US20070161064A1 - Antibodies as a cancer diagnostic - Google Patents
Antibodies as a cancer diagnostic Download PDFInfo
- Publication number
- US20070161064A1 US20070161064A1 US11/716,792 US71679207A US2007161064A1 US 20070161064 A1 US20070161064 A1 US 20070161064A1 US 71679207 A US71679207 A US 71679207A US 2007161064 A1 US2007161064 A1 US 2007161064A1
- Authority
- US
- United States
- Prior art keywords
- epha2
- cells
- antibody
- cell population
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010028980 Neoplasm Diseases 0.000 title claims description 16
- 201000011510 cancer Diseases 0.000 title claims description 12
- 102000051096 EphA2 Receptor Human genes 0.000 claims abstract description 139
- 108010055196 EphA2 Receptor Proteins 0.000 claims abstract description 139
- 238000000034 method Methods 0.000 claims abstract description 93
- 206010061289 metastatic neoplasm Diseases 0.000 claims abstract description 61
- 230000027455 binding Effects 0.000 claims abstract description 37
- 210000002919 epithelial cell Anatomy 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 210000004027 cell Anatomy 0.000 claims description 161
- 230000001394 metastastic effect Effects 0.000 claims description 44
- 230000014509 gene expression Effects 0.000 claims description 40
- 239000003153 chemical reaction reagent Substances 0.000 claims description 22
- 238000001262 western blot Methods 0.000 claims description 16
- 210000004408 hybridoma Anatomy 0.000 claims description 15
- 230000003834 intracellular effect Effects 0.000 claims description 13
- 230000026731 phosphorylation Effects 0.000 claims description 13
- 238000006366 phosphorylation reaction Methods 0.000 claims description 13
- 210000001519 tissue Anatomy 0.000 claims description 12
- 210000000481 breast Anatomy 0.000 claims description 10
- 206010006187 Breast cancer Diseases 0.000 claims description 9
- 208000026310 Breast neoplasm Diseases 0.000 claims description 8
- 210000001124 body fluid Anatomy 0.000 claims description 8
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 claims description 8
- 239000010839 body fluid Substances 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 7
- 230000004807 localization Effects 0.000 claims description 7
- 208000037819 metastatic cancer Diseases 0.000 claims description 7
- 208000011575 metastatic malignant neoplasm Diseases 0.000 claims description 7
- 230000000683 nonmetastatic effect Effects 0.000 claims description 7
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 6
- 210000002307 prostate Anatomy 0.000 claims description 6
- 210000005267 prostate cell Anatomy 0.000 claims description 6
- 230000002285 radioactive effect Effects 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 239000008280 blood Substances 0.000 claims description 5
- 239000007850 fluorescent dye Substances 0.000 claims description 5
- 210000002700 urine Anatomy 0.000 claims description 5
- 238000012286 ELISA Assay Methods 0.000 claims description 4
- 210000001072 colon Anatomy 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 238000000684 flow cytometry Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 210000003296 saliva Anatomy 0.000 claims description 4
- 230000002255 enzymatic effect Effects 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims 5
- 208000020816 lung neoplasm Diseases 0.000 claims 5
- 230000009870 specific binding Effects 0.000 claims 5
- 201000009030 Carcinoma Diseases 0.000 claims 4
- 206010009944 Colon cancer Diseases 0.000 claims 4
- 208000008839 Kidney Neoplasms Diseases 0.000 claims 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims 4
- 206010038389 Renal cancer Diseases 0.000 claims 4
- 201000010982 kidney cancer Diseases 0.000 claims 4
- 201000005202 lung cancer Diseases 0.000 claims 4
- 238000001574 biopsy Methods 0.000 claims 3
- 238000002405 diagnostic procedure Methods 0.000 claims 3
- 230000002934 lysing effect Effects 0.000 claims 3
- 102000039446 nucleic acids Human genes 0.000 claims 3
- 108020004707 nucleic acids Proteins 0.000 claims 3
- 150000007523 nucleic acids Chemical class 0.000 claims 3
- 210000003292 kidney cell Anatomy 0.000 claims 2
- 210000005265 lung cell Anatomy 0.000 claims 2
- 238000003125 immunofluorescent labeling Methods 0.000 claims 1
- 238000011532 immunohistochemical staining Methods 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 abstract description 10
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 abstract description 8
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 abstract description 8
- 210000004881 tumor cell Anatomy 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 11
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 7
- 206010027476 Metastases Diseases 0.000 description 6
- 230000021164 cell adhesion Effects 0.000 description 6
- 230000009401 metastasis Effects 0.000 description 6
- 210000000069 breast epithelial cell Anatomy 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 210000000064 prostate epithelial cell Anatomy 0.000 description 4
- 108091005990 tyrosine-phosphorylated proteins Proteins 0.000 description 4
- 101710113436 GTPase KRas Proteins 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OXEUETBFKVCRNP-UHFFFAOYSA-N 9-ethyl-3-carbazolamine Chemical compound NC1=CC=C2N(CC)C3=CC=CC=C3C2=C1 OXEUETBFKVCRNP-UHFFFAOYSA-N 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 210000004216 mammary stem cell Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012130 whole-cell lysate Substances 0.000 description 2
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 1
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical class C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- -1 oxalate ester Chemical class 0.000 description 1
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical compound C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57496—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57419—Specifically defined cancers of colon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57423—Specifically defined cancers of lung
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57434—Specifically defined cancers of prostate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57438—Specifically defined cancers of liver, pancreas or kidney
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/811—Test for named disease, body condition or organ function
- Y10S436/813—Cancer
Definitions
- the present invention relates to diagnosis of metastatic disease. More particularly, this invention relates to reagents that can detect a specific epithelial cell tyrosine kinase that is overexpressed in metastatic tumor cells. Most particularly, this invention relates to reagents which bond to an intracellular epitope of the epithelial cell tyrosine kinase, and the use of these reagents for cancer diagnosis.
- Cancer cell metastasis requires cellular capacity to 1) detach from a primary tumor, 2) migrate and invade through local tissues, 3) translocate to distant sites in the body (via lymph or blood), 4) colonize a foreign site, and 5) grow and survive in this foreign environment. All of these behaviors are linked to cell adhesions.
- Cell adhesions control the physical interactions of cells with their microenvironment. Cell adhesions also initiate signals that dictate tumor cell growth, death, and differentiation.
- Various cancer cells including breast cancer cells, are known to exhibit altered cell adhesion. As compared to normal breast epithelia, transformed human breast epithelial cells have decreased cell-cell contacts and increased interactions with the surrounding extracellular matrix. These changes facilitate increased detachment and migration of cancer cells away from cell colonies and are directly linked with alteration in tyrosine phosphorylation of cell membrane proteins. Tyrosine phosphorylation is a potent form of cell signal transduction, and alteration in levels of tyrosine phosphorylation is believed to be important for tumor cell invasiveness. Thus, regulation of tyrosine phosphorylation represents a promising target for therapeutic intervention against metastatic cancer. Tyrosine phosphorylation is controlled by cell membrane tyrosine kinases, and increased expression of tyrosine kinases is known to occur in metastatic cancer cells.
- EphA2 A member of the Eph family of tyrosine kinases known as Eplirins, EphA2 is a transmembrane receptor tyrosinie kinase with a cell-bound ligand.
- EphA2 an improved method for generating a panel of monoclonal antibodies specific for tyrosine phosphorylated proteins has been developed. Using this method, a multiplicity of EphA2 recognizing monoclonal antibodies has been generated. These antibodies have been used to show that EphA2 is overexpressed in metastatic breast, lung, colon, and prostate cells. Because EphA2 is expressed differently in normal and metastatic cells, EphA2-specific antibodies are useful in the diagnosis of metastatic disease. Antibodies produced by one particular hybridoma recognize an intracellular epitope of EphA2 and have been shown to be highly specific in binding to EphA2.
- one aspect of this invention is a compound which specifically binds to an intracellular epitope of EphA2.
- the compound is an antibody specific for a domain of the EphA2 protein.
- natural or artificial ligands, peptides, anti-sense, ATP analogies, or other small molecules capable of specifically targeting EphA2 may be employed.
- a second aspect of this invention is a method for generating antibodies which recognize EphA2 intracellular epitopes.
- Another aspect of this invention is the use of EphA2-specific antibodies in the diagnosis of metastatic disease.
- An additional aspect of this invention is a diagnostic reagent specific for detecting EphA2, any fragment thereof, or DNA or RNA coding for the EphA2 protein.
- FIG. 1A -C showN a series of western blots showing EphA2 expression in cell lines derived from human prostate cells;
- FIG. 1A is a western blot showing EphA2 expression in various human prostate cancer cell lines
- FIG. 1B is a western blot showing EphA2 expression in human prostatic epithelial cell line MLC and expression in that cell line after transformation by oncogenic K-Ras or X-irradiation;
- FIG. 1C is similar to FIG. 1B , except showing expression in human prostatic epithelial cell line 267B1 and expression in that cell line after transformation by oncogenic K-Ras or X-irradiation;
- FIG. 2 is a western blot showing EphA2 expression in various human mammary epithelial cell lines
- FIG. 3A -B shows EphA2 localization in the cell membranes of various mammary epithelial cell lines, as seen by immunofluorescence microscopy;
- FIG. 3A shows EphA2 localization in sites of cell adhesion in normal MCF-10A cells.
- FIG. 3B shows EphA2 redistribution in malignant cells.
- Antibodies specific for EphA2 have been isolated through an improved method.
- the method employed is designed for increased sensitivity and diversity of responding hybridomas.
- tyrosine phosphorylated proteins from Ras-transformed human epithelial cells are isolated by affinity chromatography using existing phosphotyrosine-specific antibodies.
- the tyrosine phosphorylated proteins are then used as an immunogen for producing monoclonal antibodies.
- Low-dose amounts of tyrosine phosphorylated proteins are injected proximal to lymph nodes, every other day, over a ten day period (the RIMMS strategy).
- B cells from engorged lymph nodes are then isolated and fused with a Bcl-2-overexpressing myeloma, to minimize apoptosis after fusion.
- This method results in increased diversity, specificity, and cost-effectiveness of hybridoma production.
- the hybridomas are first screened to identify those hybridomas producing antibodies capable of distinguishing malignant from normal cancer cells. To date, at least 450 such hybridomas have been identified.
- Hybridomas which are specific to EphA2 have been selected. Use of the RIMMS strategy has resulted in the production of various monoclonal antibodies that specifically bind EphA2. Of the first four hybridomas characterized, two recognize independent epitopes on EphA2. The first, D7, recognizes an intracellular epitope. The second, B2D6, binds to an extracellular epitope. D7 has proven to be highly specific for an intracellular epitope of EphA2 and this specificity provides much of the current basis for diagnosis of metastatic tumors.
- EphA2-specific antibodies of this invention may be used to detect this overexpression and, thus, to detect metastatic disease.
- Such techiques include but are not limited to western blotting, dot blotting, precipitation, agglutination, ELISA assays, immunohistochemistry, in situ hybridization, flow cytometry on a variety of tissues or bodily fluids, and a variety of sandwich assays.
- EphA2 antibodies specific for an intracellular epitope of EphA2
- the cells must be lysed and incubated with the antibody.
- the above techniques may be performed on whole-cell lysates, or EphA2 may be separated out for testing, such as by immunoprecipitation.
- the D7 antibodies of this invention are highly specific for an intracellular epitope of EphA2 and have proven to be sensitive to differential expression of EphA2 in metastatic cells.
- Other techniques, such as immunohistological staining require whole cells, and may further require cell layers of a particular cell density. Such tests require an antibody specific for an extracellular epitope of EphA2.
- the antibodies of this invention may be used to detect metastatic disease in a wide variety of tissue samples. For instance, research using EphA2-specific antibodies has revealed that altered EphA2 expression occurs in breast, kidney, prostate, lung, and colon cells, and it is believed that altered EphA2 expression occurs in other types of cell metastasis, particularly epithelial malignancies. EphA2-specific antibodies may be used to detect metastasis in biopsied tumor tissue. Also, samples of a variety of body fluid samples, such as blood, plasma, spinal fluid, saliva, and urine, can be tested with the antibodies of the present invention. Altered EphA2 expression in these samples indicates the presence of metastatic disease.
- the EphA2 of metastatic cells exhibits altered tyrosine phosphorylation.
- EphA2 is expressed and is tyrosine phosphorylated.
- EphA2 is overexpressed, and the EphA2 is not tyrosine phosphorylated.
- a test quantizing EphA2 expression sometimes may lead to an ambiguous result, it may be desirable to determine tyrosine phosphorylation, as well as the magnitude of EphA2 expression.
- a method of diagnosis using the antibodies of this invention in combination with phosphotyrosine-specific antibodies provides data for determining the state of metastatic disease.
- EphA2-specific antibodies of this invention can be exploited to detect changes in EphA2 localization which are associated with metastasis.
- EphA2 is enriched in within cites of cell adhesion.
- EphA2 is diffusely distributed, and in metastatic breast cancer cells EphA2 is redistributed into the membrane ruffles.
- Techniques such as immunohistological staining or immunofluorescent microscopy are well known in the art and may be used to visualize EphA2 distribution. See, for example, U.S. Pat. No. 5,514,554, hereby incorporated by reference.
- EphA2 expression can be detected by using antibodies capable of detecting whole EphA2 or fragments of the EphA2 protein.
- Other methods of detecting altered EphA2 expression include detecting DNA or RNA sequences coding for the EphA2 protein.
- the EphA2-specific antibodies may be labeled covalently or non-covalently with any of a number of knowfn detectable labels, such fluorescent, radioactive, or enzymatic substances, as is known in the art.
- a secondary antibody specific for the antibodies of this invention is labeled with a known detectable label and used to detect the EphA2-specific antibodies in the above techniques.
- Preferred labels include chromogens dyes. Among the most commonly used are 3-amino-9-ethylcarbazole (AEC) and 3,3′-diaminobenzidine tetrahydroclholoride (DAB). These can be detected using light microscopy. Also preferred are fluorescent labels. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phtlhaldelhyde and fluorescamine.
- Chemiluminescent and bioluminescent compounds such as luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt, oxalate ester, luciferin, luciferase, and aequorin also may be used.
- the fluorescent-labeled antibody is exposed to light of the proper wavelenigtlh, its presence can be detected due to its fluorescence.
- Radioactive isotopes which are particularly useful for labeling the antibodies of the present invention include 3 H, 125 I, 131 I, 35 S, 32 P, and 14 C.
- the radioactive isotope can be detected by such means as the use of a gamma counter, a scintillation counter, or by autoradiography.
- Another method in which the antibodies can be detectably labeled is by linking the antibodies to an enzyme and subsequently using the antibodies in an enzyme immunoassay (EIA) or enzyme-linked immunosorbent assay (ELISA).
- EIA enzyme immunoassay
- ELISA enzyme-linked immunosorbent assay
- the enzyme when subsequently exposed to its substrate, reacts with the substrate and generates a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric, or visual means.
- Enzymes which can be used to detectably label antibodies include, but are not limited to malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholinesterase.
- Other methods of labeling and detecting antibodies are known in the art and are within the scope of this invention.
- FIG. 1 shows EphA2 expression in various human prostate cell lines.
- LNCAP three metastatic cell lines, LNCAP, DU145, and PC3, are tested for levels of EphA2 expression. It is known that, of these three cell lines, LNCAP is the least invasive, DU145 is somewhat more invasive, and PC3 is the most invasive.
- EphA2 expression is determined by western blotting with D7 antibodies. As can be seen in FIG. 1A , EphA2 expression positively correlates with invasiveness.
- FIG. 1B D7 antibodies are used to test EphA2 expression in normal MLC cells as compared to expression in transformed cells.
- Normal MLC cells, MLC cells which have been transformed by K-Ras, and MLC cells with have been transformed by X-irradiation are studied.
- EphA2 is overexpressed in both of the transformed cell lines.
- FIG. 1C shows results similar to FIG. 1B , except the normal cell line is 267B1.
- FIG. 1C shows that EphA2 is overexpressed in the transformed cells.
- FIG. 1 demonstrates that EphA2-specific antibodies detect changes in metastatic cells, and that tests using these antibodies indicate the level of metastatic invasiveness.
- EphA2 antibodies are used to detect altered EphA2 expression in metastatic mammary cells. EphA2 is expressed in normal mammary epithelial cells. FIG. 2 illustrates altered EphA2 expression in mammary tumor cell lines. As can be seen in FIG. 2 , western blots from whole cell lysates using D7 antibodies reveal that EphA2 expression is completely absent in cells derived from non-metastatic breast tumors (ZR75-1, BT474, SKBR3, MDA-MB-435). By contrast, EphA2 is overexpressed in metastatic breast cancer cell lines (MDA-MB-435, MDA-MB-231). Thus, EphA2 antibodies detect altered EphA2 expression in breast cancer cells, which can be used to diagnose metastasis.
- EphA2 occurs early in the disease, and testing with EphA2-specific antibodies provide information relevant to invasiveness even when other known markers remain normal.
- D7 antibodies are useful as a diagnostic, even in early stages of disease.
- EphA2 antibodies in combination wvitlh other antibodies are used to detect further alterations in EphA2 expression.
- wvesterni blots using D7 can distinguish between non-metastatic and metastatic tumors, with non-metastatic tumors failing to express EphA2, and metastatic cells overexpressing EphA2.
- tyrosine phosphorylation is studied.
- Using a phosphotyrosine-specific antibody it has been found that EphA2 is phosphorylated in normal cells, but it is not phosphorylated in metastatic cells.
- EphA2 specific antibodies can qualitatively detect a difference between metastatic and non-metastatic mammary tumor cells
- diagnostics incorporating both an EphA2-specific antibody and a phosphotyrosine-specific antibody provides a sensitive test for distinguishing between normal, non-metastatic, and metastatic mammary cells.
- EphA2-specific antibodies detect redistribution of EphA2 expression in transformed cells.
- the EphA2-specific antibodies used in this example are produced by a cell line known as B2D6, and these antibodies are specific for an extracellular epitope of EphA2.
- B2D6 a cell line known as B2D6
- FIG. 3A immunofluorescence with B2D6 demonstrates that EphA2 is found within sites of cell-cell contact in normal cells.
- FIG. 3B EphA2 is redistributed.
- EphA2 is found in the membrane ruffles.
- EphA2 is found within sites of cell-cell adhesion, but in metastatic prostate epithelial cells, EphA2 is overexpressed and the expression is diffusely distributed. Therefore, immunofluorescence using EphA2-specific antibodies provides an additional means for diagnosing the transformation and metastatic state of tumor cells.
- overexpression, redistribution, and phosplhornlation of EphA2 in metastatic cells provide various bases for diagnosis of metastatic tumors using EphA2-specific antibodies.
- Immuniohistochemistry or Western blotting may be used to monitor the change of EphA2 expression in biopsied samples of patient breast tissue, prostate tissue, or tissue from other tumors.
- D7 and other EphA2-specific antibodies can be used to monitor plasma, urine, and other body fluids to detect altered expression of EphA2, which would signal metastasis. Detection of altered tyrosine phosphorylation of EphA2 in combination with information concerning an alteration of EphA2 expression further aids in diagnosis of metastatic disease.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hospice & Palliative Care (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Method and kits are provided for the detection and diagnosis of metastatic disease. More particularly, the methods and kits employ compounds that can detect EphA2, a specific epithelial cell tyrosine kinase that is overexpressed in metastatic tumor cells. In one embodiment the compound is an antibody capable of binding to an epitope of EphA2.
Description
- This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/149,259, filed Aug. 17, 1999, which is expressly incorporated by reference herein.
- The present invention relates to diagnosis of metastatic disease. More particularly, this invention relates to reagents that can detect a specific epithelial cell tyrosine kinase that is overexpressed in metastatic tumor cells. Most particularly, this invention relates to reagents which bond to an intracellular epitope of the epithelial cell tyrosine kinase, and the use of these reagents for cancer diagnosis.
- Cancer cell metastasis requires cellular capacity to 1) detach from a primary tumor, 2) migrate and invade through local tissues, 3) translocate to distant sites in the body (via lymph or blood), 4) colonize a foreign site, and 5) grow and survive in this foreign environment. All of these behaviors are linked to cell adhesions. Cell adhesions control the physical interactions of cells with their microenvironment. Cell adhesions also initiate signals that dictate tumor cell growth, death, and differentiation.
- Various cancer cells, including breast cancer cells, are known to exhibit altered cell adhesion. As compared to normal breast epithelia, transformed human breast epithelial cells have decreased cell-cell contacts and increased interactions with the surrounding extracellular matrix. These changes facilitate increased detachment and migration of cancer cells away from cell colonies and are directly linked with alteration in tyrosine phosphorylation of cell membrane proteins. Tyrosine phosphorylation is a potent form of cell signal transduction, and alteration in levels of tyrosine phosphorylation is believed to be important for tumor cell invasiveness. Thus, regulation of tyrosine phosphorylation represents a promising target for therapeutic intervention against metastatic cancer. Tyrosine phosphorylation is controlled by cell membrane tyrosine kinases, and increased expression of tyrosine kinases is known to occur in metastatic cancer cells.
- Identification of increased expression of cell membrane tyrosine kinases would aid in the diagnosis and treatment of metastatic diseases. One such tyrosine kinase is EphA2. A member of the Eph family of tyrosine kinases known as Eplirins, EphA2 is a transmembrane receptor tyrosinie kinase with a cell-bound ligand.
- Although cloned a decade ago, see Lindberg, R. A. and Hunter, T., “cDNA Cloning and Characterization of Eck, an Epithelial Cell Receptor Protein-tyrosine Kinase in the Eph/elk Family of Protein Kinases,” Mo. Cell. Biol. 10 (12), 6316-6324 (1990), rather little is known about EphA2 function, largely because EphA2-specific antibodies previously have been difficult to generate.
- To facilitate research on EphA2,an improved method for generating a panel of monoclonal antibodies specific for tyrosine phosphorylated proteins has been developed. Using this method, a multiplicity of EphA2 recognizing monoclonal antibodies has been generated. These antibodies have been used to show that EphA2 is overexpressed in metastatic breast, lung, colon, and prostate cells. Because EphA2 is expressed differently in normal and metastatic cells, EphA2-specific antibodies are useful in the diagnosis of metastatic disease. Antibodies produced by one particular hybridoma recognize an intracellular epitope of EphA2 and have been shown to be highly specific in binding to EphA2.
- Thus, one aspect of this invention is a compound which specifically binds to an intracellular epitope of EphA2. In a preferred embodiment, the compound is an antibody specific for a domain of the EphA2 protein. However, natural or artificial ligands, peptides, anti-sense, ATP analogies, or other small molecules capable of specifically targeting EphA2 may be employed. A second aspect of this invention is a method for generating antibodies which recognize EphA2 intracellular epitopes. Another aspect of this invention is the use of EphA2-specific antibodies in the diagnosis of metastatic disease. An additional aspect of this invention is a diagnostic reagent specific for detecting EphA2, any fragment thereof, or DNA or RNA coding for the EphA2 protein.
- Additional features of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
-
FIG. 1A -C showN a series of western blots showing EphA2 expression in cell lines derived from human prostate cells; -
FIG. 1A is a western blot showing EphA2 expression in various human prostate cancer cell lines; -
FIG. 1B is a western blot showing EphA2 expression in human prostatic epithelial cell line MLC and expression in that cell line after transformation by oncogenic K-Ras or X-irradiation; -
FIG. 1C is similar toFIG. 1B , except showing expression in human prostatic epithelial cell line 267B1 and expression in that cell line after transformation by oncogenic K-Ras or X-irradiation; -
FIG. 2 is a western blot showing EphA2 expression in various human mammary epithelial cell lines; -
FIG. 3A -B shows EphA2 localization in the cell membranes of various mammary epithelial cell lines, as seen by immunofluorescence microscopy; -
FIG. 3A shows EphA2 localization in sites of cell adhesion in normal MCF-10A cells; and -
FIG. 3B shows EphA2 redistribution in malignant cells. - Antibodies specific for EphA2 have been isolated through an improved method. The method employed is designed for increased sensitivity and diversity of responding hybridomas. According to this method, tyrosine phosphorylated proteins from Ras-transformed human epithelial cells are isolated by affinity chromatography using existing phosphotyrosine-specific antibodies. The tyrosine phosphorylated proteins are then used as an immunogen for producing monoclonal antibodies. Low-dose amounts of tyrosine phosphorylated proteins are injected proximal to lymph nodes, every other day, over a ten day period (the RIMMS strategy). B cells from engorged lymph nodes are then isolated and fused with a Bcl-2-overexpressing myeloma, to minimize apoptosis after fusion. This method results in increased diversity, specificity, and cost-effectiveness of hybridoma production. The hybridomas are first screened to identify those hybridomas producing antibodies capable of distinguishing malignant from normal cancer cells. To date, at least 450 such hybridomas have been identified.
- Hybridomas which are specific to EphA2 have been selected. Use of the RIMMS strategy has resulted in the production of various monoclonal antibodies that specifically bind EphA2. Of the first four hybridomas characterized, two recognize independent epitopes on EphA2. The first, D7, recognizes an intracellular epitope. The second, B2D6, binds to an extracellular epitope. D7 has proven to be highly specific for an intracellular epitope of EphA2 and this specificity provides much of the current basis for diagnosis of metastatic tumors.
- It is known in the art to use antibodies to detect the presence or overexpression of a specific protein. Because EphA2 is overexpressed in metastatic cells, EphA2-specific antibodies of this invention may be used to detect this overexpression and, thus, to detect metastatic disease. Such techiques include but are not limited to western blotting, dot blotting, precipitation, agglutination, ELISA assays, immunohistochemistry, in situ hybridization, flow cytometry on a variety of tissues or bodily fluids, and a variety of sandwich assays. These techniques are well known in the art. See, for example, U.S. Pat. No. 5,876,949, hereby incorporated by reference. When antibodies specific for an intracellular epitope of EphA2 are used, the cells must be lysed and incubated with the antibody. The above techniques may be performed on whole-cell lysates, or EphA2 may be separated out for testing, such as by immunoprecipitation. The D7 antibodies of this invention are highly specific for an intracellular epitope of EphA2 and have proven to be sensitive to differential expression of EphA2 in metastatic cells. Other techniques, such as immunohistological staining, require whole cells, and may further require cell layers of a particular cell density. Such tests require an antibody specific for an extracellular epitope of EphA2.
- The antibodies of this invention may be used to detect metastatic disease in a wide variety of tissue samples. For instance, research using EphA2-specific antibodies has revealed that altered EphA2 expression occurs in breast, kidney, prostate, lung, and colon cells, and it is believed that altered EphA2 expression occurs in other types of cell metastasis, particularly epithelial malignancies. EphA2-specific antibodies may be used to detect metastasis in biopsied tumor tissue. Also, samples of a variety of body fluid samples, such as blood, plasma, spinal fluid, saliva, and urine, can be tested with the antibodies of the present invention. Altered EphA2 expression in these samples indicates the presence of metastatic disease.
- Additionally, other antibodies may be used in combination with the antibodies of the present invention to provide further information concerning metastatic disease state. For example, the EphA2 of metastatic cells exhibits altered tyrosine phosphorylation. In normal breast epithelial cells, EphA2 is expressed and is tyrosine phosphorylated. However, in metastatic breast epithelial cells, EphA2 is overexpressed, and the EphA2 is not tyrosine phosphorylated. Because a test quantizing EphA2 expression sometimes may lead to an ambiguous result, it may be desirable to determine tyrosine phosphorylation, as well as the magnitude of EphA2 expression. Thus, a method of diagnosis using the antibodies of this invention in combination with phosphotyrosine-specific antibodies provides data for determining the state of metastatic disease.
- Moreover, the EphA2-specific antibodies of this invention can be exploited to detect changes in EphA2 localization which are associated with metastasis. In normal breast and prostate epithelial cells, EphA2 is enriched in within cites of cell adhesion. Conversely, in metastatic prostate cells EphA2 is diffusely distributed, and in metastatic breast cancer cells EphA2 is redistributed into the membrane ruffles. Techniques such as immunohistological staining or immunofluorescent microscopy are well known in the art and may be used to visualize EphA2 distribution. See, for example, U.S. Pat. No. 5,514,554, hereby incorporated by reference. EphA2 expression can be detected by using antibodies capable of detecting whole EphA2 or fragments of the EphA2 protein. Other methods of detecting altered EphA2 expression include detecting DNA or RNA sequences coding for the EphA2 protein.
- In order to detect overexpression or altered distribution of EphA2, the EphA2-specific antibodies may be labeled covalently or non-covalently with any of a number of knowfn detectable labels, such fluorescent, radioactive, or enzymatic substances, as is known in the art. Alternatively, a secondary antibody specific for the antibodies of this invention is labeled with a known detectable label and used to detect the EphA2-specific antibodies in the above techniques.
- Preferred labels include chromogens dyes. Among the most commonly used are 3-amino-9-ethylcarbazole (AEC) and 3,3′-diaminobenzidine tetrahydroclholoride (DAB). These can be detected using light microscopy. Also preferred are fluorescent labels. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phtlhaldelhyde and fluorescamine. Chemiluminescent and bioluminescent compounds such as luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt, oxalate ester, luciferin, luciferase, and aequorin also may be used. When the fluorescent-labeled antibody is exposed to light of the proper wavelenigtlh, its presence can be detected due to its fluorescence.
- Also preferred are radioactive labels. Radioactive isotopes which are particularly useful for labeling the antibodies of the present invention include 3H, 125I, 131I, 35S, 32P, and 14C. The radioactive isotope can be detected by such means as the use of a gamma counter, a scintillation counter, or by autoradiography.
- Another method in which the antibodies can be detectably labeled is by linking the antibodies to an enzyme and subsequently using the antibodies in an enzyme immunoassay (EIA) or enzyme-linked immunosorbent assay (ELISA). The enzyme, when subsequently exposed to its substrate, reacts with the substrate and generates a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric, or visual means. Enzymes which can be used to detectably label antibodies include, but are not limited to malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholinesterase. Other methods of labeling and detecting antibodies are known in the art and are within the scope of this invention.
- The antibodies produced by the D7 hybridoma are used to detect differential expression of EphA2 between normal prostate epithelial cells and metastatic cells.
FIG. 1 shows EphA2 expression in various human prostate cell lines. Referring first toFIG. 1A , three metastatic cell lines, LNCAP, DU145, and PC3, are tested for levels of EphA2 expression. It is known that, of these three cell lines, LNCAP is the least invasive, DU145 is somewhat more invasive, and PC3 is the most invasive. EphA2 expression is determined by western blotting with D7 antibodies. As can be seen inFIG. 1A , EphA2 expression positively correlates with invasiveness. - In
FIG. 1B , D7 antibodies are used to test EphA2 expression in normal MLC cells as compared to expression in transformed cells. Normal MLC cells, MLC cells which have been transformed by K-Ras, and MLC cells with have been transformed by X-irradiation are studied. As can be seen inFIG. 1B , EphA2 is overexpressed in both of the transformed cell lines.FIG. 1C shows results similar toFIG. 1B , except the normal cell line is 267B1. As withFIG. 1B ,FIG. 1C shows that EphA2 is overexpressed in the transformed cells. In sum,FIG. 1 demonstrates that EphA2-specific antibodies detect changes in metastatic cells, and that tests using these antibodies indicate the level of metastatic invasiveness. - EphA2 antibodies are used to detect altered EphA2 expression in metastatic mammary cells. EphA2 is expressed in normal mammary epithelial cells.
FIG. 2 illustrates altered EphA2 expression in mammary tumor cell lines. As can be seen inFIG. 2 , western blots from whole cell lysates using D7 antibodies reveal that EphA2 expression is completely absent in cells derived from non-metastatic breast tumors (ZR75-1, BT474, SKBR3, MDA-MB-435). By contrast, EphA2 is overexpressed in metastatic breast cancer cell lines (MDA-MB-435, MDA-MB-231). Thus, EphA2 antibodies detect altered EphA2 expression in breast cancer cells, which can be used to diagnose metastasis. Moreover, in non-metastatic breast epithelial cells, loss of EphA2 occurs early in the disease, and testing with EphA2-specific antibodies provide information relevant to invasiveness even when other known markers remain normal. Thus, D7 antibodies are useful as a diagnostic, even in early stages of disease. - EphA2 antibodies in combination wvitlh other antibodies are used to detect further alterations in EphA2 expression. As discussed above in Example 2, wvesterni blots using D7 can distinguish between non-metastatic and metastatic tumors, with non-metastatic tumors failing to express EphA2, and metastatic cells overexpressing EphA2. However, different results are found when tyrosine phosphorylation is studied. Using a phosphotyrosine-specific antibody, it has been found that EphA2 is phosphorylated in normal cells, but it is not phosphorylated in metastatic cells. Thus, while EphA2 specific antibodies can qualitatively detect a difference between metastatic and non-metastatic mammary tumor cells, diagnostics incorporating both an EphA2-specific antibody and a phosphotyrosine-specific antibody provides a sensitive test for distinguishing between normal, non-metastatic, and metastatic mammary cells.
- Immunofluorescently labeled EphA2-specific antibodies detect redistribution of EphA2 expression in transformed cells. The EphA2-specific antibodies used in this example are produced by a cell line known as B2D6, and these antibodies are specific for an extracellular epitope of EphA2. As seen in
FIG. 3A , immunofluorescence with B2D6 demonstrates that EphA2 is found within sites of cell-cell contact in normal cells. However, in transformed cells, shown inFIG. 3B , EphA2 is redistributed. Furthermore, in metastatic cells EphA2 is found in the membrane ruffles. Similarly, in normal prostate epithelial cells, EphA2 is found within sites of cell-cell adhesion, but in metastatic prostate epithelial cells, EphA2 is overexpressed and the expression is diffusely distributed. Therefore, immunofluorescence using EphA2-specific antibodies provides an additional means for diagnosing the transformation and metastatic state of tumor cells. - As shown in Examples 1-4, overexpression, redistribution, and phosplhornlation of EphA2 in metastatic cells provide various bases for diagnosis of metastatic tumors using EphA2-specific antibodies. Immuniohistochemistry or Western blotting may be used to monitor the change of EphA2 expression in biopsied samples of patient breast tissue, prostate tissue, or tissue from other tumors. Additionally, D7 and other EphA2-specific antibodies can be used to monitor plasma, urine, and other body fluids to detect altered expression of EphA2, which would signal metastasis. Detection of altered tyrosine phosphorylation of EphA2 in combination with information concerning an alteration of EphA2 expression further aids in diagnosis of metastatic disease.
- Although the invention has been described in detail with reference to preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Claims (79)
1. A method for detecting the presence of metastatic cells in a cell population comprising the steps of
lysing at least a portion of the cell population,
incubating the lysed cells , with a reagent capable of specific binding to an epitope of EphA2 to allow, antibody binding to said epitope, and
detecting compound-epitope binding.
2. The method of claim 1 wherein the reagent is an antibody.
3. The method of claim 2 wherein the epitope of EphA2 is and intracellular epitope of EphA2.
4. The method of claim 3 wherein the antibody is produced by hybridoma cell line D7.
5. The method of claim 2 wherein the antibody is labeled with a detectable label, and the detecting step includes detecting the label.
6. The method of claim 5 wherein the antibody is labeled wvitlh a fluorescent label and the detecting step comprises detecting the fluorescent label.
7. The method of claim 5 wherein the antibody is labeled with a radioactive label and the detecting step comprises detecting the radioactive label.
8. The method of claim 1 wherein the cell population comprises cells from a breast or prostate tissue biopsy.
9. The method of claim 1 wherein the cell population is harvested from a body fluid selected from the group consisting of blood, plasma, spinal fluid, saliva, and urine.
10. The method of claim 9 wherein the detecting step includes a diagnostic method selected from the group consisting of ELISA assays and flow cytometry.
11. The method of claim 1 wherein the incubating and detecting steps comprise western blotting methodology.
12. The method of claim 11 further comprising the steps of providing a second antibody having phosphotyrosine specificity, and western blotting with the second antibody.
13. The method of claim 1 wherein the metastatic cells are selected from the group consisting of breast, prostate, lung, and colon cancers.
14. An antibody which specifically binds to an intracellular epitope of EphA2.
15. The antibody of claim 14 bound to a detectable label.
16. The antibody of claim 14 which is a monoclonal antibody.
17. A method for detecting the presence of metastatic cells in a cell population comprising the steps of:
incubating the cells with a reagent capable of specific binding to a compound associated with EphA2 expression, and
detecting reagent-compound binding.
18. The method of claim 17 wherein the reagent is an antibody.
19. The method of claim 17 wherein the compound is selected from the group consisting of EphA2, a fragment of EphA2, DNA coding for the EphA2 protein, and RNA coding for the EphA2 protein.
20. The method of claim 17 further comprising the step of fixing the cells on a slide, and the detecting step comprises immunofluorescence staining.
21. A kit for detecting the presence of metastatic cells in a cell population comprising
an antibody capable of specific binding to an epitope of EphA2, and
means for detecting antibody-epitope binding.
22. The kit of claim 21 wherein the means for detecting antibody-epitope binding is a label bound to the antibody.
23. The kit of claim 21 further comprising an antibody having phosphotyrosine specificity.
24. A method for detecting the presence of metastatic or potentially metastatic cells in a cell population comprising:
lysing at least a portion of the cell population;
incubating the lysed cells with a reagent capable of specific binding to EphA2 to allow binding of the reagent to EphA2; and
detecting reagent-EphA2 binding, wherein reagent-EphA2 binding is indicative of the presence of metastatic or potentially metastatic cells in the cell population.
25. The method of claim 24 wherein the reagent comprises an antibody, and wherein detecting reagent-EphA2 binding comprises detecting antibody-EphA2 binding.
26. The method of claim 25 wherein the antibody binds to an intracellular epitope of EphA2.
27. The method of claim 25 wherein the antibody is produced by hybridoma cell line D7.
28. The method of claim 25 wherein the antibody is labeled with a detectable label, and wherein detecting reagent-EphA2 binding comprises detecting the label.
29. The method of claim 28 wherein the antibody comprises at least one of a fluorescent label, a chemiluminescent label, a bioluminescent label, an enzymatic label, a chromogenic label and a radiolabel, wherein detecting reagent-EphA2 binding comprises detecting at least one detectable label.
30. The method of claim 24 wherein the cell population comprises cells selected from the group consisting of breast cells, kidney cells, prostate cells, lung cells and colon cells.
31. The method of claim 24 wherein the cell population comprises epithelial cells.
32. The method of claim 24 wherein the cell population comprises cells selected from the group consisting of breast cancer cells, kidney cancer cells, prostate cancer cells, lung cancer cells and colon cancer cells.
33. The method of claim 24 wherein the cell population comprises epithelial cancer cells.
34. The method of claim 24 wherein the cell population comprises metastatic or potentially metastatic cancer cells.
35. The method of claim 34 wherein the metastatic or potentially metastatic cancer cells comprise cells selected from the group consisting of breast cancer cells, kidney cancer cells, prostate cancer cells, lung cancer cells, and colon cancer cells.
36. The method of claim 34 wherein the metastatic or potentially metastatic cancer cells comprise epithelial cancer cells.
37. The method of claim 24 wherein the cell population comprises cells from a tissue biopsy.
38. The method of claim 37 wherein the tissue comprises breast tissue or prostate tissue.
39. The method of claim 24 wherein the cell population comprises cells from a body fluid.
40. The method of claim 39 wherein the body fluid is selected from the group consisting of blood, plasma, spinal fluid, saliva, and urine.
41. The method of claim 24 wherein detecting reagent-EphA2 binding comprises utilizing a diagnostic method selected from the group consisting of an ELISA assay, a Western blot, and flow cytometry.
42. The method of claim 24 wherein detecting reagent-EphA2 binding comprises utilizing a Western blot; the method further comprising Western blotting with a second antibody having phosphotyrosine specificity.
43. A method for detecting the presence of metastatic or potentially metastatic cells in a cell population comprising:
incubating at least a portion of the cell population with a reagent capable of binding to EphA2 to allow binding of the reagent to EphA2; and
detecting reagent-EphA2 binding, wherein reagent-EphA2 binding is indicative of the presence of metastatic or potentially metastatic cells in the cell population.
44. The method of claim 43 wherein the reagent comprises an antibody and wherein detecting reagent-EphA2 binding comprises detecting antibody-EphA2 binding.
45. The method of claim 44 wherein the antibody binds to an intracellular epitope of EphA2.
46. The method of claim 44 wherein the antibody is produced by hybridoma, cell line D7.
47. The method of claim 44 wherein the antibody binds to an extracellular epitope of EphA2.
48. The method of claim of claim 44 wherein antibody-EphA2 binding yields a bound complex comprising a whole cell.
49. The method of claim 48 wherein detecting antibody-EphA2 binding comprises subjecting the bound complex to immunohistochemical staining.
50. The method of claim 44 wherein the antibody is produced by hybridoma cell line B2D6.
51. The method of claim 44 wherein the bound antibody comprises a detectable label; and wherein detecting antibody-EphA2 binding comprises detecting the label.
52. The method of claim 44 wherein the bound antibody comprises at least one of a fluorescent label, a chemiluminescent label, a bioluminescent label, an enzymatic label, a chromogenic label and a radiolabel; and wherein detecting antibody-Eph2 binding comprises detecting, at least one detectable label.
53. The method of claim 43 wherein the cell population comprises cells selected from the group consisting of breast cells, kidney cells, prostate cells, lung cells and colon cells.
54. The method of claim 43 wherein the cell population comprises epithelial cells.
55. The method of claim 43 wherein the cell population comprises cells selected from the group consisting of breast cancer cells, kidney cancer cells, prostate cancer cells, lung cancer cells and colon cancer cells.
56. The method of claim 43 wherein the cell population comprises epithelial cancer cells.
57. The method of claim 43 wherein the cell population comprises metastatic or potentially metastatic cancer cells.
58. The method of claim 57 wherein the metastatic or potentially metastatic cells comprise cells selected from the group consisting of breast cancer cells, kidney cancer cells, prostate cancer cells, lung cancer cells, and colon cancer cells.
59. The method of claim 43 wherein the metastatic or potentially metastatic cells comprise epithelial cancer cells.
60. The method of claim 43 wherein the cell population comprises cells from a tissue biopsy.
61. The method of claim 60 wherein the tissue comprises breast tissue or prostate tissue.
62. The method of claim 43 wherein the cell population comprises cells from a body fluid.
63. The method of claim 62 wherein the body fluid is selected from the group consisting of blood, plasma, spinal fluid, saliva, and urine.
64. The method of claim 43 wherein detecting reagent-EphA2 binding comprises utilizing a diagnostic method selected from the group consisting of and ELISA assay, a Western blot, anal flow cytometry.
65. The method of claim 43 wherein detecting reagent-EphA2 binding comprises utilizing a Western blot; the method further comprising Western blotting with a second antibody having phosphotyrosine specificity.
66. A method for detecting the presence of metastatic or potentially metastatic cells in a cell population comprising:
lysing at least a portion of the cell population;
incubating the lysed cells with a reagent capable of specific binding to nucleic acid comprising RNA or DNA encoding at least a portion of an EphA2 protein to allow binding of the reagent to the nucleic acid; and
detecting reagent-nucleic acid binding, wherein reagent-nucleic acid binding is indicative of the presence of metastatic or potentially metastatic cells in the cell population.
67. The method of claim 66 wherein the nucleic acid comprises RNA.
68. A method for detecting the presence of cancer cells in a selected cell population comprising:
assaying at least a portion of the selected cell population for at least one of
a change in EphA2 expression level;
a change in EphA2 localization pattern; and
a change in EphA2 phosphorylation content
as compared to the EphA2 expression level, localization pattern and phosphorylation content in an analogous normal cell population;
wherein the change is indicative of the presence of a cancer cell in the selected cell population.
69. The method of claim 68 wherein a change in EphA2 expression level, localization pattern or phosphorylation content is indicative of the presence of metastatic cancer cells in the cell population.
70. The method of claim 68 wherein a change in EphA2 expression level is indicative of the presence of nonmetastatic cancer cells in the cell population.
71. The method of claim 68 wherein assaying the cell population comprises incubating at least a portion of the selected cell population with a reagent capable of binding to EphA2 to allow binding of the reagent to EphA2; and detecting reagent-EphA2 binding.
72. The method of claim 71 wherein the reagent is an antibody.
73. The method of claim 72 wherein the antibody is produced by hybridoma D7 or B2D6.
74. A method for determining the disease stage in a cell population comprising cancer cells, the method comprising:
assaying at least a portion of the cell population for at least one of
EphA2 expression level;
EphA2 localization; and
EphA2 phosphorylation content; and
determining the disease stage of the cancer cells.
75. The method of claim 74 wherein assaying the cell population comprises incubating at least a portion of the cancer cell population with a reagent capable of binding to EphA2 to allow binding of the reagent to EphA2; and detecting reagent-EphA2 binding.
76. The method of claim 75 wherein the reagent is an antibody.
77. The method of claim 76 wherein the antibody is produced by hybridoma D7 or B2D6.
78. An isolated antibody which specifically binds to an intracellular epitope of EphA2.
79. The isolated antibody of claim 78 which is a monoclonal antibody.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/716,792 US20070161064A1 (en) | 1999-08-17 | 2007-03-12 | Antibodies as a cancer diagnostic |
US13/210,672 US20120122112A1 (en) | 1999-08-17 | 2011-08-16 | Antibodies as a cancer diagnostic |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14925999P | 1999-08-17 | 1999-08-17 | |
US09/640,952 US7192698B1 (en) | 1999-08-17 | 2000-08-17 | EphA2 as a diagnostic target for metastatic cancer |
US11/716,792 US20070161064A1 (en) | 1999-08-17 | 2007-03-12 | Antibodies as a cancer diagnostic |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/640,952 Continuation US7192698B1 (en) | 1999-08-17 | 2000-08-17 | EphA2 as a diagnostic target for metastatic cancer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/210,672 Continuation US20120122112A1 (en) | 1999-08-17 | 2011-08-16 | Antibodies as a cancer diagnostic |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070161064A1 true US20070161064A1 (en) | 2007-07-12 |
Family
ID=37863795
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/640,952 Expired - Fee Related US7192698B1 (en) | 1999-08-17 | 2000-08-17 | EphA2 as a diagnostic target for metastatic cancer |
US11/716,792 Abandoned US20070161064A1 (en) | 1999-08-17 | 2007-03-12 | Antibodies as a cancer diagnostic |
US13/210,672 Abandoned US20120122112A1 (en) | 1999-08-17 | 2011-08-16 | Antibodies as a cancer diagnostic |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/640,952 Expired - Fee Related US7192698B1 (en) | 1999-08-17 | 2000-08-17 | EphA2 as a diagnostic target for metastatic cancer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/210,672 Abandoned US20120122112A1 (en) | 1999-08-17 | 2011-08-16 | Antibodies as a cancer diagnostic |
Country Status (1)
Country | Link |
---|---|
US (3) | US7192698B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050169931A1 (en) * | 1999-08-17 | 2005-08-04 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US7402298B1 (en) | 2000-09-12 | 2008-07-22 | Purdue Research Foundation | EphA2 monoclonal antibodies and methods of making and using same |
CN102169121A (en) * | 2010-02-25 | 2011-08-31 | 北京诺赛基因组研究中心有限公司 | New application of human kinase SBK1 (SH3-binding domain kinase 1) |
US8137912B2 (en) | 2006-06-14 | 2012-03-20 | The General Hospital Corporation | Methods for the diagnosis of fetal abnormalities |
US8168389B2 (en) | 2006-06-14 | 2012-05-01 | The General Hospital Corporation | Fetal cell analysis using sample splitting |
US8195415B2 (en) | 2008-09-20 | 2012-06-05 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US8921102B2 (en) | 2005-07-29 | 2014-12-30 | Gpb Scientific, Llc | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
CN104749174A (en) * | 2014-12-18 | 2015-07-01 | 东莞星显家具有限公司 | A kind of urine tyrosine detection method |
US10591391B2 (en) | 2006-06-14 | 2020-03-17 | Verinata Health, Inc. | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
US10704090B2 (en) | 2006-06-14 | 2020-07-07 | Verinata Health, Inc. | Fetal aneuploidy detection by sequencing |
CN111579788A (en) * | 2020-05-29 | 2020-08-25 | 郑州大学 | A Simoa kit for highly sensitive tumor marker EPHA2 and its application |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192698B1 (en) * | 1999-08-17 | 2007-03-20 | Purdue Research Foundation | EphA2 as a diagnostic target for metastatic cancer |
WO2003099313A1 (en) * | 2002-05-23 | 2003-12-04 | Purdue Research Foundation | Low molecular weight protein tyrosine phosphatase (lmw-ptp) as a diagnostic and therapeutic target |
EP2266628A3 (en) * | 2003-05-13 | 2012-01-18 | Novartis Vaccines and Diagnostics, Inc. | Method of determining the susceptibility to bone meatastases by EPhA2 expression |
EP1784424A4 (en) * | 2004-08-16 | 2009-03-18 | Medimmune Inc | Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity |
JP5875054B2 (en) * | 2013-02-13 | 2016-03-02 | 国立大学法人 東京大学 | Cancer testing method and testing kit |
US10443054B2 (en) | 2016-03-06 | 2019-10-15 | Massachusetts Institute Of Technology | Methods for identifying and treating invasive/metastatic breast cancers |
WO2018034332A1 (en) * | 2016-08-19 | 2018-02-22 | 国立大学法人東京大学 | EphA2 N-TERMINUS FRAGMENT ANTIBODY |
CN110325209A (en) | 2017-02-24 | 2019-10-11 | 宏观基因有限公司 | CD137 and the bi-specific binding molecule of tumour antigen and application thereof can be combined |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472371A (en) * | 1979-10-29 | 1984-09-18 | Summa Medical Corporation | Radiolabeled antibody to anti-tumor associated antigen and process |
US4704692A (en) * | 1986-09-02 | 1987-11-03 | Ladner Robert C | Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5001225A (en) * | 1986-12-08 | 1991-03-19 | Georgetown University | Monoclonal antibodies to a pan-malarial antigen |
US5447936A (en) * | 1993-12-22 | 1995-09-05 | Bionumerik Pharmaceuticals, Inc. | Lactone stable formulation of 10-hydroxy 7-ethyl camptothecin and methods for uses thereof |
US5457048A (en) * | 1993-12-03 | 1995-10-10 | La Jolla Cancer Research Foundation | Eph-related tyrosine kinases, nucleotide sequences and methods of use |
US5514554A (en) * | 1991-08-22 | 1996-05-07 | Becton Dickinson And Company | Methods and compositions for cancer therapy and for prognosticating responses to cancer therapy |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5635177A (en) * | 1992-01-22 | 1997-06-03 | Genentech, Inc. | Protein tyrosine kinase agonist antibodies |
US5770195A (en) * | 1988-01-12 | 1998-06-23 | Genentech, Inc. | Monoclonal antibodies directed to the her2 receptor |
US5795734A (en) * | 1994-09-19 | 1998-08-18 | President And Fellows Of Harvard College | EPH receptor ligands, and uses related thereto |
US5811098A (en) * | 1992-11-24 | 1998-09-22 | Bristol-Myers Squibb Company | Antibodies to HER4, human receptor tyrosine kinase |
US5824303A (en) * | 1992-11-13 | 1998-10-20 | Amgen Inc. | Eck receptor ligands |
US5872223A (en) * | 1994-08-19 | 1999-02-16 | Regents Of The University Of Minnesota | Immunoconjugates comprising tyrosine kinase inhibitors |
US5876950A (en) * | 1995-01-26 | 1999-03-02 | Bristol-Myers Squibb Company | Monoclonal antibodies specific for different epitopes of human GP39 and methods for their use in diagnosis and therapy |
US5876949A (en) * | 1995-05-31 | 1999-03-02 | The Trustees Of The University Of Pennsylvania | Antibodies specific for fragile X related proteins and method of using the same |
US5981245A (en) * | 1994-04-15 | 1999-11-09 | Amgen Inc. | EPH-like receptor protein tyrosine kinases |
US6057105A (en) * | 1995-03-17 | 2000-05-02 | Ngi/Cancer Tech Company, Llc | Detection of melanoma or breast metastasis with a multiple marker assay |
US6174670B1 (en) * | 1996-06-04 | 2001-01-16 | University Of Utah Research Foundation | Monitoring amplification of DNA during PCR |
US20010031252A1 (en) * | 2000-03-31 | 2001-10-18 | Low Philip Stewart | Method of treatment using ligand-immunogen conjugates |
US20010031262A1 (en) * | 1999-12-06 | 2001-10-18 | Michael Caplan | Controlled delivery of antigens |
US20040028685A1 (en) * | 2002-05-10 | 2004-02-12 | Kinch Michael S. | EphA2 monoclonal antibodies and methods of use thereof |
US20040091486A1 (en) * | 2002-05-10 | 2004-05-13 | Kinch Michael S. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20050152899A1 (en) * | 2002-05-10 | 2005-07-14 | Kinch Michael S. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20050169931A1 (en) * | 1999-08-17 | 2005-08-04 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US7033574B1 (en) * | 1990-04-02 | 2006-04-25 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US7101976B1 (en) * | 2000-09-12 | 2006-09-05 | Purdue Research Foundation | EphA2 monoclonal antibodies and methods of making and using same |
US7192698B1 (en) * | 1999-08-17 | 2007-03-20 | Purdue Research Foundation | EphA2 as a diagnostic target for metastatic cancer |
US20090220527A1 (en) * | 2005-12-21 | 2009-09-03 | Medlmmune, Llc | Affinity optimized epha2 agonistic antibodies and methods of use thereof |
US7662770B2 (en) * | 2002-05-23 | 2010-02-16 | Purdue Research Foundation | Low molecular weight protein tyrosine phosphatase (LMW-PTP) as a diagnostic and therapeutic target |
US7776328B2 (en) * | 2005-02-04 | 2010-08-17 | Macrogenics, Inc. | Antibodies that bind to EphA2 and methods of use thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994004679A1 (en) | 1991-06-14 | 1994-03-03 | Genentech, Inc. | Method for making humanized antibodies |
ATE278019T1 (en) | 1991-06-21 | 2004-10-15 | Inst Medical W & E Hall | NOVEL RECEPTOR TYPE TYROSINE KINASE AND THEIR USE |
CA2149333C (en) * | 1992-11-13 | 2002-01-22 | Timothy D. Bartley | Eck receptor ligands |
EP0703925B1 (en) | 1993-06-03 | 1999-08-18 | Therapeutic Antibodies Inc. | Production of antibody fragments |
US5969101A (en) * | 1995-10-27 | 1999-10-19 | Duke University | ABL-interactor protein |
UA73073C2 (en) | 1997-04-03 | 2005-06-15 | Уайт Холдінгз Корпорейшн | Substituted 3-cyan chinolines |
PT1135153E (en) | 1998-11-20 | 2005-09-30 | Genentech Inc | USES FOR ANTAGONISTS AND AGNISTS OF EPH RECEPTORS FOR TREATING VASCULAR DISORDERS |
CA2355163A1 (en) | 1998-12-18 | 2000-06-29 | Mount Sinai Hospital | Three dimensional structure of a sterile alpha motif domain |
DE60045075D1 (en) | 1999-08-17 | 2010-11-18 | Purdue Research Foundation | ANTI-EPHA2 ANTIBODY AS CANCER DIAGNOSTIC |
ATE324877T1 (en) | 1999-08-17 | 2006-06-15 | Purdue Research Foundation | TREATMENT OF METASTATIC DISEASE |
ATE353320T1 (en) | 1999-12-29 | 2007-02-15 | Wyeth Corp | TRICYCLIC PROTEIN KINASE INHIBITORS |
CN1905899B (en) | 2003-11-20 | 2011-09-28 | 医学免疫公司 | EphA2 agonistic monoclonal antibodies and methods of use thereof |
-
2000
- 2000-08-17 US US09/640,952 patent/US7192698B1/en not_active Expired - Fee Related
-
2007
- 2007-03-12 US US11/716,792 patent/US20070161064A1/en not_active Abandoned
-
2011
- 2011-08-16 US US13/210,672 patent/US20120122112A1/en not_active Abandoned
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472371A (en) * | 1979-10-29 | 1984-09-18 | Summa Medical Corporation | Radiolabeled antibody to anti-tumor associated antigen and process |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4704692A (en) * | 1986-09-02 | 1987-11-03 | Ladner Robert C | Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides |
US5001225A (en) * | 1986-12-08 | 1991-03-19 | Georgetown University | Monoclonal antibodies to a pan-malarial antigen |
US5770195A (en) * | 1988-01-12 | 1998-06-23 | Genentech, Inc. | Monoclonal antibodies directed to the her2 receptor |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US7033574B1 (en) * | 1990-04-02 | 2006-04-25 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5514554A (en) * | 1991-08-22 | 1996-05-07 | Becton Dickinson And Company | Methods and compositions for cancer therapy and for prognosticating responses to cancer therapy |
US5635177A (en) * | 1992-01-22 | 1997-06-03 | Genentech, Inc. | Protein tyrosine kinase agonist antibodies |
US5824303A (en) * | 1992-11-13 | 1998-10-20 | Amgen Inc. | Eck receptor ligands |
US5811098A (en) * | 1992-11-24 | 1998-09-22 | Bristol-Myers Squibb Company | Antibodies to HER4, human receptor tyrosine kinase |
US5457048A (en) * | 1993-12-03 | 1995-10-10 | La Jolla Cancer Research Foundation | Eph-related tyrosine kinases, nucleotide sequences and methods of use |
US5447936A (en) * | 1993-12-22 | 1995-09-05 | Bionumerik Pharmaceuticals, Inc. | Lactone stable formulation of 10-hydroxy 7-ethyl camptothecin and methods for uses thereof |
US5981245A (en) * | 1994-04-15 | 1999-11-09 | Amgen Inc. | EPH-like receptor protein tyrosine kinases |
US5872223A (en) * | 1994-08-19 | 1999-02-16 | Regents Of The University Of Minnesota | Immunoconjugates comprising tyrosine kinase inhibitors |
US5795734A (en) * | 1994-09-19 | 1998-08-18 | President And Fellows Of Harvard College | EPH receptor ligands, and uses related thereto |
US5876950A (en) * | 1995-01-26 | 1999-03-02 | Bristol-Myers Squibb Company | Monoclonal antibodies specific for different epitopes of human GP39 and methods for their use in diagnosis and therapy |
US6057105A (en) * | 1995-03-17 | 2000-05-02 | Ngi/Cancer Tech Company, Llc | Detection of melanoma or breast metastasis with a multiple marker assay |
US5876949A (en) * | 1995-05-31 | 1999-03-02 | The Trustees Of The University Of Pennsylvania | Antibodies specific for fragile X related proteins and method of using the same |
US6174670B1 (en) * | 1996-06-04 | 2001-01-16 | University Of Utah Research Foundation | Monitoring amplification of DNA during PCR |
US20060088541A1 (en) * | 1999-08-17 | 2006-04-27 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US7192698B1 (en) * | 1999-08-17 | 2007-03-20 | Purdue Research Foundation | EphA2 as a diagnostic target for metastatic cancer |
US6927203B1 (en) * | 1999-08-17 | 2005-08-09 | Purdue Research Foundation | Treatment of metastatic disease |
US20050169931A1 (en) * | 1999-08-17 | 2005-08-04 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US20010031262A1 (en) * | 1999-12-06 | 2001-10-18 | Michael Caplan | Controlled delivery of antigens |
US20010031252A1 (en) * | 2000-03-31 | 2001-10-18 | Low Philip Stewart | Method of treatment using ligand-immunogen conjugates |
US7033594B2 (en) * | 2000-03-31 | 2006-04-25 | Purdue Research Foundation | Method of treatment using ligand-immunogen conjugates |
US7101976B1 (en) * | 2000-09-12 | 2006-09-05 | Purdue Research Foundation | EphA2 monoclonal antibodies and methods of making and using same |
US20070134254A1 (en) * | 2002-05-10 | 2007-06-14 | Medimmune, Inc. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20040028685A1 (en) * | 2002-05-10 | 2004-02-12 | Kinch Michael S. | EphA2 monoclonal antibodies and methods of use thereof |
US20040091486A1 (en) * | 2002-05-10 | 2004-05-13 | Kinch Michael S. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20070086943A1 (en) * | 2002-05-10 | 2007-04-19 | Purdue Research Foundation And Medimmune, Inc. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20050152899A1 (en) * | 2002-05-10 | 2005-07-14 | Kinch Michael S. | EphA2 agonistic monoclonal antibodies and methods of use thereof |
US20070166314A1 (en) * | 2002-05-10 | 2007-07-19 | Medimmune, Inc. | EpA2 monoclonal antibodies and methods of use thereof |
US20100143345A1 (en) * | 2002-05-10 | 2010-06-10 | Medimmune, Llc | Epha2 agonistic monoclonal antibodies and methods of use thereof |
US20100278838A1 (en) * | 2002-05-10 | 2010-11-04 | Medimmune, Llc | Epha2 monoclonal antibodies and methods of use thereof |
US7662770B2 (en) * | 2002-05-23 | 2010-02-16 | Purdue Research Foundation | Low molecular weight protein tyrosine phosphatase (LMW-PTP) as a diagnostic and therapeutic target |
US7776328B2 (en) * | 2005-02-04 | 2010-08-17 | Macrogenics, Inc. | Antibodies that bind to EphA2 and methods of use thereof |
US20090220527A1 (en) * | 2005-12-21 | 2009-09-03 | Medlmmune, Llc | Affinity optimized epha2 agonistic antibodies and methods of use thereof |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8591887B2 (en) | 1999-08-17 | 2013-11-26 | Purdue Research Foundation | EPHA2 as a therapeutic target for cancer |
US20060088541A1 (en) * | 1999-08-17 | 2006-04-27 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US7776327B2 (en) | 1999-08-17 | 2010-08-17 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US20110150898A1 (en) * | 1999-08-17 | 2011-06-23 | Purdue Research Foundation | EPHA2 as a therapeutic target for cancer |
US20050169931A1 (en) * | 1999-08-17 | 2005-08-04 | Purdue Research Foundation | EphA2 as a therapeutic target for cancer |
US7402298B1 (en) | 2000-09-12 | 2008-07-22 | Purdue Research Foundation | EphA2 monoclonal antibodies and methods of making and using same |
US8921102B2 (en) | 2005-07-29 | 2014-12-30 | Gpb Scientific, Llc | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
US9017942B2 (en) | 2006-06-14 | 2015-04-28 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US10704090B2 (en) | 2006-06-14 | 2020-07-07 | Verinata Health, Inc. | Fetal aneuploidy detection by sequencing |
US11781187B2 (en) | 2006-06-14 | 2023-10-10 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US8372584B2 (en) | 2006-06-14 | 2013-02-12 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US8168389B2 (en) | 2006-06-14 | 2012-05-01 | The General Hospital Corporation | Fetal cell analysis using sample splitting |
US11674176B2 (en) | 2006-06-14 | 2023-06-13 | Verinata Health, Inc | Fetal aneuploidy detection by sequencing |
US8137912B2 (en) | 2006-06-14 | 2012-03-20 | The General Hospital Corporation | Methods for the diagnosis of fetal abnormalities |
US10591391B2 (en) | 2006-06-14 | 2020-03-17 | Verinata Health, Inc. | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
US10155984B2 (en) | 2006-06-14 | 2018-12-18 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US9273355B2 (en) | 2006-06-14 | 2016-03-01 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US9347100B2 (en) | 2006-06-14 | 2016-05-24 | Gpb Scientific, Llc | Rare cell analysis using sample splitting and DNA tags |
US9353414B2 (en) | 2008-09-20 | 2016-05-31 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US9404157B2 (en) | 2008-09-20 | 2016-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US10669585B2 (en) | 2008-09-20 | 2020-06-02 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US8195415B2 (en) | 2008-09-20 | 2012-06-05 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US8682594B2 (en) | 2008-09-20 | 2014-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US8296076B2 (en) | 2008-09-20 | 2012-10-23 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuoploidy by sequencing |
US12054777B2 (en) | 2008-09-20 | 2024-08-06 | The Board Of Trustees Of The Leland Standford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
CN102169121A (en) * | 2010-02-25 | 2011-08-31 | 北京诺赛基因组研究中心有限公司 | New application of human kinase SBK1 (SH3-binding domain kinase 1) |
CN104749174A (en) * | 2014-12-18 | 2015-07-01 | 东莞星显家具有限公司 | A kind of urine tyrosine detection method |
CN111579788A (en) * | 2020-05-29 | 2020-08-25 | 郑州大学 | A Simoa kit for highly sensitive tumor marker EPHA2 and its application |
Also Published As
Publication number | Publication date |
---|---|
US7192698B1 (en) | 2007-03-20 |
US20120122112A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070161064A1 (en) | Antibodies as a cancer diagnostic | |
EP1210603B1 (en) | Anti-epha2 antibodies as a cancer diagnostic | |
US7090983B1 (en) | Methods for detecting early cancer | |
WO2007124361A2 (en) | Soluble b7-h1 | |
EP1930445B1 (en) | Kit and method for detection of urothelial cancer | |
CN102326081A (en) | Application of s-ErbB-3 as a cancer marker | |
KR20050114604A (en) | Use of nicotinamide n-methyltransferase as a marker for colorectal cancer | |
US20060188949A1 (en) | Use of protein PLST as a marker for colorectal cancer | |
EP2449133B1 (en) | Method for testing a subject thought to be predisposed to having metastatic cancer using delta133p53 isoforms | |
WO2008028066A2 (en) | Boris isoforms and methods of detecting and treating disease | |
AU2011253563A1 (en) | Anti-epha2 antibodies as a cancer diagnostic | |
AU2007202091A1 (en) | Anti-epha2 antibodies as a cancer diagnostic | |
US20130203059A1 (en) | Method for Diagnosis of Bladder Cancer and Related Kits | |
WO2009053354A1 (en) | Use of tenascin-w as a biomarker for colon cancer | |
US20130095483A1 (en) | Predictive biomarkers for breast cancer | |
US20100284923A1 (en) | Methods of diagnosing latent and active malignancies | |
US20070218510A1 (en) | Use of protein PSA3 as a marker for colorectal cancer | |
WO2005015234A1 (en) | Use of protein sahh as a marker for colorectal cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |