US20070148490A1 - Brazing method and brazed structure - Google Patents
Brazing method and brazed structure Download PDFInfo
- Publication number
- US20070148490A1 US20070148490A1 US10/596,715 US59671504A US2007148490A1 US 20070148490 A1 US20070148490 A1 US 20070148490A1 US 59671504 A US59671504 A US 59671504A US 2007148490 A1 US2007148490 A1 US 2007148490A1
- Authority
- US
- United States
- Prior art keywords
- brazing
- less
- braze joint
- mass
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005219 brazing Methods 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 94
- 238000009792 diffusion process Methods 0.000 claims abstract description 76
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 44
- 239000000956 alloy Substances 0.000 claims abstract description 44
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 27
- 229910002482 Cu–Ni Inorganic materials 0.000 claims abstract description 17
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000007711 solidification Methods 0.000 claims description 24
- 230000008023 solidification Effects 0.000 claims description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims description 15
- 239000010935 stainless steel Substances 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 abstract description 52
- 238000005260 corrosion Methods 0.000 abstract description 52
- 229910052804 chromium Inorganic materials 0.000 abstract description 20
- 229910052759 nickel Inorganic materials 0.000 abstract description 19
- 239000007789 gas Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000000203 mixture Substances 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000010949 copper Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910018054 Ni-Cu Inorganic materials 0.000 description 2
- 229910018481 Ni—Cu Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/085—Heat exchange elements made from metals or metal alloys from copper or copper alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0012—Brazing heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/004—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/905—Materials of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
- Y10T428/12854—Next to Co-, Fe-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/1291—Next to Co-, Cu-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/12917—Next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/12917—Next to Fe-base component
- Y10T428/12924—Fe-base has 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12937—Co- or Ni-base component next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
- Y10T428/12979—Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
Definitions
- the present invention relates to a brazing method which produces a braze joint having excellent corrosion and oxidation resistances, and also relates to a brazed structure produced by the brazing method.
- EGR emission gas recycling
- the heat exchanger is produced by brazing members which are made of such material as a stainless steel and are to be joined to each other with the intervention of a braze joint formed by fusing and solidifying a brazing material.
- a copper brazing material having a melting point of not lower than 1,000° C. and having excellent corrosion resistance is typically used as the brazing material.
- the clad material includes a base plate composed of a ferrous material and a Fe atom diffusion suppression layer laminated on the base plate and composed of pure Ni or a Ni-based alloy mainly containing Ni for preventing Fe atoms, which may deteriorate the corrosion resistance, from diffusing into the braze joint from the ferrous material.
- JA-2003-145290-A proposes a Fe atom diffusion suppressing layer composed of a Ni—Cr alloy containing Cr in a proportion of not smaller than 10 mass % and not greater than 30 mass % to provide a braze joint of a Cu—Ni—Cr alloy for improvement of the oxidation resistance and the corrosion resistance of the braze joint.
- the use of the clad material including the Fe atom diffusion suppressing layer improves the corrosion and oxidation resistances of the braze joint of the heat exchanger.
- the emission gas cleaning has been more heavily demanded.
- the corrosion resistance of the braze joint against emission gas condensate has been more heavily demanded.
- preferred embodiments of the present invention provide a brazing method which produces a braze joint having excellent corrosion resistance when members to be joined are brazed to each other, and provide a brazed structure which includes a braze joint having excellent corrosion resistance.
- the corrosion resistance of the braze joint is improved by the Fe atom diffusion suppressing layer composed of the Ni—Cr alloy containing Cr.
- the Ni concentration of the alloy is higher than a certain level, the corrosion resistance is reduced to the contrary.
- this tendency is remarkable under highly corrosive conditions.
- the inventor of the present invention has found that, if the Ni content of the braze joint is increased, dendrite is liable to grow in the braze joint and, therefore, Cu-rich portions (Ni-poor portions) are formed in the braze joint by segregated solidification.
- the Cu-rich portions are liable to be selectively corroded, so that a passive layer of a Cr oxide film does not effectively function. This deteriorates the corrosion resistance of the braze joint.
- the inventor has made intensive studies of a method for forming a braze joint that is homogeneous in composition and structure without segregated solidification of the braze joint, thereby accomplishing various preferred embodiments of the present invention.
- An inventive brazing method for brazing a first member to be joined to a second member by the intervention of a braze joint formed by fusing and solidifying a brazing material includes the steps of preparing the first member and the brazing material, the first member including a base plate composed of a ferrous material of iron and steel and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing, the diffusion suppressing layer being composed of a Ni—Cr alloy essentially including not less than about 15 mass % and not greater than about 40 mass % of Cr, the brazing material being composed of a Cu—Ni alloy essentially including not less than about 10 mass % and not greater than about 20 mass % of Ni, assembling the first and second members into a temporary assembly with the brazing material disposed between the diffusion suppressing layer of the first member and the second member, and performing a brazing process by maintaining the temporary assembly at a temperature of not less than about 1,200° C.
- the brazing material to fuse the brazing material and diffuse Ni atoms and Cr atoms into the fused brazing material from the diffusion suppressing layer to form the braze joint, causing the resulting brazing material of the braze joint to have an increased melting point by the diffusion of the Ni atoms and the Cr atoms to self-solidify the braze joint, and then cooling the resulting assembly.
- the contents of the respective elements are hereinafter simply expressed in units of %. Further, the expression “essentially including” means that other elements may be included as long as the self-solidification, the corrosion resistance and the oxidation resistance of the braze joint are not adversely influenced.
- the temporary assembly including the first and second members with the brazing material disposed between the diffusion suppressing layer of the first member and the second member is maintained at a brazing temperature of not less than about 1,200° C., whereby the brazing material is fused and the Ni atoms and the Cr atoms are diffused into the fused brazing material from the diffusion suppressing layer to form the braze joint.
- the diffusion of the Ni atoms and the Cr atoms increases the melting point of the brazing alloy of the braze joint over the brazing temperature, whereby the braze joint is self-solidified at the brazing temperature.
- This phenomenon is referred to as “self-solidification”.
- the self-solidified metal is free from dendrite and, hence, free from segregated solidification. Consequently, the self-solidified metal has a structure such that Ni and Cr are evenly distributed in high concentrations in Cu to form a solid solution. Therefore, the braze joint has excellent corrosion and oxidation resistances.
- the brazing material is preferably composed of the Cu—Ni alloy including not less than about 10% and not greater than about 20% of Ni, and the diffusion suppressing layer is composed of the Ni—Cr alloy including not less than about 15% and not greater than about 40% of Cr. Therefore, the concentrations of Ni and Cr in the braze joint can be easily increased at a brazing temperature of not less than about 1200° C., whereby the braze joint is self-solidified.
- the corrosion resistance of the Cu alloy of the braze joint is improved by the action of Ni, and the surface of the braze joint is coated with a highly corrosion- and oxidation-resistant Cr oxide film formed by the action of Cr. With these actions, the braze joint has excellent corrosion and oxidation resistances.
- the second member may include a base plate made of a ferrous material of an iron and steel, and a diffusion suppressing layer laminated on the base plate. Therefore, it is possible to use the less expensive ferrous material for the base plate of the second member, while preventing the reduction of the corrosion resistance of the braze joint.
- Stainless steel is preferred as the ferrous material for the base plate because of its high corrosion resistance.
- the diffusion suppressing layer is preferably composed of a Ni—Cr alloy including not less than about 30% of Cr.
- the brazing material preferably has a thickness of not less than about 20 ⁇ m and not greater than about 60 ⁇ m to ensure that the braze joint can be easily formed as having a Ni content of not less than about 30% and a Cr content of not less than about 10%. Where the thickness of the brazing material is within the aforesaid thickness range, the brazing process can be performed at a brazing temperature of not less than about 1,200° C. and not greater than about 1,250° C. for a brazing period of not shorter than about 30 min and not longer than about 60 min, thereby ensuring higher productivity.
- An inventive brazed structure includes first and second members to joined and brazed to each other with the intervention of a braze joint formed by fusing and solidifying a brazing material of a Cu—Ni alloy essentially including not less than about 10 mass % and not greater than about 20 mass % of Ni.
- the first member includes a base plate preferably made of a ferrous material of an iron and steel and a diffusion suppressing layer laminated on the base plate.
- the diffusion suppressing layer suppresses diffusion of Fe atoms from the base plate into the braze joint formed on the diffusion suppressing layer during brazing, and is preferably composed of a Ni—Cr alloy essentially including not less than about 15 mass % and not greater than about 40 mass % of Cr.
- the braze joint is composed of a Cu—Ni—Cr alloy including not less than about 30 mass % of Ni and not less than about 10 mass % of Cr and free from segregated solidification.
- the brazing material is composed of the predetermined Cu—Ni alloy comprising not smaller than 10% of Ni and not greater than 20% of Ni and the diffusion suppressing layer of the first member is composed of the Ni—Cr alloy comprising not smaller than 15% and not greater than 40% of Cr
- the braze joint containing not smaller than 30% of Ni and not smaller than 10% of Cr evenly distributed therein in a solid solution state can be formed by self-solidification without segregated solidification by the brazing at a brazing temperature of not lower than 1200° C. Therefore, the braze joint is excellent in corrosion resistance and oxidation resistance, so that the brazed structure is excellent in durability.
- the second member includes a base plate preferably composed of a ferrous material of iron and steel and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing.
