US20070148538A1 - Battery separator and method of making same - Google Patents
Battery separator and method of making same Download PDFInfo
- Publication number
- US20070148538A1 US20070148538A1 US11/683,022 US68302207A US2007148538A1 US 20070148538 A1 US20070148538 A1 US 20070148538A1 US 68302207 A US68302207 A US 68302207A US 2007148538 A1 US2007148538 A1 US 2007148538A1
- Authority
- US
- United States
- Prior art keywords
- precursor
- film
- films
- layered
- single stacked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002243 precursor Substances 0.000 claims abstract description 90
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000010030 laminating Methods 0.000 claims abstract description 11
- 238000004804 winding Methods 0.000 claims abstract description 10
- 239000004743 Polypropylene Substances 0.000 claims description 23
- 229920001155 polypropylene Polymers 0.000 claims description 23
- 239000004698 Polyethylene Substances 0.000 claims description 17
- 229920000573 polyethylene Polymers 0.000 claims description 17
- -1 polypropylene Polymers 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 238000003490 calendering Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 101100439211 Caenorhabditis elegans cex-2 gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002145 thermally induced phase separation Methods 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- a microporous laminated membrane useful as a battery separator, particularly in lithium secondary batteries, and its method of manufacture are disclosed herein.
- microporous multi-layered membranes as battery separators. See, for example, U.S. Pat. Nos. 5,480,745; 5,691,047; 5,667,911; 5,691,077; and 5,952,120.
- U.S. Pat. No. 5,480,745 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by heat-welding, at 152° C., pre-formed precursor layers.
- the multi-layered precursor, formed by either technique, is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
- U.S. Pat. No. 5,691,047 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by uniting, under heat (120-140° C.) and pressure (1-3 kg/cm2), three or more precursor layers.
- one 34 p separator has a peel strength of 1 g/mm and the other, about 0.5 g/mm.
- the multi-layered precursor, formed by either technique is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
- U.S. Pat. No. 5,667,911 discloses forming the multi-layered film by uniting (by heat and pressure or by adhesives) cross-plied microporous films to form a multi-layered microporous film.
- the microporous films are laminated together using heat (110° C.-140° C.) and pressure (300-450 psi) and at line speeds of 15-50 ft/min (4.6-15.2 m/min).
- U.S. Pat. No. 5,691,077 discloses forming the multi-layered film by uniting, by heat and pressure (calendering), or by adhesives, or by pattern welding, microporous films to form a multi-layered microporous film. Calendering is performed at 125° C. to 130° C. for a residence time of 2 to 10 minutes. Four (4) stacked multi-layered microporous precursors are calendering between a single nip roll.
- U.S. Pat. No. 5,952,120 discloses forming the multi-layered film by extruding nonporous precursors, bonding together nonporous precursors, annealing the bonded, nonporous precursors, and stretching the bonded, nonporous precursors to form a multi-layered microporous film. At least four (4) tri-layer precursors are simultaneously passed through the steps of bonding, annealing, and stretching. Bonding was performed between nip rollers at 128° C.
- a battery separator comprises a multi-layered film, individual layers of said film having been bonded together by heat and pressure, having a peel strength of greater than or equal to 40 grams per inch (1.6 g/mm) and a thickness of ⁇ 25 microns.
- a method for making a battery separator comprises the steps of: extruding and winding up a first precursor film, extruding and winding up a second precursor film, unwinding the first and second precursor films, stacking up the first and second precursor films to form a single stacked precursor, laminating the single stacked precursor film, winding up the laminated single stacked precursor film, stacking up a plurality of laminated single stacked precursor films, and making microporous the stacked plurality of laminated single stacked precursor films.
- a battery separator refers to a microporous film or membrane for use in electrochemical cells or capacitors.
- Electrochemical cells include primary (non-rechargeable) and secondary (rechargeable) batteries, such as batteries based on lithium chemistry.
- These films are commonly made of polyolefins, for example, polyethylene, polypropylene, polybutylene, polymethylpentene, mixtures thereof and copolymers thereof.
- Polypropylene (including isotactic and atactic) and polyethylene (including LDPE, LLDPE, HDPE, and UHMWPE) and blends thereof and their copolymers are the preferred polyolefins that are used to make commercially available films for these applications.
- These films may be made by the CELGARD® process (also known as the dry process, i.e., extrude-anneal-stretch) or by a solvent extraction process (also known as the wet process or phase inversion process or TIPS, thermally induced phase separation, process) or by a particle stretch process.
- Some of these films, those made by the dry process, are often multi-layered films. Multi-layered films are preferred because they have shutdown capability (i.e., can stop the flow of ions in the event of short circuiting).
- a common multi-layered film is the tri-layered film.
- a popular tri-layered film has a polypropylene (PP)/polyethylene (PE)/polypropylene (PP) structure, another structure is PE/PP/PE.
- Another separator is a 5-layered film with a PP/PE/PP/PE/PP or a PE/PP/PE/PP/PE structure.
- Such separators have a thickness less than 3 mils (75 microns, ⁇ ).
- the thickness ranges from 0.5 to 1.5 mils (12 to 38 ⁇ ) (thickness is the average of 30 measurements across the width of the film, using a precision micrometer with a 0.25-inch diameter circular shoe contacting the sample at eight (8) psi).
- the thickness ranges from 0.5 to 1.0 mils (12 to 25 ⁇ ).
- Adhesion is greater than 40 grams/inch (1.6 g/mm), preferably greater than 50 g/in (2.0 g/mm), and most preferably greater than 60 g/in (2.4 g/mm).
- Other film properties are: Gurley ⁇ 30 seconds (Gurley—ASTM-D726(B)—a resistance to air flow measured by the Gurley Densometer (e.g.
- Model 4120 the time (sec) required to pass 10 cc of air through one square inch of product under a pressure of 12.2 inches of water, 10 samples are averaged).
- Basis weight ranging from 0.5-2.0 mg/cm 2 (basis weight is the average of 3—one foot square samples from across the width of the sample weighted on a precision balance with an accuracy of 0.0001 grams).
- Shrinkage (%) is less than or equal to 5.0% (shrinkage is the average of three 10 cm samples from across the width of the film, they are measured, exposed to 90° C. air for 60 minutes and re-measured, the average is reported. Puncture strength ⁇ 360 grams (puncture strength is the average of ten measurements made from across the width of the sample.
- a Mitech Stevens LFRA Texture Analyzer is used.
- the needle is 1.65 mm in diameter with a 0.5 mm radius.
- the rate of descent is 2 mm/sec and the amount of deflection is 6 mm.
- the film is held tight in the clamping device with a central hole of 11.3 mm.
- the maximum resistance force is the puncture strength.
- the pore size is about 0.04 ⁇ 0.09 ⁇ .
- the calculated porosity is less than 60%, preferably about 40%.
- the calculated density is 100—(apparent density/resin density) and for multi-layered films, calculated porosity is 100— ⁇ (apparent density/resin density)>.
- the process generally comprises: extruding nonporous precursors; bonding together the nonporous precursors; and making microporous the bonded nonporous precursors.
- a mixture of matrix components and extractable components are extruded to form a nonporous precursor film.
- Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product.
- the stacked precursor films are then bonded.
- the bonded stacked precursor films are made microporous by subjecting that film to an extraction bath where solvents would be used to remove the extractable components from matrix components.
- the matrix components are extruded to form a nonporous precursor film.
- Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product.
- the stacked precursor films are then bonded.
- the bonded stacked precursor films are made microporous by subjecting that film to an annealing and then stretching steps where stretching induces pore formation at the interface of crystalline and amphorous regions in the matrix components. The invention will be further described with reference to the dry process.
- Nonporous precursor films are extruded and wound up. For example, in a blown film process, a tubular parison is extruded, collapsed, and the wound up and in a slot die or T die process, the flat parison is extruded and wound up. Each of these nonporous precursor films will become a layer of the multi-layered microporous membrane.
- Laminating e.g., bonding with heat and pressure via nip rollers
- the nonporous precursor films are unwound and stacked in a conventional manner before bonding in a laminator.
- the unwinding and stacking may be performed as illustrated in U.S. Pat. Nos. 5,691,077 and 5,952,120, except only one set of stacked nonporous precursor films (i.e., a set being a stack of precursor films laid up in the configuration of the desired final microporous membrane) is run through the heated nip rolls of the precursor at a time.
- a preferred configuration is a tri-layer precursor with a PP/PE/PP lay-up pattern.
- the higher melting point material (e.g., PP in a PP/PE/PP) precursor be wider than the lower melting point material (e.g., PE in a PP/PE/PP) so to prevent sticking on the heated nip rolls.
- Line speeds through the heated nip rolls are greater than 50 feet per minute (15.2 m/min) and typically range from 50-200 fpm (15.2-61 m/min).
- the line speeds are greater than 100 fpm (30.5 m/min), more preferably 125 fpm (38.1 m/min), and most preferably, 150 fpm (45.7 m/min).
- the heated nip roll temperature ranges from 100-175° C., preferably 145 to 170° C., and most preferably 155-1650C.
- Nip roll pressure ranges from 100 to 800 pounds per linear inch (pli) (17.7-141.7 kg per linear cm), preferably 100 to 300 pli (17.7-53.1 kg per linear cm).
- the film Prior to wind up, however, it is desirable to cool the film. This cooling is preferably accomplished by the use of a chill roll.
- the chill roll temperatures may range from 20-45° C., preferably 25-40° C. It is most preferred that this film be below the glass transition temperature (Tg) of the outer most layer prior to contact with the chill roll, this prevents the film from sticking to the chill roll.
- Tg glass transition temperature
- an air knife may be employed between the heat nip rollers and the chill roll.
- the bonded, nonporous stacked precursor may curl along the lateral edges of the film. If so, trim knives may be used to remove the curl prior to winding. Two sets of stacked nonporous precursor films may be simultaneously wound onto a single roll.
- the bonded, stacked precursor film is ready to made microporous.
- a plurality of the bonded stacked precursor films are stacked.
- At least four (4) bonded stacked precursor films are stacked for further processing, preferably at least six (6), most preferably at least twelve (12), and still more preferably at least sixteen (16) may be stacked for further processing.
- the plurality of bonded stacked precursor films are then simultaneously annealed and then stretched in a conventional manner. For example, see: U.S. Pat. Nos. 5,480,945; 5,691,047; 5,667,911; 5,691,077; 5,952,120; and 6,602,593 for typical annealing and stretching conditions.
- Example 1 and Comparative Example 2 have a nominal thickness of 25 ⁇
- Example 3 and Comparative Example 4 have a nominal thickness of 20 ⁇ .
- the test cell has a 1 square inch (6.45 square cm) electrode faces that contact the wetted separator. Separators are wetted with a 1 molar LiPF 6 electrolyte in a 3:7 weight ratio ethyl carbonate (EC) to ethyl methyl carbonate (EMC). Measurements are taken at AC amplitude of 5 mV and a frequency range of 22,000 to 24,000 Hz. The report results are the average of four membranes, 4 membranes are stacked and measured, them remove one membrane and measure 3 membranes and so forth, the differences are averaged and reported.
- EC ethyl carbonate
- EMC ethyl methyl carbonate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- A microporous laminated membrane useful as a battery separator, particularly in lithium secondary batteries, and its method of manufacture are disclosed herein.
- The use of microporous multi-layered membranes as battery separators is known. See, for example, U.S. Pat. Nos. 5,480,745; 5,691,047; 5,667,911; 5,691,077; and 5,952,120.
- U.S. Pat. No. 5,480,745 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by heat-welding, at 152° C., pre-formed precursor layers. The multi-layered precursor, formed by either technique, is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
- U.S. Pat. No. 5,691,047 discloses forming the multi-layered film by co-extruding the multi-layered precursor or by uniting, under heat (120-140° C.) and pressure (1-3 kg/cm2), three or more precursor layers. The precursor formed under heat and pressure, at a speed of 0.5 to 8 m/min (1.6-26.2 ft/min), has a peel strength in the range of 3 to 60 g/15 mm (0.2-4 g/mm). In the examples, one 34 p separator has a peel strength of 1 g/mm and the other, about 0.5 g/mm. The multi-layered precursor, formed by either technique, is then made microporous by annealing and stretching. There is no mention of stacking precursors for the step of forming the micropores.
- U.S. Pat. No. 5,667,911 discloses forming the multi-layered film by uniting (by heat and pressure or by adhesives) cross-plied microporous films to form a multi-layered microporous film. The microporous films are laminated together using heat (110° C.-140° C.) and pressure (300-450 psi) and at line speeds of 15-50 ft/min (4.6-15.2 m/min).
- U.S. Pat. No. 5,691,077 discloses forming the multi-layered film by uniting, by heat and pressure (calendering), or by adhesives, or by pattern welding, microporous films to form a multi-layered microporous film. Calendering is performed at 125° C. to 130° C. for a residence time of 2 to 10 minutes. Four (4) stacked multi-layered microporous precursors are calendering between a single nip roll.
- U.S. Pat. No. 5,952,120 discloses forming the multi-layered film by extruding nonporous precursors, bonding together nonporous precursors, annealing the bonded, nonporous precursors, and stretching the bonded, nonporous precursors to form a multi-layered microporous film. At least four (4) tri-layer precursors are simultaneously passed through the steps of bonding, annealing, and stretching. Bonding was performed between nip rollers at 128° C. (range 125° C.-135° C.) at a line speed of 30 ft/min (9.1 m/min) to yield a peel strength of 5.7 g/in (0.2 g/mm) and between nip rollers at 128° C.-130° C. at a line speed of 40 ft/min (12.2 m/min) to yield a peel strength of 30 g/in (1.2 g/mm).
- While the foregoing processes have produced commercially viable multi-layered, microporous films suitable for use as battery separators, there is a desire on the part of both the separator manufacturers and the battery manufacturers to have such films with greater interply adhesion (i.e., resistance to peeling individual layers from one another, measured by peel strength). One route, mentioned above, is to co-extrude the multi-layered film. From co-extrusion, an infinite peel strength may be obtained because the polymers at the interface of the layers are knitted together during extrusion. However, when individual layers are extruded and subsequently bonded (or laminated) together, peel strengths have been limited (as noted above).
- Accordingly, there is a need to improve the peel strength of multi-layered microporous films made by laminating together precursors.
- A battery separator comprises a multi-layered film, individual layers of said film having been bonded together by heat and pressure, having a peel strength of greater than or equal to 40 grams per inch (1.6 g/mm) and a thickness of ≦25 microns. A method for making a battery separator comprises the steps of: extruding and winding up a first precursor film, extruding and winding up a second precursor film, unwinding the first and second precursor films, stacking up the first and second precursor films to form a single stacked precursor, laminating the single stacked precursor film, winding up the laminated single stacked precursor film, stacking up a plurality of laminated single stacked precursor films, and making microporous the stacked plurality of laminated single stacked precursor films.
- A battery separator refers to a microporous film or membrane for use in electrochemical cells or capacitors. Electrochemical cells include primary (non-rechargeable) and secondary (rechargeable) batteries, such as batteries based on lithium chemistry. These films are commonly made of polyolefins, for example, polyethylene, polypropylene, polybutylene, polymethylpentene, mixtures thereof and copolymers thereof. Polypropylene (including isotactic and atactic) and polyethylene (including LDPE, LLDPE, HDPE, and UHMWPE) and blends thereof and their copolymers are the preferred polyolefins that are used to make commercially available films for these applications. These films may be made by the CELGARD® process (also known as the dry process, i.e., extrude-anneal-stretch) or by a solvent extraction process (also known as the wet process or phase inversion process or TIPS, thermally induced phase separation, process) or by a particle stretch process. Some of these films, those made by the dry process, are often multi-layered films. Multi-layered films are preferred because they have shutdown capability (i.e., can stop the flow of ions in the event of short circuiting). A common multi-layered film is the tri-layered film. A popular tri-layered film has a polypropylene (PP)/polyethylene (PE)/polypropylene (PP) structure, another structure is PE/PP/PE. Another separator is a 5-layered film with a PP/PE/PP/PE/PP or a PE/PP/PE/PP/PE structure. Such separators have a thickness less than 3 mils (75 microns, μ). Preferably, the thickness ranges from 0.5 to 1.5 mils (12 to 38 μ) (thickness is the average of 30 measurements across the width of the film, using a precision micrometer with a 0.25-inch diameter circular shoe contacting the sample at eight (8) psi). Most preferably, the thickness ranges from 0.5 to 1.0 mils (12 to 25 μ). Adhesion (interply adhesion, measured by peel strength—using a Chatillon TCD-20 Peel force Tester, Digital Gram Gauge Model DFG-2, and GF6 cam type Grips, sample—1 inch (2.54 cm)×6-8 inch (15.24-20.32 cm), peel back 1 inch (2.54 cm) of outside layers from the middle layer with transparent tape and place one outside layer and middle layer in grips) is greater than 40 grams/inch (1.6 g/mm), preferably greater than 50 g/in (2.0 g/mm), and most preferably greater than 60 g/in (2.4 g/mm). Other film properties are: Gurley <30 seconds (Gurley—ASTM-D726(B)—a resistance to air flow measured by the Gurley Densometer (e.g. Model 4120), the time (sec) required to pass 10 cc of air through one square inch of product under a pressure of 12.2 inches of water, 10 samples are averaged). Basis weight ranging from 0.5-2.0 mg/cm2 (basis weight is the average of 3—one foot square samples from across the width of the sample weighted on a precision balance with an accuracy of 0.0001 grams). Shrinkage (%) is less than or equal to 5.0% (shrinkage is the average of three 10 cm samples from across the width of the film, they are measured, exposed to 90° C. air for 60 minutes and re-measured, the average is reported. Puncture strength≧360 grams (puncture strength is the average of ten measurements made from across the width of the sample. A Mitech Stevens LFRA Texture Analyzer is used. The needle is 1.65 mm in diameter with a 0.5 mm radius. The rate of descent is 2 mm/sec and the amount of deflection is 6 mm. The film is held tight in the clamping device with a central hole of 11.3 mm. The maximum resistance force is the puncture strength.) The pore size is about 0.04×0.09 μ. The calculated porosity is less than 60%, preferably about 40%. The calculated density is 100—(apparent density/resin density) and for multi-layered films, calculated porosity is 100—ρ(apparent density/resin density)>.
- In the manufacture of these films, the process generally comprises: extruding nonporous precursors; bonding together the nonporous precursors; and making microporous the bonded nonporous precursors. For example, in a wet process, a mixture of matrix components and extractable components are extruded to form a nonporous precursor film. Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product. The stacked precursor films are then bonded. Thereafter, the bonded stacked precursor films are made microporous by subjecting that film to an extraction bath where solvents would be used to remove the extractable components from matrix components. In the dry process, on the other hand, the matrix components are extruded to form a nonporous precursor film. Precursor films are stacked for bonding, the stacking being in the configuration of the desired end product. The stacked precursor films are then bonded. Thereafter, the bonded stacked precursor films are made microporous by subjecting that film to an annealing and then stretching steps where stretching induces pore formation at the interface of crystalline and amphorous regions in the matrix components. The invention will be further described with reference to the dry process.
- Extruding the precursor film is conventional. For example, see U.S. Pat. Nos. 5,480,945; 5,691,047; 5,667,911; 5,691,077; 5,952,120; and 6,602,593. Matrix components are polyolefins. The polyolefins are preferably any polyolefin suitable for blown film or slot die film productions. Most preferred are polyethylene and polypropylenes suitable for blown film or slot die film production. Nonporous precursor films are extruded and wound up. For example, in a blown film process, a tubular parison is extruded, collapsed, and the wound up and in a slot die or T die process, the flat parison is extruded and wound up. Each of these nonporous precursor films will become a layer of the multi-layered microporous membrane.
- Laminating (e.g., bonding with heat and pressure via nip rollers) of two or more of the nonporous precursor films is performed next. The nonporous precursor films are unwound and stacked in a conventional manner before bonding in a laminator. The unwinding and stacking may be performed as illustrated in U.S. Pat. Nos. 5,691,077 and 5,952,120, except only one set of stacked nonporous precursor films (i.e., a set being a stack of precursor films laid up in the configuration of the desired final microporous membrane) is run through the heated nip rolls of the precursor at a time. A preferred configuration is a tri-layer precursor with a PP/PE/PP lay-up pattern. It is preferred that the higher melting point material (e.g., PP in a PP/PE/PP) precursor be wider than the lower melting point material (e.g., PE in a PP/PE/PP) so to prevent sticking on the heated nip rolls. Line speeds through the heated nip rolls are greater than 50 feet per minute (15.2 m/min) and typically range from 50-200 fpm (15.2-61 m/min). Preferably, the line speeds are greater than 100 fpm (30.5 m/min), more preferably 125 fpm (38.1 m/min), and most preferably, 150 fpm (45.7 m/min). The heated nip roll temperature ranges from 100-175° C., preferably 145 to 170° C., and most preferably 155-1650C. Nip roll pressure ranges from 100 to 800 pounds per linear inch (pli) (17.7-141.7 kg per linear cm), preferably 100 to 300 pli (17.7-53.1 kg per linear cm).
- After the now bonded stacked nonporous precursor, which is heated for bonding, is wound up. Prior to wind up, however, it is desirable to cool the film. This cooling is preferably accomplished by the use of a chill roll. The chill roll temperatures may range from 20-45° C., preferably 25-40° C. It is most preferred that this film be below the glass transition temperature (Tg) of the outer most layer prior to contact with the chill roll, this prevents the film from sticking to the chill roll. To assist cooling and uniformity of cooling across the width of the film, an air knife may be employed between the heat nip rollers and the chill roll. Finally, the bonded, nonporous stacked precursor may curl along the lateral edges of the film. If so, trim knives may be used to remove the curl prior to winding. Two sets of stacked nonporous precursor films may be simultaneously wound onto a single roll.
- Thereafter, the bonded, stacked precursor film is ready to made microporous. A plurality of the bonded stacked precursor films are stacked. At least four (4) bonded stacked precursor films are stacked for further processing, preferably at least six (6), most preferably at least twelve (12), and still more preferably at least sixteen (16) may be stacked for further processing. The plurality of bonded stacked precursor films are then simultaneously annealed and then stretched in a conventional manner. For example, see: U.S. Pat. Nos. 5,480,945; 5,691,047; 5,667,911; 5,691,077; 5,952,120; and 6,602,593 for typical annealing and stretching conditions.
- The foregoing invention will be further illustrated by way of the following examples:
- In the following examples, the films were made by identical processes except Examples 1 and 3 were bonded together by the inventive process and Comparative Examples 2 and 4 were prepared according to the process set out in U.S. Pat. No. 5,952,120. Lamination parameters fro the inventive process are as set forth above, reference preferred ranges. Example 1 and Comparative Example 2 have a nominal thickness of 25 μ, and Example 3 and Comparative Example 4 have a nominal thickness of 20 μ.
EX 1 CEX 2 EX 3 CEX 4 Gurley 25.0 22.9 18.8 18.5 Thickness 26.5 25.0 20.7 20.2 Basis Weight 1.5 1.4 1.1 1.1 Shrinkage % 2.5 2.2 1.7 1.6 Adhesion 63.1 37.8 62.2 39.6 Porosity % 38.7 39.8 42.2 45.5 Puncture 471 476 423 446 Strength MD Strength 1521 1996 1977 1997 (Kg/cm2) MD % 46 46 43 41 Elongation TD Strength 157 139 157 145 (Kg/cm2) TD % 151 555 931 788 Elongation Electrical 8.3 7.6 7.4 7.7 Resistance (ER)
Tensile properties (TD & MD strength and TD & MD % Elongation) were measured using an INSTRON MODEL 4201 (with Series IX Automated Materials Testing Software for Windows), crosshead speed 508.00 mm/min, samples 5½ inch (1.27 cm)×6-8 inches (15.24-20.32 cm), clamp pressure −90 psi (6.33 Kgf/cm2) Electrical Resistance (ER) is reported as MacMullen Number (Nmac=r separator/ηelectrolytetseparator, rseparator=R(measured resistance of separator)Aprobe (area of probe, cm2), ηelectrolyte=electrolyte resistivity (ohm-cm), tseparator=separator thickness (cm)) using an EG&G Princeton Applied Research of Oak Ridge, Tenn., 273A Potentiostat with 5210 Lock-in Amplifier and the PowerSuite software. The test cell has a 1 square inch (6.45 square cm) electrode faces that contact the wetted separator. Separators are wetted with a 1 molar LiPF6 electrolyte in a 3:7 weight ratio ethyl carbonate (EC) to ethyl methyl carbonate (EMC). Measurements are taken at AC amplitude of 5 mV and a frequency range of 22,000 to 24,000 Hz. The report results are the average of four membranes, 4 membranes are stacked and measured, them remove one membrane and measure 3 membranes and so forth, the differences are averaged and reported. - The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/683,022 US9112214B2 (en) | 2003-08-07 | 2007-03-07 | Battery separator and method of making same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/636,115 US20050031943A1 (en) | 2003-08-07 | 2003-08-07 | Battery separator and method of making same |
US11/683,022 US9112214B2 (en) | 2003-08-07 | 2007-03-07 | Battery separator and method of making same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/636,115 Division US20050031943A1 (en) | 2003-08-07 | 2003-08-07 | Battery separator and method of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070148538A1 true US20070148538A1 (en) | 2007-06-28 |
US9112214B2 US9112214B2 (en) | 2015-08-18 |
Family
ID=33552953
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/636,115 Abandoned US20050031943A1 (en) | 2003-08-07 | 2003-08-07 | Battery separator and method of making same |
US11/683,022 Expired - Lifetime US9112214B2 (en) | 2003-08-07 | 2007-03-07 | Battery separator and method of making same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/636,115 Abandoned US20050031943A1 (en) | 2003-08-07 | 2003-08-07 | Battery separator and method of making same |
Country Status (8)
Country | Link |
---|---|
US (2) | US20050031943A1 (en) |
EP (1) | EP1505671A2 (en) |
JP (1) | JP4516796B2 (en) |
KR (1) | KR100637971B1 (en) |
CN (1) | CN100459227C (en) |
CA (1) | CA2472281A1 (en) |
SG (1) | SG129295A1 (en) |
TW (1) | TWI251364B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090186280A1 (en) * | 2005-12-15 | 2009-07-23 | Kazuya Iidani | Polyolefin microporous membrane |
US20110159346A1 (en) * | 2008-09-03 | 2011-06-30 | Mitsubishi Plastics, Inc. | Laminated porous film for separator |
CN103904280A (en) * | 2014-03-27 | 2014-07-02 | 达尼特材料科技(芜湖)有限公司 | Isolating film for lithium ion battery and manufacturing method thereof |
US9287543B2 (en) | 2011-02-03 | 2016-03-15 | Toray Industries, Inc. | Porous film, separator for electric storage device, and electric storage device |
WO2017049065A1 (en) | 2015-09-18 | 2017-03-23 | Celgard, Llc | Improved membranes, calendered microporous membranes, battery separators and related methods |
US10256447B2 (en) | 2015-06-03 | 2019-04-09 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
US10347890B2 (en) | 2015-07-31 | 2019-07-09 | Celgard, Llc | Laminated multilayer membranes, separators, batteries, and methods |
RU2766873C1 (en) * | 2021-07-28 | 2022-03-16 | СЕЛГАРД ЭлЭлСи | Improved membranes, calandrated microporous membranes, battery separators and appropriate methods |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070148552A1 (en) * | 2003-12-24 | 2007-06-28 | Takashi Ikemoto | Microporous membrane made from polyolefin |
US20090117453A1 (en) * | 2005-06-24 | 2009-05-07 | Tonen Chemical Corporation | Multi-layer, microporous polyethylene membrane, and battery separator and battery using same |
US20070238017A1 (en) * | 2006-04-07 | 2007-10-11 | Celgard Llc | Multilayer separator exhibiting improved strength and stability |
KR100727248B1 (en) * | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | Organic / inorganic composite membrane coated with porous active layer and electrochemical device |
US20080251212A1 (en) * | 2007-04-13 | 2008-10-16 | Tensylon High Performance Materials, Inc. | Apparatus for the manufacture of wide polymeric sheet |
US7964266B2 (en) * | 2007-04-13 | 2011-06-21 | Bae Systems Tensylon H.P.M., Inc. | Wide ultra high molecular weight polyethylene sheet and method of manufacture |
TWI367229B (en) * | 2007-10-05 | 2012-07-01 | Toray Tonen Specialty Separato | Microporous polymer membrane |
PL2586611T3 (en) * | 2010-06-25 | 2019-03-29 | Toray Industries, Inc. | Composite porous membrane, method for producing composite porous membrane and battery separator using same |
CN102315421B (en) * | 2011-08-30 | 2014-08-20 | 珠海汉格能源科技有限公司 | Ultrathin polymer lithium ion battery and preparation method thereof |
TWI453114B (en) * | 2012-05-11 | 2014-09-21 | Entire Technology Co Ltd | Manufacturing method for porous composite film |
CN110767864A (en) * | 2013-03-15 | 2020-02-07 | 赛尔格有限责任公司 | Multilayer hybrid battery separator for lithium ion secondary battery and method for manufacturing same |
CN105449140A (en) * | 2014-08-27 | 2016-03-30 | 宁德时代新能源科技股份有限公司 | Separator and lithium ion secondary battery |
US9605229B2 (en) * | 2014-12-19 | 2017-03-28 | Bathium Canada Inc. | Lubricant for lamination of lithium sheets into lithium thin films |
CN105017546B (en) * | 2015-06-09 | 2017-08-08 | 界首市天鸿新材料股份有限公司 | A kind of dry method is double to draw lithium battery diaphragm production technology |
WO2017031159A1 (en) * | 2015-08-17 | 2017-02-23 | Celgard, Llc | Improved battery separators and related methods |
JP7116057B2 (en) | 2016-11-11 | 2022-08-09 | セルガード エルエルシー | battery separator |
KR102143267B1 (en) * | 2016-12-22 | 2020-08-10 | 한화토탈 주식회사 | Fabrication method for porous multilayer membrane and products manufactured thereby |
CN109742302A (en) * | 2019-01-15 | 2019-05-10 | 江苏安瑞达新材料有限公司 | The lithium ion battery separator and preparation method thereof of high electrolyte wetability |
CN110406137A (en) * | 2019-06-26 | 2019-11-05 | 佛山市盈博莱科技股份有限公司 | A kind of preparation method of high porosity polyolefin diaphragm of lithium ion battery |
WO2024077927A1 (en) | 2022-10-12 | 2024-04-18 | 中材锂膜(南京)有限公司 | Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device |
CN116231231B (en) * | 2023-05-09 | 2023-08-01 | 合肥长阳新能源科技有限公司 | Interlayer crosslinking co-extrusion battery diaphragm, preparation method thereof and battery |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480745A (en) * | 1994-01-31 | 1996-01-02 | Nitto Denko Corporation | Porous film and use of the same |
US5667911A (en) * | 1994-11-17 | 1997-09-16 | Hoechst Celanese Corporation | Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby |
US5691047A (en) * | 1994-05-12 | 1997-11-25 | Ube Industries, Ltd. | Porous multi-layer film |
US5691077A (en) * | 1994-12-20 | 1997-11-25 | Hoechst Celanese Corporation | Shutdown, trilayer battery separator |
US5952120A (en) * | 1997-04-15 | 1999-09-14 | Celgard Llc | Method of making a trilayer battery separator |
US6379605B1 (en) * | 1999-10-22 | 2002-04-30 | Nan Ya Plastics Corporation | Process for producing a 3-layer co-extruded biaxial-oriented polypropylene synthetic paper and transparent film for in-mold label |
US20020104608A1 (en) * | 2000-05-15 | 2002-08-08 | Welch Howard M. | Method and apparatus for producing laminated articles |
US20020136945A1 (en) * | 2000-01-18 | 2002-09-26 | Call Ronald W. | Multilayer battery separators |
US6521555B1 (en) * | 1999-06-16 | 2003-02-18 | First Quality Nonwovens, Inc. | Method of making media of controlled porosity and product thereof |
US20030136500A1 (en) * | 2002-01-08 | 2003-07-24 | Wei-Ching Yu | Continuous methods of making microporous battery separators |
US6602593B1 (en) * | 1999-08-30 | 2003-08-05 | Celgard Inc. | Battery separators with reduced splitting propensity |
US20040005834A1 (en) * | 2002-07-02 | 2004-01-08 | Peiguang Zhou | Elastomeric adhesive |
US20040005428A1 (en) * | 2002-07-05 | 2004-01-08 | Kazaya Katoh | Laminate sheet, laminate sheet roll, and producing methods therefor |
US20040087235A1 (en) * | 2002-10-31 | 2004-05-06 | Morman Michael Tod | Elastomeric film and laminates thereof |
US6833219B2 (en) * | 2001-01-05 | 2004-12-21 | Samsung Sdi Co., Ltd. | Polymer electrolytes and lithium secondary battery containing the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3466734B2 (en) * | 1993-10-05 | 2003-11-17 | 呉羽化学工業株式会社 | Vinylidene fluoride resin porous membrane and method for producing the same |
JP3011309B2 (en) * | 1994-05-12 | 2000-02-21 | 宇部興産株式会社 | Battery separator and method of manufacturing the same |
US5565281A (en) * | 1994-12-02 | 1996-10-15 | Hoechst Celanese Corporation | Shutdown, bilayer battery separator |
JP3381538B2 (en) * | 1996-08-06 | 2003-03-04 | 宇部興産株式会社 | Manufacturing method of laminated porous polyolefin film |
JP3852492B2 (en) * | 1996-08-06 | 2006-11-29 | 宇部興産株式会社 | Manufacturing method of battery separator |
JPH10237202A (en) * | 1997-02-26 | 1998-09-08 | Nitto Denko Corp | Porous film and separator for battery |
JPH10241659A (en) * | 1997-02-28 | 1998-09-11 | Nitto Denko Corp | Manufacture of porous film for battery separator |
JPH1160763A (en) * | 1997-08-22 | 1999-03-05 | Ube Ind Ltd | Porous polymer film |
JP2000299094A (en) * | 1999-04-14 | 2000-10-24 | Ube Ind Ltd | Porous film laminate and battery separator using the same |
US6346350B1 (en) * | 1999-04-20 | 2002-02-12 | Celgard Inc. | Structurally stable fusible battery separators and method of making same |
-
2003
- 2003-08-07 US US10/636,115 patent/US20050031943A1/en not_active Abandoned
-
2004
- 2004-06-24 SG SG200403829A patent/SG129295A1/en unknown
- 2004-06-25 CA CA002472281A patent/CA2472281A1/en not_active Abandoned
- 2004-06-28 TW TW093118893A patent/TWI251364B/en not_active IP Right Cessation
- 2004-07-07 KR KR1020040052636A patent/KR100637971B1/en not_active Expired - Fee Related
- 2004-07-31 EP EP04018207A patent/EP1505671A2/en not_active Withdrawn
- 2004-08-03 CN CNB2004100588861A patent/CN100459227C/en not_active Expired - Lifetime
- 2004-08-09 JP JP2004231815A patent/JP4516796B2/en not_active Expired - Fee Related
-
2007
- 2007-03-07 US US11/683,022 patent/US9112214B2/en not_active Expired - Lifetime
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480745A (en) * | 1994-01-31 | 1996-01-02 | Nitto Denko Corporation | Porous film and use of the same |
US5691047A (en) * | 1994-05-12 | 1997-11-25 | Ube Industries, Ltd. | Porous multi-layer film |
US5667911A (en) * | 1994-11-17 | 1997-09-16 | Hoechst Celanese Corporation | Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby |
US5691077A (en) * | 1994-12-20 | 1997-11-25 | Hoechst Celanese Corporation | Shutdown, trilayer battery separator |
US5952120A (en) * | 1997-04-15 | 1999-09-14 | Celgard Llc | Method of making a trilayer battery separator |
US6521555B1 (en) * | 1999-06-16 | 2003-02-18 | First Quality Nonwovens, Inc. | Method of making media of controlled porosity and product thereof |
US6602593B1 (en) * | 1999-08-30 | 2003-08-05 | Celgard Inc. | Battery separators with reduced splitting propensity |
US6379605B1 (en) * | 1999-10-22 | 2002-04-30 | Nan Ya Plastics Corporation | Process for producing a 3-layer co-extruded biaxial-oriented polypropylene synthetic paper and transparent film for in-mold label |
US20020136945A1 (en) * | 2000-01-18 | 2002-09-26 | Call Ronald W. | Multilayer battery separators |
US20020104608A1 (en) * | 2000-05-15 | 2002-08-08 | Welch Howard M. | Method and apparatus for producing laminated articles |
US6833219B2 (en) * | 2001-01-05 | 2004-12-21 | Samsung Sdi Co., Ltd. | Polymer electrolytes and lithium secondary battery containing the same |
US20030136500A1 (en) * | 2002-01-08 | 2003-07-24 | Wei-Ching Yu | Continuous methods of making microporous battery separators |
US20040005834A1 (en) * | 2002-07-02 | 2004-01-08 | Peiguang Zhou | Elastomeric adhesive |
US20040005428A1 (en) * | 2002-07-05 | 2004-01-08 | Kazaya Katoh | Laminate sheet, laminate sheet roll, and producing methods therefor |
US20040087235A1 (en) * | 2002-10-31 | 2004-05-06 | Morman Michael Tod | Elastomeric film and laminates thereof |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090186280A1 (en) * | 2005-12-15 | 2009-07-23 | Kazuya Iidani | Polyolefin microporous membrane |
US8003261B2 (en) | 2005-12-15 | 2011-08-23 | Asahi Kasei Chemicals Corporation | Polyolefin microporous membrane |
US20110159346A1 (en) * | 2008-09-03 | 2011-06-30 | Mitsubishi Plastics, Inc. | Laminated porous film for separator |
US9287543B2 (en) | 2011-02-03 | 2016-03-15 | Toray Industries, Inc. | Porous film, separator for electric storage device, and electric storage device |
CN103904280A (en) * | 2014-03-27 | 2014-07-02 | 达尼特材料科技(芜湖)有限公司 | Isolating film for lithium ion battery and manufacturing method thereof |
US11731407B2 (en) | 2015-06-03 | 2023-08-22 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
US10256447B2 (en) | 2015-06-03 | 2019-04-09 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
US10720623B2 (en) | 2015-06-03 | 2020-07-21 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
US12246520B2 (en) | 2015-06-03 | 2025-03-11 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
US11075429B2 (en) | 2015-06-03 | 2021-07-27 | Celgard, Llc | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods |
EP4148892A1 (en) | 2015-07-31 | 2023-03-15 | Celgard, LLC | Laminated multilayer membranes, separators, batteries, and methods |
US10347890B2 (en) | 2015-07-31 | 2019-07-09 | Celgard, Llc | Laminated multilayer membranes, separators, batteries, and methods |
US11101525B2 (en) | 2015-07-31 | 2021-08-24 | Celgard, Llc | Laminated multilayer membranes, separators, batteries, and methods |
US10777800B2 (en) * | 2015-09-18 | 2020-09-15 | Celgard, Llc | Membranes, calendered microporous membranes, battery separators, and related methods |
EP4123816A1 (en) | 2015-09-18 | 2023-01-25 | Celgard, LLC | Membranes, calendered microporous membranes, battery separators, and related methods |
US11569549B2 (en) | 2015-09-18 | 2023-01-31 | Celgard, Llc | Membranes, calendered microporous membranes, battery separators, and related methods |
US20230238587A1 (en) * | 2015-09-18 | 2023-07-27 | Celgard, Llc | Membranes, calendered microporous membranes, battery separators, and related methods |
US20170084898A1 (en) * | 2015-09-18 | 2017-03-23 | Celgard, Llc | Membranes, calendered microporous membranes, battery separators, and related methods |
US12040456B2 (en) * | 2015-09-18 | 2024-07-16 | Celgard, Llc | Membranes, calendered microporous membranes, battery separators, and related methods |
US20240396097A1 (en) * | 2015-09-18 | 2024-11-28 | Celgard, Llc | Improved membranes, calendered microporous membranes, battery separators, and related methods |
WO2017049065A1 (en) | 2015-09-18 | 2017-03-23 | Celgard, Llc | Improved membranes, calendered microporous membranes, battery separators and related methods |
RU2766873C1 (en) * | 2021-07-28 | 2022-03-16 | СЕЛГАРД ЭлЭлСи | Improved membranes, calandrated microporous membranes, battery separators and appropriate methods |
Also Published As
Publication number | Publication date |
---|---|
CA2472281A1 (en) | 2005-02-07 |
US9112214B2 (en) | 2015-08-18 |
JP4516796B2 (en) | 2010-08-04 |
SG129295A1 (en) | 2007-02-26 |
EP1505671A2 (en) | 2005-02-09 |
KR20050015998A (en) | 2005-02-21 |
KR100637971B1 (en) | 2006-10-23 |
TW200507325A (en) | 2005-02-16 |
CN100459227C (en) | 2009-02-04 |
CN1581534A (en) | 2005-02-16 |
TWI251364B (en) | 2006-03-11 |
US20050031943A1 (en) | 2005-02-10 |
JP2005056851A (en) | 2005-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9112214B2 (en) | Battery separator and method of making same | |
JP6854836B2 (en) | Co-extruded multi-layer battery separator | |
US12218379B2 (en) | Multilayer microporous separators for lithium ion secondary batteries and related methods | |
US11731407B2 (en) | Low electrical resistance microporous battery separator membranes, separators, cells, batteries, and related methods | |
US9908317B2 (en) | Multilayer battery separators | |
EP0715364B1 (en) | Shutdown, bilayer battery separator | |
KR20150128973A (en) | Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same | |
EP0924780B1 (en) | Penta-layer battery separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CELGARD, LLC (F/K/A CELGARD, INC.);REEL/FRAME:032631/0655 Effective date: 20140408 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CELGARD, LLC (F/K/A CELGARD, INC.);REEL/FRAME:032631/0655 Effective date: 20140408 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: CELGARD, LLC (F/K/A/ CELGARD, INC.), NORTH CAROLINA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN UNITED STATES PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:036485/0267 Effective date: 20150826 Owner name: CELGARD, LLC (F/K/A/ CELGARD, INC.), NORTH CAROLIN Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN UNITED STATES PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:036485/0267 Effective date: 20150826 |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |