows. Thus, one or more “cold” vaporizers and one or more “hot” vaporizers are incorporated into the ion source.
  • In order to efficiently produce monomer ions, the ion source of the present invention also incorporates the following features:
      • An electron source (cathode), a repeller (anticathode) and a magnetic field are incorporated into the ion source in a “reflex” geometry, wherein a strong magnetic field is oriented substantially parallel to the ion extraction aperture of the ion source, along a line joining the electron source and repeller;
      • Electronics are provided so that an arc discharge can be sustained between the cathode and the anticathode, such that a plasma column is sustained along the magnetic field direction, i.e., parallel and in proximity to the ion extraction aperture;
      • An ionization volume liner (an “inner chamber”) is provided within the ion source, enclosing the ionization volume, and is allowed to reach a temperature well in excess of 200 C during arc discharge operation in order to limit condensation of As, P and other species onto the walls surrounding the ionization volume;
      • A process gas feed is provided to supply conventional gaseous dopant sources into the ion source.
  • Other novel features are provided in the ion source to enable reliability and performance: It is a feature of the invention that the ion source incorporates an in-situ chemical cleaning process, preferably by the controlled introduction of atomic fluorine gas, and the materials used to construct the elements of the ion source are selected from materials resistant to attack by F:
  • The ionization chamber liner may be fabricated from titanium diboride (TiB2), which is resistant to attack by halogen gases, and possesses good thermal and electrical conductivity, but may also be usefully fabricated of aluminum, graphite or other electrical and thermal conductor which is not readily attacked by flourine;
  • The arc discharge electron source may be an indirectly-heated cathode, and the portion of which exposed to the cleaning gas may be formed a thick tungsten, tantalum or molybdenum disk, and is therefore much more robust against failure in a halogen environment than a naked filament;
  • The indirectly-heated cathode assembly is mechanically mounted onto a water-cooled aluminum “cathode block” so that the, limiting its radiative heat load to the ionization chamber and liner (we note that aluminum passivates in a F environment, and is therefore resistant to chemical etch); this enables rapid cool down of the cathode between the time it is de-energized and the onset of an in-situ cleaning cycle, reducing the degree of chemical attack of the refractory metal cathode
  • The electron gun which is energized during electron-impact ionization (i.e., during cluster beam formation) is remote from the ionization volume, mounted externally and has no line-of-sight to the F gas load during an in-situ clean, and therefore is robust against damage by F etching.
  • Other novel features are incorporated to improve source performance and reliability:
      • The aluminum cathode block or frame is at cathode potential, eliminating the risk of cathode voltage shorts which are known to occur between indirectly-heated cathodes and the source chambers of prior art sources. This block also conveniently forms the repeller structure, being at cathode potential, thereby obviating the need for a dedicated electron repeller or anticathode;
      • The ionization volume liner is surrounded by a cathode block and a base; the aluminum base and cathode block are held in thermal contact with a temperature-controlled source block through thermally conductive, but electrically insulating elastomeric gaskets. This feature limits the maximum temperature of the block and base to near the source block temperature (the source block is typically held below 200 C);
      • The ionization volume liner is in thermal contact with the base through a high-temperature, thermally and electrically conductive gasket, such as aluminum, to limit its maximum temperature excursion while insuring its temperature is higher than that of the cathode block and base; Unlike other known ion sources, no ionization chamber per se is provided.
      • The source magnetic field is provided by a magnetic yoke assembly which surrounds the ionization chamber assembly. It is embedded in the cathode block. This provides a means for keeping the yoke assembly at a temperature well below the Curie temperature of its permanent magnets.
      • The ion source operates in two discrete modes: electron impact mode and arc discharge mode. The operating conditions for each are quite different as described in detail below.
  • When operating in electron impact mode, the following conditions are met:
      • The source block is held at a temperature between about 100° C. and 200° C. Depending on which specie is run in the ion source; this provides a reference temperature for the source, preventing condensation of the source material, such as borohydride or other source materials;
      • The indirectly heated cathode is not energized, and cooling water is not run in the cathode block. The cathode block comes to thermal equilibrium with the base, with which it is in thermal contact through a thermally conductive, but electrically insulating, gasket (the base is in turn in good thermal contact with the source block, and so rests near the source block temperature);
      • The cathode block is held at the same potential as the base and the ionization volume liner;
      • The electron gun is energized by applying a negative potential to the electron emitter (i.e. the cathode), and applying a positive potential to the anode and the gun base (i.e. the potential of the local environment of the electron beam as it propagates through the gun). The cathode and anode voltages are measured with respect to the ionization volume. This enables a “deceleration” field to act on the electron beam as it propagates between the gun base and ionization volume so that the energy of the electrons which ionize the gas or vapor can be varied independently of the energy of the electron beam propagating within the gun, and in particular be reduced to effect more efficient ionization of the gas molecules;
      • A permanent magnetic field provides confinement of the electron beam as it enters and transits the ionization chamber, enabling a uniform ion density to be created adjacent to, and along the ion extraction aperture of the ion source;
      • The TiB2 liner (which can also be made of SiC, B4C, Al, C, or any other suitable electrically conductive material which is not a deleterious contaminant in silicon circuits) is in thermal contact with the base (which is in thermal continuity with the source block) through an electrically and thermally conductive high-temperature gasket, and so will settle close to the source block temperature, since very little power (typically <10 watts) is dissipated by the electron beam within the ionization volume The liner is thus always at the same potential as the ionization volume and the source block.
  • When operating in arc discharge mode, the following conditions are met:
      • The source block is held at between 100° C. and 200° C.
      • The indirectly heated cathode is energized, and cooling water is run in the cathode block. The cathode block temperature is thus maintained near to the water temperature, and cooler than the base, which is in thermal contact with the source block;
      • The cathode block is held at the same potential as the cathode, up to 100V negative with respect to the liner which surrounds the ionization volume. Since the cathode block also comprises the repeller or anticathode, it is also at cathode potential. In the presence of the permanent axial magnetic field, this enables a true “reflex” geometry and hence a stable plasma column. The arc current is absorbed by the liner, whose potential establishes the plasma potential.
      • The electron gun is not energized, the electron emitter is set to source block potential, and the gun base is set to cathode block potential. This prevents any net field from penetrating from the gun base through the electron entrance aperture in the cathode block.
      • With the indirectly-heated cathode energized and an arc discharge initiated, the liner is exposed to a significant radiative heat load. This allows the liner to reach an equilibrium temperature well in excess of the base. The maximum temperature differential can be “tuned” by reducing or increasing the thermal contact between liner and base.
  • Referring to FIG. 1, a schematic diagram of an exemplary ion beam generation system which incorporates an ion source in accordance with the present invention is illustrated. As shown in this example, the ion source 400 is adapted to produce an ion beam for transport to an ion implantation chamber for implant into semiconductor wafers or flat-panel displays. The ion beam generation system includes an ion source 400, an extraction electrode 405, a vacuum housing 410, a voltage isolation bushing 415 of electrically insulative material, a vacuum pumping system 420, a vacuum housing isolation valve 425, a reactive gas inlet 430, a feed gas and vapor inlet 441, a vapor source 445, a feed gas source 450, a reactive gas source 455, an ion source high voltage power supply 460 and an ion beam transport housing 411. The ion source 400 produces a resultant ion beam illustrated by the arrow 475.
  • The ion source 400 is constructed to provide cluster ions and molecular ions, for example the borohydride ions B10Hx +, B10Hx , B18Hx +, and B18Hx or, and alternatively, more conventional ion beams, such as P+, As+, B+, In+, Sb+, Si+, and Ge. The gas and vapor inlet 441 for gaseous feed material to be ionized is connected to a suitable vapor source 445, which may be in close proximity to gas and vapor inlet 441 or may be located in a more remote location, such as in a gas distribution box, located elsewhere within a terminal enclosure.
  • A terminal enclosure is a metal box, not shown, which encloses the ion beam generating system. It contains required facilities for the ion source, such as pumping systems, power distribution, gas distribution, and controls. When mass analysis is employed for selection of an ion species in the beam, the mass analyzing system may also be located in the terminal enclosure.
  • In order to extract ions of a well-defined energy, the ion source 400 is held at a high positive voltage (in the more common case where a positively-charged ion beam is generated) with respect to an extraction electrode assembly 405 and a vacuum housing 410 by a high voltage power supply 460. The extraction electrode assembly 405 is disposed close to and aligned with an extraction aperture 504 on an extraction aperture plate which forms a portion of the ionization volume 500. The extraction electrode assembly consists of at least two aperture-containing electrode plates, a so-called suppression electrode 406 closest to the ionization volume 500, and a “ground” electrode 407. The suppression electrode 406 is biased negative with respect to a ground electrode 407 to reject or suppress unwanted electrons which are attracted to the positively-biased ion source 400 when generating positively-charged ion beams. The ground electrode 407, vacuum housing 410, and terminal enclosure (not shown) are all at the so-called terminal potential, which is at earth ground unless it is desirable to float the entire terminal above ground, as is the case for certain implantation systems, for example for medium-current ion implanters. The extraction electrode 405 may be of the novel temperature-controlled metallic design, described below.
  • In accordance with another aspect of the invention, the ion source 400, illustrated in of FIG. 1, may be configured for in situ cleaning, i.e. without the ion source being removed from its operating position in the vacuum housing, and with little interruption of service. Indeed, for ion sources suitable for use with ion implantation systems, e.g. for doping semiconductor wafers, the source chamber or ionization volume 500 is small, having a volume, for example, less than about 100 ml, and an internal surface area of, for example, less than about 200 cm2, and is constructed to receive a flow of the reactive gas, e.g. atomic fluorine or a reactive fluorine-containing compound at a flow rate of less than about 200 Standard Liters Per Minute. As such, a dedicated endpoint detector 470, in communication with the vacuum housing 410 may be used to monitor the reactive gas products during chemical cleaning.
  • FIG. 2 illustrates an embodiment of an ion source, similar to FIG. 1, that is configured for conducting in-situ chemical cleaning of the ion source 400 including the extraction electrode assembly 405. The in situ cleaning system is described in detail in International Patent Application No. PCT/US2004/041525, filed on Dec. 9, 2004, hereby incorporated by reference. Briefly, three inlet passages are integrated into ion source 400, respectively. One inlet passage is for reactive gas 430 from a plasma source 455. Another inlet passage is for feed gas 435 from one of a number of storage volumes 450 selected. The third inlet is for feed vapor 440 from a vaporizer 445. The plasma-based reactive gas source 455 is biased at the high voltage of the ion source 400. This enables the remote plasma source 455 to share control points of the ion source 400 and also enables the cleaning feed gas 465 and argon purge gas from storage source 466 to be supplied from an ion source gas distribution box, which is at source potential. Also shown is a different type of endpoint detector, namely a Fourier Transform Infrared (FTIR) optical spectrometer. This detector can function ex-situ (outside of the vacuum housing), through a quartz window. Instead, as shown in FIG. 2, an extractive type of FTIR spectrometer may be used, which directly samples the gas in the vacuum housing 410 during cleaning. Also a temperature sensor TD may sense the temperature of the de-energized ionization chamber by sensing a thermally isolated, representative region of the surface of the chamber. The sensor TD can monitor heat produced by the exothermic reaction of F with the contaminating deposit, to serve as end-point detection.
  • FIG. 3 a is a simplified schematic representation of the basic components of the ion source, indicating the electron gun cathode 10, the indirectly-heated cathode (IHC) 20, an ionization volume liner 30, a cathode block 40, a base or interface block 50, extraction aperture plate 60, a source block 70, and a mounting flange 80. The ionization volume liner 30 is preferably made of TiB2 or aluminum, but may be usefully constructed of SiC, B4C, C, or any other suitable electrically conductive material which is not a deleterious contaminant in silicon circuits, and can sustain an operating temperature of between 100 C and 500 C. The cathode block 40 is preferably of aluminum due to its high thermal and electrical conductivity, and resistance to attack by halogen gases. Al also allows for direct water cooling since it is non-porous and non-hydroscopic. Other materials may be used such as refractory metals like tungsten and molybdenum which have good electrical and thermal properties; however they are readily attacked by halogen gases. Another consideration for the cathode block is compatibility with ion bombardment of P+, As+, and other species produced under arc discharge operation. Since the cathode block is unipotential with the IHC cathode 20, it is subject to erosion by ion bombardment of plasma ions. The sputter rates of materials under bombardment by ions of interest therefore must be considered as it will impact useful source life. The base 50, again, is preferably made of aluminum, but can be made of molybdenum or other electrically and thermally conductive materials. Since the source block 70, mounting flange 80, and ion extraction aperture 60 are typically operated at 200 C or below, they can be usefully constructed of aluminum as well The ionization volume liner 30 surrounds an ionization volume 35 and is in light thermal contact with the mounting base 50, which is itself in good thermal contact with the source block 70. Except for a slot through the ionization volume liner 30 and the extraction aperture plate 60 through which ions pass, the ionization volume of the ion source is fully bounded by a cylindrical bore through the ionization volume liner 30 and the top and bottom plates of the cathode block 40. The source block 70 is temperature controlled to up to 200 C, for example. Thus, when the electron gun 10 is active, very little power is transferred to the ionization volume liner 30, the temperature of which is close to that of the source block 70. When the IHC 100 is energized, the ionization volume liner 30 is exposed to hundreds of watts of power and can attain a much higher temperature than the source block 70 (up to 400 C or higher), which is beneficial to limit condensation of gases onto the surface of the ionization volume liner 30.
  • FIG. 3 b is an exploded isometric view of the ion source of the present invention, showing its major subsystems. The ion source includes an ion extraction aperture plate 60, an ionization volume or chamber assembly 90, an IHC assembly 100, an electron gun assembly 110, a source block assembly 120, and a mounting flange assembly 130. The ion source also includes a low-temperature vaporizer (not shown) coupled to a port 135. A vapor conduit 137 is used to transport the vapor into the ionization assembly 90. The ion source also includes dual hot vapor inlet ports 138, a process gas inlet port 139, and an optional reactive gas inlet port 140. In an exemplary, embodiment atomic F may fed to the ionization volume assembly 90 via the reactive gas inlet port 140. Vaporized As, P, or SbO3 into the dual hot vapor inlet ports 138 while B18H22 vapor may be applied to the vapor conduit 137.
  • FIG. 4 a is an exploded isometric view of the ion source in accordance with the present invention, shown with the mounting flange assembly 130, electron gun assembly 110, indirectly heated cathode assembly 100 and the extraction aperture plate 60 removed. The ion source includes a source block 120, a cathode block 40, mounting base or interface block 50, an ionization volume or source liner 30, a liner gasket 115, a base gasket 125, and a cathode block gasket 127. As will be discussed in more detail below and as illustrated in FIG. 4 c, when the magnetic yoke assembly 150 is added, these parts form an ionization volume assembly 90 (FIG. 3 b). The gaskets 125 and 127 are electrically insulating, thermally conductive gaskets, fabricated from polymer compounds, for example. Their purpose is to prevent thermal isolation of the parts while allowing for potential differences between the mating parts. For example, the cathode block 40 is at several hundred volts below the base or interface block 50 potential during arc discharge operation, and so must be electrically isolated. However, during electron impact operation, the cathode block 40 should be near the temperature of the base or interface block 50, and so it cannot be thermally isolated. The gasket 115, however, is a metal gasket which forms the interface between the ionization volume liner 30 and the base or interface block 50. Metal was chosen because of its ability to withstand the higher temperatures the ionization volume liner 30 will reach during arc discharge operation. Since the base or interface block 50 is effectively heat sunk to the source block 120 (which is a constant temperature reservoir, i.e., it is actively temperature controlled through embedded ohmic heaters coupled to a closed-loop controller), it tracks near the source block 70 temperature. The source block 70 is actively temperature controlled, and the separate source elements track this temperature through carefully selected thermal contact paths, as described in FIG. 13. Closed loop control of the source block 70 temperature may be implemented using a conventional PID controller, such as the Omron E5CK digital controller, which can be used to control the duty cycle of the power delivered to the ohmic heaters embedded in the source block, as is known in the art.
  • FIG. 4 b is an exploded isometric view of the ionization volume liner 30 and the interface or base block 50, showing the plenum and the plenum ports in the interface block 50. The several gas and vapor inlet ports, namely vapor port 137, reactive gas port 140, process gas port 139, and dual hot vapor ports 141 a and 141 b, feed into a gas plenum 45, formed in the base or interface block 50. The interface block 50 is provided with one or more through holes 142 a and 142 b to accommodate mounting conventional fasteners (not shown) to secure the interface block 50 to the source block 120 and thereby establish electrical conductivity between the interface block 50 and the source block 120). The gas plenum 45 may be cavity machined into the interface block 50 and is used to collect any of the gases fed into the plenum 45 and feed them into multiple liner ports 32. The multiple liner ports 32 are configured in a “shower head” design to distribute the gases along different directions into the ionization volume 35 within the ionization volume liner 30. By transporting all of the gases or vapors into the plenum 45, which acts as a ballast volume, which then feeds the gases through a shower head directly into the ionization volume 35, produces a uniform distribution of gas or vapor molecules within the ionization volume 35. Such a configuration results in a more uniform distribution of ions presented to extraction aperture 60, and the subsequent formation of a more spatially uniform ion beam.
  • FIG. 4 c is an isometric view of the ionization volume assembly 90, shown with the ionization volume liner removed. The ionization volume assembly 90 is formed from the cathode block 40, the interface block 50, and the magnetic yoke assembly 150. The magnetic yoke assembly 150 is constructed of magnetic steel and conducts the magnetic flux produced by a pair of permanent magnets 151 a and 151 b around through ionization volume assembly 90, producing a uniform magnetic field of about 120 Gauss, for example, within the ionization volume 35. During electron impact operation, this permanent field confines the electron beam so that the ions are produced in a well-defined, narrow column adjacent to the ion extraction aperture 60. During arc discharge mode, the same field provides confinement for the plasma column between cathode and the upper plate of the cathode block 40, which serves as an anticathode.
  • FIG. 5 a is an exploded view of the indirectly-heated cathode (IHC) assembly 100. IHC assemblies are generally known in the art. Examples of such IHC assemblies are disclosed in U.S. Pat. Nos. 5,497,006; 5,703,372; and 6,777,686, as well as US Patent Application Publication No. US 2003/0197129 A1, all hereby incorporated by reference. The principles of the present able invention are applicable to all such IHC assemblies. An alternate IHC assembly 100 in for use with the present invention includes an indirectly-heated cathode 160, a cathode sleeve 161, a filament 162, a cathode plate 163,a pair of filament clamps 164 a and 164 b, a pair of filament leads 165 a and 165 b, and a pair of insulators 167 a and 167 b (not shown). The filament 162 emits up to 2 A, for example, of electron current which heats the indirectly-heated cathode 160 to incandescence by electron bombardment. Since the filament 162 is held at a negative potential of up to 1 kV below the cathode potential, up to 2 kW of electron beam heating capacity is available for cathode heating, for example. In practice, heating powers of between 1 kW and 1.5 kW are sufficient, although for very high arc currents (in excess of 2 A of arc) higher power can be required. The cathode 160 is unipotential with the cathode mounting plate 163. The insulators 167 a and 167 b are required to stand off the filament voltage of up to 1 kV.
  • Referring now to FIGS. 5 b and 5 c, the IHC 160 is located onto the cathode plate 163 via a flange 159 and is locked into position by sleeve 161 through threaded connection 156. The sleeve 161 serves as a radiation shield for the IHC 160, minimizing heat loss through radiation, except at the emitting surface 157.
  • The indirectly heated cathode (IHC) 160 may be machined from a single tungsten cylinder. An exemplary IHC 160 may be about 0.375 inch thick, and is robust against both F etch and ion bombardment. As seen in FIG. 5 c, the IHC 160 has the appearance of a thick circular disk joined to a hollow cylinder which has a bottom flange 159 which registers the IHC 160 within its mounting part, cathode plate 163. Two or more circular grooves 158 or saw cuts are machined into the cylinder to reduce the conduction of heat from the cathode emission surface 157 to the cathode plate 163, reducing electron beam heating requirements. A similar groove 153 is machined into the sleeve 161 to reduce heat transfer to the cathode plate 163.The sleeve 161 attaches to the cathode plate 163 via threads in the plate 163 and the sleeve 161. The sleeve 161 serves two functions: it “locks down” IHC 158, and acts as a radiation shield between the IHC 160 and its environment, reducing heating power requirements. Note that the IHC 160 and its sleeve 161 are enclosed by the water-cooled cathode block 40 which is designed to absorb radiation to reduce overall source heating. Filament 162 is constructed of approximately 1 mm-thick tungsten wire twisted into a three-bend pattern which provides fairly uniform emission current coverage onto the bottom of the IHC 160 disk. The filament 162 is attached to dual clamps 164 a and 164 b which conduct current through dual leads 165 a and 165 b to a vacuum feedthrough and to a 60 A filament power supply. This power supply, and hence the filament, is floated to a negative potential relative to the IHC by a high voltage power supply, so that electron emission current leaving the filament 162 is accelerated to the IHC 160, providing electron beam heating. This 2 A, 1 kV power supply provides up to 2 kW of electron beam heating power to bring the cathode surface 157 to electron emission. In practice, 1 kW of electron beam heating is sufficient (1.7 A at 600V, for example), but for IHC arc currents of over several amperes, higher cathode temperature and hence higher power is needed.
  • The IHC 160, sleeve 161, and filament 162 are preferably made of tungsten. The filament leads shown in FIG. 5 b are crimped onto the filament 162, and are usefully made of molybdenum or tantalum, for example. The cathode plate 163 can be made of graphite, stainless steel, molybdenum, or any high temperature, electrically conductive material having good mechanical tensile strength. Since the cathode plate 163 mounts directly to the cathode block, it is at cathode potential when the IHC 160 is energized.
  • FIGS. 5 d and 5 e illustrate the indirectly-heated cathode assembly 100 mounted onto the water-cooled cathode block 40. A pair of water fittings 41 a and 41 b are used to transport de-ionized water through a vacuum interface. The water circulates through the cathode block 40 and can absorb several kW of power, allowing the cathode block 40 to remain well below 100° C. at all times. The IHC 160 is unipotential with the cathode block 40. As such, no insulation is required between the cathode 160 and cathode block 40, which forms the top and bottom boundary surfaces of the ionization volume 35. This results in a very reliable system, since in prior art IHC sources, the IHC is up to 150V different from its immediate surroundings. This results, in turn, in quite common failures precipitated by the collection of debris between the IHC 160 and the ionization volume surface through which it penetrates. Another benefit of the configuration is that it eliminates the common failure of anticathode erosion since the top plate of cathode block 40 serves as the anticathode since it is at cathode potential. The plasma column is bounded by the ionization volume 35 is defined by the bore through the ionization volume liner 30 and the top and bottom plates of the cathode block 40. This defines a very stable volume to sustain the plasma column during arc discharge operation.
  • FIG. 5 f shows a detail of the magnetic yoke assembly 150 which surrounds the cathode block 40 and the ionization volume 35. The magnetic yoke assembly 150 is constructed of magnetic steel and conducts magnetic flux through an ionization volume or chamber assembly 90, producing a uniform axial magnetic field of about 120 Gauss, for example, within the ionization volume 35. This magnetic yoke assembly 150 is used to generate a magnetic field to confine the plasma generated in the ionization volume 35 during an arc discharge mode of operation. During an electron impact mode of operation, the electron gun assembly 110 is shielded from the magnetic field because of a magnetic shield which is inserted between the yoke assembly 150 and the electron gun, as indicated in FIG. 7 below.]
  • FIGS. 6 a and 6 b illustrate the external electron gun assembly 110. In particular, Such electron gun assemblies are disclosed in detail in U.S. Pat. No. 6,686,595 as well as US Patent Application Publication No. US 2004/0195973 A1, hereby incorporated by reference. FIG. 6 a is an isometric view of an exemplary emitter assembly 210 which forms a part of the external electron gun assembly 110. FIG. 6 b is an isometric view of an electron gun assembly 110, shown with an electrostatic shield assembly 250 removed. The electron gun assembly 110 includes a gun base 240, which carries an emitter assembly 210, an anode 215, an electrostatic shield assembly 250 and a magnetic shield 255.
  • Electrons emitted from a filament 200 in the emitter assembly 210 are extracted by the anode 215 and bent through 90 degrees by the magnetic dipole 220, passing through an aperture 230 in the gun base 240. The electron beam is shielded from the magnetic fields within the ionization volume assembly 90, generated by the magnetic yoke 150, by a magnetic shield 255. The anode 215, gun base 240, and the electrostatic shield assembly 250 are all at anode potential, as high as, for example, 2 kV above the potential of the ionization volume assembly 90, which is held at the potential of the source block 120 during electron impact operation. The filament voltage, for example, is several hundred volts negative; thus, the electron beam is decelerated between the gun base 240 and the ionization volume 35, as described in detail, for example by Horsky in U.S. Pat. No. 6,686,595, hereby incorporated by reference.
  • FIG. 7 is a physical representation of the magnetic circuit associated with the electron gun assembly 110 and the magnetic yoke assembly 150. As shown, the magnetic circuit consists of the magnetic dipole 220, the gun magnetic shield 255, and the magnetic yoke assembly 150. Magnetic dipole 220 is made of magnetic stainless steel, and produces a uniform transverse magnetic field across the poles, bending the electron beam produced by the electron gun emitter through approximately 90 degrees. Thus deflected, the electron beam passes through the aperture 230 of FIG. 6, and into the ionization volume, where it is confined by the chamber magnetic field.
  • FIG. 8 is an isometric view of an exemplary dual hot vaporizer assembly 301. The dual hot vaporizer assembly 301 includes dual vaporizer ovens 300 a and 300 b, heater windings 310 a and 310 b, and a pair of vapor nozzles 320 a and 320 b. Solid source material, such as As, P, Sb2O3, or InF3, resides within the oven cavities, which are hollow steel cylinders. Sometimes the material is captured by a graphite crucible which forms a liner between the material and cylinder, preventing contamination of the oven walls. The oven heater windings 310 a and 310 b carry up to 20 A of current at 48V DC, and can dissipate up to 1 kW of heater power. They are brazed onto the ovens for good thermal contact. The nozzles 320 a and 320 b are usefully fabricated of molybdenum for good temperature uniformity, but can be made of steel or other high temperature, conductive materials. The nozzles are preferable ¼ inch tubing and no longer than two inches \long, to ensure good vapor conductance from oven to ionization volume. The temperature of the ovens 300 a and 300 b is monitored by a pair of thermocouples 330 a and 330 b. The temperature of the heater windings 310 a and 310 b is monitored by a pair of thermocouples 331 a and 331 b.
  • A mounting plate 340 is used to couple the dual hot vaporizer assembly 301 to the source block 70. FIG. 9 a shows the source block 70 with the dual hot vaporizer assembly 301 removed while FIG. 9 b illustrates the source block with the hot vaporizer assembly 301 being inserted.
  • FIG. 10 is a diagram which illustrates the typical voltages applied to each element of the ion source when operating in electron-impact ionization mode. All voltages are referenced to source potential Vs, which is positive with respect to ground. The mounting base or interface block 50, the cathode block 40, and the source block 70 are held at Vs. The electron gun filament 200 is held at cathode potential Vc by its related power supply (−1 kV<Vc<−100V), and the potential of the anode 240 Va is positive (1 kV<Va<2 kV), so that the kinetic energy of the electrons leaving the filament 200 and forming the electron beam 27 is e(Va−Vc). The ion extraction aperture plate 60 is biased to either a positive or negative voltage to improve the focusing of the extracted ion beam (−350V<Vb<350V). The IHC assembly 100 is not energized during an electron-impact ionization mode and is held at the potential Vs during this mode.
  • FIG. 11 is similar to FIG. 10 but indicates the typical voltages applied to each element of the ion source when operating in arc discharge mode. All voltages are referenced to source potential Vs which is positive with respect to ground. The electron gun assembly 110 is not used, but the cathode supply is connected to the IHC cathode 160 Vc (−100V<Vc<−0), which is unipotential with the cathode block 40. Since the electron gun assembly is not used in this mode, its filament 200 and anode 240 are held at cathode voltage Vc. The IHC filament 162 is at up to 1 kV below the IHC 20 potential (−1 kV<Vf<0), and can provide up to 2 A, for example, of electron beam heating current. The IHC 160 is up to 100V, for example, different from its immediate surroundings. FIGS. 12 a and 12 b are logic flow diagrams of the sequence of steps required to establish each operating mode in succession. Since the voltages of the ion source components are different for the two modes of operation, there is a preferred sequence for moving between modes:
  • When switching from the electron impact mode 600 to the arc discharge mode 614, as illustrated in FIG. 12 a, initially, in step 602, the electron gun assembly 110 is shut off. Next in step 604, the electron gun anode 215 is decoupled from its power supply. In step 606, the electron gun anode 215 is set to cathode potential. This prevents any fields from punching through the cathode block 40 at the upper plate of the cathode block 40, making this an effective anticathode. In step 608, the bias voltage applied to the ion extraction aperture plate 60 is interrupted. The extraction aperture plate 60 bias is only needed in cluster mode, and is not recommended in discharge mode, especially since the power supply may draw high currents due to the proximity of a dense plasma. Next in step 610 water flow into the cathode block 40 is initiated by automatic sequencing of pneumatically actuated water flow valves. The water flow valves are interlocked to the ion source control system through a water flow sensor and relay switch so that the IHC cannot be energized unless flow has been established The cathode block 40 must be water cooled during operation of the IHC assembly 100 to prevent undue heating of the source components, and to keep the magnets 151 a, 151 b in the magnetic yoke 150 below their Curie temperature. Finally in step 612, an arc can by initiated by the introduction of process gas into the ionization volume 35 and energizing the IHC assembly 100 as is known in the art.
  • When switching from the arc discharge 614 to the electron impact mode 600, as illustrated in FIG. 12 b, initially in step, the IHC assembly 100 is de-energized. Next in step 618, the electron gun anode 215 is connected to its positive power supply. In step 620, the cathode block 40 and the IHC assembly 100 are connected to the to the source voltage. In step 622, the bias voltage is set and connected to the ion extraction aperture plate 60. In step 624, water cooling of the cathode block 40 is terminated. Finally, in step 626, the electron gun assembly 110 is energized to establish an electron beam. Also, vapor is introduced into the ionization volume 35 to begin ionized cluster formation.
  • FIG. 13 shows the thermal interfaces between source block 70, the interface block 50, the cathode block 40, and the ionization volume liner 30. As further outlined in FIG. 4 a, thermal paths are defined between the cathode block 40, the ion extraction aperture 60, the interface or mounting block 50, the ionization volume or source liner 30, and the source block 70 through thermally conductive gaskets which are in wetted contact to the surfaces of these components. Thus, the ionization volume liner 30 can attain higher temperatures than the temperature of source block 70, which is actively temperature controlled. In addition, the water-cooled cathode block 40 has a thermal path to reach the temperature of the mounting base 50 after water cooling is disabled.
  • FIG. 19 is a plot of mass-analyzed B18Hx + beam current delivered to a Faraday cup positioned 2 meters from the ion source and downstream from an analyzer magnet, and total ion current extracted from the ion source. Shown are the extracted ion current, in mA, on the right vertical axis, and the Faraday current (similar to on-wafer current) on the left vertical axis. The currents are measured as a function of B18H22 vapor flow into the ion source, measured as inlet pressure into the ion source. The vapor was fed into this ion source through a proprietary closed-loop vapor flow controller which has been described in detail elsewhere. The transmission through the extraction optics and beam line of this implanter is about 25%, and begins to fall off at the highest vapor flows, presumably due to charge exchange with the residual vapor.
  • FIG. 20 is a B18H22 mass spectrum collected from the ion source of the present invention, in electron-impact mode. The parent peak, B18Hx +, represents about 85% of the beam spectrum. The small peak at half the parent 210 amu mass is doubly ionized B18Hx +, or B18Hx ++.
  • FIG. 21 is a PH3 mass spectrum collected from the ion source of the present invention, in arc discharge mode. Over 10 mA of 31P+ current and over 2 mA of doubly ionized phosphorus was delivered to the Faraday of the implanter at 20 kV extraction voltage. This performance is comparable to many commercial Bernas-style ion sources used in ion implantation.
  • FIG. 22 is an AsH3 mass spectrum collected from the ion source of the present invention, in arc discharge mode. Over 10 mA of 70As+ current and about 0.5 mA of doubly ionized arsenic, as well as 0.5 mA of arsenic dimer was delivered to the Faraday of the implanter at 20 kV extraction voltage. This performance is comparable to many commercial Bernas-style ion sources used in ion implantation.
  • FIG. 23 is a phosphorus spectrum showing the monomer P+, the dimer P2 +, the trimer P3 +, and the tetramer P4 +, produced in electron impact mode. The spectrum is unusual in that the monomer, dimer, and tetramer peaks are all about the same height (about 0.9 mA), so that the tetramer yields the highest dose rate, or about 3.6 mA of effective phosphorus atom current. The spectrum was produced using elemental P vapors from the hot vaporizer of the dual mode source. The high cluster yield is due to the fact that the P vapor preferentially produces P4, and this fragile cluster is preserved during the ionization process by electron-impact ionization without exposing the vapors to intense radiation or heat.
  • FIG. 24 is similar to FIG. 23, but collected with elemental As vapors produced by the hot vaporizer of the dual-mode source. The As spectrum shows the monomer 70As+, the dimer As2 +, the trimer As3 +, and the tetramer As4 +. At 20 kV extraction, the equivalent of 4 mA of 5 keV As+ is delivered to the Faraday.
  • Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than is specifically described above.

Claims (1)

1. A universal ion source comprising
an ionization :volume for ionizing source gas or vapor;
a cathode assembly for generating a plasma in said ionization volume in a first mode of operation;
an electron gun for generating electrons in a second mode of operation, said electron gun juxtaposed external to said ionization volume and configured to direct electrons into said ionization volume;
a source of gas or vapor; and
means for switching between said first mode of operation and said second mode of operation.
US11/648,378 1999-12-13 2006-12-29 Dual mode ion source for ion implantation Abandoned US20070170372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/648,378 US20070170372A1 (en) 1999-12-13 2006-12-29 Dual mode ion source for ion implantation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US17047399P 1999-12-13 1999-12-13
US25008000P 2000-11-30 2000-11-30
PCT/US2000/033786 WO2001043157A1 (en) 1999-12-13 2000-12-13 Ion implantation ion source, system and method
US10/170,512 US7107929B2 (en) 1999-12-13 2002-06-12 Ion implantation ion source, system and method
US11/268,005 US7838842B2 (en) 1999-12-13 2005-11-07 Dual mode ion source for ion implantation
US11/648,378 US20070170372A1 (en) 1999-12-13 2006-12-29 Dual mode ion source for ion implantation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/268,005 Continuation US7838842B2 (en) 1999-12-13 2005-11-07 Dual mode ion source for ion implantation

Publications (1)

Publication Number Publication Date
US20070170372A1 true US20070170372A1 (en) 2007-07-26

Family

ID=38023590

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/268,005 Expired - Fee Related US7838842B2 (en) 1999-12-13 2005-11-07 Dual mode ion source for ion implantation
US11/648,378 Abandoned US20070170372A1 (en) 1999-12-13 2006-12-29 Dual mode ion source for ion implantation
US11/648,366 Abandoned US20080042580A1 (en) 1999-12-13 2006-12-29 Dual mode ion source for ion implantation
US11/940,136 Expired - Fee Related US7834554B2 (en) 1999-12-13 2007-11-14 Dual mode ion source for ion implantation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/268,005 Expired - Fee Related US7838842B2 (en) 1999-12-13 2005-11-07 Dual mode ion source for ion implantation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/648,366 Abandoned US20080042580A1 (en) 1999-12-13 2006-12-29 Dual mode ion source for ion implantation
US11/940,136 Expired - Fee Related US7834554B2 (en) 1999-12-13 2007-11-14 Dual mode ion source for ion implantation

Country Status (7)

Country Link
US (4) US7838842B2 (en)
EP (1) EP1945832A4 (en)
JP (1) JP4927859B2 (en)
KR (1) KR20080065276A (en)
CN (1) CN101384747B (en)
TW (1) TW200733243A (en)
WO (1) WO2007056249A1 (en)

Cited By (313)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163494A1 (en) * 2003-08-29 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US20070210260A1 (en) * 2003-12-12 2007-09-13 Horsky Thomas N Method And Apparatus For Extending Equipment Uptime In Ion Implantation
US20090032728A1 (en) * 2007-07-31 2009-02-05 Axcebs Technologies, Inc. Hybrid ion source/multimode ion source
US20090081874A1 (en) * 2007-09-21 2009-03-26 Cook Kevin S Method for extending equipment uptime in ion implantation
US20090183679A1 (en) * 2008-01-22 2009-07-23 Mcintyre Edward Ion source gas reactor
US20090289542A1 (en) * 2008-05-20 2009-11-26 Samsung Electronics Co., Ltd. And Seoul National University Industry Foundation. Electron beam focusing electrode and electron gun using the same
WO2010131008A1 (en) * 2009-05-13 2010-11-18 Micromass Uk Limited Surface coating on ion source
US20110248179A1 (en) * 2010-04-09 2011-10-13 E.A. Fischione Instruments, Inc. Ion source
WO2012049110A3 (en) * 2010-10-12 2012-06-28 Vg Systems Limited Switchable gas cluster and atomic ion gun, and method of surface processing using the gun
US20130019797A1 (en) * 2011-07-14 2013-01-24 Sen Corporation Impurity-doped layer formation apparatus and electrostatic chuck protection method
US8476587B2 (en) 2009-05-13 2013-07-02 Micromass Uk Limited Ion source with surface coating
US20140346650A1 (en) * 2009-08-14 2014-11-27 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20150014275A1 (en) * 2013-07-15 2015-01-15 Bryan Barnard Switchable ion gun with improved gas inlet arrangement
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12051602B2 (en) 2020-05-04 2024-07-30 Asm Ip Holding B.V. Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US12240760B2 (en) 2016-03-18 2025-03-04 Asm Ip Holding B.V. Aligned carbon nanotubes
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838842B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
EP1245036B1 (en) * 1999-12-13 2013-06-19 Semequip, Inc. Ion implantation ion source
US20080223409A1 (en) * 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
CN103170447B (en) 2005-08-30 2015-02-18 先进科技材料公司 Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US7942970B2 (en) * 2005-12-20 2011-05-17 Momentive Performance Materials Inc. Apparatus for making crystalline composition
EP2026889A4 (en) * 2006-06-12 2011-09-07 Semequip Inc Vapor delivery to devices under vacuum
JP5210304B2 (en) * 2006-06-13 2013-06-12 セムイクウィップ・インコーポレーテッド Ion beam apparatus and ion implantation method
US7488951B2 (en) * 2006-08-24 2009-02-10 Guardian Industries Corp. Ion source including magnet and magnet yoke assembly
WO2008058049A2 (en) * 2006-11-06 2008-05-15 Semequip, Inc. Ion implantation device and method of semiconductor manufacturing by the implantation of molecular ions containing phosphorus and arsenic
US7622722B2 (en) * 2006-11-08 2009-11-24 Varian Semiconductor Equipment Associates, Inc. Ion implantation device with a dual pumping mode and method thereof
US8013312B2 (en) * 2006-11-22 2011-09-06 Semequip, Inc. Vapor delivery system useful with ion sources and vaporizer for use in such system
US20080305598A1 (en) * 2007-06-07 2008-12-11 Horsky Thomas N Ion implantation device and a method of semiconductor manufacturing by the implantation of ions derived from carborane molecular species
TW200908100A (en) * 2007-08-07 2009-02-16 Promos Technologies Inc Mountable and dismountable inner shield
US7700925B2 (en) * 2007-12-28 2010-04-20 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8330127B2 (en) * 2008-03-31 2012-12-11 Varian Semiconductor Equipment Associates, Inc. Flexible ion source
US7812321B2 (en) * 2008-06-11 2010-10-12 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8809800B2 (en) * 2008-08-04 2014-08-19 Varian Semicoductor Equipment Associates, Inc. Ion source and a method for in-situ cleaning thereof
JP4428467B1 (en) * 2008-08-27 2010-03-10 日新イオン機器株式会社 Ion source
US7807961B2 (en) * 2008-10-08 2010-10-05 Varian Semiconductor Equipment Associates, Inc. Techniques for ion implantation of molecular ions
US8263944B2 (en) * 2008-12-22 2012-09-11 Varian Semiconductor Equipment Associates, Inc. Directional gas injection for an ion source cathode assembly
GB0908250D0 (en) * 2009-05-13 2009-06-24 Micromass Ltd Surface coating on sampling cone of mass spectrometer
US8471198B2 (en) 2009-05-13 2013-06-25 Micromass Uk Limited Mass spectrometer sampling cone with coating
GB0908246D0 (en) * 2009-05-13 2009-06-24 Micromass Ltd Surface coating on ion source
KR100949370B1 (en) * 2009-07-01 2010-03-25 주식회사 에이팸 Ion source head for ion implantation apparatus
US8253118B2 (en) 2009-10-14 2012-08-28 Fei Company Charged particle beam system having multiple user-selectable operating modes
WO2011056515A2 (en) * 2009-10-27 2011-05-12 Advanced Technology Materials, Inc. Ion implantation system and method
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
TWI585042B (en) * 2010-02-26 2017-06-01 恩特葛瑞斯股份有限公司 Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US9024273B2 (en) 2010-04-20 2015-05-05 Varian Semiconductor Equipment Associates, Inc. Method to generate molecular ions from ions with a smaller atomic mass
CN106237934B (en) 2010-08-30 2019-08-27 恩特格里斯公司 By solid material prepare compound or in which mesosome and use the device and method of the compound and intermediate
WO2013068796A2 (en) * 2011-11-09 2013-05-16 Brookhaven Science Associates, Llc Molecular ion source for ion implantation
US9865429B2 (en) * 2011-12-01 2018-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion implantation with charge and direction control
US8922122B2 (en) * 2011-12-01 2014-12-30 Taiwan Semiconductor Manufaturing Company, Ltd. Ion implantation with charge and direction control
JP5822767B2 (en) * 2012-03-22 2015-11-24 住友重機械イオンテクノロジー株式会社 Ion source apparatus and ion beam generating method
WO2014003937A1 (en) * 2012-06-29 2014-01-03 Fei Company Multi Species Ion Source
US9530615B2 (en) * 2012-08-07 2016-12-27 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source
US8975817B2 (en) * 2012-10-17 2015-03-10 Lam Research Corporation Pressure controlled heat pipe temperature control plate
US9196452B2 (en) * 2013-03-08 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for carbon ion source head
US10580610B2 (en) * 2013-03-15 2020-03-03 General Electric Company Cold cathode switching device and converter
US8994272B2 (en) * 2013-03-15 2015-03-31 Nissin Ion Equipment Co., Ltd. Ion source having at least one electron gun comprising a gas inlet and a plasma region defined by an anode and a ground element thereof
CN103298233B (en) * 2013-05-10 2016-03-02 合肥聚能电物理高技术开发有限公司 High density cathode plasma body source
CN104282527A (en) * 2013-07-11 2015-01-14 中国科学院大连化学物理研究所 Stable direct current discharging anion source
US9543110B2 (en) * 2013-12-20 2017-01-10 Axcelis Technologies, Inc. Reduced trace metals contamination ion source for an ion implantation system
TWI501286B (en) * 2014-06-27 2015-09-21 Advanced Ion Beam Tech Inc Ion implanter
KR102214208B1 (en) * 2014-09-01 2021-02-08 엔테그리스, 아이엔씨. Phosphorus or arsenic ion implantation utilizing enhanced source techniques
WO2016083964A1 (en) * 2014-11-24 2016-06-02 Cisterni Marco Apparatus and method for mitigation of alterations in mass spectrometry in the presence of hydrogen
US9899181B1 (en) 2017-01-12 2018-02-20 Fei Company Collision ionization ion source
US9941094B1 (en) 2017-02-01 2018-04-10 Fei Company Innovative source assembly for ion beam production
RU2642921C1 (en) * 2017-03-28 2018-01-30 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ) Impulsive source of helium ions
CN107195522B (en) * 2017-06-29 2021-04-30 上海集成电路研发中心有限公司 Cluster ion implantation system, large atom group forming method and ultra-shallow junction preparation method
US11098402B2 (en) 2017-08-22 2021-08-24 Praxair Technology, Inc. Storage and delivery of antimony-containing materials to an ion implanter
US10597773B2 (en) * 2017-08-22 2020-03-24 Praxair Technology, Inc. Antimony-containing materials for ion implantation
GB2567853B (en) 2017-10-26 2020-07-29 Isotopx Ltd Gas-source mass spectrometer comprising an electron source
US10580632B2 (en) * 2017-12-18 2020-03-03 Agilent Technologies, Inc. In-situ conditioning in mass spectrometry systems
RU2671960C1 (en) * 2018-02-01 2018-11-08 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Pulse source of hydrogen ions with electron oscillation in a inhomogeneous longitudinal magnetic field
CN112368800B (en) * 2018-06-01 2024-05-03 英国质谱公司 Filament assembly
GB201810823D0 (en) * 2018-06-01 2018-08-15 Micromass Ltd An inner source assembly and associated components
US11404254B2 (en) 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials
US11600473B2 (en) 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
US10923306B2 (en) 2019-03-13 2021-02-16 Applied Materials, Inc. Ion source with biased extraction plate
US11170973B2 (en) 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
US10957509B1 (en) * 2019-11-07 2021-03-23 Applied Materials, Inc. Insertable target holder for improved stability and performance for solid dopant materials
CN111722263B (en) * 2020-06-15 2022-08-23 电子科技大学 Faraday cup design for high-power electron beam spot measurement
US11854760B2 (en) 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source
CN119588161A (en) 2021-10-01 2025-03-11 阳光技术有限责任公司 Ion generating system and method

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017403A (en) * 1974-07-31 1977-04-12 United Kingdom Atomic Energy Authority Ion beam separators
US4258266A (en) * 1979-07-30 1981-03-24 Hughes Aircraft Company Ion implantation system
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
US5576600A (en) * 1994-12-23 1996-11-19 Dynatenn, Inc. Broad high current ion source
US5607509A (en) * 1992-11-04 1997-03-04 Hughes Electronics High impedance plasma ion implantation apparatus
US5703372A (en) * 1996-10-30 1997-12-30 Eaton Corporation Endcap for indirectly heated cathode of ion source
US5939831A (en) * 1996-11-13 1999-08-17 Applied Materials, Inc. Methods and apparatus for pre-stabilized plasma generation for microwave clean applications
US6046546A (en) * 1992-04-16 2000-04-04 Advanced Energy Industries, Inc. Stabilizer for switch-mode powered RF plasma
US6205948B1 (en) * 1997-01-23 2001-03-27 Forschungszentrum Rossendorf E.V. Modulator for plasma-immersion ion implantation
US6259091B1 (en) * 1996-01-05 2001-07-10 Battelle Memorial Institute Apparatus for reduction of selected ion intensities in confined ion beams
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US6300636B1 (en) * 1999-10-02 2001-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion source head
US6452338B1 (en) * 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US6479785B1 (en) * 1998-07-09 2002-11-12 Richard J. Fugo Device for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator
US20030079688A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping by anode pulsing
US20030197129A1 (en) * 2001-12-31 2003-10-23 Applied Materials, Inc. Ion sources for ion implantation apparatus
US20040000647A1 (en) * 2002-06-26 2004-01-01 Horsky Thomas N. Electron impact ion source
US20040097193A1 (en) * 2000-12-21 2004-05-20 Monta Nakatsuka Radio system, radio device, radio connection method, program, and medium
US6777686B2 (en) * 2000-05-17 2004-08-17 Varian Semiconductor Equipment Associates, Inc. Control system for indirectly heated cathode ion source
US6805779B2 (en) * 2003-03-21 2004-10-19 Zond, Inc. Plasma generation using multi-step ionization
US20050269520A1 (en) * 1999-12-13 2005-12-08 Semequip Inc. Icon implantation ion source, system and method
US6975073B2 (en) * 2003-05-19 2005-12-13 George Wakalopulos Ion plasma beam generating device
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US567509A (en) * 1896-09-08 Wheat steamer
US2754422A (en) 1952-07-30 1956-07-10 Edward J Lofgren Source of highly stripped ions
US3955091A (en) * 1974-11-11 1976-05-04 Accelerators, Inc. Method and apparatus for extracting well-formed, high current ion beams from a plasma source
US4135093A (en) * 1978-01-24 1979-01-16 The United States Of America As Represented By The United States Department Of Energy Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources
US4579144A (en) * 1983-03-04 1986-04-01 Uti Instrument Company Electron impact ion source for trace analysis
JPH0752718B2 (en) * 1984-11-26 1995-06-05 株式会社半導体エネルギー研究所 Thin film formation method
US4845366A (en) * 1987-10-23 1989-07-04 Air Products And Chemicals, Inc. Semiconductor dopant vaporizer
US4985657A (en) * 1989-04-11 1991-01-15 Lk Technologies, Inc. High flux ion gun apparatus and method for enhancing ion flux therefrom
KR0158234B1 (en) * 1992-03-02 1999-02-18 이노우에 아키라 Ion implantation system
US5306922A (en) * 1993-03-16 1994-04-26 Genus, Inc. Production of high beam currents at low energies for use in ion implantation systems
US5780862A (en) * 1994-01-11 1998-07-14 Siess; Harold E. Method and apparatus for generating ions
US5497066A (en) * 1994-02-23 1996-03-05 D & D Advanced Technologies, Inc. Battery booster system
US5523652A (en) * 1994-09-26 1996-06-04 Eaton Corporation Microwave energized ion source for ion implantation
US5633506A (en) * 1995-07-17 1997-05-27 Eaton Corporation Method and apparatus for in situ removal of contaminants from ion beam neutralization and implantation apparatuses
GB2312178A (en) * 1996-04-16 1997-10-22 Univ Sheffield New calixarenes and their use in waterproofing
US6107634A (en) * 1998-04-30 2000-08-22 Eaton Corporation Decaborane vaporizer
US6355933B1 (en) * 1999-01-13 2002-03-12 Advanced Micro Devices, Inc. Ion source and method for using same
AU2001266847A1 (en) * 2000-11-30 2002-06-11 Semequip, Inc. Ion implantation system and control method
DE10131411A1 (en) * 2001-06-26 2003-02-20 Beru Ag Wheel for vehicles with pneumatic tires and arrangement of a valve, a device for measuring tire pressure and a spring holding it in the pneumatic tire
CN102034665B (en) * 2002-06-26 2014-06-25 山米奎普公司 An ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
US20040002202A1 (en) 2002-06-26 2004-01-01 Horsky Thomas Neil Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017403A (en) * 1974-07-31 1977-04-12 United Kingdom Atomic Energy Authority Ion beam separators
US4258266A (en) * 1979-07-30 1981-03-24 Hughes Aircraft Company Ion implantation system
US6046546A (en) * 1992-04-16 2000-04-04 Advanced Energy Industries, Inc. Stabilizer for switch-mode powered RF plasma
US5607509A (en) * 1992-11-04 1997-03-04 Hughes Electronics High impedance plasma ion implantation apparatus
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
US5576600A (en) * 1994-12-23 1996-11-19 Dynatenn, Inc. Broad high current ion source
US6259091B1 (en) * 1996-01-05 2001-07-10 Battelle Memorial Institute Apparatus for reduction of selected ion intensities in confined ion beams
US5703372A (en) * 1996-10-30 1997-12-30 Eaton Corporation Endcap for indirectly heated cathode of ion source
US5939831A (en) * 1996-11-13 1999-08-17 Applied Materials, Inc. Methods and apparatus for pre-stabilized plasma generation for microwave clean applications
US6205948B1 (en) * 1997-01-23 2001-03-27 Forschungszentrum Rossendorf E.V. Modulator for plasma-immersion ion implantation
US6479785B1 (en) * 1998-07-09 2002-11-12 Richard J. Fugo Device for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator
US6300636B1 (en) * 1999-10-02 2001-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion source head
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US20050269520A1 (en) * 1999-12-13 2005-12-08 Semequip Inc. Icon implantation ion source, system and method
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation
US20080042580A1 (en) * 1999-12-13 2008-02-21 Semequip, Inc. Dual mode ion source for ion implantation
US7185602B2 (en) * 1999-12-13 2007-03-06 Semequip, Inc. Ion implantation ion source, system and method
US6452338B1 (en) * 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US7107929B2 (en) * 1999-12-13 2006-09-19 Semequip, Inc. Ion implantation ion source, system and method
US7022999B2 (en) * 1999-12-13 2006-04-04 Semequip Inc. Ion implantation ion source, system and method
US6777686B2 (en) * 2000-05-17 2004-08-17 Varian Semiconductor Equipment Associates, Inc. Control system for indirectly heated cathode ion source
US20040097193A1 (en) * 2000-12-21 2004-05-20 Monta Nakatsuka Radio system, radio device, radio connection method, program, and medium
US20030079688A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping by anode pulsing
US20030197129A1 (en) * 2001-12-31 2003-10-23 Applied Materials, Inc. Ion sources for ion implantation apparatus
US6686595B2 (en) * 2002-06-26 2004-02-03 Semequip Inc. Electron impact ion source
US20040000647A1 (en) * 2002-06-26 2004-01-01 Horsky Thomas N. Electron impact ion source
US6805779B2 (en) * 2003-03-21 2004-10-19 Zond, Inc. Plasma generation using multi-step ionization
US6975073B2 (en) * 2003-05-19 2005-12-13 George Wakalopulos Ion plasma beam generating device

Cited By (400)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417241B2 (en) * 2003-08-29 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US20060163494A1 (en) * 2003-08-29 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US7629590B2 (en) * 2003-12-12 2009-12-08 Semequip, Inc. Method and apparatus for extending equipment uptime in ion implantation
US20070210260A1 (en) * 2003-12-12 2007-09-13 Horsky Thomas N Method And Apparatus For Extending Equipment Uptime In Ion Implantation
US20080121811A1 (en) * 2003-12-12 2008-05-29 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US7820981B2 (en) * 2003-12-12 2010-10-26 Semequip, Inc. Method and apparatus for extending equipment uptime in ion implantation
US20090032728A1 (en) * 2007-07-31 2009-02-05 Axcebs Technologies, Inc. Hybrid ion source/multimode ion source
US8193513B2 (en) 2007-07-31 2012-06-05 Axcelis Technologies, Inc. Hybrid ion source/multimode ion source
US7875125B2 (en) 2007-09-21 2011-01-25 Semequip, Inc. Method for extending equipment uptime in ion implantation
US20090081874A1 (en) * 2007-09-21 2009-03-26 Cook Kevin S Method for extending equipment uptime in ion implantation
WO2009094414A1 (en) * 2008-01-22 2009-07-30 Semequip, Inc. Ion source gas reactor
US20090183679A1 (en) * 2008-01-22 2009-07-23 Mcintyre Edward Ion source gas reactor
US8304743B2 (en) * 2008-05-20 2012-11-06 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
US8912505B2 (en) 2008-05-20 2014-12-16 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
US20090289542A1 (en) * 2008-05-20 2009-11-26 Samsung Electronics Co., Ltd. And Seoul National University Industry Foundation. Electron beam focusing electrode and electron gun using the same
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US8476587B2 (en) 2009-05-13 2013-07-02 Micromass Uk Limited Ion source with surface coating
WO2010131008A1 (en) * 2009-05-13 2010-11-18 Micromass Uk Limited Surface coating on ion source
US8742337B2 (en) 2009-05-13 2014-06-03 Micromass Uk Limited Ion source with surface coating
US20140346650A1 (en) * 2009-08-14 2014-11-27 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10804098B2 (en) * 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9214313B2 (en) * 2010-04-09 2015-12-15 E.A. Fischione Instruments, Inc. Ion source with independent power supplies
US20110248179A1 (en) * 2010-04-09 2011-10-13 E.A. Fischione Instruments, Inc. Ion source
US9478388B2 (en) 2010-10-12 2016-10-25 Vg Systems Limited Switchable gas cluster and atomic ion gun, and method of surface processing using the gun
WO2012049110A3 (en) * 2010-10-12 2012-06-28 Vg Systems Limited Switchable gas cluster and atomic ion gun, and method of surface processing using the gun
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US9312163B2 (en) * 2011-07-14 2016-04-12 Sumitomo Heavy Industries, Ltd. Impurity-doped layer formation apparatus and electrostatic chuck protection method
US20130019797A1 (en) * 2011-07-14 2013-01-24 Sen Corporation Impurity-doped layer formation apparatus and electrostatic chuck protection method
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US20150014275A1 (en) * 2013-07-15 2015-01-15 Bryan Barnard Switchable ion gun with improved gas inlet arrangement
US8993982B2 (en) * 2013-07-15 2015-03-31 Vg Systems Limited Switchable ion gun with improved gas inlet arrangement
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US12240760B2 (en) 2016-03-18 2025-03-04 Asm Ip Holding B.V. Aligned carbon nanotubes
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US12106965B2 (en) 2017-02-15 2024-10-01 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US12119228B2 (en) 2018-01-19 2024-10-15 Asm Ip Holding B.V. Deposition method
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US12173402B2 (en) 2018-02-15 2024-12-24 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US12176243B2 (en) 2019-02-20 2024-12-24 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US12195855B2 (en) 2019-06-06 2025-01-14 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US12107000B2 (en) 2019-07-10 2024-10-01 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US12129548B2 (en) 2019-07-18 2024-10-29 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12230497B2 (en) 2019-10-02 2025-02-18 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US12266695B2 (en) 2019-11-05 2025-04-01 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12119220B2 (en) 2019-12-19 2024-10-15 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US12130084B2 (en) 2020-04-24 2024-10-29 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US12051602B2 (en) 2020-05-04 2024-07-30 Asm Ip Holding B.V. Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover

Also Published As

Publication number Publication date
CN101384747B (en) 2013-11-20
EP1945832A1 (en) 2008-07-23
EP1945832A4 (en) 2010-11-10
US20080087219A1 (en) 2008-04-17
US7838842B2 (en) 2010-11-23
KR20080065276A (en) 2008-07-11
WO2007056249A1 (en) 2007-05-18
CN101384747A (en) 2009-03-11
US20080042580A1 (en) 2008-02-21
US20060097645A1 (en) 2006-05-11
US7834554B2 (en) 2010-11-16
JP2009515301A (en) 2009-04-09
TW200733243A (en) 2007-09-01
JP4927859B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US7834554B2 (en) Dual mode ion source for ion implantation
US7838850B2 (en) External cathode ion source
US7791047B2 (en) Method and apparatus for extracting ions from an ion source for use in ion implantation
US7820981B2 (en) Method and apparatus for extending equipment uptime in ion implantation
KR101838578B1 (en) Silaborane implantation processes
TW521295B (en) Ion implantation ion source, system and method
US6452338B1 (en) Electron beam ion source with integral low-temperature vaporizer
US20080223409A1 (en) Method and apparatus for extending equipment uptime in ion implantation
JP4029394B2 (en) Method and system for injecting icosaborane
WO2002071816A2 (en) Improved double chamber ion implantation system
US7947966B2 (en) Double plasma ion source
US8330118B2 (en) Multi mode ion source
KR101562785B1 (en) Double plasma ion source

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMEQUIP, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORSKY, THOMAS N.;WILLIAMS, JOHN N.;REEL/FRAME:018774/0278;SIGNING DATES FROM 20021216 TO 20021219

AS Assignment

Owner name: SEMEQUIP, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HORSKY, THOMAS N.;REEL/FRAME:019135/0366

Effective date: 20060123

AS Assignment

Owner name: TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT, VIRGIN

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEMEQUIP, INC.;REEL/FRAME:021301/0023

Effective date: 20080411

Owner name: TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT,VIRGINI

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEMEQUIP, INC.;REEL/FRAME:021301/0023

Effective date: 20080411

AS Assignment

Owner name: SEMEQUIP, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT;REEL/FRAME:021380/0018

Effective date: 20080807

Owner name: SEMEQUIP, INC.,MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TUNA INVESTMENTS, LLC, AS COLLATERAL AGENT;REEL/FRAME:021380/0018

Effective date: 20080807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载