+

US20070168767A1 - Flexible scan architecture - Google Patents

Flexible scan architecture Download PDF

Info

Publication number
US20070168767A1
US20070168767A1 US11/520,203 US52020306A US2007168767A1 US 20070168767 A1 US20070168767 A1 US 20070168767A1 US 52020306 A US52020306 A US 52020306A US 2007168767 A1 US2007168767 A1 US 2007168767A1
Authority
US
United States
Prior art keywords
functional
scan
clock
processor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/520,203
Inventor
Talal Jaber
Srinivas Patil
Larry Thatcher
Chih-Jen Lin
Anil Sabbavarapu
David Wu
Madhukar Reddy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/520,203 priority Critical patent/US20070168767A1/en
Publication of US20070168767A1 publication Critical patent/US20070168767A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318552Clock circuits details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318594Timing aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2236Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test CPU or processors

Definitions

  • Embodiments of the invention relate to microprocessor testing architecture. More particularly, embodiments of the invention relate to a flexible scan architecture that enables isolation of various portions of a microprocessor for testing purposes independently of their functional mode.
  • Prior art testing architectures typically group functional units into testing groups, such as clusters and sub-cluster units, such that they are tested at once, thereby decreasing the amount of die real estate necessary to accommodate the testing circuitry. This technique, however, is often at the expense of comprehensive test coverage, as the functional units within the testing groups cannot be isolated and independently tested.
  • Prior art testing architectures also typically control the testing architecture logic with the same clock (or some derivative thereof) as the functional or system clock of the processor, thereby introducing delay and other timing problems into the testing of the processor, reducing the overall test time.
  • testing architecture typically separate various hierarchical testing groups in the testing architecture using logic that precludes one set of functional units from being tested with an automatic test pattern while another set of functional units are being operated under normal processor operating conditions.
  • Such a testing architecture can be limiting in that it forces one to make trade-offs between test coverage, test time, and power concerns.
  • FIG. 1 illustrates computer system in which a processor may be used containing at least one embodiment of the invention.
  • FIG. 2 illustrates a processor architecture in which at least one embodiment of the invention may be used.
  • FIG. 3 illustrates a test scan model according to one embodiment of the invention.
  • FIG. 4 illustrates control blocks for a test scan architecture according to one embodiment of the invention.
  • FIG. 5 illustrates a scan chain architecture used in a test scan architecture according to one embodiment of the invention.
  • FIG. 6 illustrates a scan chain configuration for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 7 illustrates a functional control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 8 illustrates a scan clock control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 9 illustrates a local test control circuit used in conjunction with at least one embodiment of the invention.
  • Embodiments of the invention relate to microprocessor testing architecture. More particularly, embodiments of the invention relate to a flexible scan architecture that enables isolation of various portions of a microprocessor for testing purposes independently of their functional mode.
  • Embodiments of the invention described herein enable the isolation and independent testing of functional units throughout a processor architecture by using a scan clock chain architecture that is separate and independent of the processor's functional, or system, clock chain structure. Furthermore, embodiments of the invention allow testing of functional units to take place at slower or faster clock speeds than other portions of the processor without incurring delay or other adverse timing effects.
  • FIG. 1 illustrates a computer system in which at least a portion of one embodiment of the invention may be performed.
  • a processor 105 accesses data from a cache memory 110 and main memory 115 , which comprises a memory system.
  • test architecture logic 106 Illustrated throughout the processor of FIG. 1 is logic 106 for controlling a test scan architecture according to one embodiment of the invention.
  • the particular configuration of the test architecture logic illustrated in FIG. 1 may be different in other embodiments.
  • embodiments of the invention may be implemented within other devices within the system, such as a separate bus agent, or distributed throughout the system in hardware, software, or some combination thereof.
  • the computer system's main memory is interfaced through a memory/graphics controller 112 .
  • the main memory may be implemented in various memory sources, such as dynamic random-access memory (“DRAM”).
  • DRAM dynamic random-access memory
  • Other memory sources may also be used as the system's main memory and accessed through an input/output controller 117 .
  • These memory sources include a hard disk drive (“HDD”) 120 , or a memory source 130 located remotely from the computer system containing various storage devices and technologies.
  • the cache memory may be located either within the processor or in close proximity to the processor, such as on the processor's local bus 107 .
  • the system may include other peripheral devices, including a display device 111 , which may interface to a number of displays, such as flat-panel, television, and cathode-ray tube.
  • Embodiments of the invention may be performed using logic consisting of standard complementary metal-oxide-semiconductor (CMOS) devices (hardware) or by using logic that is programmed by instructions (software) stored upon a machine-readable medium, which when executed by a machine, such as a processor, cause the machine to perform a method to carry out the steps of an embodiment of the invention.
  • CMOS complementary metal-oxide-semiconductor
  • a machine such as a processor
  • a combination of hardware and software may be used to carry out embodiments of the invention.
  • FIG. 2 illustrates a portion of a microprocessor architecture in which at least one embodiment of the invention may be used.
  • the processor of FIG. 2 contains a number of logical clusters 205 , 210 , 215 , 220 , 225 .
  • a cluster is typically a functional unit that performs a specific function, such as floating-point execution.
  • Each cluster may contain smaller functional units, such as functional blocks (FUBs), that control or serve various functions within a cluster.
  • FUBs functional blocks
  • a scan control architecture including various control units 207 , 213 within the clusters or other functional units, enable the isolation and testing of one or more these smaller functional units independently of other clusters or functional units that may be idle or operating in normal functional mode.
  • each of the clusters of FIG. 2 and the smaller functional units therein may be tested at slower speeds than other portions of the processor without incurring delay or other adverse timing effects, such as race conditions, etc.
  • FIG. 3 illustrates a test scan model according to one embodiment of the invention.
  • the test scan model illustrated in FIG. 3 takes advantage of the logical architectural hierarchy of the processor by associating scan control blocks with every level of the processor's architectural hierarchy.
  • This scan architecture allows for support of a partitioned-based automatic test pattern generator (ATPG) for testing the processor in partitions, such as clusters and FUBs.
  • ATG automatic test pattern generator
  • the test scan model of FIG. 3 contains 36 scan inputs 301 that may control 6 different clusters 305 .
  • the 36 scan chains are distributed across logical units 310 .
  • the 36 scan chains are divided among the various FUBs 315 . More or fewer scan chains may be used in other embodiments, depending upon the architecture of the integrated circuit to be tested.
  • any cluster or other functional unit can be included in an ATPG partition by encoding the respective scan clock chain(s) in the appropriate scan chain group responsible for controlling the particular functional unit(s).
  • any cluster or other functional unit can be included in a functional group by enabling the respective functional clock chain(s) independently of the scan clock chain(s).
  • FIG. 4 illustrates a control block hierarchy for a test scan architecture according to one embodiment of the invention.
  • the required block is the integrated test controller (ITC) block 401 .
  • the ITC block routes the 36 scan chains for this particular scan architecture from the processor-input/output pins to a cluster in the scan chain configuration.
  • the ITC also generates independently controlled scan clocks and functional (system) clocks for every cluster on the chip. Independent control of the cluster scan clocks and system clocks is achieved in one embodiment of the invention by configuring control registers in the ITC logic.
  • the CTC block contains logic to encode the cluster scan chains in a targeted ATPG partition or exclude the cluster scan chains by-passing the cluster logic altogether.
  • the CTC also provides control of the scan clocks and functional (system) clocks for its respective cluster. This control of the scan and system clocks as well as control of the scan chain configuration is achieved in one embodiment of the invention by programming control registers in the CTC logic.
  • the UTC block has logic to encode the unit scan chains in the targeted ATPG partition or exclude the unit scan chains by by-passing the unit logic altogether.
  • the UTC block also provides control of the scan clocks and functional (system) clocks for its respective unit. This control of the scan and system clocks as well as control of the scan chain configuration is achieved in one embodiment of the invention by programming control registers in the UTC logic. Because the CTC and UTC blocks perform similar functions, their control logic can be similar and in some case used interchangeably.
  • the LTCC block provides control of the scan clocks and functional (system) clocks for a particular FUB. This control of the scan and system clocks is achieved in one embodiment of the invention by programming control registers in the LTCC logic.
  • the LTCC controls the A and B clock signal 420 generation logic.
  • the A clock is a master scan clock of an associated master-slave flip-flop and the B clock is the slave scan clock.
  • the A and B clocks are generated to control a particular FUB independently of the scan and functional clocks, so that each FUB may be tested in isolation. This means that each FUB may be tested at a slower speed than other portions of the processor. Because the A and B clocks are independent of the scan and functional clocks, they do not incur delay or other adverse effects, such as race conditions.
  • FIG. 5 illustrates a scan chain architecture used in a test scan chain architecture according to one embodiment of the invention.
  • a test scan chain 501 couples together all of the control registers residing in all of the test scan control blocks—namely, the ITC, CTC, UTC and LTCC blocks.
  • the scan chain can be independently controlled by the tester via its own scan clock and is normally programmed (initialized) before partitioned ATPG processing can start.
  • the user By programming the scan chain, the user decides which scan chain configuration is created and which scan clock or functional (system) clocks are enabled for a particular ATPG partition. Once the scan chain is set to a particular value, it can remain in that state for the duration of the ATPG process.
  • Test scan chain definition can be done in the design phase of the processor or other device or by enabling fuses in the design after the device is produced.
  • FIG. 6 illustrates a scan chain configuration for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • the ATPG partition is to include unit 0 605 and unit 2 610 of cluster 2 615 only.
  • the control registers within CTC 0 and CTC 1 controlling the scan chain routing logic are programmed such that all scan chains in cluster 0 and cluster 1 are bypassed. In the embodiment of FIG. 6 , this can be achieved by setting the control register to a 1 value for the upper multiplexer (MUX) 620 in both CTCs, as well as to those of UTC 1 and UTC 3 through UTC 15 of cluster 2 .
  • the lower MUX 625 of CTC 2 is programmed such that the input from UTC 0 is selected, thereby excluding all of the downstream clusters from the ATPG partition.
  • MUX multiplexer
  • FIG. 7 illustrates a functional control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention. This is accomplished in the embodiment illustrated in FIG. 7 by programming control registers in the test scan control block or blocks 705 , 710 , 715 that form a particular ATPG partition 701 . Functional clocks corresponding to non-selected ATPG partitions may be disabled to manage power and parasitic capacitance during testing.
  • the clock enable blocks (LCB, LCE, RCE) illustrated in FIG. 7 are not part of the test scan architecture. Nevertheless, they may serve as staging logic for the ATPG functional clock enable signal in at least one embodiment of the invention.
  • FIG. 8 illustrates a scan clock control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • control of the scan clock is achieved at every level of the logical hierarchy. This is accomplished by programming control registers in the test-scan control block or blocks 805 , 810 , 815 that form an ATPG partition 801 . Scan clocks that belong to non-selected ATPG partitions may be disabled to manage power and parasitic capacitance during testing.
  • the scan clock control register within a CTC is disabled, however, all of the units within that cluster have their functional clocks disabled regardless of the values of the UTC functional clock control registers for that particular cluster.
  • the CTC functional clock control register for that cluster and the UTC functional clock control register for that unit should both be enabled in the embodiment illustrated in FIG. 8 .
  • the functional clock control register within a CTC block is disabled, all functional clocks of the units within that cluster are disabled regardless of the values of the UTC functional clock control registers for that particular cluster.
  • the CTC functional clock control register for that cluster, and the UTC functional clock control register for that unit should both be enabled in the embodiment illustrated in FIG. 8 .
  • FIG. 9 illustrates a local test control circuit used in conjunction with at least one embodiment of the invention.
  • the UTC and CTC control blocks are similar to the LTCC block, but the UTC and CTC blocks include an additional MUX to support scan chain configuration.
  • the ITC logic is also similar to the CTC and UTC.
  • the ITC block includes logic for control and programming of the functional clocks in ATPG mode.
  • Blocks 901 , 902 and 903 are flip-flops used to pipeline and stage the functional clock and scan clock control signals, respectively.
  • Block 904 is a control register to enable or disable the functional clock and scan clock control signals. This control register can be overridden by a primary input control signal (DISABLE_CREG). This override function is achieved by logic within blocks 907 , 906 and 908 .
  • Block 905 is a control register that can be programmed to override some of the functional logic at the FUB level during ATPG processing. Blocks 904 and 905 are coupled together as part of the test scan chain configured by control registers in the test-scan controllers. Block 910 generates the A and B clocks from the slow SCAN-CLK-CNTL signal.
  • Block 909 generates the LTCC control registers (blocks 904 and 905 ) scan clocks.
  • the A and B clocks are derived from an independent Local-SCAN-CLK-CNTL signal that is used to initialize the test scan chain.
  • Block 911 is a buffer to store the output of control register 905 . All of the LTCC cells are clocked with the free running system clock (MCLK).
  • Embodiment of the invention support system debug by allowing the configuration of the scan controllers to address a particular portion on the chip. If the logic of a portion contains non-destructive scan cells, or if shadow listening scan cells are used, etc., a “snapshot” of the state of the tested portion can be taken for debug purposed while the processor is running by controlling the scan and functional clocks through the ITC block.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A testing architecture for testing a complex integrated circuit in which each functional unit may be tested independently of the others. Embodiments of the invention allow testing of functional units to take place at slower or faster clock speeds than other portions of the processor without incurring delay or other adverse timing effects.

Description

    FIELD
  • The present application is a continuation application of and claims the priority date of U.S. patent application Ser. No. 10/609,254 entitled “FLEXIBLE SCAN ARCHITECTURE,” filed Jun. 26, 2003 and assigned to the assignee of the present invention.
  • Embodiments of the invention relate to microprocessor testing architecture. More particularly, embodiments of the invention relate to a flexible scan architecture that enables isolation of various portions of a microprocessor for testing purposes independently of their functional mode.
  • BACKGROUND
  • As microprocessor architecture complexity and gate-count increases, so does the complexity and necessity of having adequate test coverage of each functional unit. Furthermore, increases in test coverage typically brings increased test time, power, and other effects that can increase the cost of testing.
  • Prior art testing architectures typically group functional units into testing groups, such as clusters and sub-cluster units, such that they are tested at once, thereby decreasing the amount of die real estate necessary to accommodate the testing circuitry. This technique, however, is often at the expense of comprehensive test coverage, as the functional units within the testing groups cannot be isolated and independently tested.
  • Prior art testing architectures also typically control the testing architecture logic with the same clock (or some derivative thereof) as the functional or system clock of the processor, thereby introducing delay and other timing problems into the testing of the processor, reducing the overall test time.
  • Finally, some prior art techniques typically separate various hierarchical testing groups in the testing architecture using logic that precludes one set of functional units from being tested with an automatic test pattern while another set of functional units are being operated under normal processor operating conditions. Such a testing architecture can be limiting in that it forces one to make trade-offs between test coverage, test time, and power concerns.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
  • FIG. 1 illustrates computer system in which a processor may be used containing at least one embodiment of the invention.
  • FIG. 2 illustrates a processor architecture in which at least one embodiment of the invention may be used.
  • FIG. 3 illustrates a test scan model according to one embodiment of the invention.
  • FIG. 4 illustrates control blocks for a test scan architecture according to one embodiment of the invention.
  • FIG. 5 illustrates a scan chain architecture used in a test scan architecture according to one embodiment of the invention.
  • FIG. 6 illustrates a scan chain configuration for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 7 illustrates a functional control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 8 illustrates a scan clock control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention.
  • FIG. 9 illustrates a local test control circuit used in conjunction with at least one embodiment of the invention.
  • DETAILED DESCRIPTION
  • Embodiments of the invention relate to microprocessor testing architecture. More particularly, embodiments of the invention relate to a flexible scan architecture that enables isolation of various portions of a microprocessor for testing purposes independently of their functional mode.
  • Embodiments of the invention described herein enable the isolation and independent testing of functional units throughout a processor architecture by using a scan clock chain architecture that is separate and independent of the processor's functional, or system, clock chain structure. Furthermore, embodiments of the invention allow testing of functional units to take place at slower or faster clock speeds than other portions of the processor without incurring delay or other adverse timing effects.
  • FIG. 1 illustrates a computer system in which at least a portion of one embodiment of the invention may be performed. A processor 105 accesses data from a cache memory 110 and main memory 115, which comprises a memory system.
  • Illustrated throughout the processor of FIG. 1 is logic 106 for controlling a test scan architecture according to one embodiment of the invention. The particular configuration of the test architecture logic illustrated in FIG. 1 may be different in other embodiments. Furthermore, embodiments of the invention may be implemented within other devices within the system, such as a separate bus agent, or distributed throughout the system in hardware, software, or some combination thereof.
  • The computer system's main memory is interfaced through a memory/graphics controller 112. Furthermore, the main memory may be implemented in various memory sources, such as dynamic random-access memory (“DRAM”). Other memory sources may also be used as the system's main memory and accessed through an input/output controller 117. These memory sources include a hard disk drive (“HDD”) 120, or a memory source 130 located remotely from the computer system containing various storage devices and technologies. The cache memory may be located either within the processor or in close proximity to the processor, such as on the processor's local bus 107. The system may include other peripheral devices, including a display device 111, which may interface to a number of displays, such as flat-panel, television, and cathode-ray tube.
  • Embodiments of the invention may be performed using logic consisting of standard complementary metal-oxide-semiconductor (CMOS) devices (hardware) or by using logic that is programmed by instructions (software) stored upon a machine-readable medium, which when executed by a machine, such as a processor, cause the machine to perform a method to carry out the steps of an embodiment of the invention. Alternatively, a combination of hardware and software may be used to carry out embodiments of the invention.
  • FIG. 2 illustrates a portion of a microprocessor architecture in which at least one embodiment of the invention may be used. The processor of FIG. 2 contains a number of logical clusters 205, 210, 215, 220, 225. A cluster is typically a functional unit that performs a specific function, such as floating-point execution. Each cluster may contain smaller functional units, such as functional blocks (FUBs), that control or serve various functions within a cluster. In at least one embodiment of the invention a scan control architecture, including various control units 207, 213 within the clusters or other functional units, enable the isolation and testing of one or more these smaller functional units independently of other clusters or functional units that may be idle or operating in normal functional mode. Furthermore, each of the clusters of FIG. 2 and the smaller functional units therein, may be tested at slower speeds than other portions of the processor without incurring delay or other adverse timing effects, such as race conditions, etc.
  • FIG. 3 illustrates a test scan model according to one embodiment of the invention. The test scan model illustrated in FIG. 3 takes advantage of the logical architectural hierarchy of the processor by associating scan control blocks with every level of the processor's architectural hierarchy. This scan architecture allows for support of a partitioned-based automatic test pattern generator (ATPG) for testing the processor in partitions, such as clusters and FUBs.
  • Particularly, the test scan model of FIG. 3 contains 36 scan inputs 301 that may control 6 different clusters 305. Within a cluster, the 36 scan chains are distributed across logical units 310. Within a unit, the 36 scan chains are divided among the various FUBs 315. More or fewer scan chains may be used in other embodiments, depending upon the architecture of the integrated circuit to be tested. In the test scan model of FIG. 1, any cluster or other functional unit can be included in an ATPG partition by encoding the respective scan clock chain(s) in the appropriate scan chain group responsible for controlling the particular functional unit(s). Similarly, any cluster or other functional unit can be included in a functional group by enabling the respective functional clock chain(s) independently of the scan clock chain(s).
  • FIG. 4 illustrates a control block hierarchy for a test scan architecture according to one embodiment of the invention. At the top of the hierarchy, the required block is the integrated test controller (ITC) block 401. The ITC block routes the 36 scan chains for this particular scan architecture from the processor-input/output pins to a cluster in the scan chain configuration. The ITC also generates independently controlled scan clocks and functional (system) clocks for every cluster on the chip. Independent control of the cluster scan clocks and system clocks is achieved in one embodiment of the invention by configuring control registers in the ITC logic.
  • At the next level of the logical hierarchy (cluster level) is a cluster test controller (CTC) block 405. The CTC block contains logic to encode the cluster scan chains in a targeted ATPG partition or exclude the cluster scan chains by-passing the cluster logic altogether. The CTC also provides control of the scan clocks and functional (system) clocks for its respective cluster. This control of the scan and system clocks as well as control of the scan chain configuration is achieved in one embodiment of the invention by programming control registers in the CTC logic.
  • At the next lower level of the logical hierarchy (unit level) is the unit test controller (UTC) block 410. The UTC block has logic to encode the unit scan chains in the targeted ATPG partition or exclude the unit scan chains by by-passing the unit logic altogether. The UTC block also provides control of the scan clocks and functional (system) clocks for its respective unit. This control of the scan and system clocks as well as control of the scan chain configuration is achieved in one embodiment of the invention by programming control registers in the UTC logic. Because the CTC and UTC blocks perform similar functions, their control logic can be similar and in some case used interchangeably.
  • At the next lower level of the logical hierarchy (FUB level) is the local test clock controller (LTCC) block 415. The LTCC block provides control of the scan clocks and functional (system) clocks for a particular FUB. This control of the scan and system clocks is achieved in one embodiment of the invention by programming control registers in the LTCC logic.
  • In addition to control of the scan clock, the LTCC controls the A and B clock signal 420 generation logic. The A clock is a master scan clock of an associated master-slave flip-flop and the B clock is the slave scan clock. The A and B clocks are generated to control a particular FUB independently of the scan and functional clocks, so that each FUB may be tested in isolation. This means that each FUB may be tested at a slower speed than other portions of the processor. Because the A and B clocks are independent of the scan and functional clocks, they do not incur delay or other adverse effects, such as race conditions.
  • FIG. 5 illustrates a scan chain architecture used in a test scan chain architecture according to one embodiment of the invention. A test scan chain 501 couples together all of the control registers residing in all of the test scan control blocks—namely, the ITC, CTC, UTC and LTCC blocks. The scan chain can be independently controlled by the tester via its own scan clock and is normally programmed (initialized) before partitioned ATPG processing can start. By programming the scan chain, the user decides which scan chain configuration is created and which scan clock or functional (system) clocks are enabled for a particular ATPG partition. Once the scan chain is set to a particular value, it can remain in that state for the duration of the ATPG process. Test scan chain definition can be done in the design phase of the processor or other device or by enabling fuses in the design after the device is produced.
  • FIG. 6 illustrates a scan chain configuration for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention. In FIG. 6, the ATPG partition is to include unit 0 605 and unit 2 610 of cluster 2 615 only. The control registers within CTC0 and CTC1 controlling the scan chain routing logic are programmed such that all scan chains in cluster 0 and cluster 1 are bypassed. In the embodiment of FIG. 6, this can be achieved by setting the control register to a 1 value for the upper multiplexer (MUX) 620 in both CTCs, as well as to those of UTC1 and UTC3 through UTC15 of cluster 2. The lower MUX 625 of CTC2 is programmed such that the input from UTC0 is selected, thereby excluding all of the downstream clusters from the ATPG partition.
  • FIG. 7 illustrates a functional control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention. This is accomplished in the embodiment illustrated in FIG. 7 by programming control registers in the test scan control block or blocks 705, 710, 715 that form a particular ATPG partition 701. Functional clocks corresponding to non-selected ATPG partitions may be disabled to manage power and parasitic capacitance during testing. The clock enable blocks (LCB, LCE, RCE) illustrated in FIG. 7 are not part of the test scan architecture. Nevertheless, they may serve as staging logic for the ATPG functional clock enable signal in at least one embodiment of the invention.
  • FIG. 8 illustrates a scan clock control architecture for supporting a partitioned-based automatic test pattern generator according to one embodiment of the invention. In a similar fashion to the control of the functional clock, control of the scan clock is achieved at every level of the logical hierarchy. This is accomplished by programming control registers in the test-scan control block or blocks 805, 810, 815 that form an ATPG partition 801. Scan clocks that belong to non-selected ATPG partitions may be disabled to manage power and parasitic capacitance during testing.
  • If the scan clock control register within a CTC is disabled, however, all of the units within that cluster have their functional clocks disabled regardless of the values of the UTC functional clock control registers for that particular cluster. In order for a unit of a cluster to be included in an ATPG partition, the CTC functional clock control register for that cluster and the UTC functional clock control register for that unit should both be enabled in the embodiment illustrated in FIG. 8.
  • Likewise, if the functional clock control register within a CTC block is disabled, all functional clocks of the units within that cluster are disabled regardless of the values of the UTC functional clock control registers for that particular cluster. In order for a unit of a cluster to be included in an ATPG partition, the CTC functional clock control register for that cluster, and the UTC functional clock control register for that unit should both be enabled in the embodiment illustrated in FIG. 8.
  • FIG. 9 illustrates a local test control circuit used in conjunction with at least one embodiment of the invention. The UTC and CTC control blocks are similar to the LTCC block, but the UTC and CTC blocks include an additional MUX to support scan chain configuration. The ITC logic is also similar to the CTC and UTC. The ITC block, however, includes logic for control and programming of the functional clocks in ATPG mode.
  • Blocks 901, 902 and 903 are flip-flops used to pipeline and stage the functional clock and scan clock control signals, respectively. Block 904 is a control register to enable or disable the functional clock and scan clock control signals. This control register can be overridden by a primary input control signal (DISABLE_CREG). This override function is achieved by logic within blocks 907, 906 and 908. Block 905 is a control register that can be programmed to override some of the functional logic at the FUB level during ATPG processing. Blocks 904 and 905 are coupled together as part of the test scan chain configured by control registers in the test-scan controllers. Block 910 generates the A and B clocks from the slow SCAN-CLK-CNTL signal.
  • Block 909 generates the LTCC control registers (blocks 904 and 905) scan clocks. The A and B clocks are derived from an independent Local-SCAN-CLK-CNTL signal that is used to initialize the test scan chain. Block 911 is a buffer to store the output of control register 905. All of the LTCC cells are clocked with the free running system clock (MCLK).
  • Embodiment of the invention support system debug by allowing the configuration of the scan controllers to address a particular portion on the chip. If the logic of a portion contains non-destructive scan cells, or if shadow listening scan cells are used, etc., a “snapshot” of the state of the tested portion can be taken for debug purposed while the processor is running by controlling the scan and functional clocks through the ITC block.
  • While the invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments, which are apparent to persons skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention.

Claims (7)

1. A processor comprising:
a first clock circuit to clock a first functional unit while the first functional unit is not being tested; a second clock circuit to clock a second functional unit independently of the first clock circuit while the second functional unit is being tested.
2. The processor of claim 32 wherein the second clock circuit comprises a cluster test controller, a unit test controller, and a local test clock controller.
3. The processor of claim 33 wherein the functional unit comprises a plurality of functional units.
4. The processor of claim 34 further comprising a third clock circuit to at least partially control the plurality of functional units independently of the functional clock circuit.
5. The processor of claim 35 wherein the third clock circuit comprises a master clock generation unit and a slave clock generation unit.
6. The processor of claim 36 wherein the first clock circuit is to couple a functional clock signal to the first and second functional units during normal operation of the first and second functional units.
7. The processor of claim 37 wherein the second clock circuit is to couple a functional clock signal to the first and second functional units during testing of the first and second functional units.
US11/520,203 2003-06-26 2006-09-12 Flexible scan architecture Abandoned US20070168767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/520,203 US20070168767A1 (en) 2003-06-26 2006-09-12 Flexible scan architecture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/609,254 US7216274B2 (en) 2003-06-26 2003-06-26 Flexible scan architecture
US11/520,203 US20070168767A1 (en) 2003-06-26 2006-09-12 Flexible scan architecture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/609,254 Continuation US7216274B2 (en) 2003-06-26 2003-06-26 Flexible scan architecture

Publications (1)

Publication Number Publication Date
US20070168767A1 true US20070168767A1 (en) 2007-07-19

Family

ID=33540816

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/609,254 Expired - Fee Related US7216274B2 (en) 2003-06-26 2003-06-26 Flexible scan architecture
US11/520,203 Abandoned US20070168767A1 (en) 2003-06-26 2006-09-12 Flexible scan architecture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/609,254 Expired - Fee Related US7216274B2 (en) 2003-06-26 2003-06-26 Flexible scan architecture

Country Status (1)

Country Link
US (2) US7216274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120030532A1 (en) * 2010-07-27 2012-02-02 Texas Instruments Incorporated Structures and control processes for efficient generation of different test clocking sequences, controls and other test signals in scan designs with multiple partitions, and devices, systems and processes of making

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444560B2 (en) * 2004-10-28 2008-10-28 Lsi Corporation Test clocking scheme
US7725759B2 (en) * 2005-06-29 2010-05-25 Sigmatel, Inc. System and method of managing clock speed in an electronic device
US8301947B1 (en) * 2011-10-31 2012-10-30 Apple Inc. Dynamic scan chain grouping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191373B2 (en) * 2001-03-01 2007-03-13 Syntest Technologies, Inc. Method and apparatus for diagnosing failures in an integrated circuit using design-for-debug (DFD) techniques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658903B2 (en) * 1994-10-05 1997-09-30 日本電気株式会社 Scan path circuit, its design device and its design method
US6028983A (en) * 1996-09-19 2000-02-22 International Business Machines Corporation Apparatus and methods for testing a microprocessor chip using dedicated scan strings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191373B2 (en) * 2001-03-01 2007-03-13 Syntest Technologies, Inc. Method and apparatus for diagnosing failures in an integrated circuit using design-for-debug (DFD) techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120030532A1 (en) * 2010-07-27 2012-02-02 Texas Instruments Incorporated Structures and control processes for efficient generation of different test clocking sequences, controls and other test signals in scan designs with multiple partitions, and devices, systems and processes of making
US8438437B2 (en) * 2010-07-27 2013-05-07 Texas Instruments Incorporated Structures and control processes for efficient generation of different test clocking sequences, controls and other test signals in scan designs with multiple partitions, and devices, systems and processes of making

Also Published As

Publication number Publication date
US20040267504A1 (en) 2004-12-30
US7216274B2 (en) 2007-05-08

Similar Documents

Publication Publication Date Title
US5481471A (en) Mixed signal integrated circuit architecture and test methodology
US8988956B2 (en) Programmable memory built in self repair circuit
US7870449B2 (en) IC testing methods and apparatus
KR100267096B1 (en) Adaptive scan chain for debug and manufacturing test purposes
US6321320B1 (en) Flexible and programmable BIST engine for on-chip memory array testing and characterization
US6370661B1 (en) Apparatus for testing memory in a microprocessor
JP4361681B2 (en) ASIC test circuit
US7117413B2 (en) Wrapped core linking module for accessing system on chip test
US6611932B2 (en) Method and apparatus for controlling and observing data in a logic block-based ASIC
US5809039A (en) Semiconductor integrated circuit device with diagnosis function
US6862704B1 (en) Apparatus and method for testing memory in a microprocessor
Benso et al. HD/sup 2/BIST: a hierarchical framework for BIST scheduling, data patterns delivering and diagnosis in SoCs
US20070168767A1 (en) Flexible scan architecture
JPH09282195A (en) Device and method for testing integrated circuit
Hunter et al. The PowerPC 603 microprocessor: An array built-in self test mechanism
US7421610B2 (en) Clock generation circuit
US6341092B1 (en) Designing memory for testability to support scan capability in an asic design
US6571106B1 (en) Method and apparatus for glitchless signal generation
US7844871B2 (en) Test interface for memory elements
JP2001358293A (en) Semiconductor device
US4894800A (en) Reconfigurable register bit-slice for self-test
US5926519A (en) Semiconductor integrated circuit including dynamic registers
US11263377B1 (en) Circuit architecture for expanded design for testability functionality
US20060095816A1 (en) Test clocking scheme
Oklobdzija et al. Testability enhancement of VLSI using circuit structures

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载