- the diffusion suppressing layer of the second member is preferably composed of a Ni—Cr alloy essentially including not less than about 15% and not greater than about 40% of Cr.
- the first and second members each preferably have a planar center portion and edge portions provided by bending along edges of the planar center portion, and are disposed in opposed relation with the edge portions thereof brazed to each other via the braze joint.
- a space defined between the first and second members may be used as a flow path for a corrosive fluid. Since the braze joint between the edge portions is excellent in corrosion resistance, the braze joint is less liable to be corroded. Hence, a flow path structure for a heat exchanger can be provided, which suppresses outflow of the corrosive fluid and is less expensive and more excellent in durability.
- the base plates of the first and second members may be composed of a stainless steel, thereby more improving the durability of the brazed structure.
- the Ni content of the Cu—Ni—Cr alloy of the braze joint is preferably not less than about 35%.
- the corrosion resistance of the braze joint is further more improved.
- the Ni and Cr contents of the braze joint are increased during the brazing at a brazing temperature of not less than about 1,200° C., whereby the braze joint is self-solidified. Consequently, the braze joint is composed of the Cu—Ni—Cr alloy homogeneous in structure and composition and free from segregated solidification and, hence, is excellent in corrosion resistance and oxidation resistance.
- the braze joint is preferably composed of the Cu—Ni—Cr alloy which includes not less than about 30% of Ni and not less than about 10% of Cr and is free from segregated solidification. Therefore, the braze joint has excellent corrosion resistance and oxidation resistance. Thus, the brazed structure has excellent durability.
- FIG. 1 is a perspective view illustrating, partly in section, a heat exchanger unit according to a preferred embodiment of the present invention.
- FIG. 2 is an enlarged sectional view illustrating an edge portion of the heat exchanger unit in a brazed state.
- FIG. 3 is a sectional view illustrating a major potion of a clad material for first and second members to be joined.
- FIG. 4 is an equilibrium phase diagram of a Cu—Ni binary alloy.
- FIG. 5 is a sectional view of a T-shaped brazed part used for a corrosion resistance test.
- FIGS. 6A and 6B are a couple of graphs and illustrating the results of measurement of a Ni concentration distribution and a Cr concentration distribution, respectively, observed along the thickness of a braze joint of Sample No. 3 (inventive example).
- FIGS. 7A and 7B are a couple of graphs and illustrating the results of measurement of a Ni concentration distribution and a Cr concentration distribution, respectively, observed along the thickness of a braze joint of Sample No. 1 (comparative example).
- FIG. 1 illustrates a heat exchanger unit 101 according to a preferred embodiment of the inventive brazed structure.
- the unit serves as a high temperature gas unit through which a high temperature gas such as emission gas is passed or a cooling unit through which cooling water is passed.
- the high temperature gas unit and the cooling unit are stacked to provide flow path structures of the heat exchanger.
- the heat exchanger unit 101 preferably includes first and second members 1 , 2 to be joined, each having a planar center portion 4 and edge portions 5 provided by bending along opposite edges of the planar center portion 4 .
- the center portions 4 of the first and second members 1 , 2 are disposed opposite to each other, and a corrugated fin (partition member) 3 is provided in a space defined between the center portions 4 of the first and second members 1 , 2 .
- Outer upper portions of the fin 3 are brazed to a back surface of the center portion 4 of the first member 1
- outer lower portions of the fin 3 are brazed to a back surface of the center portion 4 of the second member 2 .
- Inner surfaces of the edge portions 5 of the first member 1 are respectively brazed to outer surfaces of the edge potions 5 of the second member 2 with the intervention of braze joints 6 as shown in FIG. 2 .
- the braze joints 6 are each preferably composed of a Cu—Ni—Cr alloy which includes Cu as a major constituent, Ni in a proportion of not less than about 30%, more preferably not less than about 35%, and Cr in a proportion of not less than about 10%. Furthermore, the alloy for the braze joints is free from dendrite and, hence, free from segregated solidification, and homogenous in structure and composition. Since the braze joints 6 each contain Ni in a proportion of not less than about 30%, the corrosion resistance of the matrix is improved. Further, the braze joints 6 each include Cr in a proportion of not less than about 10%, so that a tight Cr oxide film is formed on surfaces of the braze joints to promote passivation of the surfaces of the braze joints.
- the braze joints 6 are excellent in corrosion resistance and oxidation resistance.
- the brazing method which ensures formation of the braze joints homogenous in structure and composition will be described later. If the segregated solidification occurs in the braze joints, Cu-rich portions will be present in the braze joints, thereby locally reducing the corrosion resistance. Even with passivation films formed on the braze joints in the presence of Cr, the braze joints will have insufficient corrosion resistance in severely corrosive environments. On the contrary, the braze joints 6 according to the present preferred embodiment are free from these disadvantages.
- the first and second members 1 , 2 are each preferably prepared by working a clad material (i.e., a brazing composite material) 11 including a base plate 12 composed of a stainless steel, diffusion suppressing layers 13 bonded to opposite surfaces of the base plate 12 , and a brazing material layer 14 bonded to a surface of one of the diffusion suppressing layers 13 .
- the fin 3 is prepared by bending a stainless steel thin plate into a corrugated shape.
- the clad material 11 is typically prepared by roll pressure bonding and diffusion annealing.
- metal sheets as materials for the base plate and respective layers are stacked and pressure-bonded by rolling, and the resulting pressure-bonded sheet is maintained at a temperature of not less than about 1,000° C. and not higher than 1,100° C. for the diffusion annealing.
- the clad material is finish-rolled (cold-rolled) for adjustment of the thicknesses of the base plate and the respective layers. After the finish-rolling, the clad material may be annealed as required for softening the clad material.
- the annealing is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon or a reduction gas such as hydrogen gas for prevention of oxidation of the surfaces of the clad material.
- the stainless steel for the base plate 12 of the clad material 11 may preferably be austenite stainless steels such as SUS304 and SUS316 and ferrite stainless steels such as SUS430 and SUS434 specified by JIS. From the viewpoint of workability and corrosion resistance, the austenite stainless steels are preferred.
- the base plate 12 typically has a thickness of not less than about 300 ⁇ m and not greater than about 600 ⁇ m, for example.
- the diffusion suppressing layers 13 are each preferably composed of a Ni—Cr alloy essentially including Cr in a proportion of not less than about 15% and not greater than about 40%, preferably not less than about 30% and not greater than about 40%.
- the brazing material layer 14 is preferably composed of a Cu—Ni alloy essentially including Ni in a proportion of not smaller than about 10% and not greater than about 20%.
- the Ni—Cr alloy typically contains the predetermined amount of Cr, and the balance of Ni and inevitable impurities, but an element which improves the characteristic properties of the braze joints may be added to the Ni—Cr alloy as long as the element does not adversely affect the characteristic properties of the braze joints.
- the Cu—Ni alloy typically contains the predetermined amount of Ni, and the balance of Cu and inevitable impurities, but an element which improves the characteristic properties of the braze joints may be added to the Cu—Ni alloy as long as the element does not adversely affect the characteristic properties of the braze joints.
- Al in an amount that is not less than about 1% and not greater than about 5% may be added to the Cu—Ni alloy.
- the diffusion suppressing layers 13 each have a thickness of not less than about 10 ⁇ m. In various preferred embodiments of the present invention, however, the diffusion suppressing layers 13 also function to supply Ni atoms and Cr atoms to the braze joints and, therefore, preferably each have a thickness which is not less than the thickness of the brazing material layer 14 and not greater than about 100 ⁇ m.
- the brazing material layer 14 that is, the brazing material layer at the overlap of the edge portions 5 when brazing the first and second members, preferably has a thickness of not less than about 20 ⁇ m and not greater than about 60 ⁇ m. If the thickness is less than about 20 ⁇ m, the amount of the brazing material is too small, and local deficiency of the brazing material may occur. On the other hand, if the thickness is greater than about 60 ⁇ m, the amount of the brazing material is too great, resulting in waste of the brazing material. In addition, where a brazing temperature is not less than about 1,200° C. and not greater than about 1,250° C.
- a brazing duration is not shorter than about 30 min and not longer than about 60 min as will be described later, it is difficult to evenly diffuse Ni atoms and Cr atoms into the entire braze joints from the diffusion suppressing layers 13 . Therefore, Ni-poor regions and Cr-poor regions occur in the braze joints, thereby reducing the corrosion resistance.
- the second member 2 is fitted in the first member 1 with outer surface portions of the diffusion suppressing layer 13 on the edge portions 5 of the second member 2 kept in contact with inner surface portions of the brazing material layer 14 on the edge portions 5 of the first member 1 , and with the fin 3 accommodated in the space defined between the first and second members.
- a temporary assembly is provided.
- the temporary assembly is kept heated at a brazing temperature of not less than about 1,200° C. in an heating oven, and then cooled.
- the edge portions 5 of the first member 1 are brazed to the corresponding edge portions 5 of the second member 2
- the fin 3 is brazed to the planar center portions 4 of the first and second members 1 , 2 .
- the brazing is preferably carried out in an anti-oxidation atmosphere, for example, in an atmosphere of an inert gas such as nitrogen or argon, in an atmosphere of a reduction gas such as hydrogen gas or in a vacuum atmosphere.
- Brazing conditions (the brazing temperature and the brazing duration) for brazing the edge portions 5 of the first member 1 to the edge portions 5 of the second member 2 will be explained in detail with reference to FIG. 4 .
- the brazing material layer (brazing material) 14 held between the diffusion suppressing layers 13 of the edge portions 5 of the first and second members 1 , 2 are heated and maintained at a temperature T of not less than about 1,200° C., whereby the brazing material is fused and Ni atoms and Cr atoms are diffused into the fused brazing material from the diffusion suppressing layers 13 to form the braze joints 6 (see FIG. 2 ).
- the Ni and Cr concentrations of the braze joints 6 are increased by the diffusion of the Ni atoms and the Cr atoms, so that the resulting brazing material of the braze joints have an increased melting point.
- crystallization from a Cu—Ni liquid phase to a Cu—Ni solid phase continuously occurs.
- the brazing material When the liquid phase is no longer present, the brazing material is completely self-solidified. And the brazing material is cooled from a time point t 1 after the self-solidification.
- the respective elements are evenly diffused in the solid phase resulting from the continuous crystallization during the self-solidification thereby to be evenly distributed in the braze joints. Therefore, the braze joints 6 are formed to have a homogenous composition and a homogeneous structure without formation of dendrite and, hence, without segregated solidification.
- FIG. 4 shows a Cu—Ni binary phase diagram, where not less than about 30% of Ni is contained in the brazing material, not less than about 10% and not greater than about 20% of Cr easily enters into solid solution with the Ni—Cu solid phase.
- the brazing temperature may be not less than about 1,200° C., but preferably not greater than about 1,250° C. If the brazing temperature is less than about 1,200° C., the self-solidification is difficult. This is because it takes too much time for the Ni and Cr contents of the brazing alloy to reach not less than about 30% and not less than about 10%, respectively, by the diffusion of the Ni atoms and the Cr atoms into the braze joints 6 from the diffusion suppressing layer 13 . On the other hand, if the brazing temperature is greater than about 1,250° C., a refractory material in an ordinary industrial oven is liable to be severely damaged. In addition, crystal grains of the stainless steel of the base plate tend to become coarse, thereby reducing the strength and the toughness.
- the Cr content of the diffusion suppressing layers 13 As the Cr content of the diffusion suppressing layers 13 is increased, the Cr content of the braze joints 6 can be more effectively increased to not less than about 10%. Hence, the Cr content of the diffusion suppressing layer is preferably increased to not less than about 20%, more preferably not less than about 30%.
- the brazing material layer 14 has a thickness of not less than about 20 ⁇ m and not greater than about 60 ⁇ m and the brazing temperature is not less than about 1200° C. and not greater than about 1250° C.
- the holding time required for the Ni and Cr contents of the braze joints 6 to reach not less than about 30% and not less than about 10%, respectively may be not shorter than about 30 min and not longer than about 60 min.
- the clad material 11 including the diffusion suppressing layers 13 and the brazing material layer 14 laminated on the entire surfaces of the base plate 12 is preferably used for the brazing of the fin 3 , but the diffusion suppressing layers and the brazing layer may be laminated only on portions where the first and second members are brazed depending on the application of the product.
- the brazing material layer 14 is not necessarily required to be laminated on the diffusion suppressing layer 13 , but a separately prepared brazing material foil may be placed between the diffusion suppressing layers 13 of the first and second members when the first and second members are assembled.
- the inventive brazing method and the inventive brazed structure are advantageously used not only for the aforesaid heat exchanger unit but also for a variety of chemical plants and piping connections utilizing a corrosive fluid.
- the base plate of the brazing composite material may be composed of a carbon steel, a low alloy steel or the like as well as the stainless steel.
- the second member to be brazed to the first member is not necessarily required to be prepared from the composite material having the same clad structure as the first member in the above-described preferred embodiment, and may be prepared from a plate material composed of a nonferrous metal such as a Ni alloy which is excellent in corrosion resistance.
- Double layer clad materials (each having a width of about 50 mm, for example) each having a diffusion suppressing layer bonded on a base plate were produced by preparing various composition types of sheets, which correspond to diffusion suppressing layers, the sheets respectively composed of Ni—Cr alloys containing different amounts of Cr and the balance of Ni as shown in Table 1, and pressure-bonding and diffusion-bonding the sheets onto stainless steel (SUS304) base plates.
- the clad materials were each finish-rolled for adjustment of the thickness thereof, and then annealed.
- the clad materials thus prepared were each bent into an L-shape with the diffusion suppressing layer located outward, whereby L-shaped parts were prepared. Then, as shown in FIG. 5 , temporary assemblies were respectively prepared by sandwiching different composition types of brazing material foils 24 between one-side portions of the diffusion suppressing layers 23 of pairs of such L-shaped parts 21 , and then kept heated at brazing temperatures in vacuum for brazing.
- the brazing material foils 24 were composed of Ni—Cu alloys containing different amounts of Ni and the balance of Cu as shown in Table 1.
- the Ni contents and thicknesses of the brazing material foils 24 and the Cr contents and thicknesses of the diffusion suppressing layers 23 are collectively shown in Table 1.
- Corrosion test strips were respectively prepared by cutting center portions C of the one-side portions of the T-shaped brazed parts, and the Ni and Cr concentrations of each of the cut portions were measured at intervals of about 1 ⁇ m along the thickness of the braze joint from a boundary between the diffusion suppressing layer (intermediate layer) and the braze joint by EPMA. Then, average concentrations and concentration variations (a maximum concentration minus a minimum concentration) were determined. The results of the measurement are also shown in Table 1. Exemplary concentration distributions obtained by the concentration measurement are shown in FIGS. 6A and 6B (Sample No. 3 of an inventive example) and FIGS. 7A and 7B (Sample No. 1 of a comparative example). In FIG. 7B , the Cr concentration is steeply increased at regions in which Cr grains are formed in the braze joint.
- a corrosion test was performed by using the respective corrosion test strips.
- a corrosive liquid having the following composition was prepared as simulation emission gas condensate, and the respective test strips were immersed in the corrosive liquid at about 100° C. for approximately 500 hours. Then, the corrosion state of the braze joint exposed in a section of each of the test strips was visually inspected.
- test strip free from corrosion was rated at “A (excellent)”, and a test strip having a corroded proportion, or a proportion of corroded area (a total length of corroded portions) to the exposed section length, of not greater than about 5% was rated at “B (acceptable)”. Further, a test strip having a corroded proportion of greater than about 5% was rated at “C (unacceptable)”.
- the test results are also shown in Table 1.
- the average Ni content and the average Cr content of each of the braze joints of Samples No. 2, No. 3, No. 4, No. 5, No. 14 and No. 18 of Inventive Examples were increased to not less than 30% and not less than 10%, respectively, though the brazing time was about 30 min or about 40 min, which is relatively short.
- the variation ranges of the Ni and Cr concentrations were smaller.
- the braze joints were free from segregated solidification attributable to dendrite and homogenous in composition and structure. Therefore, the braze joints were very excellent in corrosion resistance to the highly acidic corrosive liquid having pH2.0.
- results of the comparative examples were as follows.
- the average Ni and Cr concentrations of the braze joint of Sample No. 1 were not sufficiently increased, because the brazing temperature was 1,180° C., which is low.
- the braze joint was not self-solidified during the heating, so that segregated solidification of Ni and Cr occurred.
- the Ni and Cr concentration variation ranges were relatively great, so that the braze joint was insufficient in corrosion resistance.
- the diffusion suppressing layers of Samples No. 6 and No. 7 were composed of pure Ni, so that the braze joints were not passivated in the absence of Cr. Hence, the braze joints were poorer in corrosion resistance.
- the diffusion suppressing layers of Samples No. 8 and No. 9 were each composed of a Ni—Cr alloy, but the Cr contents were each about 5%, which is lower. Hence, the average Cr concentrations of the braze joints were each several %, that is, lower, so that the braze joints were poorer in corrosion resistance.
- Samples No. 6 and No. 8 were produced by the brazing at about 1,180° C., that is, a lower brazing temperature, so that the braze joints suffered from segregated solidification and great variations in composition.
- the brazing material layer of Sample No. 11 had a thickness of about 70 ⁇ m, so that the distance of the diffusion of Ni and Cr was greater in the brazing at about 1,220° C. for about 30 min. Hence, the variation ranges of the Ni and Cr concentrations of the braze joint were greater, and the average Ni and Cr concentrations were lower. Therefore, the braze joint was poorer in corrosion resistance.
- Sample No. 10 was produced by the brazing at about 1,180° C., that is, a lower brazing temperature, so that the average Cr and Ni concentrations were lower. Therefore, the braze joint was poorer in corrosion resistance.
- the brazing materials of Samples No. 12 and No. 13 did not contain Ni, so that the self-solidification did not occur in the brazing at a brazing temperature of about 1,220° C. Further, the braze joints each had a reduced Ni concentration. With the reduced Ni concentration, the amount of Cr in the solid solution was also reduced. As a result, the braze joints were poorer in corrosion resistance.
- the Ni content of the brazing material of sample No. 15 was about 22%, which is higher, so that a brazing temperature of about 1,250° C. was too low to positively diffuse Ni atoms and Cr atoms into the braze joint from the diffusion suppressing layer for the self-solidification. Hence, the average Ni and Cr concentrations of the braze joint were lower and, therefore, the braze joint was poorer in corrosion resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Fuel Cell (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
A brazing method which provides a braze joint having excellent corrosion resistance and a brazed structure including such a braze joint includes assembling a first member and a second member to be joined into a temporary assembly, the first member including a base plate made of a ferrous material and a diffusion suppressing layer laminated on the base plate and composed of a Ni—Cr alloy essentially including not less than about 15% and not greater than about 40% of Cr, the second member being disposed on the diffusion suppressing layer of the first member with intervention of a brazing material of a Cu—Ni alloy essentially including not less than about 10% and not greater than about 20% of Ni, and maintaining the temporary assembly at a temperature of not less than about 1,200° C. to fuse the brazing material and diffuse Ni atoms and Cr atoms into the fused brazing material from the diffusion suppressing layer to form the braze joint, causing the resulting brazing material of the braze joint to have an increased melting point due to the increase of the Ni and Cr contents of the braze joint to self-solidify the braze joint, and then cooling the resulting assembly.
Description
- 1. Field of the Invention
- The present invention relates to a brazing method which produces a braze joint having excellent corrosion and oxidation resistances, and also relates to a brazed structure produced by the brazing method.
- 2. Description of the Background Art
- With a globally growing interest in environmental issues, there has recently been an increasing demand for cleaning diesel engine emission gas. For the emission gas cleaning, an attempt has been made to suppress generation of NOx by EGR (emission gas recycling) in which a portion of the emission gas is passed through a heat exchanger for reducing the temperature of the emission gas and introduced into an engine for reducing the oxygen concentration of the intake gas, and heat generated by combustion is absorbed by the emission gas having a higher specific heat to reduce the combustion temperature.
- The heat exchanger is produced by brazing members which are made of such material as a stainless steel and are to be joined to each other with the intervention of a braze joint formed by fusing and solidifying a brazing material. A copper brazing material having a melting point of not lower than 1,000° C. and having excellent corrosion resistance is typically used as the brazing material.
- A clad material has recently been proposed as a material for the members to be joined for improving the corrosion resistance of the braze joint. As disclosed in JA-3350667-B, the clad material includes a base plate composed of a ferrous material and a Fe atom diffusion suppression layer laminated on the base plate and composed of pure Ni or a Ni-based alloy mainly containing Ni for preventing Fe atoms, which may deteriorate the corrosion resistance, from diffusing into the braze joint from the ferrous material. Further, JA-2003-145290-A proposes a Fe atom diffusion suppressing layer composed of a Ni—Cr alloy containing Cr in a proportion of not smaller than 10 mass % and not greater than 30 mass % to provide a braze joint of a Cu—Ni—Cr alloy for improvement of the oxidation resistance and the corrosion resistance of the braze joint.
- As described above, the use of the clad material including the Fe atom diffusion suppressing layer improves the corrosion and oxidation resistances of the braze joint of the heat exchanger. In recent years, however, the emission gas cleaning has been more heavily demanded. Correspondingly, the corrosion resistance of the braze joint against emission gas condensate has been more heavily demanded.
- In order to solve the problems described above, preferred embodiments of the present invention provide a brazing method which produces a braze joint having excellent corrosion resistance when members to be joined are brazed to each other, and provide a brazed structure which includes a braze joint having excellent corrosion resistance.
- As described in JA-2003-145290-A, the corrosion resistance of the braze joint is improved by the Fe atom diffusion suppressing layer composed of the Ni—Cr alloy containing Cr. However, if the Ni concentration of the alloy is higher than a certain level, the corrosion resistance is reduced to the contrary. Particularly, this tendency is remarkable under highly corrosive conditions. As a result of intensive studies as to the cause of this tendency, the inventor of the present invention has found that, if the Ni content of the braze joint is increased, dendrite is liable to grow in the braze joint and, therefore, Cu-rich portions (Ni-poor portions) are formed in the braze joint by segregated solidification. The Cu-rich portions are liable to be selectively corroded, so that a passive layer of a Cr oxide film does not effectively function. This deteriorates the corrosion resistance of the braze joint. On the basis of these findings, the inventor has made intensive studies of a method for forming a braze joint that is homogeneous in composition and structure without segregated solidification of the braze joint, thereby accomplishing various preferred embodiments of the present invention.
- An inventive brazing method for brazing a first member to be joined to a second member by the intervention of a braze joint formed by fusing and solidifying a brazing material includes the steps of preparing the first member and the brazing material, the first member including a base plate composed of a ferrous material of iron and steel and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing, the diffusion suppressing layer being composed of a Ni—Cr alloy essentially including not less than about 15 mass % and not greater than about 40 mass % of Cr, the brazing material being composed of a Cu—Ni alloy essentially including not less than about 10 mass % and not greater than about 20 mass % of Ni, assembling the first and second members into a temporary assembly with the brazing material disposed between the diffusion suppressing layer of the first member and the second member, and performing a brazing process by maintaining the temporary assembly at a temperature of not less than about 1,200° C. to fuse the brazing material and diffuse Ni atoms and Cr atoms into the fused brazing material from the diffusion suppressing layer to form the braze joint, causing the resulting brazing material of the braze joint to have an increased melting point by the diffusion of the Ni atoms and the Cr atoms to self-solidify the braze joint, and then cooling the resulting assembly. The contents of the respective elements are hereinafter simply expressed in units of %. Further, the expression “essentially including” means that other elements may be included as long as the self-solidification, the corrosion resistance and the oxidation resistance of the braze joint are not adversely influenced.
- In this brazing method, the temporary assembly including the first and second members with the brazing material disposed between the diffusion suppressing layer of the first member and the second member is maintained at a brazing temperature of not less than about 1,200° C., whereby the brazing material is fused and the Ni atoms and the Cr atoms are diffused into the fused brazing material from the diffusion suppressing layer to form the braze joint. The diffusion of the Ni atoms and the Cr atoms increases the melting point of the brazing alloy of the braze joint over the brazing temperature, whereby the braze joint is self-solidified at the brazing temperature. This phenomenon is referred to as “self-solidification”. The self-solidified metal is free from dendrite and, hence, free from segregated solidification. Consequently, the self-solidified metal has a structure such that Ni and Cr are evenly distributed in high concentrations in Cu to form a solid solution. Therefore, the braze joint has excellent corrosion and oxidation resistances.
- The brazing material is preferably composed of the Cu—Ni alloy including not less than about 10% and not greater than about 20% of Ni, and the diffusion suppressing layer is composed of the Ni—Cr alloy including not less than about 15% and not greater than about 40% of Cr. Therefore, the concentrations of Ni and Cr in the braze joint can be easily increased at a brazing temperature of not less than about 1200° C., whereby the braze joint is self-solidified. The corrosion resistance of the Cu alloy of the braze joint is improved by the action of Ni, and the surface of the braze joint is coated with a highly corrosion- and oxidation-resistant Cr oxide film formed by the action of Cr. With these actions, the braze joint has excellent corrosion and oxidation resistances.
- In the brazing method, the second member, like the first member, may include a base plate made of a ferrous material of an iron and steel, and a diffusion suppressing layer laminated on the base plate. Therefore, it is possible to use the less expensive ferrous material for the base plate of the second member, while preventing the reduction of the corrosion resistance of the braze joint. Stainless steel is preferred as the ferrous material for the base plate because of its high corrosion resistance.
- The diffusion suppressing layer is preferably composed of a Ni—Cr alloy including not less than about 30% of Cr. The brazing material preferably has a thickness of not less than about 20 μm and not greater than about 60 μm to ensure that the braze joint can be easily formed as having a Ni content of not less than about 30% and a Cr content of not less than about 10%. Where the thickness of the brazing material is within the aforesaid thickness range, the brazing process can be performed at a brazing temperature of not less than about 1,200° C. and not greater than about 1,250° C. for a brazing period of not shorter than about 30 min and not longer than about 60 min, thereby ensuring higher productivity.
- An inventive brazed structure includes first and second members to joined and brazed to each other with the intervention of a braze joint formed by fusing and solidifying a brazing material of a Cu—Ni alloy essentially including not less than about 10 mass % and not greater than about 20 mass % of Ni. The first member includes a base plate preferably made of a ferrous material of an iron and steel and a diffusion suppressing layer laminated on the base plate. The diffusion suppressing layer suppresses diffusion of Fe atoms from the base plate into the braze joint formed on the diffusion suppressing layer during brazing, and is preferably composed of a Ni—Cr alloy essentially including not less than about 15 mass % and not greater than about 40 mass % of Cr. The braze joint is composed of a Cu—Ni—Cr alloy including not less than about 30 mass % of Ni and not less than about 10 mass % of Cr and free from segregated solidification.
- Since the brazing material is composed of the predetermined Cu—Ni alloy comprising not smaller than 10% of Ni and not greater than 20% of Ni and the diffusion suppressing layer of the first member is composed of the Ni—Cr alloy comprising not smaller than 15% and not greater than 40% of Cr, the braze joint containing not smaller than 30% of Ni and not smaller than 10% of Cr evenly distributed therein in a solid solution state can be formed by self-solidification without segregated solidification by the brazing at a brazing temperature of not lower than 1200° C. Therefore, the braze joint is excellent in corrosion resistance and oxidation resistance, so that the brazed structure is excellent in durability.
- In the brazed structure, the second member includes a base plate preferably composed of a ferrous material of iron and steel and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing. The diffusion suppressing layer of the second member is preferably composed of a Ni—Cr alloy essentially including not less than about 15% and not greater than about 40% of Cr. Hence, it is possible to use the less expensive ferrous material for the base plate of the second member, while preventing the reduction of the corrosion resistance of the braze joint. Stainless steel is preferred as the ferrous material for the base plate because of its high corrosive resistance.
- In the brazed structure, the first and second members each preferably have a planar center portion and edge portions provided by bending along edges of the planar center portion, and are disposed in opposed relation with the edge portions thereof brazed to each other via the braze joint.
- In the brazed structure, a space defined between the first and second members may be used as a flow path for a corrosive fluid. Since the braze joint between the edge portions is excellent in corrosion resistance, the braze joint is less liable to be corroded. Hence, a flow path structure for a heat exchanger can be provided, which suppresses outflow of the corrosive fluid and is less expensive and more excellent in durability. The base plates of the first and second members may be composed of a stainless steel, thereby more improving the durability of the brazed structure.
- In the brazed structure, the Ni content of the Cu—Ni—Cr alloy of the braze joint is preferably not less than about 35%. Thus, the corrosion resistance of the braze joint is further more improved.
- In the inventive brazing method, the Ni and Cr contents of the braze joint are increased during the brazing at a brazing temperature of not less than about 1,200° C., whereby the braze joint is self-solidified. Consequently, the braze joint is composed of the Cu—Ni—Cr alloy homogeneous in structure and composition and free from segregated solidification and, hence, is excellent in corrosion resistance and oxidation resistance. In the inventive brazed structure, the braze joint is preferably composed of the Cu—Ni—Cr alloy which includes not less than about 30% of Ni and not less than about 10% of Cr and is free from segregated solidification. Therefore, the braze joint has excellent corrosion resistance and oxidation resistance. Thus, the brazed structure has excellent durability.
- Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
-
FIG. 1 is a perspective view illustrating, partly in section, a heat exchanger unit according to a preferred embodiment of the present invention. -
FIG. 2 is an enlarged sectional view illustrating an edge portion of the heat exchanger unit in a brazed state. -
FIG. 3 is a sectional view illustrating a major potion of a clad material for first and second members to be joined. -
FIG. 4 is an equilibrium phase diagram of a Cu—Ni binary alloy. -
FIG. 5 is a sectional view of a T-shaped brazed part used for a corrosion resistance test. -
FIGS. 6A and 6B are a couple of graphs and illustrating the results of measurement of a Ni concentration distribution and a Cr concentration distribution, respectively, observed along the thickness of a braze joint of Sample No. 3 (inventive example). -
FIGS. 7A and 7B are a couple of graphs and illustrating the results of measurement of a Ni concentration distribution and a Cr concentration distribution, respectively, observed along the thickness of a braze joint of Sample No. 1 (comparative example). - A brazing method and a brazed structure according to various preferred embodiments of the present invention will hereinafter be described with reference to the attached drawings.
-
FIG. 1 illustrates a heat exchanger unit 101 according to a preferred embodiment of the inventive brazed structure. The unit serves as a high temperature gas unit through which a high temperature gas such as emission gas is passed or a cooling unit through which cooling water is passed. The high temperature gas unit and the cooling unit are stacked to provide flow path structures of the heat exchanger. - The heat exchanger unit 101 preferably includes first and
second members 1, 2 to be joined, each having aplanar center portion 4 andedge portions 5 provided by bending along opposite edges of theplanar center portion 4. Thecenter portions 4 of the first andsecond members 1, 2 are disposed opposite to each other, and a corrugated fin (partition member) 3 is provided in a space defined between thecenter portions 4 of the first andsecond members 1, 2. Outer upper portions of thefin 3 are brazed to a back surface of thecenter portion 4 of thefirst member 1, and outer lower portions of thefin 3 are brazed to a back surface of thecenter portion 4 of the second member 2. Inner surfaces of theedge portions 5 of thefirst member 1 are respectively brazed to outer surfaces of theedge potions 5 of the second member 2 with the intervention ofbraze joints 6 as shown inFIG. 2 . - The braze joints 6 are each preferably composed of a Cu—Ni—Cr alloy which includes Cu as a major constituent, Ni in a proportion of not less than about 30%, more preferably not less than about 35%, and Cr in a proportion of not less than about 10%. Furthermore, the alloy for the braze joints is free from dendrite and, hence, free from segregated solidification, and homogenous in structure and composition. Since the braze joints 6 each contain Ni in a proportion of not less than about 30%, the corrosion resistance of the matrix is improved. Further, the braze joints 6 each include Cr in a proportion of not less than about 10%, so that a tight Cr oxide film is formed on surfaces of the braze joints to promote passivation of the surfaces of the braze joints. Thus, the braze joints 6 are excellent in corrosion resistance and oxidation resistance. The brazing method which ensures formation of the braze joints homogenous in structure and composition will be described later. If the segregated solidification occurs in the braze joints, Cu-rich portions will be present in the braze joints, thereby locally reducing the corrosion resistance. Even with passivation films formed on the braze joints in the presence of Cr, the braze joints will have insufficient corrosion resistance in severely corrosive environments. On the contrary, the braze joints 6 according to the present preferred embodiment are free from these disadvantages.
- As shown in
FIG. 3 , the first andsecond members 1, 2 are each preferably prepared by working a clad material (i.e., a brazing composite material) 11 including abase plate 12 composed of a stainless steel,diffusion suppressing layers 13 bonded to opposite surfaces of thebase plate 12, and abrazing material layer 14 bonded to a surface of one of the diffusion suppressing layers 13. Thefin 3 is prepared by bending a stainless steel thin plate into a corrugated shape. - The clad material 11 is typically prepared by roll pressure bonding and diffusion annealing. To be more particular, metal sheets as materials for the base plate and respective layers are stacked and pressure-bonded by rolling, and the resulting pressure-bonded sheet is maintained at a temperature of not less than about 1,000° C. and not higher than 1,100° C. for the diffusion annealing. As required, the clad material is finish-rolled (cold-rolled) for adjustment of the thicknesses of the base plate and the respective layers. After the finish-rolling, the clad material may be annealed as required for softening the clad material. The annealing is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon or a reduction gas such as hydrogen gas for prevention of oxidation of the surfaces of the clad material.
- The stainless steel for the
base plate 12 of the clad material 11 may preferably be austenite stainless steels such as SUS304 and SUS316 and ferrite stainless steels such as SUS430 and SUS434 specified by JIS. From the viewpoint of workability and corrosion resistance, the austenite stainless steels are preferred. Thebase plate 12 typically has a thickness of not less than about 300 μm and not greater than about 600 μm, for example. - The
diffusion suppressing layers 13 are each preferably composed of a Ni—Cr alloy essentially including Cr in a proportion of not less than about 15% and not greater than about 40%, preferably not less than about 30% and not greater than about 40%. Thebrazing material layer 14 is preferably composed of a Cu—Ni alloy essentially including Ni in a proportion of not smaller than about 10% and not greater than about 20%. The Ni—Cr alloy typically contains the predetermined amount of Cr, and the balance of Ni and inevitable impurities, but an element which improves the characteristic properties of the braze joints may be added to the Ni—Cr alloy as long as the element does not adversely affect the characteristic properties of the braze joints. The Cu—Ni alloy typically contains the predetermined amount of Ni, and the balance of Cu and inevitable impurities, but an element which improves the characteristic properties of the braze joints may be added to the Cu—Ni alloy as long as the element does not adversely affect the characteristic properties of the braze joints. For example, Al in an amount that is not less than about 1% and not greater than about 5% may be added to the Cu—Ni alloy. - From the viewpoint of suppression of diffusion of Fe atoms, it is sufficient that the
diffusion suppressing layers 13 each have a thickness of not less than about 10 μm. In various preferred embodiments of the present invention, however, thediffusion suppressing layers 13 also function to supply Ni atoms and Cr atoms to the braze joints and, therefore, preferably each have a thickness which is not less than the thickness of thebrazing material layer 14 and not greater than about 100 μm. - The
brazing material layer 14, that is, the brazing material layer at the overlap of theedge portions 5 when brazing the first and second members, preferably has a thickness of not less than about 20 μm and not greater than about 60 μm. If the thickness is less than about 20 μm, the amount of the brazing material is too small, and local deficiency of the brazing material may occur. On the other hand, if the thickness is greater than about 60 μm, the amount of the brazing material is too great, resulting in waste of the brazing material. In addition, where a brazing temperature is not less than about 1,200° C. and not greater than about 1,250° C. and a brazing duration is not shorter than about 30 min and not longer than about 60 min as will be described later, it is difficult to evenly diffuse Ni atoms and Cr atoms into the entire braze joints from the diffusion suppressing layers 13. Therefore, Ni-poor regions and Cr-poor regions occur in the braze joints, thereby reducing the corrosion resistance. - For production of the heat exchanger unit 101, as shown in
FIGS. 1 and 2 , the second member 2 is fitted in thefirst member 1 with outer surface portions of thediffusion suppressing layer 13 on theedge portions 5 of the second member 2 kept in contact with inner surface portions of thebrazing material layer 14 on theedge portions 5 of thefirst member 1, and with thefin 3 accommodated in the space defined between the first and second members. Thus, a temporary assembly is provided. The temporary assembly is kept heated at a brazing temperature of not less than about 1,200° C. in an heating oven, and then cooled. As a result, theedge portions 5 of thefirst member 1 are brazed to thecorresponding edge portions 5 of the second member 2, and thefin 3 is brazed to theplanar center portions 4 of the first andsecond members 1, 2. The brazing is preferably carried out in an anti-oxidation atmosphere, for example, in an atmosphere of an inert gas such as nitrogen or argon, in an atmosphere of a reduction gas such as hydrogen gas or in a vacuum atmosphere. - Brazing conditions (the brazing temperature and the brazing duration) for brazing the
edge portions 5 of thefirst member 1 to theedge portions 5 of the second member 2 will be explained in detail with reference toFIG. 4 . - The brazing material layer (brazing material) 14 held between the
diffusion suppressing layers 13 of theedge portions 5 of the first andsecond members 1, 2 are heated and maintained at a temperature T of not less than about 1,200° C., whereby the brazing material is fused and Ni atoms and Cr atoms are diffused into the fused brazing material from thediffusion suppressing layers 13 to form the braze joints 6 (seeFIG. 2 ). The Ni and Cr concentrations of the braze joints 6 are increased by the diffusion of the Ni atoms and the Cr atoms, so that the resulting brazing material of the braze joints have an increased melting point. Thus, crystallization from a Cu—Ni liquid phase to a Cu—Ni solid phase continuously occurs. When the liquid phase is no longer present, the brazing material is completely self-solidified. And the brazing material is cooled from a time point t1 after the self-solidification. By using such a heating and cooling method, the respective elements are evenly diffused in the solid phase resulting from the continuous crystallization during the self-solidification thereby to be evenly distributed in the braze joints. Therefore, the braze joints 6 are formed to have a homogenous composition and a homogeneous structure without formation of dendrite and, hence, without segregated solidification. If the cooling is started at a time point t2 at which the Cu—Ni is in a solid-liquid coexistent state even when the Cu—Ni is maintained at a temperature of not lower than about 1,200° C., dendrite is liable to grow from the liquid phase. Therefore, Cu-rich portions are formed in the braze joints, so that the braze joints are not homogenous in composition and structure. This reduces the corrosion resistance. ThoughFIG. 4 shows a Cu—Ni binary phase diagram, where not less than about 30% of Ni is contained in the brazing material, not less than about 10% and not greater than about 20% of Cr easily enters into solid solution with the Ni—Cu solid phase. - The brazing temperature may be not less than about 1,200° C., but preferably not greater than about 1,250° C. If the brazing temperature is less than about 1,200° C., the self-solidification is difficult. This is because it takes too much time for the Ni and Cr contents of the brazing alloy to reach not less than about 30% and not less than about 10%, respectively, by the diffusion of the Ni atoms and the Cr atoms into the braze joints 6 from the
diffusion suppressing layer 13. On the other hand, if the brazing temperature is greater than about 1,250° C., a refractory material in an ordinary industrial oven is liable to be severely damaged. In addition, crystal grains of the stainless steel of the base plate tend to become coarse, thereby reducing the strength and the toughness. As the Cr content of thediffusion suppressing layers 13 is increased, the Cr content of the braze joints 6 can be more effectively increased to not less than about 10%. Hence, the Cr content of the diffusion suppressing layer is preferably increased to not less than about 20%, more preferably not less than about 30%. Where thebrazing material layer 14 has a thickness of not less than about 20 μm and not greater than about 60 μm and the brazing temperature is not less than about 1200° C. and not greater than about 1250° C., the holding time required for the Ni and Cr contents of thebraze joints 6 to reach not less than about 30% and not less than about 10%, respectively, may be not shorter than about 30 min and not longer than about 60 min. These conditions for the brazing ensure excellent industrial productivity. - In this preferred embodiment, the clad material 11 including the
diffusion suppressing layers 13 and thebrazing material layer 14 laminated on the entire surfaces of thebase plate 12 is preferably used for the brazing of thefin 3, but the diffusion suppressing layers and the brazing layer may be laminated only on portions where the first and second members are brazed depending on the application of the product. Further, thebrazing material layer 14 is not necessarily required to be laminated on thediffusion suppressing layer 13, but a separately prepared brazing material foil may be placed between thediffusion suppressing layers 13 of the first and second members when the first and second members are assembled. - The inventive brazing method and the inventive brazed structure are advantageously used not only for the aforesaid heat exchanger unit but also for a variety of chemical plants and piping connections utilizing a corrosive fluid. In those cases, the base plate of the brazing composite material may be composed of a carbon steel, a low alloy steel or the like as well as the stainless steel. The second member to be brazed to the first member is not necessarily required to be prepared from the composite material having the same clad structure as the first member in the above-described preferred embodiment, and may be prepared from a plate material composed of a nonferrous metal such as a Ni alloy which is excellent in corrosion resistance.
- The present invention will hereinafter be described more specifically by way of examples. However, it should be understood that the present invention is not limited by the following examples.
- Double layer clad materials (each having a width of about 50 mm, for example) each having a diffusion suppressing layer bonded on a base plate were produced by preparing various composition types of sheets, which correspond to diffusion suppressing layers, the sheets respectively composed of Ni—Cr alloys containing different amounts of Cr and the balance of Ni as shown in Table 1, and pressure-bonding and diffusion-bonding the sheets onto stainless steel (SUS304) base plates. The clad materials were each finish-rolled for adjustment of the thickness thereof, and then annealed.
- The clad materials thus prepared were each bent into an L-shape with the diffusion suppressing layer located outward, whereby L-shaped parts were prepared. Then, as shown in
FIG. 5 , temporary assemblies were respectively prepared by sandwiching different composition types of brazing material foils 24 between one-side portions of thediffusion suppressing layers 23 of pairs of such L-shapedparts 21, and then kept heated at brazing temperatures in vacuum for brazing. The brazing material foils 24 were composed of Ni—Cu alloys containing different amounts of Ni and the balance of Cu as shown in Table 1. The Ni contents and thicknesses of the brazing material foils 24 and the Cr contents and thicknesses of thediffusion suppressing layers 23 are collectively shown in Table 1. - Corrosion test strips were respectively prepared by cutting center portions C of the one-side portions of the T-shaped brazed parts, and the Ni and Cr concentrations of each of the cut portions were measured at intervals of about 1 μm along the thickness of the braze joint from a boundary between the diffusion suppressing layer (intermediate layer) and the braze joint by EPMA. Then, average concentrations and concentration variations (a maximum concentration minus a minimum concentration) were determined. The results of the measurement are also shown in Table 1. Exemplary concentration distributions obtained by the concentration measurement are shown in
FIGS. 6A and 6B (Sample No. 3 of an inventive example) andFIGS. 7A and 7B (Sample No. 1 of a comparative example). InFIG. 7B , the Cr concentration is steeply increased at regions in which Cr grains are formed in the braze joint. - Further, a corrosion test was performed by using the respective corrosion test strips. In the corrosion test, a corrosive liquid having the following composition was prepared as simulation emission gas condensate, and the respective test strips were immersed in the corrosive liquid at about 100° C. for approximately 500 hours. Then, the corrosion state of the braze joint exposed in a section of each of the test strips was visually inspected. For evaluation of the corrosion resistance of the exposed section (having a length of about 50 mm) of the braze joint, a test strip free from corrosion was rated at “A (excellent)”, and a test strip having a corroded proportion, or a proportion of corroded area (a total length of corroded portions) to the exposed section length, of not greater than about 5% was rated at “B (acceptable)”. Further, a test strip having a corroded proportion of greater than about 5% was rated at “C (unacceptable)”. The test results are also shown in Table 1.
- Composition of the simulation emission gas condensate (pH2.0) Cl−: 20 ppm, NO3 −: 80 ppm, SO4 2−: 400 ppm, CH3COO−: 1300 ppm, NH4 −: 300 ppm, HCOO−: 500 ppm
TABLE 1 Braze joint Average Brazing material Diffusion suppressing layer Brazing conditions concentration Sample Ni content Thickness Cr content Thickness Temperature Time (mass %) No. (mass %) (μm) (mass %) (μm) (° C.) (min) Ni Cr 1 17 50 20 50 1180 30 10 2* 2 17 50 20 50 1200 30 34 10 3 17 50 20 50 1220 30 41 12 4 17 50 20 50 1240 30 44 14 5 17 50 20 50 1250 30 48 17 6 17 50 0 50 1180 30 15 0 7 17 50 0 50 1220 30 45 0 8 17 50 5 50 1180 30 14 1* 9 17 50 5 50 1220 30 40 3 10 17 70 20 50 1180 30 8 2* 11 17 70 20 50 1220 30 18 5 12 0 50 20 50 1220 30 19 8 13 0 80 20 50 1220 30 10 5 14 12 50 20 50 1250 30 39 11 15 22 50 20 50 1250 30 25 8 16 17 50 15 50 1220 10 20 4 17 17 50 15 50 1220 20 25 6 18 17 50 35 50 1220 40 48 15 Braze joint Ni Cr concentration concentration Corrosion resistance Sample variation variation corroded No. range (%) range (%) area (%) Evaluation Remarks 1 21 — 42 C Comparative example 2 3 3 3 B Inventive example 3 5 4 0 A ″ 4 5 3 0 A ″ 5 4 4 0 A ″ 6 25 — 83 C Comparative example 7 4 — 74 C ″ 8 13 — 84 C ″ 9 5 1 64 C ″ 10 15 — 91 C ″ 11 35 1 32 C ″ 12 15 4 18 C ″ 13 17 3 41 C ″ 14 4 1 0 A Inventive example 15 14 2 24 C Comparative example 16 15 1 34 C ″ 17 15 2 26 C ″ 18 3 2 0 A Inventive example
Note:
Asterisked average Cr concentrations of braze joints were each calculated with Cr concentrations of Cr grains being excluded.
A notation “—” indicates that the Cr concentration variation range was not calculated.
- As can be understood from Table 1, the average Ni content and the average Cr content of each of the braze joints of Samples No. 2, No. 3, No. 4, No. 5, No. 14 and No. 18 of Inventive Examples were increased to not less than 30% and not less than 10%, respectively, though the brazing time was about 30 min or about 40 min, which is relatively short. In addition, the variation ranges of the Ni and Cr concentrations were smaller. Hence, the braze joints were free from segregated solidification attributable to dendrite and homogenous in composition and structure. Therefore, the braze joints were very excellent in corrosion resistance to the highly acidic corrosive liquid having pH2.0.
- On the other hand, results of the comparative examples were as follows. The average Ni and Cr concentrations of the braze joint of Sample No. 1 were not sufficiently increased, because the brazing temperature was 1,180° C., which is low. As a result, the braze joint was not self-solidified during the heating, so that segregated solidification of Ni and Cr occurred. Hence, the Ni and Cr concentration variation ranges were relatively great, so that the braze joint was insufficient in corrosion resistance.
- The diffusion suppressing layers of Samples No. 6 and No. 7 were composed of pure Ni, so that the braze joints were not passivated in the absence of Cr. Hence, the braze joints were poorer in corrosion resistance. Further, the diffusion suppressing layers of Samples No. 8 and No. 9 were each composed of a Ni—Cr alloy, but the Cr contents were each about 5%, which is lower. Hence, the average Cr concentrations of the braze joints were each several %, that is, lower, so that the braze joints were poorer in corrosion resistance. Further, Samples No. 6 and No. 8 were produced by the brazing at about 1,180° C., that is, a lower brazing temperature, so that the braze joints suffered from segregated solidification and great variations in composition.
- The brazing material layer of Sample No. 11 had a thickness of about 70 μm, so that the distance of the diffusion of Ni and Cr was greater in the brazing at about 1,220° C. for about 30 min. Hence, the variation ranges of the Ni and Cr concentrations of the braze joint were greater, and the average Ni and Cr concentrations were lower. Therefore, the braze joint was poorer in corrosion resistance. Similarly, Sample No. 10 was produced by the brazing at about 1,180° C., that is, a lower brazing temperature, so that the average Cr and Ni concentrations were lower. Therefore, the braze joint was poorer in corrosion resistance.
- The brazing materials of Samples No. 12 and No. 13 did not contain Ni, so that the self-solidification did not occur in the brazing at a brazing temperature of about 1,220° C. Further, the braze joints each had a reduced Ni concentration. With the reduced Ni concentration, the amount of Cr in the solid solution was also reduced. As a result, the braze joints were poorer in corrosion resistance. On the other hand, the Ni content of the brazing material of sample No. 15 was about 22%, which is higher, so that a brazing temperature of about 1,250° C. was too low to positively diffuse Ni atoms and Cr atoms into the braze joint from the diffusion suppressing layer for the self-solidification. Hence, the average Ni and Cr concentrations of the braze joint were lower and, therefore, the braze joint was poorer in corrosion resistance.
- As for Samples No. 16 and No. 17, the brazing durations of approximately 10 min and 20 min, respectively at a brazing temperature of about 1,220° C. were too short for the braze joints to be self-solidified, thus suffering from segregated solidification. Further, the average Ni and Cr contents were not increased, so that the braze joints were poorer in corrosion resistance. Samples No. 1, No. 8 and No. 10 which were produced by the brazing at about 1,180° C., that is, a lower brazing temperature suffered from segregated solidification. Further, the average Ni contents were lower and the amounts of Cr in the solid solution were correspondingly lower, so that Cr grains grew. Hence, the braze joints locally had Cr-rich portions but, as a whole, the Ni and Cr concentrations were lower. Therefore, the braze joints were insufficiently passivated by Cr, and generally poorer in corrosion resistance.
- While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Claims (13)
1-11. (canceled)
12. A brazing method for brazing a first member a second member to be joined via a braze joint formed by fusing and solidifying a brazing material, the method comprising the steps of:
preparing the first member and the brazing material, the first member including a base plate composed of a ferrous material and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing, the diffusion suppressing layer being composed of a Ni—Cr alloy essentially comprising not less than about 15 mass % and not greater than about 40 mass % of Cr, the brazing material being composed of a Cu—Ni alloy essentially comprising not less than about 10 mass % and not greater than about 20 mass % of Ni;
assembling the first and second members into a temporary assembly with the brazing material disposed between the diffusion suppressing layer of the first member and the second member;
performing a brazing process by maintaining the temporary assembly at a temperature of not less than about 1,200° C. to fuse the brazing material and diffuse Ni atoms and Cr atoms into the fused brazing material from the diffusion suppressing layer to form the braze joint, causing the resulting brazing material of the braze joint to have an increased melting point by the diffusion of the Ni atoms and the Cr atoms to self-solidify the braze joint; and
cooling the resulting assembly.
13. The brazing method as set forth in claim 12 , wherein the second member includes a base plate composed of a ferrous material, and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing, the diffusion suppressing layer of the second member being composed of a Ni—Cr alloy essentially comprising not less than about 15 mass % and not greater than about 40 mass % of Cr.
14. The brazing method as set forth in claim 13 , wherein the base plates of the first member and the second member are each composed of a stainless steel.
15. The brazing method as set forth in claim 12 , wherein the Ni—Cr alloy of the diffusion suppressing layer has a Cr content of not less than about 30 mass %.
16. The brazing method as set forth in claim 12 , wherein the brazing material has a thickness of not less than about 20 μm and not greater than about 60 μm.
17. The brazing method as set forth in claim 16 , wherein the brazing temperature is not less than about 1,200° C. and not higher than about 1,250° C., and a duration for which the temporary assembly is maintained at the brazing temperature is not shorter than about 30 min and not longer than about 60 min.
18. A brazed structure comprising:
a first member;
a second member;
a braze joint joining the first member and second member to each other, the braze joint being made of a fused brazing material of a Cu—Ni alloy essentially comprising not less than about 10 mass % and not greater than about 20 mass % of Ni; wherein
the first member includes a base plate composed of a ferrous material and a diffusion suppressing layer laminated on the base plate, and the diffusion suppressing layer being arranged to suppress diffusion of Fe atoms from the base plate into the braze joint disposed on the diffusion suppressing layer during brazing and is composed of a Ni—Cr alloy essentially comprising not less than about 15 mass % and not greater than about 40 mass % of Cr;
the braze joint is composed of a Cu—Ni—Cr alloy comprising not less than about 30 mass % of Ni and not less than 10 mass % of Cr and being free from segregated solidification.
19. The brazed structure as set forth in claim 18 , wherein the second member includes a base plate composed of a ferrous material and a diffusion suppressing layer laminated on the base plate for suppressing diffusion of Fe atoms into the braze joint from the base plate during the brazing, and the diffusion suppressing layer of the second member is composed of a Ni—Cr alloy essentially comprising not less than about 15 mass % and not greater than about 40 mass % of Cr.
20. The brazed structure as set forth in claim 19 , wherein the base plates of the first member and the second member are each composed of a stainless steel.
21. The brazed structure as set forth in claim 20 , wherein the first and second members each have a planar center portion and edge portions defined by bending edges along a planar center portion thereof, and are disposed in opposed relation with the edge portions thereof brazed to each other via the braze joint.
22. The brazed structure as set forth in claim 18 , wherein the Cu—Ni—Cr alloy of the braze joint has a Ni content of not less than about 35 mass %.
23. A heat exchanger comprising the brazed structure as set forth in claim 18.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-426713 | 2003-12-24 | ||
JP2003426713 | 2003-12-24 | ||
PCT/JP2004/019197 WO2005061167A1 (en) | 2003-12-24 | 2004-12-22 | Method for brazing and brazed structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/019197 A-371-Of-International WO2005061167A1 (en) | 2003-12-24 | 2004-12-22 | Method for brazing and brazed structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/829,413 Division US8029918B2 (en) | 2003-12-24 | 2010-07-02 | Brazing method and brazed structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070148490A1 true US20070148490A1 (en) | 2007-06-28 |
Family
ID=34708872
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/596,715 Abandoned US20070148490A1 (en) | 2003-12-24 | 2004-12-22 | Brazing method and brazed structure |
US12/829,413 Expired - Fee Related US8029918B2 (en) | 2003-12-24 | 2010-07-02 | Brazing method and brazed structure |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/829,413 Expired - Fee Related US8029918B2 (en) | 2003-12-24 | 2010-07-02 | Brazing method and brazed structure |
Country Status (4)
Country | Link |
---|---|
US (2) | US20070148490A1 (en) |
JP (1) | JP4569964B2 (en) |
DE (1) | DE112004002533T5 (en) |
WO (1) | WO2005061167A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100012308A1 (en) * | 2007-01-12 | 2010-01-21 | Innospin Ag | Heat Exchanger Tubes, and Method for Producing Heat Exchanger Tubes |
US20100218875A1 (en) * | 2007-06-11 | 2010-09-02 | Battelle Memorial Institute | Diffusion barriers in modified air brazes |
US20110198392A1 (en) * | 2008-11-10 | 2011-08-18 | Aleris Aluminum Koblenz Gmbh | Process for Fluxless Brazing of Aluminium and Brazing Sheet for Use Therein |
US20110204124A1 (en) * | 2008-11-10 | 2011-08-25 | Aleris Aluminum Koblenz Gmbh | Process for fluxless brazing of aluminium and brazing filler alloy for use therein |
EP2372758A2 (en) * | 2010-03-29 | 2011-10-05 | Kabushiki Kaisha Toyota Jidoshokki | Cooling device |
US20180023182A1 (en) * | 2015-02-10 | 2018-01-25 | Dai Nippon Printing Co., Ltd. | Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet |
WO2020182650A1 (en) * | 2019-03-12 | 2020-09-17 | Mahle International Gmbh | Method for producing a component of a temperature control circuit |
CN114375235A (en) * | 2019-10-01 | 2022-04-19 | 通用电气公司 | Method for processing a joint to be brazed, method for processing a brazed joint, and active brazing joint |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009059686A1 (en) | 2009-12-19 | 2011-06-22 | Umicore AG & Co. KG, 63457 | alloy |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2514873A (en) * | 1945-06-30 | 1950-07-11 | Superior Steel Corp | Bimetallic billet |
US3693246A (en) * | 1970-11-14 | 1972-09-26 | Vladimir Vasilievich Novikov | Brazing solder |
US4604328A (en) * | 1982-09-24 | 1986-08-05 | Gte Products Corporation | Ductile brazing alloy containing reactive metals and precious metals |
US5289965A (en) * | 1993-04-30 | 1994-03-01 | Mcdonnell Douglas Corporation | Method of superplastically forming and braze bonding a structure |
US5466538A (en) * | 1993-12-28 | 1995-11-14 | Daido Metal Company Ltd. | Multi-layer sliding member |
US5874178A (en) * | 1995-07-06 | 1999-02-23 | Showa Entetsu Co., Ltd. | Cladding material |
US6413651B1 (en) * | 1999-07-20 | 2002-07-02 | Mengjie Yan | Composite metal coil or plate and its manufacturing method |
US6605371B1 (en) * | 1998-09-28 | 2003-08-12 | Sumitomo Special Metals Co., Ltd. | Brazing alloy for stainless steel, structure braze-assembled with the brazing alloy, and brazing material for stainless steel |
US6783870B2 (en) * | 2000-10-16 | 2004-08-31 | Engineered Materials Solutions, Inc. | Self-brazing materials for elevated temperature applications |
US20070224445A1 (en) * | 2005-03-29 | 2007-09-27 | Neomax Materials Co., Ltd. | Brazing Filler Metal, Brazing Composite Material and Brazed Structure Brazed/Bonded with the Same |
US7407715B2 (en) * | 2000-04-28 | 2008-08-05 | Elliott Company | Method of brazing and article made therefrom |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1068924B1 (en) * | 1999-02-02 | 2005-12-28 | Neomax Materials Co., Ltd. | Brazing composite material and brazed heat exchanger |
JP2001001133A (en) * | 1999-06-16 | 2001-01-09 | Denso Corp | Brazing jointing method |
JP3670235B2 (en) * | 2001-11-09 | 2005-07-13 | 株式会社Neomaxマテリアル | Brazing composite material and brazing structure |
-
2004
- 2004-12-22 US US10/596,715 patent/US20070148490A1/en not_active Abandoned
- 2004-12-22 JP JP2005516507A patent/JP4569964B2/en not_active Expired - Fee Related
- 2004-12-22 DE DE112004002533T patent/DE112004002533T5/en not_active Withdrawn
- 2004-12-22 WO PCT/JP2004/019197 patent/WO2005061167A1/en active Application Filing
-
2010
- 2010-07-02 US US12/829,413 patent/US8029918B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2514873A (en) * | 1945-06-30 | 1950-07-11 | Superior Steel Corp | Bimetallic billet |
US3693246A (en) * | 1970-11-14 | 1972-09-26 | Vladimir Vasilievich Novikov | Brazing solder |
US4604328A (en) * | 1982-09-24 | 1986-08-05 | Gte Products Corporation | Ductile brazing alloy containing reactive metals and precious metals |
US5289965A (en) * | 1993-04-30 | 1994-03-01 | Mcdonnell Douglas Corporation | Method of superplastically forming and braze bonding a structure |
US5466538A (en) * | 1993-12-28 | 1995-11-14 | Daido Metal Company Ltd. | Multi-layer sliding member |
US5874178A (en) * | 1995-07-06 | 1999-02-23 | Showa Entetsu Co., Ltd. | Cladding material |
US6605371B1 (en) * | 1998-09-28 | 2003-08-12 | Sumitomo Special Metals Co., Ltd. | Brazing alloy for stainless steel, structure braze-assembled with the brazing alloy, and brazing material for stainless steel |
US6413651B1 (en) * | 1999-07-20 | 2002-07-02 | Mengjie Yan | Composite metal coil or plate and its manufacturing method |
US7407715B2 (en) * | 2000-04-28 | 2008-08-05 | Elliott Company | Method of brazing and article made therefrom |
US6783870B2 (en) * | 2000-10-16 | 2004-08-31 | Engineered Materials Solutions, Inc. | Self-brazing materials for elevated temperature applications |
US20070224445A1 (en) * | 2005-03-29 | 2007-09-27 | Neomax Materials Co., Ltd. | Brazing Filler Metal, Brazing Composite Material and Brazed Structure Brazed/Bonded with the Same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100012308A1 (en) * | 2007-01-12 | 2010-01-21 | Innospin Ag | Heat Exchanger Tubes, and Method for Producing Heat Exchanger Tubes |
US20100218875A1 (en) * | 2007-06-11 | 2010-09-02 | Battelle Memorial Institute | Diffusion barriers in modified air brazes |
US8424747B2 (en) * | 2007-06-11 | 2013-04-23 | Battelle Memorial Institute | Diffusion barriers in modified air brazes |
US20110198392A1 (en) * | 2008-11-10 | 2011-08-18 | Aleris Aluminum Koblenz Gmbh | Process for Fluxless Brazing of Aluminium and Brazing Sheet for Use Therein |
US20110204124A1 (en) * | 2008-11-10 | 2011-08-25 | Aleris Aluminum Koblenz Gmbh | Process for fluxless brazing of aluminium and brazing filler alloy for use therein |
EP2372758A2 (en) * | 2010-03-29 | 2011-10-05 | Kabushiki Kaisha Toyota Jidoshokki | Cooling device |
US20180023182A1 (en) * | 2015-02-10 | 2018-01-25 | Dai Nippon Printing Co., Ltd. | Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet |
US10570498B2 (en) * | 2015-02-10 | 2020-02-25 | Dai Nippon Printing Co., Ltd. | Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet |
WO2020182650A1 (en) * | 2019-03-12 | 2020-09-17 | Mahle International Gmbh | Method for producing a component of a temperature control circuit |
CN114375235A (en) * | 2019-10-01 | 2022-04-19 | 通用电气公司 | Method for processing a joint to be brazed, method for processing a brazed joint, and active brazing joint |
Also Published As
Publication number | Publication date |
---|---|
JP4569964B2 (en) | 2010-10-27 |
US20100273025A1 (en) | 2010-10-28 |
US8029918B2 (en) | 2011-10-04 |
WO2005061167A1 (en) | 2005-07-07 |
JPWO2005061167A1 (en) | 2007-12-13 |
DE112004002533T5 (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8029918B2 (en) | Brazing method and brazed structure | |
KR101703464B1 (en) | Ferritic stainless steel sheet having excellent brazability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system | |
WO2009084526A1 (en) | Ferric stainless steel having excellent brazeability | |
EP3276029B1 (en) | Stainless steel having excellent brazeability | |
US20010007720A1 (en) | Aluminum alloy brazing sheet | |
EP2280090A1 (en) | Ferritic stainless steel | |
WO2015141145A1 (en) | Ferrite-based stainless steel and production method therefor | |
TW201610185A (en) | Ferritic stainless steel and method for producing same | |
WO2016103565A1 (en) | Ferritic stainless steel and process for producing same | |
US6605371B1 (en) | Brazing alloy for stainless steel, structure braze-assembled with the brazing alloy, and brazing material for stainless steel | |
JP3670235B2 (en) | Brazing composite material and brazing structure | |
JP6493440B2 (en) | Ferritic stainless steel sheet for heat exchanger of heat exchanger | |
WO2000045987A1 (en) | Brazing composite material and brazed structure | |
JP4507942B2 (en) | Brazing clad material and brazing product using the same | |
JP4413793B2 (en) | Brazing method and brazed structure | |
JP2003117686A (en) | Brazing composite material and brazing product using the same | |
JP2013010981A (en) | Ferritic stainless steel for egr cooler | |
JP6807221B2 (en) | Ni brazed joint heat exchanger member | |
JP4507943B2 (en) | Brazing clad material and brazing product using the same | |
JP4239853B2 (en) | Brazing composite material, method for producing the same, and brazed product | |
JP4413792B2 (en) | Brazing method and brazed structure | |
US20050260437A1 (en) | Brazing composite material and brazed product using the same | |
JP5788946B2 (en) | Ferritic stainless steel for parts assembled by brazing with excellent brazing | |
JP2005238298A (en) | Clad material for heat exchanger and flow passage structure of heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEOMAX MATERIALS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASEGAWA, TSUYOSHI;ISHIO, MASAAKI;KAJIKAWA, SHUNJI;AND OTHERS;REEL/FRAME:017829/0756;SIGNING DATES FROM 20060601 TO 20060611 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |