US20070150971A1 - Sequences upstream of the carp gene, vectors containing them and uses thereof - Google Patents
Sequences upstream of the carp gene, vectors containing them and uses thereof Download PDFInfo
- Publication number
- US20070150971A1 US20070150971A1 US11/508,239 US50823906A US2007150971A1 US 20070150971 A1 US20070150971 A1 US 20070150971A1 US 50823906 A US50823906 A US 50823906A US 2007150971 A1 US2007150971 A1 US 2007150971A1
- Authority
- US
- United States
- Prior art keywords
- polynucleotide
- protein
- expression
- cardiac
- expression cassette
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000013598 vector Substances 0.000 title abstract description 24
- 238000011144 upstream manufacturing Methods 0.000 title abstract description 23
- 101150014408 MINDY3 gene Proteins 0.000 title 1
- 101100005010 Mus musculus Ca8 gene Proteins 0.000 title 1
- 101150111716 ankrd1 gene Proteins 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 53
- 101710122305 Ankyrin repeat domain-containing protein 1 Proteins 0.000 abstract description 25
- 108700019146 Transgenes Proteins 0.000 abstract description 18
- 238000001727 in vivo Methods 0.000 abstract description 16
- 102100039181 Ankyrin repeat domain-containing protein 1 Human genes 0.000 abstract description 15
- 230000000747 cardiac effect Effects 0.000 abstract description 13
- 210000004413 cardiac myocyte Anatomy 0.000 abstract description 13
- 241001465754 Metazoa Species 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 10
- 102000039446 nucleic acids Human genes 0.000 abstract description 7
- 108020004707 nucleic acids Proteins 0.000 abstract description 7
- 150000007523 nucleic acids Chemical class 0.000 abstract description 7
- 230000007170 pathology Effects 0.000 abstract description 7
- 230000009261 transgenic effect Effects 0.000 abstract description 6
- -1 constructs Substances 0.000 abstract description 5
- 238000012546 transfer Methods 0.000 abstract description 5
- 108091026890 Coding region Proteins 0.000 abstract description 4
- 101710086403 Carbonic anhydrase-related protein Proteins 0.000 abstract 1
- 239000013612 plasmid Substances 0.000 description 53
- 102000040430 polynucleotide Human genes 0.000 description 41
- 108091033319 polynucleotide Proteins 0.000 description 41
- 239000002157 polynucleotide Substances 0.000 description 41
- 210000004027 cell Anatomy 0.000 description 33
- 230000000694 effects Effects 0.000 description 30
- 241000701161 unidentified adenovirus Species 0.000 description 21
- 239000012634 fragment Substances 0.000 description 18
- 108060001084 Luciferase Proteins 0.000 description 17
- 239000005089 Luciferase Substances 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 16
- 241000700605 Viruses Species 0.000 description 14
- 241000701022 Cytomegalovirus Species 0.000 description 12
- 230000037430 deletion Effects 0.000 description 12
- 238000012217 deletion Methods 0.000 description 12
- 241000700159 Rattus Species 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 210000002064 heart cell Anatomy 0.000 description 9
- 210000005003 heart tissue Anatomy 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 7
- 241000714474 Rous sarcoma virus Species 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 241000702421 Dependoparvovirus Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 4
- 208000006029 Cardiomegaly Diseases 0.000 description 4
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 4
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 241000713666 Lentivirus Species 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 3
- 206010019280 Heart failures Diseases 0.000 description 3
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 3
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 229940029303 fibroblast growth factor-1 Drugs 0.000 description 3
- 230000007954 hypoxia Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 2
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 2
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 2
- 241000713704 Bovine immunodeficiency virus Species 0.000 description 2
- 241000713756 Caprine arthritis encephalitis virus Species 0.000 description 2
- 241000713730 Equine infectious anemia virus Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101100491162 Mus musculus Ankrd1 gene Proteins 0.000 description 2
- 101000714513 Mus musculus Carbonic anhydrase-related protein Proteins 0.000 description 2
- 208000009525 Myocarditis Diseases 0.000 description 2
- 102000016349 Myosin Light Chains Human genes 0.000 description 2
- 108010067385 Myosin Light Chains Proteins 0.000 description 2
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 2
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 2
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 description 2
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 description 2
- 101000622060 Photinus pyralis Luciferin 4-monooxygenase Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 102100031013 Transgelin Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 108010051583 Ventricular Myosins Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 239000007925 intracardiac injection Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 108020004017 nuclear receptors Proteins 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 102000005681 phospholamban Human genes 0.000 description 2
- 108010059929 phospholamban Proteins 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000002363 skeletal muscle cell Anatomy 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- HBZBAMXERPYTFS-SECBINFHSA-N (4S)-2-(6,7-dihydro-5H-pyrrolo[3,2-f][1,3]benzothiazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid Chemical compound OC(=O)[C@H]1CSC(=N1)c1nc2cc3CCNc3cc2s1 HBZBAMXERPYTFS-SECBINFHSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 102000009840 Angiopoietins Human genes 0.000 description 1
- 108010009906 Angiopoietins Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101100496968 Caenorhabditis elegans ctc-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 241000701157 Canine mastadenovirus A Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 101150044789 Cap gene Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 108010051609 Cardiac Myosins Proteins 0.000 description 1
- 102000013602 Cardiac Myosins Human genes 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102100028892 Cardiotrophin-1 Human genes 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 102100038909 Caveolin-2 Human genes 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- 101150029662 E1 gene Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 1
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 108700005087 Homeobox Genes Proteins 0.000 description 1
- 101000889396 Homo sapiens Ankyrin repeat domain-containing protein 1 Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000740981 Homo sapiens Caveolin-2 Proteins 0.000 description 1
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 description 1
- 101001060267 Homo sapiens Fibroblast growth factor 5 Proteins 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 1
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710105127 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Proteins 0.000 description 1
- 101100221647 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cox-1 gene Proteins 0.000 description 1
- 102000019040 Nuclear Antigens Human genes 0.000 description 1
- 108010051791 Nuclear Antigens Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 101150062589 PTGS1 gene Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 241000242743 Renilla reniformis Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- ANLMVXSIPASBFL-UHFFFAOYSA-N Streptamin D Natural products NC1C(O)C(N)C(O)C(O)C1O ANLMVXSIPASBFL-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 102000004987 Troponin T Human genes 0.000 description 1
- 108090001108 Troponin T Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010047295 Ventricular hypertrophy Diseases 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 108090000861 alpha Adrenergic Receptors Proteins 0.000 description 1
- 102000004305 alpha Adrenergic Receptors Human genes 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 108010014499 beta-2 Adrenergic Receptors Proteins 0.000 description 1
- 102000016966 beta-2 Adrenergic Receptors Human genes 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 108010041776 cardiotrophin 1 Proteins 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000959 cryoprotective effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 102000047448 human ANKRD1 Human genes 0.000 description 1
- 102000043827 human Smooth muscle Human genes 0.000 description 1
- 108700038605 human Smooth muscle Proteins 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000002350 laparotomy Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000003998 progesterone receptors Human genes 0.000 description 1
- 108090000468 progesterone receptors Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000003660 reticulum Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- ANLMVXSIPASBFL-FAEUDGQSSA-N streptamine Chemical compound N[C@H]1[C@H](O)[C@@H](N)[C@H](O)[C@@H](O)[C@@H]1O ANLMVXSIPASBFL-FAEUDGQSSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/008—Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/15—Vector systems having a special element relevant for transcription chimeric enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/60—Vector systems having a special element relevant for transcription from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/80—Vector systems having a special element relevant for transcription from vertebrates
- C12N2830/85—Vector systems having a special element relevant for transcription from vertebrates mammalian
Definitions
- the present invention relates to the field of biology. It relates in particular to the field of the targeting of the expression of genes, and more particularly the design and the development of a novel system for the specific expression of transgenes.
- the subject of the invention is, in particular, novel promoter sequences capable of controlling the level and the specificity of expression of a transgene in vivo in cardiac muscle cells.
- the invention thus describes novel compositions, constructs and vectors that make it possible to control and to direct the expression of a nucleic acid in cardiac muscle cells.
- the applications stemming from the present invention are numerous, for example in the experimental, clinical, therapeutic and diagnostic fields, and more particularly for the treatment and/or prevention of certain cardiac pathologies.
- transgenic animals and the study of the effects of a gene are additional examples in which an appropriate control of the specificity of expression of a protein can be used and can provide improvements.
- promoters have been tested for their capacity to direct a cardiospecific expression. They are in particular the promoters of the gene encoding the cardiac myosin light chain (MLC-2) in rats (Henderson S. A. et al., J Biol Chem, 264(1989) 18142-8; Lee K. J. et al., J Biol Chem, 126 (1992) 15875-85), cardiac ⁇ -actin in mice (Biben C. et al., Dev Biol, 173 (1996) 200-12), atrial natriuretic factor (ANF) (Harris A. N.
- MLC-2 cardiac myosin light chain
- promoters While these promoters are known to confer a degree of tissue specificity, it is also known that their levels of activity remain well below those of so-called strong promoters, generally by a factor of between 10 and 100, such that a therapeutic use cannot really be envisaged.
- the present application therefore, relates to a novel promoter sequence derived from the region upstream of the CARP (Cardiac Ankyrin Repeat Protein) gene.
- This sequence is capable not only of directing a cardiospecific expression, but also exhibits a high level of expression in vivo, comparable to that of a strong promoter such as the CMV (cytomegalovirus) promoter.
- the CARP protein which constitutes one of the first markers for differentiation of cardiomyocytes acting downstream of the homeobox gene Nbx2.5 in the regulation of the expression of the MLC-2v gene, has been studied and the coding portion of its gene has been sequenced in mice (Zou Y. et al., Development, 24 (1997) 793-804), in rabbits (Aihara Y. et al., Biochim Biophys Acta, 28 (1999) 318-24), and in humans (Chu W. et al., J Biol Chem, 270 (1995) 1023645).
- Kuo H. et al. ( Development, 126 (1999) 4223-34) have cloned a 10 Kb fragment and sequenced a 2.5 Kb fragment upstream of the coding sequence of the mouse CARP gene. Deletions from the 5′-end of the fragment were made and showed that a region of 213 bp of the promoter between nucleotides ⁇ 166 and +47, relative to the transcription start position +1, was sufficient to confer cardiospecific expression in vitro, which suggested the presence, at the 5′-end, of an element for controlling the specificity of the promoter.
- Kuo et al. also generated transgenic mouse lines comprising a fragment of 2.5 Kb upstream of the CARP gene, showing specific expression of a transgene in cardiac and skeletal muscle cells at an early stage of embryonic development, this expression then being inhibited during development.
- Application WO 00/15821 describes a portion 5′ of the coding sequence of the mouse CARP gene, situated between nucleotides ⁇ 2285 and +62, relative to the transcription start position +1.
- This sequence was evaluated in particular for its in vivo activity in adenoviral vectors. The levels of activity obtained remain very low, however, such that it was found to be necessary, in order to detect an activity in vivo, to isolate the promoter sequence between two inverted terminal repeats of an adeno-associated virus (AAV-ITR).
- AAV-ITR adeno-associated virus
- the Applicants focused on better characterizing the region upstream of the CARP gene protein-coding region. We were thus able to identify a novel sequence upstream of the CARP gene and demonstrate unexpected and advantageous properties of this novel sequence, in particular, a significant improvement in the level of activity in vivo.
- the subject of the present invention is therefore a polynucleotide comprising a portion upstream of the coding sequence of the gene for the CARP protein, or of a polynucleotide hybridizing under highly stringent conditions with said upstream sequence, the polynucleotide being capable of inducing specific expression in cardiac tissue of a transgene placed under its control.
- the invention also relates to any polynucleotide of natural origin or which is obtained by chemical synthesis, exhibiting at least 93%, preferably at least 95%, identity with SEQ ID NO: 1.
- the polynucleotide exhibits at least 98% identity with SEQ ID NO: 1.
- polynucleotide of natural origin is understood to mean a genomic DNA fragment obtained by cleaving cellular DNA with the aid of a restriction enzyme.
- polynucleotide obtained by chemical synthesis is understood to mean a DNA fragment generated by automated or manual synthesis, for example, with the aid of a suitable automated apparatus.
- the term “highly stringent conditions” is used in the sense given by Maniatis et al. 1982 (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor CSH, N.Y., USA) or one of its more recent editions.
- the hybridization conditions are such that three washes at 65° C. in the presence of 0.2 ⁇ SSC, and 0.1% SDS are necessary in order to eliminate the nonhybridized fragments.
- the “specific” character of transgene expression means that the activity of the promoter is significantly higher in cells of cardiac tissue. Although nonspecific expression can be observed in other cells, the corresponding level of activity remains very low (negligible) compared with that observed in cardiac cells, in general lower by a factor of at least 10.
- results presented in the examples show, in this regard, a difference in expression that may reach a factor of 1000, which reflects the high selectivity of the polynucleotides according to the invention for cardiac cells in vivo.
- the polynucleotide according to the invention comprises a portion of the sequence between ⁇ 2266 and +92 (SEQ ID NO: 1), relative to transcription start position +1 of the CARP gene.
- the subject of the present invention is therefore the sequences hybridizing, under high stringency conditions, with the sequence SEQ ID NO: 1.
- the present invention is nevertheless not restricted to the polynucleotides containing fragments upstream of the mouse gene but relates to any functional variant or any other sequence of any other species having the same properties, namely being capable of specifically inducing expression in vivo of a transgene in cardiac tissue.
- sequence upstream of the human gene deposited in GenBank under the reference AF131884 (SEQ ID NO: 2).
- the present invention thus encompasses any sequence comprising fragments of the sequences upstream of the gene for the CARP protein, modified, for example, by deletion of certain structures and which preserve identical or similar functions to that of the sequence SEQ ID NO: 1.
- the polynucleotide has at least 80% identity with SEQ ID NO: 2. In another embodiment of the invention, the polynucleotide has at least 90% identity with SEQ ID NO: 2.
- the term “functional variant” is understood to mean any modified sequence preserving the properties of the polynucleotides as mentioned above.
- the modifications may comprise one or more additions, mutations, deletions and/or substitutions of nucleotides in the sequence considered. These modifications may be introduced by conventional molecular biology methods, such as, for example, site-directed mutagenesis, or by artificial synthesis of the sequence.
- the variants obtained are then tested for their capacity to mediate specific expression in cardiac muscle cells when compared to a polynucleotide having the sequence of SEQ ID NO: 1.
- Another subject of the invention is an expression cassette comprising a polynucleotide as defined above operably linked to a transgene such that the expression of the latter is specifically directed in cardiac muscle.
- An expression cassette according to the invention may also comprise a signal for the termination of transcription at the 3′-end of the nucleotide sequence of the transgene.
- the transgene comprises a nucleic acid encoding a protein or an RNA of therapeutic interest, which may, for example, be involved in cardiac pathologies such as cardiac insufficiency, cardiac hypertrophy, hypoxia, ischemia, or in cardiac transplant rejection.
- proteins inducing angiogenesis such as, for example, members of the vascular endothelial growth factor (VEGF) family, members of the fibroblast growth factor (FGF) family and, more particularly, FGF1, FGF2, FGF4, FGF5, angiogenin, epidermal growth factor (EGF), transforming growth factor (TGF) ⁇ , TGF ⁇ , tumor necrosis factor (TNF), Scatter Factor/hepatocyte growth factor (HGF), members of the angiopoietin family, cytokines and interleukins including IL-1, IL-2, IL-8, angiotensin-2, tissue plasminogen activator (TPA), urokinase (uPA), and molecules involved in the synthesis of active lipids (e.g., prostaglandins, Cox-1);
- VEGF vascular endothelial growth factor
- FGF fibroblast growth factor
- FGF1, FGF2, FGF4, FGF5 angiogenin
- EGF epidermal growth
- proteins involved in the control of cardiac contractility such as phospholamban, phospholamban inhibitors, sarco-endoplasmic reticulum Ca(2+) ATPase-2a (SERCA-2a), ⁇ 2-adrenergic receptor, and dystrophin or minidystrophin (FR91 11947);
- proteins with cryoprotective activity which block apoptosis, such as proteins which are members of the bcl family, and protein kinases such as AKT/PKB;
- transcription factors including, for example, natural or chimeric nuclear receptors, comprising a DNA-binding domain, a ligand-binding domain, and a transcription activating or inhibiting domain, such as, for example, the fusion proteins tetR-NLS-VP16, the fusion proteins derived from estrogen receptors, the fusion proteins derived from steroid hormone receptors, the fusion proteins derived from progesterone receptors, and the proteins of the CID (Chemical Inducer of Dimerization) system described by Rivera et al., (Rivera et al., Nature Medicine, 2 (1996) 1028-1032).
- CID Chemical Inducer of Dimerization
- chimeric nuclear receptors the nuclear receptors PPAR (Peroxisome Proliferator Activated Receptor) and PPAR2, as described in Applications WO 96/23884 and FR 99 07957, and by Frohnert et al., ( J Biol Chem 274 (1999) 3970-3977), and by Mukherjee et al., ( J Biol Chem 272 (1997) 8071-8076), either in its native form, without modification of the primary structure, or a modified PPAR2 comprising one or more ligand-binding sites or E/F domains (Schoonjans et al. Biochim. Biophys. Acta. 1302 (1996) 93-109), such as PPAR22 having the sequence of SEQ ID NO: 3;
- immunosuppressors such as, for example, interleukins 2 and 10 that make it possible to completely or partially inhibit an immune signaling pathway and, thus, to extend the duration of cardiac transplants;
- NOS nitric oxide synthetase
- B-cell leukemia/lymphoma 2 bcl-2
- SOD superoxide dismutase
- RNAs of therapeutic interest there may be mentioned, for example, antisense RNAs, which are useful for controlling the expression of genes or the transcription of cellular mRNAs, thus blocking translation into a protein according to the technique described in Patent EP 140 308, as well as ribozymes that are capable of selectively destroying target RNAs as described in EP 321 201.
- the subject of the present invention is additionally a vector containing the polynucleotide or the expression cassette according to the invention.
- a vector may contain any other DNA sequence necessary or useful for the expression of the transgene in target tissues and, in particular, may contain a replication origin that is effective in the cardiac cells.
- the vector of the invention may be of various natures and/or origins, for example, plasmid, cosmid, episomal, chromosomal, viral, or phage.
- the vector is either a plasmid or a recombinant virus.
- plasmids according to the invention comprising a polynucleotide or an expression cassette
- plasmids pXL3634, pXL3728 and pXL3759 which are described below.
- the vectors according to the invention are of the plasmid type.
- plasmid vectors there may be mentioned, inter alia, any cloning and/or expression plasmids known to a person skilled in the art, which generally comprise an origin of replication.
- new-generation plasmids carrying replication origins and/or markers that have been refined as described, for example, in Application WO 96/26270.
- the plasmid vector is a miniplasmid and comprises an origin of replication whose functionality in the host cell requires the presence of at least one protein that is specific and foreign to the cell.
- Such vectors are described, for example, in Application WO 97/10343.
- the vectors according to the present invention are viral vectors.
- viral vectors there may be mentioned, inter alia, recombinant adenoviruses, recombinant adeno-associated viruses, recombinant retroviruses, lentiviruses, herpesviruses, and vaccinia viruses, whose preparation may be carried out according to methods known to persons skilled in the art.
- Chimeric viral vectors may be used, such as the adenovirus-retrovirus chimeric vectors that are described, inter alia, in Application WO 95/22617, as well as the episome/adenovirus vectors that are described by Leblois et al. ( Mol Ther (2000) 1(4), 314-322) and in Application WO 97/47757.
- adenoviruses are used according to this embodiment, these are preferably vectors derived from defective adenoviruses, that is to say that they are incapable of autonomously replicating in the target cell.
- the construction of these defective viruses as well as their infectious properties have been widely described in the literature (see e.g., S. Baeck and K. L. March, Circul. Research, 82, (1998) 295-305; T. Shenk, B. N. Fields, D. M. Knipe, P. M. Howley et al. (1996), Adenoviridae: Viruses and Replication (in virology) 211-2148, EDS—Raven Publishers, Philadelphia; Yeh, P. et al. FASEB 11 (1997) 615-623).
- adenovirus serotypes whose structure and properties vary somewhat, have been characterized.
- use may be made in the context of the present invention, for example, of the type 2 or type 5 human adenoviruses (Ad 2 or Ad 5), or adenoviruses of animal origin, such as those described in Application FR 93 05954, or adenoviruses of mixed origin.
- Ad 2 or Ad 5 human adenoviruses
- Ad 2 or Ad 5 adenoviruses of animal origin
- adenoviruses of mixed origin such as those described in Application FR 93 05954, or adenoviruses of mixed origin.
- adenoviruses of animal origin there may be mentioned the adenoviruses of canine, bovine, murine (Beard et al., Virology 75 (1990) 81), ovine, porcine, avian or simian origin.
- the adenovirus of animal origin is a canine adenovirus, which may, for example, be a CAV2 adenovirus (Manhattan or A26/61 strain) as described in Application WO 94/26914.
- the defective adenoviruses of the invention generally comprise an inverted terminal repeat (ITR) at each end, a sequence allowing encapsidation (Psi), the E1 gene, with at least one of the genes E2, E4 and L1-L5 having been inactivated by any technique known to persons skilled in the art (Levero et al., Gene, 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917).
- ITR inverted terminal repeat
- Psi encapsidation
- the recombinant adenovirus used in the invention comprises a deletion in the E1 region of its genome.
- This deletion may, for example, comprise a deletion of the E1a and E1b regions.
- deletions affecting nucleotides 454-3328, 382-3446 or 357-4020 (with reference to the genome of Ad5).
- the recombinant adenovirus used in the invention comprises, in addition to a deletion in the E1 region, a deletion in the E4 region of its genome. More particularly, the deletion in the E4 region affects all the open reading frames. There may be mentioned, by way of a specific example, deletion of nucleotides 33466-35535 or 33093-35535, again with reference to the genome of Ad5. Other types of deletions in the E4 region are described in applications WO 95/02697 and WO 96/22378, which are incorporated by reference into the present application.
- Adeno-associated viruses are relatively small-sized DNA viruses, which integrate into the genome of infected cells in a stable and site-specific manner. AAV can infect a broad spectrum of cells without having any effect on cell growth, morphology or differentiation. Moreover, AAV does not appear to be involved in pathologies in humans.
- the AAV genome has been cloned, sequenced and characterized. It comprises about 4700 bases and contains, at each end, an inverted terminal repeat (ITR) of about 145 bases, which serves as an origin of replication for the virus.
- ITR inverted terminal repeat
- the remainder of the genome is divided into 2 essential regions carrying the encapsidation functions: the left portion of the genome, which contains the rep gene involved in viral replication and in the expression of the viral genes, and the right portion of the genome, which contains the cap gene encoding the virus capsid proteins.
- AAV-derived vectors for the transfer of genes in vitro and in vivo has been described in the literature (see in particular WO 91/18088; WO 93/09239; U.S. Pat. No. 4,797,368, U.S. Pat. No. 5,139,941, EP 488528).
- These patent applications describe various AAV-derived constructs in which the rep and/or cap genes have been deleted and replaced with a gene of interest, and the use of these constructs for transferring in vitro (into cells in culture) or in vivo (into cells in an organism) the gene of interest.
- the defective recombinant AAVs according to the invention may be prepared by co-transfection, into a cell line infected with a human helper virus (for example, an adenovirus), of a plasmid containing the nucleic sequences of the invention bordered by two AAV inverted terminal repeats (ITR) and of a plasmid carrying the AAV encapsidation genes (rep and cap genes).
- a human helper virus for example, an adenovirus
- ITR AAV inverted terminal repeats
- rep and cap genes AAV encapsidation genes
- Lentiviruses also may be used in the invention. They allow the transfer and the efficient and stable integration of a gene of interest into quiescent cells.
- HTLV-1 and animal lentiviruses such as FIV (feline infections virus), EIAV (equine infectious anemia virus; WO 98/51810), BIV (bovine immunodeficiency virus), SIV (simian immunodeficiency virus), CAEV (caprine arthritisencephalitis virus) (WO 98/39463; Naldini et al. Science 272 (1996) 263-267; Schnele et al. Hum Gen Ther 11 (2000) 439-447), or a lentivirus related to the one that causes AIDS, HIV-2, which is not highly pathogenic in humans (Kundra et al., Hum Gen Ther 9 (1998) 1371-1380).
- the expression cassette may be inserted at various sites of the recombinant genome. It may be inserted in the E1, E3, or E4 region, as a replacement for suppressed or surplus sequences. It may also be inserted at any other site, outside of the sequences necessary in cis for the production of the viruses (ITR sequences and the encapsidation sequence).
- nucleic sequences according to the present invention may be introduced after covalent coupling of the nucleic acid to compounds that promote their penetration into cells or their transport to the nucleus, the resulting conjugates being, optionally, encapsidated into polymeric microparticles, as in International Application WO 94/27238.
- nucleic sequences of the invention may be included in a transfection system comprising polypeptides promoting their penetration into cells, as in International Application WO 95/10534.
- the polynucleotides, cassettes and vectors of the invention may be administered in situ by any means known to persons skilled in the art, for example, by coronary infusion (Barr et al., Gene Ther, 1, (1994) 51-58), by intracardiac injection, by epicardiac injection, that is to say through the ventricular wall (Guzman et al., Cir Res, 73 (1993) 1202-1207), by intrapericardiac injection (Fromes et al., Gene Ther, 6 (1999) 683-688), or by retrofusion of the coronary veins (Boeckstegers et al., Circulation, 100 (Suppl I) (1999),1-815).
- coronary infusion Barr et al., Gene Ther, 1, (1994) 51-58
- intracardiac injection by epicardiac injection, that is to say through the ventricular wall
- intrapericardiac injection fromes et al., Gene Ther, 6 (1999) 68
- the polynucleotides, cassettes, or vectors according to the invention may be administered as part of a composition containing them, for example, with the aid of a chemical or biochemical transfer agent facilitating their transfection into cardiac cells.
- chemical or biochemical transfer agent is understood to mean any compound facilitating the penetration of a nucleic acid into a cell.
- This may include cationic agents such as cationic lipids, peptides, polymers (Polyethylenimine, Polylysine), nanoparticles, and non-cationic agents, such as non-cationic liposomes, non-cationic nanoparticles, or polymers.
- cationic agents such as cationic lipids, peptides, polymers (Polyethylenimine, Polylysine), nanoparticles, and non-cationic agents, such as non-cationic liposomes, non-cationic nanoparticles, or polymers.
- Such agents are well known to persons skilled in the art and are, for example, described in
- the present invention in addition, relates to medicaments containing such polynucleotides, expression cassettes or vectors, as well as to pharmaceutical compositions containing them in a pharmaceutically-effective quantity, as well as pharmaceutically-compatible excipients.
- Such polynucleotides, expression cassettes, or vectors may be used for the manufacture of medicaments for delivery to cardiac tissue, which may express a gene encoding a protein of interest for the treatment of cardiac diseases, for example, for the treatment and/or prevention of cardiac insufficiency, hypoxia, cardiac hypertrophy, myocarditis, cardiac ischemia, or for preventing rejection after cardiac transplant.
- Such a medicament may, for example, comprise a cassette or vector according to the invention that is capable of expressing the functional form of an impaired gene according to the cardiac pathology that it is desired to treat.
- the pharmaceutical composition contains pharmaceutically-acceptable vehicles for an injectable formulation, for example, for intracardiac injection.
- pharmaceutically-acceptable vehicles for an injectable formulation for example, for intracardiac injection.
- This may include, for example, isotonic, sterile saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride, and the like, or mixtures of such salts), or dry, for example, freeze-dried, compositions, which, upon addition of sterilized water or of physiological saline, as appropriate, allow the preparation of injectable solutions.
- Other excipients may be used, such as, for example, a hydrogel.
- This hydrogel may be prepared using any biocompatible and non-cytotoxic (homo or hetero) polymer. Such polymers have been described, for example, in application WO 93/08845.
- the doses used for the injection may be adjusted according to various parameters and according to the aim pursued (labeling, pathology, screening, etc.), the transgene to be expressed, or the duration of expression desired.
- the recombinant adenoviruses according to the invention are formulated and administered in the form of doses of between 10 4 and 10 14 pfu, and, preferably, between 10 6 and 10 10 pfu.
- pfu plaque forming unit
- the term pfu corresponds to the infectious power of a viral solution, and is determined by infecting an appropriate cell culture, and measuring the number of plaques of infected cells. The techniques for determining the pfu titer of a viral solution are well known in the art.
- the subject of the present invention is, in addition, a method of expressing a transgene of therapeutic interest during which the polynucleotides, cassettes or vectors according to the present invention are used, such that the transgene can be expressed.
- the invention also relates to any cell modified with a cassette or a vector (e.g., an adenovirus) as described above.
- a cassette or a vector e.g., an adenovirus
- the expression “modified” cell is understood to mean any cell containing a polynucleotide or a cassette according to the invention.
- Modified cells may be intended for implantation into an organism, according to the methodology described in application WO 95/14785. These cells may be, for example, human cardiac cells.
- the present invention also relates to transgenic animals, for example, mice carrying a polynucleotide or a cassette as defined above in which the gene encoding the protein of therapeutic interest is replaced with a reporter gene.
- transgenic mice may be used to screen molecules for their activity on the regulatory sequences of the gene encoding the CARP protein. Molecules may be administered to mice and, after sacrificing, histological sections may be prepared in order to identify the tissues stained with the reporter gene.
- the transgenic animals according to the present invention also constitute molecular biology study means for understanding the molecular mechanisms underlying cardiac pathologies of genetic origin, such as cardiac insufficiency, cardiac hypertrophy, cardiac hyperplasia, and myocardial infarction.
- cardiac pathologies of genetic origin such as cardiac insufficiency, cardiac hypertrophy, cardiac hyperplasia, and myocardial infarction.
- murine models for studying myocarditis in which the gene encoding interferon-1 (IFN-1) is inactivated (Aitken et al., Circulation, 90 (1994) 1-139).
- animal models of interest may comprise the polynucleotide according to the invention linked to transgenes such as protooncogenes or oncogenes, for example, c-myc, thus constituting models of hyperplasia (Jackson et al., Mol Cell Biol, 10 (1990) 3709-3716), p21-ras for models of ventricular hypertrophy (Hunter et al., J Biol Chem, 270 (1995) 23176-23178), and the nuclear antigen of the Epstein-Barr virus for studying certain cardiomyopathies (Huen et al., J Gen Virol, 74 (1993) 1381-1391).
- transgenes such as protooncogenes or oncogenes, for example, c-myc
- the transgenic animals according to the invention are experimental models of cardiac hypertrophy and comprise an expression cassette in which the transgene encodes for example calmodulin (Gruver et al., Endocrinology, 133 (1993) 376-388), interleukin-6 or the interleukin-6 receptor (Hirota et al., Proc Natl Acad Sci. USA, 92 (1995) 4862-4866), cardiotrophin-1 (Pennica et al., Proc Natl Acad Sci. USA, 92 (1995) 1142-1146), and, finally, the ⁇ -adrenergic receptor (Milano et al., Proc Natl Acad Sci. USA, 92 (1994) 10109-10113).
- calmodulin Gaver et al., Endocrinology, 133 (1993) 376-388
- interleukin-6 or the interleukin-6 receptor Hirota et al., Proc Natl Acad Sci. USA, 92 (1995)
- polynucleotides according to the invention modified to allow an increase in the expression of the CARP gene, also form part of the invention.
- the transgenic animals thus obtained constitute experimental tools for myocardial infarction (Stanton et al., Circul Res, 86 (2000) 939-945).
- FIG. 1 illustrates the nucleotide sequence (SEQ ID NO: 1) of the polynucleotide upstream of the gene encoding the mouse CARP protein;
- FIG. 2 illustrates the nucleotide sequence (SEQ ID NO: 2) of the polynucleotide upstream of the gene encoding the human CARP protein;
- FIG. 3 is a schematic representation of the plasmid pXL3634
- FIG. 4 is a schematic representation of the plasmid pXL3728
- FIG. 5 illustrates the relative activity in vitro of the plasmids pXL3635 and pXL3634 with respect to the reference activity of the CMV promoter (pRL-CMV).
- the activity of each promoter is expressed as the Photinus pyralis luciferase activity normalized with the Renilla reniformis luciferase activity.
- FIG. 6A is a schematic representation of the plasmid pXL3759
- FIG. 6B is a schematic representation of the adenovirus AV1.0 CARP-Luc+;
- FIG. 7A illustrates the luciferase activity (pg luciferase/heart) 7 days after intracardiac transdiaphragmatic injection in rats of variable quantities of plasmids pXL3031 and pXL3634;
- FIG. 7B illustrates the luciferase expression (pg luciferase/heart) 7 days after intracardiac transdiaphragmatic injection in rats hearts of 25 g of plasmids pXL3031 and pXL3635, pXL3130, and pXL3153.
- FIG. 8 represents the ratio of the expression of luciferase in the heart relative to the expression in the muscle as a function of the expression in the heart obtained following intracardiac administrations of plasmids pXL3031, pXL 3634, pXL3635, pXL3153, and pXL3130.
- a BamHl-Xhol fragment of 2.3 Kb of the sequence at the 5′-end of the mouse gene encoding the CARP protein was cloned and sequenced on both strands according to the chain termination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA, 74, 5463) using the Sequenase® kit (United States Biochemical, Cleveland, Ohio).
- the sequence (SEQ ID NO: 1) is represented in FIG. 1 and comprises a portion upstream of the gene encoding the mouse CARP protein between nucleotides ⁇ 2266 and +92 relative to transcription start position +1.
- the BamHl-Xhol fragment of 2.3 Kb characterized in Example 1 was cloned after filling in the BamHl site into the plasmid pGL3-Basic (Promega), which had been digested with Xhol and Smal, in order to obtain the plasmid pXL3634.
- a schematic representation of this plasmid is presented in FIG. 3 .
- the plasmid pXL3728 was obtained from the plasmid pXL3179, which was derived from the plasmid pXL2774 (WO 97/10343) in which the gene encoding a fusion between the signal peptide of human fibroblast interferon and the cDNA of FGF1 (fibroblast growth factor 1) (sp-FGF1, Jouanneau et al., Proc. Natl. Acad. Sci USA 88 (1991), 2893-2897) was introduced under the control of the promoter obtained from the human cytomegalovirus early region (hCMV IE) and the polyadenylation signal of the SV40 virus late region (GenBank SV4CG).
- FGF1 fibroblast growth factor 1
- Plasmids pXL3130 and pXL3153 contain, respectively, the human smooth muscle ⁇ -actin promoter ( ⁇ 680 to +30) and the mouse SM22 promoter ( ⁇ 436 to +43) coupled to the CMV enhancer ( ⁇ 522 to ⁇ 63) as described in application WO 00/18908.
- the RSV ⁇ 229 to +34 promoter was cloned from a construct containing a longer version of the RSV promoter (contained in Ad1.0RSVLAcZ, Stratford-Perricaudet et al., J Clin Invest 90 (1992) 626-30) by PCR using of the primers 5′-GGC GAT TTA AAT AAT GTA GTC TTA TGC AAT-3′ (SEQ ID NO: 4) and 5′-GGG GTC TAG AAG GTG CAC ACC AAT GTG GTG A-3′ (SEQ ID NO: 5), which introduce, respectively, an Swal and Xbal site at the 5′- and 3′-ends of the PCR fragment. These two restriction sites were then used to introduce the promoter fragment into pGL3-basic to generate pXL3635.
- the plasmid pXL3031 is described by Soubrier et al., Gene Ther. 6 (1999), 1482-8. It is a vector derived from the plasmid pXL2774 (WO 97/10343) in which the luc gene encoding the modified Photinus pyralis luciferase (cytoplasmic) obtained from pGL3basic (GenBank: CVU47295) was introduced under the control of the promoter obtained from the human cytomegalovirus early region (hCMV IE, GenBank HS5IEE) and of the polyadenylation signal of the SV40 virus late region (GenBank SV4CG).
- hCMV IE human cytomegalovirus early region
- GenBank HS5IEE GenBank HS5IEE
- gestating rats were killed in a chamber saturated with CO 2 . After opening the abdomen, the uterine horns were removed and washed in PBS at room temperature. The embryos were released from their envelopes and the placenta cut (10 to 12 embryos per rat). The hearts were removed and washed in ADS/glucose. Under a binocular lens, the auricles and large vessels were removed, and then the hearts were again cleaned in ADS/glucose so as to retain only the ventricles and then rinsed 3 times in sterile ADS/glucose.
- the hearts were then trypsinized in 0.3 ml of an ADS/glucose/trypsin mixture per heart, using trypsin T 4674 (Sigma, St Louis, Mo.) at a final concentration of 0.1 mg/ml, for 20 min at 37° C., with gentle stirring (60 to 100 revolutions per min).
- the supernatant was removed and the trypsin was inactivated by adding 1 ml of decomplemented fetal calf serum (FCS). After centrifugation at 1500 rpm for 10 minutes, the supernatant was removed and the cardiac cells were taken up in 1 ml of decomplemented FCS. In parallel, the steps of treating with trypsin were repeated 5 to 6 times until complete dissociation of the cells was obtained. The pool of cells was centrifuged at 1500 rpm for 10 minutes, then washed twice in FCS and the cells were finally filtered on a grid filter.
- FCS decomplemented fetal calf serum
- the cells thus separated were placed in culture at a concentration of 10 6 cells/well for a 24-well plate or at a concentration of 2 ⁇ 10 6 cells/well for a 12-well plate. Each well contained 1 ml of culture medium.
- the culture medium comprises, for a total volume of 100 ml, 68 ml of DMEM (without pyruvate) (Gibco-BRL), 17 ml of M199 (Sigma M 4530), 10 ml of decomplemented horse serum (Sigma H6762), 5 ml of decomplemented FCS (Gibo-BRL) and 1 ml of 100 ⁇ Pen/Strep/glutamine mixture (Gibco-BRL).
- the cardiomyocytes were cultured for a period of about 1 or 2 days.
- the primary cultures of cardiomyocytes were cotransfected with a total quantity of DNA equal to 500 ng per well, comprising 1 ng of a plasmid pRL-CMV (Promega Inc., Madison, Wis.), variable quantities ranging from 1 to 100 ng of each of the plasmids pXL3635 and pXL3634 as described above, qs 500 ng of pUC19.
- a plasmid pRL-CMV Promega Inc., Madison, Wis.
- variable quantities ranging from 1 to 100 ng of each of the plasmids pXL3635 and pXL3634 as described above, qs 500 ng of pUC19.
- the mixture of the plasmids was incubated with 6 nmol of RPR 120535B (Byk et al., J Med Chem. 41 (1998) 229-35) per ⁇ g of DNA (0.3 ⁇ l of solution of lipid at 10 mM) in a final volume of 20 ⁇ l in 150 mM NaCl, 50 mM bicarbonate, and then vortex-mixed for 5 seconds, and again incubated for about 20 to 30 minutes at room temperature.
- the mixture was then added to 250 ⁇ l of serum-free medium and incubated with the cells for at least 2 hours.
- the medium was finally removed and the cells were incubated for a period ranging from 24 hours to 7 days at a temperature of 37° C. in the presence of 5% CO 2 .
- the cells were harvested at 24 hours or at 48 hours after transfection and the Renillia luciferase and Firefly luciferase activities were analyzed with the Promega Dual Luc kit according the manufacturer's instructions. The activities were read on a Victor apparatus.
- the relative activity of the nonspecific strong RSV promoter was also low, respectively on the order of 0.05% and 0.68% of that of the reference CMV promoter.
- adenovirus allowing the expression of the luciferase under the control of the CARP promoter was constructed according to the method of Crouzet et al. ( Proc. Natl. Acad. Sci. USA, 94 (1997) 1414-1419), the expression cassette being identical to that of the plasmid pXL3634 ( FIG. 3 ).
- a shuttle vector allowing recombination in Escherichia coli was constructed in two stages.
- the CARP promoter fragment: Xhol filled with Klenow/BamHl
- pXL3474 digested with Scal and Bglll
- Plasmid pXL3759 was then generated by introducing into pXL3758, which had been digested with BstBll (filled in with Klenow) and BstEll, the fragment containing the luciferase cDNA and the SV40 polyadenylation site (BamHl fragment filled with Klenow/BstEll of pXL3634).
- pXL3759 is schematically represented in FIG. 6A .
- the plasmid pXL3215 is a derivative of the plasmid pXL2689, which contains the replication origin of the plasmid RK2, the tetracycline resistance gene (Crouzet et al. Proc. Natl. Acad. Sci. USA, 1997).
- the product of this double recombination, the plasmid pXL3778 was verified by sequencing of the expression cassette. After cleavage with Pacl in order to release a linear viral genome, the plasmid was transfected into the Per.C6 cell line (WO 97/00326) in order to generate the virus AV1.0CARP-Luc+.
- the virus was also verified by sequencing of the expression cassette and by restriction analysis.
- the presence of RCA E1+ (replication competent adenovirus) particles was tested for by hybridization with a probe.
- Stocks with high virus titer were obtained by amplification of the virus in the Per.C6 line and the viral particles were purified on a CsCl gradient.
- the titer of this virus in viral particles/ml was obtained by chromatography and its activity was checked in vitro by titration of the luciferase activity after infection of skeletal or cardiac muscle cells and comparison with a virus used as a control comprising a CMV promoter.
- CD SPRAGUE rats weighing 200 g were anesthetized with a Ketamine (70 mg/ml)/Xylazine (6 mg/ml) mixture at 1 ml/kg injected by the intraperitoneal route.
- the intramyocardiac injections were carried out after laparotomy by the transdiaphragmatic route with a 100 ⁇ l Hamilton glass syringe connected to a Steriflex catheter (ref. 167.10 G19 V) provided with a stop flange and ending with a BD 26G*3.8 needle (short bezel).
- the hearts were removed, rinsed in a 0.9% NaCl solution and macroscopically examined. They were then analyzed for luciferase activity using a kit (Promega E151A) after grinding with the aid of a homogenizer (Ultra-thurax, Diax600 Heidolph) in lysis buffer from the kit supplemented with protease inhibitors (Cmplete, Roche Diagnostics), followed by centrifugation for 20 minutes at 4000 rpm at 4° C. The readings were made on the apparatus LUMAT LB 9501 (10 ⁇ l of supernatant+50 ⁇ l of Promega luciferase substrate).
- Luciferase activities were converted to luciferase mass per heart (pg luciferase/heart) using the calibration described in Mir et al ( Proc. Natl. Acad. Sci. USA 96 (1999), 42624267).
- the hearts were fixed in 3.7% paraformaldehyde and analyzed by immunohistochemistry for the expression of FGF-1.
- results presented in FIG. 7A show that the levels of expression of luciferase obtained upon injection of increasing doses 1, 5, 25 and 125 ⁇ g of plasmids pXL3031 and pXL3634 were not significantly different, thus, clearly demonstrating that the polynucleotide upstream of the CARP gene is capable of inducing high levels of expression equivalent to those of a strong promoter such as CMV.
- the expression obtained with another strong viral promoter was weaker than that obtained with either the CMV promoter or the polynucleotide upstream of the CARP gene ( FIG. 7B ).
- 25 ⁇ g of each of the plasmids pXL3634, pXL3435 and pXL3031 were administered to rats by intracardiac transdiaphragmatic injection.
- the levels of expression of luciferase in the heart were expressed relative to the levels observed in the cranial tibial muscle, and are presented in FIG. 8 .
- the superior specificity of the expression driven by the polynucleotide of the invention was also clear relative to other constructs comprising an enhancer and a promoter specific for smooth muscle cells such as that of the gene coding for the protein SM-22 and for actin for which the heart/muscle expression ratios are also presented in FIG. 8 by way of illustration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hospice & Palliative Care (AREA)
- Transplantation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention relates to novel promoter sequences derived from a portion upstream of the coding sequence of the gene for the CARP protein (Cardiac Ankyrin Repeat Protein), and which are capable of controlling the level and the specificity of expression of a transgene in vivo in cardiac muscle cells. The invention thus describes novel compositions, constructs, vectors and their uses in vivo for the transfer and expression of a nucleic acid in vivo in cardiac muscle cells. The subject of the present invention is also the use of the promoter sequences for generating transgenic animals which constitute models for studying certain cardiac pathologies.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/251,582, filed Dec. 7, 2000, which is incorporated herein in its entirety.
- The present invention relates to the field of biology. It relates in particular to the field of the targeting of the expression of genes, and more particularly the design and the development of a novel system for the specific expression of transgenes. The subject of the invention is, in particular, novel promoter sequences capable of controlling the level and the specificity of expression of a transgene in vivo in cardiac muscle cells. The invention thus describes novel compositions, constructs and vectors that make it possible to control and to direct the expression of a nucleic acid in cardiac muscle cells. The applications stemming from the present invention are numerous, for example in the experimental, clinical, therapeutic and diagnostic fields, and more particularly for the treatment and/or prevention of certain cardiac pathologies.
- The control of the level and of the targeting of the expression of transgenes is necessary for many applications. For example, in gene therapy the success of the therapy may require targeting of the protein synthesized from the transgene and thus make it possible to limit the spread of side effects. The construction of transgenic animals and the study of the effects of a gene are additional examples in which an appropriate control of the specificity of expression of a protein can be used and can provide improvements.
- In this regard, many promoters have been tested for their capacity to direct a cardiospecific expression. They are in particular the promoters of the gene encoding the cardiac myosin light chain (MLC-2) in rats (Henderson S. A. et al., J Biol Chem, 264(1989) 18142-8; Lee K. J. et al., J Biol Chem, 126 (1992) 15875-85), cardiac α-actin in mice (Biben C. et al., Dev Biol, 173 (1996) 200-12), atrial natriuretic factor (ANF) (Harris A. N. et al., J Mol Cell Cardiol, 29 (1997) 515-25), α- or β-myosin heavy chain (α- or β-MHC) (Colbert M. C. et al., J Clin Invest, 100 (1997) 1958-68), muscle creatine kinase (MCK) in rabbits (Vincent C. K. et al., Mol Cell Biol, 13 (1993) 567-74), or cardiac troponin T (U.S. Pat. No. 5,266,488).
- While these promoters are known to confer a degree of tissue specificity, it is also known that their levels of activity remain well below those of so-called strong promoters, generally by a factor of between 10 and 100, such that a therapeutic use cannot really be envisaged.
- By way of example, Franz W. M. et al., (Cardiovasc Res, 35 (1997) 560-6) and Griscelli F. et al., (C R Acad Sci III, 320 (1997) 103-12) have shown that the levels of activity of the sequences upstream of the genes encoding rat α-MHC and MLC-2 in adenoviral constructs remain substantially lower than those of the RSV (Rous sarcoma virus) promoter, by a factor of about 10.
- The present application, therefore, relates to a novel promoter sequence derived from the region upstream of the CARP (Cardiac Ankyrin Repeat Protein) gene. This sequence is capable not only of directing a cardiospecific expression, but also exhibits a high level of expression in vivo, comparable to that of a strong promoter such as the CMV (cytomegalovirus) promoter.
- The CARP protein, which constitutes one of the first markers for differentiation of cardiomyocytes acting downstream of the homeobox gene Nbx2.5 in the regulation of the expression of the MLC-2v gene, has been studied and the coding portion of its gene has been sequenced in mice (Zou Y. et al., Development, 24 (1997) 793-804), in rabbits (Aihara Y. et al., Biochim Biophys Acta, 28 (1999) 318-24), and in humans (Chu W. et al., J Biol Chem, 270 (1995) 1023645).
- Kuo H. et al. (Development, 126 (1999) 4223-34) have cloned a 10 Kb fragment and sequenced a 2.5 Kb fragment upstream of the coding sequence of the mouse CARP gene. Deletions from the 5′-end of the fragment were made and showed that a region of 213 bp of the promoter between nucleotides −166 and +47, relative to the transcription start position +1, was sufficient to confer cardiospecific expression in vitro, which suggested the presence, at the 5′-end, of an element for controlling the specificity of the promoter. Kuo et al. also generated transgenic mouse lines comprising a fragment of 2.5 Kb upstream of the CARP gene, showing specific expression of a transgene in cardiac and skeletal muscle cells at an early stage of embryonic development, this expression then being inhibited during development.
- Application WO 00/15821 describes a
portion 5′ of the coding sequence of the mouse CARP gene, situated between nucleotides −2285 and +62, relative to the transcription start position +1. This sequence was evaluated in particular for its in vivo activity in adenoviral vectors. The levels of activity obtained remain very low, however, such that it was found to be necessary, in order to detect an activity in vivo, to isolate the promoter sequence between two inverted terminal repeats of an adeno-associated virus (AAV-ITR). - The Applicants focused on better characterizing the region upstream of the CARP gene protein-coding region. We were thus able to identify a novel sequence upstream of the CARP gene and demonstrate unexpected and advantageous properties of this novel sequence, in particular, a significant improvement in the level of activity in vivo.
- The Applicants have discovered, surprisingly, that while this newly identified sequence conferred no significant expression in vitro, it was, on the contrary, possible to obtain very good levels of activity in vivo, equivalent to those of so-called strong promoters, while preserving a high selectivity for expression in cardiac tissue.
- The subject of the present invention is therefore a polynucleotide comprising a portion upstream of the coding sequence of the gene for the CARP protein, or of a polynucleotide hybridizing under highly stringent conditions with said upstream sequence, the polynucleotide being capable of inducing specific expression in cardiac tissue of a transgene placed under its control.
- The invention also relates to any polynucleotide of natural origin or which is obtained by chemical synthesis, exhibiting at least 93%, preferably at least 95%, identity with SEQ ID NO: 1. In a further embodiment of the invention, the polynucleotide exhibits at least 98% identity with SEQ ID NO: 1.
- The term “polynucleotide of natural origin” is understood to mean a genomic DNA fragment obtained by cleaving cellular DNA with the aid of a restriction enzyme.
- The term “polynucleotide obtained by chemical synthesis” is understood to mean a DNA fragment generated by automated or manual synthesis, for example, with the aid of a suitable automated apparatus.
- For the present invention, the term “highly stringent conditions” is used in the sense given by Maniatis et al. 1982 (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor CSH, N.Y., USA) or one of its more recent editions. By way of example, the hybridization conditions are such that three washes at 65° C. in the presence of 0.2×SSC, and 0.1% SDS are necessary in order to eliminate the nonhybridized fragments.
- The “specific” character of transgene expression means that the activity of the promoter is significantly higher in cells of cardiac tissue. Although nonspecific expression can be observed in other cells, the corresponding level of activity remains very low (negligible) compared with that observed in cardiac cells, in general lower by a factor of at least 10.
- The results presented in the examples show, in this regard, a difference in expression that may reach a factor of 1000, which reflects the high selectivity of the polynucleotides according to the invention for cardiac cells in vivo.
- Moreover, the results presented in the examples below clearly show that the use of the polynucleotides of the invention offers a system for high levels of expression, above those for other promoters known to be specific for cardiac tissue, it being possible for the difference to exceed a factor of 100. These elements, therefore, illustrate the advantages and unexpected properties of the polynucleotide according to the invention, in terms of promoter strength and specificity, for the expression of nucleic acids of interest in the cardiac tissue.
- Advantageously, the polynucleotide according to the invention comprises a portion of the sequence between −2266 and +92 (SEQ ID NO: 1), relative to transcription start position +1 of the CARP gene.
- The subject of the present invention is therefore the sequences hybridizing, under high stringency conditions, with the sequence SEQ ID NO: 1.
- The present invention is nevertheless not restricted to the polynucleotides containing fragments upstream of the mouse gene but relates to any functional variant or any other sequence of any other species having the same properties, namely being capable of specifically inducing expression in vivo of a transgene in cardiac tissue.
- Thus, persons skilled in the art will be able to refer to the sequence upstream of the human gene deposited in GenBank under the reference AF131884 (SEQ ID NO: 2). The present invention thus encompasses any sequence comprising fragments of the sequences upstream of the gene for the CARP protein, modified, for example, by deletion of certain structures and which preserve identical or similar functions to that of the sequence SEQ ID NO: 1.
- In one embodiment of the invention, the polynucleotide has at least 80% identity with SEQ ID NO: 2. In another embodiment of the invention, the polynucleotide has at least 90% identity with SEQ ID NO: 2.
- The term “functional variant” is understood to mean any modified sequence preserving the properties of the polynucleotides as mentioned above. The modifications may comprise one or more additions, mutations, deletions and/or substitutions of nucleotides in the sequence considered. These modifications may be introduced by conventional molecular biology methods, such as, for example, site-directed mutagenesis, or by artificial synthesis of the sequence. The variants obtained are then tested for their capacity to mediate specific expression in cardiac muscle cells when compared to a polynucleotide having the sequence of SEQ ID NO: 1.
- Another subject of the invention is an expression cassette comprising a polynucleotide as defined above operably linked to a transgene such that the expression of the latter is specifically directed in cardiac muscle.
- An expression cassette according to the invention may also comprise a signal for the termination of transcription at the 3′-end of the nucleotide sequence of the transgene.
- In one embodiment, the transgene comprises a nucleic acid encoding a protein or an RNA of therapeutic interest, which may, for example, be involved in cardiac pathologies such as cardiac insufficiency, cardiac hypertrophy, hypoxia, ischemia, or in cardiac transplant rejection.
- As proteins of therapeutic interest, there may be mentioned, inter alia:
- proteins inducing angiogenesis, such as, for example, members of the vascular endothelial growth factor (VEGF) family, members of the fibroblast growth factor (FGF) family and, more particularly, FGF1, FGF2, FGF4, FGF5, angiogenin, epidermal growth factor (EGF), transforming growth factor (TGF) α, TGFβ, tumor necrosis factor (TNF), Scatter Factor/hepatocyte growth factor (HGF), members of the angiopoietin family, cytokines and interleukins including IL-1, IL-2, IL-8, angiotensin-2, tissue plasminogen activator (TPA), urokinase (uPA), and molecules involved in the synthesis of active lipids (e.g., prostaglandins, Cox-1);
- proteins involved in the control of cardiac contractility, such as phospholamban, phospholamban inhibitors, sarco-endoplasmic reticulum Ca(2+) ATPase-2a (SERCA-2a), β2-adrenergic receptor, and dystrophin or minidystrophin (FR91 11947);
- proteins with cryoprotective activity, which block apoptosis, such as proteins which are members of the bcl family, and protein kinases such as AKT/PKB;
- transcription factors, including, for example, natural or chimeric nuclear receptors, comprising a DNA-binding domain, a ligand-binding domain, and a transcription activating or inhibiting domain, such as, for example, the fusion proteins tetR-NLS-VP16, the fusion proteins derived from estrogen receptors, the fusion proteins derived from steroid hormone receptors, the fusion proteins derived from progesterone receptors, and the proteins of the CID (Chemical Inducer of Dimerization) system described by Rivera et al., (Rivera et al., Nature Medicine, 2 (1996) 1028-1032). There may be mentioned, in particular, as chimeric nuclear receptors, the nuclear receptors PPAR (Peroxisome Proliferator Activated Receptor) and PPAR2, as described in Applications WO 96/23884 and FR 99 07957, and by Frohnert et al., (J Biol Chem 274 (1999) 3970-3977), and by Mukherjee et al., (J Biol Chem 272 (1997) 8071-8076), either in its native form, without modification of the primary structure, or a modified PPAR2 comprising one or more ligand-binding sites or E/F domains (Schoonjans et al. Biochim. Biophys. Acta. 1302 (1996) 93-109), such as PPAR22 having the sequence of SEQ ID NO: 3;
- immunosuppressors such as, for example,
interleukins - proteins involved as agents for reducing hypoxia, such as NOS (nitric oxide synthetase), B-cell leukemia/lymphoma 2 (bcl-2), superoxide dismutase (SOD) and catalase.
- As RNAs of therapeutic interest, there may be mentioned, for example, antisense RNAs, which are useful for controlling the expression of genes or the transcription of cellular mRNAs, thus blocking translation into a protein according to the technique described in Patent EP 140 308, as well as ribozymes that are capable of selectively destroying target RNAs as described in EP 321 201.
- It is understood that the present invention is not limited to these specific examples of proteins or RNAs, but that it can be used by persons skilled in the art for the expression of any nucleic acid in cardiac cells by simple, customary, experimental operations.
- The subject of the present invention is additionally a vector containing the polynucleotide or the expression cassette according to the invention. Such a vector may contain any other DNA sequence necessary or useful for the expression of the transgene in target tissues and, in particular, may contain a replication origin that is effective in the cardiac cells.
- The vector of the invention may be of various natures and/or origins, for example, plasmid, cosmid, episomal, chromosomal, viral, or phage. In one embodiment, the vector is either a plasmid or a recombinant virus.
- By way of illustration of the plasmids according to the invention comprising a polynucleotide or an expression cassette, there may be mentioned, for example, the plasmids pXL3634, pXL3728 and pXL3759, which are described below.
- According to one embodiment, the vectors according to the invention are of the plasmid type. As plasmid vectors, there may be mentioned, inter alia, any cloning and/or expression plasmids known to a person skilled in the art, which generally comprise an origin of replication. There may also be mentioned new-generation plasmids carrying replication origins and/or markers that have been refined, as described, for example, in Application WO 96/26270.
- According to another embodiment, the plasmid vector is a miniplasmid and comprises an origin of replication whose functionality in the host cell requires the presence of at least one protein that is specific and foreign to the cell. Such vectors are described, for example, in Application WO 97/10343.
- According to another embodiment, the vectors according to the present invention are viral vectors. Among the latter, there may be mentioned, inter alia, recombinant adenoviruses, recombinant adeno-associated viruses, recombinant retroviruses, lentiviruses, herpesviruses, and vaccinia viruses, whose preparation may be carried out according to methods known to persons skilled in the art. Chimeric viral vectors may be used, such as the adenovirus-retrovirus chimeric vectors that are described, inter alia, in Application WO 95/22617, as well as the episome/adenovirus vectors that are described by Leblois et al. (Mol Ther (2000) 1(4), 314-322) and in Application WO 97/47757.
- When adenoviruses are used according to this embodiment, these are preferably vectors derived from defective adenoviruses, that is to say that they are incapable of autonomously replicating in the target cell. The construction of these defective viruses as well as their infectious properties have been widely described in the literature (see e.g., S. Baeck and K. L. March, Circul. Research, 82, (1998) 295-305; T. Shenk, B. N. Fields, D. M. Knipe, P. M. Howley et al. (1996), Adenoviridae: Viruses and Replication (in virology) 211-2148, EDS—Raven Publishers, Philadelphia; Yeh, P. et al. FASEB 11 (1997) 615-623).
- Various adenovirus serotypes, whose structure and properties vary somewhat, have been characterized. Among these serotypes, use may be made in the context of the present invention, for example, of the
type 2 ortype 5 human adenoviruses (Ad 2 or Ad 5), or adenoviruses of animal origin, such as those described in Application FR 93 05954, or adenoviruses of mixed origin. Among the adenoviruses of animal origin that may be used in the context of the present invention, there may be mentioned the adenoviruses of canine, bovine, murine (Beard et al., Virology 75 (1990) 81), ovine, porcine, avian or simian origin. In one embodiment, the adenovirus of animal origin is a canine adenovirus, which may, for example, be a CAV2 adenovirus (Manhattan or A26/61 strain) as described in Application WO 94/26914. - The defective adenoviruses of the invention generally comprise an inverted terminal repeat (ITR) at each end, a sequence allowing encapsidation (Psi), the E1 gene, with at least one of the genes E2, E4 and L1-L5 having been inactivated by any technique known to persons skilled in the art (Levero et al., Gene, 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917).
- In one embodiment, the recombinant adenovirus used in the invention comprises a deletion in the E1 region of its genome. This deletion may, for example, comprise a deletion of the E1a and E1b regions. By way of a specific example, there may be mentioned deletions affecting nucleotides 454-3328, 382-3446 or 357-4020 (with reference to the genome of Ad5).
- According to another embodiment, the recombinant adenovirus used in the invention comprises, in addition to a deletion in the E1 region, a deletion in the E4 region of its genome. More particularly, the deletion in the E4 region affects all the open reading frames. There may be mentioned, by way of a specific example, deletion of nucleotides 33466-35535 or 33093-35535, again with reference to the genome of Ad5. Other types of deletions in the E4 region are described in applications WO 95/02697 and WO 96/22378, which are incorporated by reference into the present application.
- Adeno-associated viruses (AAV) are relatively small-sized DNA viruses, which integrate into the genome of infected cells in a stable and site-specific manner. AAV can infect a broad spectrum of cells without having any effect on cell growth, morphology or differentiation. Moreover, AAV does not appear to be involved in pathologies in humans. The AAV genome has been cloned, sequenced and characterized. It comprises about 4700 bases and contains, at each end, an inverted terminal repeat (ITR) of about 145 bases, which serves as an origin of replication for the virus. The remainder of the genome is divided into 2 essential regions carrying the encapsidation functions: the left portion of the genome, which contains the rep gene involved in viral replication and in the expression of the viral genes, and the right portion of the genome, which contains the cap gene encoding the virus capsid proteins.
- The use of AAV-derived vectors for the transfer of genes in vitro and in vivo has been described in the literature (see in particular WO 91/18088; WO 93/09239; U.S. Pat. No. 4,797,368, U.S. Pat. No. 5,139,941, EP 488528). These patent applications describe various AAV-derived constructs in which the rep and/or cap genes have been deleted and replaced with a gene of interest, and the use of these constructs for transferring in vitro (into cells in culture) or in vivo (into cells in an organism) the gene of interest. The defective recombinant AAVs according to the invention may be prepared by co-transfection, into a cell line infected with a human helper virus (for example, an adenovirus), of a plasmid containing the nucleic sequences of the invention bordered by two AAV inverted terminal repeats (ITR) and of a plasmid carrying the AAV encapsidation genes (rep and cap genes). The recombinant AAVs produced are then purified by conventional techniques.
- Lentiviruses also may be used in the invention. They allow the transfer and the efficient and stable integration of a gene of interest into quiescent cells. There may be mentioned, for example, HTLV-1 and animal lentiviruses, such as FIV (feline infections virus), EIAV (equine infectious anemia virus; WO 98/51810), BIV (bovine immunodeficiency virus), SIV (simian immunodeficiency virus), CAEV (caprine arthritisencephalitis virus) (WO 98/39463; Naldini et al. Science 272 (1996) 263-267; Schnele et al. Hum Gen Ther 11 (2000) 439-447), or a lentivirus related to the one that causes AIDS, HIV-2, which is not highly pathogenic in humans (Kundra et al., Hum Gen Ther 9 (1998) 1371-1380).
- The expression cassette may be inserted at various sites of the recombinant genome. It may be inserted in the E1, E3, or E4 region, as a replacement for suppressed or surplus sequences. It may also be inserted at any other site, outside of the sequences necessary in cis for the production of the viruses (ITR sequences and the encapsidation sequence).
- It will be noted, however, that the introduction of the sequences according to the present invention into the vectors described above is not essential. That is, cardiac cells may be directly transfected with DNA comprising these sequences.
- The nucleic sequences according to the present invention may be introduced after covalent coupling of the nucleic acid to compounds that promote their penetration into cells or their transport to the nucleus, the resulting conjugates being, optionally, encapsidated into polymeric microparticles, as in International Application WO 94/27238.
- According to another embodiment, the nucleic sequences of the invention may be included in a transfection system comprising polypeptides promoting their penetration into cells, as in International Application WO 95/10534.
- The polynucleotides, cassettes and vectors of the invention may be administered in situ by any means known to persons skilled in the art, for example, by coronary infusion (Barr et al., Gene Ther, 1, (1994) 51-58), by intracardiac injection, by epicardiac injection, that is to say through the ventricular wall (Guzman et al., Cir Res, 73 (1993) 1202-1207), by intrapericardiac injection (Fromes et al., Gene Ther, 6 (1999) 683-688), or by retrofusion of the coronary veins (Boeckstegers et al., Circulation, 100 (Suppl I) (1999),1-815).
- The polynucleotides, cassettes, or vectors according to the invention may be administered as part of a composition containing them, for example, with the aid of a chemical or biochemical transfer agent facilitating their transfection into cardiac cells. The phrase “chemical or biochemical transfer agent” is understood to mean any compound facilitating the penetration of a nucleic acid into a cell. This may include cationic agents such as cationic lipids, peptides, polymers (Polyethylenimine, Polylysine), nanoparticles, and non-cationic agents, such as non-cationic liposomes, non-cationic nanoparticles, or polymers. Such agents are well known to persons skilled in the art and are, for example, described in applications WO 95/18863, WO 97/18185 and WO 98/15639.
- The present invention, in addition, relates to medicaments containing such polynucleotides, expression cassettes or vectors, as well as to pharmaceutical compositions containing them in a pharmaceutically-effective quantity, as well as pharmaceutically-compatible excipients.
- Such polynucleotides, expression cassettes, or vectors may be used for the manufacture of medicaments for delivery to cardiac tissue, which may express a gene encoding a protein of interest for the treatment of cardiac diseases, for example, for the treatment and/or prevention of cardiac insufficiency, hypoxia, cardiac hypertrophy, myocarditis, cardiac ischemia, or for preventing rejection after cardiac transplant.
- Such a medicament may, for example, comprise a cassette or vector according to the invention that is capable of expressing the functional form of an impaired gene according to the cardiac pathology that it is desired to treat.
- Preferably, the pharmaceutical composition contains pharmaceutically-acceptable vehicles for an injectable formulation, for example, for intracardiac injection. This may include, for example, isotonic, sterile saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride, and the like, or mixtures of such salts), or dry, for example, freeze-dried, compositions, which, upon addition of sterilized water or of physiological saline, as appropriate, allow the preparation of injectable solutions. Other excipients may be used, such as, for example, a hydrogel. This hydrogel may be prepared using any biocompatible and non-cytotoxic (homo or hetero) polymer. Such polymers have been described, for example, in application WO 93/08845. Some of them, such as those obtained from ethylene and/or propylene oxide, are commercially available. The doses used for the injection may be adjusted according to various parameters and according to the aim pursued (labeling, pathology, screening, etc.), the transgene to be expressed, or the duration of expression desired.
- In general, the recombinant adenoviruses according to the invention are formulated and administered in the form of doses of between 104 and 1014 pfu, and, preferably, between 106 and 1010 pfu. The term pfu (plaque forming unit) corresponds to the infectious power of a viral solution, and is determined by infecting an appropriate cell culture, and measuring the number of plaques of infected cells. The techniques for determining the pfu titer of a viral solution are well known in the art.
- The subject of the present invention is, in addition, a method of expressing a transgene of therapeutic interest during which the polynucleotides, cassettes or vectors according to the present invention are used, such that the transgene can be expressed.
- Moreover, the invention also relates to any cell modified with a cassette or a vector (e.g., an adenovirus) as described above. The expression “modified” cell is understood to mean any cell containing a polynucleotide or a cassette according to the invention. Modified cells may be intended for implantation into an organism, according to the methodology described in application WO 95/14785. These cells may be, for example, human cardiac cells.
- The present invention also relates to transgenic animals, for example, mice carrying a polynucleotide or a cassette as defined above in which the gene encoding the protein of therapeutic interest is replaced with a reporter gene. Such transgenic mice may be used to screen molecules for their activity on the regulatory sequences of the gene encoding the CARP protein. Molecules may be administered to mice and, after sacrificing, histological sections may be prepared in order to identify the tissues stained with the reporter gene.
- The transgenic animals according to the present invention also constitute molecular biology study means for understanding the molecular mechanisms underlying cardiac pathologies of genetic origin, such as cardiac insufficiency, cardiac hypertrophy, cardiac hyperplasia, and myocardial infarction. By way of example, there may be mentioned murine models for studying myocarditis in which the gene encoding interferon-1 (IFN-1) is inactivated (Aitken et al., Circulation, 90 (1994) 1-139).
- Other animal models of interest according to the present invention may comprise the polynucleotide according to the invention linked to transgenes such as protooncogenes or oncogenes, for example, c-myc, thus constituting models of hyperplasia (Jackson et al., Mol Cell Biol, 10 (1990) 3709-3716), p21-ras for models of ventricular hypertrophy (Hunter et al., J Biol Chem, 270 (1995) 23176-23178), and the nuclear antigen of the Epstein-Barr virus for studying certain cardiomyopathies (Huen et al., J Gen Virol, 74 (1993) 1381-1391).
- According to another embodiment, the transgenic animals according to the invention are experimental models of cardiac hypertrophy and comprise an expression cassette in which the transgene encodes for example calmodulin (Gruver et al., Endocrinology, 133 (1993) 376-388), interleukin-6 or the interleukin-6 receptor (Hirota et al., Proc Natl Acad Sci. USA, 92 (1995) 4862-4866), cardiotrophin-1 (Pennica et al., Proc Natl Acad Sci. USA, 92 (1995) 1142-1146), and, finally, the α-adrenergic receptor (Milano et al., Proc Natl Acad Sci. USA, 92 (1994) 10109-10113).
- Additionally, the polynucleotides according to the invention, modified to allow an increase in the expression of the CARP gene, also form part of the invention. The transgenic animals thus obtained constitute experimental tools for myocardial infarction (Stanton et al., Circul Res, 86 (2000) 939-945).
- To carry out the present invention, a person skilled in the art can advantageously refer to the following manual: Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York 1989), or one of its recent editions.
- The present invention is described in greater detail with the aid of the following examples, which should be considered as illustrative and nonlimiting.
-
FIG. 1 : illustrates the nucleotide sequence (SEQ ID NO: 1) of the polynucleotide upstream of the gene encoding the mouse CARP protein; -
FIG. 2 : illustrates the nucleotide sequence (SEQ ID NO: 2) of the polynucleotide upstream of the gene encoding the human CARP protein; -
FIG. 3 : is a schematic representation of the plasmid pXL3634; -
FIG. 4 : is a schematic representation of the plasmid pXL3728; -
FIG. 5 : illustrates the relative activity in vitro of the plasmids pXL3635 and pXL3634 with respect to the reference activity of the CMV promoter (pRL-CMV). The activity of each promoter is expressed as the Photinus pyralis luciferase activity normalized with the Renilla reniformis luciferase activity. -
FIG. 6A : is a schematic representation of the plasmid pXL3759; -
FIG. 6B : is a schematic representation of the adenovirus AV1.0 CARP-Luc+; -
FIG. 7A : illustrates the luciferase activity (pg luciferase/heart) 7 days after intracardiac transdiaphragmatic injection in rats of variable quantities of plasmids pXL3031 and pXL3634; -
FIG. 7B : illustrates the luciferase expression (pg luciferase/heart) 7 days after intracardiac transdiaphragmatic injection in rats hearts of 25 g of plasmids pXL3031 and pXL3635, pXL3130, and pXL3153. -
FIG. 8 : represents the ratio of the expression of luciferase in the heart relative to the expression in the muscle as a function of the expression in the heart obtained following intracardiac administrations of plasmids pXL3031,pXL 3634, pXL3635, pXL3153, and pXL3130. - A BamHl-Xhol fragment of 2.3 Kb of the sequence at the 5′-end of the mouse gene encoding the CARP protein was cloned and sequenced on both strands according to the chain termination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA, 74, 5463) using the Sequenase® kit (United States Biochemical, Cleveland, Ohio). The sequence (SEQ ID NO: 1) is represented in
FIG. 1 and comprises a portion upstream of the gene encoding the mouse CARP protein between nucleotides −2266 and +92 relative to transcription start position +1. - The BamHl-Xhol fragment of 2.3 Kb characterized in Example 1 was cloned after filling in the BamHl site into the plasmid pGL3-Basic (Promega), which had been digested with Xhol and Smal, in order to obtain the plasmid pXL3634. A schematic representation of this plasmid is presented in
FIG. 3 . - The plasmid pXL3728 was obtained from the plasmid pXL3179, which was derived from the plasmid pXL2774 (WO 97/10343) in which the gene encoding a fusion between the signal peptide of human fibroblast interferon and the cDNA of FGF1 (fibroblast growth factor 1) (sp-FGF1, Jouanneau et al., Proc. Natl. Acad. Sci USA 88 (1991), 2893-2897) was introduced under the control of the promoter obtained from the human cytomegalovirus early region (hCMV IE) and the polyadenylation signal of the SV40 virus late region (GenBank SV4CG).
- The BamHl-Xhol fragment of 2.3 Kb characterized in Example 1, whose ends have been filled in, was cloned into the plasmid pXL3179 (pCOR CMV-FGF), previously digested with Xbal and EcoRl, in order to obtain the plasmid pXL3728. A schematic representation of this plasmid is presented in
FIG. 4 . - An EcoRl-Sall fragment of the plasmid pXL3634 was cloned into the plasmid pXL3728 previously digested with EcoRl-Sall in order to obtain the plasmid pXL3729.
- Plasmids pXL3130 and pXL3153 contain, respectively, the human smooth muscle α-actin promoter (−680 to +30) and the mouse SM22 promoter (−436 to +43) coupled to the CMV enhancer (−522 to −63) as described in application WO 00/18908.
- The RSV −229 to +34 promoter was cloned from a construct containing a longer version of the RSV promoter (contained in Ad1.0RSVLAcZ, Stratford-Perricaudet et al., J Clin Invest 90 (1992) 626-30) by PCR using of the
primers 5′-GGC GAT TTA AAT AAT GTA GTC TTA TGC AAT-3′ (SEQ ID NO: 4) and 5′-GGG GTC TAG AAG GTG CAC ACC AAT GTG GTG A-3′ (SEQ ID NO: 5), which introduce, respectively, an Swal and Xbal site at the 5′- and 3′-ends of the PCR fragment. These two restriction sites were then used to introduce the promoter fragment into pGL3-basic to generate pXL3635. - The plasmid pXL3031 is described by Soubrier et al., Gene Ther. 6 (1999), 1482-8. It is a vector derived from the plasmid pXL2774 (WO 97/10343) in which the luc gene encoding the modified Photinus pyralis luciferase (cytoplasmic) obtained from pGL3basic (GenBank: CVU47295) was introduced under the control of the promoter obtained from the human cytomegalovirus early region (hCMV IE, GenBank HS5IEE) and of the polyadenylation signal of the SV40 virus late region (GenBank SV4CG).
- In order to establish primary cultures of rat cardiomyocytes, gestating rats were killed in a chamber saturated with CO2. After opening the abdomen, the uterine horns were removed and washed in PBS at room temperature. The embryos were released from their envelopes and the placenta cut (10 to 12 embryos per rat). The hearts were removed and washed in ADS/glucose. Under a binocular lens, the auricles and large vessels were removed, and then the hearts were again cleaned in ADS/glucose so as to retain only the ventricles and then rinsed 3 times in sterile ADS/glucose.
- The hearts were then trypsinized in 0.3 ml of an ADS/glucose/trypsin mixture per heart, using trypsin T 4674 (Sigma, St Louis, Mo.) at a final concentration of 0.1 mg/ml, for 20 min at 37° C., with gentle stirring (60 to 100 revolutions per min).
- The supernatant was removed and the trypsin was inactivated by adding 1 ml of decomplemented fetal calf serum (FCS). After centrifugation at 1500 rpm for 10 minutes, the supernatant was removed and the cardiac cells were taken up in 1 ml of decomplemented FCS. In parallel, the steps of treating with trypsin were repeated 5 to 6 times until complete dissociation of the cells was obtained. The pool of cells was centrifuged at 1500 rpm for 10 minutes, then washed twice in FCS and the cells were finally filtered on a grid filter.
- The cells thus separated were placed in culture at a concentration of 106 cells/well for a 24-well plate or at a concentration of 2×106 cells/well for a 12-well plate. Each well contained 1 ml of culture medium.
- The culture medium comprises, for a total volume of 100 ml, 68 ml of DMEM (without pyruvate) (Gibco-BRL), 17 ml of M199 (Sigma M 4530), 10 ml of decomplemented horse serum (Sigma H6762), 5 ml of decomplemented FCS (Gibo-BRL) and 1 ml of 100× Pen/Strep/glutamine mixture (Gibco-BRL).
- The cardiomyocytes were cultured for a period of about 1 or 2 days.
- The primary cultures of cardiomyocytes were cotransfected with a total quantity of DNA equal to 500 ng per well, comprising 1 ng of a plasmid pRL-CMV (Promega Inc., Madison, Wis.), variable quantities ranging from 1 to 100 ng of each of the plasmids pXL3635 and pXL3634 as described above, qs 500 ng of pUC19.
- For that, the mixture of the plasmids was incubated with 6 nmol of RPR 120535B (Byk et al., J Med Chem. 41 (1998) 229-35) per μg of DNA (0.3 μl of solution of lipid at 10 mM) in a final volume of 20 μl in 150 mM NaCl, 50 mM bicarbonate, and then vortex-mixed for 5 seconds, and again incubated for about 20 to 30 minutes at room temperature.
- The mixture was then added to 250 μl of serum-free medium and incubated with the cells for at least 2 hours. The medium was finally removed and the cells were incubated for a period ranging from 24 hours to 7 days at a temperature of 37° C. in the presence of 5% CO2.
- The cells were harvested at 24 hours or at 48 hours after transfection and the Renillia luciferase and Firefly luciferase activities were analyzed with the Promega Dual Luc kit according the manufacturer's instructions. The activities were read on a Victor apparatus.
- The relative activities of the CARP polynucleotide (pXL3634) and of the RSV (pXL3635) promoters were evaluated in vitro by transient transfection of primary cultures of rat cardiomyocytes and were expressed relative to the activity of the plasmid pRL-CMV (
FIG. 5 ). - The results show that the polynucleotide upstream of the CARP gene (pXL3634) has a very low in vitro activity, on the order of 0.04% relative to that of the CMV promoter.
- The relative activity of the nonspecific strong RSV promoter (pXL3635) was also low, respectively on the order of 0.05% and 0.68% of that of the reference CMV promoter.
- An adenovirus allowing the expression of the luciferase under the control of the CARP promoter was constructed according to the method of Crouzet et al. (Proc. Natl. Acad. Sci. USA, 94 (1997) 1414-1419), the expression cassette being identical to that of the plasmid pXL3634 (
FIG. 3 ). - A shuttle vector allowing recombination in Escherichia coli was constructed in two stages. First, the CARP promoter (fragment: Xhol filled with Klenow/BamHl) was introduced into pXL3474 (digested with Scal and Bglll) between the regions ITR- and plX in order to generate the plasmid pXL3758. Plasmid pXL3759 was then generated by introducing into pXL3758, which had been digested with BstBll (filled in with Klenow) and BstEll, the fragment containing the luciferase cDNA and the SV40 polyadenylation site (BamHl fragment filled with Klenow/BstEll of pXL3634). pXL3759 is schematically represented in
FIG. 6A . - Homologous double recombination in E. coli was accomplished as described above, against a plasmid pXL3215 containing an E1/E3 adenoviral genome into which an RSV-LacZ expression cassette had been introduced into the E1 region. The plasmid pXL3215 is a derivative of the plasmid pXL2689, which contains the replication origin of the plasmid RK2, the tetracycline resistance gene (Crouzet et al. Proc. Natl. Acad. Sci. USA, 1997). The product of this double recombination, the plasmid pXL3778, was verified by sequencing of the expression cassette. After cleavage with Pacl in order to release a linear viral genome, the plasmid was transfected into the Per.C6 cell line (WO 97/00326) in order to generate the virus AV1.0CARP-Luc+.
- The virus was also verified by sequencing of the expression cassette and by restriction analysis. The presence of RCA E1+ (replication competent adenovirus) particles was tested for by hybridization with a probe.
- Stocks with high virus titer were obtained by amplification of the virus in the Per.C6 line and the viral particles were purified on a CsCl gradient. The titer of this virus in viral particles/ml (vp/ml) was obtained by chromatography and its activity was checked in vitro by titration of the luciferase activity after infection of skeletal or cardiac muscle cells and comparison with a virus used as a control comprising a CMV promoter.
- CD SPRAGUE rats weighing 200 g were anesthetized with a Ketamine (70 mg/ml)/Xylazine (6 mg/ml) mixture at 1 ml/kg injected by the intraperitoneal route.
- The intramyocardiac injections were carried out after laparotomy by the transdiaphragmatic route with a 100 μl Hamilton glass syringe connected to a Steriflex catheter (ref. 167.10 G19 V) provided with a stop flange and ending with a BD 26G*3.8 needle (short bezel).
- Fifty microliters of the DNA solution, adjusted to 0.9% of NaCl, were injected over 5 seconds.
- After sacrificing the animals, the hearts were removed, rinsed in a 0.9% NaCl solution and macroscopically examined. They were then analyzed for luciferase activity using a kit (Promega E151A) after grinding with the aid of a homogenizer (Ultra-thurax, Diax600 Heidolph) in lysis buffer from the kit supplemented with protease inhibitors (Cmplete, Roche Diagnostics), followed by centrifugation for 20 minutes at 4000 rpm at 4° C. The readings were made on the apparatus LUMAT LB 9501 (10 μl of supernatant+50 μl of Promega luciferase substrate). Luciferase activities were converted to luciferase mass per heart (pg luciferase/heart) using the calibration described in Mir et al (Proc. Natl. Acad. Sci. USA 96 (1999), 42624267).
- Alternatively, the hearts were fixed in 3.7% paraformaldehyde and analyzed by immunohistochemistry for the expression of FGF-1.
- The results presented in
FIG. 7A show that the levels of expression of luciferase obtained upon injection of increasingdoses - On the other hand, the expression obtained with another strong viral promoter, the RSV promoter (pXL3635), was weaker than that obtained with either the CMV promoter or the polynucleotide upstream of the CARP gene (
FIG. 7B ). - Moreover, the addition of the CMV enhancer upstream of smooth muscle cell promoters (SM α-actin, pXL3130 or SM22, pXL3153) although demonstrated to be highly efficient in vitro (WO 00/18908) appeared to be ineffective in cardiac cells in vivo.
- 25 μg of each of the plasmids pXL3634, pXL3435 and pXL3031 were administered to rats by intracardiac transdiaphragmatic injection.
- In parallel, intramuscular injections were performed into the cranial tibial muscle of groups of mice with 10 μg of each of these plasmids with or without electrotransfer.
- The expression of luciferase was analyzed 7 days after the injection as described (Proc. Natl. Acad. Sci. USA 96 (1999), 42624267).
- The levels of expression of luciferase in the heart were expressed relative to the levels observed in the cranial tibial muscle, and are presented in
FIG. 8 . - The results clearly show that the polynucleotide upstream of the CARP gene and the CMV promoter were the only two promoters capable of inducing the highest expression in the cardiac tissue. However, the heart/muscle expression ratio was 1 with the CMV promoter, whereas this ratio was close to 100 when the polynucleotide upstream of the CARP gene was used, which clearly shows the very high selectivity of the latter for the cardiac tissue.
- The superior specificity of the expression driven by the polynucleotide of the invention was also clear relative to other constructs comprising an enhancer and a promoter specific for smooth muscle cells such as that of the gene coding for the protein SM-22 and for actin for which the heart/muscle expression ratios are also presented in
FIG. 8 by way of illustration.
Claims (18)
1-39. (canceled)
40. An isolated polynucleotide comprising a sequence that hybridizes under highly stringent conditions with SEQ ID NO: 1, wherein said polynucleotide comprises at least 92 nucleotides 3′ to the transcription start position +1, and wherein said polynucleotide in the absence of inverted terminal repeat sequences from human adeno-associated virus specifically induces expression in cardiac cells in vivo of a gene which is operably linked to said polynucleotide, provided that the sequence of said polynucleotide is not SEQ ID NO: 2.
41. An expression cassette comprising a sequence encoding a protein or an RNA of therapeutic interest operably linked to the polynucleotide according to claim 40 .
42. The expression cassette according to claim 41 , wherein the protein or RNA of therapeutic interest increases a rate of cardiac cell division, reduces or suppresses an immune response, induces angiogenesis, changes muscle contractility, reduces cardiac hypertrophy, reduces cardiac insufficiency, or reduces myocarditis.
43. The expression cassette according to claim 41 , wherein the protein or RNA of therapeutic interest is a vascular endothelial growth factor, a fibroblast growth factor, an angiopoietin, or a cytokine.
44. The expression cassette according to claim 41 , wherein the protein or RNA of therapeutic interest is an activating or an inhibiting transcription factor.
45. The expression cassette according to claim 41 , wherein the protein of therapeutic interest is an immunosuppressive protein.
46. The expression cassette according to claim 45 , wherein the immunosuppressive protein is interleukin-10, interleukin-2, or interleukin-8.
47. The expression cassette according to claim 41 , wherein the RNA of therapeutic interest is an antisense RNA or a ribozyme.
48. The expression cassette according to claim 41 , wherein the protein of therapeutic interest is nitric oxide synthetase, superoxide dismutase, or catalase.
49. A vector comprising the polynucleotide according to claim 40 .
50. A vector comprising the expression cassette according to claim 41 .
51. The vector according to claim 49 , further comprising an origin of replication which is active in cardiac cells.
52. The vector according to claim 49 , which is a plasmid or a cosmid.
53. The vector according to claim 49 , which is or is derived from an adenovirus, a retrovirus, a herpesvirus, or an adeno-associated virus.
54. A composition comprising a therapeutically effective amount of the polynucleotide according to claim 40 and a pharmaceutically acceptable carrier.
55. A composition comprising a therapeutically effective amount of the vector according to claim 49 and a pharmaceutically acceptable carrier.
56. The vector according to claim 49 , which is any DNA not encapsidated by viral proteins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/508,239 US20070150971A1 (en) | 2000-12-07 | 2006-08-23 | Sequences upstream of the carp gene, vectors containing them and uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25158200P | 2000-12-07 | 2000-12-07 | |
US10/005,337 US7193075B2 (en) | 2000-12-07 | 2001-12-07 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
US11/508,239 US20070150971A1 (en) | 2000-12-07 | 2006-08-23 | Sequences upstream of the carp gene, vectors containing them and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/005,337 Continuation US7193075B2 (en) | 2000-12-07 | 2001-12-07 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070150971A1 true US20070150971A1 (en) | 2007-06-28 |
Family
ID=22952571
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/005,337 Expired - Fee Related US7193075B2 (en) | 2000-12-07 | 2001-12-07 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
US11/239,469 Abandoned US20060110362A1 (en) | 2000-12-07 | 2005-09-30 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
US11/508,239 Abandoned US20070150971A1 (en) | 2000-12-07 | 2006-08-23 | Sequences upstream of the carp gene, vectors containing them and uses thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/005,337 Expired - Fee Related US7193075B2 (en) | 2000-12-07 | 2001-12-07 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
US11/239,469 Abandoned US20060110362A1 (en) | 2000-12-07 | 2005-09-30 | Sequences upstream of the CARP gene, vectors containing them and uses thereof |
Country Status (18)
Country | Link |
---|---|
US (3) | US7193075B2 (en) |
EP (1) | EP1358208A2 (en) |
JP (1) | JP2004519222A (en) |
KR (1) | KR20030090609A (en) |
CN (1) | CN1483040A (en) |
AU (2) | AU2640002A (en) |
BR (1) | BR0116014A (en) |
CA (1) | CA2431193A1 (en) |
CZ (1) | CZ20031569A3 (en) |
FI (1) | FI20030851A (en) |
IL (1) | IL156137A0 (en) |
MX (1) | MXPA03005039A (en) |
NO (1) | NO20032584L (en) |
NZ (1) | NZ526408A (en) |
PL (1) | PL365314A1 (en) |
RU (1) | RU2283865C2 (en) |
WO (1) | WO2002046220A2 (en) |
ZA (1) | ZA200305184B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0410844A (en) * | 2003-06-05 | 2006-06-27 | Centelion | Plasmid coding fibroblast growth factor for the treatment of angiogenic defects associated with hypercholesterolemia or diabetes |
KR101666228B1 (en) | 2007-09-28 | 2016-10-13 | 인트렉손 코포레이션 | Therapeutic gene-switch constructs and bioreactors for the expression of biotherapeutic molecules, and uses thereof |
US8257956B2 (en) * | 2008-10-28 | 2012-09-04 | E. I. Du Pont De Nemours And Company | Sulfonylurea-responsive repressor proteins |
UA105029C2 (en) * | 2009-02-04 | 2014-04-10 | Борд Оф Ріджентс, Зе Юніверсіті Оф Техас Сістем | Dual targeting of mir-208 and mir-499 in the treatment of cardiac disorders |
RU2497529C2 (en) * | 2011-11-08 | 2013-11-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Method for stimulating regenerative processes in ischemic tissues |
CN105779457B (en) * | 2016-05-31 | 2019-02-12 | 北京大学 | Cardiomyocyte-specific promoter and its application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1109925B1 (en) * | 1998-09-11 | 2005-05-04 | The Regents of The University of California | Recombinant adenovirus for tissue specific expression in heart |
US6033642A (en) * | 1999-03-29 | 2000-03-07 | Starmet Corporation | Method for producing silicon tetrafluoride from uranium oxyfluoride |
-
2001
- 2001-12-05 IL IL15613701A patent/IL156137A0/en unknown
- 2001-12-05 EP EP01995724A patent/EP1358208A2/en not_active Withdrawn
- 2001-12-05 PL PL01365314A patent/PL365314A1/en not_active Application Discontinuation
- 2001-12-05 WO PCT/EP2001/015412 patent/WO2002046220A2/en active IP Right Grant
- 2001-12-05 NZ NZ526408A patent/NZ526408A/en unknown
- 2001-12-05 CA CA002431193A patent/CA2431193A1/en not_active Abandoned
- 2001-12-05 MX MXPA03005039A patent/MXPA03005039A/en active IP Right Grant
- 2001-12-05 RU RU2003120081/13A patent/RU2283865C2/en not_active IP Right Cessation
- 2001-12-05 AU AU2640002A patent/AU2640002A/en active Pending
- 2001-12-05 BR BR0116014-1A patent/BR0116014A/en not_active IP Right Cessation
- 2001-12-05 AU AU2002226400A patent/AU2002226400B2/en not_active Ceased
- 2001-12-05 CZ CZ20031569A patent/CZ20031569A3/en unknown
- 2001-12-05 JP JP2002547956A patent/JP2004519222A/en not_active Withdrawn
- 2001-12-05 KR KR10-2003-7007662A patent/KR20030090609A/en not_active Ceased
- 2001-12-05 CN CNA01821309XA patent/CN1483040A/en active Pending
- 2001-12-07 US US10/005,337 patent/US7193075B2/en not_active Expired - Fee Related
-
2003
- 2003-06-06 NO NO20032584A patent/NO20032584L/en not_active Application Discontinuation
- 2003-06-06 FI FI20030851A patent/FI20030851A/en unknown
- 2003-07-03 ZA ZA200305184A patent/ZA200305184B/en unknown
-
2005
- 2005-09-30 US US11/239,469 patent/US20060110362A1/en not_active Abandoned
-
2006
- 2006-08-23 US US11/508,239 patent/US20070150971A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR20030090609A (en) | 2003-11-28 |
AU2640002A (en) | 2002-06-18 |
US20030039984A1 (en) | 2003-02-27 |
CN1483040A (en) | 2004-03-17 |
RU2003120081A (en) | 2005-01-27 |
EP1358208A2 (en) | 2003-11-05 |
CZ20031569A3 (en) | 2003-11-12 |
RU2283865C2 (en) | 2006-09-20 |
BR0116014A (en) | 2003-10-21 |
CA2431193A1 (en) | 2002-06-13 |
US20060110362A1 (en) | 2006-05-25 |
IL156137A0 (en) | 2003-12-23 |
NO20032584D0 (en) | 2003-06-06 |
US7193075B2 (en) | 2007-03-20 |
NZ526408A (en) | 2005-07-29 |
AU2002226400B2 (en) | 2006-11-02 |
WO2002046220A9 (en) | 2007-11-08 |
FI20030851A (en) | 2003-06-06 |
NO20032584L (en) | 2003-08-05 |
ZA200305184B (en) | 2004-10-04 |
WO2002046220A3 (en) | 2003-09-04 |
MXPA03005039A (en) | 2004-08-02 |
JP2004519222A (en) | 2004-07-02 |
PL365314A1 (en) | 2004-12-27 |
WO2002046220A2 (en) | 2002-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3755827B2 (en) | Integrable recombinant adenoviruses, their production and their therapeutic use | |
US5780447A (en) | Recombinant adeno-associated viral vectors | |
KR20210103469A (en) | Recombinant viral vectors and nucleic acids for producing them | |
US8883493B2 (en) | Adenoviral vector comprising herpes simplex virus type 1 thymidine kinase and a transgene for increasing the expression of the transgene | |
US20050004058A1 (en) | Sequences upstream of the carp gene, vectors containing them and uses thereof | |
US20070150971A1 (en) | Sequences upstream of the carp gene, vectors containing them and uses thereof | |
US6806080B2 (en) | Hybrid vectors for gene therapy | |
US20240091383A1 (en) | Synergistic effect of smn1 and mir-23a in treating spinal muscular atrophy | |
US20210403947A1 (en) | Miniaturized dystrophins and uses thereof | |
Griscelli et al. | Heart-specific targeting of β-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors | |
CN111718420A (en) | A kind of fusion protein for gene therapy and its application | |
CN111718418A (en) | A fusion protein that enhances gene editing and its application | |
AU2002226400A1 (en) | Sequences upstream of the carp gene, vectors containing them and uses thereof | |
JP2001500021A (en) | Novel internal ribosome entry site and vector containing it | |
US6165754A (en) | Method of expressing an exogenous nucleic acid | |
CA2414328A1 (en) | Chimeric promoters for controlling expression in smooth muscle cells | |
US20040161847A1 (en) | Vigilant vector system | |
CN116529381A (en) | Control of expression of heterologous transgenes using a combination of orphan motifs and CpG density | |
KR20230003557A (en) | Miniaturized dystrophin having a spectrin fusion domain and uses thereof | |
Rubanyi | Gene therapy—basic principles and the road from bench to bedside | |
WO2024178225A1 (en) | Gene therapy mediated angiogenesis to enhance survival of transplanted fat | |
US20060121013A1 (en) | Use of negative regulatory elements for the neurospecific expression of transgenes | |
MXPA00007617A (en) | Use of negative regulation elements for nerve-specific expression of transgenes | |
WO2015153357A1 (en) | Compositions and methods for improving cardiac function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |