US20070148769A1 - Methods and devices for the long-term culture of hematopoietic progenitor cells - Google Patents
Methods and devices for the long-term culture of hematopoietic progenitor cells Download PDFInfo
- Publication number
- US20070148769A1 US20070148769A1 US11/474,931 US47493106A US2007148769A1 US 20070148769 A1 US20070148769 A1 US 20070148769A1 US 47493106 A US47493106 A US 47493106A US 2007148769 A1 US2007148769 A1 US 2007148769A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell
- hematopoietic progenitor
- progenitor cells
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000003958 hematopoietic stem cell Anatomy 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000007774 longterm Effects 0.000 title abstract description 22
- 210000004027 cell Anatomy 0.000 claims abstract description 226
- 230000003394 haemopoietic effect Effects 0.000 claims abstract description 41
- 239000003102 growth factor Substances 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims description 105
- 239000007787 solid Substances 0.000 claims description 55
- 210000002536 stromal cell Anatomy 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 41
- 238000012258 culturing Methods 0.000 claims description 38
- 230000004069 differentiation Effects 0.000 claims description 35
- 239000011148 porous material Substances 0.000 claims description 28
- 238000000338 in vitro Methods 0.000 claims description 24
- 238000012423 maintenance Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 210000002966 serum Anatomy 0.000 claims description 17
- 239000003636 conditioned culture medium Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 102000016359 Fibronectins Human genes 0.000 claims description 14
- 108010067306 Fibronectins Proteins 0.000 claims description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 239000003124 biologic agent Substances 0.000 claims description 11
- 238000001727 in vivo Methods 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- -1 laminins Proteins 0.000 claims description 6
- 108010035532 Collagen Proteins 0.000 claims description 5
- 102000008186 Collagen Human genes 0.000 claims description 5
- 229920002683 Glycosaminoglycan Polymers 0.000 claims description 5
- 239000002870 angiogenesis inducing agent Substances 0.000 claims description 5
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 5
- 229920001436 collagen Polymers 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 5
- 210000003041 ligament Anatomy 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 108010006886 Vitrogen Proteins 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- 102000006495 integrins Human genes 0.000 claims description 4
- 108010044426 integrins Proteins 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 abstract description 75
- 102000004169 proteins and genes Human genes 0.000 abstract description 26
- 230000004083 survival effect Effects 0.000 abstract description 26
- 238000010361 transduction Methods 0.000 abstract description 26
- 230000026683 transduction Effects 0.000 abstract description 26
- 210000000130 stem cell Anatomy 0.000 abstract description 22
- 230000001976 improved effect Effects 0.000 abstract description 7
- 239000012620 biological material Substances 0.000 abstract description 5
- 238000004113 cell culture Methods 0.000 description 81
- 102000004127 Cytokines Human genes 0.000 description 41
- 108090000695 Cytokines Proteins 0.000 description 41
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 33
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 33
- 239000004033 plastic Substances 0.000 description 29
- 229920003023 plastic Polymers 0.000 description 29
- 210000001185 bone marrow Anatomy 0.000 description 25
- 238000003556 assay Methods 0.000 description 23
- 239000012530 fluid Substances 0.000 description 23
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 22
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 21
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 21
- 230000001177 retroviral effect Effects 0.000 description 20
- 108010002386 Interleukin-3 Proteins 0.000 description 19
- 239000002609 medium Substances 0.000 description 19
- 102100039064 Interleukin-3 Human genes 0.000 description 18
- 210000001744 T-lymphocyte Anatomy 0.000 description 18
- 238000003306 harvesting Methods 0.000 description 18
- 239000013598 vector Substances 0.000 description 16
- 230000001464 adherent effect Effects 0.000 description 14
- 241001430294 unidentified retrovirus Species 0.000 description 14
- 230000001332 colony forming effect Effects 0.000 description 13
- 229940076264 interleukin-3 Drugs 0.000 description 13
- 230000035755 proliferation Effects 0.000 description 13
- 239000010836 blood and blood product Substances 0.000 description 12
- 229940125691 blood product Drugs 0.000 description 12
- 229920000609 methyl cellulose Polymers 0.000 description 12
- 239000001923 methylcellulose Substances 0.000 description 12
- 235000010981 methylcellulose Nutrition 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 11
- 102000039446 nucleic acids Human genes 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 230000009469 supplementation Effects 0.000 description 11
- 210000000601 blood cell Anatomy 0.000 description 10
- 230000010261 cell growth Effects 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 9
- 102000004889 Interleukin-6 Human genes 0.000 description 8
- 108090001005 Interleukin-6 Proteins 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000003416 augmentation Effects 0.000 description 7
- 230000000925 erythroid effect Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000002512 chemotherapy Methods 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 230000002992 thymic effect Effects 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 102000015696 Interleukins Human genes 0.000 description 5
- 108010063738 Interleukins Proteins 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 210000001772 blood platelet Anatomy 0.000 description 5
- 238000011010 flushing procedure Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 229940047122 interleukins Drugs 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 241000701161 unidentified adenovirus Species 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 4
- 229930193140 Neomycin Natural products 0.000 description 4
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 108700014844 flt3 ligand Proteins 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 229960004927 neomycin Drugs 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 230000000050 nutritive effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 3
- 102000055025 Adenosine deaminases Human genes 0.000 description 3
- 208000031886 HIV Infections Diseases 0.000 description 3
- 208000037357 HIV infectious disease Diseases 0.000 description 3
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000002798 bone marrow cell Anatomy 0.000 description 3
- 238000010322 bone marrow transplantation Methods 0.000 description 3
- 238000010293 colony formation assay Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 230000001605 fetal effect Effects 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 210000000777 hematopoietic system Anatomy 0.000 description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000002463 transducing effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 206010010099 Combined immunodeficiency Diseases 0.000 description 2
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 101150002621 EPO gene Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 101100172469 Escherichia coli (strain K12) envZ gene Proteins 0.000 description 2
- 201000004939 Fanconi anemia Diseases 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 2
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 2
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 2
- 101710127797 Macrophage colony-stimulating factor 1 Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010048723 Multiple-drug resistance Diseases 0.000 description 2
- 102000004140 Oncostatin M Human genes 0.000 description 2
- 108090000630 Oncostatin M Proteins 0.000 description 2
- MITFXPHMIHQXPI-UHFFFAOYSA-N Oraflex Chemical compound N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 208000009642 Severe combined immunodeficiency due to adenosine deaminase deficiency Diseases 0.000 description 2
- 101150077103 TPO gene Proteins 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000003995 blood forming stem cell Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002743 insertional mutagenesis Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940074383 interleukin-11 Drugs 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 2
- 229960002702 piroxicam Drugs 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- OLTAWOVKGWWERU-UHFFFAOYSA-N proxazole Chemical compound C=1C=CC=CC=1C(CC)C1=NOC(CCN(CC)CC)=N1 OLTAWOVKGWWERU-UHFFFAOYSA-N 0.000 description 2
- 229960001801 proxazole Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002629 repopulating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- WVYADZUPLLSGPU-UHFFFAOYSA-N salsalate Chemical compound OC(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1O WVYADZUPLLSGPU-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229960003676 tenidap Drugs 0.000 description 2
- LXIKEPCNDFVJKC-QXMHVHEDSA-N tenidap Chemical compound C12=CC(Cl)=CC=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 LXIKEPCNDFVJKC-QXMHVHEDSA-N 0.000 description 2
- 239000003104 tissue culture media Substances 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- RJNRORZRFGUAKL-ADMBVFOFSA-N (1r)-1-[(3ar,5r,6s,6ar)-6-[3-(dimethylamino)propoxy]-2,2-dimethyl-3a,5,6,6a-tetrahydrofuro[2,3-d][1,3]dioxol-5-yl]ethane-1,2-diol;hydrochloride Chemical compound Cl.O1C(C)(C)O[C@@H]2[C@@H](OCCCN(C)C)[C@@H]([C@H](O)CO)O[C@@H]21 RJNRORZRFGUAKL-ADMBVFOFSA-N 0.000 description 1
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- VYPKEODFNOEZGS-VIFPVBQESA-N (2r)-2-acetamido-3-(2-hydroxybenzoyl)sulfanylpropanoic acid Chemical compound CC(=O)N[C@H](C(O)=O)CSC(=O)C1=CC=CC=C1O VYPKEODFNOEZGS-VIFPVBQESA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- AUDFHJLSHQWFQQ-SFHVURJKSA-N (2s)-2-[[2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetyl]amino]-3-hydroxypropanoic acid Chemical compound CC1=C(CC(=O)N[C@@H](CO)C(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 AUDFHJLSHQWFQQ-SFHVURJKSA-N 0.000 description 1
- XYRIRLDHOQSNLW-UHFFFAOYSA-N (3-oxo-1h-2-benzofuran-1-yl) 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetate Chemical compound CC1=C(CC(=O)OC2C3=CC=CC=C3C(=O)O2)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 XYRIRLDHOQSNLW-UHFFFAOYSA-N 0.000 description 1
- SHCYQUDTKWHARF-UHFFFAOYSA-N (3-oxo-1h-2-benzofuran-1-yl) 2-acetyloxybenzoate Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC1C2=CC=CC=C2C(=O)O1 SHCYQUDTKWHARF-UHFFFAOYSA-N 0.000 description 1
- BVNJBATUHVXZKP-QXMHVHEDSA-N (3z)-6-chloro-5-fluoro-3-[hydroxy(thiophen-2-yl)methylidene]-2-oxoindole-1-carboxamide Chemical compound C12=CC(F)=C(Cl)C=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 BVNJBATUHVXZKP-QXMHVHEDSA-N 0.000 description 1
- ZDHHGGFQZRPUSN-UHFFFAOYSA-N (4-chlorophenyl)-[3-(2h-tetrazol-5-ylmethyl)indol-1-yl]methanone Chemical compound C1=CC(Cl)=CC=C1C(=O)N1C2=CC=CC=C2C(CC2=NNN=N2)=C1 ZDHHGGFQZRPUSN-UHFFFAOYSA-N 0.000 description 1
- PPQZABOURJVKNI-UHFFFAOYSA-N (4-fluorophenyl)-[4-(4-fluorophenyl)-4-hydroxy-1-methylpiperidin-3-yl]methanone Chemical compound C1N(C)CCC(O)(C=2C=CC(F)=CC=2)C1C(=O)C1=CC=C(F)C=C1 PPQZABOURJVKNI-UHFFFAOYSA-N 0.000 description 1
- JFTOCKFCHJCDDX-UVTDQMKNSA-N (4z)-4-benzylidene-5,6,7,8-tetrahydroisoquinoline-1,3-dione Chemical compound C1CCCC2=C1C(=O)NC(=O)\C2=C/C1=CC=CC=C1 JFTOCKFCHJCDDX-UVTDQMKNSA-N 0.000 description 1
- VDNZZIYSCXESNI-ILSZZQPISA-N (6s,8s,9s,10r,11s,13s,14s,17s)-17-acetyl-11-hydroxy-6,10,13-trimethyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 VDNZZIYSCXESNI-ILSZZQPISA-N 0.000 description 1
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 1
- ZHXUEUKVDMWSKV-UHFFFAOYSA-N 1-(3,5-ditert-butyl-4-hydroxyphenyl)hex-5-yn-1-one Chemical compound CC(C)(C)C1=CC(C(=O)CCCC#C)=CC(C(C)(C)C)=C1O ZHXUEUKVDMWSKV-UHFFFAOYSA-N 0.000 description 1
- YETULFFXNIHQLK-UHFFFAOYSA-N 1-ethynyl-4-(2-fluorophenyl)benzene Chemical compound FC1=CC=CC=C1C1=CC=C(C#C)C=C1 YETULFFXNIHQLK-UHFFFAOYSA-N 0.000 description 1
- ULIDRMKBVYYVIQ-UHFFFAOYSA-N 1-phenyltetrazol-5-amine Chemical compound NC1=NN=NN1C1=CC=CC=C1 ULIDRMKBVYYVIQ-UHFFFAOYSA-N 0.000 description 1
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 1
- SRETXDDCKMOQNE-UHFFFAOYSA-N 2,3-bis(4-methoxyphenyl)-1h-indole Chemical compound C1=CC(OC)=CC=C1C1=C(C=2C=CC(OC)=CC=2)C2=CC=CC=C2N1 SRETXDDCKMOQNE-UHFFFAOYSA-N 0.000 description 1
- IZGMROSLQHXRDZ-UHFFFAOYSA-N 2-(1-propyl-4,9-dihydro-3h-pyrano[3,4-b]indol-1-yl)acetic acid Chemical compound N1C2=CC=CC=C2C2=C1C(CCC)(CC(O)=O)OCC2 IZGMROSLQHXRDZ-UHFFFAOYSA-N 0.000 description 1
- KLIVRBFRQSOGQI-UHFFFAOYSA-N 2-(11-oxo-6h-benzo[c][1]benzothiepin-3-yl)acetic acid Chemical compound S1CC2=CC=CC=C2C(=O)C2=CC=C(CC(=O)O)C=C12 KLIVRBFRQSOGQI-UHFFFAOYSA-N 0.000 description 1
- ODZUWQAFWMLWCF-UHFFFAOYSA-N 2-(3-phenyl-1-benzofuran-7-yl)propanoic acid Chemical compound C=1OC=2C(C(C(O)=O)C)=CC=CC=2C=1C1=CC=CC=C1 ODZUWQAFWMLWCF-UHFFFAOYSA-N 0.000 description 1
- LRXFKKPEBXIPMW-UHFFFAOYSA-N 2-(9h-fluoren-2-yl)propanoic acid Chemical compound C1=CC=C2C3=CC=C(C(C(O)=O)C)C=C3CC2=C1 LRXFKKPEBXIPMW-UHFFFAOYSA-N 0.000 description 1
- DCXHLPGLBYHNMU-UHFFFAOYSA-N 2-[1-(4-azidobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(N=[N+]=[N-])C=C1 DCXHLPGLBYHNMU-UHFFFAOYSA-N 0.000 description 1
- IDCAZKFFVIMCCS-UHFFFAOYSA-N 2-[3-(4-chlorophenyl)-4-imino-2-oxoimidazolidin-1-yl]acetonitrile Chemical compound C1=CC(Cl)=CC=C1N1C(=O)N(CC#N)CC1=N IDCAZKFFVIMCCS-UHFFFAOYSA-N 0.000 description 1
- ANMLJLFWUCQGKZ-UHFFFAOYSA-N 2-[3-(trifluoromethyl)anilino]-3-pyridinecarboxylic acid (3-oxo-1H-isobenzofuran-1-yl) ester Chemical compound FC(F)(F)C1=CC=CC(NC=2C(=CC=CN=2)C(=O)OC2C3=CC=CC=C3C(=O)O2)=C1 ANMLJLFWUCQGKZ-UHFFFAOYSA-N 0.000 description 1
- XILVEPYQJIOVNB-UHFFFAOYSA-N 2-[3-(trifluoromethyl)anilino]benzoic acid 2-(2-hydroxyethoxy)ethyl ester Chemical compound OCCOCCOC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 XILVEPYQJIOVNB-UHFFFAOYSA-N 0.000 description 1
- NLGUJWNOGYWZBI-UHFFFAOYSA-N 2-[3-chloro-4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound ClC1=CC(C(C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 NLGUJWNOGYWZBI-UHFFFAOYSA-N 0.000 description 1
- JIEKMACRVQTPRC-UHFFFAOYSA-N 2-[4-(4-chlorophenyl)-2-phenyl-5-thiazolyl]acetic acid Chemical compound OC(=O)CC=1SC(C=2C=CC=CC=2)=NC=1C1=CC=C(Cl)C=C1 JIEKMACRVQTPRC-UHFFFAOYSA-N 0.000 description 1
- QKKLKGVIECOSRM-CODXZCKSSA-N 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol;4-[2-[(8s,9s,10r,11s,13s,14s,17r)-11,17-dihydroxy-10,13-dimethyl-3-oxo-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthren-17-yl]-2-oxoethoxy]-4-oxobutanoic acid Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21.O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COC(=O)CCC(O)=O)[C@@H]4[C@@H]3CCC2=C1 QKKLKGVIECOSRM-CODXZCKSSA-N 0.000 description 1
- LNXXSBRGLBOASF-UHFFFAOYSA-N 2-[[2-(4-chlorophenyl)-4-methyl-1,3-oxazol-5-yl]methoxy]-2-methylpropanoic acid Chemical compound O1C(COC(C)(C)C(O)=O)=C(C)N=C1C1=CC=C(Cl)C=C1 LNXXSBRGLBOASF-UHFFFAOYSA-N 0.000 description 1
- GXEUNRBWEAIPCN-UHFFFAOYSA-N 2-chloro-2-(3-chloro-4-cyclohexylphenyl)acetic acid Chemical compound ClC1=CC(C(Cl)C(=O)O)=CC=C1C1CCCCC1 GXEUNRBWEAIPCN-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- PYSICVOJSJMFKP-UHFFFAOYSA-N 3,5-dibromo-2-chloropyridine Chemical compound ClC1=NC=C(Br)C=C1Br PYSICVOJSJMFKP-UHFFFAOYSA-N 0.000 description 1
- PLZMRGRLCWCLFW-UHFFFAOYSA-N 3-[5-(3-bromophenyl)tetrazol-2-yl]-1-piperidin-1-ylpropan-1-one Chemical compound BrC1=CC=CC(C2=NN(CCC(=O)N3CCCCC3)N=N2)=C1 PLZMRGRLCWCLFW-UHFFFAOYSA-N 0.000 description 1
- YLJRTDTWWRXOFG-UHFFFAOYSA-N 3-[5-(4-chlorophenyl)furan-2-yl]-3-hydroxypropanoic acid Chemical compound O1C(C(CC(O)=O)O)=CC=C1C1=CC=C(Cl)C=C1 YLJRTDTWWRXOFG-UHFFFAOYSA-N 0.000 description 1
- YUORBURTMIUPMW-UHFFFAOYSA-N 3-methyl-5-[2-(4-phenyl-3,6-dihydro-2h-pyridin-1-yl)ethyl]-1,3-oxazolidin-2-one Chemical compound O1C(=O)N(C)CC1CCN1CC=C(C=2C=CC=CC=2)CC1 YUORBURTMIUPMW-UHFFFAOYSA-N 0.000 description 1
- PIAMNHTVFPWVHG-UHFFFAOYSA-N 4-(4-chlorophenyl)-5-methyl-1h-imidazole;hydrochloride Chemical compound Cl.N1C=NC(C=2C=CC(Cl)=CC=2)=C1C PIAMNHTVFPWVHG-UHFFFAOYSA-N 0.000 description 1
- INDZCVYWKNWKIQ-UHFFFAOYSA-N 4-(fluoren-9-ylidenemethyl)benzenecarboximidamide;hydrochloride Chemical compound Cl.C1=CC(C(=N)N)=CC=C1C=C1C2=CC=CC=C2C2=CC=CC=C21 INDZCVYWKNWKIQ-UHFFFAOYSA-N 0.000 description 1
- LQVMQEYROPXMQH-UHFFFAOYSA-N 4-dibenzofuran-2-yl-4-oxobutanoic acid Chemical compound C1=CC=C2C3=CC(C(=O)CCC(=O)O)=CC=C3OC2=C1 LQVMQEYROPXMQH-UHFFFAOYSA-N 0.000 description 1
- SYCHUQUJURZQMO-UHFFFAOYSA-N 4-hydroxy-2-methyl-1,1-dioxo-n-(1,3-thiazol-2-yl)-1$l^{6},2-benzothiazine-3-carboxamide Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=CS1 SYCHUQUJURZQMO-UHFFFAOYSA-N 0.000 description 1
- CXSJGNHRBWJXEA-UHFFFAOYSA-N 5,12-dihydrophthalazino[3,2-b]phthalazine-7,14-dione Chemical compound C1C2=CC=CC=C2C(=O)N2N1C(=O)C1=CC=CC=C1C2 CXSJGNHRBWJXEA-UHFFFAOYSA-N 0.000 description 1
- HEOZYYOUKGGSBJ-UHFFFAOYSA-N 5-(4-methoxybenzoyl)-2,3-dihydro-1h-pyrrolizine-1-carboxylic acid Chemical compound C1=CC(OC)=CC=C1C(=O)C1=CC=C2N1CCC2C(O)=O HEOZYYOUKGGSBJ-UHFFFAOYSA-N 0.000 description 1
- OAIZNWQBWDHNIH-UHFFFAOYSA-N 6-chloro-4-phenyl-1-(2,2,2-trifluoroethyl)quinazolin-2-one Chemical compound N=1C(=O)N(CC(F)(F)F)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 OAIZNWQBWDHNIH-UHFFFAOYSA-N 0.000 description 1
- XWXVKXXKKLBDDJ-UHFFFAOYSA-N 7-chloro-3,3a-dihydro-2h-[1,2]oxazolo[3,2-b][1,3]benzoxazin-9-one Chemical compound O1C2CCON2C(=O)C2=CC(Cl)=CC=C21 XWXVKXXKKLBDDJ-UHFFFAOYSA-N 0.000 description 1
- HCKFPALGXKOOBK-NRYMJLQJSA-N 7332-27-6 Chemical compound C1([C@]2(O[C@]3([C@@]4(C)C[C@H](O)[C@]5(F)[C@@]6(C)C=CC(=O)C=C6CC[C@H]5[C@@H]4C[C@H]3O2)C(=O)CO)C)=CC=CC=C1 HCKFPALGXKOOBK-NRYMJLQJSA-N 0.000 description 1
- ZOCUOMKMBMEYQV-GSLJADNHSA-N 9alpha-Fluoro-11beta,17alpha,21-trihydroxypregna-1,4-diene-3,20-dione 21-acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ZOCUOMKMBMEYQV-GSLJADNHSA-N 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009840 Angiopoietins Human genes 0.000 description 1
- 108010009906 Angiopoietins Proteins 0.000 description 1
- HNNIWKQLJSNAEQ-UHFFFAOYSA-N Benzydamine hydrochloride Chemical compound Cl.C12=CC=CC=C2C(OCCCN(C)C)=NN1CC1=CC=CC=C1 HNNIWKQLJSNAEQ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108010004032 Bromelains Proteins 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 101150111062 C gene Proteins 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 108091008928 CXC chemokine receptors Proteins 0.000 description 1
- 102000054900 CXCR Receptors Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- KATBVKFXGKGUFE-UHFFFAOYSA-N Cintazone Chemical compound C12=CC=CC=C2N2C(=O)C(CCCCC)C(=O)N2C=C1C1=CC=CC=C1 KATBVKFXGKGUFE-UHFFFAOYSA-N 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- YXKFATPOEMHNMJ-KJEYTGHBSA-N Cormethasone acetate Chemical compound C1C(F)(F)C2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]1(C)C[C@@H]2O YXKFATPOEMHNMJ-KJEYTGHBSA-N 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- WYQPLTPSGFELIB-JTQPXKBDSA-N Difluprednate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2CC[C@@](C(=O)COC(C)=O)(OC(=O)CCC)[C@@]2(C)C[C@@H]1O WYQPLTPSGFELIB-JTQPXKBDSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- RHAXSHUQNIEUEY-UHFFFAOYSA-N Epirizole Chemical compound COC1=CC(C)=NN1C1=NC(C)=CC(OC)=N1 RHAXSHUQNIEUEY-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- MUQNGPZZQDCDFT-JNQJZLCISA-N Halcinonide Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CCl)[C@@]1(C)C[C@@H]2O MUQNGPZZQDCDFT-JNQJZLCISA-N 0.000 description 1
- YCISZOVUHXIOFY-HKXOFBAYSA-N Halopredone acetate Chemical compound C1([C@H](F)C2)=CC(=O)C(Br)=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2CC[C@](OC(C)=O)(C(=O)COC(=O)C)[C@@]2(C)C[C@@H]1O YCISZOVUHXIOFY-HKXOFBAYSA-N 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000980898 Homo sapiens Cell division cycle-associated protein 4 Proteins 0.000 description 1
- 101000827746 Homo sapiens Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- ACEWLPOYLGNNHV-UHFFFAOYSA-N Ibuprofen piconol Chemical compound C1=CC(CC(C)C)=CC=C1C(C)C(=O)OCC1=CC=CC=N1 ACEWLPOYLGNNHV-UHFFFAOYSA-N 0.000 description 1
- 102100029199 Iduronate 2-sulfatase Human genes 0.000 description 1
- 101710096421 Iduronate 2-sulfatase Proteins 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102100035792 Kininogen-1 Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000057248 Lipoprotein(a) Human genes 0.000 description 1
- 108010033266 Lipoprotein(a) Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- HUXCOHMTWUSXGY-GAPIFECDSA-N Meclorisone dibutyrate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CCC)(OC(=O)CCC)[C@@]1(C)C[C@@H]2Cl HUXCOHMTWUSXGY-GAPIFECDSA-N 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 101710151245 Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- INVGWHRKADIJHF-UHFFFAOYSA-N Sanguinarin Chemical compound C1=C2OCOC2=CC2=C3[N+](C)=CC4=C(OCO5)C5=CC=C4C3=CC=C21 INVGWHRKADIJHF-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 210000000173 T-lymphoid precursor cell Anatomy 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- MVLBCBPGBUAVJQ-CENSZEJFSA-N [(6s,8s,9r,10s,11s,13s,14s,16r,17r)-17-(chloromethylsulfanylcarbonyl)-6,9-difluoro-11-hydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl] propanoate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCCl)(OC(=O)CC)[C@@]2(C)C[C@@H]1O MVLBCBPGBUAVJQ-CENSZEJFSA-N 0.000 description 1
- FBRAWBYQGRLCEK-UHFFFAOYSA-N [17-(2-chloroacetyl)-9-fluoro-10,13,16-trimethyl-3,11-dioxo-7,8,12,14,15,16-hexahydro-6h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)C=CC2(C)C2(F)C1C1CC(C)C(C(=O)CCl)(OC(=O)CCC)C1(C)CC2=O FBRAWBYQGRLCEK-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 101150027964 ada gene Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000010386 affect regulation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960005142 alclofenac Drugs 0.000 description 1
- ARHWPKZXBHOEEE-UHFFFAOYSA-N alclofenac Chemical compound OC(=O)CC1=CC=C(OCC=C)C(Cl)=C1 ARHWPKZXBHOEEE-UHFFFAOYSA-N 0.000 description 1
- 229960004229 alclometasone dipropionate Drugs 0.000 description 1
- DJHCCTTVDRAMEH-DUUJBDRPSA-N alclometasone dipropionate Chemical compound C([C@H]1Cl)C2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O DJHCCTTVDRAMEH-DUUJBDRPSA-N 0.000 description 1
- LSWBQIAZNGURQV-WTBIUSKOSA-N algestone acetonide Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)C)[C@@]1(C)CC2 LSWBQIAZNGURQV-WTBIUSKOSA-N 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- NSZFBGIRFCHKOE-LFZVSNMSSA-N amcinafal Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(CC)(CC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O NSZFBGIRFCHKOE-LFZVSNMSSA-N 0.000 description 1
- 229950004850 amcinafal Drugs 0.000 description 1
- 229950003408 amcinafide Drugs 0.000 description 1
- QZNJPJDUBTYMRS-UHFFFAOYSA-M amfenac sodium hydrate Chemical compound O.[Na+].NC1=C(CC([O-])=O)C=CC=C1C(=O)C1=CC=CC=C1 QZNJPJDUBTYMRS-UHFFFAOYSA-M 0.000 description 1
- 229960004238 anakinra Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 229950004699 anirolac Drugs 0.000 description 1
- HDNJXZZJFPCFHG-UHFFFAOYSA-N anitrazafen Chemical compound C1=CC(OC)=CC=C1C1=NN=C(C)N=C1C1=CC=C(OC)C=C1 HDNJXZZJFPCFHG-UHFFFAOYSA-N 0.000 description 1
- 229950002412 anitrazafen Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 229960001671 azapropazone Drugs 0.000 description 1
- WOIIIUDZSOLAIW-NSHDSACASA-N azapropazone Chemical compound C1=C(C)C=C2N3C(=O)[C@H](CC=C)C(=O)N3C(N(C)C)=NC2=C1 WOIIIUDZSOLAIW-NSHDSACASA-N 0.000 description 1
- 229960000560 balsalazide disodium Drugs 0.000 description 1
- 229960005149 bendazac Drugs 0.000 description 1
- BYFMCKSPFYVMOU-UHFFFAOYSA-N bendazac Chemical compound C12=CC=CC=C2C(OCC(=O)O)=NN1CC1=CC=CC=C1 BYFMCKSPFYVMOU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960005430 benoxaprofen Drugs 0.000 description 1
- 229960001689 benzydamine hydrochloride Drugs 0.000 description 1
- 210000002960 bfu-e Anatomy 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QRZAKQDHEVVFRX-UHFFFAOYSA-N biphenyl-4-ylacetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1C1=CC=CC=C1 QRZAKQDHEVVFRX-UHFFFAOYSA-N 0.000 description 1
- UIDLJTHRRPMIQP-UHFFFAOYSA-L bis[2-[4-(2-methylpropyl)phenyl]propanoyloxy]aluminum;hydrate Chemical compound O.C1=CC(CC(C)C)=CC=C1C(C)C(=O)O[Al]OC(=O)C(C)C1=CC=C(CC(C)C)C=C1 UIDLJTHRRPMIQP-UHFFFAOYSA-L 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 235000019835 bromelain Nutrition 0.000 description 1
- 229960001780 bromelains Drugs 0.000 description 1
- 229950011622 broperamole Drugs 0.000 description 1
- 239000001058 brown pigment Substances 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000004956 cell adhesive effect Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- CKMOQBVBEGCJGW-UHFFFAOYSA-L chembl1200760 Chemical compound [Na+].[Na+].C1=C(C([O-])=O)C(O)=CC=C1N=NC1=CC=C(C(=O)NCCC([O-])=O)C=C1 CKMOQBVBEGCJGW-UHFFFAOYSA-L 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229950002545 cicloprofen Drugs 0.000 description 1
- GPUVGQIASQNZET-CCEZHUSRSA-N cinnoxicam Chemical compound C=1C=CC=CC=1/C=C/C(=O)OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 GPUVGQIASQNZET-CCEZHUSRSA-N 0.000 description 1
- 229950005384 cliprofen Drugs 0.000 description 1
- 229960004703 clobetasol propionate Drugs 0.000 description 1
- CBGUOGMQLZIXBE-XGQKBEPLSA-N clobetasol propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CBGUOGMQLZIXBE-XGQKBEPLSA-N 0.000 description 1
- 229960005465 clobetasone butyrate Drugs 0.000 description 1
- SJCRQMUYEQHNTC-UHFFFAOYSA-N clopirac Chemical compound CC1=CC(CC(O)=O)=C(C)N1C1=CC=C(Cl)C=C1 SJCRQMUYEQHNTC-UHFFFAOYSA-N 0.000 description 1
- 229950009185 clopirac Drugs 0.000 description 1
- 229940105778 coagulation factor viii Drugs 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229950002276 cortodoxone Drugs 0.000 description 1
- 230000002338 cryopreservative effect Effects 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- ZHPBLHYKDKSZCQ-UHFFFAOYSA-N cyclooctylmethanol Chemical compound OCC1CCCCCCC1 ZHPBLHYKDKSZCQ-UHFFFAOYSA-N 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229960001145 deflazacort Drugs 0.000 description 1
- FBHSPRKOSMHSIF-GRMWVWQJSA-N deflazacort Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)=N[C@@]3(C(=O)COC(=O)C)[C@@]1(C)C[C@@H]2O FBHSPRKOSMHSIF-GRMWVWQJSA-N 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 229960003662 desonide Drugs 0.000 description 1
- WBGKWQHBNHJJPZ-LECWWXJVSA-N desonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O WBGKWQHBNHJJPZ-LECWWXJVSA-N 0.000 description 1
- 229960002593 desoximetasone Drugs 0.000 description 1
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 description 1
- CIWBQSYVNNPZIQ-PKWREOPISA-N dexamethasone dipropionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CIWBQSYVNNPZIQ-PKWREOPISA-N 0.000 description 1
- 229950000250 dexamethasone dipropionate Drugs 0.000 description 1
- 229960004515 diclofenac potassium Drugs 0.000 description 1
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 1
- 229960001193 diclofenac sodium Drugs 0.000 description 1
- 239000006160 differential media Substances 0.000 description 1
- 229960002124 diflorasone diacetate Drugs 0.000 description 1
- BOBLHFUVNSFZPJ-JOYXJVLSSA-N diflorasone diacetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)COC(C)=O)(OC(C)=O)[C@@]2(C)C[C@@H]1O BOBLHFUVNSFZPJ-JOYXJVLSSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229960004875 difluprednate Drugs 0.000 description 1
- 229950007956 diftalone Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GZBONOYGBJSTHF-QLRNAMTQSA-N drocinonide Chemical compound C([C@@H]1CC2)C(=O)CC[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O GZBONOYGBJSTHF-QLRNAMTQSA-N 0.000 description 1
- 229950006082 drocinonide Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229950002798 enlimomab Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 229950003801 epirizole Drugs 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- ULANGSAJTINEBA-UHFFFAOYSA-N ethyl n-(3-benzoylphenyl)-n-(trifluoromethylsulfonyl)carbamate Chemical compound CCOC(=O)N(S(=O)(=O)C(F)(F)F)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 ULANGSAJTINEBA-UHFFFAOYSA-N 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 229960001493 etofenamate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229960000192 felbinac Drugs 0.000 description 1
- 229950003579 fenamole Drugs 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- IDKAXRLETRCXKS-UHFFFAOYSA-N fenclofenac Chemical compound OC(=O)CC1=CC=CC=C1OC1=CC=C(Cl)C=C1Cl IDKAXRLETRCXKS-UHFFFAOYSA-N 0.000 description 1
- 229950006236 fenclofenac Drugs 0.000 description 1
- 229950003537 fenclorac Drugs 0.000 description 1
- HAWWPSYXSLJRBO-UHFFFAOYSA-N fendosal Chemical compound C1=C(O)C(C(=O)O)=CC(N2C(=CC=3C4=CC=CC=C4CCC=32)C=2C=CC=CC=2)=C1 HAWWPSYXSLJRBO-UHFFFAOYSA-N 0.000 description 1
- 229950005416 fendosal Drugs 0.000 description 1
- 229950002296 fenpipalone Drugs 0.000 description 1
- 229960002679 fentiazac Drugs 0.000 description 1
- 229950004322 flazalone Drugs 0.000 description 1
- BYZCJOHDXLROEC-RBWIMXSLSA-N fluazacort Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)=N[C@@]3(C(=O)COC(=O)C)[C@@]1(C)C[C@@H]2O BYZCJOHDXLROEC-RBWIMXSLSA-N 0.000 description 1
- 229950002335 fluazacort Drugs 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- OPYFPDBMMYUPME-UHFFFAOYSA-N flumizole Chemical compound C1=CC(OC)=CC=C1C1=C(C=2C=CC(OC)=CC=2)NC(C(F)(F)F)=N1 OPYFPDBMMYUPME-UHFFFAOYSA-N 0.000 description 1
- 229950005288 flumizole Drugs 0.000 description 1
- WEGNFRKBIKYVLC-XTLNBZDDSA-N flunisolide acetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)C)[C@@]2(C)C[C@@H]1O WEGNFRKBIKYVLC-XTLNBZDDSA-N 0.000 description 1
- 229960000588 flunixin Drugs 0.000 description 1
- NOOCSNJCXJYGPE-UHFFFAOYSA-N flunixin Chemical compound C1=CC=C(C(F)(F)F)C(C)=C1NC1=NC=CC=C1C(O)=O NOOCSNJCXJYGPE-UHFFFAOYSA-N 0.000 description 1
- 229960000469 flunixin meglumine Drugs 0.000 description 1
- MGCCHNLNRBULBU-WZTVWXICSA-N flunixin meglumine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.C1=CC=C(C(F)(F)F)C(C)=C1NC1=NC=CC=C1C(O)=O MGCCHNLNRBULBU-WZTVWXICSA-N 0.000 description 1
- XWTIDFOGTCVGQB-FHIVUSPVSA-N fluocortin butyl Chemical group C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@H](C(=O)C(=O)OCCCC)[C@@]2(C)C[C@@H]1O XWTIDFOGTCVGQB-FHIVUSPVSA-N 0.000 description 1
- 229950008509 fluocortin butyl Drugs 0.000 description 1
- 229960001629 fluorometholone acetate Drugs 0.000 description 1
- YRFXGQHBPBMFHW-SBTZIJSASA-N fluorometholone acetate Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 YRFXGQHBPBMFHW-SBTZIJSASA-N 0.000 description 1
- 229950007253 fluquazone Drugs 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 229950003750 fluretofen Drugs 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229950008156 furaprofen Drugs 0.000 description 1
- 229950006099 furobufen Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N glycerol 1-phosphate Chemical compound OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 210000000224 granular leucocyte Anatomy 0.000 description 1
- 229960002383 halcinonide Drugs 0.000 description 1
- 229950004611 halopredone acetate Drugs 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 102000044493 human CDCA4 Human genes 0.000 description 1
- 102000057593 human F8 Human genes 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- MSYBLBLAMDYKKZ-UHFFFAOYSA-N hydron;pyridine-3-carbonyl chloride;chloride Chemical compound Cl.ClC(=O)C1=CC=CN=C1 MSYBLBLAMDYKKZ-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- CYWFCPPBTWOZSF-UHFFFAOYSA-N ibufenac Chemical compound CC(C)CC1=CC=C(CC(O)=O)C=C1 CYWFCPPBTWOZSF-UHFFFAOYSA-N 0.000 description 1
- 229950009183 ibufenac Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229950005954 ibuprofen piconol Drugs 0.000 description 1
- 229950011445 ilonidap Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004260 indomethacin sodium Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 229950008443 indoxole Drugs 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 229940100994 interleukin-7 Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229950004204 intrazole Drugs 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229960003317 isoflupredone acetate Drugs 0.000 description 1
- QFGMXJOBTNZHEL-UHFFFAOYSA-N isoxepac Chemical compound O1CC2=CC=CC=C2C(=O)C2=CC(CC(=O)O)=CC=C21 QFGMXJOBTNZHEL-UHFFFAOYSA-N 0.000 description 1
- 229950011455 isoxepac Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- GQVWFGYYMWLERN-UHFFFAOYSA-J magnesium;2-carboxyphenolate;2-hydroxyethyl(trimethyl)azanium;sulfate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O.C[N+](C)(C)CCO.C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O GQVWFGYYMWLERN-UHFFFAOYSA-J 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 210000005074 megakaryoblast Anatomy 0.000 description 1
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 1
- 229960004963 mesalazine Drugs 0.000 description 1
- OJGJQQNLRVNIKE-UHFFFAOYSA-N meseclazone Chemical compound O1C2=CC=C(Cl)C=C2C(=O)N2C1CC(C)O2 OJGJQQNLRVNIKE-UHFFFAOYSA-N 0.000 description 1
- 229950000701 meseclazone Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- PSCNNGGPKIBAHB-WFVOKNHCSA-N methylprednisolone 21-suleptanic acid ester Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCCCCCC(=O)N(C)CCS(O)(=O)=O)CC[C@H]21 PSCNNGGPKIBAHB-WFVOKNHCSA-N 0.000 description 1
- 229950010796 methylprednisolone suleptanate Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 229960003251 morniflumate Drugs 0.000 description 1
- LDXSPUSKBDTEKA-UHFFFAOYSA-N morniflumate Chemical compound FC(F)(F)C1=CC=CC(NC=2C(=CC=CN=2)C(=O)OCCN2CCOCC2)=C1 LDXSPUSKBDTEKA-UHFFFAOYSA-N 0.000 description 1
- 201000002273 mucopolysaccharidosis II Diseases 0.000 description 1
- 208000022018 mucopolysaccharidosis type 2 Diseases 0.000 description 1
- NKDJNEGDJVXHKM-UHFFFAOYSA-N n,2-dimethyl-4,5,6,7-tetrahydroindazol-3-amine Chemical compound C1CCCC2=NN(C)C(NC)=C21 NKDJNEGDJVXHKM-UHFFFAOYSA-N 0.000 description 1
- HWCORKBTTGTRDY-UHFFFAOYSA-N n-(4-chlorophenyl)-1,3-dioxo-4h-isoquinoline-4-carboxamide Chemical compound C1=CC(Cl)=CC=C1NC(=O)C1C2=CC=CC=C2C(=O)NC1=O HWCORKBTTGTRDY-UHFFFAOYSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960003940 naproxen sodium Drugs 0.000 description 1
- CDBRNDSHEYLDJV-FVGYRXGTSA-M naproxen sodium Chemical compound [Na+].C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CDBRNDSHEYLDJV-FVGYRXGTSA-M 0.000 description 1
- LTRANDSQVZFZDG-SNVBAGLBSA-N naproxol Chemical compound C1=C([C@H](C)CO)C=CC2=CC(OC)=CC=C21 LTRANDSQVZFZDG-SNVBAGLBSA-N 0.000 description 1
- 229950006890 naproxol Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229950006046 nimazone Drugs 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229960004364 olsalazine sodium Drugs 0.000 description 1
- 229960004534 orgotein Drugs 0.000 description 1
- 108010070915 orgotein Proteins 0.000 description 1
- 229950003655 orpanoxin Drugs 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229960003820 pentosan polysulfate sodium Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- ISWRGOKTTBVCFA-UHFFFAOYSA-N pirfenidone Chemical compound C1=C(C)C=CC(=O)N1C1=CC=CC=C1 ISWRGOKTTBVCFA-UHFFFAOYSA-N 0.000 description 1
- 229960003073 pirfenidone Drugs 0.000 description 1
- 229960001369 piroxicam cinnamate Drugs 0.000 description 1
- 229960000851 pirprofen Drugs 0.000 description 1
- PIDSZXPFGCURGN-UHFFFAOYSA-N pirprofen Chemical compound ClC1=CC(C(C(O)=O)C)=CC=C1N1CC=CC1 PIDSZXPFGCURGN-UHFFFAOYSA-N 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229950008421 prednazate Drugs 0.000 description 1
- WAAVMZLJRXYRMA-UHFFFAOYSA-N prifelone Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(=O)C=2SC=CC=2)=C1 WAAVMZLJRXYRMA-UHFFFAOYSA-N 0.000 description 1
- 229950004465 prifelone Drugs 0.000 description 1
- 229950003795 prodolic acid Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000004765 promyelocyte Anatomy 0.000 description 1
- 229960002466 proquazone Drugs 0.000 description 1
- JTIGKVIOEQASGT-UHFFFAOYSA-N proquazone Chemical compound N=1C(=O)N(C(C)C)C2=CC(C)=CC=C2C=1C1=CC=CC=C1 JTIGKVIOEQASGT-UHFFFAOYSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940030749 prostate cancer vaccine Drugs 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 229940047431 recombinate Drugs 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 108700004030 rev Genes Proteins 0.000 description 1
- 101150098213 rev gene Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 229960001487 rimexolone Drugs 0.000 description 1
- QTTRZHGPGKRAFB-OOKHYKNYSA-N rimexolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CC)(C)[C@@]1(C)C[C@@H]2O QTTRZHGPGKRAFB-OOKHYKNYSA-N 0.000 description 1
- 229950001166 romazarit Drugs 0.000 description 1
- 229950000125 salcolex Drugs 0.000 description 1
- 229950009768 salnacedin Drugs 0.000 description 1
- 229960000953 salsalate Drugs 0.000 description 1
- 229950011197 sanguinarium chloride Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229950002093 seclazone Drugs 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229950006250 sermetacin Drugs 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- HVBBVDWXAWJQSV-UHFFFAOYSA-N sodium;(3-benzoylphenyl)-(difluoromethylsulfonyl)azanide Chemical compound [Na+].FC(F)S(=O)(=O)[N-]C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 HVBBVDWXAWJQSV-UHFFFAOYSA-N 0.000 description 1
- JGMJQSFLQWGYMQ-UHFFFAOYSA-M sodium;2,6-dichloro-n-phenylaniline;acetate Chemical compound [Na+].CC([O-])=O.ClC1=CC=CC(Cl)=C1NC1=CC=CC=C1 JGMJQSFLQWGYMQ-UHFFFAOYSA-M 0.000 description 1
- JMHRGKDWGWORNU-UHFFFAOYSA-M sodium;2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetate Chemical compound [Na+].CC1=C(CC([O-])=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 JMHRGKDWGWORNU-UHFFFAOYSA-M 0.000 description 1
- SEEXPXUCHVGZGU-UHFFFAOYSA-M sodium;2-[5-(4-chlorobenzoyl)-1,4-dimethylpyrrol-2-yl]acetate Chemical compound [Na+].C1=C(CC([O-])=O)N(C)C(C(=O)C=2C=CC(Cl)=CC=2)=C1C SEEXPXUCHVGZGU-UHFFFAOYSA-M 0.000 description 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 1
- NNFXVGOLTQESMQ-UHFFFAOYSA-M sodium;4-butyl-5-oxo-1,2-diphenylpyrazol-3-olate Chemical compound [Na+].C=1C=CC=CC=1N1C(=O)C(CCCC)=C([O-])N1C1=CC=CC=C1 NNFXVGOLTQESMQ-UHFFFAOYSA-M 0.000 description 1
- AVERBMQHYOZACV-UHFFFAOYSA-M sodium;7-chloro-4-[(3,4-dichlorophenyl)carbamoyl]-1,1-dioxo-2,3-dihydro-1$l^{6}-benzothiepin-5-olate;hydrate Chemical compound O.[Na+].C1CS(=O)(=O)C2=CC=C(Cl)C=C2C([O-])=C1C(=O)NC1=CC=C(Cl)C(Cl)=C1 AVERBMQHYOZACV-UHFFFAOYSA-M 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229950005175 sudoxicam Drugs 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229950005100 talmetacin Drugs 0.000 description 1
- 229960005262 talniflumate Drugs 0.000 description 1
- 229950005400 talosalate Drugs 0.000 description 1
- 229950003441 tebufelone Drugs 0.000 description 1
- 229960002871 tenoxicam Drugs 0.000 description 1
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 description 1
- 229950007324 tesicam Drugs 0.000 description 1
- 229950000997 tesimide Drugs 0.000 description 1
- TUGDLVFMIQZYPA-UHFFFAOYSA-N tetracopper;tetrazinc Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2] TUGDLVFMIQZYPA-UHFFFAOYSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229950002345 tiopinac Drugs 0.000 description 1
- BISFDZNIUZIKJD-XDANTLIUSA-N tixocortol pivalate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CSC(=O)C(C)(C)C)(O)[C@@]1(C)C[C@@H]2O BISFDZNIUZIKJD-XDANTLIUSA-N 0.000 description 1
- 229960003114 tixocortol pivalate Drugs 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229960002044 tolmetin sodium Drugs 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- VSVSLEMVVAYTQW-VSXGLTOVSA-N triclonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(Cl)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CCl)[C@@]2(C)C[C@@H]1Cl VSVSLEMVVAYTQW-VSXGLTOVSA-N 0.000 description 1
- 229950008073 triclonide Drugs 0.000 description 1
- 229950000451 triflumidate Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 1
- 229950008396 ulobetasol propionate Drugs 0.000 description 1
- BDSYKGHYMJNPAB-LICBFIPMSA-N ulobetasol propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]2(C)C[C@@H]1O BDSYKGHYMJNPAB-LICBFIPMSA-N 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 229950007802 zidometacin Drugs 0.000 description 1
- 229960003516 zomepirac sodium Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/14—Scaffolds; Matrices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/10—Perfusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0647—Haematopoietic stem cells; Uncommitted or multipotent progenitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/125—Stem cell factor [SCF], c-kit ligand [KL]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/26—Flt-3 ligand (CD135L, flk-2 ligand)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/52—Fibronectin; Laminin
Definitions
- This invention relates generally to hematopoietic cells, and more specifically to methods and devices for long-term in vitro culturing of hematopoietic progenitor cells, as well as methods for the introduction of exogenous genetic material into cells of hematopoietic origin.
- the circulating blood cells such as erythrocytes, leukocytes, platelets and lymphocytes, are the products of the terminal differentiation of recognizable precursors.
- hematopoiesis occurs throughout the reticular endothelial system.
- terminal differentiation of the recognizable precursors occurs exclusively in the marrow cavities of the axial skeleton, with some extension into the proximal femora and humeri.
- progenitors which are assayed by their development into contiguous colonies of mature blood cells in 1-3 week cultures in semi-solid media, such as methylcellulose.
- Three-dimensional polymer devices e.g., nylon mesh
- Such factors can be added exogenously, or supplied via secreting stromal cells which are co-cultured with the progenitor cells, or through the addition of stromal cell conditioned medium.
- Hematopoietic progenitor cell expansion for bone marrow transplantation is a potential application of human long-term bone marrow cultures.
- Human autologous and allogeneic bone marrow transplantation are currently used as therapies for diseases such as leukemia, lymphoma, and other life-threatening diseases. For these procedures, however, a large amount of donor bone marrow must be removed to ensure that there are enough cells for engraftment.
- An approach providing hematopoietic progenitor cell expansion would reduce the need for large bone marrow donation and would make possible obtaining a small marrow donation and then expanding the number of progenitor cells in vitro before infusion into the recipient. Also, it is known that a small number of hematopoietic progenitor cells circulate in the blood stream. If these cells could be selected and expanded, then it would be possible to obtain the required number of hematopoietic progenitor cells for transplantation from peripheral blood and eliminate the need for bone marrow donation.
- Hematopoietic progenitor cell expansion would also be useful as a supplemental treatment to chemotherapy and is another application for human long-term bone marrow cultures.
- Most chemotherapy agents act by killing all cells going through cell division. Bone marrow is one of the most prolific tissues in the body and is therefore often the organ that is initially damaged by chemotherapy drugs. The result is that blood cell production is rapidly destroyed during chemotherapy treatment, and chemotherapy must be terminated to allow the hematopoietic system to replenish the blood cell supplies before a patient is re-treated with chemotherapy.
- a successful approach providing hematopoietic progenitor cell expansion would greatly facilitate the production of a large number of further differentiated precursor cells of a specific lineage, and in turn provide a larger number of differentiated hematopoietic cells with a wide variety of applications, including blood transfusions.
- Gene therapy is a rapidly growing field in medicine with an enormous clinical potential.
- gene therapy has been defined as a procedure in which an exogenous gene is introduced into the cells of a patient in order to correct an inborn genetic error.
- Research in gene therapy has been ongoing for several years in several types of cells in vitro and in animal studies, and more recently a number of clinical trials have been initiated.
- the human hematopoietic system is an ideal choice for gene therapy in that hematopoietic stem cells are readily accessible for treatment (bone marrow or peripheral blood harvest) and they are believed to possess unlimited self-renewal capabilities (incurring lifetime therapy), and upon reinfusion, can expand and repopulate the marrow.
- hematopoietic stem cells are readily accessible for treatment (bone marrow or peripheral blood harvest) and they are believed to possess unlimited self-renewal capabilities (incurring lifetime therapy), and upon reinfusion, can expand and repopulate the marrow.
- achieving therapeutic levels of gene transfer into stem cells has yet to be accomplished in humans.
- the problem which remains to be addressed for successful human gene therapy is the ability to insert the desired therapeutic gene into the chosen cells in a quantity such that it will be beneficial to the patient.
- methods for the efficient introduction of exogenous genetic material into human hematopoietic stem cells have been limited.
- An object of the invention is to provide methods and devices that extend the in vitro viability of hematopoietic stem cells while maintaining the hematopoietic progenitor cell properties of self-renewal and pluripotency.
- Another object of the invention is to provide methods and devices for the controlled production in large numbers of specific lineages of progenitor cells and their more differentiated hematopoietic cells.
- Yet another object of the invention is to provide improved methods for gene transfer and transduction into cells of hematopoietic origin and hematopoietic progenitor cells in particular.
- the invention in one important part, involves improved methods for culturing hematopoietic progenitor cells, which methods can, for example, increase the period over which an amount of hematopoietic progenitor cells can be cultured.
- one aspect of the invention is improved preservation of a culture of hematopoietic progenitor cells.
- Another aspect is an improvement in the number of progeny that can be obtained from a sample of hematopoietic progenitor cells.
- Still another aspect of the invention is an improvement in the number of differentiated progeny blood cells that can be obtained from a sample of hematopoietic progenitor cells.
- hematopoietic progenitor cells can be cultured without exogenous growth agents for extended periods of time, thereby increasing the supply of hematopoietic progenitor cells and inhibiting the induction of differentiation and/or the loss of progenitor cells during culture.
- the present invention permits the culture of hematopoietic progenitor cells in vitro for more than 5 weeks, and even more than 6, 7 or 8 weeks, without adding hematopoietic growth factors, inoculated stromal cells or stromal cell conditioned medium. This is achieved, simply, by culturing the hematopoietic progenitor cells in a porous solid scaffold.
- a method for in vitro culture of hematopoietic progenitor cells is provided.
- An amount of hematopoietic progenitor cells is introduced to a porous, solid matrix having interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix.
- the cells are cultured upon and within the matrix in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell differentiation, other than serum.
- the porous matrix can be one that is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%.
- the porous solid matrix has pores defined by interconnecting ligaments having a diameter at midpoint, on average, of less than 150 ⁇ m.
- the porous solid matrix is a metal-coated reticulated open cell foam of carbon containing material, the metal coating being selected from the group consisting of tantalum, titanium, platinum (including other metals of the platinum group), niobium, hafnium, tungsten, and combinations thereof.
- the matrix is coated with a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these factors, and combinations thereof.
- a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these factors, and combinations thereof.
- the metal coating is tantalum coated with a biological agent.
- the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- the preferred embodiments of the invention are solid, unitary macrostructures, i.e. not beads or packed beads. They also involve nonbiodegradable materials.
- the hematopoietic progenitor cells are obtained from a blood product.
- the blood product is unfractionated bone marrow.
- the method further includes the step of harvesting hematopoietic cells.
- the harvested cells then are cultured in at least one of an exogenously added agent selected from the group consisting of a hematopoietic growth factor that promotes hematopoietic cell maintenance, expansion and/or differentiation, inoculated stromal cells, and stromal cell conditioned medium.
- the method of the invention can include, in said first culturing step, culturing the cells in an environment that is free of hematopoietic progenitor cell survival and proliferation factors such as interleukins 3, 6 and 11, stem cell ligand and FLT-3 ligand.
- hematopoietic progenitor cells can be grown for extended periods of time without the addition of any of these agents which typically are added in the prior art in order to prevent the hematopoietic progenitor cells from dying within several weeks.
- Still another embodiment of the invention is performing the first culturing step in an environment that is free altogether of any exogenously added hematopoietic progenitor cell growth factors, other than serum.
- a method for in vitro culture of hematopoietic progenitor cells to produce differentiated cells of hematopoietic origin.
- a first culturing step a first amount of hematopoietic progenitor cells is cultured in an environment that is free of inoculated stromal cells, stromal cell condition medium and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum, under conditions and for a period of time to increase the number of cultured hematopoietic progenitor cells relative to said first amount or to increase the functionality of the hematopoietic progenitor cells, thereby producing a second amount of hematopoietic progenitor cells.
- a second culturing step at least a portion of the second amount of cultured hematopoietic progenitor cells is cultured in an environment that includes at least one of an agent selected from the group consisting of a hematopoietic growth factor that promotes hematopoietic cell maintenance, expansion and/or differentiation, inoculated stromal cells and stromal cell conditioned medium, to produce differentiated cells of hematopoietic origin.
- the environment is free of hematopoietic growth factors that promote survival and proliferation of hematopoietic progenitor cells such as interleukins 3, 6 and 11, stem cell ligand and FLT-3 ligand.
- the environment of the first culturing step is free of any hematopoietic growth factors other than those present as a result of the addition of serum to the nutritive medium.
- the method further can comprise a second culturing step which is a plurality of second culturing steps, each comprising culturing only a portion of the second amount of hematopoietic progenitor cells.
- the method also can involve a harvesting step between the first and second culturing steps, wherein the harvesting step comprises harvesting the at least a portion of the second amount prior to culturing the at least a portion of the second amount in the second culturing step.
- the harvesting step also can be a plurality of harvesting steps spaced apart in time and, in this instance, the second culturing step can be a plurality of second culturing steps, one for each of the harvesting steps.
- the preferred source of the hematopoietic progenitor cells and the preferred configuration of the porous solid matrix is as described above.
- a method for in vitro culture of hematopoietic progenitor cells to produce differentiated cells of hematopoietic origin.
- hematopoietic progenitor cells are cultured in an environment that is free of inoculated stromal cells, stromal cell condition medium and exogenously added hematopoietic growth factors that promote differentiation, other than serum, to generate cultured hematopoietic progenitor cells.
- a portion of the cultured hematopoietic progenitor cells are harvested intermittently to generate a plurality of intermittently harvested portions of cultured hematopoietic cells.
- the plurality of intermittently cultured harvested portions are cultured in an environment that includes at least one agent selected from the group consisting of a hematopoietic growth factor that promotes differentiation, inoculated stromal cells and stromal cell conditioned medium, to produce differentiated cells of hematopoietic origin.
- the environment of the first culturing step is free of hematopoietic growth factors that promote survival and proliferation of hematopoietic progenitor cells, such as interleukins 3, 6 and 11, stem cell ligand and FLT-3 ligand.
- the environment of the first culturing step is free of any hematopoietic growth factors, other than those present as a result of the addition of serum to the nutritive medium.
- the preferred source of hematopoietic progenitor cells and the preferred porous solid matrix are as described above.
- a method for transducing exogenous genetic material into cells of hematopoietic origin.
- Hematopoietic cells are cultured in a porous solid matrix having interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix.
- the cells are transduced with the exogenous genetic material in situ on and within the matrix. It has been found, surprisingly, that the efficiency of transfer of genetic material when carried out with the cells cultured upon the matrix is unexpectedly increased.
- the characteristics of various embodiments of the preferred porous solid matrices are as described above.
- the hematopoietic cells can be hematopoietic progenitor cells and the cells, whether progenitor or not, can be cultured in environments free of factors that promote differentiation, factors that promote survival and proliferation, any hematopoietic growth factors whatsoever, inoculated stromal cells or stromal cell conditioned media.
- an apparatus for culturing cells includes a first cell culture chamber containing a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix.
- the apparatus also includes a second cell culture chamber.
- a conduit provides fluid communication between the first and second cell culture chambers.
- a collection chamber is located between the first and second cell culture chambers, the collection chamber interrupting fluid communication between the first and second cell culture chambers via the conduit.
- a first inlet valve on one side of the collection chamber is for providing fluid to be received from the first cultured chamber into the collection chamber.
- An outlet valve on the other side of the collection chamber provides fluid to be received into the second cultured chamber from the collection chamber.
- a second inlet valve for the collection chamber for introducing a desired fluid into the collection chamber, other than fluid from the first cell culture chamber, whereby fluid may be intermittently removed from the first cell culture chamber and provided to the second cell culture chamber without contamination of the first culture chamber by fluid from the second culture chamber.
- another apparatus for culturing cells includes a first cell culture chamber containing a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix.
- An inlet valve on the first cell culture chamber is provided for introducing culture medium into the first cell culture chamber.
- a second cell culture chamber also is provided, the first and second cell culture chambers being in fluid communication with one another via a conduit.
- a valve on the conduit is provided for controlling fluid flow between the first and second cell culture chambers.
- the second cell culture chamber can be provided with a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix.
- the porous solid matrix has one or more of the preferred characteristics as described above.
- the various cell culture chambers can have ports and conduits for sampling material within the cell culture chamber, for augmentation by delivery of various agents to one or the other of the cell culture chambers and for controlling and permitting the continuous flow of medium through either or both of the cell culture chambers.
- a solid porous matrix wherein hematopoietic progenitor cells, with or without their progeny, are attached to the solid porous matrix.
- stromal cells may also be attached to the matrix.
- the porous matrix can be one that is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%.
- the porous solid matrix has pores defined by interconnecting ligaments having a diameter at midpoint, on average, of less than 150 ⁇ m.
- the porous solid matrix is a metal-coated reticulated open cell foam of carbon containing material, the metal coating being selected from the group consisting of tantalum, titanium, platinum (including other metals of the platinum group), niobium, hafnium, tungsten, and combinations thereof.
- the matrix is coated with a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these factors, and combinations thereof.
- the metal coating is tantalum coated with a biological agent.
- the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- a method for in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells involves implanting into a subject a porous, solid matrix having pre-seeded hematopoietic progenitor cells and hematopoietic progenitor cell progeny.
- the porous matrix has interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix and is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%.
- the porous solid matrix has one or more of the preferred characteristics as described above.
- the porous solid matrix further comprises hematopoietic progenitor cells and their progeny which are attached to the matrix by introducing in vitro an amount of hematopoietic progenitor cells into the porous solid matrix, and culturing the hematopoietic progenitor cells in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum.
- the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- the hematopoietic growth factor used is selected from the group consisting of interleukin 3, interleukin 6, interleukin 7, interleukin 11, interleukin 12 stem cell factor, FLK-2 ligand, FLT-2 ligand, Epo, Tpo, GMCSF, GCSF, Oncostatin M, and MCSF.
- FIG. 1 is a schematic representation of a cell culture apparatus according to the invention.
- FIG. 2 Survival and expansion of CD34 + HPCs in Cellfoam v. control systems at 1 week.
- FIG. 3 Survival and expansion of CD34 + HPCs in Cellfoam v. control systems at 3 and 6 weeks.
- FIG. 4 CFU ability of HSCs isolated from Cellfoam and control cultures.
- FIG. 5 CD45 + cell number at 1, 3 and 6 weeks in Cellfoam and BMS cultures supplemented with cytokines.
- FIG. 6 CD45 + cell number at 1, 3 and 6 weeks in Cellfoam and BMS supplemented with the combination cytokines.
- FIG. 7 Fold difference of CD45 + 34 + cell yield in Cellfoam cultures as compared to BMS and plastic control cultures at 3 and 6 weeks at nanogram (top) and picogram (bottom) concentrations.
- FIG. 8 Total colony activity of cells isolated from Cellfoam and plastic cultures supplemented with cytokines.
- FIG. 9 Fold difference of total colony activity in Cellfoam cultures as compared to plastic control cultures at 3 and 6 weeks in nanogram concentration supplementation experiments.
- the invention in one aspect involves culturing hematopoietic progenitor cells in a porous solid matrix without exogenous growth agents.
- a porous, solid matrix is defined as a three-dimensional structure with “sponge-like” continuous pores forming an interconnecting network.
- the matrix can be rigid or elastic, and it provides a scaffold upon which cells can grow throughout. Its pores are interconnected and provide the continuous network of channels extending through the matrix and also permit the flow of nutrients throughout.
- a preferred matrix is an open cell foam matrix having a percent open space of at least 50% and preferably 75%. Thus, it is preferred that the open space comprise the majority of the matrix. This is believed to maximize cell migration, cell-cell contact, space for cell growth and accessibility to nutrients.
- the porous matrix be formed of a reticulated matrix of ligaments which at their center point are less than 150 ⁇ m in diameter, preferably 60 ⁇ m, whereby a cell can reside on or interact with a portion of the ligament.
- the average pore diameter is on the order of 300 ⁇ m, which resembles cancellous bone.
- Suitable matrices can be obtained using a number of different methods. Examples of such methods include solvent casting or extraction of polymers, track etching of a variety of materials, foaming of a polymer, the replamineform process for hydroxyapatite, and other methodologies well known to those of ordinary skill in the art.
- the materials employed can be natural or synthetic, including biological materials such as proteins, hyaluronic acids, synthetic polymers such as polyvinyl pyrolidones, polymethylmethacrylate, methyl cellulose, polystyrene, polypropylene, polyurethane, ceramics such as tricalcium phosphate, calcium aluminate, calcium hydroxyapatite and ceramic-reinforced or coated polymers. If the starting material for the scaffold is not metal, a metal coating can be applied to the three-dimensional matrix. Metal coatings provide further structural support and/or cell growth and adhesive properties to the matrix.
- Preferred metals used as coatings comprise tantalum, titanium, platinum and metals in the same element group as platinum, niobium, hafnium, tungsten, and combinations of alloys thereof.
- Coating methods for metals include a process such as CVD (Chemical Vapor Deposition).
- the preferred matrix, referred to herein throughout as Cellfoam, is described in detail in U.S. Pat. No. 5,282,861, and is incorporated herein by reference.
- the preferred matrix is a reticulated open cell substrate formed by a lightweight, substantially rigid foam of carbon-containing material having open spaces defined by an interconnecting network, wherein said foam material has interconnected continuous channels, and a thin film of metallic material deposited onto the reticulated open cell substrate and covering substantially all of the interconnecting network to form a composite porous biocompatible material creating a porous microstructure similar to that of natural cancellous bone.
- such matrices can be coated with biological agents which can promote cell adhesion for the cultured hematopoietic cells, allowing for improved migration, growth and proliferation.
- biological agents that promote angiogenesis (vascularization) and biological agents that prevent/reduce inflammation may also be used for coating of the matrices.
- Preferred biological agents comprise collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these agents, and combinations thereof.
- Angiogenic factors include platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), bFGF-2, leptins, plasminogen activators (tPA, uPA), angiopoietins, lipoprotein A, transforming growth factor- ⁇ , bradykinin, angiogenic oligosaccharides (e.g., hyaluronan, heparan sulphate), thrombospondin, hepatocyte growth factor (also known as scatter factor) and members of the CXC chemokine receptor family.
- PDGF platelet derived growth factor
- VEGF vascular endothelial growth factor
- bFGF basic fibroblast growth factor
- bFGF-2 basic fibroblast growth factor-2
- leptins plasminogen activators
- tPA plasminogen activators
- angiopoietins angiopoie
- Anti-inflammatory factors comprise steroidal and non-steroidal compounds and examples include: Alclofenac; Alclometasone Dipropionate; Algestone Acetonide; Alpha Amylase; Amcinafal; Amcinafide; Amfenac Sodium; Amiprilose Hydrochloride; Anakinra; Anirolac; Anitrazafen; Apazone; Balsalazide Disodium; Bendazac; Benoxaprofen; Benzydamine Hydrochloride; Bromelains; Broperamole; Budesonide; Carprofen; Cicloprofen; Cintazone; Cliprofen; Clobetasol Propionate; Clobetasone Butyrate; Clopirac; Cloticasone Propionate; Cormethasone Acetate; Cortodoxone; Deflazacort; Desonide; Desoximetasone; Dexamethasone Dipropionate; Diclofenac Potassium; Diclofenac Sodium; Diflor
- the porous solid matrix having seeded hematopoietic progenitor cells, with or without their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- a gelatinous agent that occupies pores of the matrix.
- the hematopoietic progenitor cells, with or without their progeny are seeded prior to, substantially at the same time as, or following impregnation (or infiltration) with a gelatinous agent.
- the cells may be mixed with the gelatinous agent and seeded at the same time as the impregnation of the matrix with the agent.
- the hematopoietic progenitor cells are pre-seeded onto the porous solid matrix.
- an amount of the cells is introduced in vitro into the porous solid matrix, and cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum.
- “Impregnation” with a gelatinous agent serves as to contain the cells within the matrix, and also to help maintain and/or enhance cell attachment onto the matrix.
- the “gelatinous” agent may be one that can be maintained in a fluid state initially, and after its application into the matrix, be gelatinized in situ in the matrix. Such gelatinization may occur in a number of different ways, including altering the agent's temperature, irradiating the agent with an energy source (e.g., light), etc.
- the agent may exist in a continuum from a fluid state to a semi-solid (gelatinous) state to a solid state. An agent's final state and gelatinization will always depend upon the particular “gelatinous” agent used and its individual properties.
- a preferred “gelatinous” agent is characterized also by its structural porosity, necessary for allowing the nutrients of the growth media to reach the cells throughout the matrix.
- Exemplary “gelatinous” agents include cellulosic polysaccharides (such as cellulose, hemicellulose, methylcellulose, and the like), agar, agarose, albumin, algal mucin, mucin, mucilage, collagens, glycosaminoglycans, and proteoglycans (including their sulphated forms).
- the gelatinous agent may impregnate the matrix completely, in some embodiments partially, and in other embodiments minimally, serving only as a coating of the outer surfaces of the matrix. The extent of the impregnation will largely depend upon the physical characteristics of the “gelatinous” agent of choice.
- the “gelatinous” agent is methylcellulose and the impregnation is complete.
- Hematopoietic progenitor cells refers to immature blood cells having the capacity to self-renew and to differentiate into the more mature blood cells (also described herein as “progeny”) comprising granulocytes (e.g., promyelocytes, neutrophils, eosinophils, basophils), erythrocytes (e.g., reticulocytes, erythrocytes), thrombocytes (e.g., megakaryoblasts, platelet producing megakaryocytes, platelets), and monocytes (e.g., monocytes, macrophages).
- granulocytes e.g., promyelocytes, neutrophils, eosinophils, basophils
- erythrocytes e.g., reticulocytes, erythrocytes
- thrombocytes e.g., megakaryoblasts, platelet producing megakaryocytes, platelets
- CD34 + cells are immature cells present in the “blood products” described below, express the CD34 cell surface marker, and are believed to include a subpopulation of cells with the “progenitor cell” properties defined above.
- the hematopoietic progenitor cells can be obtained from blood products.
- a “blood product” as used in the present invention defines a product obtained from the body or an organ of the body containing cells of hematopoietic origin. Such sources include unfractionated bone marrow, umbilical cord, peripheral blood, liver, thymus, lymph and spleen. It will be apparent to those of ordinary skill in the art that all of the aforementioned crude or unfractionated blood products can be enriched for cells having “hematopoietic progenitor cell” characteristics in a number of ways. For example, the blood product can be depleted from the more differentiated progeny. The more mature, differentiated cells can be selected against, via cell surface molecules they express.
- the blood product can be fractionated selecting for CD34 + cells.
- CD34 + cells are thought in the art to include a subpopulation of cells capable of self-renewal and pluripotentiality. Such selection can be accomplished using, for example, commercially available magnetic anti-CD34 beads (Dynal, Lake Success, N.Y.). Unfractionated blood products can be obtained directly from a donor or retrieved from cryopreservative storage.
- the invention to preserve hematopoietic progenitor cells and to stimulate the expansion of hematopoietic progenitor cell number and/or colony forming unit potential.
- the cells for example, can be returned to the body to supplement, replenish, etc. a patient's hematopoietic progenitor cell population. This might be appropriate, for example, after an individual has undergone chemotherapy.
- hematopoietic progenitor cell numbers are decreased, and the methods of the invention may be used in these situations as well.
- hematopoietic progenitor cells produced according to the invention and stimulate them with hematopoietic growth agents that promote hematopoietic cell maintenance, expansion and/or differentiation, to yield the more mature blood cells, in vitro.
- expanded populations of blood cells may be applied in vivo as described above, or may be used experimentally as will be recognized by those of ordinary skill in the art.
- differentiated cells include those described above, as well as T cells, plasma cells, erythrocytes, megakaryocytes, basophils, polymorphonuclear leukocytes, monocytes, macrophages, eosinohils and platelets.
- the hematopoietic progenitor cells are continuously cultured for an extended period of time, and aliquots of the cultured cells are harvested spaced apart in time or intermittently.
- “Harvesting hematopoietic cells” is defined as the dislodging or separation of cells from the matrix. This can be accomplished using a number of methods, such as enzymatic, centrifugal, electrical or by size, or the one preferred in the present invention, by flushing of the cells using the media in which the cells are incubated. The cells can be further collected and separated.
- “Harvesting steps spaced apart in time” or “intermittent harvest of cells” is meant to indicate that a portion of the cells are harvested, leaving behind another portion of cells for their continuous culture in the established media, maintaining a continuous source of the original cells and their characteristics.
- Harvesting “at least a portion of” means harvesting a subpopulation of or the entirety of.
- the invention can be used to expand the number of hematopoietic progenitor cells, all the while harvesting portions of those cells being expanded for treatment to develop even larger populations of differentiated cells.
- the media used is that which is conventional for culturing cells.
- examples include RPMI, DMEM, ISCOVES, etc.
- these media are supplemented with human or animal plasma or serum.
- plasma or serum can contain small amounts of hematopoietic growth factors.
- the media used according to the present invention can depart from that used conventionally in the prior art.
- hematopoietic progenitor cells can be cultured on the matrices described above for extended periods of time without the need for adding any exogenous growth agents (other than those which may be contained in plasma or serum, hereinafter “serum”), without inoculating the environment of the culture with stromal cells and without using stromal cell conditioned media.
- any exogenous growth agents other than those which may be contained in plasma or serum, hereinafter “serum”
- the growth agents of particular interest in connection with the present invention are hematopoietic growth factors.
- hematopoietic growth factors factors that influence the survival, proliferation or differentiation of hematopoietic cells. Growth agents that affect only survival and proliferation, but are not believed to promote differentiation, include the interleukins 3, 6 and 11, stem cell ligand and FLT-3 ligand.
- Hematopoietic growth factors that promote differentiation include the colony stimulating factors such as GMCSF, GCSF, MCSF, Tpo, Epo, Oncostatin M, and interleukins other than IL-3, 6 and 11.
- the foregoing factors are well known to those of ordinary skill in the art. Most are commercially available. They can be obtained by purification, by recombinant methodologies or can be derived or synthesized synthetically.
- the hematopoietic progenitor cells are cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium and exogenously added hematopoietic growth factors that promote differentiation of hematopoietic cells, other than serum.
- inoculated stromal cells it is meant that the cell culture chamber is free of stromal cells which have been introduced into the chamber as an inoculum for promoting survival, proliferation or differentiation of the hematopoietic progenitor cells, excluding, however, stromal cells which are contained naturally in the isolate blood product.
- “Stromal cells” as used herein comprise fibroblasts and mesenchymal cells, with or without other cells and elements, and can be seeded prior to, or substantially at the same time as, the hematopoietic progenitor cells, therefore establishing conditions that favor the subsequent attachment and growth of hematopoietic progenitor cells.
- Fibroblasts can be obtained via a biopsy from any tissue or organ, and include fetal fibroblasts. These fibroblasts and mesenchymal cells may be transfected with exogenous DNA that encodes, for example, one of the hematopoietic growth factors described above.
- “Stromal cell conditioned medium” refers to medium in which the aforementioned stromal cells have been incubated. The incubation is performed for a period sufficient to allow the stromal cells to secrete factors into the medium. Such “stromal cell conditioned medium” can then be used to supplement the culture of hematopoietic progenitor cells promoting their proliferation and/or differentiation.
- cells are cultured without any of the foregoing agents, it is meant herein that the cells are cultured without the addition of such agent except as may be present in serum, ordinary nutritive media or within the blood product isolate, unfractionated or fractionated, which contains the hematopoietic progenitor cells.
- the culture of the hematopoietic cells preferably occurs under conditions to increase the number of such cells and/or the colony forming potential of such cells.
- the conditions used refer to a combination of conditions known in the art (e.g., temperature, CO 2 and O 2 content, nutritive media, etc.).
- the time sufficient to increase the number of cells is a time that can be easily determined by a person skilled in the art, and can vary depending upon the original number of cells seeded. As an example, discoloration of the media can be used as an indicator of confluency.
- different volumes of the blood product can be cultured under identical conditions, and cells can be harvested and counted over regular time intervals, thus generating the “control curves”. These “control curves” can be used to estimate cell numbers in subsequent occasions.
- Colony forming potential is the ability of a cell to form progeny. Assays for this are well known to those of ordinary skill in the art and include seeding cells into a semi-solid, treating them with growth factors and counting the number of colonies.
- a method for in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells involves implanting into a subject a porous solid matrix having pre-seeded hematopoietic progenitor cells and hematopoietic progenitor cell progeny. Implantation of matrices similar to the matrices of the invention is well known in the art (Stackpool, G J, et al, Combined Orthopaedic Research Societies Meeting, Nov. 6-8, 1995, San Diego, Calif., Abstract Book p.
- Such matrices are biocompatible (i.e., no immune reactivity-no rejection) and can be implanted and transplanted in a number of different tissues of a subject.
- Such methods are useful in a variety of ways, including the study of hematopoietic progenitor cell maintenance, expansion and/or differentiation in vivo, in a number of different tissues of a subject, or in different subjects.
- a subject is a human, non-human primate, cow, horse, pig, sheep, goat, dog, cat or rodent.
- Human hematopoietic progenitor cells and human subjects are particularly important embodiments.
- biological agents that promote angiogenesis (vascularization) and/or prevent/reduce inflammation may also be used for coating of the matrices.
- Preferred biological agents are as described above.
- the hematopoietic progenitor cells are pre-seeded onto the porous solid matrix and cultured in vitro according to the invention, before implantation into a subject.
- an amount of the cells is introduced in vitro into the porous solid matrix, and cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum. Implantation is then carried out.
- the invention also involves the unexpected discovery that hematopoietic progenitor cells can be more efficiently transduced if the transduction occurs while the hematopoietic progenitor cells are on and within a solid porous matrix as described above.
- transduction of hematopoietic cells refers to the process of transferring exogenous genetic material into a cell of hematopoietic origin.
- transduction transformation
- transformation are used interchangeably throughout this letter, and refer to the process of transferring exogenous genetic material into a cell.
- exogenous genetic material refers to nucleic acids or oligonucleotides, either natural or synthetic, that are introduced into the hematopoietic progenitor cells.
- the exogenous genetic material may be a copy of that which is naturally present in the cells, or it may not be naturally found in the cells. It typically is at least a portion of a naturally occurring gene which has been placed under operable control of a promoter in a vector construct.
- nucleic acids may be introduced into cells. Such techniques include transfection of nucleic acid-CaPO 4 precipitates, transfection of nucleic acids associated with DEAE, transfection with a retrovirus including the nucleic acid of interest, liposome mediated transfection, and the like. For certain uses, it is preferred to target the nucleic acid to particular cells.
- a vehicle used for delivering a nucleic acid according to the invention into a cell e.g., a retrovirus, or other virus; a liposome
- a targeting molecule attached thereto.
- a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell can be bound to or incorporated within the nucleic acid delivery vehicle.
- proteins which bind to a surface membrane protein associated with endocytosis may be incorporated into the liposome formulation for targeting and/or to facilitate uptake.
- proteins include proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half life, and the like.
- Polymeric delivery systems also have been used successfully to deliver nucleic acids into cells, as is known by those skilled in the art. Such systems even permit oral delivery of nucleic acids.
- the preferred method of introducing exogenous genetic material into hematopoietic cells is by transducing the cells in situ on the matrix using replication-deficient retroviruses.
- Replication-deficient retroviruses are capable of directing synthesis of all virion proteins, but are incapable of making infectious particles. Accordingly, these genetically altered retroviral vectors have general utility for high-efficiency transduction of genes in cultured cells, and specific utility for use in the method of the present invention. Retroviruses have been used extensively for transferring genetic material into cells.
- Standard protocols for producing replication-deficient retroviruses including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with the viral particles) are provided in the art.
- the major advantage of using retroviruses is that the viruses insert efficiently a single copy of the gene encoding the therapeutic agent into the host cell genome, thereby permitting the exogenous genetic material to be passed on to the progeny of the cell when it divides.
- gene promoter sequences in the LTR region have been reported to enhance expression of an inserted coding sequence in a variety of cell types.
- the major disadvantages of using a retrovirus expression vector are (1) insertional mutagenesis, i.e., the insertion of the therapeutic gene into an undesirable position in the target cell genome which, for example, leads to unregulated cell growth and (2) the need for target cell proliferation in order for the therapeutic gene carried by the vector to be integrated into the target genome.
- adenovirus a double-stranded DNA virus.
- the adenovirus genome is adaptable for use as an expression vector for gene transduction, i.e., by removing the genetic information that controls production of the virus itself. Because the adenovirus functions usually in an extrachromosomal fashion, the recombinant adenovirus does not have the theoretical problem of insertional mutagenesis.
- adenoviral transformation of a target hematopoietic cell may not result in stable transduction.
- certain adenoviral sequences confer intrachromosomal integration specificity to carrier sequences, and thus result in a stable transduction of the exogenous genetic material.
- a variety of suitable vectors are available for transferring exogenous genetic material into hematopoietic cells.
- the selection of an appropriate vector to deliver a therapeutic agent for a particular condition amenable to gene replacement therapy and the optimization of the conditions for insertion of the selected expression vector into the cell, are within the scope of one of ordinary skill in the art without the need for undue experimentation.
- the promoter characteristically has a specific nucleotide sequence necessary to initiate transcription.
- the exogenous genetic material further includes additional sequences (i.e., enhancers) required to obtain the desired gene transcription activity.
- an “enhancer” is simply any nontranslated DNA sequence which works contiguous with the coding sequence (in cis) to change the basal transcription level dictated by the promoter.
- the exogenous genetic material is introduced into the hematopoietic cell genome immediately downstream from the promoter so that the promoter and coding sequence are operatively linked so as to permit transcription of the coding sequence.
- a preferred retroviral expression vector includes an exogenous promoter element to control transcription of the inserted exogenous gene.
- exogenous promoters include both constitutive and inducible promoters.
- constitutive promoters control the expression of essential cell functions. As a result, a gene under the control of a constitutive promoter is expressed under all conditions of cell growth.
- exemplary constitutive promoters include the promoters for the following genes which encode certain constitutive or “housekeeping” functions: hypoxanthine phosphoribosyl transferase (HPRT), dihydrofolate reductase (DHFR) (Scharfmann et al., Proc. Natl. Acad. Sci.
- any of the above-referenced constitutive promoters can be used to control transcription of a heterologous gene insert.
- inducible promoters Genes that are under the control of inducible promoters are expressed only or to a greater degree, in the presence of an inducing agent, (e.g., transcription under control of the metallothionein promoter is greatly increased in presence of certain metal ions).
- Inducible promoters include responsive elements (REs) which stimulate transcription when their inducing factors are bound.
- REs responsive elements
- Promoters containing a particular RE can be chosen in order to obtain an inducible response and in some cases, the RE itself may be attached to a different promoter, thereby conferring inducibility to the recombinant gene.
- the expression vector preferably includes a selection gene, for example, a neomycin resistance gene, for facilitating selection of hematopoietic cells that have been transfected or transduced with the expression vector.
- a selection gene for example, a neomycin resistance gene
- the hematopoietic cells are transfected with two or more expression vectors, at least one vector containing the gene(s) encoding the therapeutic agent(s), the other vector containing a selection gene.
- the selection and optimization of a particular expression vector for expressing a specific gene product in an isolated hematopoietic cell is accomplished by obtaining the gene, preferably with one or more appropriate control regions (e.g., promoter, insertion sequence); preparing a vector construct comprising the vector into which is inserted the gene; transfecting or transducing cultured hematopoietic cells in vitro with the vector construct; and determining whether the gene product is present in the cultured cells.
- appropriate control regions e.g., promoter, insertion sequence
- Table 1 represent only examples of genes that can be delivered according to the methods of the invention. Suitable promoters, enhancers, vectors, etc., for such genes are published in the literature associated with the foregoing trials.
- useful genes replace or supplement function, including genes encoding missing enzymes such as adenosine deaminase (ADA) which has been used in clinical trials to treat ADA deficiency and cofactors such as insulin and coagulation factor VIII.
- Genes which affect regulation can also be administered, alone or in combination with a gene supplementing or replacing a specific function. For example, a gene encoding a protein which suppresses expression of a particular protein-encoding gene can be administered.
- the invention is particularly useful in delivering genes which stimulate the immune response, including genes encoding viral antigens, tumor antigens, cytokines (e.g. tumor necrosis factor) and inducers of cytokines (e.g. endotoxin).
- genes which stimulate the immune response including genes encoding viral antigens, tumor antigens, cytokines (e.g. tumor necrosis factor) and inducers of cytokines (e.g. endotoxin).
- the invention also provides various apparatus for carrying out the methods of the invention.
- the preferred apparatus is depicted in FIG. 1 .
- the principle components of the embodiment depicted in FIG. 1 are a pair of cell culture chambers, one for continuously culturing hematopoietic progenitor cells in an environment which promotes the survival and proliferation of the progenitor cells, but not the differentiation of the progenitor cells.
- the other cell culture chamber (which can be one or more second cell culture chambers) is for receiving intermittently portions of the cells cultured in the first cell culture chamber for culturing in an environment that includes growth factors that promote differentiation of hematopoietic progenitor cells.
- a first cell culture chamber 10 and a second cell culture chamber 12 are shown.
- the cell culture chambers 10 , 12 have walls defining the inside of the chamber.
- a connection conduit 16 provides fluid communication between the first and second cell culture chambers.
- the connection conduit can be any fluid conduit between the first and second cell culture chambers, although in the embodiment depicted, the connection conduit 16 includes a plurality of valves and a collection chamber, described in greater detail below.
- Each of the first and second cell culture chambers 10 , 12 contain a porous solid matrix 18 , as described in detail above.
- the porous solid matrix 18 is supported by matrix supports 20 which hold the matrix 18 away from the walls 14 to provide a space 22 permitting circulation of media throughout the matrix 18 .
- the first cell culture chamber 10 is provided with an inlet port 24 which communicates with a media input conduit 26 for supplying media to the first culture chamber.
- the port 24 or the media input conduit 26 can be provided with a valve (not shown) for controlling the flow of media into the first cell culture chamber 10 .
- the first cell culture chamber has a top 28 which closes the first cell culture chamber.
- This top 28 may engage the walls 14 of the first cell culture chamber in a sealing fashion or, alternatively, can engage the walls 14 of the first cell culture chamber in a manner to permit the exchange of gases as is conventional in certain cell culture apparatus.
- the top sealingly engages the walls.
- a sample port 30 is provided in the top 28 and communicates with a sampling conduit 32 for permitting materials to be added into or removed from the first cell culture chamber.
- a second conduit can be provided (an augmentation conduit), whereby the sample conduit is for removing material from the cell culture chamber whereas the augmentation conduit is for introducing material into the cell culture chamber.
- the sample port 30 and/or sample conduit 32 can be provided with a valve (not shown) for isolating the internal environment of the first cell culture chamber from external environmental influences.
- the first cell culture chamber 10 also has an outlet port 34 communicating with the connection conduit 16 .
- the second cell culture chamber 12 has walls 14 for containing a porous solid matrix 18 supported by matrix supports 20 .
- the top 28 of the second cell culture chamber 12 is sealingly engaged with the walls 14 of the second cell culture chamber.
- the top includes a sample port 30 and a sample conduit 32 communicating with the sample port 30 for obtaining samples of material from inside of the second cell culture chamber.
- the top 28 of the second cell culture chamber 12 also includes an outlet port 34 communicating with an outlet conduit 36 whereby, preferably, media may be circulated continuously throughout the system being introduced via the media input conduit 26 and leaving the system via the media outlet conduit 36 .
- the second cell culture chamber 12 also includes an augmentation conduit 38 for supplying the second cell culture chamber with materials, preferably hematopoietic growth factors that induce differentiation, to the second cell culture chamber.
- connection conduit 16 can be any conduit, and preferably there is at least one valve between the first cell culture chamber 10 and the second cell culture chamber 12 along this conduit, whereby the flow of media between the first and second cell culture chambers can be interrupted.
- the connection conduit 16 includes a first portion 40 exiting the first cell culture chamber 10 and terminating in fluid communication with a collection chamber 42 .
- a second portion 44 of the connection conduit provides fluid communication from the collection chamber 42 to the second cell culture chamber 12 .
- the first portion 40 is interrupted by a first portion valve 46 and the second portion 44 of the connection conduit 16 is interrupted by a second portion valve 48 .
- the collection chamber also is in fluid communication with a flushing conduit 50 which has a flushing conduit valve 52 .
- valve (not shown) at inlet port 24 and outlet port 34 , first portion valve 46 , second portion valve 48 , and outlet conduit valve (not shown) at the outlet port 34 of second cell culture chamber are open.
- Valves (not shown) of the sample ports 30 of the first and second cell culture chambers 10 , 12 , valve (not shown) at the port of the second cell culture chamber 12 communicating with the augmentation conduit 38 is closed and the flushing conduit valve 52 is closed.
- media can be perfused through the first cell culture chamber, through the connection conduit and through the second cell culture chamber continuously, if desired.
- media introduced into the first cell culture chamber can be prevented from contacting the second cell culture chamber by closing valve 48 and opening valve 52 .
- the second cell culture chamber can receive media different from that received by the first cell culture chamber by opening the valve at the port communicating with the second cell culture chamber via the augmentation conduit 38 , which may provide the only media to the second cell culture chamber, may augment media received into the second cell culture chamber from the first cell culture chamber or may augment media received via flushing conduit 50 .
- the present apparatus also provides for the transfer of cells between the chambers via the conduit arrangement shown. In this embodiment, a gentle pulse of fluid is applied to the first cell culture chamber, sufficient to dislodge hematopoietic progenitor cells from the porous solid matrix in the first culture chamber.
- the collection chamber can, if desired, be provided with a means for temporarily maintaining the cells in the chamber such as by a moveable membrane, filter or the like, although such structure is not necessary for the operation of the apparatus of the invention.
- valve 46 can be closed.
- valve 52 can be opened, and the cells can be flushed by fluid pressure from the collection chamber 42 into the second cell culture chamber 12 . In this manner, as a result of closing valve 46 , it is ensured that hematopoietic growth factors that have been introduced into the second cell culture chamber do not flow backwards into the first cell culture chamber, contaminating the first cell culture chamber with unwanted material.
- valve 46 may be unnecessary. Numerous modifications to the apparatus shown will be apparent to those of ordinary skill in the art. The important aspects of the apparatus are the provision of two cell culture chambers and the mechanism for fluid communication between them, with a valve arrangement, etc. whereby the first cell culture chamber cannot be contaminated with unwanted materials which are added downstream into the second cell culture chamber.
- CD34 + hematopoietic progenitor cells were derived from human bone marrow (Poietic Technologies) isolated using magnetic anti-human CD34 + beads (Dynal, Lake Success, N.Y.) and separated from these beads using an anti-idiotype antibody (Detachabead, Dynal). All culture conditions were seeded with 2 ⁇ 10 5 cells to ensure enough cells for all analyses, particularly from control cultures. While preliminary data indicated that CD34 + cells would survive well in Cellfoam, it was anticipated that culture in the absence of cytokines would lead to reduced cell numbers in control cultures.
- All cultures contained 1 ml of Myelocult medium (Stem Cell Technologies, Vancouver, Canada), a medium for long-term HPC culture. No exogenous cytokines were added to this medium. After 1, 1.5, 3 and 6 week of culture as above with weekly medium changes, all cells (adherent and non-adherent) were harvested from all culture conditions/reactors, counted, and surface antigen stained. We recovered adherent cells because some primitive HPCs or HPC subclasses may exhibit adherent properties which would prevent their being harvested by simple washing or centrifugation. Non-adherent cells were harvested from Cellfoam by simple centrifugation for 10 minutes at 1500 rpm (approximately 250 ⁇ G) in a table top centrifuge.
- Adherent cells were harvested with a non-trypsin isolation solution (Cell Dissociation Solution, Sigma, St. Louis, Mo.) to minimize alteration of surface staining characteristics.
- Cell Dissociation Solution Cell Dissociation Solution, Sigma, St. Louis, Mo.
- To recover adherent cells from Cellfoam units were washed twice by immersion into PBS, saturated by brief vortexing in an excess of Cell Dissociation Solution, incubated for 20 minutes at 37° C., and centrifuged at 1500 rpm for 10 minutes.
- Non-adherent cells were recovered from plastic/stroma and plastic/FN systems by gentle washing; adherent cells were isolated using the Cell Dissociation Solution as described above.
- Antibodies used for surface phenotype determination will include anti-CD34 (Qbend10, Immunotech), anti-CD38 (OKT10, ATCC, Bethesda, Md.) and anti-CD45 (Becton Dickinson) antibodies to evaluate progenitor cell distributions.
- Flow cytometry analysis of the cells was performed using multi-parameter FACScan flow cytometry analysis. Appropriate controls included matched isotype antibodies to establish positive and negative quadrants, as well as appropriate single color stains to establish compensation. For each sample, at least 10,000 list mode events were collected.
- the ability of cultured HPCs to foster T-cell lymphopoiesis was assessed in an in vitro T-cell differentiation assay in which cells isolated from Cellfoam or other cultures are seeded onto thymic stroma tissue and evaluated for the ability to produce mature T cells as assessed by CD4 and CD8 single positivity and CD4CD8 double positivity antibody staining.
- the T-cell differentiation assay utilizes a bed of primate thymic stromal cells plated into 24 well plates to support the differentiation of hematopoietic progenitor cells into thymocytes and T cells (see U.S. Pat. No. 5,677,139, incorporated in its entirety herein by reference).
- thymic monolayer cultures are prepared from third trimester or neonatal rhesus thymic tissue by mincing tissue and then digesting into a single cell suspension using collagenase and DNAase.
- Thymic stroma cell suspensions which can be used either fresh or from cryopreserved samples, are then plated into 24 well plates. After two days, the non-adherent cells are removed and the adherent cell layer washed vigorously to remove any loose cells. After 6 days in culture, the isolated culture cells are added to the monolayer.
- LTCICs are relatively quiescent cells that exhibit the characteristic of prolonged survival in bone marrow stroma cultures, and it is during this time that they gradually acquire the phenotype required to give rise to erythroid and myeloid colonies in vitro.
- An important goal of the proposed research is to determine the utility of Cellfoam in supporting the retroviral transduction of LTCICs in vitro. These cells are relatively quiescent, and thus have been difficult to transduce efficiently. Enhanced transduction may be facilitated by performing biweekly transductions of the cells in Cellfoam over extended periods.
- PG13LN high titer retroviral supernatant
- ATCC high titer retroviral supernatant
- titer of 1 ⁇ 10 6 CFU/ml high titer retroviral supernatant
- the PG13LN vector is prepared as follows: the retroviral producer cell line is inoculated into a cartridge with up to 1800 cm 2 of surface and which is separated from circulating tissue culture medium by a semi-permeable membrane with a molecular weight threshold of 10,000 kd. Continuous circulation of medium through the extracapillary space by a peristaltic pump optimizes gas and nutrient exchange resulting in significant increases in retroviral vector production.
- Average increases in end-point dilution titer of retroviral vector supernatants produced using the bioreactor versus tissue culture flasks are 10-20 fold, with 100 fold increases noted in some instances.
- the infectious titer of the retroviral supernatants produced in the continuous perfusion cartridges is determined via plaque forming assays on COS cells.
- LTCIC medium In addition to retroviral medium exchanges, an additional medium exchange with LTCIC medium was performed once a week. Traditional LTCIC cultures utilizing prepared bone marrow stroma acted as controls and were cultured and transduced for the same period of time as parallel Cellfoam cultures. We also attempted to culture LTCICs in plastic wells coated with fibronectin. All culture volumes were identical. Following transduction in each device, methylcellulose CFU assays were performed.
- Total cells having undergone transduction in each device were resuspended in 3 ml of methylcellulose medium with the addition of the cytokines IL-3 (20 ng/ml), stem cell factor (50 ng/ml), erythropoietin (3 IU/ml) and GMCSF (30 ng/ml), all part of the methylcellulose assay, and re-plated in 35-mm dishes in the presence or absence of the neomycin analog G418 (400-800 ⁇ g/ml). After two weeks, colonies were scored using the criteria described above. The colony counts indicate the survival of LTCICs after the initial six-week culture period.
- the relative survival with G418 versus without G418 indicates the survival of LTCICs that had been transduced during the initial culture periods.
- the presence of these cells serves as a measure of the survival of long-term repopulating cells, LTCICs, and their relative level of transduction in Cellfoam versus plastic/BMS and plastic/FN. It is important to note that the initial culture of cells in Cellfoam for 6 weeks defines the traditional threshold at which LTCICs are measured. Thus, culturing for 3 or 6 weeks in Cellfoam, followed by 6 weeks in bone marrow stroma LTCIC assays extends the classic definition of LTCICs.
- the ability of cultured HPCs to foster T-cell lymphopoiesis was assessed in an in vitro T-cell differentiation assay. After termination of Cellfoam and control cultures at 3 and 6 weeks, an aliquot of the combined adherent/non-adherent factions were co-cultured with primary fetal thymic stroma. We evaluated the ability to produce mature T cells as assessed by CD4 and CD8 single positivity and CD4CD8 double positivity antibody staining. When cells were harvested at 3 and 6 weeks from Cellfoam and control cultures and placed in the T-cell assay, only cells recovered from Cellfoam generated T-cell progeny at both time points. Cells recovered from FN/plastic failed to generate T-cell progeny.
- Progeny derived from Cellfoam included CD4+CD8+ thymocytes, as well as CD4+ and CD8+ cells.
- Progeny derived from Cellfoam cultures included CD4+CD8+thymocytes as well as CD4 + and CD8 + single positive cells while most of these thymocytes express CD3, an additional indicator of efficient T-cell development. To date, no in vitro culture system has been shown to efficiently and reproducibly support the maintenance of an HPC population that includes T-cell progenitors.
- LTCICs Longer surviving progenitors from cultures up to 14 weeks
- LTCIC plates consisting of irradiated BMS cells.
- HPCs isolated from fibronectin coated Cellfoam maintained LTCIC over the initial 3 week culture period (9 weeks total in culture).
- Cellfoam cultures yielded 17.5 times as many LTCICs as BMS cultures.
- Cellfoam cultures not coated with fibronectin yielded a 4 fold increase in LTCIC activity versus BMS cultures.
- Fibronectin-coated Cellfoam units improved ECPHC preservation approximately 2 fold over uncoated Cellfoam units.
- Uncoated units yielded 8+/ ⁇ 11 LTCICs per 10 4 cells, a 16 fold increase over BMS controls.
- the 6 week timepoint maintained approximately half as many LTCICs in Cellfoam. This suggests that static cultures have a finite ability to maintain long term culture cells or that selection of more immature, long-lived cells is ongoing.
- the ability to use picogram and nanogram levels of cytokines on HPCs cultured on Cellfoam affords the opportunity, for the first time, to expand HPCs without altering their multipotency/function.
- the invention enables the use of particular cytokines in the nanogram/ml and picogram/ml concentration range to achieve reproducible, practical gains in HPC number and functionality. This unexpected capability has not been possible with other 2-dimensional and 3-dimensional systems of the prior art.
- cytokine level nanogram (ng) level picogram (pg) level IL-3 10 ng/ml 100 pg/ml IL-6 10 ng/ml 100 pg/ml FLK2 25 ng/ml 250 pg/ml SCF 25 ng/ml 250 pg/ml
- concentrations of cytokines cytokine level: nanogram (ng) level picogram (pg) level IL-3 10 ng/ml 100 pg/ml IL-6 10 ng/ml 100 pg/ml FLK2 25 ng/ml 250 pg/ml SCF 25 ng/ml 250 pg/ml Note: Combination cytokines used constituent cytokines each at the concentration shown.
- CD45+ HPCs cells were inoculated into the culture systems, cultured for one, three or six weeks in Cellfoam or in bone marrow stroma (BMS) or plastic well control systems in the presence of the indicated cytokines and then evaluated for cell numbers and multipotency in colony formation assays. All cultures were performed at least in quadruplicate. Particular emphasis was placed on the yield of CD45+, CD45+34+ and CD45+34+38 ⁇ cells; total cell number was viewed as less meaningfil since BMS cultures were pre-seeded with a high number of stromal cells which obfuscated total cell number analysis.
- BMS bone marrow stroma
- CD45 to gate on CD45+ hematopoietic cells and preclude stromal cells from analyses
- CD34 and CD38 progenitor surface molecules to CD34 and CD38 progenitor surface molecules
- IL-3 and IL-6 showed the greatest cell expansion at three weeks, followed by a decline at six weeks, whereas SCF and FLK2 showed continued expansion from three to six weeks. All four cytokines generated significantly higher cell numbers than input in Cellfoam devices at least at one time point but only IL-3 did so in BMS ( FIG. 5 , top nanogram, bottom picogram concentrations). Picogram concentrations tended to show consecutive increases in CD45+cell number from one to three to six weeks ( FIG. 5 ).
- CD45+34+ and CD45+34+38 ⁇ cell numbers also tended to be higher in Cellfoam than in BMS ( FIG. 7 , top nanogram, bottom picogram concentrations).
- FIG. 7 top nanogram, bottom picogram concentrations.
- higher numbers of CD45+34+ and CD45+34+38 ⁇ cells were observed in Cellfoam in 25 (78%).
- CD45+34+ and CD45+34+38-numbers were observed in Cellfoam in all 16 (100%) (see FIG.
- FIG. 7 for representative CD45+34+patterns.
- Statistically significant values are noted with an asterisk in FIG. 7 which compares the fold difference in cell number between Cellfoam and BMS (and plastic; see below). Bars above the 1.00 line indicate the fold higher numbers obtained in Cellfoam as compared to controls; bars below the 1.00 line indicate the fold higher numbers obtained in controls as compared to Cellfoam. Scale is shown on log base for convenience. Asterisks denote statistically significant values. Patterns of fold difference for CD45+34+38 ⁇ cells were similar to those shown here for CD45+34+ cells.
- nanogram concentration cytokine supplementation led to decreases in total colony activity from three to six weeks (with the exception of SCF in Cellfoam cultures) suggesting a time-dependent exposure effect of cytokine augmentation on HPC function.
- picogram concentration supplementation experiments using combination cytokines the drop-off in CFU activity was much less dramatic, with colony activity remaining approximately constant from three to six weeks.
- picogram levels of combination cytokines led to higher colony activity than nanogram level supplementation.
- supplementation with picogram levels of Combination 1 led to total colony content that was 3-6 fold higher than with nanogram levels of Combination 1 (IL-3/IL-6/SCF) at parallel time points.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Sustainable Development (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention pertains to methods and devices for the long term, in vitroculture of hematopoietic progenitor cells in the absence of exogenously added hematopoietic growth factors, improved methods for the introduction of foreign genetic material into cells of hematopoietic origin, and to apparatus for performing these methods. The hematopoietic progenitor cells are cultured on a three-dimensional porous biomaterial. The three-dimensional porous biomaterial enhances hematopoietic progenitor cell survival and leads to an expansion of progenitor cell numbers and/or functionality, while maintaining progenitor cell pluripotency in the absence of exogenous growth factors. In addition, the three-dimensional porous biomaterial supports high level transduction on cells cultured upon such environment.
Description
- This application is a divisional of pending application Ser. No. 09/509,379, filed on Jun. 7, 2000, entitled METHODS AND DEVICES FOR THE LONG-TERM CULTURE OF HEMATOPOIETIC PROGENITOR CELLS, which is the National Stage filing of PCT/US98/20123 application filed on Sep. 25, 1998, and which in turn claims priority from U.S. Provisional application Ser. No. 60/059,954 filed on Sep. 25, 1997. The contents of the foregoing applications are hereby expressly incorporated by reference.
- This work was funded in part under contract DAAH01-97-C-R121 from the U.S. Army Aviation and Missile Command. Accordingly, the United States Government may have certain rights to this invention.
- This invention relates generally to hematopoietic cells, and more specifically to methods and devices for long-term in vitro culturing of hematopoietic progenitor cells, as well as methods for the introduction of exogenous genetic material into cells of hematopoietic origin.
- The circulating blood cells, such as erythrocytes, leukocytes, platelets and lymphocytes, are the products of the terminal differentiation of recognizable precursors. In fetal life, hematopoiesis occurs throughout the reticular endothelial system. In the normal adult, terminal differentiation of the recognizable precursors occurs exclusively in the marrow cavities of the axial skeleton, with some extension into the proximal femora and humeri. These precursor cells, in turn, derive from very immature cells, called progenitors, which are assayed by their development into contiguous colonies of mature blood cells in 1-3 week cultures in semi-solid media, such as methylcellulose.
- There have been reports of the isolation and purification of hematopoietic progenitor cells (see, e.g., U.S. Pat. No. 5,061,620 as representative), but such methods have not allowed for the long-term culture of such cells that maintain their viability and pluripotency.
- Studies of the murine hematopoietic system in the murine bone marrow have resulted in a detailed understanding of the murine system. In addition, retroviral gene transfer into cultured mouse bone marrow cells has been made possible. While it has been possible to transfer retroviral genes into cultured mouse bone marrow cells, the efficiency of gene transfer into human bone marrow cells has been disappointing to date, which may reflect the fact that human long-term bone marrow cultures have been limited both in their longevity and more importantly in their ability to maintain hematopoietic progenitor cell survival and pluripotentiality over time.
- Human bone marrow cultures initially were found to have a limited hematopoietic potential, producing decreasing numbers of hematopoietic progenitor and mature blood cells, with cell production ceasing by six to eight weeks. Subsequent modifications of the original system resulted only in minor improvements. This has been largely attributed to the dependence of the hematopoietic progenitor cells upon environmental influences such essential growth factors (hematopoietic growth factors and cytokines) found in vivo. In addition to these factors, interactions with cell surface molecules and extracellular matrix may be important for hematopoietic progenitor cell survival and proliferation. Previous efforts to advance in vitro proliferation and differentiation of hematopoietic progenitor cells, examined the effects of cytokines in various substrates, including pre-seeded stroma and fibronectin. The addition of exogenous growth factors to the culture environment, particularly IL-3 (Interleukin-3) and GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor), may lead to selective expansion of specific lineages. These findings suggest that addition of exogenous growth factors into hematopoietic progenitor cell cultures may adversely affect the multipotency of primitive hematopoietic progenitor cells by causing them to differentiate and thus depleting the immature hematopoietic progenitor population.
- Alternative approaches have used irradiated bone marrow stroma to seed hematopoietic progenitor cells and have been shown to maintain these cells in long-term culture initiating cells (LTCICs) and to increase transduction of hematopoietic progenitor cells and LTCICs by retroviral vectors. However, questions have been raised about the risks of infection and immune reaction to transplantation of non-autologous bone marrow. Fibronectin, a cellular stromal component, reduces this risk of infection and immune mediated response while enhancing retroviral transduction. However, fibronectin alone may not be sufficient to maintain primitive hematopoietic progenitor cells in vitro.
- The hypothesis that the three-dimensional micro-environment of the bone marrow plays a role in maintaining hematopoietic stem cell viability and pluripotency has led to investigating structures which mimic this topography. Three-dimensional polymer devices (e.g., nylon mesh) have been shown to support hematopoietic progenitor cell survival, proliferation and multilineage differentiation, but require the presence of growth factors. Such factors can be added exogenously, or supplied via secreting stromal cells which are co-cultured with the progenitor cells, or through the addition of stromal cell conditioned medium.
- Hematopoietic progenitor cell expansion for bone marrow transplantation is a potential application of human long-term bone marrow cultures. Human autologous and allogeneic bone marrow transplantation are currently used as therapies for diseases such as leukemia, lymphoma, and other life-threatening diseases. For these procedures, however, a large amount of donor bone marrow must be removed to ensure that there are enough cells for engraftment.
- An approach providing hematopoietic progenitor cell expansion would reduce the need for large bone marrow donation and would make possible obtaining a small marrow donation and then expanding the number of progenitor cells in vitro before infusion into the recipient. Also, it is known that a small number of hematopoietic progenitor cells circulate in the blood stream. If these cells could be selected and expanded, then it would be possible to obtain the required number of hematopoietic progenitor cells for transplantation from peripheral blood and eliminate the need for bone marrow donation.
- Hematopoietic progenitor cell expansion would also be useful as a supplemental treatment to chemotherapy and is another application for human long-term bone marrow cultures. Most chemotherapy agents act by killing all cells going through cell division. Bone marrow is one of the most prolific tissues in the body and is therefore often the organ that is initially damaged by chemotherapy drugs. The result is that blood cell production is rapidly destroyed during chemotherapy treatment, and chemotherapy must be terminated to allow the hematopoietic system to replenish the blood cell supplies before a patient is re-treated with chemotherapy.
- A successful approach providing hematopoietic progenitor cell expansion would greatly facilitate the production of a large number of further differentiated precursor cells of a specific lineage, and in turn provide a larger number of differentiated hematopoietic cells with a wide variety of applications, including blood transfusions.
- Gene therapy is a rapidly growing field in medicine with an enormous clinical potential. Traditionally, gene therapy has been defined as a procedure in which an exogenous gene is introduced into the cells of a patient in order to correct an inborn genetic error. Research in gene therapy has been ongoing for several years in several types of cells in vitro and in animal studies, and more recently a number of clinical trials have been initiated.
- The human hematopoietic system is an ideal choice for gene therapy in that hematopoietic stem cells are readily accessible for treatment (bone marrow or peripheral blood harvest) and they are believed to possess unlimited self-renewal capabilities (incurring lifetime therapy), and upon reinfusion, can expand and repopulate the marrow. Unfortunately, achieving therapeutic levels of gene transfer into stem cells has yet to be accomplished in humans. The problem which remains to be addressed for successful human gene therapy is the ability to insert the desired therapeutic gene into the chosen cells in a quantity such that it will be beneficial to the patient. To date, methods for the efficient introduction of exogenous genetic material into human hematopoietic stem cells have been limited.
- There exists a need to influence favorably hematopoietic progenitor cell viability and pluripotency under long-term culture in vitro.
- There exists a need to provide large numbers of differentiated hematopoietic cells.
- There also exists the need to improve the efficiency of exogenous genetic material transfer into hematopoietic progenitor cells.
- An object of the invention is to provide methods and devices that extend the in vitro viability of hematopoietic stem cells while maintaining the hematopoietic progenitor cell properties of self-renewal and pluripotency.
- Another object of the invention is to provide methods and devices for the controlled production in large numbers of specific lineages of progenitor cells and their more differentiated hematopoietic cells.
- Yet another object of the invention is to provide improved methods for gene transfer and transduction into cells of hematopoietic origin and hematopoietic progenitor cells in particular. These and other objects of the invention will be described in greater detail below.
- The invention, in one important part, involves improved methods for culturing hematopoietic progenitor cells, which methods can, for example, increase the period over which an amount of hematopoietic progenitor cells can be cultured. Thus, one aspect of the invention is improved preservation of a culture of hematopoietic progenitor cells. Another aspect is an improvement in the number of progeny that can be obtained from a sample of hematopoietic progenitor cells. Still another aspect of the invention is an improvement in the number of differentiated progeny blood cells that can be obtained from a sample of hematopoietic progenitor cells.
- Surprisingly, according to the invention, it has been discovered that hematopoietic progenitor cells can be cultured without exogenous growth agents for extended periods of time, thereby increasing the supply of hematopoietic progenitor cells and inhibiting the induction of differentiation and/or the loss of progenitor cells during culture. Thus, the present invention permits the culture of hematopoietic progenitor cells in vitro for more than 5 weeks, and even more than 6, 7 or 8 weeks, without adding hematopoietic growth factors, inoculated stromal cells or stromal cell conditioned medium. This is achieved, simply, by culturing the hematopoietic progenitor cells in a porous solid scaffold.
- According to one aspect of the invention, a method for in vitro culture of hematopoietic progenitor cells is provided. An amount of hematopoietic progenitor cells is introduced to a porous, solid matrix having interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix. The cells are cultured upon and within the matrix in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell differentiation, other than serum. The porous matrix can be one that is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%. In one embodiment the porous solid matrix has pores defined by interconnecting ligaments having a diameter at midpoint, on average, of less than 150 μm. Preferably the porous solid matrix is a metal-coated reticulated open cell foam of carbon containing material, the metal coating being selected from the group consisting of tantalum, titanium, platinum (including other metals of the platinum group), niobium, hafnium, tungsten, and combinations thereof. In preferred embodiments, whether the porous solid matrix is metal-coated or not, the matrix is coated with a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these factors, and combinations thereof. Most preferably the metal coating is tantalum coated with a biological agent. In certain other embodiments the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- The preferred embodiments of the invention are solid, unitary macrostructures, i.e. not beads or packed beads. They also involve nonbiodegradable materials.
- In other embodiments, before the introducing step, the hematopoietic progenitor cells are obtained from a blood product. Preferably the blood product is unfractionated bone marrow. In still other embodiments, the method further includes the step of harvesting hematopoietic cells. Preferably, there is a first harvesting after a first culturing period and at least one additional harvesting after at least one additional culturing period. The harvested cells then are cultured in at least one of an exogenously added agent selected from the group consisting of a hematopoietic growth factor that promotes hematopoietic cell maintenance, expansion and/or differentiation, inoculated stromal cells, and stromal cell conditioned medium.
- According to any of the foregoing embodiments, the method of the invention can include, in said first culturing step, culturing the cells in an environment that is free of hematopoietic progenitor cell survival and proliferation factors such as
interleukins - As will be understood, according to the invention, it is possible now to culture hematopoietic progenitor cells for 6, 7 or 8 weeks, and to harvest hematopoietic progenitor cells during this time interval for subsequent exposure to culture conditions containing hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation. Culturing and harvesting over this time period is an independent aspect of the invention.
- According to another aspect of the invention, a method is provided for in vitro culture of hematopoietic progenitor cells to produce differentiated cells of hematopoietic origin. In a first culturing step, a first amount of hematopoietic progenitor cells is cultured in an environment that is free of inoculated stromal cells, stromal cell condition medium and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum, under conditions and for a period of time to increase the number of cultured hematopoietic progenitor cells relative to said first amount or to increase the functionality of the hematopoietic progenitor cells, thereby producing a second amount of hematopoietic progenitor cells. Then, in a second culturing step, at least a portion of the second amount of cultured hematopoietic progenitor cells is cultured in an environment that includes at least one of an agent selected from the group consisting of a hematopoietic growth factor that promotes hematopoietic cell maintenance, expansion and/or differentiation, inoculated stromal cells and stromal cell conditioned medium, to produce differentiated cells of hematopoietic origin. In one embodiment, the environment is free of hematopoietic growth factors that promote survival and proliferation of hematopoietic progenitor cells such as
interleukins - According to another aspect of the invention, a method is provided for in vitro culture of hematopoietic progenitor cells to produce differentiated cells of hematopoietic origin. In a first culturing step, hematopoietic progenitor cells are cultured in an environment that is free of inoculated stromal cells, stromal cell condition medium and exogenously added hematopoietic growth factors that promote differentiation, other than serum, to generate cultured hematopoietic progenitor cells. A portion of the cultured hematopoietic progenitor cells are harvested intermittently to generate a plurality of intermittently harvested portions of cultured hematopoietic cells. Then, in a plurality of second culturing steps, the plurality of intermittently cultured harvested portions are cultured in an environment that includes at least one agent selected from the group consisting of a hematopoietic growth factor that promotes differentiation, inoculated stromal cells and stromal cell conditioned medium, to produce differentiated cells of hematopoietic origin. In one embodiment, the environment of the first culturing step is free of hematopoietic growth factors that promote survival and proliferation of hematopoietic progenitor cells, such as
interleukins - According to another aspect of the invention, a method is provided for transducing exogenous genetic material into cells of hematopoietic origin. Hematopoietic cells are cultured in a porous solid matrix having interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix. The cells are transduced with the exogenous genetic material in situ on and within the matrix. It has been found, surprisingly, that the efficiency of transfer of genetic material when carried out with the cells cultured upon the matrix is unexpectedly increased. The characteristics of various embodiments of the preferred porous solid matrices are as described above. Also, in this embodiment, the hematopoietic cells can be hematopoietic progenitor cells and the cells, whether progenitor or not, can be cultured in environments free of factors that promote differentiation, factors that promote survival and proliferation, any hematopoietic growth factors whatsoever, inoculated stromal cells or stromal cell conditioned media.
- According to still another aspect of the invention, an apparatus for culturing cells is provided. The apparatus includes a first cell culture chamber containing a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix. The apparatus also includes a second cell culture chamber. A conduit provides fluid communication between the first and second cell culture chambers. A collection chamber is located between the first and second cell culture chambers, the collection chamber interrupting fluid communication between the first and second cell culture chambers via the conduit. A first inlet valve on one side of the collection chamber is for providing fluid to be received from the first cultured chamber into the collection chamber. An outlet valve on the other side of the collection chamber provides fluid to be received into the second cultured chamber from the collection chamber. Finally, there is a second inlet valve for the collection chamber for introducing a desired fluid into the collection chamber, other than fluid from the first cell culture chamber, whereby fluid may be intermittently removed from the first cell culture chamber and provided to the second cell culture chamber without contamination of the first culture chamber by fluid from the second culture chamber.
- According to yet another aspect of the invention, another apparatus for culturing cells is provided. This apparatus includes a first cell culture chamber containing a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix. An inlet valve on the first cell culture chamber is provided for introducing culture medium into the first cell culture chamber. A second cell culture chamber also is provided, the first and second cell culture chambers being in fluid communication with one another via a conduit. A valve on the conduit is provided for controlling fluid flow between the first and second cell culture chambers.
- In either of the foregoing apparatus, the second cell culture chamber can be provided with a porous solid matrix having interconnected pores of a pore size sufficient to permit cells to grow throughout the matrix. Various embodiments are provided, wherein the porous solid matrix has one or more of the preferred characteristics as described above. In addition, the various cell culture chambers can have ports and conduits for sampling material within the cell culture chamber, for augmentation by delivery of various agents to one or the other of the cell culture chambers and for controlling and permitting the continuous flow of medium through either or both of the cell culture chambers.
- In yet another aspect of the invention, a solid porous matrix is provided wherein hematopoietic progenitor cells, with or without their progeny, are attached to the solid porous matrix. In some embodiments, stromal cells may also be attached to the matrix. The porous matrix can be one that is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%. In one embodiment the porous solid matrix has pores defined by interconnecting ligaments having a diameter at midpoint, on average, of less than 150 μm. Preferably the porous solid matrix is a metal-coated reticulated open cell foam of carbon containing material, the metal coating being selected from the group consisting of tantalum, titanium, platinum (including other metals of the platinum group), niobium, hafnium, tungsten, and combinations thereof. In preferred embodiments, whether the porous solid matrix is metal-coated or not, the matrix is coated with a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these factors, and combinations thereof. Most preferably the metal coating is tantalum coated with a biological agent. In certain other embodiments the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- According to another aspect of the invention, a method for in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells is provided. The method involves implanting into a subject a porous, solid matrix having pre-seeded hematopoietic progenitor cells and hematopoietic progenitor cell progeny. The porous matrix has interconnected pores of a pore size sufficient to permit the cells to grow throughout the matrix and is an open cell porous matrix having a percent open space of at least 50%, and preferably at least 75%. Various embodiments are provided, wherein the porous solid matrix has one or more of the preferred characteristics as described above. In certain other embodiments, the porous solid matrix further comprises hematopoietic progenitor cells and their progeny which are attached to the matrix by introducing in vitro an amount of hematopoietic progenitor cells into the porous solid matrix, and culturing the hematopoietic progenitor cells in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum. In yet other embodiments the porous solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
- In any of the foregoing embodiments involving hematopoietic cell maintenance, expansion and/or differentiation using a hematopoietic growth factor, the hematopoietic growth factor used is selected from the group consisting of
interleukin 3,interleukin 6, interleukin 7, interleukin 11,interleukin 12 stem cell factor, FLK-2 ligand, FLT-2 ligand, Epo, Tpo, GMCSF, GCSF, Oncostatin M, and MCSF. - These and other aspects of the invention are described in greater detail below.
-
FIG. 1 is a schematic representation of a cell culture apparatus according to the invention. -
FIG. 2 . Survival and expansion of CD34+ HPCs in Cellfoam v. control systems at 1 week. -
FIG. 3 . Survival and expansion of CD34+ HPCs in Cellfoam v. control systems at 3 and 6 weeks. -
FIG. 4 . CFU ability of HSCs isolated from Cellfoam and control cultures. -
FIG. 5 . CD45+ cell number at 1, 3 and 6 weeks in Cellfoam and BMS cultures supplemented with cytokines. -
FIG. 6 . CD45+ cell number at 1, 3 and 6 weeks in Cellfoam and BMS supplemented with the combination cytokines. -
FIG. 7 . Fold difference ofCD45 +34+ cell yield in Cellfoam cultures as compared to BMS and plastic control cultures at 3 and 6 weeks at nanogram (top) and picogram (bottom) concentrations. -
FIG. 8 . Total colony activity of cells isolated from Cellfoam and plastic cultures supplemented with cytokines. -
FIG. 9 . Fold difference of total colony activity in Cellfoam cultures as compared to plastic control cultures at 3 and 6 weeks in nanogram concentration supplementation experiments. - The invention in one aspect involves culturing hematopoietic progenitor cells in a porous solid matrix without exogenous growth agents.
- A porous, solid matrix, is defined as a three-dimensional structure with “sponge-like” continuous pores forming an interconnecting network. The matrix can be rigid or elastic, and it provides a scaffold upon which cells can grow throughout. Its pores are interconnected and provide the continuous network of channels extending through the matrix and also permit the flow of nutrients throughout. A preferred matrix is an open cell foam matrix having a percent open space of at least 50% and preferably 75%. Thus, it is preferred that the open space comprise the majority of the matrix. This is believed to maximize cell migration, cell-cell contact, space for cell growth and accessibility to nutrients. It is preferred that the porous matrix be formed of a reticulated matrix of ligaments which at their center point are less than 150 μm in diameter, preferably 60 μm, whereby a cell can reside on or interact with a portion of the ligament. Preferably, the average pore diameter is on the order of 300 μm, which resembles cancellous bone. Suitable matrices can be obtained using a number of different methods. Examples of such methods include solvent casting or extraction of polymers, track etching of a variety of materials, foaming of a polymer, the replamineform process for hydroxyapatite, and other methodologies well known to those of ordinary skill in the art. The materials employed can be natural or synthetic, including biological materials such as proteins, hyaluronic acids, synthetic polymers such as polyvinyl pyrolidones, polymethylmethacrylate, methyl cellulose, polystyrene, polypropylene, polyurethane, ceramics such as tricalcium phosphate, calcium aluminate, calcium hydroxyapatite and ceramic-reinforced or coated polymers. If the starting material for the scaffold is not metal, a metal coating can be applied to the three-dimensional matrix. Metal coatings provide further structural support and/or cell growth and adhesive properties to the matrix. Preferred metals used as coatings comprise tantalum, titanium, platinum and metals in the same element group as platinum, niobium, hafnium, tungsten, and combinations of alloys thereof. Coating methods for metals include a process such as CVD (Chemical Vapor Deposition). The preferred matrix, referred to herein throughout as Cellfoam, is described in detail in U.S. Pat. No. 5,282,861, and is incorporated herein by reference. More specifically, the preferred matrix is a reticulated open cell substrate formed by a lightweight, substantially rigid foam of carbon-containing material having open spaces defined by an interconnecting network, wherein said foam material has interconnected continuous channels, and a thin film of metallic material deposited onto the reticulated open cell substrate and covering substantially all of the interconnecting network to form a composite porous biocompatible material creating a porous microstructure similar to that of natural cancellous bone.
- Additionally, such matrices can be coated with biological agents which can promote cell adhesion for the cultured hematopoietic cells, allowing for improved migration, growth and proliferation. Moreover, when these matrices are used for the in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells (i.e., when the matrices with the cells are implanted into a subject,—see also discussion below), biological agents that promote angiogenesis (vascularization) and biological agents that prevent/reduce inflammation may also be used for coating of the matrices. Preferred biological agents comprise collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, functional equivalents of these agents, and combinations thereof.
- Angiogenic factors include platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), bFGF-2, leptins, plasminogen activators (tPA, uPA), angiopoietins, lipoprotein A, transforming growth factor-β, bradykinin, angiogenic oligosaccharides (e.g., hyaluronan, heparan sulphate), thrombospondin, hepatocyte growth factor (also known as scatter factor) and members of the CXC chemokine receptor family. Anti-inflammatory factors comprise steroidal and non-steroidal compounds and examples include: Alclofenac; Alclometasone Dipropionate; Algestone Acetonide; Alpha Amylase; Amcinafal; Amcinafide; Amfenac Sodium; Amiprilose Hydrochloride; Anakinra; Anirolac; Anitrazafen; Apazone; Balsalazide Disodium; Bendazac; Benoxaprofen; Benzydamine Hydrochloride; Bromelains; Broperamole; Budesonide; Carprofen; Cicloprofen; Cintazone; Cliprofen; Clobetasol Propionate; Clobetasone Butyrate; Clopirac; Cloticasone Propionate; Cormethasone Acetate; Cortodoxone; Deflazacort; Desonide; Desoximetasone; Dexamethasone Dipropionate; Diclofenac Potassium; Diclofenac Sodium; Diflorasone Diacetate; Diflumidone Sodium; Diflunisal; Difluprednate; Diftalone; Dimethyl Sulfoxide; Drocinonide; Endrysone; Enlimomab; Enolicam Sodium; Epirizole; Etodolac; Etofenamate; Felbinac; Fenamole; Fenbufen; Fenclofenac; Fenclorac; Fendosal; Fenpipalone; Fentiazac; Flazalone; Fluazacort; Flufenamic Acid; Flumizole; Flunisolide Acetate; Flunixin; Flunixin Meglumine; Fluocortin Butyl; Fluorometholone Acetate; Fluquazone; Flurbiprofen; Fluretofen; Fluticasone Propionate; Furaprofen; Furobufen; Halcinonide; Halobetasol Propionate; Halopredone Acetate; Ibufenac; Ibuprofen; Ibuprofen Aluminum; Ibuprofen Piconol; Ilonidap; Indomethacin; Indomethacin Sodium; Indoprofen; Indoxole; Intrazole; Isoflupredone Acetate; Isoxepac; Isoxicam; Ketoprofen; Lofemizole Hydrochloride; Lomoxicam; Loteprednol Etabonate; Meclofenamate Sodium; Meclofenamic Acid; Meclorisone Dibutyrate; Mefenamic Acid; Mesalamine; Meseclazone; Methylprednisolone Suleptanate; Morniflumate; Nabumetone; Naproxen; Naproxen Sodium; Naproxol; Nimazone; Olsalazine Sodium; Orgotein; Orpanoxin; Oxaprozin; Oxyphenbutazone; Paranyline Hydrochloride; Pentosan Polysulfate Sodium; Phenbutazone Sodium Glycerate; Pirfenidone; Piroxicam; Piroxicam Cinnamate; Piroxicam Olamine; Pirprofen; Prednazate; Prifelone; Prodolic Acid; Proquazone; Proxazole; Proxazole Citrate; Rimexolone; Romazarit; Salcolex; Salnacedin; Salsalate; Sanguinarium Chloride; Seclazone; Sermetacin; Sudoxicam; Sulindac; Suprofen; Talmetacin; Talniflumate; Talosalate; Tebufelone; Tenidap; Tenidap Sodium; Tenoxicam; Tesicam; Tesimide; Tetrydamine; Tiopinac; Tixocortol Pivalate; Tolmetin; Tolmetin Sodium; Triclonide; Triflumidate; Zidometacin; Zomepirac Sodium.
- In certain embodiments of the invention the porous solid matrix having seeded hematopoietic progenitor cells, with or without their progeny, is impregnated with a gelatinous agent that occupies pores of the matrix. By “seeded” it is meant that the hematopoietic progenitor cells, with or without their progeny, are seeded prior to, substantially at the same time as, or following impregnation (or infiltration) with a gelatinous agent. For example, the cells may be mixed with the gelatinous agent and seeded at the same time as the impregnation of the matrix with the agent. In some embodiments, the hematopoietic progenitor cells, with or without their progeny, are pre-seeded onto the porous solid matrix. According to the invention, an amount of the cells is introduced in vitro into the porous solid matrix, and cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum.
- “Impregnation” with a gelatinous agent serves as to contain the cells within the matrix, and also to help maintain and/or enhance cell attachment onto the matrix. The “gelatinous” agent may be one that can be maintained in a fluid state initially, and after its application into the matrix, be gelatinized in situ in the matrix. Such gelatinization may occur in a number of different ways, including altering the agent's temperature, irradiating the agent with an energy source (e.g., light), etc. The agent may exist in a continuum from a fluid state to a semi-solid (gelatinous) state to a solid state. An agent's final state and gelatinization will always depend upon the particular “gelatinous” agent used and its individual properties. A preferred “gelatinous” agent is characterized also by its structural porosity, necessary for allowing the nutrients of the growth media to reach the cells throughout the matrix. Exemplary “gelatinous” agents include cellulosic polysaccharides (such as cellulose, hemicellulose, methylcellulose, and the like), agar, agarose, albumin, algal mucin, mucin, mucilage, collagens, glycosaminoglycans, and proteoglycans (including their sulphated forms). In certain embodiments, the gelatinous agent may impregnate the matrix completely, in some embodiments partially, and in other embodiments minimally, serving only as a coating of the outer surfaces of the matrix. The extent of the impregnation will largely depend upon the physical characteristics of the “gelatinous” agent of choice. In preferred embodiments the “gelatinous” agent is methylcellulose and the impregnation is complete.
- The cells cultured according to the methods of the invention are hematopoietic progenitor cells. “Hematopoietic progenitor cells” as used herein refers to immature blood cells having the capacity to self-renew and to differentiate into the more mature blood cells (also described herein as “progeny”) comprising granulocytes (e.g., promyelocytes, neutrophils, eosinophils, basophils), erythrocytes (e.g., reticulocytes, erythrocytes), thrombocytes (e.g., megakaryoblasts, platelet producing megakaryocytes, platelets), and monocytes (e.g., monocytes, macrophages). It is known in the art that such cells may or may not include CD34+ cells. CD34+ cells are immature cells present in the “blood products” described below, express the CD34 cell surface marker, and are believed to include a subpopulation of cells with the “progenitor cell” properties defined above.
- The hematopoietic progenitor cells can be obtained from blood products. A “blood product” as used in the present invention defines a product obtained from the body or an organ of the body containing cells of hematopoietic origin. Such sources include unfractionated bone marrow, umbilical cord, peripheral blood, liver, thymus, lymph and spleen. It will be apparent to those of ordinary skill in the art that all of the aforementioned crude or unfractionated blood products can be enriched for cells having “hematopoietic progenitor cell” characteristics in a number of ways. For example, the blood product can be depleted from the more differentiated progeny. The more mature, differentiated cells can be selected against, via cell surface molecules they express. Additionally, the blood product can be fractionated selecting for CD34+ cells. As mentioned earlier, CD34+ cells are thought in the art to include a subpopulation of cells capable of self-renewal and pluripotentiality. Such selection can be accomplished using, for example, commercially available magnetic anti-CD34 beads (Dynal, Lake Success, N.Y.). Unfractionated blood products can be obtained directly from a donor or retrieved from cryopreservative storage.
- Employing the culture conditions described in greater detail below, it is possible according to the invention to preserve hematopoietic progenitor cells and to stimulate the expansion of hematopoietic progenitor cell number and/or colony forming unit potential. Once expanded, the cells, for example, can be returned to the body to supplement, replenish, etc. a patient's hematopoietic progenitor cell population. This might be appropriate, for example, after an individual has undergone chemotherapy. There are certain genetic conditions wherein hematopoietic progenitor cell numbers are decreased, and the methods of the invention may be used in these situations as well.
- It also is possible to take the increased numbers of hematopoietic progenitor cells produced according to the invention and stimulate them with hematopoietic growth agents that promote hematopoietic cell maintenance, expansion and/or differentiation, to yield the more mature blood cells, in vitro. Such expanded populations of blood cells may be applied in vivo as described above, or may be used experimentally as will be recognized by those of ordinary skill in the art. Such differentiated cells include those described above, as well as T cells, plasma cells, erythrocytes, megakaryocytes, basophils, polymorphonuclear leukocytes, monocytes, macrophages, eosinohils and platelets.
- In the preferred embodiments of the invention, the hematopoietic progenitor cells are continuously cultured for an extended period of time, and aliquots of the cultured cells are harvested spaced apart in time or intermittently. “Harvesting hematopoietic cells” is defined as the dislodging or separation of cells from the matrix. This can be accomplished using a number of methods, such as enzymatic, centrifugal, electrical or by size, or the one preferred in the present invention, by flushing of the cells using the media in which the cells are incubated. The cells can be further collected and separated. “Harvesting steps spaced apart in time” or “intermittent harvest of cells” is meant to indicate that a portion of the cells are harvested, leaving behind another portion of cells for their continuous culture in the established media, maintaining a continuous source of the original cells and their characteristics. Harvesting “at least a portion of” means harvesting a subpopulation of or the entirety of. Thus, as will be understood by one of ordinary skill in the art, the invention can be used to expand the number of hematopoietic progenitor cells, all the while harvesting portions of those cells being expanded for treatment to develop even larger populations of differentiated cells.
- In all of the culturing methods according to the invention, except as otherwise provided, the media used is that which is conventional for culturing cells. Examples include RPMI, DMEM, ISCOVES, etc. Typically these media are supplemented with human or animal plasma or serum. Such plasma or serum can contain small amounts of hematopoietic growth factors. The media used according to the present invention, however, can depart from that used conventionally in the prior art. In particular, it has been discovered, surprisingly, that hematopoietic progenitor cells can be cultured on the matrices described above for extended periods of time without the need for adding any exogenous growth agents (other than those which may be contained in plasma or serum, hereinafter “serum”), without inoculating the environment of the culture with stromal cells and without using stromal cell conditioned media. Prior to the present invention, at least one of the foregoing agents was believed necessary in order to culture hematopoietic progenitor cells.
- The growth agents of particular interest in connection with the present invention are hematopoietic growth factors. By hematopoietic growth factors, it is meant factors that influence the survival, proliferation or differentiation of hematopoietic cells. Growth agents that affect only survival and proliferation, but are not believed to promote differentiation, include the
interleukins - In one aspect of the invention, the hematopoietic progenitor cells are cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium and exogenously added hematopoietic growth factors that promote differentiation of hematopoietic cells, other than serum. By “inoculated” stromal cells, it is meant that the cell culture chamber is free of stromal cells which have been introduced into the chamber as an inoculum for promoting survival, proliferation or differentiation of the hematopoietic progenitor cells, excluding, however, stromal cells which are contained naturally in the isolate blood product.
- “Stromal cells” as used herein comprise fibroblasts and mesenchymal cells, with or without other cells and elements, and can be seeded prior to, or substantially at the same time as, the hematopoietic progenitor cells, therefore establishing conditions that favor the subsequent attachment and growth of hematopoietic progenitor cells. Fibroblasts can be obtained via a biopsy from any tissue or organ, and include fetal fibroblasts. These fibroblasts and mesenchymal cells may be transfected with exogenous DNA that encodes, for example, one of the hematopoietic growth factors described above.
- “Stromal cell conditioned medium” refers to medium in which the aforementioned stromal cells have been incubated. The incubation is performed for a period sufficient to allow the stromal cells to secrete factors into the medium. Such “stromal cell conditioned medium” can then be used to supplement the culture of hematopoietic progenitor cells promoting their proliferation and/or differentiation.
- Thus, when cells are cultured without any of the foregoing agents, it is meant herein that the cells are cultured without the addition of such agent except as may be present in serum, ordinary nutritive media or within the blood product isolate, unfractionated or fractionated, which contains the hematopoietic progenitor cells.
- The culture of the hematopoietic cells preferably occurs under conditions to increase the number of such cells and/or the colony forming potential of such cells. The conditions used refer to a combination of conditions known in the art (e.g., temperature, CO2 and O2 content, nutritive media, etc.). The time sufficient to increase the number of cells is a time that can be easily determined by a person skilled in the art, and can vary depending upon the original number of cells seeded. As an example, discoloration of the media can be used as an indicator of confluency. Additionally, and more precisely, different volumes of the blood product can be cultured under identical conditions, and cells can be harvested and counted over regular time intervals, thus generating the “control curves”. These “control curves” can be used to estimate cell numbers in subsequent occasions.
- The conditions for determining colony forming potential are similarly determined. Colony forming potential is the ability of a cell to form progeny. Assays for this are well known to those of ordinary skill in the art and include seeding cells into a semi-solid, treating them with growth factors and counting the number of colonies.
- According to another aspect of the invention a method for in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells is provided. The method involves implanting into a subject a porous solid matrix having pre-seeded hematopoietic progenitor cells and hematopoietic progenitor cell progeny. Implantation of matrices similar to the matrices of the invention is well known in the art (Stackpool, G J, et al, Combined Orthopaedic Research Societies Meeting, Nov. 6-8, 1995, San Diego, Calif., Abstract Book p. 45; Turner, T M, et al., 21st Annual Meeting of the Society for Biomaterials, March 18-22, San Francisco, Calif., Abstract Book p. 125). Such matrices are biocompatible (i.e., no immune reactivity-no rejection) and can be implanted and transplanted in a number of different tissues of a subject. Such methods are useful in a variety of ways, including the study of hematopoietic progenitor cell maintenance, expansion and/or differentiation in vivo, in a number of different tissues of a subject, or in different subjects.
- As used herein, a subject is a human, non-human primate, cow, horse, pig, sheep, goat, dog, cat or rodent. Human hematopoietic progenitor cells and human subjects are particularly important embodiments. As described above, when the matrices of the invention are used for such in vivo implantation studies, biological agents that promote angiogenesis (vascularization) and/or prevent/reduce inflammation may also be used for coating of the matrices. Preferred biological agents are as described above. Also as described above, the hematopoietic progenitor cells are pre-seeded onto the porous solid matrix and cultured in vitro according to the invention, before implantation into a subject. According to the invention, an amount of the cells is introduced in vitro into the porous solid matrix, and cultured in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum. Implantation is then carried out.
- The invention also involves the unexpected discovery that hematopoietic progenitor cells can be more efficiently transduced if the transduction occurs while the hematopoietic progenitor cells are on and within a solid porous matrix as described above. As used herein, “transduction of hematopoietic cells” refers to the process of transferring exogenous genetic material into a cell of hematopoietic origin. The terms “transduction”, “transfection” and “transformation” are used interchangeably throughout this letter, and refer to the process of transferring exogenous genetic material into a cell. As used herein, “exogenous genetic material” refers to nucleic acids or oligonucleotides, either natural or synthetic, that are introduced into the hematopoietic progenitor cells. The exogenous genetic material may be a copy of that which is naturally present in the cells, or it may not be naturally found in the cells. It typically is at least a portion of a naturally occurring gene which has been placed under operable control of a promoter in a vector construct.
- Various techniques may be employed for introducing nucleic acids into cells. Such techniques include transfection of nucleic acid-CaPO4 precipitates, transfection of nucleic acids associated with DEAE, transfection with a retrovirus including the nucleic acid of interest, liposome mediated transfection, and the like. For certain uses, it is preferred to target the nucleic acid to particular cells. In such instances, a vehicle used for delivering a nucleic acid according to the invention into a cell (e.g., a retrovirus, or other virus; a liposome) can have a targeting molecule attached thereto. For example, a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell can be bound to or incorporated within the nucleic acid delivery vehicle. For example, where liposomes are employed to deliver the nucleic acids of the invention, proteins which bind to a surface membrane protein associated with endocytosis may be incorporated into the liposome formulation for targeting and/or to facilitate uptake. Such proteins include proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half life, and the like. Polymeric delivery systems also have been used successfully to deliver nucleic acids into cells, as is known by those skilled in the art. Such systems even permit oral delivery of nucleic acids.
- In the present invention, the preferred method of introducing exogenous genetic material into hematopoietic cells is by transducing the cells in situ on the matrix using replication-deficient retroviruses. Replication-deficient retroviruses are capable of directing synthesis of all virion proteins, but are incapable of making infectious particles. Accordingly, these genetically altered retroviral vectors have general utility for high-efficiency transduction of genes in cultured cells, and specific utility for use in the method of the present invention. Retroviruses have been used extensively for transferring genetic material into cells. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with the viral particles) are provided in the art.
- The major advantage of using retroviruses is that the viruses insert efficiently a single copy of the gene encoding the therapeutic agent into the host cell genome, thereby permitting the exogenous genetic material to be passed on to the progeny of the cell when it divides. In addition, gene promoter sequences in the LTR region have been reported to enhance expression of an inserted coding sequence in a variety of cell types. The major disadvantages of using a retrovirus expression vector are (1) insertional mutagenesis, i.e., the insertion of the therapeutic gene into an undesirable position in the target cell genome which, for example, leads to unregulated cell growth and (2) the need for target cell proliferation in order for the therapeutic gene carried by the vector to be integrated into the target genome. Despite these apparent limitations, delivery of a therapeutically effective amount of a therapeutic agent via a retrovirus can be efficacious if the efficiency of transduction is high and/or the number of target cells available for transduction is high.
- Yet another viral candidate useful as an expression vector for transformation of hematopoietic cells is the adenovirus, a double-stranded DNA virus. Like the retrovirus, the adenovirus genome is adaptable for use as an expression vector for gene transduction, i.e., by removing the genetic information that controls production of the virus itself. Because the adenovirus functions usually in an extrachromosomal fashion, the recombinant adenovirus does not have the theoretical problem of insertional mutagenesis. On the other hand, adenoviral transformation of a target hematopoietic cell may not result in stable transduction. However, more recently it has been reported that certain adenoviral sequences confer intrachromosomal integration specificity to carrier sequences, and thus result in a stable transduction of the exogenous genetic material.
- Thus, as will be apparent to one of ordinary skill in the art, a variety of suitable vectors are available for transferring exogenous genetic material into hematopoietic cells. The selection of an appropriate vector to deliver a therapeutic agent for a particular condition amenable to gene replacement therapy and the optimization of the conditions for insertion of the selected expression vector into the cell, are within the scope of one of ordinary skill in the art without the need for undue experimentation. The promoter characteristically has a specific nucleotide sequence necessary to initiate transcription. Optionally, the exogenous genetic material further includes additional sequences (i.e., enhancers) required to obtain the desired gene transcription activity. For the purpose of this discussion an “enhancer” is simply any nontranslated DNA sequence which works contiguous with the coding sequence (in cis) to change the basal transcription level dictated by the promoter. Preferably, the exogenous genetic material is introduced into the hematopoietic cell genome immediately downstream from the promoter so that the promoter and coding sequence are operatively linked so as to permit transcription of the coding sequence. A preferred retroviral expression vector includes an exogenous promoter element to control transcription of the inserted exogenous gene. Such exogenous promoters include both constitutive and inducible promoters.
- Naturally-occurring constitutive promoters control the expression of essential cell functions. As a result, a gene under the control of a constitutive promoter is expressed under all conditions of cell growth. Exemplary constitutive promoters include the promoters for the following genes which encode certain constitutive or “housekeeping” functions: hypoxanthine phosphoribosyl transferase (HPRT), dihydrofolate reductase (DHFR) (Scharfmann et al., Proc. Natl. Acad. Sci. USA 88:4626-4630 (1991)), adenosine deaminase, phosphoglycerol kinase (PGK), pyruvate kinase, phosphoglycerol mutase, the actin promoter (Lai et al., Proc. Natl. Acad. Sci. USA 86: 10006-10010 (1989)), and other constitutive promoters known to those of skill in the art. In addition, many viral promoters function constitutively in eucaryotic cells. These include: the early and late promoters of SV40; the long terminal repeats (LTRS) of Moloney Leukemia Virus and other retroviruses; and the thymidine kinase promoter of Herpes Simplex Virus, among many others. Accordingly, any of the above-referenced constitutive promoters can be used to control transcription of a heterologous gene insert.
- Genes that are under the control of inducible promoters are expressed only or to a greater degree, in the presence of an inducing agent, (e.g., transcription under control of the metallothionein promoter is greatly increased in presence of certain metal ions). Inducible promoters include responsive elements (REs) which stimulate transcription when their inducing factors are bound. For example, there are REs for serum factors, steroid hormones, retinoic acid and cyclic AMP. Promoters containing a particular RE can be chosen in order to obtain an inducible response and in some cases, the RE itself may be attached to a different promoter, thereby conferring inducibility to the recombinant gene. Thus, by selecting the appropriate promoter (constitutive versus inducible; strong versus weak), it is possible to control both the existence and level of expression of a therapeutic agent in the genetically modified hematopoietic cell. Selection and optimization of these factors for delivery of a therapeutically effective dose of a particular therapeutic agent is deemed to be within the scope of one of ordinary skill in the art without undue experimentation, taking into account the above-disclosed factors and the clinical profile of the patient.
- In addition to at least one promoter and at least one heterologous nucleic acid encoding the therapeutic agent, the expression vector preferably includes a selection gene, for example, a neomycin resistance gene, for facilitating selection of hematopoietic cells that have been transfected or transduced with the expression vector. Alternatively, the hematopoietic cells are transfected with two or more expression vectors, at least one vector containing the gene(s) encoding the therapeutic agent(s), the other vector containing a selection gene. The selection of a suitable promoter, enhancer, selection gene and/or signal sequence (described below) is deemed to be within the scope of one of ordinary skill in the art without undue experimentation.
- The selection and optimization of a particular expression vector for expressing a specific gene product in an isolated hematopoietic cell is accomplished by obtaining the gene, preferably with one or more appropriate control regions (e.g., promoter, insertion sequence); preparing a vector construct comprising the vector into which is inserted the gene; transfecting or transducing cultured hematopoietic cells in vitro with the vector construct; and determining whether the gene product is present in the cultured cells.
TABLE 1 Human Gene Therapy Protocols Approved by RAC: 1990-1994 Severe combined Autologous lymphocytes transduced with human Jul. 31, 1990 immune deficiency ADA gene (SCID) due to ADA deficiency Advanced cancer Tumor-infiltrating lymphocytes transduced with tumor Jul. 31, 1990 necrosis factor gene Advanced cancer Immunization with autologous cancer cells transduced Oct. 07, 1991 with tumor necrosis factor gene Advanced cancer Immunization with autologous cancer cells transduced Oct. 07, 1991 with interleukin-2 gene Asymptomatic patients Murine Retro viral vector encoding HIV-1 genes Jun. 07, 1993 infected with HIV-1 [HIV-IT(V)] AIDS Effects of a transdominant form of rev gene on AIDS Jun. 07, 1993 intervention Advanced cancer Human multiple-drug resistance (MDR) gene transfer Jun. 08, 1993 HIV infection Autologous lymphocytes transduced with catalytic Sep. 10, 1993 ribozyme that cleaves HIV-1 RNA (Phase I study) Metastatic melanoma Genetically engineered autologous tumor vaccines Sep. 10, 1993 producing interleukin-2 HIV infection Murine Retro viral vector encoding HIV-IT(V) genes Dec. 03, 1993 (open label Phase I/II trial) HIV infection Adoptive transfer of syngeneic cytotoxic T lymphocytes Mar. 03, 1994 (identical twins) (Phase I/II pilot study) Breast cancer (chemo- Use of modified Retro virus to introduce chemotherapy Jun. 09, 1994 protection during resistance sequences into normal hematopoietic cells therapy) (pilot study) Fanconi's anemia Retro viral mediated gene transfer of the Fanconi anemia Jun. 09, 1994 complementation group C gene to hematopoietic progenitors Metastatic prostate Autologous human granulocyte macrophage-colony ORDA/NIH carcinoma stimulating factor gene transduced prostate cancer vaccine Aug. 03, 1994* *(first protocol to be approved under the accelerated review process; ORDA = Office of Recombinate DNA Activities) Metastatic breast cancer In vivo infection with breast-targeted Retro viral vector Sep. 12, 1994 expressing antisense c-fox or antisense c-myc RNA Metastatic breast cancer Non-viral system (liposome-based) for delivering human Sep. 12, 1994 (refractory or recurrent) interleukin-2 gene into autologous tumor cells (pilot study) Mild Hunter syndrome Retro viral-mediated transfer of the iduronate-2-sulfatase Sep. 13, 1994 gene into lymphocytes Advanced mesothelioma Use of recombinant adenovirus (Phase I study) Sep. 13, 1994 - The foregoing (Table 1), represent only examples of genes that can be delivered according to the methods of the invention. Suitable promoters, enhancers, vectors, etc., for such genes are published in the literature associated with the foregoing trials. In general, useful genes replace or supplement function, including genes encoding missing enzymes such as adenosine deaminase (ADA) which has been used in clinical trials to treat ADA deficiency and cofactors such as insulin and coagulation factor VIII. Genes which affect regulation can also be administered, alone or in combination with a gene supplementing or replacing a specific function. For example, a gene encoding a protein which suppresses expression of a particular protein-encoding gene can be administered. The invention is particularly useful in delivering genes which stimulate the immune response, including genes encoding viral antigens, tumor antigens, cytokines (e.g. tumor necrosis factor) and inducers of cytokines (e.g. endotoxin).
- The invention also provides various apparatus for carrying out the methods of the invention. The preferred apparatus is depicted in
FIG. 1 . The principle components of the embodiment depicted inFIG. 1 are a pair of cell culture chambers, one for continuously culturing hematopoietic progenitor cells in an environment which promotes the survival and proliferation of the progenitor cells, but not the differentiation of the progenitor cells. The other cell culture chamber (which can be one or more second cell culture chambers) is for receiving intermittently portions of the cells cultured in the first cell culture chamber for culturing in an environment that includes growth factors that promote differentiation of hematopoietic progenitor cells. - Referring to
FIG. 1 , a firstcell culture chamber 10, and a secondcell culture chamber 12 are shown. Thecell culture chambers connection conduit 16 provides fluid communication between the first and second cell culture chambers. The connection conduit can be any fluid conduit between the first and second cell culture chambers, although in the embodiment depicted, theconnection conduit 16 includes a plurality of valves and a collection chamber, described in greater detail below. Each of the first and secondcell culture chambers solid matrix 18, as described in detail above. The poroussolid matrix 18 is supported by matrix supports 20 which hold thematrix 18 away from thewalls 14 to provide aspace 22 permitting circulation of media throughout thematrix 18. Preferably there is a seal which restricts fluid flow around the matrix, forcing the fluid to flow through the matrix. - The first
cell culture chamber 10 is provided with aninlet port 24 which communicates with amedia input conduit 26 for supplying media to the first culture chamber. Theport 24 or themedia input conduit 26 can be provided with a valve (not shown) for controlling the flow of media into the firstcell culture chamber 10. - The first cell culture chamber has a top 28 which closes the first cell culture chamber. This top 28 may engage the
walls 14 of the first cell culture chamber in a sealing fashion or, alternatively, can engage thewalls 14 of the first cell culture chamber in a manner to permit the exchange of gases as is conventional in certain cell culture apparatus. In the embodiment depicted, the top sealingly engages the walls. Asample port 30 is provided in the top 28 and communicates with asampling conduit 32 for permitting materials to be added into or removed from the first cell culture chamber. Preferably, as shown in connection with the second cell culture chamber and described in more detail below, a second conduit can be provided (an augmentation conduit), whereby the sample conduit is for removing material from the cell culture chamber whereas the augmentation conduit is for introducing material into the cell culture chamber. Thesample port 30 and/orsample conduit 32 can be provided with a valve (not shown) for isolating the internal environment of the first cell culture chamber from external environmental influences. - The first
cell culture chamber 10 also has anoutlet port 34 communicating with theconnection conduit 16. - Turning to the second
cell culture chamber 12, wherein like numerals indicate like parts, the second cell culture chamber haswalls 14 for containing a poroussolid matrix 18 supported by matrix supports 20. The top 28 of the secondcell culture chamber 12 is sealingly engaged with thewalls 14 of the second cell culture chamber. The top includes asample port 30 and asample conduit 32 communicating with thesample port 30 for obtaining samples of material from inside of the second cell culture chamber. The top 28 of the secondcell culture chamber 12 also includes anoutlet port 34 communicating with anoutlet conduit 36 whereby, preferably, media may be circulated continuously throughout the system being introduced via themedia input conduit 26 and leaving the system via themedia outlet conduit 36. The secondcell culture chamber 12 also includes anaugmentation conduit 38 for supplying the second cell culture chamber with materials, preferably hematopoietic growth factors that induce differentiation, to the second cell culture chamber. - Turning to the
connection conduit 16, as mentioned above this can be any conduit, and preferably there is at least one valve between the firstcell culture chamber 10 and the secondcell culture chamber 12 along this conduit, whereby the flow of media between the first and second cell culture chambers can be interrupted. In the embodiment depicted, theconnection conduit 16 includes afirst portion 40 exiting the firstcell culture chamber 10 and terminating in fluid communication with acollection chamber 42. Asecond portion 44 of the connection conduit provides fluid communication from thecollection chamber 42 to the secondcell culture chamber 12. Thefirst portion 40 is interrupted by afirst portion valve 46 and thesecond portion 44 of theconnection conduit 16 is interrupted by asecond portion valve 48. - The collection chamber also is in fluid communication with a
flushing conduit 50 which has aflushing conduit valve 52. - In one embodiment of operating the apparatus of the invention, the valve (not shown) at
inlet port 24 andoutlet port 34,first portion valve 46,second portion valve 48, and outlet conduit valve (not shown) at theoutlet port 34 of second cell culture chamber are open. Valves (not shown) of thesample ports 30 of the first and secondcell culture chambers cell culture chamber 12 communicating with theaugmentation conduit 38 is closed and theflushing conduit valve 52 is closed. In this manner, media can be perfused through the first cell culture chamber, through the connection conduit and through the second cell culture chamber continuously, if desired. As will be readily understood, media introduced into the first cell culture chamber can be prevented from contacting the second cell culture chamber by closingvalve 48 andopening valve 52. Likewise, the second cell culture chamber can receive media different from that received by the first cell culture chamber by opening the valve at the port communicating with the second cell culture chamber via theaugmentation conduit 38, which may provide the only media to the second cell culture chamber, may augment media received into the second cell culture chamber from the first cell culture chamber or may augment media received via flushingconduit 50. In addition to providing for the differential media requirement as describe above for the first culturing step and the second culturing steps of the invention, the present apparatus also provides for the transfer of cells between the chambers via the conduit arrangement shown. In this embodiment, a gentle pulse of fluid is applied to the first cell culture chamber, sufficient to dislodge hematopoietic progenitor cells from the porous solid matrix in the first culture chamber. These cells then can be carried by fluid movement from the first cell culture chamber into the collection chamber. The collection chamber can, if desired, be provided with a means for temporarily maintaining the cells in the chamber such as by a moveable membrane, filter or the like, although such structure is not necessary for the operation of the apparatus of the invention. Once the cells are within thecollection chamber 42,valve 46 can be closed. Subsequently,valve 52 can be opened, and the cells can be flushed by fluid pressure from thecollection chamber 42 into the secondcell culture chamber 12. In this manner, as a result of closingvalve 46, it is ensured that hematopoietic growth factors that have been introduced into the second cell culture chamber do not flow backwards into the first cell culture chamber, contaminating the first cell culture chamber with unwanted material. The mere pressure due to continuous flow of media, however, may be sufficient to prevent backflow and the closing ofvalve 46 may be unnecessary. Numerous modifications to the apparatus shown will be apparent to those of ordinary skill in the art. The important aspects of the apparatus are the provision of two cell culture chambers and the mechanism for fluid communication between them, with a valve arrangement, etc. whereby the first cell culture chamber cannot be contaminated with unwanted materials which are added downstream into the second cell culture chamber. - Experimental Procedures
- Long-Term Cultures:
- CD34+ hematopoietic progenitor cells were derived from human bone marrow (Poietic Technologies) isolated using magnetic anti-human CD34+ beads (Dynal, Lake Success, N.Y.) and separated from these beads using an anti-idiotype antibody (Detachabead, Dynal). All culture conditions were seeded with 2×105 cells to ensure enough cells for all analyses, particularly from control cultures. While preliminary data indicated that CD34+ cells would survive well in Cellfoam, it was anticipated that culture in the absence of cytokines would lead to reduced cell numbers in control cultures. For the purposes of planning the experiments, we estimated that up to 75% of the cells (or 1.5×105 cells) may be lost, leaving 5×104 cells per reactor, enough cells to perform flow cytometry, multipotency colony assays and LTCIC (Long Term Culture Initiating Cell) analyses. Cultures were performed in duplicate to provide side by side comparisons of each culture time point. Thus, each culture time point used two reactors, each seeded with 2×105 CD34+ cells. 2×105 CD34+ cells in 1 ml of medium were seeded onto plastic dishes coated with bone marrow stromal cells (plastic/BMS), plastic coated with fibronectin (plastic/FN), or into Cellfoam. Primate bone marrow stromal cells grown for 2-3 weeks to isolate the heterogeneous adherent, fibroblast-like population of cells capable of supporting HSCs in short-term assays.
- All cultures contained 1 ml of Myelocult medium (Stem Cell Technologies, Vancouver, Canada), a medium for long-term HPC culture. No exogenous cytokines were added to this medium. After 1, 1.5, 3 and 6 week of culture as above with weekly medium changes, all cells (adherent and non-adherent) were harvested from all culture conditions/reactors, counted, and surface antigen stained. We recovered adherent cells because some primitive HPCs or HPC subclasses may exhibit adherent properties which would prevent their being harvested by simple washing or centrifugation. Non-adherent cells were harvested from Cellfoam by simple centrifugation for 10 minutes at 1500 rpm (approximately 250×G) in a table top centrifuge. Adherent cells were harvested with a non-trypsin isolation solution (Cell Dissociation Solution, Sigma, St. Louis, Mo.) to minimize alteration of surface staining characteristics. To recover adherent cells from Cellfoam, units were washed twice by immersion into PBS, saturated by brief vortexing in an excess of Cell Dissociation Solution, incubated for 20 minutes at 37° C., and centrifuged at 1500 rpm for 10 minutes. Non-adherent cells were recovered from plastic/stroma and plastic/FN systems by gentle washing; adherent cells were isolated using the Cell Dissociation Solution as described above. Antibodies used for surface phenotype determination will include anti-CD34 (Qbend10, Immunotech), anti-CD38 (OKT10, ATCC, Bethesda, Md.) and anti-CD45 (Becton Dickinson) antibodies to evaluate progenitor cell distributions. Flow cytometry analysis of the cells was performed using multi-parameter FACScan flow cytometry analysis. Appropriate controls included matched isotype antibodies to establish positive and negative quadrants, as well as appropriate single color stains to establish compensation. For each sample, at least 10,000 list mode events were collected.
- Colony-Formation Assays:
- To determine whether HPCs cultured in Cellfoam for up to six weeks retain the ability to produce myeloid and erythroid colonies, we performed traditional methylcellulose assays. Equal numbers of cells which have been isolated from Cellfoam, plastic/BMS or plastic/FN cultures, as described above, were added at 1×104/ml to 3.0 ml of methylcellulose medium with cytokines (IL-3 20 ng/ml; GMCSF 30 ng/ml;
erythropoietin 3 IU/ml;stem cell factor 50 ng/ml; all Stem Cell Technologies, Vancouver) plus 0.5 ml of DMEM (2% FCS, 10 IU/ml penicillin, 10 μg/ml streptomycin, 1 mM L-glutamine). 1.5 ml of this mixture was added to a scored petri dish using a syringe and a blunt needle to avoid bubbles. Duplicate assays were performed for each condition. The two duplicate petri dishes were then placed in an incubator with 5% CO2 at 37° C. for 10-21 days. After 10-21 days, the number of colonies were determined by manual counting. Positive colonies were scored on the basis of an accumulation of 20 or more cells. Erythroid colonies were scored after 14-21 days on the basis of a gold-brown pigment, demonstrating hemoglobin, whereas myeloid colonies were identified by their predominantly transparent appearance. Counts were done in duplicate. - T-Cell Lymphopoiesis:
- The ability of cultured HPCs to foster T-cell lymphopoiesis was assessed in an in vitro T-cell differentiation assay in which cells isolated from Cellfoam or other cultures are seeded onto thymic stroma tissue and evaluated for the ability to produce mature T cells as assessed by CD4 and CD8 single positivity and CD4CD8 double positivity antibody staining. The T-cell differentiation assay utilizes a bed of primate thymic stromal cells plated into 24 well plates to support the differentiation of hematopoietic progenitor cells into thymocytes and T cells (see U.S. Pat. No. 5,677,139, incorporated in its entirety herein by reference). In this assay, thymic monolayer cultures are prepared from third trimester or neonatal rhesus thymic tissue by mincing tissue and then digesting into a single cell suspension using collagenase and DNAase. Thymic stroma cell suspensions, which can be used either fresh or from cryopreserved samples, are then plated into 24 well plates. After two days, the non-adherent cells are removed and the adherent cell layer washed vigorously to remove any loose cells. After 6 days in culture, the isolated culture cells are added to the monolayer. After 10-14 days, the cultures are evaluated for the presence of immature double positive lymphocytes (CD3+CD4+CD8+), and mature single positive lymphocytes (CD3+CD4+CD8− and CD3+CD4−CD8+).
- In parallel for all experiments, dual controls consisting of unfractionated bone marrow and CD34+ cells, neither of which had been cultured in Cellfoam, were evaluated for colony-forming potential and T lymphopoiesis in the assays described above. The overall number of colonies indicates the relative number of stem cells present in Cellfoam, plastic or bone marrow stroma cultures that retained the ability to produce differentiated erythroid or myeloid colonies in the presence of cytokines.
- LTCIC Assays and LTCIC Transduction:
- As an indicator of the ability of Cellfoam to support cells which have long-term repopulating potential, modified LTCIC assays were performed. LTCICs are relatively quiescent cells that exhibit the characteristic of prolonged survival in bone marrow stroma cultures, and it is during this time that they gradually acquire the phenotype required to give rise to erythroid and myeloid colonies in vitro. An important goal of the proposed research is to determine the utility of Cellfoam in supporting the retroviral transduction of LTCICs in vitro. These cells are relatively quiescent, and thus have been difficult to transduce efficiently. Enhanced transduction may be facilitated by performing biweekly transductions of the cells in Cellfoam over extended periods. Cellfoam cultures were as described above and inoculated with 2×105 cells, and half-volume medium exchange were performed twice a week with high titer retroviral supernatant (PG13LN, from ATCC, grown in an ACS cartridge, titer of 1×106 CFU/ml). The PG13LN vector is prepared as follows: the retroviral producer cell line is inoculated into a cartridge with up to 1800 cm2 of surface and which is separated from circulating tissue culture medium by a semi-permeable membrane with a molecular weight threshold of 10,000 kd. Continuous circulation of medium through the extracapillary space by a peristaltic pump optimizes gas and nutrient exchange resulting in significant increases in retroviral vector production. Average increases in end-point dilution titer of retroviral vector supernatants produced using the bioreactor versus tissue culture flasks are 10-20 fold, with 100 fold increases noted in some instances. The infectious titer of the retroviral supernatants produced in the continuous perfusion cartridges is determined via plaque forming assays on COS cells.
- In addition to retroviral medium exchanges, an additional medium exchange with LTCIC medium was performed once a week. Traditional LTCIC cultures utilizing prepared bone marrow stroma acted as controls and were cultured and transduced for the same period of time as parallel Cellfoam cultures. We also attempted to culture LTCICs in plastic wells coated with fibronectin. All culture volumes were identical. Following transduction in each device, methylcellulose CFU assays were performed. Total cells having undergone transduction in each device were resuspended in 3 ml of methylcellulose medium with the addition of the cytokines IL-3 (20 ng/ml), stem cell factor (50 ng/ml), erythropoietin (3 IU/ml) and GMCSF (30 ng/ml), all part of the methylcellulose assay, and re-plated in 35-mm dishes in the presence or absence of the neomycin analog G418 (400-800 μg/ml). After two weeks, colonies were scored using the criteria described above. The colony counts indicate the survival of LTCICs after the initial six-week culture period. The relative survival with G418 versus without G418 indicates the survival of LTCICs that had been transduced during the initial culture periods. The presence of these cells serves as a measure of the survival of long-term repopulating cells, LTCICs, and their relative level of transduction in Cellfoam versus plastic/BMS and plastic/FN. It is important to note that the initial culture of cells in Cellfoam for 6 weeks defines the traditional threshold at which LTCICs are measured. Thus, culturing for 3 or 6 weeks in Cellfoam, followed by 6 weeks in bone marrow stroma LTCIC assays extends the classic definition of LTCICs.
- We performed extended-culture survival studies examining CD34+ HPC cell numbers at 1, 3, and 6 weeks in the absence of supplemented cytokines. Cultures were carried out in fibronectin coated Cellfoam units and compared with bone marrow stroma and fibronectin coated plastic dishes CD34+ HPCs cultured in Cellfoam without cytokine supplementation exhibited enhanced survival and marked enrichment compared to parallel control cultures. The loss of HPCs in control systems supports documentation of their inability to support HPCs without exogenous cytokines. Plastic dish cultures performed similar to BMS. Conversely, at 1 week CD34+ cell counts in Cellfoam were 2.5-3 fold higher than other systems analyzed and had increased 80-110% over input numbers. By 3 and 6 weeks, as many as 6 to 10 times CD34+ cells were detected in Cellfoam versus controls. This increase in cell number was reproducible and in the absence of cytokines. In addition, we were able to count an immature population of cells (phenotype CD34+CD38−) which was enriched in Cellfoam compared to bone marrow stroma cultures at 3 and 6 weeks; results are shown in
FIG. 3 (3 weeks-1st column, 6 weeks-2nd column). - In addition, we evaluated the multipotency of the population of cells isolated from multi-week cytokine cultures. The assays used were conventional methylcellulose colony-formation assays to evaluate myeloid and erythroid colony-forming cells and a published lymphopoiesis assay to evaluate T cell precursor activity. We observed that HPCs isolated from Cellfoam cultures retain red blood cell (RBC) and white blood cell (WBC) colony forming ability to a greater extent than parallel control cultures. In all cultures the CFU-GM and BFU-E were evaluated; the myeloid:erythroid ratio was approximately 2:1. At 3 weeks, Cellfoam cultures yielded up to 31 times as many colonies compared to controls, an increase of 16 fold over input capabilities (see
FIG. 4 ). By 6 weeks, HPCs had lost essentially all of their colony-forming ability in BMS and plastic-fibronectin cultures. HPCs from Cellfoam displayed a 1000 fold greater capacity to produce colonies over control-isolated cells (seeFIG. 4 ). - The ability of cultured HPCs to foster T-cell lymphopoiesis was assessed in an in vitro T-cell differentiation assay. After termination of Cellfoam and control cultures at 3 and 6 weeks, an aliquot of the combined adherent/non-adherent factions were co-cultured with primary fetal thymic stroma. We evaluated the ability to produce mature T cells as assessed by CD4 and CD8 single positivity and CD4CD8 double positivity antibody staining. When cells were harvested at 3 and 6 weeks from Cellfoam and control cultures and placed in the T-cell assay, only cells recovered from Cellfoam generated T-cell progeny at both time points. Cells recovered from FN/plastic failed to generate T-cell progeny. Cells from BMS cultures generated T-cell progeny at 3 weeks but not at 6 weeks. Progeny derived from Cellfoam included CD4+CD8+ thymocytes, as well as CD4+ and CD8+ cells. Progeny derived from Cellfoam cultures included CD4+CD8+thymocytes as well as CD4+ and CD8+ single positive cells while most of these thymocytes express CD3, an additional indicator of efficient T-cell development. To date, no in vitro culture system has been shown to efficiently and reproducibly support the maintenance of an HPC population that includes T-cell progenitors. As the assessment of multipotency is generally limited to the generation of myeloid and erythroid colonies, the evaluation of T-cell progeny greatly enhances our estimation of the true nature of cells cultured long-term in Cellfoam. As the data demonstrate, Cellfoam was able to support T-cell progenitor survival to a greater extent than controls. Importantly, Cellfoam provides an effective long-term culture system for the maintenance of multipotent HPCs ex vivo.
- We also examined the ability of Cellfoam to support the survival of LTCICs, cells which may represent more immature hematopoietic progenitors critical to host reconstitution. These studies utilized LTCICs (longer surviving progenitors from cultures up to 14 weeks) that were subsequently plated onto traditional LTCIC plates consisting of irradiated BMS cells. We found that HPCs isolated from fibronectin coated Cellfoam maintained LTCIC over the initial 3 week culture period (9 weeks total in culture). Cellfoam cultures yielded 17.5 times as many LTCICs as BMS cultures. Cellfoam cultures not coated with fibronectin yielded a 4 fold increase in LTCIC activity versus BMS cultures. These data suggest that Cellfoam maintains LTCIC activity to a greater extent than control systems. This provides additional evidence that Cellfoam is advantageous for the culture of HPCs because long-term surviving cells are believed to be an important indicator of primitive hematopoietic progenitor content. Six weeks cultures were followed by 6 weeks in LTCIC assays and 2 weeks in colony assays, cells from plastic cultures produced no LTCICs). Similarly, BMS cultures had lost all viable ECHCPs. However, Cellfoam cultures yielded encouraging LTCIC numbers yielding, on average, 36 times as many LTCICs as BMS cultures. Cellfoam produced 18+/−8 LTCICs per 104 cells compared to 0.5+/−0.7 LTCICs per 104 cells for BMS cultures (p=0.05, n=6). Fibronectin-coated Cellfoam units improved ECPHC preservation approximately 2 fold over uncoated Cellfoam units. Uncoated units yielded 8+/−11 LTCICs per 104 cells, a 16 fold increase over BMS controls. Compared to the 3 week timepoint, the 6 week timepoint maintained approximately half as many LTCICs in Cellfoam. This suggests that static cultures have a finite ability to maintain long term culture cells or that selection of more immature, long-lived cells is ongoing. It is imperative to note that the maintenance of this number of LTCICs at 11 and 14 weeks represents a significant breakthrough in the culturing of HPCs. It has been reported that there is a correlation between the maintenance of long-lived cells and primitive HPCs which includes a subset of cells which may be important contributors of self-renewal and long-term host reconstitution. As our previous data demonstrate, cells cultured over long periods in Cellfoam also retain multipotency, a further indication that the Cellfoam system may represent an enabling technology for providing the most primitive stem cells required for optimal bone marrow transplantation and repopulation of ablated hosts.
- Additionally, we have examined the transduction of colony forming HPCs, using a Neomycin resistance gene in a PG13LN retroviral vector over a 3 day period. Transduction of colony-forming progenitors in Cellfoam is at least 40-50% more efficient than BMS or plastic systems). Similarly, the transduction efficiency of LTCICs using Cellfoam is improved by about 40-50%. LTCICs were cultured in Cellfoam or BMS for 6 weeks. Retroviral transduction was performed weekly. After 6 weeks, cells were harvested and plated in methylcellulose with and without G418 to assess transduction efficiency. Cells from BMS were unable to produce colonies in the presence or absence of neomycin analog. Conversely, in Cellfoam, we obtained colonies in both G418+ and G418− assays, indicating that LTCIC activity was preserved in Cellfoam in the presence of the retrovirus and that LTCIC transduction could be performed on these cells in Cellfoam with 50% efficiency.
- We also examined the effect of low level cytokine supplementation on long-term HPC survival and multipotency by culturing hematopoietic cells (including CD34+ cells and immature CD34+38− cells) on Cellfoam. We observed that supplementation with cytokines at levels far below those used in prior art results in increased hematopoietic cell numbers and colony forming activity and maintenance and expansion of immature progenitors. This is in contrast to what research in the field has shown, namely that high levels of cytokines may alter long-term HPC survival and multipotency. Therefore, the ability to use picogram and nanogram levels of cytokines on HPCs cultured on Cellfoam affords the opportunity, for the first time, to expand HPCs without altering their multipotency/function. As will be evident to those of ordinary skill in the art, the invention enables the use of particular cytokines in the nanogram/ml and picogram/ml concentration range to achieve reproducible, practical gains in HPC number and functionality. This unexpected capability has not been possible with other 2-dimensional and 3-dimensional systems of the prior art.
- The studies described below utilized the following concentrations of cytokines:
cytokine level: nanogram (ng) level picogram (pg) level IL-3 10 ng/ ml 100 pg/ml IL-6 10 ng/ ml 100 pg/ml FLK2 25 ng/ml 250 pg/ml SCF 25 ng/ml 250 pg/ml
Note:
Combination cytokines used constituent cytokines each at the concentration shown.
- In the experiments described here, an average of 45,000 CD45+ HPCs cells were inoculated into the culture systems, cultured for one, three or six weeks in Cellfoam or in bone marrow stroma (BMS) or plastic well control systems in the presence of the indicated cytokines and then evaluated for cell numbers and multipotency in colony formation assays. All cultures were performed at least in quadruplicate. Particular emphasis was placed on the yield of CD45+, CD45+34+ and CD45+34+38− cells; total cell number was viewed as less meaningfil since BMS cultures were pre-seeded with a high number of stromal cells which obfuscated total cell number analysis. Cells were harvested, combining non-adherent and adherent fractions from single wells, and stained with fluorochrome-conjugated monoclonal antibodies to CD45 (to gate on CD45+ hematopoietic cells and preclude stromal cells from analyses) and to CD34 and CD38 progenitor surface molecules.
- In studies examining the effects of nanogram and picogram concentrations of single cytokines on HPC survival in Cellfoam as compared to bone marrow stroma (BMS), IL-3 and IL-6 showed the greatest cell expansion at three weeks, followed by a decline at six weeks, whereas SCF and FLK2 showed continued expansion from three to six weeks. All four cytokines generated significantly higher cell numbers than input in Cellfoam devices at least at one time point but only IL-3 did so in BMS (
FIG. 5 , top nanogram, bottom picogram concentrations). Picogram concentrations tended to show consecutive increases in CD45+cell number from one to three to six weeks (FIG. 5 ). Combinations consisting of three cytokines each (IL-3+IL-6 and either SCF or FLK) led to increase in cell numbers similar to single cytokines (FIG. 6 , top nanogram, bottom picogram concentrations). Similar findings in CD45+ cell counts were obtained for studies comparing Cellfoam and plastic dish cultures. - CD45+34+ and CD45+34+38− cell numbers also tended to be higher in Cellfoam than in BMS (
FIG. 7 , top nanogram, bottom picogram concentrations). Of 32 possible comparisons of cell number v. single cytokine-concentration-time datum points in Cellfoam and BMS cultures at three and six weeks, higher numbers of CD45+34+ and CD45+34+38− cells were observed in Cellfoam in 25 (78%). Of 16 possible comparisons of cell number v. combination cytokine-concentration-time datum points in Cellfoam and BMS at three and six weeks, higher CD45+34+ and CD45+34+38-numbers were observed in Cellfoam in all 16 (100%) (seeFIG. 7 for representative CD45+34+patterns). Statistically significant values are noted with an asterisk inFIG. 7 which compares the fold difference in cell number between Cellfoam and BMS (and plastic; see below). Bars above the 1.00 line indicate the fold higher numbers obtained in Cellfoam as compared to controls; bars below the 1.00 line indicate the fold higher numbers obtained in controls as compared to Cellfoam. Scale is shown on log base for convenience. Asterisks denote statistically significant values. Patterns of fold difference for CD45+34+38− cells were similar to those shown here for CD45+34+ cells. - Similar results to the above were obtained in comparisons of Cellfoam and plastic cultures. Of 24 possible comparisons of cell number v. cytokine-concentration-time datum points at three and six weeks, higher numbers of CD45+34+ and CD45+34+38− cells were observed in Cellfoam in 21 (88%). Of 16 possible datum points for combination cytokine cultures, Cellfoam yielded more cells than plastic in 15 (94%;
FIG. 7 ). Thus, overall, of 88 possible datum points, Cellfoam cultures yielded higher numbers in 77 (88%). - In summary, these data support the conclusion that concentrations of cytokines in concentrations far lower than can be used in conventional systems and which have been used routinely by previous investigators can be effectively used in Cellfoam to increase HPC number. In general, concentration of cytokines between 0.1-0.5 ng/ml promote maintainance of HPCs, while cytokine concentrations higher than about 0.5 ng/ml promote differentiation of HPCs.
- The function of cells cultured under these conditions was measured by evaluating in vitro colony forming capabilities utilizing methylcellulose CFU assays. In comparing Cellfoam to plastic cultures, with the exception of IL-3 supplementation colony activity was uniformly greater in Cellfoam than in plastic, ranging from approximately 3 to 36 times greater (
FIG. 8 ). Total CFU activity was derived by multiplying the colony count per 10,000 input cells by the factor for total progenitor number obtained in the three and six week cultures. Control cultures added no cytokines. Thus, Cellfoam yielded both higher cell numbers and higher colony activity than plastic cultures. It is also interesting to note that nanogram concentration cytokine supplementation led to decreases in total colony activity from three to six weeks (with the exception of SCF in Cellfoam cultures) suggesting a time-dependent exposure effect of cytokine augmentation on HPC function. In picogram concentration supplementation experiments using combination cytokines, the drop-off in CFU activity was much less dramatic, with colony activity remaining approximately constant from three to six weeks. Further, in certain cases, picogram levels of combination cytokines led to higher colony activity than nanogram level supplementation. For example, supplementation with picogram levels of Combination 1 (IL-3/IL-6/SCF) led to total colony content that was 3-6 fold higher than with nanogram levels of Combination 1 (IL-3/IL-6/SCF) at parallel time points. - Analysis of the fold differences in total colony activity between Cellfoam and plastic showed that Cellfoam also generally yielded higher total colony activity as well. With the exception of Combination 2 (IL-3/IL-6/FLK2) at the six week time point, all statistically different colony activity values were in favor of Cellfoam in the nanogram concentration cytokine supplementation trials (
FIG. 9 ). Bars above the 1.00 line indicate the fold higher colony numbers obtained in Cellfoam as compared to controls; bars below the 1.00 line indicate the fold higher numbers obtained in controls as compared to Cellfoam. Scale is shown on log base. Asterisks denote statistically significant values. Picogram concentration supplementation experiments were similar to nanogram levels. Comparison of Cellfoam and BMS cultures yielded similar results. - In summary, the experiments described above indicate that selective use of particular cytokines can lead to the expansion of colony-forming activity as assessed by standard in vitro assays.
- All references disclosed herein are incorporated by reference in their entirety.
Claims (12)
1. A method for in vivo maintenance, expansion and/or differentiation of hematopoietic progenitor cells, comprising:
implanting into a subject a porous, solid matrix having pre-seeded hematopoietic progenitor cells and their progeny,
wherein the porous, solid matrix is an open cell porous matrix having a percent open space of at least 75% and a unitary microstructure.
2. The method of claim 1 , further comprising the porous, solid matrix having pre-seeded hematopoietic progenitor cells and their progeny by the steps of:
introducing in vitro an amount of hematopoietic progenitor cells into the porous, solid matrix;
culturing the hematopoietic progenitor cells in an environment that is free of inoculated stromal cells, stromal cell conditioned medium, and exogenously added hematopoietic growth factors that promote hematopoietic cell maintenance, expansion and/or differentiation, other than serum.
3. The method of claim 2 , wherein the porous solid matrix has pores defined by interconnecting ligaments having a diameter at midpoint, on average, of less than 150 μm.
4. The method of claim 3 , wherein the porous solid matrix is a metal-coated reticulated open cell foam of carbon containing material.
5. The method of claim 4 , wherein the metal is selected from the group consisting of tantalum, titanium, platinum, niobium, hafnium, tungsten, and combinations thereof, wherein said metal is coated with a biological agent selected from the group consisting of collagens, fibronectins, laminins, integrins, angiogenic factors, anti-inflammatory factors, glycosaminoglycans, vitrogen, antibodies and fragments thereof, and combinations thereof.
6. The method of claim 5 , wherein the metal is tantalum.
7. The method according to claim 1 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
8. The method according to claim 2 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
9. The method according to claim 3 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
10. The method according to claim 4 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
11. The method according to claim 5 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
12. The method according to claim 6 , wherein the porous, solid matrix having seeded hematopoietic progenitor cells and their progeny is impregnated with a gelatinous agent that occupies pores of the matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/474,931 US20070148769A1 (en) | 1997-09-25 | 2006-06-26 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5995497P | 1997-09-25 | 1997-09-25 | |
PCT/US1998/020123 WO1999015629A1 (en) | 1997-09-25 | 1998-09-25 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US09/509,379 US6440734B1 (en) | 1998-09-25 | 1998-09-25 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/143,540 US6645489B2 (en) | 1997-09-25 | 2002-05-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/705,720 US7067316B2 (en) | 1997-09-25 | 2003-11-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US11/474,931 US20070148769A1 (en) | 1997-09-25 | 2006-06-26 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/705,720 Continuation US7067316B2 (en) | 1997-09-25 | 2003-11-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070148769A1 true US20070148769A1 (en) | 2007-06-28 |
Family
ID=24026423
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/509,379 Expired - Fee Related US6440734B1 (en) | 1997-09-25 | 1998-09-25 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/143,540 Expired - Fee Related US6645489B2 (en) | 1997-09-25 | 2002-05-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/705,720 Expired - Fee Related US7067316B2 (en) | 1997-09-25 | 2003-11-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US11/474,931 Abandoned US20070148769A1 (en) | 1997-09-25 | 2006-06-26 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/509,379 Expired - Fee Related US6440734B1 (en) | 1997-09-25 | 1998-09-25 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/143,540 Expired - Fee Related US6645489B2 (en) | 1997-09-25 | 2002-05-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
US10/705,720 Expired - Fee Related US7067316B2 (en) | 1997-09-25 | 2003-11-10 | Methods and devices for the long-term culture of hematopoietic progenitor cells |
Country Status (1)
Country | Link |
---|---|
US (4) | US6440734B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080064101A1 (en) * | 1998-11-12 | 2008-03-13 | Cytomatrix, Llc | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
US20080063652A1 (en) * | 2004-03-29 | 2008-03-13 | Cytomatrix, Llc | Methods for Production of Regulatory T Cells and Uses Thereof |
US20090112315A1 (en) * | 2007-10-29 | 2009-04-30 | Zimmer, Inc. | Medical implants and methods for delivering biologically active agents |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440734B1 (en) * | 1998-09-25 | 2002-08-27 | Cytomatrix, Llc | Methods and devices for the long-term culture of hematopoietic progenitor cells |
EP1117762A4 (en) | 1998-09-29 | 2004-02-25 | Gamida Cell Ltd | Methods of controlling proliferation and differentiation of stem and progenitor cells |
US6548299B1 (en) * | 1999-11-12 | 2003-04-15 | Mark J. Pykett | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
WO2000046349A1 (en) * | 1999-02-04 | 2000-08-10 | Technion Research & Development Foundation Ltd. | Method and apparatus for maintenance and expansion of hemopoietic stem cells and/or progenitor cells |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US20070141107A1 (en) * | 2000-03-15 | 2007-06-21 | Orbusneich Medical, Inc. | Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device |
US20030229393A1 (en) * | 2001-03-15 | 2003-12-11 | Kutryk Michael J. B. | Medical device with coating that promotes cell adherence and differentiation |
US20070055367A1 (en) * | 2000-03-15 | 2007-03-08 | Orbus Medical Technologies, Inc. | Medical device with coating that promotes endothelial cell adherence and differentiation |
ATE362382T1 (en) | 2000-03-15 | 2007-06-15 | Orbusneich Medical Inc | COATING WHICH STIMULATES ADHESION OF ENDOTHELIAL CELLS |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8460367B2 (en) * | 2000-03-15 | 2013-06-11 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
DK1407027T3 (en) * | 2001-07-18 | 2009-09-28 | Evonik Degussa Gmbh | Process for Preparation of L-Threonine Using Strains of the Enterobacteriaceae Family Containing Enhanced Suc and SucD Genes |
IL152904A0 (en) | 2002-01-24 | 2003-06-24 | Gamida Cell Ltd | Utilization of retinoid and vitamin d receptor antagonists for expansion of renewable stem cell populations |
WO2003062404A1 (en) | 2002-01-25 | 2003-07-31 | Gamida-Cell Ltd. | Methods of expanding stem and progenitor cells and expanded cell populations obtained thereby |
US20040076617A1 (en) * | 2002-03-18 | 2004-04-22 | Lieber Jonathan Gregory | Method for production of neutrophils and uses therefor |
WO2003078567A2 (en) * | 2002-03-18 | 2003-09-25 | Gamida-Cell Ltd. | Methods of inducing differentiation in ex vivo expanded stem cells |
AU2003233677A1 (en) * | 2002-05-24 | 2003-12-12 | Cytomatrix, Llc | Cytokine-free growth and maintenance of progenitor cells |
US20040044300A1 (en) * | 2002-09-03 | 2004-03-04 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US20040077985A1 (en) * | 2002-09-03 | 2004-04-22 | Donnie Rudd | Method of replenishing cells damaged by treatment for cancer |
US7993922B2 (en) * | 2002-10-18 | 2011-08-09 | Reliance Life Sciences Pvt. Ltd. | Three-dimensional tissue equivalent using macromass culture |
US20050054097A1 (en) * | 2002-11-17 | 2005-03-10 | Tony Peled | EX-VIVO expansion of hematopoietic system cell populations in mononuclear cell cultures |
US20050054103A1 (en) * | 2003-03-07 | 2005-03-10 | Tony Peled | Expansion of renewable stem cell populations using modulators of PI 3-kinase |
GB2401612A (en) * | 2003-05-13 | 2004-11-17 | Univ Manchester | Method and device for culturing tissue |
US8153410B2 (en) * | 2003-07-07 | 2012-04-10 | Fox Chase Cancer Center | Alternate morpheein forms of allosteric proteins as a target for the development of bioactive molecules |
US20060162014A1 (en) * | 2003-07-07 | 2006-07-20 | Jaffe Eileen K | Alternate morpheeins of allosteric proteins as a target for the development of bioactive molecules |
EP1649007A4 (en) * | 2003-07-17 | 2008-05-14 | Gamida Cell Ltd | Methods for ex-vivo expanding stem/progenitor cells |
IL161903A0 (en) * | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
US7888121B2 (en) | 2003-08-08 | 2011-02-15 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
EP3222715A1 (en) | 2003-08-08 | 2017-09-27 | Sangamo BioSciences, Inc. | Methods and compositions for targeted cleavage and recombination |
AU2004278748B2 (en) * | 2003-09-29 | 2008-09-11 | The Regents Of The University Of California | Methods for altering hematopoietic progenitor cell adhesion, differentiation, and migration |
US20050100578A1 (en) * | 2003-11-06 | 2005-05-12 | Schmid Steven R. | Bone and tissue scaffolding and method for producing same |
US7674477B1 (en) * | 2003-11-06 | 2010-03-09 | University Of Notre Dame Du Lac | Bone and tissue scaffolding for delivery of therapeutic agents |
US20050136547A1 (en) * | 2003-12-22 | 2005-06-23 | Abb Inc. | Polymer reaction and quality optimizer |
US8352031B2 (en) | 2004-03-10 | 2013-01-08 | Impulse Dynamics Nv | Protein activity modification |
TW200605910A (en) * | 2004-04-30 | 2006-02-16 | Orbus Medical Technologies Inc | Medical device with coating for capturing genetically-altered cells and methods for using same |
EP1799812A4 (en) | 2004-09-16 | 2009-09-09 | Gamida Cell Ltd | Methods of ex vivo progenitor and stem cell expansion by co-culture with mesenchymal cells |
CN101273141B (en) | 2005-07-26 | 2013-03-27 | 桑格摩生物科学股份有限公司 | Targeted integration and expression of exogenous nucleic acid sequences |
US8846393B2 (en) | 2005-11-29 | 2014-09-30 | Gamida-Cell Ltd. | Methods of improving stem cell homing and engraftment |
AU2007212110A1 (en) | 2006-02-02 | 2007-08-16 | Innovative Bio Therapies | An extracorporeal cell-based therapeutic device and delivery system |
US8124410B2 (en) * | 2006-06-08 | 2012-02-28 | Wisconsin Alumni Research Foundation | Methods of finding, selecting and studying cells in heterogeneous co-cultures |
WO2008068776A2 (en) | 2006-12-08 | 2008-06-12 | Reliance Life Sciences Pvt. Ltd. | Three-dimensional tissue equivalent using macromass culture. |
US9029144B2 (en) | 2008-06-18 | 2015-05-12 | Innovative Bio Therapies, Inc. | Methods for enhanced propagation of cells |
EP2339973B1 (en) | 2008-08-13 | 2017-10-18 | Smed-Ta/Td, Llc | Drug delivery implants |
WO2010019781A1 (en) | 2008-08-13 | 2010-02-18 | Smed-Ta/Td, Llc | Drug delivery implants |
US9700431B2 (en) | 2008-08-13 | 2017-07-11 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US9616205B2 (en) | 2008-08-13 | 2017-04-11 | Smed-Ta/Td, Llc | Drug delivery implants |
US10842645B2 (en) | 2008-08-13 | 2020-11-24 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
EP2341852B1 (en) | 2008-08-29 | 2018-08-15 | SMed-TA/TD, LLC | Orthopaedic implant |
EP3533445A1 (en) * | 2009-03-19 | 2019-09-04 | Fate Therapeutics, Inc. | Compositions comprising cyclic amp enhancers and/or ep ligands, and methods of preparing and using the same |
ES2550202T3 (en) | 2009-08-03 | 2015-11-05 | Recombinetics, Inc. | Methods and compositions for targeted gene modification |
US8895291B2 (en) | 2010-10-08 | 2014-11-25 | Terumo Bct, Inc. | Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions |
WO2013012674A1 (en) | 2011-07-15 | 2013-01-24 | The General Hospital Corporation | Methods of transcription activator like effector assembly |
CA2863795A1 (en) | 2012-02-13 | 2013-08-22 | Gamida-Cell Ltd. | Culturing of mesenchymal stem cells |
US8940294B2 (en) | 2012-03-02 | 2015-01-27 | Tissuetech, Inc. | Methods of isolating and culturing stem cells |
US10626435B2 (en) * | 2012-03-28 | 2020-04-21 | Northeastern University | Nanofluidic device for isolating, growing, and characterizing microbial cells |
US9175266B2 (en) | 2012-07-23 | 2015-11-03 | Gamida Cell Ltd. | Enhancement of natural killer (NK) cell proliferation and activity |
US9567569B2 (en) | 2012-07-23 | 2017-02-14 | Gamida Cell Ltd. | Methods of culturing and expanding mesenchymal stem cells |
US9681966B2 (en) | 2013-03-15 | 2017-06-20 | Smed-Ta/Td, Llc | Method of manufacturing a tubular medical implant |
US9724203B2 (en) | 2013-03-15 | 2017-08-08 | Smed-Ta/Td, Llc | Porous tissue ingrowth structure |
US9408699B2 (en) | 2013-03-15 | 2016-08-09 | Smed-Ta/Td, Llc | Removable augment for medical implant |
CN105992816B (en) | 2013-11-16 | 2018-04-17 | 泰尔茂比司特公司 | Cell amplification in bioreactor |
EP3613841B1 (en) | 2014-03-25 | 2022-04-20 | Terumo BCT, Inc. | Passive replacement of media |
CN106715676A (en) | 2014-09-26 | 2017-05-24 | 泰尔茂比司特公司 | Scheduled feed |
WO2017004592A1 (en) | 2015-07-02 | 2017-01-05 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
CN109415696A (en) | 2016-05-25 | 2019-03-01 | 泰尔茂比司特公司 | Cell amplification |
US11104874B2 (en) | 2016-06-07 | 2021-08-31 | Terumo Bct, Inc. | Coating a bioreactor |
US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
US11702634B2 (en) | 2017-03-31 | 2023-07-18 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
CN109666588A (en) * | 2018-11-15 | 2019-04-23 | 广东金之华生物科技有限公司 | A kind of medical candidate stem cell culture device |
GB2619893A (en) | 2021-03-23 | 2023-12-20 | Terumo Bct Inc | Cell capture and expansion |
US12152699B2 (en) | 2022-02-28 | 2024-11-26 | Terumo Bct, Inc. | Multiple-tube pinch valve assembly |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1282725C (en) | 1986-04-18 | 1991-04-09 | Brian A. Naughton | Process for replicating bone marrow in vitro and using the same |
US5032508A (en) | 1988-09-08 | 1991-07-16 | Marrow-Tech, Inc. | Three-dimensional cell and tissue culture system |
US5266480A (en) | 1986-04-18 | 1993-11-30 | Advanced Tissue Sciences, Inc. | Three-dimensional skin culture system |
ES2097149T3 (en) | 1989-06-15 | 1997-04-01 | Univ Michigan | PROCEDURES, COMPOSITIONS AND DEVICES TO DEVELOP CELLS. |
US5061620A (en) | 1990-03-30 | 1991-10-29 | Systemix, Inc. | Human hematopoietic stem cell |
US5635387A (en) | 1990-04-23 | 1997-06-03 | Cellpro, Inc. | Methods and device for culturing human hematopoietic cells and their precursors |
US5262320A (en) | 1990-06-18 | 1993-11-16 | Massachusetts Institute Of Technology | Cell-culturing apparatus and method employing a macroporous support |
US5282861A (en) | 1992-03-11 | 1994-02-01 | Ultramet | Open cell tantalum structures for cancellous bone implants and cell and tissue receptors |
US5677139A (en) | 1995-04-21 | 1997-10-14 | President And Fellows Of Harvard College | In vitro differentiation of CD34+ progenitor cells into T lymphocytes |
JP2000507812A (en) | 1996-03-12 | 2000-06-27 | ライフ テクノロジーズ,インコーポレイテッド | Hematopoietic cell culture nutrient supplement |
US6440734B1 (en) * | 1998-09-25 | 2002-08-27 | Cytomatrix, Llc | Methods and devices for the long-term culture of hematopoietic progenitor cells |
AU9582398A (en) | 1997-09-25 | 1999-04-12 | Cytomatrix, Llc | Methods and devices for the long-term culture of hematopoietic progenitor cells |
JP2002529073A (en) | 1998-11-12 | 2002-09-10 | セル サイエンス セラピューティックス インコーポレーテッド | Generation of lymphoid tissue-specific cells from hematopoietic progenitor cells on a three-dimensional device |
US6548299B1 (en) | 1999-11-12 | 2003-04-15 | Mark J. Pykett | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
EP1226233B1 (en) | 1999-08-05 | 2011-06-29 | ABT Holding Company | Multipotent adult stem cells and methods for isolation |
WO2001021766A2 (en) | 1999-09-23 | 2001-03-29 | Cell Science Therapeutics | Methods and devices for obtaining non-hematopoietic lineage cells from hematopoietic progenitor cells |
EP1222248B1 (en) | 1999-09-24 | 2006-07-26 | Cytomatrix, LLC | Cell culture spinner flasks |
AU2003233677A1 (en) | 2002-05-24 | 2003-12-12 | Cytomatrix, Llc | Cytokine-free growth and maintenance of progenitor cells |
-
1998
- 1998-09-25 US US09/509,379 patent/US6440734B1/en not_active Expired - Fee Related
-
2002
- 2002-05-10 US US10/143,540 patent/US6645489B2/en not_active Expired - Fee Related
-
2003
- 2003-11-10 US US10/705,720 patent/US7067316B2/en not_active Expired - Fee Related
-
2006
- 2006-06-26 US US11/474,931 patent/US20070148769A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080064101A1 (en) * | 1998-11-12 | 2008-03-13 | Cytomatrix, Llc | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
US20080063652A1 (en) * | 2004-03-29 | 2008-03-13 | Cytomatrix, Llc | Methods for Production of Regulatory T Cells and Uses Thereof |
US20090112315A1 (en) * | 2007-10-29 | 2009-04-30 | Zimmer, Inc. | Medical implants and methods for delivering biologically active agents |
Also Published As
Publication number | Publication date |
---|---|
US6645489B2 (en) | 2003-11-11 |
US20050079609A1 (en) | 2005-04-14 |
US7067316B2 (en) | 2006-06-27 |
US20020197239A1 (en) | 2002-12-26 |
US6440734B1 (en) | 2002-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645489B2 (en) | Methods and devices for the long-term culture of hematopoietic progenitor cells | |
EP1627914A2 (en) | Methods and devices for the long-term culture of hematopoietic progenitor cells | |
EP1135463B1 (en) | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices | |
Bagley et al. | Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device | |
WO2001021766A9 (en) | Methods and devices for obtaining non-hematopoietic lineage cells from hematopoietic progenitor cells | |
KR100225307B1 (en) | Culture method and transformation method of human hepatocyte-containing composition | |
Dexter et al. | Stromal cells in haemopoiesis | |
EP2044197B1 (en) | Method of producing a population of cells | |
CA2236263C (en) | Methods for use of mpl ligands with primitive human stem cells | |
US20100233130A1 (en) | Method and Apparatus for Maintenance and Expansion of Hematopoietic Stem Cells From Mononuclear Cells | |
JP2006525013A (en) | Apparatus and method for amplification of the number of blood stem cells | |
EP1915440A2 (en) | Compositions of cells enriched for combinations of various stem and progenitor cell populations, methods of use thereof and methods of private banking thereof | |
JP2007536936A (en) | Stem cell populations and methods of use | |
Eaves et al. | Clinical signficance of long-term cultures of myeloid blood cells | |
KR20050042046A (en) | Method of amplifying hematopoietic stem cells | |
WO1993012805A1 (en) | Methods for regulatory lineages of human hematopoietic cells | |
Sasaki et al. | Enforced expression of cyclin D2 enhances the proliferative potential of myeloid progenitors, accelerates in vivo myeloid reconstitution, and promotes rescue of mice from lethal myeloablation | |
Moghadasi et al. | Expansion of cord blood stem cells in fibronectin-coated microfluidic bioreactor | |
WO1995019793A1 (en) | Hematopoietic cell expansion and transplantation methods | |
US20210371824A1 (en) | Production of megakaryocytes in bioreactors | |
Drygalski et al. | The rate of marrow recovery and extent of donor engraftment following transplantation of ex vivo–expanded bone marrow cells are independently influenced by the cytokines used for expansion | |
JP2005514071A (en) | Increase in gene transfer efficiency by preculture with endothelial cells | |
Mahmud et al. | A possible change in doubling time of haemopoietic progenitor cells with stem cell development | |
LaIuppa | Defined culture conditions for ex vivo expansion of megakaryocytes and myeloid progenitors | |
Audet | Quantitative analysis of hematopoietic stem cell response to cytokine stimulation in vitro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CYTOMATRIX, LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PYKETT, MARK J.;ROSENZWEIG, MICHAEL;KAPLAN, RICHARD B.;REEL/FRAME:017963/0611;SIGNING DATES FROM 20000419 TO 20000421 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |