US20070167008A1 - Nanotip electrode non-volatile memory resistor cell - Google Patents
Nanotip electrode non-volatile memory resistor cell Download PDFInfo
- Publication number
- US20070167008A1 US20070167008A1 US11/717,818 US71781807A US2007167008A1 US 20070167008 A1 US20070167008 A1 US 20070167008A1 US 71781807 A US71781807 A US 71781807A US 2007167008 A1 US2007167008 A1 US 2007167008A1
- Authority
- US
- United States
- Prior art keywords
- nanotips
- electrode
- memory
- memory cell
- memory resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8418—Electrodes adapted for focusing electric field or current, e.g. tip-shaped
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
Definitions
- a basic RRAM cell can formed with just a variable resistor, arranged in a cross point resistor network to form a cross point memory array.
- a RRAM cell can further include a diode. This resistor/diode combination is sometimes called a 1R1D (or 1D1R) cross point memory cell.
- a RRAM can include an access transistor, as in a DRAM or FRAM cell, and this combination is sometimes called a 1R1T (or 1T1R) cross point memory cell.
- a method for fabricating a nanotip electrode non-volatile memory resistor cell comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes.
- the nanotips are iridium oxide (IrOx) and have a tip base size of about 50nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer.
- FIGS. 6 and 7 depict steps in the fabrication of the nanotip electrode non-volatile memory resistor RRAM cell.
- the memory cell 100 further comprise a substrate 110 made from a material such as silicon, silicon oxide, silicon nitride, or a noble metal.
- the first electrode 102 is formed adjacent (overlying) the substrate 110 .
- FIG. 4 is a partial cross-sectional view of a second variation of a nanotip electrode memory cell.
- the memory cell material 106 is shown “on” the nanotips 104 .
- Material 400 may be a memory resistor material, different than material 106 , or a dielectric without memory resistance characteristics.
- FIGS. 6 and 7 depict steps in the fabrication of the nanotip electrode non-volatile memory resistor RRAM cell.
- the bottom electrode is made of iridium oxide nanotips.
- the memory resistor for the sake of simplicity, is denoted as CMR.
- the top electrode is a non-oxidiziable refractory metal or a refractory metal compound, such as Pt or TiN.
- FIG. 8 is a scanning electron microscope (SEM) photo showing a detailed view of a nanotip end. Since the IrOx nanotips have a pointy end, with a diameter in the order of a few nanometers, a high field intensity may generated at the tip end areas, even if the amplitude of the voltage pulse applied to the electrode, is relatively small. Also, the current is not uniformly distributed. Therefore, the programming power of this non-volatile memory device is very low.
- the tip size (diameter) is about 50 nm, which can be controlled by variations in the nanotip growth process.
- the IrOx tips height is typically from 5 nm to 50 nm, although 100 nm tips heights are also possible.
- the IrOx nanotips density is typically greater than 100 per square-micrometer, however the density can be greater than 3,000/micrometer 2 . Uniform device properties can be achieved for device sizes down to the deep sub-micron diameter region.
- a passivation layer such as 10 nm to 50 nm of silicon nitride or aluminum oxide is deposited, followed by an additional silicon oxide deposition and CMP planarized as is shown in FIG. 7 .
- the silicon nitride or aluminum oxide passivation layer is not showed in FIG. 7 .
- FIGS. 11A and 11B are flowcharts illustrating a method for fabricating a nanotip electrode non-volatile memory resistor cell. Although the method is depicted as a sequence of numbered steps for clarity, no order should be inferred from the numbering unless explicitly stated. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. Some details of the method may be better understood in context of the explanations of FIGS. 1-10 , above. The method starts at Step 1100 .
- Step 1106 a conformally deposits memory resistor material, having a thickness in the range of 50 to 200 nm, overlying the nanotips.
- Step 1106 b planarizes the memory resistor material, leaving a thickness of memory resistor material, in the range of 30 to 200 nm, interposed between the nanotip ends and the top electrode.
- forming the top electrode in Step 1108 includes substeps.
- Step 1108 a conformally deposits top electrode material.
- Step 1108 b selectively etches the top electrode material, memory resistor material, and the bottom electrode.
- Step 1110 forms a passivation layer adjacent the memory cell (see FIG. 7 ).
- the second (top) electrode can be a material such as Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A 1 .
- Step 1204 uses a narrow-width pulse to create a high resistance as described above, but supplies a large-width positive voltage pulse to the second electrode, with a voltage value in the range of 1.5 to 7 volts, and a pulse width in the range of 1 millisecond (ms) to 10 ms. Then, Step 1208 generates a low resistance in the memory resistor material in response to the large-width positive pulse.
- the nanotips formed in Step 1202 are likely to be IrOx, having a tip base size of about 50 nm, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100nanotips per square micrometer.
- the memory resistor material is likely to be PCMO, CMR film, transition metal oxides, Mott insulators, or HTSC material.
- the second electrode material is likely to be Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A 1 . Further, the memory resistor material typically has a thickness, between the nanotip ends and the second electrode, in the range of 30 to 200 nm.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
A non-volatile memory resistor cell with a nanotip electrode, and corresponding fabrication method are provided. The method comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. Typically, the nanotips are iridium oxide (IrOx) and have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. In one aspect, the substrate material can be silicon, silicon oxide, silicon nitride, or a noble metal. A metalorganic chemical vapor deposition (MOCVD) process is used to deposit Ir. The IrOx nanotips are grown from the deposited Ir.
Description
- This application is a Divisional Application of a pending patent application entitled, NON-VOLATILE MEMORY RESISTOR CELL WITH NANOTIP ELECTRODE, invented by Hsu et al., Ser. No. 11/039,544, filed Jan. 19, 2005, Attorney Docket No. SLA0892, which is incorporated herein by reference.
- 1. Field of the Invention
- This invention generally relates to integrated circuit (IC) fabrication and, more particularly, to a memory resistor cell made using an electrode with nanotips.
- 2. Description of the Related Art
- Semiconductor IC memory devices have replaced magnetic-core memory devices, as IC devices have lower fabrications cost and exhibit higher performance. An IC memory circuit includes a repeated array of memory cells, each of which stores one state of a two-state information (0 or 1), or multi-state information (for example, 00, 01, 10, or 11 of 4 states). This array of cells works together with support circuitry such as a row decoder, a column decoder, a write circuit to write to the memory cell array, a control circuitry to select the correct memory cell, and a sense amplifier to amplify the signal.
- One conventional memory circuit, the flip-flop, has an output that is stable for only one of two possible voltage levels. SRAM (static random access memory) circuits store information in flip-flops where the information can be read from any memory cell at random (random access memory), and where the stored information can be kept indefinitely as long as the circuit receives power.
- The more recently developed memory cell is a DRAM (dynamic random access memory) cell. A DRAM cell typically includes a transistor and a capacitor. The capacitor stores information in the form of electrical charge and the transistor provides access to the capacitor. Because of the inherent leakage of the capacitor charge, DRAM cells must be rewritten or refreshed at frequent intervals.
- SRAM and DRAM memories cannot retain the stored information without a power source. Therefore, they belong to a class of memory called volatile memory. Another class of memory is called non-volatile memory, which retains the stored information even after the power is turned off.
- A typical non-volatile memory is ferroelectric random access memory (FRAM). Similar to a DRAM cell, a FRAM cell includes an access transistor and a storage capacitor. The difference is that FRAM cell uses ferroelectric material for its capacitor dielectric, and the information is stored as the polarization state of the ferroelectric material. Ferroelectric material can be polarized by an electric field with a polarization lifetime of longer than 10 years.
- Recent developments in materials, with changeable electrical resistance, have introduced a new kind of non-volatile memory, called RRAM (resistive random access memory). The basic component of a RRAM cell is a variable resistor. The variable resistor can be programmed to have high resistance or low resistance (in two-state memory circuits), or any intermediate resistance value (in multi-state memory circuits). The different resistance values of the RRAM cell represent the information stored in the RRAM circuit. The advantages of RRAM are the simplicity of the circuit, resulting in smaller devices, non-volatile memory characteristics, and an inherently stable memory state.
- Since a resistor is a passive component, and cannot actively influence nearby electrical components, a basic RRAM cell can formed with just a variable resistor, arranged in a cross point resistor network to form a cross point memory array. To prevent cross talk or a parasitic current path, a RRAM cell can further include a diode. This resistor/diode combination is sometimes called a 1R1D (or 1D1R) cross point memory cell. To provide better access, a RRAM can include an access transistor, as in a DRAM or FRAM cell, and this combination is sometimes called a 1R1T (or 1T1R) cross point memory cell.
- The resistance states of the RRAM can be represented by different techniques such as structural, polarization, or magnetization state. A Chalcogenide alloy is an example of structural state RRAM device. Chalcogenide alloys can exhibit two different stable reversible structural phases, namely an amorphous phase with high electrical resistance, and a polycrystalline phase with lower electrical resistance. Resistive heating by an electrical current pulse can change the phases of the chalcogenide materials. One example of polarization state is a polymer memory element. The resistance state of a polymer memory element is dependent upon the orientation of polarization of the polymer molecules. The polarization of a polymer memory element can be written by applying an electric field.
- Conventional memory resistor RRAM cells are made using planer metal top and bottom electrodes. The field intensity and the current density are typically very uniform across the electrode. Further, the physical structure of these devices is typically quite symmetrical. The symmetrical cell construction and uniform field intensities dictate that the memory states be changed using unipolar switching. That is, the resistor may be reversibly programmed to a high or a low resistance state by unipolar electrical pulses having different pulse widths. The power dissipation is, therefore, equal to IV. A relatively high current density is required for programming, which may be higher than the capacity of minimum-sized MOS transistors. For use in practical commercial applications, it would be desirable if the RRAM memory states could be switched using bipolar electrical pulses. One approach this problem has been to build physically asymmetric cells. Another approach has been to structure the memory resistor material, to create non-uniform field intensities in the memory resistor. However, these solutions may require extra fabrication processes.
- It would be advantageous if a non-volatile resistor memory cell could be fabricated, that would be suitable for low-power, high-density, large-scale memory applications.
- It would be advantageous if a non-volatile resistor memory cell could be practically fabricated using conventional CMOS processes, that could be programmed using bipolar pulses, as well as unipolar pulses.
- The present application describes a memory resistor cell where one of the electrodes is formed with nanotips extending into the memory resistor material. The conductive nanotips create an asymmetric electrode structure that creates non-uniform fields. The non-uniform fields promote bipolar switching characteristics. The electric field at the nanotips is much higher than the average field. Therefore, lower voltage, low-power electrical pulses may be used for programming the resistor.
- Accordingly, a method is provided for fabricating a nanotip electrode non-volatile memory resistor cell, the method comprises: forming a first electrode with nanotips; forming a memory resistor material adjacent the nanotips; and, forming a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. Typically, the nanotips are iridium oxide (IrOx) and have a tip base size of about 50nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer.
- In one aspect, the substrate material can be silicon, silicon oxide, silicon nitride, or a noble metal. The specification below provides details of a metalorganic chemical vapor deposition (MOCVD) process that is used to deposit Ir. The IrOx nanotips are grown from the deposited Ir. In another aspect, a refractory metal film is formed overlying the substrate, and the IrOx nanotips are grown from Ir deposited on the refractory metal. The memory resistor material can be any conventional material, such as Pr0.3Ca0.7MnO3 (PCMO), colossal magnetoresistive (CMR) film, transition metal oxides, Mott insulators, or high-temperature super conductor (HTSC) material.
- In one aspect, the first electrode is the bottom electrode of the memory cell, and the memory resistor material is conformally deposited over the bottom electrode and bottom electrode nanotips. Then, the memory resistor material is planarized, and a top (second) electrode is formed overlying the memory resistor material. The top electrode can be made from a conventional material such as Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A1.
- Additional details of the above-described method, and a nanotip electrode, non-volatile memory resistor cell are provided below.
-
FIG. 1 is a partial cross-sectional view of a nanotip electrode non-volatile memory resistor cell. -
FIG. 2 is a partial cross-sectional view of the cell ofFIG. 1 , depicting some nanotips details. -
FIG. 3 is a partial cross-sectional view of a first variation of the memory cell ofFIG. 1 . -
FIG. 4 is a partial cross-sectional view of a second variation of a nanotip electrode memory cell. -
FIG. 5 is a partial cross-sectional view of a third variation of a nanotip electrode memory cell. -
FIGS. 6 and 7 depict steps in the fabrication of the nanotip electrode non-volatile memory resistor RRAM cell. -
FIG. 8 is a scanning electron microscope (SEM) photo showing a detailed view of a nanotip end. -
FIG. 9 is a SEM photo of an initial stage of IrOx nanotip grown. -
FIG. 10 is a SEM photo of fully-grown IrOx nanotips. -
FIGS. 11A and 11B are flowcharts illustrating a method for fabricating a nanotip electrode non-volatile memory resistor cell. -
FIG. 12 is a flowchart illustrating a method for changing memory states in a memory resistor cell. -
FIG. 1 is a partial cross-sectional view of a nanotip electrode non-volatile memory resistor cell. Thememory cell 100 comprises afirst electrode 102 withnanotips 104. Amemory resistor material 106 is adjacent thenanotips 104. Asecond electrode 108 is adjacent thememory resistor material 106. More specifically, thememory resistor material 106 is interposed between thefirst electrode 102 andsecond electrode 108. A number of different arrangements of memory resistor material are possible. Generally, thememory resistor material 106 may be on thenanotips 104, surrounding and on the nanotips, and between and on the nanotips. The arrangement shown inFIG. 1 satisfies all these descriptions, but other variations of thecell 100 are presented below. - As used herein, the word “nanotip” is not intended to be limited to any particular physical characteristics, shapes, or dimensions. The nanotips may alternately be known as nanorods, nanotubes, or nanowires. In some aspects (not shown), the nanotips may form a hollow structure. In other aspects (not shown), the nanotips may be formed with a plurality of tips ends.
-
FIG. 2 is a partial cross-sectional view of the cell ofFIG. 1 , depicting some nanotips details. Thefirst electrode nanotips 104 have atip base size 200 of about 50 nanometers, or less. Thefirst electrode nanotips 104 have atip height 202 in the range of 5 to 50 nm. Typically, the nanotip density is greater than 100 nanotips per square micrometer. That is, the number of nanotips growing from a 1-square micrometer surface area of thefirst electrode 102 exceeds typically exceeds 100. Typically, a higher nanotip density creates a larger differential between high and low resistance in the memory resistor material (assuming constant voltage pulses). - In one aspect, the
first electrode nanotips 104 are made from iridium oxide (IrOx). The value of “x” may be 2, in which case the Ir is completely oxidized, to values approaching zero, in which case the Ir is incompletely oxidized. Although IrOx nanotips are used to illustrate to illustrate the invention, it is expected that nanotips can also be formed from the conductive oxides of other transition metals. - Returning to
FIG. 1 , some aspects thememory cell 100 further comprise asubstrate 110 made from a material such as silicon, silicon oxide, silicon nitride, or a noble metal. Thefirst electrode 102 is formed adjacent (overlying) thesubstrate 110. -
FIG. 3 is a partial cross-sectional view of a first variation of the memory cell ofFIG. 1 . In some aspects, thememory cell 100 comprises asubstrate 110, with arefractory metal film 300 interposed between thesubstrate 110 and thefirst electrode 102. - Returning to
FIG. 1 , thememory resistor material 106 may be a material such as Pr0.3Ca0.7MnO3(PCMO), colossal magnetoresistive (CMR) film, transition metal oxides, Mott insulators, or high-temperature super conductor (HTSC) material. Thecell 100 is not necessarily limited to this list of materials, as the invention can be enabled with other materials that exhibit memory resistance characteristics. - The
first electrode nanotips 104 each have anend 112. As shown, thememory resistor material 106 has athickness 114, between the first electrode nanotip ends 112 and thesecond electrode 108, in the range of 30 to 200 nm. Thesecond electrode 108 may be a material such as Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A1. However, the cell could also be enabled with other materials. -
FIG. 4 is a partial cross-sectional view of a second variation of a nanotip electrode memory cell. In this variation, thememory cell material 106 is shown “on” thenanotips 104.Material 400 may be a memory resistor material, different thanmaterial 106, or a dielectric without memory resistance characteristics. -
FIG. 5 is a partial cross-sectional view of a third variation of a nanotip electrode memory cell. In this variation, thememory cell material 106 is shown between thenanotips 104.Material 500 may be a memory resistor material, different thanmaterial 106, or a dielectric without memory resistance characteristics. In one aspect,material 500 is crystallized Ir. -
FIGS. 6 and 7 depict steps in the fabrication of the nanotip electrode non-volatile memory resistor RRAM cell. As shown, the bottom electrode is made of iridium oxide nanotips. The memory resistor, for the sake of simplicity, is denoted as CMR. The top electrode is a non-oxidiziable refractory metal or a refractory metal compound, such as Pt or TiN. - When a voltage is applied between the two electrodes, a very high field intensity is developed at the end of the IrOx nanotips. When a positive voltage pulse is applied to the top electrode, a high electron density is injected into the memory resistor from the IrOx nanotips. Hence, the CMR in the vicinity of the IrOx tips is turned to the high resistance phase. When a negative voltage pulse is applied to the top electrode, the high field intensity at the IrOx nanotips converts the CMR in the vicinity of the nanotips into low resistance phase CMR.
-
FIG. 8 is a scanning electron microscope (SEM) photo showing a detailed view of a nanotip end. Since the IrOx nanotips have a pointy end, with a diameter in the order of a few nanometers, a high field intensity may generated at the tip end areas, even if the amplitude of the voltage pulse applied to the electrode, is relatively small. Also, the current is not uniformly distributed. Therefore, the programming power of this non-volatile memory device is very low. The tip size (diameter) is about 50 nm, which can be controlled by variations in the nanotip growth process. The IrOx tips height is typically from 5 nm to 50 nm, although 100 nm tips heights are also possible. The IrOx nanotips density is typically greater than 100 per square-micrometer, however the density can be greater than 3,000/micrometer2. Uniform device properties can be achieved for device sizes down to the deep sub-micron diameter region. - One of the methods of growing IrOx nanotips is to deposit a thin layer of Ti onto silicon substrate, to enhance the vertical alignment of the IrOx nanotips. The IrOx nanotips is grown by MOCVD, using (Methylcyclopentadieyl)(1,5-cycleectahiene) iridium as a source reagent, at temperature of 350° C., under an oxygen pressure of 10 to 50 torr. The density and the height of the nanotips can be controlled by the sub-layer titanium thickness, the deposition pressure, temperature, and time.
- After the growth of the IrOx nanotips, any conventional method may be used to fabricate the resistor memory cells. A layer of memory material, such as PCMO, or other Mott insulator material is deposited. The thickness of the memory resistor material is typically is in the range of 50 nm to 200 nm. The wafer is planarized using chemical-mechanical planarization (CMP) process prior to the deposition of the top electrode. After CMP, the thickness of the memory resistance material, from the end of the IrOx tip, to the top electrode bottom surface, is typically 30 nm to 200 nm. Hard mask and photoresist are used for selective etching the top electrode, the memory resistance material, and the bottom electrode of IrOx and Ti, out of the field region. A passivation layer, such as 10 nm to 50 nm of silicon nitride or aluminum oxide is deposited, followed by an additional silicon oxide deposition and CMP planarized as is shown in
FIG. 7 . The silicon nitride or aluminum oxide passivation layer is not showed inFIG. 7 . -
FIG. 9 is a SEM photo of an initial stage of IrOx nanotip grown. Only a few isolated nanotips are visible. -
FIG. 10 is a SEM photo of fully-grown IrOx nanotips. A high-density vertical array of nanotips is shown. -
FIGS. 11A and 11B are flowcharts illustrating a method for fabricating a nanotip electrode non-volatile memory resistor cell. Although the method is depicted as a sequence of numbered steps for clarity, no order should be inferred from the numbering unless explicitly stated. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. Some details of the method may be better understood in context of the explanations ofFIGS. 1-10 , above. The method starts atStep 1100. -
Step 1104 forms a first electrode with nanotips.Step 1106 forms a memory resistor material adjacent the nanotips. More explicitly,Step 1106 forms the memory resistor material surrounding the nanotips, on the nanotips, and between the nanotips.Step 1108 forms a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes. - With respect to Step 1104, the nanotips formed may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are iridium oxide.
- In one aspect,
Step 1102 provides a substrate, made from a material such as silicon, silicon oxide, silicon nitride, or a noble metal. Then, forming IrOx nanotips inStep 1104 includes substeps.Step 1104 asupplies a (Methylcyclopendieyl)(1,5-cycleectahiene) precursor.Step 1104 b deposits Ir using a metalorganic chemical vapor deposition (MOCVD) process.Step 1104 c grows IrOx nanotips from the deposited Ir.Step 1104 d deposits the Ir at a temperature of about 350° C, andStep 1104 e deposits the Ir at an oxygen partial pressure in the range of 10 to 50 torr. - In a variation of the method,
Step 1103 forms a refractory metal film overlying the substrate. Then, depositing Ir using an MOCVD process inStep 1104 b includes depositing Ir overlying the refractor metal film. - In one aspect, forming the memory resistor material adjacent the nanotips in
Step 1106 includes. forming a memory resistor material such as Pr0.3Ca0.7MnO3 (PCMO), colossal magnetoresistive (CMR) film, transition metal oxides, Mott insulators, or high-temperature super conductor (HTSC) material. In another aspect,Step 1104 includes forming a bottom electrode with nanotips having nanotip ends, andStep 1106 includes substeps.Step 1106a conformally deposits the memory resistor material overlying the bottom electrode with nanotips.Step 1106 b planarizes the memory resistor material. Then,Step 1108 forms a top electrode overlying the memory resistor material. - In one aspect,
Step 1106 a conformally deposits memory resistor material, having a thickness in the range of 50 to 200 nm, overlying the nanotips.Step 1106 b planarizes the memory resistor material, leaving a thickness of memory resistor material, in the range of 30 to 200 nm, interposed between the nanotip ends and the top electrode. - In one aspect, forming the top electrode in
Step 1108 includes substeps.Step 1108 a conformally deposits top electrode material.Step 1108 b selectively etches the top electrode material, memory resistor material, and the bottom electrode.Step 1110 forms a passivation layer adjacent the memory cell (seeFIG. 7 ). The second (top) electrode can be a material such as Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A1. -
FIG. 12 is a flowchart illustrating a method for changing memory states in a memory resistor cell. The method starts atStep 1200.Step 1202 supplies a resistor memory cell with a second electrode, memory resistor material, and a first electrode having nanotips adjacent the memory resistor material.Step 1204 supplies a voltage pulse to the second electrode.Step 1206 creates a field (in the memory resistor material) in the vicinity of the nanotips.Step 1208 generates resistance characteristics of the memory resistor material in response to the field. The high resistance can be in the range of 1000 to 100,000 times greater than the low resistance. - In a bipolar switching aspect,
Step 1204 supplies a narrow-width positive voltage pulse to the second (top) electrode. Then,Step 1208 generates a high resistance in the memory resistor material. In another aspect,Step 1204 supplies a narrow-width negative voltage pulse, andStep 1208 generates a low resistance. Typically,Step 1204 supplies a pulse with an absolute voltage value (positive or negative) in the range of 1.5 to 7 volts, and a narrow-width pulse width in the range of 1 to 500 nanoseconds (ns). - Alternately, in the unipolar switching aspect of the invention,
Step 1204 uses a narrow-width pulse to create a high resistance as described above, but supplies a large-width positive voltage pulse to the second electrode, with a voltage value in the range of 1.5 to 7 volts, and a pulse width in the range of 1 millisecond (ms) to 10 ms. Then,Step 1208 generates a low resistance in the memory resistor material in response to the large-width positive pulse. - The above steps describe an arrangement where nanotips are grown from the first electrode and pulses are applied to the second electrode. Alternately, the pulses could be applied to the first electrode, so that the cell acts 1R1D type of cell. A negative pulse applied to the first electrode generates the same memory resistance characteristics as a positive pulse applied to the second electrode. Likewise, a positive pulse applied to the first electrode generates the same memory resistance characteristics as a negative pulse applied to the second electrode.
- As noted earlier, the nanotips formed in
Step 1202 are likely to be IrOx, having a tip base size of about 50 nm, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100nanotips per square micrometer. The memory resistor material is likely to be PCMO, CMR film, transition metal oxides, Mott insulators, or HTSC material. The second electrode material is likely to be Pt, refractory metals, refractory metal oxides, refractory metal nitrides, or A1. Further, the memory resistor material typically has a thickness, between the nanotip ends and the second electrode, in the range of 30 to 200 nm. - A memory resistor cell made with a nanotip electrode, and a corresponding fabrication process has been provided. Specific materials and fabrication details have been given as examples to help illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.
Claims (12)
1-28. (canceled)
29. A nanotip electrode non-volatile memory resistor cell, the memory cell comprising:
a first electrode with nanotips;
memory resistor material adjacent the nanotips; and
a second electrode adjacent the memory resistor material, where the memory resistor material is interposed between the first and second electrodes.
30. The memory cell of claim 29 wherein the first electrode nanotips have a tip base size of about 50 nanometers, or less.
31. The memory cell of claim 29 wherein the first electrode nanotips have a tip height in the range of 5 to 50 nm.
32. The memory cell of claim 29 wherein the first electrode nanotips have a nanotip density of greater than 100 nanotips per square micrometer.
33. The memory cell of claim 29 wherein the first electrode nanotips are made from iridium oxide (IrOx).
34. The memory cell of claim 33 further comprising:
a substrate;
a refractory metal film interposed between the substrate and the first electrode.
35. The memory cell of claim 29 further comprising:
a substrate, made from a material selected from the group including silicon, silicon oxide, silicon nitride, and noble metals; and
wherein the first electrode is formed adjacent the substrate.
36. The memory cell of claim 29 wherein the memory resistor material is a material selected from the group including Pr0.3Ca0.7MnO3 (PCMO), colossal magnetoresistive (CMR) film, transition metal oxides, Mott insulators, and high-temperature super conductor (HTSC) material.
37. The memory cell of claim 29 wherein the first electrode nanotips have ends; and
wherein the memory resistor material has a thickness, between the first electrode nanotip ends and the second electrode, in the range of 30 to 200 nm.
38. The memory cell of claim 29 wherein the second electrode is a material selected from the group including Pt, refractory metals, refractory metal oxides, refractory metal nitrides, and A1.
39. The memory cell of claim 29 wherein the memory resistor material is adjacent to the nanotips in a relationship selected from the group including on the nanotips, surrounding the nanotips, and between the nanotips.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/717,818 US20070167008A1 (en) | 2005-01-19 | 2007-03-14 | Nanotip electrode non-volatile memory resistor cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/039,544 US7208372B2 (en) | 2005-01-19 | 2005-01-19 | Non-volatile memory resistor cell with nanotip electrode |
US11/717,818 US20070167008A1 (en) | 2005-01-19 | 2007-03-14 | Nanotip electrode non-volatile memory resistor cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,544 Division US7208372B2 (en) | 2005-01-19 | 2005-01-19 | Non-volatile memory resistor cell with nanotip electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070167008A1 true US20070167008A1 (en) | 2007-07-19 |
Family
ID=36684465
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,544 Expired - Fee Related US7208372B2 (en) | 2005-01-19 | 2005-01-19 | Non-volatile memory resistor cell with nanotip electrode |
US11/717,818 Abandoned US20070167008A1 (en) | 2005-01-19 | 2007-03-14 | Nanotip electrode non-volatile memory resistor cell |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,544 Expired - Fee Related US7208372B2 (en) | 2005-01-19 | 2005-01-19 | Non-volatile memory resistor cell with nanotip electrode |
Country Status (2)
Country | Link |
---|---|
US (2) | US7208372B2 (en) |
JP (1) | JP4965854B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080090337A1 (en) * | 2006-10-03 | 2008-04-17 | Williams R Stanley | Electrically actuated switch |
US20090180309A1 (en) * | 2008-01-15 | 2009-07-16 | Jun Liu | Memory Cells, Memory Cell Programming Methods, Memory Cell Reading Methods, Memory Cell Operating Methods, and Memory Devices |
US20090272960A1 (en) * | 2008-05-02 | 2009-11-05 | Bhaskar Srinivasan | Non-Volatile Resistive Oxide Memory Cells, and Methods Of Forming Non-Volatile Resistive Oxide Memory Cells |
US20090316467A1 (en) * | 2008-06-18 | 2009-12-24 | Jun Liu | Memory Device Constructions, Memory Cell Forming Methods, and Semiconductor Construction Forming Methods |
US7738280B2 (en) | 2008-02-19 | 2010-06-15 | Panasonic Corporation | Resistive nonvolatile memory element, and production method of the same |
US20110024716A1 (en) * | 2009-07-28 | 2011-02-03 | Bratkovski Alexandre M | Memristor having a nanostructure in the switching material |
US20110177666A1 (en) * | 2009-08-03 | 2011-07-21 | Katsuya Nozawa | Method of manufacturing semiconductor memory |
US20110193051A1 (en) * | 2010-02-08 | 2011-08-11 | Samsung Electronics Co., Ltd. | Resistance memory devices and methods of forming the same |
US20110227030A1 (en) * | 2009-01-13 | 2011-09-22 | Pickett Matthew D | Memristor Having a Triangular Shaped Electrode |
US8034655B2 (en) | 2008-04-08 | 2011-10-11 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8411477B2 (en) | 2010-04-22 | 2013-04-02 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8427859B2 (en) | 2010-04-22 | 2013-04-23 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8537592B2 (en) | 2011-04-15 | 2013-09-17 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8681531B2 (en) | 2011-02-24 | 2014-03-25 | Micron Technology, Inc. | Memory cells, methods of forming memory cells, and methods of programming memory cells |
US8753949B2 (en) | 2010-11-01 | 2014-06-17 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cells |
US8759809B2 (en) | 2010-10-21 | 2014-06-24 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer |
US8791447B2 (en) | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8811063B2 (en) | 2010-11-01 | 2014-08-19 | Micron Technology, Inc. | Memory cells, methods of programming memory cells, and methods of forming memory cells |
US8976566B2 (en) | 2010-09-29 | 2015-03-10 | Micron Technology, Inc. | Electronic devices, memory devices and memory arrays |
US9006698B2 (en) | 2011-01-20 | 2015-04-14 | Panasonic Intellectual Property Management Co., Ltd. | Variable resistance element and method of manufacturing the same |
US9343665B2 (en) | 2008-07-02 | 2016-05-17 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
US9412421B2 (en) | 2010-06-07 | 2016-08-09 | Micron Technology, Inc. | Memory arrays |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8155754B2 (en) | 2005-01-25 | 2012-04-10 | Medtronic, Inc. | Method for fabrication of low-polarization implantable stimulation electrode |
US7776682B1 (en) * | 2005-04-20 | 2010-08-17 | Spansion Llc | Ordered porosity to direct memory element formation |
JP2006324501A (en) * | 2005-05-19 | 2006-11-30 | Toshiba Corp | Phase-change memory and its manufacturing method |
KR100669854B1 (en) * | 2005-07-05 | 2007-01-16 | 삼성전자주식회사 | Unit cell structure and manufacturing method thereof, nonvolatile memory device having same and manufacturing method thereof |
US7420199B2 (en) * | 2005-07-14 | 2008-09-02 | Infineon Technologies Ag | Resistivity changing memory cell having nanowire electrode |
US7521705B2 (en) * | 2005-08-15 | 2009-04-21 | Micron Technology, Inc. | Reproducible resistance variable insulating memory devices having a shaped bottom electrode |
US20070048990A1 (en) * | 2005-08-30 | 2007-03-01 | Sharp Laboratories Of America, Inc. | Method of buffer layer formation for RRAM thin film deposition |
US8395199B2 (en) | 2006-03-25 | 2013-03-12 | 4D-S Pty Ltd. | Systems and methods for fabricating self-aligned memory cell |
US7932548B2 (en) | 2006-07-14 | 2011-04-26 | 4D-S Pty Ltd. | Systems and methods for fabricating self-aligned memory cell |
US8454810B2 (en) | 2006-07-14 | 2013-06-04 | 4D-S Pty Ltd. | Dual hexagonal shaped plasma source |
EP2070088A4 (en) * | 2006-08-08 | 2009-07-29 | Nantero Inc | NON-VOLATILE RESISTIVE MEMORIES, LATCHING CIRCUITS, AND OPERATING CIRCUITS COMPRISING TWO-TERMINAL NANOTUBE SWITCHES |
US8308915B2 (en) | 2006-09-14 | 2012-11-13 | 4D-S Pty Ltd. | Systems and methods for magnetron deposition |
KR101206036B1 (en) * | 2006-11-16 | 2012-11-28 | 삼성전자주식회사 | Resistive random access memory enclosing a transition metal solid solution and Manufacturing Method for the same |
KR100873890B1 (en) * | 2006-11-17 | 2008-12-15 | 삼성전자주식회사 | Phase-change memory unit, method of forming the phase-change memory unit, phase-change memory device having the phase-change memory unit and method of manufacturing the phase-change memory device |
US8996129B2 (en) * | 2007-01-31 | 2015-03-31 | Medtronic, Inc. | Medical electrode including an iridium oxide surface and methods of fabrication |
US7645669B2 (en) * | 2007-02-16 | 2010-01-12 | Sharp Laboratories Of America, Inc. | Nanotip capacitor |
FI122011B (en) * | 2007-06-08 | 2011-07-15 | Teknologian Tutkimuskeskus Vtt | Method for Producing an Electronic Module, Intermediate to Produce an Electronic Module, Memory Element, Printed Electronic Product, Sensor Device, and RFID Tag |
KR101356696B1 (en) * | 2007-08-17 | 2014-01-29 | 삼성전자주식회사 | Diode Structure and Memory Device Encolsing the Same |
JP4464462B2 (en) | 2007-10-29 | 2010-05-19 | パナソニック株式会社 | Nonvolatile storage device and nonvolatile data recording medium |
US8236623B2 (en) | 2007-12-31 | 2012-08-07 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same |
US8878235B2 (en) | 2007-12-31 | 2014-11-04 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same |
US8558220B2 (en) * | 2007-12-31 | 2013-10-15 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same |
JP5113584B2 (en) | 2008-03-28 | 2013-01-09 | 株式会社東芝 | Nonvolatile memory device and manufacturing method thereof |
JP5305711B2 (en) * | 2008-03-31 | 2013-10-02 | 株式会社東芝 | Nonvolatile memory device and manufacturing method thereof |
JP5361864B2 (en) * | 2008-04-03 | 2013-12-04 | 株式会社東芝 | Nonvolatile memory device and manufacturing method thereof |
WO2009122582A1 (en) * | 2008-04-03 | 2009-10-08 | 株式会社 東芝 | Nonvolatile recording device and process for producing the same |
US8530318B2 (en) * | 2008-04-11 | 2013-09-10 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same |
US8304284B2 (en) * | 2008-04-11 | 2012-11-06 | Sandisk 3D Llc | Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same |
US7796417B1 (en) | 2008-04-14 | 2010-09-14 | Altera Corporation | Memory circuits having programmable non-volatile resistors |
WO2009147790A1 (en) * | 2008-06-03 | 2009-12-10 | パナソニック株式会社 | Non‑volatile storage element, non‑volatile storage device, and non‑volatile semiconductor device |
US7795606B2 (en) * | 2008-08-05 | 2010-09-14 | Seagate Technology Llc | Non-volatile memory cell with enhanced filament formation characteristics |
US7897955B2 (en) * | 2008-11-03 | 2011-03-01 | Seagate Technology Llc | Programmable resistive memory cell with filament placement structure |
US8097870B2 (en) * | 2008-11-05 | 2012-01-17 | Seagate Technology Llc | Memory cell with alignment structure |
US8283649B2 (en) * | 2009-07-28 | 2012-10-09 | Hewlett-Packard Development Company, L.P. | Memristor with a non-planar substrate |
US8759810B2 (en) * | 2009-09-25 | 2014-06-24 | The Trustees Of The University Of Pennsylvania | Phase change memory devices with relaxed stress |
JP5036909B2 (en) * | 2009-12-18 | 2012-09-26 | パナソニック株式会社 | Resistance variable element and manufacturing method thereof |
KR101744758B1 (en) | 2010-08-31 | 2017-06-09 | 삼성전자 주식회사 | Nonvolatile memory element and memory device including the same |
CN102479925A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院微电子研究所 | Resistance transformation memory structure with high transformation ratio capability and preparation method thereof |
JP5438707B2 (en) | 2011-03-04 | 2014-03-12 | シャープ株式会社 | Variable resistance element, method of manufacturing the same, and nonvolatile semiconductor memory device including the variable resistance element |
CN103633243B (en) * | 2012-08-28 | 2016-03-23 | 中国科学院微电子研究所 | Preparation method of resistive memory |
US9029192B1 (en) | 2013-12-20 | 2015-05-12 | Intermolecular, Inc. | Metal organic chemical vapor deposition of resistive switching layers for ReRAM cells |
WO2016039694A1 (en) * | 2014-09-12 | 2016-03-17 | Agency For Science, Technology And Research | Memory cell and method of forming the same |
US20170141306A1 (en) * | 2015-11-17 | 2017-05-18 | Chang Gung University | Memory structure |
US9966253B2 (en) * | 2016-02-25 | 2018-05-08 | International Business Machines Corporation | Forming nanotips |
TWI651852B (en) * | 2016-05-27 | 2019-02-21 | 國立中山大學 | Resistance random access memory |
GB2561168B (en) * | 2017-03-31 | 2019-08-07 | Ucl Business Plc | A switching resistor and method of making such a device |
KR102751210B1 (en) * | 2022-09-08 | 2025-01-06 | 고려대학교 산학협력단 | Phase change memory device formed based on tip-array electrode structure having nanoscale filament heater and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087674A (en) * | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US6455329B1 (en) * | 2000-12-21 | 2002-09-24 | Hynix Semiconductor Inc. | Method for fabricating a capacitor in a semiconductor device |
US6487535B1 (en) * | 1995-12-01 | 2002-11-26 | Digital Theater Systems, Inc. | Multi-channel audio encoder |
US6847535B2 (en) * | 2002-02-20 | 2005-01-25 | Micron Technology, Inc. | Removable programmable conductor memory card and associated read/write device and method of operation |
US20050180189A1 (en) * | 2004-02-17 | 2005-08-18 | Infineon Technologies Ag | Memory device electrode with a surface structure |
US7057258B2 (en) * | 2003-10-29 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Resistive memory device and method for making the same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040230A (en) * | 1997-04-30 | 2000-03-21 | Texas Instruments Incorporated | Method of forming a nano-rugged silicon-containing layer |
US6232174B1 (en) * | 1998-04-22 | 2001-05-15 | Sharp Kabushiki Kaisha | Methods for fabricating a semiconductor memory device including flattening of a capacitor dielectric film |
US6323044B1 (en) * | 1999-01-12 | 2001-11-27 | Agere Systems Guardian Corp. | Method of forming capacitor having the lower metal electrode for preventing undesired defects at the surface of the metal plug |
KR20010110433A (en) * | 1999-02-11 | 2001-12-13 | 알란 엠. 포스칸져 | Programmable microelectronic devices and methods of forming and programming same |
WO2000049660A1 (en) * | 1999-02-16 | 2000-08-24 | Symetrix Corporation | Iridium oxide diffusion barrier between local interconnect layer and thin film of layered superlattice material |
JP3603188B2 (en) * | 2001-12-12 | 2004-12-22 | 松下電器産業株式会社 | Nonvolatile memory and method of manufacturing the same |
JP2004241396A (en) * | 2002-02-07 | 2004-08-26 | Sharp Corp | Method for manufacturing resistance varying element, method for manufacturing nonvolatile resistance varying memory device, and nonvolatile resistance varying memory device |
US6670628B2 (en) * | 2002-04-04 | 2003-12-30 | Hewlett-Packard Company, L.P. | Low heat loss and small contact area composite electrode for a phase change media memory device |
JP4054215B2 (en) * | 2002-05-01 | 2008-02-27 | 田中貴金属工業株式会社 | Chemical vapor deposition method of raw material compound for CVD and iridium or iridium compound thin film |
KR100487528B1 (en) * | 2002-06-26 | 2005-05-03 | 삼성전자주식회사 | Ferroelectric capacitor having metal oxide for prohobiting fatigue and method of forming the same |
US6859382B2 (en) * | 2002-08-02 | 2005-02-22 | Unity Semiconductor Corporation | Memory array of a non-volatile ram |
US6870751B2 (en) * | 2002-11-07 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Low-energy writing in cross-point array memory devices |
JP4221660B2 (en) * | 2003-10-16 | 2009-02-12 | ソニー株式会社 | Pore structure and manufacturing method thereof, memory device and manufacturing method thereof, adsorption amount analyzing apparatus, and magnetic recording medium |
US7001821B2 (en) * | 2003-11-10 | 2006-02-21 | Texas Instruments Incorporated | Method of forming and using a hardmask for forming ferroelectric capacitors in a semiconductor device |
US20060073613A1 (en) * | 2004-09-29 | 2006-04-06 | Sanjeev Aggarwal | Ferroelectric memory cells and methods for fabricating ferroelectric memory cells and ferroelectric capacitors thereof |
JP4220459B2 (en) * | 2004-11-22 | 2009-02-04 | 株式会社東芝 | Semiconductor device |
US7180141B2 (en) * | 2004-12-03 | 2007-02-20 | Texas Instruments Incorporated | Ferroelectric capacitor with parallel resistance for ferroelectric memory |
-
2005
- 2005-01-19 US US11/039,544 patent/US7208372B2/en not_active Expired - Fee Related
- 2005-12-15 JP JP2005361983A patent/JP4965854B2/en not_active Expired - Fee Related
-
2007
- 2007-03-14 US US11/717,818 patent/US20070167008A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6487535B1 (en) * | 1995-12-01 | 2002-11-26 | Digital Theater Systems, Inc. | Multi-channel audio encoder |
US6087674A (en) * | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US6455329B1 (en) * | 2000-12-21 | 2002-09-24 | Hynix Semiconductor Inc. | Method for fabricating a capacitor in a semiconductor device |
US6847535B2 (en) * | 2002-02-20 | 2005-01-25 | Micron Technology, Inc. | Removable programmable conductor memory card and associated read/write device and method of operation |
US7057258B2 (en) * | 2003-10-29 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Resistive memory device and method for making the same |
US20050180189A1 (en) * | 2004-02-17 | 2005-08-18 | Infineon Technologies Ag | Memory device electrode with a surface structure |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9735355B2 (en) | 2006-10-03 | 2017-08-15 | Hewlett Packard Enterprise Development Lp | Electrically actuated switch |
US11283012B2 (en) | 2006-10-03 | 2022-03-22 | Hewlett Packard Enterprise Development Lp | Electrically actuated switch |
US8766224B2 (en) | 2006-10-03 | 2014-07-01 | Hewlett-Packard Development Company, L.P. | Electrically actuated switch |
US20080090337A1 (en) * | 2006-10-03 | 2008-04-17 | Williams R Stanley | Electrically actuated switch |
US10374155B2 (en) | 2006-10-03 | 2019-08-06 | Hewlett Packard Enterprise Development Lp | Electrically actuated switch |
US10262734B2 (en) | 2008-01-15 | 2019-04-16 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US10790020B2 (en) | 2008-01-15 | 2020-09-29 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US9343145B2 (en) | 2008-01-15 | 2016-05-17 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US7768812B2 (en) | 2008-01-15 | 2010-08-03 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US9805792B2 (en) | 2008-01-15 | 2017-10-31 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US11393530B2 (en) | 2008-01-15 | 2022-07-19 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US20090180309A1 (en) * | 2008-01-15 | 2009-07-16 | Jun Liu | Memory Cells, Memory Cell Programming Methods, Memory Cell Reading Methods, Memory Cell Operating Methods, and Memory Devices |
US20100271863A1 (en) * | 2008-01-15 | 2010-10-28 | Jun Liu | Memory Cells, Memory Cell Programming Methods, Memory Cell Reading Methods, Memory Cell Operating Methods, and Memory Devices |
US8154906B2 (en) | 2008-01-15 | 2012-04-10 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US7738280B2 (en) | 2008-02-19 | 2010-06-15 | Panasonic Corporation | Resistive nonvolatile memory element, and production method of the same |
US8674336B2 (en) | 2008-04-08 | 2014-03-18 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8034655B2 (en) | 2008-04-08 | 2011-10-11 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8211743B2 (en) | 2008-05-02 | 2012-07-03 | Micron Technology, Inc. | Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes |
US20090272960A1 (en) * | 2008-05-02 | 2009-11-05 | Bhaskar Srinivasan | Non-Volatile Resistive Oxide Memory Cells, and Methods Of Forming Non-Volatile Resistive Oxide Memory Cells |
US9577186B2 (en) | 2008-05-02 | 2017-02-21 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells and methods of forming non-volatile resistive oxide memory cells |
US8134137B2 (en) | 2008-06-18 | 2012-03-13 | Micron Technology, Inc. | Memory device constructions, memory cell forming methods, and semiconductor construction forming methods |
US9257430B2 (en) | 2008-06-18 | 2016-02-09 | Micron Technology, Inc. | Semiconductor construction forming methods |
US9111788B2 (en) | 2008-06-18 | 2015-08-18 | Micron Technology, Inc. | Memory device constructions, memory cell forming methods, and semiconductor construction forming methods |
US9559301B2 (en) | 2008-06-18 | 2017-01-31 | Micron Technology, Inc. | Methods of forming memory device constructions, methods of forming memory cells, and methods of forming semiconductor constructions |
US20090316467A1 (en) * | 2008-06-18 | 2009-12-24 | Jun Liu | Memory Device Constructions, Memory Cell Forming Methods, and Semiconductor Construction Forming Methods |
US9343665B2 (en) | 2008-07-02 | 2016-05-17 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
US9666801B2 (en) | 2008-07-02 | 2017-05-30 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
US20110227030A1 (en) * | 2009-01-13 | 2011-09-22 | Pickett Matthew D | Memristor Having a Triangular Shaped Electrode |
US8431921B2 (en) | 2009-01-13 | 2013-04-30 | Hewlett-Packard Development Company, L.P. | Memristor having a triangular shaped electrode |
US8207593B2 (en) * | 2009-07-28 | 2012-06-26 | Hewlett-Packard Development Company, L.P. | Memristor having a nanostructure in the switching material |
US20110024716A1 (en) * | 2009-07-28 | 2011-02-03 | Bratkovski Alexandre M | Memristor having a nanostructure in the switching material |
US20110177666A1 (en) * | 2009-08-03 | 2011-07-21 | Katsuya Nozawa | Method of manufacturing semiconductor memory |
US8258038B2 (en) | 2009-08-03 | 2012-09-04 | Panasonic Corporation | Method of manufacturing semiconductor memory |
US20110193051A1 (en) * | 2010-02-08 | 2011-08-11 | Samsung Electronics Co., Ltd. | Resistance memory devices and methods of forming the same |
US8581364B2 (en) | 2010-02-08 | 2013-11-12 | Samsung Electronics Co., Ltd. | Resistance memory devices and methods of forming the same |
US9036402B2 (en) | 2010-04-22 | 2015-05-19 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells |
US8743589B2 (en) | 2010-04-22 | 2014-06-03 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8542513B2 (en) | 2010-04-22 | 2013-09-24 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8427859B2 (en) | 2010-04-22 | 2013-04-23 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8411477B2 (en) | 2010-04-22 | 2013-04-02 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8760910B2 (en) | 2010-04-22 | 2014-06-24 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US10241185B2 (en) | 2010-06-07 | 2019-03-26 | Micron Technology, Inc. | Memory arrays |
US10746835B1 (en) | 2010-06-07 | 2020-08-18 | Micron Technology, Inc. | Memory arrays |
US9887239B2 (en) | 2010-06-07 | 2018-02-06 | Micron Technology, Inc. | Memory arrays |
US9989616B2 (en) | 2010-06-07 | 2018-06-05 | Micron Technology, Inc. | Memory arrays |
US9412421B2 (en) | 2010-06-07 | 2016-08-09 | Micron Technology, Inc. | Memory arrays |
US10656231B1 (en) | 2010-06-07 | 2020-05-19 | Micron Technology, Inc. | Memory Arrays |
US10859661B2 (en) | 2010-06-07 | 2020-12-08 | Micron Technology, Inc. | Memory arrays |
US10613184B2 (en) | 2010-06-07 | 2020-04-07 | Micron Technology, Inc. | Memory arrays |
US9697873B2 (en) | 2010-06-07 | 2017-07-04 | Micron Technology, Inc. | Memory arrays |
US8976566B2 (en) | 2010-09-29 | 2015-03-10 | Micron Technology, Inc. | Electronic devices, memory devices and memory arrays |
US8883604B2 (en) | 2010-10-21 | 2014-11-11 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells and methods of forming a nonvolatile memory cell |
US8759809B2 (en) | 2010-10-21 | 2014-06-24 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer |
US8811063B2 (en) | 2010-11-01 | 2014-08-19 | Micron Technology, Inc. | Memory cells, methods of programming memory cells, and methods of forming memory cells |
US9406878B2 (en) | 2010-11-01 | 2016-08-02 | Micron Technology, Inc. | Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells |
US8753949B2 (en) | 2010-11-01 | 2014-06-17 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cells |
US9117998B2 (en) | 2010-11-01 | 2015-08-25 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cells |
US8796661B2 (en) | 2010-11-01 | 2014-08-05 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cell |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8652909B2 (en) | 2010-12-27 | 2014-02-18 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells array of nonvolatile memory cells |
US9034710B2 (en) | 2010-12-27 | 2015-05-19 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US9006698B2 (en) | 2011-01-20 | 2015-04-14 | Panasonic Intellectual Property Management Co., Ltd. | Variable resistance element and method of manufacturing the same |
US9093368B2 (en) | 2011-01-20 | 2015-07-28 | Micron Technology, Inc. | Nonvolatile memory cells and arrays of nonvolatile memory cells |
US8791447B2 (en) | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8681531B2 (en) | 2011-02-24 | 2014-03-25 | Micron Technology, Inc. | Memory cells, methods of forming memory cells, and methods of programming memory cells |
US9257648B2 (en) | 2011-02-24 | 2016-02-09 | Micron Technology, Inc. | Memory cells, methods of forming memory cells, and methods of programming memory cells |
US9424920B2 (en) | 2011-02-24 | 2016-08-23 | Micron Technology, Inc. | Memory cells, methods of forming memory cells, and methods of programming memory cells |
US8854863B2 (en) | 2011-04-15 | 2014-10-07 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US9184385B2 (en) | 2011-04-15 | 2015-11-10 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8537592B2 (en) | 2011-04-15 | 2013-09-17 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
Also Published As
Publication number | Publication date |
---|---|
JP2006203178A (en) | 2006-08-03 |
US7208372B2 (en) | 2007-04-24 |
US20060160304A1 (en) | 2006-07-20 |
JP4965854B2 (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7208372B2 (en) | Non-volatile memory resistor cell with nanotip electrode | |
US11600691B2 (en) | Memory cells comprising ferroelectric material and including current leakage paths having different total resistances | |
KR100796430B1 (en) | Phase change access device for memory | |
US7935953B2 (en) | Nonvolatile memory device, array of nonvolatile memory devices, and methods of making the same | |
US7196387B2 (en) | Memory cell with an asymmetrical area | |
US7982209B2 (en) | Memory cell comprising a carbon nanotube fabric element and a steering element | |
CN101030622B (en) | Nonvolatile memory device and nonvolatile memory array including the same | |
US7667999B2 (en) | Method to program a memory cell comprising a carbon nanotube fabric and a steering element | |
KR101128246B1 (en) | Non-volatile programmable memory | |
US7932506B2 (en) | Fully self-aligned pore-type memory cell having diode access device | |
US7933139B2 (en) | One-transistor, one-resistor, one-capacitor phase change memory | |
US20070132049A1 (en) | Unipolar resistance random access memory (RRAM) device and vertically stacked architecture | |
US20060038221A1 (en) | Antiferromagnetic/paramagnetic resistive device, non-volatile memory and method for fabricating the same | |
US7800934B2 (en) | Programming methods to increase window for reverse write 3D cell | |
US20090321706A1 (en) | Resistive Memory Devices with Improved Resistive Changing Elements | |
US8072791B2 (en) | Method of making nonvolatile memory device containing carbon or nitrogen doped diode | |
US8102694B2 (en) | Nonvolatile memory device containing carbon or nitrogen doped diode | |
CN101604729A (en) | Phase change memory device with upper and lower sidewall contacts and method of making the same | |
JP2010522991A (en) | Memory cell including carbon nanotube structure element and steering element and method of forming the same | |
CA2500937A1 (en) | Memory cell having an electric field programmable storage element, and method of operating same | |
US7897954B2 (en) | Dielectric-sandwiched pillar memory device | |
US20100202193A1 (en) | Non-volatile memory device | |
JP2010205853A (en) | Semiconductor memory device using nonvolatile variable resistance element, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |